Views
5 years ago

A Textbook of Clinical Pharmacology and Therapeutics

A Textbook of Clinical Pharmacology and Therapeutics

• Respiratory system

• Respiratory system – apnoea following injection may require assisted ventilation. If opioids are also administered, as with other agents, the respiratory depression is more marked. • Pain on injection – this is common, and the incidence is reduced if a larger vein is used or lidocaine mixed with propofol. • Involuntary movements and convulsions (which can be delayed). KETAMINE Use and pharmacokinetics Ketamine is chemically related to phencyclidine (still used as an animal tranquillizer, but no longer for therapeutic use in humans because of its psychogenic effects and potential for abuse), and produces dissociative anaesthesia, amnesia and profound analgesia. It is a relatively safe anaesthetic from the viewpoint of acute cardiorespiratory effects since, unlike other intravenous anaesthetics, it is a respiratory and cardiac stimulant. A patent airway is maintained and it is a bronchodilator. Because of its ease of administration and safety, its use is widespread in countries where there are few skilled anaesthetists. It has been used for management of mass casualties or for anaesthesia of trapped patients to carry out amputations, etc. It is used in shocked patients, because unlike other intravenous anaesthetics it raises rather than lowers blood pressure. An intravenous dose produces anaesthesia within 30–60 seconds, which lasts for 10–15 minutes. An intramuscular dose is effective within three to four minutes, and has a duration of action of 15–25 minutes. There is a high incidence of hallucinations, nightmares and transient psychotic effects. Children cannot articulate such symptoms and it is disturbing that it is still used particularly in this age group. Adverse effects • Psychosis and hallucinations are common. • Intracranial pressure is increased by ketamine. • Blood pressure and heart rate are increased. • Salivation and muscle tone are increased. • Recovery is relatively slow. Key points • Intravenous anaesthetics may cause apnoea and hypotension. • Adequate resuscitation facilities must be available. OTHER AGENTS Etomidate has a rapid onset and duration of action and has been used for induction. Its use has declined because it causes pain on injection, nausea and vomiting, and excitatory phenomena including extraneous muscle movements. Etomidate can suppress synthesis of cortisol (see below) and it should not be used for maintenance of anaesthesia. Key points Intravenous induction agents SUPPLEMENTARY DRUGS BENZODIAZEPINES SUPPLEMENTARY DRUGS 149 All have a rapid onset of action, with propofol gradually replacing thiopental in the UK as the usual agent of choice. • Propofol – rapid recovery, pain on injection, bradycardia which may be avoided by use of an antimuscarinic agent, rarely anaphylaxic and causing convulsions. • Thiopental – smooth induction but narrow therapeutic index, cardiorespiratory depression, awakening usually rapid due to redistribution, but metabolism slow and sedative effects prolonged, very irritant injection. • Methohexitone – barbiturate similar to thiopental, less smooth induction, less irritant, may cause hiccup, tremor and involuntary movements. • Etomidate – rapid recovery and less hypotensive effect than propofol and thiopental, but painful on injection. Extraneous muscle movements and repeated doses cause adrenocortical suppression. • Ketamine – good analgesic, increases cardiac output and muscle tone. Due to unpleasant psychological effects (e.g. nightmares and hallucinations) it is restricted to high-risk patients. Useful in children (in whom central nervous system (CNS) effects are less problematic), particularly when repeated doses may be required, and in mass disasters (relatively wide therapeutic index, may be used intramuscularly, slow recovery, safer than other agents in less experienced hands). See Chapters 18 and Chapter 22. Midazolam is a water-soluble benzodiazepine and useful intravenous sedative. It has a more rapid onset of action than diazepam and a shorter duration of action, with a plasma half-life of 1.5–2.5 hours. Dose is titrated to effect. Midazolam causes amnesia, which is useful for procedures such as endoscopy or dentistry. The use of benzodiazepines for induction of anaesthesia is usually confined to slow induction of poor-risk patients. Prior administration of a small dose of midazolam decreases the dose of intravenous anaesthetic required for induction. Large doses can cause cardiovascular and respiratory depression. Repeated doses of midazolam accumulate and recovery is prolonged. Diazepam is used for premedication (oral), sedation (by slow intravenous injection) and as an anticonvulsant (intravenously). A preparation formulated as an emulsion in soyabean oil has reduced thrombophlebitis from intravenous diazepam. OPIOIDS High-dose opioids (see Chapter 25) are used to induce and maintain anaesthesia in poor-risk patients undergoing major surgery. Opioids such as fentanyl provide cardiac stability.

150 ANAESTHETICS AND MUSCLE RELAXANTS Onset is slow and the duration of action prolonged so that ventilatory support is required post-operatively. Addition of a small dose of volatile anaesthetic, benzodiazepine or propofol is required to avoid awareness during anaesthesia. High-dose opioids can cause chest wall rigidity interfering with mechanical ventilation. This can be prevented by muscle relaxants. FENTANYL Fentanyl is a synthetic opioid and is the most commonly employed analgesic supplement during anaesthesia. It is very lipid soluble and has an onset time of one to two minutes. It has approximately 100 times the analgesic activity of morphine. Fentanyl is rapidly and extensively metabolized, the t1/2 being two to four hours, the short duration of action (the peak effect lasts only 20–30 minutes) being explained by redistribution from brain to tissues. Particular care should be taken after multiple injections because of saturation of tissue stores. Depression of ventilation can occur for several minutes. Fentanyl and the other potent opioids must not be used in situations where ventilation cannot be controlled. Fentanyl has little cardiovascular effect, but bradycardia may occur. Neuroleptanalgesia is produced by a combination of a butyrophenone (droperidol) and an opioid (fentanyl). It is a state of inactivity and reduced response to external stimuli, sometimes used for complex diagnostic procedures. ALFENTANIL Alfentanil is a highly lipid-soluble derivative of fentanyl that acts in one arm–brain circulation time. It has a short duration of action of five to ten minutes, and is often used as an infusion, but causes marked respiratory depression for some minutes. REMIFENTANIL Remifentanil is a μ agonist with a rapid onset and short duration. It has an ester linkage, making it susceptible to rapid hydrolysis by a number of non-specific esterases in blood and tissues. It is administered as an infusion and does not accumulate even after a three-hour infusion. Its t1/2 is five to seven minutes. It is a useful adjunct to anaesthetics, particularly in patients with renal or hepatic impairment. α 2-ADRENOCEPTOR AGONISTS Clonidine has analgesic, anxiolytic and sedative properties. It potentiates inhalational and intravenous anaesthetics. The reduction of MAC of anaesthetics is more marked with the more specific α 2-adrenoceptor agonist dexmetomidine, but this is not currently available in the UK. Adverse effects include hypotension and bradycardia. SEDATION IN THE INTENSIVE CARE UNIT Patients in the intensive care unit frequently require sedative/ analgesic drugs to facilitate controlled ventilation, to provide sedation and analgesia during painful procedures, to allay anxiety and psychological stress and to manage confusional states. The choice of agent(s) used is tailored to meet the needs of the individual patient and must be frequently reviewed. Most sedative and analgesic drugs are given by continuous intravenous infusion both for convenience of administration and for control. Opioids are often used to provide analgesia. They also suppress the cough reflex and are respiratory depressants, which is useful in ventilated patients. Morphine and fentanyl have been used for long-term sedation. Alfentanil has a short half-life and is given by infusion. Opioids are often combined with benzodiazepines (e.g. midazolam). Monitoring the level of sedation is particularly important in cases where long-acting opioids or benzodiazepines are being used whose action may be prolonged due to accumulation of drug and active metabolites. Propofol is increasingly used where shortterm sedation or regular assessment is required, because its lack of accumulation results in rapid recovery. It is not recommended in children. Etomidate was used for intensive care sedation before it was shown to increase mortality by adrenocortical suppression. Inhalational agents, such as isoflurane, have also been successfully used to provide sedation. Occasionally, muscle relaxants are indicated in critically ill patients to facilitate ventilation. Atracurium is then the drug of choice and sedation must be adequate to avoid awareness. PREMEDICATION FOR ANAESTHESIA Premedication was originally introduced to facilitate induction of anaesthesia with agents, such as chloroform and ether, that are irritant and produce copious amounts of secretions. Modern induction methods are simple and not unpleasant, and the chief aim of premedication is now to allay anxiety in the patient awaiting surgery. Oral temazepam is often the only premedication used before routine surgery. Adequate premedication leads to the administration of smaller doses of anaesthetic than would otherwise have been required, thereby resulting in fewer side effects and improved recovery. Intravenous midazolam, which causes anxiolysis and amnesia, can be used. Opioids such as morphine, phenothiazines and muscarinic receptor antagonists (e.g. hyoscine) are also used. Gastric prokinetic agents, anti-emetics and H 2-receptor antagonists are used to enhance gastric emptying, decrease the incidence of nausea and vomiting, and reduce gastric acidity and volume in certain situations. MUSCLE RELAXANTS Muscle relaxants are neuromuscular blocking drugs which cause reversible muscle paralysis (Figure 24.3). They are grouped as follows: • non-depolarizing agents (competitive blockers), such as vecuronium and atracurium, which bind reversibly to the post-synaptic nicotinic acetylcholine receptors on the motor end-plate, competing with acetylcholine and thereby preventing end-plate depolarization and blocking neuromuscular transmission; • suxamethonium, a depolarizing agent which also binds acetylcholine receptors at the neuromuscular junction,

  • Page 2 and 3:

    A Textbook of Clinical Pharmacology

  • Page 4 and 5:

    A Textbook of Clinical Pharmacology

  • Page 6 and 7:

    This fifth edition is dedicated to

  • Page 8 and 9:

    FOREWORD viii PREFACE ix ACKNOWLEDG

  • Page 10 and 11:

    PREFACE Clinical pharmacology is th

  • Page 12 and 13:

    PART I GENERAL PRINCIPLES

  • Page 14 and 15:

    ● Use of drugs 3 ● Adverse effe

  • Page 16 and 17:

    and acquired factors, notably disea

  • Page 18 and 19:

    100 Effect (%) 0 0 5 10 1 10 100 (a

  • Page 20 and 21:

    Dose ratio -1 100 50 The relationsh

  • Page 22 and 23:

    ● Introduction 11 ● Constant-ra

  • Page 24 and 25:

    In reality, processes of eliminatio

  • Page 26 and 27:

    lood (from which samples are taken

  • Page 28 and 29:

    ● Introduction 17 ● Bioavailabi

  • Page 30 and 31:

    ROUTES OF ADMINISTRATION ORAL ROUTE

  • Page 32 and 33:

    Transdermal absorption is sufficien

  • Page 34 and 35:

    FURTHER READING Fix JA. Strategies

  • Page 36 and 37:

    and thromboxanes are CYP450 enzymes

  • Page 38 and 39:

    and lorazepam. Some patients inheri

  • Page 40 and 41:

    Orally administered drug Parenteral

  • Page 42 and 43:

    ● Introduction 31 ● Glomerular

  • Page 44 and 45:

    ACTIVE TUBULAR REABSORPTION This is

  • Page 46 and 47:

    DISTRIBUTION Drug distribution is a

  • Page 48 and 49:

    Detailed recommendations on dosage

  • Page 50 and 51:

    DIGOXIN Myxoedematous patients are

  • Page 52 and 53:

    ● Introduction 41 ● Role of dru

  • Page 54 and 55:

    25 20 10 Life-threatening toxicity

  • Page 56 and 57:

    ● Introduction 45 ● Harmful eff

  • Page 58 and 59:

    vagina in girls in their late teens

  • Page 60 and 61:

    an anti-analgesic effect when combi

  • Page 62 and 63:

    Case history A 20-year-old female m

  • Page 64 and 65:

    METABOLISM At birth, the hepatic mi

  • Page 66 and 67:

    lifelong effects as a result of tox

  • Page 68 and 69:

    DISTRIBUTION Ageing is associated w

  • Page 70 and 71:

    DIGOXIN Digoxin toxicity is common

  • Page 72 and 73:

    FURTHER READING Dhesi JK, Allain TJ

  • Page 74 and 75:

    Factors involved in the aetiology o

  • Page 76 and 77:

    analgesic. Following its release, t

  • Page 78 and 79:

    antibiotics, such as penicillin or

  • Page 80 and 81:

    predisposes to non-immune haemolysi

  • Page 82 and 83:

    ● Introduction 71 ● Useful inte

  • Page 84 and 85:

    Response Therapeutic range Toxic ra

  • Page 86 and 87:

    Table 13.1: Interactions outside th

  • Page 88 and 89:

    Table 13.5: Competitive interaction

  • Page 90 and 91:

    ● Introduction: ‘personalized m

  • Page 92 and 93:

    Table 14.2: Variations in drug resp

  • Page 94 and 95:

    lipoprotein (LDL) is impaired. LDL

  • Page 96 and 97:

    Key points • Genetic differences

  • Page 98 and 99:

    • Discovery • • Screening Pre

  • Page 100 and 101:

    Too many statistical comparisons pe

  • Page 102 and 103:

    ETHICS COMMITTEES Protocols for all

  • Page 104 and 105:

    Table 16.1: Recombinant proteins/en

  • Page 106 and 107:

    duration and benefit. Adenoviral ve

  • Page 108 and 109:

    ● Introduction 97 ● Garlic 97

  • Page 110 and 111: A case report has suggested a possi
  • Page 112 and 113: including hypericin and pseudohyper
  • Page 114 and 115: PART II THE NERVOUS SYSTEM
  • Page 116 and 117: ● Introduction 105 ● Sleep diff
  • Page 118 and 119: and daytime sleeping should be disc
  • Page 120 and 121: Key points • Insomnia and anxiety
  • Page 122 and 123: Box 19.1: Dopamine theory of schizo
  • Page 124 and 125: The Boston Collaborative Survey ind
  • Page 126 and 127: Oral medication, especially in liqu
  • Page 128 and 129: e.g. interpersonal difficulties or
  • Page 130 and 131: Partial response to first-line trea
  • Page 132 and 133: Key points Drug treatment of depres
  • Page 134 and 135: Case history A 45-year-old man with
  • Page 136 and 137: Levodopa PRINCIPLES OF TREATMENT IN
  • Page 138 and 139: • pulmonary, retroperitoneal and
  • Page 140 and 141: CHOREA The γ-aminobutyric acid con
  • Page 142 and 143: Cholinergic crisis Treatment of mya
  • Page 144 and 145: ● Introduction 133 ● Mechanisms
  • Page 146 and 147: absolute arbiter. The availability
  • Page 148 and 149: Table 22.2: Metabolic interactions
  • Page 150 and 151: FURTHER ANTI-EPILEPTICS Other drugs
  • Page 152 and 153: Case history A 24-year-old woman wh
  • Page 154 and 155: Assessment of migraine severity and
  • Page 156 and 157: ● General anaesthetics 145 ● In
  • Page 158 and 159: is the theoretical concern of a ‘
  • Page 162 and 163: Competitive antagonists (vecuronium
  • Page 164 and 165: have also proved useful in combinat
  • Page 166 and 167: ● Introduction 155 ● Pathophysi
  • Page 168 and 169: ASPIRIN (ACETYLSALICYLATE) Use Anti
  • Page 170 and 171: Key points Drugs for mild pain •
  • Page 172 and 173: increases, correlating with the hig
  • Page 174 and 175: • If possible, use oral medicatio
  • Page 176 and 177: PART III THE MUSCULOSKELETAL SYSTEM
  • Page 178 and 179: ● Introduction: inflammation 167
  • Page 180 and 181: Chapter 33). All NSAIDs cause wheez
  • Page 182 and 183: • Stomatitis suggests the possibi
  • Page 184 and 185: Pharmacokinetics Allopurinol is wel
  • Page 186 and 187: PART IV THE CARDIOVASCULAR SYSTEM
  • Page 188 and 189: ● Introduction 177 ● Pathophysi
  • Page 190 and 191: esponsible for the strong predilect
  • Page 192 and 193: Ezetimibe Fat Muscle Dietary fat In
  • Page 194 and 195: educed). The risk of muscle damage
  • Page 196 and 197: ● Introduction 185 ● Pathophysi
  • Page 198 and 199: Each of these classes of drug reduc
  • Page 200 and 201: AT 1 receptor) produce good 24-hour
  • Page 202 and 203: Table 28.2: Examples of calcium-cha
  • Page 204 and 205: Key points Drugs used in essential
  • Page 206 and 207: Case history A 72-year-old woman se
  • Page 208 and 209: Assess risk factors Investigations:
  • Page 210 and 211:

    Persistent ST segment elevation Thr

  • Page 212 and 213:

    Mechanism of action GTN works by re

  • Page 214 and 215:

    Because of the risks of haemorrhage

  • Page 216 and 217:

    Intrinsic pathway XIIa XIa the acti

  • Page 218 and 219:

    that the pharmacodynamic response i

  • Page 220 and 221:

    used with apparent benefit in acute

  • Page 222 and 223:

    ● Introduction 211 ● Pathophysi

  • Page 224 and 225:

    The drugs that are most effective i

  • Page 226 and 227:

    therapeutic plasma concentration ca

  • Page 228 and 229:

    ● Common dysrhythmias 217 ● Gen

  • Page 230 and 231:

    BASIC LIFE SUPPORT CARDIOPULMONARY

  • Page 232 and 233:

    arrest. The electrocardiogram is li

  • Page 234 and 235:

    should be given to insertion of an

  • Page 236 and 237:

    Drug interactions Amiodarone potent

  • Page 238 and 239:

    effect when treating sinus bradycar

  • Page 240 and 241:

    Case history A 24-year-old medical

  • Page 242 and 243:

    PART V THE RESPIRATORY SYSTEM

  • Page 244 and 245:

    CHAPTER 33 THERAPY OF ASTHMA, CHRON

  • Page 246 and 247:

    STEP 5: CONTINUOUS OR FREQUENT USE

  • Page 248 and 249:

    Adenylyl cyclase Table 33.1: Compar

  • Page 250 and 251:

    Drug interactions Although synergis

  • Page 252 and 253:

    use in asthma has declined consider

  • Page 254 and 255:

    α 1-antitrypsin deficiency, neutro

  • Page 256 and 257:

    PART VI THE ALIMENTARY SYSTEM

  • Page 258 and 259:

    ● Peptic ulceration 247 ● Oesop

  • Page 260 and 261:

    PEPTIC ULCERATION 249 • With rega

  • Page 262 and 263:

    Ranitidine has a similar profile of

  • Page 264 and 265:

    Vestibular stimulation ? via cerebe

  • Page 266 and 267:

    cortical centres affecting vomiting

  • Page 268 and 269:

    • in hepatocellular failure to re

  • Page 270 and 271:

    Ciprofloxacin is occasionally used

  • Page 272 and 273:

    withdrawal), small doses of benzodi

  • Page 274 and 275:

    Table 34.7: Dose-independent hepato

  • Page 276 and 277:

    ● Introduction 265 ● General ph

  • Page 278 and 279:

    dinucleotide (NAD) and nicotinamide

  • Page 280 and 281:

    Table 35.1: Common trace element de

  • Page 282 and 283:

    PART VII FLUIDS AND ELECTROLYTES

  • Page 284 and 285:

    ● Introduction 273 ● Volume ove

  • Page 286 and 287:

    Key points Diuretics Diuretics are

  • Page 288 and 289:

    is sometimes caused by drugs, notab

  • Page 290 and 291:

    or with potassium-sparing diuretics

  • Page 292 and 293:

    Greger R, Lang F, Sebekova, Heidlan

  • Page 294 and 295:

    PART VIII THE ENDOCRINE SYSTEM

  • Page 296 and 297:

    ● Introduction 285 ● Pathophysi

  • Page 298 and 299:

    in prefilled injection devices (‘

  • Page 300 and 301:

    Metformin should be withdrawn and i

  • Page 302 and 303:

    FURTHER READING American Diabetes A

  • Page 304 and 305:

    deficiency. Potassium iodide (3 mg

  • Page 306 and 307:

    fertility. It is contraindicated du

  • Page 308 and 309:

    ● Introduction 297 ● Vitamin D

  • Page 310 and 311:

    effective in life-threatening hyper

  • Page 312 and 313:

    Further reading Block GA, Martin KJ

  • Page 314 and 315:

    Table 40.1: Actions of cortisol and

  • Page 316 and 317:

    injection may be useful, but if don

  • Page 318 and 319:

    CHAPTER 41 REPRODUCTIVE ENDOCRINOLO

  • Page 320 and 321:

    elease by the pituitary via negativ

  • Page 322 and 323:

    Treatment with depot progestogen in

  • Page 324 and 325:

    infusion using an infusion pump to

  • Page 326 and 327:

    significant proportion of men who r

  • Page 328 and 329:

    with symptoms caused by the release

  • Page 330 and 331:

    FURTHER READING Birnbaumer M. Vasop

  • Page 332 and 333:

    PART IX SELECTIVE TOXICITY

  • Page 334 and 335:

    ● Principles of antibacterial che

  • Page 336 and 337:

    2. transfer of resistance between o

  • Page 338 and 339:

    Pharmacokinetics Absorption of thes

  • Page 340 and 341:

    Mechanism of action Macrolides bind

  • Page 342 and 343:

    asic quinolone structure dramatical

  • Page 344 and 345:

    Case history A 70-year-old man with

  • Page 346 and 347:

    PRINCIPLES OF MANAGEMENT OF MYCOBAC

  • Page 348 and 349:

    Pharmacokinetics Absorption from th

  • Page 350 and 351:

    MYCOBACTERIUM LEPRAE INFECTION Lepr

  • Page 352 and 353:

    POLYENES AMPHOTERICIN B Uses Amphot

  • Page 354 and 355:

    therapy is adequate though more fre

  • Page 356 and 357:

    NUCLEOSIDE ANALOGUES ACICLOVIR Uses

  • Page 358 and 359:

    Table 45.3: Summary of available ac

  • Page 360 and 361:

    Uses Interferon-α when combined wi

  • Page 362 and 363:

    ● Introduction 351 ● Immunopath

  • Page 364 and 365:

    Table 46.1: Examples of combination

  • Page 366 and 367:

    NON-NUCLEOSIDE ANALOGUE REVERSE TRA

  • Page 368 and 369:

    FUSION INHIBITORS Uses Currently, e

  • Page 370 and 371:

    salvage therapy include azithromyci

  • Page 372 and 373:

    ● Malaria 361 ● Trypanosomal in

  • Page 374 and 375:

    Pharmacokinetics Chloroquine is rap

  • Page 376 and 377:

    Table 47.2: Drug therapy of non-mal

  • Page 378 and 379:

    ● Introduction 367 ● Pathophysi

  • Page 380 and 381:

    Table 48.1: Classification of commo

  • Page 382 and 383:

    Polymorph count/mm 3 (a) (b) 10 000

  • Page 384 and 385:

    doses are used to prepare patients

  • Page 386 and 387:

    Adverse effects Methotrexate Inhibi

  • Page 388 and 389:

    Table 48.7: Summary of clinical pha

  • Page 390 and 391:

    Table 48.9: Summary of the clinical

  • Page 392 and 393:

    Plasma membrane Signal transduction

  • Page 394 and 395:

    Table 48.10: Monoclonal antibodies

  • Page 396 and 397:

    INTERFERON-ALFA 2B Interferon-alfa

  • Page 398 and 399:

    PART X HAEMATOLOGY

  • Page 400 and 401:

    ● Haematinics - iron, vitamin B 1

  • Page 402 and 403:

    one marrow to produce red cells. Th

  • Page 404 and 405:

    EPO Erythroid precursors Erythrocyt

  • Page 406 and 407:

    Therapeutic principles The extent o

  • Page 408 and 409:

    PART XI IMMUNOPHARMACOLOGY

  • Page 410 and 411:

    ● Introduction 399 ● Immunity a

  • Page 412 and 413:

    Key points Antigen recognition Expr

  • Page 414 and 415:

    Table 50.1: Novel anti-proliferativ

  • Page 416 and 417:

    Key points Treatment of anaphylacti

  • Page 418 and 419:

    DRUGS THAT ENHANCE IMMUNE SYSTEM FU

  • Page 420 and 421:

    PART XII THE SKIN

  • Page 422 and 423:

    ● Introduction 411 ● Acne 411

  • Page 424 and 425:

    DERMATITIS (ECZEMA) PRINCIPLES OF T

  • Page 426 and 427:

    SPECIALISTS ONLY SPECIALISTS ONLY E

  • Page 428 and 429:

    TREATMENT OF OTHER SKIN INFECTIONS

  • Page 430 and 431:

    effect of too high a dose of UVB in

  • Page 432 and 433:

    PART XIII THE EYE

  • Page 434 and 435:

    ● Introduction: ocular anatomy, p

  • Page 436 and 437:

    to cause pupillary dilatation, name

  • Page 438 and 439:

    Table 52.3: Antibacterial agents us

  • Page 440 and 441:

    Table 52.6: Common drug-induced pro

  • Page 442 and 443:

    PART XIV CLINICAL TOXICOLOGY

  • Page 444 and 445:

    ● Introduction 433 ● Pathophysi

  • Page 446 and 447:

    Table 53.2: Central nervous system

  • Page 448 and 449:

    which provide anonymized data to th

  • Page 450 and 451:

    Peak plasma levels after smoking ci

  • Page 452 and 453:

    Key points Acute effects of alcohol

  • Page 454 and 455:

    FURTHER READING Goldman D, Oroszi G

  • Page 456 and 457:

    Table 54.2: Common indications for

  • Page 458 and 459:

    Table 54.5: Antidotes and other spe

  • Page 460 and 461:

    Commission on Human Medicines (CHM)

  • Page 462 and 463:

    Note: Page numbers in italics refer

  • Page 464 and 465:

    atrial fibrillation 217, 221 digoxi

  • Page 466 and 467:

    Cushing’s syndrome 302 cyclic ade

  • Page 468 and 469:

    5-fluorouracil 375-6 fluoxetine, mo

  • Page 470 and 471:

    children 54 diazepam 108 iron prepa

  • Page 472 and 473:

    non-steroidal anti-inflammatory dru

  • Page 474 and 475:

    puberty (male), delay 314 puerperiu

  • Page 476:

    tolerance 9, 433 benzodiazepines 10

A-Textbook-of-Clinical-Pharmacology-and-Therapeutics-5th-edition
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
Clinical Pharmacology of Sleep
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
Clinical Pharmacology and Therapeutics
Diagnosis and pharmacological management of Parkinson's - SIGN
Role of Quantitative Clinical Pharmacology in Guiding Drug
An Anatomico-Clinical Overview - Advances in Clinical ...
2012 EDUCATIONAL BOOK - American Society of Clinical Oncology
CLINICAL PHARMACOLOGY AND THERAPEUTICS FOR THE ...
CLINICAL PHARMACOLOGY THERAPEUTICS
Pharmacology and therapeutics, clinical trial - Dermage