Views
5 years ago

A Textbook of Clinical Pharmacology and Therapeutics

A Textbook of Clinical Pharmacology and Therapeutics

Transdermal absorption

Transdermal absorption is sufficiently reliable to enable systemically active drugs (e.g. estradiol, nicotine, scopolamine) to be administered by this route in the form of patches. Transdermal administration bypasses presystemic metabolism. Patches are more expensive than alternative preparations. LUNGS Drugs, notably steroids, β 2-adrenoceptor agonists and muscarinic receptor antagonists, are inhaled as aerosols or particles for their local effects on bronchioles. Nebulized antibiotics are also sometimes used in children with cystic fibrosis and recurrent Pseudomonas infections. Physical properties that limit systemic absorption are desirable. For example, ipratropium is a quaternary ammonium ion analogue of atropine which is highly polar, and is consequently poorly absorbed and has reduced atropine-like side effects. A large fraction of an ‘inhaled’ dose of salbutamol is in fact swallowed. However, the bioavailability of swallowed salbutamol is low due to inactivation in the gut wall, so systemic effects such as tremor are minimized in comparison to effects on the bronchioles. The lungs are ideally suited for absorption from the gas phase, since the total respiratory surface area is about 60 m 2 , through which only 60 mL blood are percolating in the capillaries. This is exploited in the case of volatile anaesthetics, as discussed in Chapter 24. A nasal/inhaled preparation of insulin was introduced for type 2 diabetes (Chapter 37), but was not commercially successful. NOSE Glucocorticoids and sympathomimetic amines may be administered intranasally for their local effects on the nasal mucosa. Systemic absorption may result in undesirable effects, such as hypertension. Nasal mucosal epithelium has remarkable absorptive properties, notably the capacity to absorb intact complex peptides that cannot be administered by mouth because they would be digested. This has opened up an area of therapeutics that was previously limited by the inconvenience of repeated injections. Drugs administered by this route include desmopressin (DDAVP, an analogue of antidiuretic hormone) for diabetes insipidus and buserelin (an analogue of gonadotrophin releasing hormone) for prostate cancer. EYE, EAR AND VAGINA Drugs are administered topically to these sites for their local effects (e.g. gentamicin or ciprofloxacin eyedrops for bacterial conjunctivitis, sodium bicarbonate eardrops for softening wax, and nystatin pessaries for Candida infections). Occasionally, they are absorbed in sufficient quantity to have undesirable systemic effects, such as worsening of bronchospasm in asthmatics caused by timolol eyedrops given for open-angle glaucoma. However, such absorption is not sufficiently reliable to make use of these routes for therapeutic ends. INTRAMUSCULAR INJECTION Many drugs are well absorbed when administered intramuscularly. The rate of absorption is increased when the solution is distributed throughout a large volume of muscle. Dispersion is enhanced by massage of the injection site. Transport away from the injection site is governed by muscle blood flow, and this varies from site to site (deltoid � vastus lateralis � gluteus maximus). Blood flow to muscle is increased by exercise and absorption rates are increased in all sites after exercise. Conversely, shock, heart failure or other conditions that decrease muscle blood flow reduce absorption. The drug must be sufficiently water soluble to remain in solution at the injection site until absorption occurs. This is a problem for some drugs, including phenytoin, diazepam and digoxin, as crystallization and/or poor absorption occur when these are given by intramuscular injection, which should therefore be avoided. Slow absorption is useful in some circumstances where appreciable concentrations of drug are required for prolonged periods. Depot intramuscular injections are used to improve compliance in psychiatric patients (e.g. the decanoate ester of fluphenazine which is slowly hydrolysed to release active free drug). Intramuscular injection has a number of disadvantages: 1. pain – distension with large volumes is painful, and injected volumes should usually be no greater than 5mL; 2. sciatic nerve palsy following injection into the buttock – this is avoided by injecting into the upper outer gluteal quadrant; 3. sterile abscesses at the injection site (e.g. paraldehyde); 4. elevated serum creatine phosphokinase due to enzyme release from muscle can cause diagnostic confusion; 5. severe adverse reactions may be protracted because there is no way of stopping absorption of the drug; 6. for some drugs, intramuscular injection is less effective than the oral route; 7. haematoma formation. SUBCUTANEOUS INJECTION ROUTES OF ADMINISTRATION 21 This is influenced by the same factors that affect intramuscular injections. Cutaneous blood flow is lower than in muscle so absorption is slower. Absorption is retarded by immobilization, reduction of blood flow by a tourniquet and local cooling. Adrenaline incorporated into an injection (e.g. of local anaesthetic) reduces the absorption rate by causing vasoconstriction. Sustained effects from subcutaneous injections are extremely important clinically, most notably in the treatment of insulindependent diabetics, different rates of absorption being achieved by different insulin preparations (see Chapter 37).

22 DRUG ABSORPTION AND ROUTES OF ADMINISTRATION Sustained effects have also been obtained from subcutaneous injections by using oily suspensions or by implanting a pellet subcutaneously (e.g. oestrogen or testosterone for hormone replacement therapy). INTRAVENOUS INJECTION This has the following advantages: 1. rapid action (e.g. morphine for analgesia and furosemide in pulmonary oedema); 2. presystemic metabolism is avoided (e.g. glyceryl trinitrate infusion in patients with unstable angina); 3. intravenous injection is used for drugs that are not absorbed by mouth (e.g. aminoglycosides (gentamicin) and heparins). It is also used for drugs that are too painful or toxic to be given intramuscularly. Cytotoxic drugs must not be allowed to leak from the vein or considerable local damage and pain will result as many of them are severe vesicants (e.g. vincristine, doxorubicin); 4. intravenous infusion is easily controlled, enabling precise titration of drugs with short half-lives. This is essential for drugs such as sodium nitroprusside and epoprostenol. The main drawbacks of intravenous administration are as follows: 1. Once injected, drugs cannot be recalled. 2. High concentrations result if the drug is given too rapidly – the right heart receives the highest concentration. 3. Embolism of foreign particles or air, sepsis or thrombosis. 4. Accidental extravascular injection or leakage of toxic drugs (e.g. doxorubicin) produce severe local tissue necrosis. 5. Inadvertent intra-arterial injection can cause arterial spasm and peripheral gangrene. INTRATHECAL INJECTION This route provides access to the central nervous system for drugs that are normally excluded by the blood–brain barrier. This inevitably involves very high risks of neurotoxicity, and this route should never be used without adequate training. (In the UK, junior doctors who have made mistakes of this kind have been held criminally, as well as professionally, negligent.) The possibility of causing death or permanent neurological disability is such that extra care must be taken in checking that both the drug and the dose are correct. Examples of drugs used in this way include methotrexate and local anaesthetics (e.g. levobupivacaine) or opiates, such as morphine and fentanyl. (More commonly anaesthetists use the extradural route to administer local anaesthetic drugs to produce regional analgesia without depressing respiration, e.g. in women during labour.) Aminoglycosides are sometimes administered by neuro-surgeons via a cisternal reservoir to patients with Gramnegative infections of the brain. The antispasmodic baclofen is sometimes administered by this route. Penicillin used to be administered intrathecally to patients with pneumococcal meningitis, because of the belief that it penetrated the blood–brain barrier inadequately. However, when the meninges are inflamed (as in meningitis), high-dose intravenous penicillin results in adequate concentrations in the cerebrospinal fluid. Intravenous penicillin should now always be used for meningitis, since penicillin is a predictable neurotoxin (it was formerly used to produce an animal model of seizures), and seizures, encephalopathy and death have been caused by injecting a dose intrathecally that would have been appropriate for intravenous administration. points Key points • Oral – generally safe and convenient • Buccal/sublingual – circumvents presystemic metabolism • Rectal – useful in patients who are vomiting • Transdermal – limited utility, avoids presystemic metabolism • Lungs – volatile anaesthetics • Nasal – useful absorption of some peptides (e.g. DDAVP; see Chapter 42) • Intramuscular – useful in some urgent situations (e.g. behavioural emergencies) • Subcutaneous – useful for insulin and heparin in particular • Intravenous – useful in emergencies for most rapid and predictable action, but too rapid administration is potentially very dangerous, as a high concentration reaches the heart as a bolus • Intrathecal – specialized use by anaesthetists Case history The health visitor is concerned about an eight-month-old girl who is failing to grow. The child’s mother tells you that she has been well apart from a recurrent nappy rash, but on examination there are features of Cushing’s syndrome. On further enquiry, the mother tells you that she has been applying clobetasone, which she had been prescribed herself for eczema, to the baby’s napkin area. There is no biochemical evidence of endogenous over-production of glucocorticoids. The mother stops using the clobetasone cream on her daughter, on your advice. The features of Cushing’s syndrome regress and growth returns to normal. Comment Clobetasone is an extremely potent steroid (see Chapter 50). It is prescribed for its top-ical effect, but can penetrate skin, especially of an infant. The amount prescribed that is appropriate for an adult would readily cover a large fraction of an infant’s body surface area. If plastic pants are used around the nappy this may increase penetration through the skin (just like an occlusive dressing, which is often deliberately used to increase the potency of topical steroids; see Chapter 50), leading to excessive absorption and systemic effects as in this case.

  • Page 2 and 3: A Textbook of Clinical Pharmacology
  • Page 4 and 5: A Textbook of Clinical Pharmacology
  • Page 6 and 7: This fifth edition is dedicated to
  • Page 8 and 9: FOREWORD viii PREFACE ix ACKNOWLEDG
  • Page 10 and 11: PREFACE Clinical pharmacology is th
  • Page 12 and 13: PART I GENERAL PRINCIPLES
  • Page 14 and 15: ● Use of drugs 3 ● Adverse effe
  • Page 16 and 17: and acquired factors, notably disea
  • Page 18 and 19: 100 Effect (%) 0 0 5 10 1 10 100 (a
  • Page 20 and 21: Dose ratio -1 100 50 The relationsh
  • Page 22 and 23: ● Introduction 11 ● Constant-ra
  • Page 24 and 25: In reality, processes of eliminatio
  • Page 26 and 27: lood (from which samples are taken
  • Page 28 and 29: ● Introduction 17 ● Bioavailabi
  • Page 30 and 31: ROUTES OF ADMINISTRATION ORAL ROUTE
  • Page 34 and 35: FURTHER READING Fix JA. Strategies
  • Page 36 and 37: and thromboxanes are CYP450 enzymes
  • Page 38 and 39: and lorazepam. Some patients inheri
  • Page 40 and 41: Orally administered drug Parenteral
  • Page 42 and 43: ● Introduction 31 ● Glomerular
  • Page 44 and 45: ACTIVE TUBULAR REABSORPTION This is
  • Page 46 and 47: DISTRIBUTION Drug distribution is a
  • Page 48 and 49: Detailed recommendations on dosage
  • Page 50 and 51: DIGOXIN Myxoedematous patients are
  • Page 52 and 53: ● Introduction 41 ● Role of dru
  • Page 54 and 55: 25 20 10 Life-threatening toxicity
  • Page 56 and 57: ● Introduction 45 ● Harmful eff
  • Page 58 and 59: vagina in girls in their late teens
  • Page 60 and 61: an anti-analgesic effect when combi
  • Page 62 and 63: Case history A 20-year-old female m
  • Page 64 and 65: METABOLISM At birth, the hepatic mi
  • Page 66 and 67: lifelong effects as a result of tox
  • Page 68 and 69: DISTRIBUTION Ageing is associated w
  • Page 70 and 71: DIGOXIN Digoxin toxicity is common
  • Page 72 and 73: FURTHER READING Dhesi JK, Allain TJ
  • Page 74 and 75: Factors involved in the aetiology o
  • Page 76 and 77: analgesic. Following its release, t
  • Page 78 and 79: antibiotics, such as penicillin or
  • Page 80 and 81: predisposes to non-immune haemolysi
  • Page 82 and 83:

    ● Introduction 71 ● Useful inte

  • Page 84 and 85:

    Response Therapeutic range Toxic ra

  • Page 86 and 87:

    Table 13.1: Interactions outside th

  • Page 88 and 89:

    Table 13.5: Competitive interaction

  • Page 90 and 91:

    ● Introduction: ‘personalized m

  • Page 92 and 93:

    Table 14.2: Variations in drug resp

  • Page 94 and 95:

    lipoprotein (LDL) is impaired. LDL

  • Page 96 and 97:

    Key points • Genetic differences

  • Page 98 and 99:

    • Discovery • • Screening Pre

  • Page 100 and 101:

    Too many statistical comparisons pe

  • Page 102 and 103:

    ETHICS COMMITTEES Protocols for all

  • Page 104 and 105:

    Table 16.1: Recombinant proteins/en

  • Page 106 and 107:

    duration and benefit. Adenoviral ve

  • Page 108 and 109:

    ● Introduction 97 ● Garlic 97

  • Page 110 and 111:

    A case report has suggested a possi

  • Page 112 and 113:

    including hypericin and pseudohyper

  • Page 114 and 115:

    PART II THE NERVOUS SYSTEM

  • Page 116 and 117:

    ● Introduction 105 ● Sleep diff

  • Page 118 and 119:

    and daytime sleeping should be disc

  • Page 120 and 121:

    Key points • Insomnia and anxiety

  • Page 122 and 123:

    Box 19.1: Dopamine theory of schizo

  • Page 124 and 125:

    The Boston Collaborative Survey ind

  • Page 126 and 127:

    Oral medication, especially in liqu

  • Page 128 and 129:

    e.g. interpersonal difficulties or

  • Page 130 and 131:

    Partial response to first-line trea

  • Page 132 and 133:

    Key points Drug treatment of depres

  • Page 134 and 135:

    Case history A 45-year-old man with

  • Page 136 and 137:

    Levodopa PRINCIPLES OF TREATMENT IN

  • Page 138 and 139:

    • pulmonary, retroperitoneal and

  • Page 140 and 141:

    CHOREA The γ-aminobutyric acid con

  • Page 142 and 143:

    Cholinergic crisis Treatment of mya

  • Page 144 and 145:

    ● Introduction 133 ● Mechanisms

  • Page 146 and 147:

    absolute arbiter. The availability

  • Page 148 and 149:

    Table 22.2: Metabolic interactions

  • Page 150 and 151:

    FURTHER ANTI-EPILEPTICS Other drugs

  • Page 152 and 153:

    Case history A 24-year-old woman wh

  • Page 154 and 155:

    Assessment of migraine severity and

  • Page 156 and 157:

    ● General anaesthetics 145 ● In

  • Page 158 and 159:

    is the theoretical concern of a ‘

  • Page 160 and 161:

    • Respiratory system - apnoea fol

  • Page 162 and 163:

    Competitive antagonists (vecuronium

  • Page 164 and 165:

    have also proved useful in combinat

  • Page 166 and 167:

    ● Introduction 155 ● Pathophysi

  • Page 168 and 169:

    ASPIRIN (ACETYLSALICYLATE) Use Anti

  • Page 170 and 171:

    Key points Drugs for mild pain •

  • Page 172 and 173:

    increases, correlating with the hig

  • Page 174 and 175:

    • If possible, use oral medicatio

  • Page 176 and 177:

    PART III THE MUSCULOSKELETAL SYSTEM

  • Page 178 and 179:

    ● Introduction: inflammation 167

  • Page 180 and 181:

    Chapter 33). All NSAIDs cause wheez

  • Page 182 and 183:

    • Stomatitis suggests the possibi

  • Page 184 and 185:

    Pharmacokinetics Allopurinol is wel

  • Page 186 and 187:

    PART IV THE CARDIOVASCULAR SYSTEM

  • Page 188 and 189:

    ● Introduction 177 ● Pathophysi

  • Page 190 and 191:

    esponsible for the strong predilect

  • Page 192 and 193:

    Ezetimibe Fat Muscle Dietary fat In

  • Page 194 and 195:

    educed). The risk of muscle damage

  • Page 196 and 197:

    ● Introduction 185 ● Pathophysi

  • Page 198 and 199:

    Each of these classes of drug reduc

  • Page 200 and 201:

    AT 1 receptor) produce good 24-hour

  • Page 202 and 203:

    Table 28.2: Examples of calcium-cha

  • Page 204 and 205:

    Key points Drugs used in essential

  • Page 206 and 207:

    Case history A 72-year-old woman se

  • Page 208 and 209:

    Assess risk factors Investigations:

  • Page 210 and 211:

    Persistent ST segment elevation Thr

  • Page 212 and 213:

    Mechanism of action GTN works by re

  • Page 214 and 215:

    Because of the risks of haemorrhage

  • Page 216 and 217:

    Intrinsic pathway XIIa XIa the acti

  • Page 218 and 219:

    that the pharmacodynamic response i

  • Page 220 and 221:

    used with apparent benefit in acute

  • Page 222 and 223:

    ● Introduction 211 ● Pathophysi

  • Page 224 and 225:

    The drugs that are most effective i

  • Page 226 and 227:

    therapeutic plasma concentration ca

  • Page 228 and 229:

    ● Common dysrhythmias 217 ● Gen

  • Page 230 and 231:

    BASIC LIFE SUPPORT CARDIOPULMONARY

  • Page 232 and 233:

    arrest. The electrocardiogram is li

  • Page 234 and 235:

    should be given to insertion of an

  • Page 236 and 237:

    Drug interactions Amiodarone potent

  • Page 238 and 239:

    effect when treating sinus bradycar

  • Page 240 and 241:

    Case history A 24-year-old medical

  • Page 242 and 243:

    PART V THE RESPIRATORY SYSTEM

  • Page 244 and 245:

    CHAPTER 33 THERAPY OF ASTHMA, CHRON

  • Page 246 and 247:

    STEP 5: CONTINUOUS OR FREQUENT USE

  • Page 248 and 249:

    Adenylyl cyclase Table 33.1: Compar

  • Page 250 and 251:

    Drug interactions Although synergis

  • Page 252 and 253:

    use in asthma has declined consider

  • Page 254 and 255:

    α 1-antitrypsin deficiency, neutro

  • Page 256 and 257:

    PART VI THE ALIMENTARY SYSTEM

  • Page 258 and 259:

    ● Peptic ulceration 247 ● Oesop

  • Page 260 and 261:

    PEPTIC ULCERATION 249 • With rega

  • Page 262 and 263:

    Ranitidine has a similar profile of

  • Page 264 and 265:

    Vestibular stimulation ? via cerebe

  • Page 266 and 267:

    cortical centres affecting vomiting

  • Page 268 and 269:

    • in hepatocellular failure to re

  • Page 270 and 271:

    Ciprofloxacin is occasionally used

  • Page 272 and 273:

    withdrawal), small doses of benzodi

  • Page 274 and 275:

    Table 34.7: Dose-independent hepato

  • Page 276 and 277:

    ● Introduction 265 ● General ph

  • Page 278 and 279:

    dinucleotide (NAD) and nicotinamide

  • Page 280 and 281:

    Table 35.1: Common trace element de

  • Page 282 and 283:

    PART VII FLUIDS AND ELECTROLYTES

  • Page 284 and 285:

    ● Introduction 273 ● Volume ove

  • Page 286 and 287:

    Key points Diuretics Diuretics are

  • Page 288 and 289:

    is sometimes caused by drugs, notab

  • Page 290 and 291:

    or with potassium-sparing diuretics

  • Page 292 and 293:

    Greger R, Lang F, Sebekova, Heidlan

  • Page 294 and 295:

    PART VIII THE ENDOCRINE SYSTEM

  • Page 296 and 297:

    ● Introduction 285 ● Pathophysi

  • Page 298 and 299:

    in prefilled injection devices (‘

  • Page 300 and 301:

    Metformin should be withdrawn and i

  • Page 302 and 303:

    FURTHER READING American Diabetes A

  • Page 304 and 305:

    deficiency. Potassium iodide (3 mg

  • Page 306 and 307:

    fertility. It is contraindicated du

  • Page 308 and 309:

    ● Introduction 297 ● Vitamin D

  • Page 310 and 311:

    effective in life-threatening hyper

  • Page 312 and 313:

    Further reading Block GA, Martin KJ

  • Page 314 and 315:

    Table 40.1: Actions of cortisol and

  • Page 316 and 317:

    injection may be useful, but if don

  • Page 318 and 319:

    CHAPTER 41 REPRODUCTIVE ENDOCRINOLO

  • Page 320 and 321:

    elease by the pituitary via negativ

  • Page 322 and 323:

    Treatment with depot progestogen in

  • Page 324 and 325:

    infusion using an infusion pump to

  • Page 326 and 327:

    significant proportion of men who r

  • Page 328 and 329:

    with symptoms caused by the release

  • Page 330 and 331:

    FURTHER READING Birnbaumer M. Vasop

  • Page 332 and 333:

    PART IX SELECTIVE TOXICITY

  • Page 334 and 335:

    ● Principles of antibacterial che

  • Page 336 and 337:

    2. transfer of resistance between o

  • Page 338 and 339:

    Pharmacokinetics Absorption of thes

  • Page 340 and 341:

    Mechanism of action Macrolides bind

  • Page 342 and 343:

    asic quinolone structure dramatical

  • Page 344 and 345:

    Case history A 70-year-old man with

  • Page 346 and 347:

    PRINCIPLES OF MANAGEMENT OF MYCOBAC

  • Page 348 and 349:

    Pharmacokinetics Absorption from th

  • Page 350 and 351:

    MYCOBACTERIUM LEPRAE INFECTION Lepr

  • Page 352 and 353:

    POLYENES AMPHOTERICIN B Uses Amphot

  • Page 354 and 355:

    therapy is adequate though more fre

  • Page 356 and 357:

    NUCLEOSIDE ANALOGUES ACICLOVIR Uses

  • Page 358 and 359:

    Table 45.3: Summary of available ac

  • Page 360 and 361:

    Uses Interferon-α when combined wi

  • Page 362 and 363:

    ● Introduction 351 ● Immunopath

  • Page 364 and 365:

    Table 46.1: Examples of combination

  • Page 366 and 367:

    NON-NUCLEOSIDE ANALOGUE REVERSE TRA

  • Page 368 and 369:

    FUSION INHIBITORS Uses Currently, e

  • Page 370 and 371:

    salvage therapy include azithromyci

  • Page 372 and 373:

    ● Malaria 361 ● Trypanosomal in

  • Page 374 and 375:

    Pharmacokinetics Chloroquine is rap

  • Page 376 and 377:

    Table 47.2: Drug therapy of non-mal

  • Page 378 and 379:

    ● Introduction 367 ● Pathophysi

  • Page 380 and 381:

    Table 48.1: Classification of commo

  • Page 382 and 383:

    Polymorph count/mm 3 (a) (b) 10 000

  • Page 384 and 385:

    doses are used to prepare patients

  • Page 386 and 387:

    Adverse effects Methotrexate Inhibi

  • Page 388 and 389:

    Table 48.7: Summary of clinical pha

  • Page 390 and 391:

    Table 48.9: Summary of the clinical

  • Page 392 and 393:

    Plasma membrane Signal transduction

  • Page 394 and 395:

    Table 48.10: Monoclonal antibodies

  • Page 396 and 397:

    INTERFERON-ALFA 2B Interferon-alfa

  • Page 398 and 399:

    PART X HAEMATOLOGY

  • Page 400 and 401:

    ● Haematinics - iron, vitamin B 1

  • Page 402 and 403:

    one marrow to produce red cells. Th

  • Page 404 and 405:

    EPO Erythroid precursors Erythrocyt

  • Page 406 and 407:

    Therapeutic principles The extent o

  • Page 408 and 409:

    PART XI IMMUNOPHARMACOLOGY

  • Page 410 and 411:

    ● Introduction 399 ● Immunity a

  • Page 412 and 413:

    Key points Antigen recognition Expr

  • Page 414 and 415:

    Table 50.1: Novel anti-proliferativ

  • Page 416 and 417:

    Key points Treatment of anaphylacti

  • Page 418 and 419:

    DRUGS THAT ENHANCE IMMUNE SYSTEM FU

  • Page 420 and 421:

    PART XII THE SKIN

  • Page 422 and 423:

    ● Introduction 411 ● Acne 411

  • Page 424 and 425:

    DERMATITIS (ECZEMA) PRINCIPLES OF T

  • Page 426 and 427:

    SPECIALISTS ONLY SPECIALISTS ONLY E

  • Page 428 and 429:

    TREATMENT OF OTHER SKIN INFECTIONS

  • Page 430 and 431:

    effect of too high a dose of UVB in

  • Page 432 and 433:

    PART XIII THE EYE

  • Page 434 and 435:

    ● Introduction: ocular anatomy, p

  • Page 436 and 437:

    to cause pupillary dilatation, name

  • Page 438 and 439:

    Table 52.3: Antibacterial agents us

  • Page 440 and 441:

    Table 52.6: Common drug-induced pro

  • Page 442 and 443:

    PART XIV CLINICAL TOXICOLOGY

  • Page 444 and 445:

    ● Introduction 433 ● Pathophysi

  • Page 446 and 447:

    Table 53.2: Central nervous system

  • Page 448 and 449:

    which provide anonymized data to th

  • Page 450 and 451:

    Peak plasma levels after smoking ci

  • Page 452 and 453:

    Key points Acute effects of alcohol

  • Page 454 and 455:

    FURTHER READING Goldman D, Oroszi G

  • Page 456 and 457:

    Table 54.2: Common indications for

  • Page 458 and 459:

    Table 54.5: Antidotes and other spe

  • Page 460 and 461:

    Commission on Human Medicines (CHM)

  • Page 462 and 463:

    Note: Page numbers in italics refer

  • Page 464 and 465:

    atrial fibrillation 217, 221 digoxi

  • Page 466 and 467:

    Cushing’s syndrome 302 cyclic ade

  • Page 468 and 469:

    5-fluorouracil 375-6 fluoxetine, mo

  • Page 470 and 471:

    children 54 diazepam 108 iron prepa

  • Page 472 and 473:

    non-steroidal anti-inflammatory dru

  • Page 474 and 475:

    puberty (male), delay 314 puerperiu

  • Page 476:

    tolerance 9, 433 benzodiazepines 10

A-Textbook-of-Clinical-Pharmacology-and-Therapeutics-5th-edition
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
Clinical Pharmacology of Sleep
World Journal of Gastrointestinal Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
Clinical Pharmacology and Therapeutics
World Journal of Gastrointestinal Pharmacology and Therapeutics
Role of Quantitative Clinical Pharmacology in Guiding Drug
Diagnosis and pharmacological management of Parkinson's - SIGN
An Anatomico-Clinical Overview - Advances in Clinical ...
2012 EDUCATIONAL BOOK - American Society of Clinical Oncology
CLINICAL PHARMACOLOGY AND THERAPEUTICS FOR THE ...
CLINICAL PHARMACOLOGY THERAPEUTICS
Pharmacology and therapeutics, clinical trial - Dermage