Views
5 years ago

SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

4 Z2-SYMMEZ Y 210 We

4 Z2-SYMMEZ Y 210 We consider corank 1 Lagrange projections from Z2-invariant Lagrange submanifolds of T*IR n, where Z 2 = {1,~c} acts on V = Rn by :- ~:- (Xl ..... Xr, Yl ...... Ys) = (-Xl,--..,-Xr, Yl,-'--,Ys) ( r + s - n ). We also assume that Z 2 acts nontrivially on W* = R; the case of a trivial action is dealt with by Remark 2.5. The main results are Corollary 4.4, which states that if r < s there are generic E 2 equivariant Lagrange projections which are not infinitesimally Z 2 stable, and Theorem 4.4, which includes a complete classification of infinitesimally stable Z 2 equivariant Lagrange projections when n

211 where q%(x,y) = Z Vbc(X'y)xc and the %a and the Vbe are Zz-invariant C=I functions of x and y. Moreover since ~2(k+l) is simple, the restriction of F to W*~V G will be 5~ G versal. Hence the mapping X will be a submersion and we can choose coordinates YI ..... Ys so that Xa = Ya. Condition 1.2 implies that (VII(0) ...... Vlr(0) )~ 0. By a linear change of the coordinates Xl,.;.,x r we may suppose that (V1 1(0) ...... Vlr(0) ) = (1,0 ..... 0). Finally, by redefining x 1 we may take V1 l(x,Y) to be identically 1. ¢ We now derive necessary and sufficient conditions on the 222-invariant mapping : V -* M(k,r) for (4.1) to be infinitesimally stable, the target of V being the space of k x r matrices, Proposition 4.2 F is infinitesimally stable if and only if the restriction of V obtained by putting x i=0=yjfor i--1 ...... r and j= 1 ...... k:- : IR s-k ~ M(k,r) )s (Yj j=k+l I ~ ~(0,0,yk+l ...... Ys), is transversal at y = 0 to the orbits of the natural action of GL(r) on M(k,r). Proof By Proposition 2.7, F is infinitesimally stable if and only if the 22 2 equivariant map germ • (x,y) -~ (Yl ....... Yk, q°l(x,Y) ......... q)k(x,y)) is 5~Z2- stable. The result above follows from the characterisation of 5~Z2- stable germs in [ R1 §4 and R2 ]. Remark 4.3 This transversality criterion is equivalent to the condition that the following matrix has rank kr, the maximum possible:- ¢

Page 1 Page 2 D B 5 6 D MOTOR Mo~, lmotowon T R T ...
B E R L I N C H A U S S E E S T R A S S E 5 7 - 6 1 B ... - Glen Leddy
Page 1 7 6 5 | 4 L 3 | 2 | 1 CK T ll ll ll )l KLÖ'ZOJ T ll ll ll ll klözo) A B ...
1 5 . T T O - F O R U M 1 2 . T T O - F O R U M O c t o b e r 1 6 ...
P P P NP NP 12 3 4 5 6 7 8 W 9 10 11 12 13 14 W 15 16 0 17 A C B ...
H O T E L - R E S TA U R A N T- B A R S e e s t r a s s e 2 2 5 6 3 ...
D e se m b e r 0 5, V olum e 0 6, Issue 11 w w w .ta n go n o tica s.co m
DVAA: Flat Galaxies (by R.A.) A B C D E F G H I J K L 1 2 3 4 5 6 7 8 ...
Reading grade 6 2.A.5.b - mdk12
a 1 2 a b b a 3 4 a b b a 5 6 a b b a 7 8 a b b a 9 10 ... - CodeMath.com
Lösung 6 Aufgabe 1 a) b) c) Aufgabe 2 Aufgabe 3 a) 5 4 2 6 4 20 9 2 ...
8 * 5 * 4 * 3 * 2 * 1 A 8 A 7 A 6 A 5 A 4 A 3 A 2 B 8 B 7 B 6 B 5 B 4 B 3 ...
5 b 5 6 10 c 12 a 5 8 A a 13 b Classroom Exercises - flip@mrflip.com
EAS 540 - STABLE ISOTOPE GEOCHEMISTRY Thrs., BUS B-5; 6 ...
Panel B 4:45-5:30 Round 2 Panel A 5:30-6:15 | Panel B 6:15-7 ...
TEST ANSWERS Version A 1. B 2. B 3. E 4. E 5. D 6. B 7. C 8. B 9. A ...
Solutions to Quiz 5 Sample B - Loyola University Chicago
¡' &) (10 , 2 354 6&7 98@ ) AC B$ E DG FH I 6 &Q ... - Université Lille 1
(0 12 3¡) 4(5 6 3 798 9 %@4a7(6 b cedgfhfhiqps rti u)vxwtwty
V 5 1 5 B 6 L 4 X P T S F
1. Nyelvismereti feladatsor 1. C 2. B 3. D 4. D 5. A 6. B 7. B 8. C ... - Itk
Friday Warm-up A 5:00-5:30 PM, Warm-up B 5:30-6:00 PM Starts at ...
1 A 2 B 3 A 4 B 5 6 7 8 A 9 B 10B½ 11 A 12 13 14 B 15 A 16 B 17 A ...
1. NC 2. L 3. NP 4. D 5. F 6. A 7. M a) b) b) 8. T 9 ... - Bangladesh Bank
Midterm 1 KEY MC Answers 1. B 2. B 3. A 4. D 5. A 6. D 7. C 8. A 9 ...
1. Nyelvismereti feladatsor 1. A 2. B 3. A 4. A 5. D 6. D 7. B 8. C 9 ... - Itk
1 2 3 4 5 6 A B C D Last Name FirstName Major Advisor ... - Alumni
1 2 (a) 2 (b) 3 4 5 6 7 8 9 10 11 - Travel Insurance