Views
5 years ago

# SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

## 164 I. x( P') has

164 I. x( P') has Poineard map P', all P' E Q. ~. x(P')I(M \ U) = X, 1" E O. s. x(P x) = x. Proof: The proof is based on a simple spreading of isotopies argument. For details we refer the reader to [6, Section 6]. I Remark 8.2 If we assume X is C r, 1 < r < vo, rather than smooth in 8.1, then we can only construct a continuous map X : Q "-' C~-1(TM) satisfying the conditions of the Lernma: Contrary to the statement of [6, Section 6,Lemma C], the vector fields x(P ~) that are constructed in the proof are only of class C r-1. Proposition 8.2 Let X E C~(TM) and ~ C M be a relative periodic orbit of X, There ezist arbitrarily C a° small perturbations X n of X such that ~, is a generic relative periodic orbit of X ~. Proof: Let (D, D ~, pX, p) be a Poincar~ system for E. By Lemma 6.5, we may perturb pX to P~ so that ~ 13 D t is a generic invarlant G.orbit of P~. The result follows by Lemma 8.1 and Proposition 8.1. I 8.3 Tangential and normal decomposition Suppose ~] is a relative periodic orbit of X consisting of points of isotropy type (H). Set K = N(H)/H. We may choose z E K/K °, ( E Rep(z) such that ~] and ~]¢ are isomorphic as G-fiber bundles over S 1. As in Section 7, we let E¢ denote the flow on ~¢ induced from the canonical flow on E¢. For the remainder of the section, we shall identify ~] and E¢ and regard E¢ as a flow on ~... Let q~ :/V(E) --* ~ denote the normal bundle of E and fix a tubular map r : N(E) --, M mapping N(~]) equivariantly and diffeomorphically onto an open tubular neighbourhood Uof~. Fix 8 E S 1, z E ~0 H. Let ~ denote the trajectory of ~¢ through z. By construction of the canonical flow, ~ is a periodic orbit, period 2p(z)~. Let q~ : N ~ -* ~ be the H-vector bundle over ~; defined by restricting .N'(~) to ~. Set D ~ = r(N~). We note that D ~ is an embedded H-invariant submanifold of M which is transverse to ~ along D ~ N ~ = ~. Just as in Section 6, we may construct H-eqnlvariant vector fields XT, XN- on D ~ such that 1. XID '~ = Xr + XN.. 2. XT is tangent to G-orbits. 3. XN. is tangent to D ~. The H-eqnivariant vector fields XT, XN. extend to G-equivariant vector fields on U which we denote by XT, XN¢ respectively. We call XT and .~I~N¢ the tangential and normal components of X associated to (. Note that for each g E G, gD ~ is invariant by ~xN..

165 Proposition 8.3 Let P. be a relative periodic orbit of X fi C~(TM) consisting of peints of isotropy type (~). Choose ~ e ~¢(~)/~(H) °, ¢ e Rep(z) such that ~ is isomo~hic to ~¢ and identify Z u~ith ~¢. Let U be a G-invariant tubular neighbourhood of ~ and let X = XT + XN¢ denote the associated tangential and normal decomposition of X. There exist an open neighbourhood Wx(U) of U x {0} in U xR and a smooth map 7 : Wx(U) ~ G such that 1. ~x(z,t) = 7(z,t)~xm(z,t), all (z,t) 6 Wx(U). ~. 7(z,t) e C(G=), all (z,t) 6 Wx(U). 3. ~ is generic for X if and only if it is generic for XN~. ~. ~ is generic for X if and only if t~ is a hyperbolic periodic orbit Of XN¢ID 'c. Proof: Use the arguments of the proof of Proposition 6.1. | References [1] J. F. Adams. Lectures on Lie Groups, (Benjamin, New York, 1969). [2] G. E. Bredon. Introduction to Compact Z~'ansformation Groups, (Pure and Applied Mathematics, 46, Academic Press, New York and London, 1972). [3] T. Br6cker and T. tom Dieck. Representations of Compact Lie Groups, (Graduate Texts in Mathematics, Springer, New York, 1985). [4] P. Chossat and M. Golubitsky. 'Iterates of maps with symmetry', Siam J. of Math. Anal., Vol. 19(6), 1088. [5] M. J. Field. 'Equivariant Dynamical Systems', Bull. Arner. Math. Soc., 76(1970), 1314-1318. [6] M. J. Field. 'Equivariant Dynamical Systems', Trans. Amcr. Math. Soc., 259 (1980),185-205. [7] M. J. Field. 'On the structure of a class of equivariant maps', Bull. Austral Math. Soc., 26(1982), 161-180. [8] M. J. Field. 'Isotopy and Stability of Equivariant Diffeomorphisms', Proc. London Math. Soc.(3), 46(1983), 487-516. [9] M. J. Field. 'Equivariant Dynamics', Contemp. Math, 56(1986), 69-95. [10] M. J. Field, 'Equivariant Bifurcation Theory and Symmetry Breaking', J. Dyn. Diff. Equ., Vol. 1(4), (1989), 369-421. [11] M. G. Golubitsky and D. G. Schaeffer. Sinyularities and Groups in Bifurcation The- ory, Vol. I, (Appl. Math. Sci. 51, Sprlnger-Verlag, New York, 1985). [12] M. G. Golubitsky, D. G. Schaeffer and I. N. Stewart. Singularities and Groups in Bifurcation Theory, Vol. II, (Appl. Math. Sci. 69, Springer-Verlag, New York, 1988).

Page 1 Page 2 D B 5 6 D MOTOR Mo~, lmotowon T R T ...
1O 9 I B I 7 I 6 5 4 I 3 2 1
B E R L I N C H A U S S E E S T R A S S E 5 7 - 6 1 B ... - Glen Leddy
Page 1 7 6 5 | 4 L 3 | 2 | 1 CK T ll ll ll )l KLÃ'ZOJ T ll ll ll ll klÃ¶zo) A B ...
D e se m b e r 0 5, V olum e 0 6, Issue 11 w w w .ta n go n o tica s.co m
1 5 . T T O - F O R U M 1 2 . T T O - F O R U M O c t o b e r 1 6 ...
P P P NP NP 12 3 4 5 6 7 8 W 9 10 11 12 13 14 W 15 16 0 17 A C B ...
DVAA: Flat Galaxies (by R.A.) A B C D E F G H I J K L 1 2 3 4 5 6 7 8 ...
H O T E L - R E S TA U R A N T- B A R S e e s t r a s s e 2 2 5 6 3 ...
6-5 Practice B cc.pdf - MrWalkerHomework
a 1 2 a b b a 3 4 a b b a 5 6 a b b a 7 8 a b b a 9 10 ... - CodeMath.com
Lösung 6 Aufgabe 1 a) b) c) Aufgabe 2 Aufgabe 3 a) 5 4 2 6 4 20 9 2 ...
8 * 5 * 4 * 3 * 2 * 1 A 8 A 7 A 6 A 5 A 4 A 3 A 2 B 8 B 7 B 6 B 5 B 4 B 3 ...
5 b 5 6 10 c 12 a 5 8 A a 13 b Classroom Exercises - flip@mrflip.com
EAS 540 - STABLE ISOTOPE GEOCHEMISTRY Thrs., BUS B-5; 6 ...
Panel B 4:45-5:30 Round 2 Panel A 5:30-6:15 | Panel B 6:15-7 ...
TEST ANSWERS Version A 1. B 2. B 3. E 4. E 5. D 6. B 7. C 8. B 9. A ...
Solutions to Quiz 5 Sample B - Loyola University Chicago
Â¡' &) (10 , 2 354 6&7 98@ ) AC B\$ E DG FH I 6 &Q ... - UniversitÃ© Lille 1
(0 12 3Â¡) 4(5 6 3 798 9 %@4a7(6 b cedgfhfhiqps rti u)vxwtwty
V 5 1 5 B 6 L 4 X P T S F
1. Nyelvismereti feladatsor 1. C 2. B 3. D 4. D 5. A 6. B 7. B 8. C ... - Itk
1 A 2 B 3 A 4 B 5 6 7 8 A 9 B 10BÂ½ 11 A 12 13 14 B 15 A 16 B 17 A ...
Friday Warm-up A 5:00-5:30 PM, Warm-up B 5:30-6:00 PM Starts at ...
1. NC 2. L 3. NP 4. D 5. F 6. A 7. M a) b) b) 8. T 9 ... - Bangladesh Bank
1 2 (a) 2 (b) 3 4 5 6 7 8 9 10 11 - Travel Insurance
1. 2. 3. 4. 5. 6. 7. 8. Meeting A. M B. Pl Approval Awards a Public He ...
A. LISTENING. 1-5 B. VOCABULARY 6-15 C. GRAMMAR. 16-25
F i b r l o kT M 2 6 5 0 -AC K - Connex Telecom