Views
5 years ago

PDF (DX094490.pdf) - White Rose Etheses Online

PDF (DX094490.pdf) - White Rose Etheses Online

236 580 IF (KCH.EO.li

236 580 IF (KCH.EO.li WRITE(6,580) FORMAT('RECORD AND CALCULATE PARAMS FOR ALL EVS'/ 1' JB ID 13 12 DELAY TOTTJ', 2 ' ROW LANE DO 81 N21,NTO DO 82 K3=1,AN IN') 182 IF (K1(M2,i13).NE.3) 6010 82 J8 = JB+1 K1(N2,113) = 1 ID = ID+1 121L(M3) = T21(N2,M3) 12 = LN(112,K3) N3 IXG = 1 IF (c13.t3T.AP) N3 = IF (T3(M2,H3).GT.GAPP(N3,1,2)) IXO = 2 IF (DELAY(N2,N3).EO.0.00) GOTO 182 IF (CHGP(N3).EO.GAPP(N3,1X13,2)) GOTO 88 CHGP(N3) = GAPP(N3,IXG,2} DO 180 LtiZ=1,3 IDGP(N3,LHZ) = 0 180 CONTINUE IDGP(N3,LZ) = 1 IDLA(N3) = 1 6010 89 88 II'6PU43,L2) = IDGP(N3,LZ) + I It'LA(N3) = IDLA(N3)+1 89 IF (N3.LTAP.0R.AP.EQN) GOTO 83 IF (IDGP(N3,Lz).LE.ulT(L2).AND.IDLA 3)LE.MR(N-3)) 601083 API = AP+l DO 84 ILF=AP1,AN T4(ILF) = T3(M2,i3)+BETA IF (T4(ILF)+BETA.GT.T1) 14(ILF) = Ti 84 CONTINUE 83 T4(N3) = 13Ut2,K3)+BETA IF (T4(M3)+BETA.GT.T1) T4(N3) = 11 T3L(K3) T3(N2,N3) 1 IF (IICH.Ethl) uRIrE(6,81) JB,ID,T3(i12,1l.3),121(i12,N3), DELAY(N2,H3),TOTD,N2,M3,LN(N2,N3),It(LAu43>,IDGP(N3,LZ) 581 FORhAT(214,2F8.2,F6.2,F10.2,215,15/

82 2 237 sui entries of lane tar •ap ,15/ 'sue entries of turn for •ap :-',IS) T3(h2,N3) = 0.0 T21U12,M3) = 0.0 LN(112,H3) 0 IF (ID.EO.IC) 6010 85 CONTINUE JB=0 81 CONTINUE 85 IC=0 IF (HCI1.E0.1) URITE(6,582) (EN(IZ),IZ=1,AN) 582 FORHArVLane totals'/4F10.2) DO 181 N31,AN IF (WW(N3i.EO.0.AND.13L(N.3).GE.301) 0010 86 GOTO 181 86 WW(N3) = 1 181 CONTINUE T3S(N3) = T3L(N3) 87 IF (HCN.EQ.l) WRITE(6,570) T3LAP,((T3(IZ,JZ),JZ=1,AN),IZ=1,NTOfl IF (HCH.EQ.1) URITE(6,583) ((LN(IZ,JZ),JZ=1,AN),IZ=1,iFO1) 583 FORNAT('Natrix of turn Moves'/4I2/(412)) IF (T2.GT.NS) 6010 120 IF (PR.E0.1.00.OR.PL.E0.1.O0.OR.P5.EQ.1.O0) 6010 92 DO 94 LFF=1,3 IF (LPF.EO.1) PC = PR IF (LPF.EQ.2) PC = PS IF (LF'F.EO..3 PC PL IF (PC.EO.0.O0) 6010 94 DO 90 N3=1,N LOO PF(1,N3,LPF) IF (LOO.EO.0) GOTO 90 IF (HCH.EQ.1) URITE(6,590) (T3L(IZ),IZ=1,A14) 590 FORNAT('13L of lanes 1,2,3,4 : ',4F10.2) IF (T3L(LQQ).LT.NS) 6010 91 90 CONTINUE 94 CONTINUE 6010 120 92 00 93 N3=1 ,AN IF (13L(N3).GT.NS) 6010 120 93 CONTINUE

  • Page 1:

    A COMPUTER SIMULATION STUDY OF THE

  • Page 4 and 5:

    11 SUMMARY This thesis reports on a

  • Page 6 and 7:

    iv TABLE OF CONTENTS Page No Acknow

  • Page 8 and 9:

    2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

  • Page 10 and 11:

    viii LIST OF TABLES 3.1 Observed Fl

  • Page 12 and 13:

    1.1 Roundabout Design 1 Intersectio

  • Page 14 and 15:

    3 a modified formula was introduced

  • Page 16 and 17:

    CHAPTER 2 LITERATURE REVIEW: CAPACI

  • Page 18 and 19:

    (Wardrop, 1957). The investigation

  • Page 20 and 21:

    9 They looked also at ways of impro

  • Page 22 and 23:

    11 small-island layouts were design

  • Page 24 and 25:

    13 operating under no clearly defin

  • Page 26 and 27:

    where a: the critical gap (sec), NQ

  • Page 28 and 29:

    where = Q e cx e -1 17 the maximum

  • Page 30 and 31:

    19 The research carried out at TRRL

  • Page 32 and 33:

    take account of local operating con

  • Page 34 and 35:

    23 These types are illustrated in f

  • Page 36 and 37:

    25 exceeded by a considerable margi

  • Page 38 and 39:

    27 queues at the end and beginning

  • Page 40 and 41:

    29 TYPICAL CONVENTIONAL ROUNDABOUT

  • Page 43 and 44:

    EXAMPLE OF GRADE SEPARATED JUNCTION

  • Page 45 and 46:

    EXAMPLES OF MINI-ROUNDABOUT LAYOUTS

  • Page 47 and 48:

    "- C) 0 '.-. ) LU 0 S.- 0 C) ( j 0

  • Page 49 and 50:

    38 CHAPTER 3 COLLECTION 0F DATA

  • Page 51 and 52:

    40 Sheffield. It was observed that,

  • Page 53 and 54:

    42 using a SONY AV342OCE portable m

  • Page 55 and 56:

    44 Ecciesall Road. However, this di

  • Page 57 and 58:

    46 TABLE 3.2 Day Entry Total flow F

  • Page 59 and 60:

    \\ Ec.esa11 Road \"\\/i? LLjji 1lTh

  • Page 61 and 62:

    \\\\\ ' \\\\ r * ' \\\_\ ' ' \\% .'

  • Page 63 and 64:

    61 CHAPTER 4 GAP ACCEPTANCE CHARACT

  • Page 65 and 66:

    63 this field. The conventions used

  • Page 67 and 68:

    65 have been developed that use mor

  • Page 69 and 70:

    67 of drivers who accept such gaps,

  • Page 71 and 72:

    69 consistently accept all gaps gre

  • Page 73 and 74:

    71 a merging platoon. Although they

  • Page 75 and 76:

    73 They related the gap-acceptance

  • Page 77 and 78:

    75 advance which rejected gaps shcu

  • Page 79 and 80:

    77 proposed by Bennett (1971), Horm

  • Page 81 and 82:

    larger than the respective ones for

  • Page 83 and 84:

    81 The direct linear relationship i

  • Page 85 and 86:

    83 mean squared errors or variances

  • Page 87 and 88:

    85 produce reasonable predictions,

  • Page 89 and 90:

    87 the rejected gaps. The results o

  • Page 91 and 92:

    89 exclusion of top values decrease

  • Page 93 and 94:

    91 definition of gap size as depend

  • Page 95 and 96:

    93 4.5.8 The Effect of Assuming the

  • Page 97 and 98:

    95 demonstrated on Fig. 4.8 and Fig

  • Page 99 and 100:

    97 When the model was validated by

  • Page 101 and 102:

    99 4.8.2.2 The Negative Exponential

  • Page 103 and 104:

    101 0: the proportion of restrained

  • Page 105 and 106:

    103 coefficient of the regression s

  • Page 107 and 108:

    105 From the point of view of which

  • Page 109 and 110:

    107 TABLE 4.1 (continued) No.1 Loca

  • Page 111 and 112:

    Cl U) a) a) 0 I )1) H U) 0 U) a) '-

  • Page 113 and 114:

    1 2 3 4 56789 10 2.95 2.94 2.68 2.9

  • Page 115 and 116:

    Ci) (ii) 0. 113 TABLE 4.7 mean st.d

  • Page 117 and 118:

    1 2 345678 9 0 2.42 2.44 2.50 2.63

  • Page 119 and 120:

    1 2 3 4 5 6 7 8 9 10 2.61 2.93 2.68

  • Page 121 and 122:

    (i) (ii) a 119 TABLE 4.13 mean st.d

  • Page 123 and 124:

    oup 121 TABLE 4.16 no.of entries on

  • Page 125 and 126:

    1 2 3 4 5 67 8 9 10 11 12 13 14 15

  • Page 127 and 128:

    1 2 3 4 5 6 7 8 9 10 125 TABLE 4.21

  • Page 129 and 130:

    4i -1 0 '-I- U-I a) .li.IC 127 E- .

  • Page 131 and 132:

    129 TABLE 4.26 Time interval- (sec)

  • Page 133 and 134:

    No. of passing vehicles 0. 1 2 3 4

  • Page 135 and 136:

    ci) 4) x4-4 ..-..' .,-4 CDV) U H N

  • Page 137 and 138:

    250 200 50 I00 50 135 o i 6 7 8 9 1

  • Page 139 and 140:

    tag ..engfñLf Weaving Width •3/

  • Page 141 and 142:

    0 0 1, 0 C- 4.5 4. 0 3. 5 3. 0 2.5

  • Page 143 and 144:

    3. 5 3. 0 2.5 0 0 2. 0 1.5 141 1.5

  • Page 145 and 146:

    U, II 114 U z isa 114 Ii. z 0 U) (/

  • Page 147 and 148:

    145 CHAPTER 5 THE SIMULATION PROGRA

  • Page 149 and 150:

    147 following a uniform (rectangula

  • Page 151 and 152:

    149 Let F(t) = r, the random fracti

  • Page 153 and 154:

    151 5. Entering or alternatively up

  • Page 155 and 156:

    153 (b) Three initial numbers for t

  • Page 157 and 158:

    155 vehicles are not of such length

  • Page 159 and 160:

    U U, a Ia- LO 0.9 0.8 07 0.5 - 0.4.

  • Page 161 and 162:

    159 CHAPTER 6 RESULTS AND COMMENTS

  • Page 163 and 164:

    161 equivalent to the capacity of a

  • Page 165 and 166:

    163 parameters. It was found that a

  • Page 167 and 168:

    165 least 50% straight ahead traffi

  • Page 169 and 170:

    167 left-turning vehicles, is not u

  • Page 171 and 172:

    169 exhibit a minimum average delay

  • Page 173 and 174:

    171 not operating at or near capaci

  • Page 175 and 176:

    Input 500 1000 1500 2000 2500 3000

  • Page 177 and 178:

    4000 3500 3000 L 2500 N -c > ..2000

  • Page 179 and 180:

    177 1. Ashworth and Laurence (1977)

  • Page 181 and 182:

    (0 C -J Lj_ o L 0 -a 3 z > 4.0 3. 5

  • Page 183 and 184:

    C.. -C N-c > 1000 980 960 940 920 9

  • Page 185 and 186:

    0 1 U- uJ 540 520 500 480 183 0. 0

  • Page 187 and 188: N > 0 -J IL > C- C ILl 0 200 160 16
  • Page 189 and 190: C) Co 6 4 >2 -J a m C.. 0 > -I 8 18
  • Page 191 and 192: C, Co >\ CD 0 CD CD S 15 10 189 % S
  • Page 193 and 194: C) •1 > 0 L. > 10 5 191 ST 101 =
  • Page 195 and 196: U (0 >.' -J C, (I > -J 20 10 193 %
  • Page 197 and 198: ' -J a m C.. > 10 5 195 Qi = 500 ve
  • Page 199 and 200: 0 CD CD Ii >\ CD CD CD CD C.. CD >
  • Page 201 and 202: 0 (U (U (U Cj (U (U > -J (U 20 10 0
  • Page 203 and 204: 0 I. >' Oi C.. > -J 0 '-0 30 20 10
  • Page 205 and 206: 0 60 40 IT 203 cx = 2.50 sec 500 =
  • Page 207 and 208: C) (0 60 40 20 205 02 = 3.50 sec c.
  • Page 209 and 210: t!) 60 40 >20 207 Beta 01 = 1000 ve
  • Page 211 and 212: 0 0 60 40 120 209 Beta Q1 = 3000 ve
  • Page 213 and 214: .0 60 40 11 1.5 211 Alpha Q1 = 1000
  • Page 215 and 216: C) Co 60 40 20 213 ALpha Q1 = 3000
  • Page 217 and 218: 215 A computer simulation model has
  • Page 219 and 220: 217 hou1d. Therefore any change in
  • Page 221 and 222: 219 Ashworth, R. and M.Z.H. Mattar,
  • Page 223 and 224: 221 Kirnber, R.M. and E.M. Hollis,
  • Page 225 and 226: 223 Wagner, F.A., 1966. "An Evaluat
  • Page 227 and 228: 7 0 4 225 0 4 20 24 F re A. 1 Qb.er
  • Page 229 and 230: 4-. C'- -7 227 0 4 12 20 24 -. z ec
  • Page 231 and 232: DOUBLE PRECISION R INTEGER*4 I A =
  • Page 233 and 234: 231 GPNO(i13) = GPNO(K3)+1 NOG GPNO
  • Page 235 and 236: 43 121(SX,A1) 12 IF (A1.GE.AP) AX =
  • Page 237: 235 DELY(H2,M3) T3(i12,N3)-121(112,
  • Page 241 and 242: 108 106 CONTINUE 109 CONTINUE DO 10
  • Page 243 and 244: CAP CAP+CA(N3) 125 CONTINUE 00 128
  • Page 245 and 246: ci) 0 ci) a) '-I 0 a) 0 4-1 in 4-1
  • Page 247 and 248: I-i a) 0 ci) a) $4 a) L;l 4-I 0 -'-
The Archaeology of Medieval Europe - White Rose Research Online
See PDF version here. - Blue & White Online
See PDF version here. - Blue & White Online
See PDF version here. - Blue & White Online
See PDF version here - Blue & White Online
See PDF version here. - Blue & White Online
PDF (267549_VOL2.pdf) - White Rose Etheses Online
PDF (388061_vol2.pdf) - White Rose Etheses Online