Views
5 years ago

# SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

SN~ (~6) lff 2It 3k_~ , 5 ",,x_J {b)

## 224 defined at each

224 defined at each point p ~ P by a nonsingular 2n x 2n antisymmetric matrix Coij that depends smoothly on p. Examples 2.1 1 ~2n _~ ~n x ~n becomes a symplectic manifold with the symplectic form Co = ~dYiAdx i ! in coordinates (x,y) = (x 1,.-.xn,yl ..... Yn). 2 ~n is a symplectic manifold with the 2-form Im (k~__l dz k ® d~k). 3 The direct sum V* ~ V of a vector space V and its dual V*, endowed with the canonical form co : (~ 1 ~ Vl, ~2 ~ v2) ~ ~l(V2) - ~2(Vl) is a symplectic manifold. Let (PI,COl) and (P 2,co2) be symplectic manifolds of equal dimension. A symplectic map is a smooth map V:P 1 ~ P2 such that V'co2 = C°l. Here V* is the pullback V*CO(Pl,P2) -- CO(~(Pl),V(P2)). It follows (Abraham and Marsden [1978] p.177) that V is a local diffeomorphism, and we therefore refer to it as a local symplectomorphism. A global symplectomorphism v:P1 ~ P2 is a diffeomorphism that is symplectic, and if such a map exists we say that P1 and P2 are symplectomorphic. If Pl ~ P1 and P2 ~ P2 we say that P1 and P2 are locally symplectomorphic near p 1, P2 if there exists a symplectic map v:U 1 ~ U 2 where U 1 and U 2 are open, p 1 ~ U 1, P2 e U2, and V(P 1) = P2" We then write P1 -~ P2" Phase space Let Q be the configuration manifold of a mechanical system. The cotangent bundle T*Q is denoted by P and is called the phase manifold of the system. The traditional coordinate system on P uses position coordinates q = (ql ..... qn) and momentum coordinates p = (p 1 ..... Pn). In a static mechanical system the p j are force coordinates. There is a canonical 1-form 'V'Q on P, the Liouville form, defined by the work done in traversing the stationary paths in Q. The manifold P together with the 2-form o = d'~Q defines a symplectic manifold (P,CO) called the phase space of the system. Examples 2.2 1 The space P --- {(V,S,p,T) ~ ~14 : V > 0, S > 0, p > 0, T > 0} with symplectic form co = dV A dp + dT ^ dS is the phase space for a simple thermodynamic system, in fact a 11

225 perfect gas with V = volume, S = entropy, p = pressure, T = temperature. Here the extensive coordinates V,S correspond to positions and the intensive ones p, T correspond to forces: see Sommerfeld [1964]. 2 Let P be the phase manifold of a mechanical system. Let cp : TP ~ T*P be the diffeomorphism defined by ¢p(v)(u) -- co(v,u), where u,v are vectors in TP such that Xp(U) = Xp(V) for the canonical projection Xp : TP~ P. The pair (TP, dcp*Y'p) defines the phase space for particle (Hamiltonian) dynamics on Q. In local coordinates (q,p,~l,15) on TP we have n d(¢p*~/'p) -- ~ (d~i ^ dqi - dcli A dPi), n = dim Q. i=l See Tulczyjew [1974] for further details. Darboux coordinates Coordinates on P in which co can be written as n co = ~l dpi A dqi are called Darboux coordinates. They always exist locally on (P,co), see Guillemin and Sternberg [1984] p.155. So all symplectic manifolds are locally symplectomorphic, that is (P, co) ~, ([12n, i__~l dPi ^ dqi). n The local Darboux coordinates on P reduce a hypersurface V in P to the local normal form V = {(p,q) : q 1 = 0}, see Arnold [1983]. An analogous fact is true if V is a singular variety, e.g. an ordinary swallowtail variety defined in P, see Arnold [1981]. Lagrangian submanifolds Let (P,co) be a symplectic manifold, dim P --- 2n. A submanifold L of P such that c01L = 0 is said to be isotropic for co. If further dim L = n, its maximum value in this case, then L is called a Lagrangian submanifold of (P,co). The concept of a Lagrangian submanifold is of central importance in symplectic geometry, see Weinstein [19811. Examples 2.3 1 In the phase space of Example 2.2.1 the state equations of a concrete thermodynamical system, say a perfect gas, describe a Lagrangian submanifold of attainable states ~,-1) L -- {(V,S,p,T) ~ P : pV = RT, pV 7 --- ke , R,7,k constants}.

P P P NP NP 12 3 4 5 6 7 8 W 9 10 11 12 13 14 W 15 16 0 17 A C B ...
Page 1 Page 2 D B 5 6 D MOTOR Mo~, lmotowon T R T ...
H O T E L - R E S TA U R A N T- B A R S e e s t r a s s e 2 2 5 6 3 ...
B E R L I N C H A U S S E E S T R A S S E 5 7 - 6 1 B ... - Glen Leddy
Page 1 7 6 5 | 4 L 3 | 2 | 1 CK T ll ll ll )l KLÃ'ZOJ T ll ll ll ll klÃ¶zo) A B ...
1 5 . T T O - F O R U M 1 2 . T T O - F O R U M O c t o b e r 1 6 ...
1O 9 I B I 7 I 6 5 4 I 3 2 1
DVAA: Flat Galaxies (by R.A.) A B C D E F G H I J K L 1 2 3 4 5 6 7 8 ...
D e se m b e r 0 5, V olum e 0 6, Issue 11 w w w .ta n go n o tica s.co m
6-5 Practice B cc.pdf - MrWalkerHomework
a 1 2 a b b a 3 4 a b b a 5 6 a b b a 7 8 a b b a 9 10 ... - CodeMath.com
8 * 5 * 4 * 3 * 2 * 1 A 8 A 7 A 6 A 5 A 4 A 3 A 2 B 8 B 7 B 6 B 5 B 4 B 3 ...
5 b 5 6 10 c 12 a 5 8 A a 13 b Classroom Exercises - flip@mrflip.com
Lösung 6 Aufgabe 1 a) b) c) Aufgabe 2 Aufgabe 3 a) 5 4 2 6 4 20 9 2 ...
EAS 540 - STABLE ISOTOPE GEOCHEMISTRY Thrs., BUS B-5; 6 ...
Panel B 4:45-5:30 Round 2 Panel A 5:30-6:15 | Panel B 6:15-7 ...
TEST ANSWERS Version A 1. B 2. B 3. E 4. E 5. D 6. B 7. C 8. B 9. A ...
Solutions to Quiz 5 Sample B - Loyola University Chicago
(0 12 3Â¡) 4(5 6 3 798 9 %@4a7(6 b cedgfhfhiqps rti u)vxwtwty
Â¡' &) (10 , 2 354 6&7 98@ ) AC B\$ E DG FH I 6 &Q ... - UniversitÃ© Lille 1
V 5 1 5 B 6 L 4 X P T S F
1. Nyelvismereti feladatsor 1. C 2. B 3. D 4. D 5. A 6. B 7. B 8. C ... - Itk
1 A 2 B 3 A 4 B 5 6 7 8 A 9 B 10BÂ½ 11 A 12 13 14 B 15 A 16 B 17 A ...
Friday Warm-up A 5:00-5:30 PM, Warm-up B 5:30-6:00 PM Starts at ...
Midterm 1 KEY MC Answers 1. B 2. B 3. A 4. D 5. A 6. D 7. C 8. A 9 ...
1. Nyelvismereti feladatsor 1. A 2. B 3. A 4. A 5. D 6. D 7. B 8. C 9 ... - Itk
1. NC 2. L 3. NP 4. D 5. F 6. A 7. M a) b) b) 8. T 9 ... - Bangladesh Bank
(' )(0 132 4 5 6(7 1 8 @BA &B' 1C0 ion Section Chair)9! DFEHGBIQP
C8051F340/1/2/3/4/5/6/7/8/9/A/B - HIT-Karlsruhe