la metallurgia italiana - Gruppo Italiano Frattura
la metallurgia italiana - Gruppo Italiano Frattura
la metallurgia italiana - Gruppo Italiano Frattura
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
Memorie >><br />
Selezione materiali<br />
CRITERI DI SCELTA DEL MATERIALE<br />
PER L’ALLEGGERIMENTO DI VETTURE<br />
SPORTIVE AD ALTE PRESTAZIONI<br />
P. Veronesi, A. Pivetti, A. Baldini, M. Loiacono, G. Poli<br />
Per le vetture di lusso ad alte prestazioni, il primo elemento di competitività è dato dalle prestazioni dinamiche<br />
del<strong>la</strong> vettura, ragion per cui il fattore peso sta assumendo nel tempo una rilevanza crescente. L’introduzione<br />
di normative sempre più severe in ambito di emissioni, strettamente corre<strong>la</strong>te al consumo del<strong>la</strong><br />
vettura ha inoltre indotto i progettisti a spostare <strong>la</strong> propria attenzione non più sul<strong>la</strong> potenza pura ma sul<br />
rapporto potenza/peso. In questo ambito, è stato studiato l’alleggerimento di una vettura sportiva ad<br />
alte prestazioni, in partico<strong>la</strong>re di una Lamborghini Murcié<strong>la</strong>go, andando a proporre nuovi materiali per<br />
<strong>la</strong> realizzazione di partico<strong>la</strong>ri del gruppo sospensivo. Ottimizzando <strong>la</strong> scelta del materiale, è possibile ridurre<br />
il peso, rispetto al<strong>la</strong> soluzione attuale, del 30-35% re<strong>la</strong>tivamente al<strong>la</strong> mol<strong>la</strong> sospensione anteriore, del 50-70%<br />
re<strong>la</strong>tivamente al<strong>la</strong> barra antirollio posteriore, nonché alleggerire il braccio anteriore inferiore dal 3 al<br />
30%, dipendentemente dallo stato tensionale del componente, impiegando opportunamente acciai basso legati,<br />
leghe di alluminio e leghe di titanio.<br />
PAROLE CHIAVE: acciaio, alluminio e leghe, mat. compositi, titanio e leghe, selezione materiali<br />
INTRODUZIONE<br />
Negli ultimi 20 anni <strong>la</strong> progettazione e realizzazione di autoveicoli<br />
ha subito notevoli cambiamenti per poter venire incontro<br />
a nuove e differenti esigenze da parte degli utenti.<br />
Innanzitutto sono cambiati gli standard per quanto riguarda<br />
confort e abitabilità: lo spazio a disposizione dei passeggeri<br />
è aumentato ad ogni nuova generazione di veicoli e con esso le<br />
dimensioni delle vetture.<br />
Paralle<strong>la</strong>mente a questo, <strong>la</strong> richiesta di vetture sempre più sicure<br />
per gli occupanti ma anche per i pedoni ha reso necessario<br />
un aumento delle dimensioni medie delle vetture e di conseguenza<br />
un aumento di peso delle stesse [1].<br />
Negli ultimi anni ci si è però resi conto che questo trend<br />
non poteva proseguire poiché il miglioramento tecnologico<br />
di propulsori e combustibili, per quanto notevole, non sarebbe<br />
stato in grado di compensare l’aumento di peso delle vetture,<br />
soprattutto considerando le richieste sempre maggiori del mercato<br />
in termini di prestazioni dinamiche (migliore accelera-<br />
P. Veronesi, G. Poli<br />
Dipartimento di Ingegneria dei Materiali e dell’Ambiente,<br />
Via Vignolese 905, 4110 Modena - Italy<br />
A. Baldini, M. Loiacono<br />
Dipartimento di Ingegneria Meccanica,<br />
Via Vignolese 905, 4110 Modena - Italy<br />
A. Pivetti<br />
Lamborghini, Via Modena 12, S. Agata Bolognese - Bologna - Italy<br />
zione, ripresa, maneggevolezza, minori consumi/emissioni). Il<br />
peso di una vettura infatti può influenzare numerosi parametri<br />
del<strong>la</strong> progettazione oltre che le prestazioni del veicolo stesso:<br />
- veicoli più pesanti richiedono maggiori potenze per ottenere<br />
prestazioni analoghe a mezzi più leggeri; questo<br />
comporta solitamente un maggiore consumo di carburante<br />
e quindi maggiori emissioni di CO 2 .<br />
- Un peso maggiore significa anche maggiori inerzie e quindi<br />
minor prontezza di risposta ai comandi e minor piacere di guida.<br />
- In caso di incidente una maggiore massa implica una maggiore<br />
energia cinetica da dissipare e quindi richiede delle prestazioni<br />
di resistenza strutturale maggiori da parte del veicolo<br />
In questo ambito è opportuno inoltre ricordare i nuovi limiti<br />
di emissioni di CO 2 (130 g/km) imposti dal<strong>la</strong> Comunità Europea<br />
che entreranno in vigore nel 2012: per riuscire a rientrare<br />
in tali limiti sarà fondamentale <strong>la</strong>vorare su una riduzione dei<br />
pesi delle vetture, perché <strong>la</strong> so<strong>la</strong> efficienza dei motori non sarà<br />
assolutamente sufficiente. I problemi maggiori li incontreranno<br />
sicuramente le vetture di dimensione medio-grande, nonché<br />
quelle ad alte prestazioni, che sono l’oggetto di studio del<br />
presente <strong>la</strong>voro.<br />
Nel settore delle vetture di lusso ad alte prestazioni il primo<br />
elemento di competitività è dato dalle prestazioni dinamiche<br />
del<strong>la</strong> vettura; in questo settore, il fattore peso sta assumendo nel<br />
tempo una rilevanza sempre maggiore. L’introduzione di normative<br />
sempre più severe in ambito di emissioni, strettamente<br />
corre<strong>la</strong>te al consumo del<strong>la</strong> vettura ha infatti indotto i progettisti<br />
a spostare <strong>la</strong> propria attenzione non più sul<strong>la</strong> potenza pura<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 1
Selezione materiali
Memorie >><br />
a<br />
b<br />
s<br />
Fig. 2<br />
diagrammi di scelta per tirante rigido di massa<br />
minima e per trave rigida di massa minima, con indici<br />
dei materiali rapportati al materiale attualmente in uso<br />
per il componente.<br />
Selection diagrams for a stiff tie having minimum mass<br />
and for stiff beam having minimum mass; materials<br />
indexes are normalized to the properties of the material<br />
currently used for the component.<br />
Materiale<br />
AISI 94B30 (G94301), temprato e rinvenuto a 205°C<br />
AISI 4042 (DIN 42MnMo7), temprato e rinv. a 205°C<br />
AISI 4340 (UNI 40NiCrMo7), normalizzato<br />
Al-Lega da getto S520.0<br />
Al-2026 T3<br />
Al-2024 T3<br />
Al-6082 T4 (anche forgiato)<br />
Al-7020 T5<br />
Al-7033 T6<br />
Selezione materiali<br />
0 M /M 1 1<br />
1.02<br />
1.00<br />
1.10<br />
1.06<br />
1.00<br />
0.99<br />
0.99<br />
0.96<br />
0.96<br />
s<br />
Fig. 3<br />
Costo per unità di massa dei materiali – database<br />
CES-Edupack 2005.<br />
Suspension system: front lower arm.<br />
ni alternative in grado di conferire migliori prestazioni al componente,<br />
re<strong>la</strong>tivamente all’obiettivo individuato e ai vincoli agenti.<br />
Un fattore inizialmente non considerato, ma che può giocare un<br />
ruolo determinante nel<strong>la</strong> scelta del materiale, è il costo. In Fig. 3<br />
è rappresentato il diagramma re<strong>la</strong>tivo al costo per unità di massa<br />
di differenti tipologie di materiali, con indicate le barre re<strong>la</strong>tive<br />
ad acciai, leghe di alluminio e titanio.<br />
Dall’analisi dei grafici di Fig. 2 e 3, si può notare come dal punto<br />
di vista del<strong>la</strong> rigidezza specifica (M1), si ha una famiglia di materiali<br />
in grado di avere prestazioni superiori all’acciaio: le leghe di<br />
titanio; tuttavia i miglioramenti sono possibili ma in misura<br />
ridotta (pochi punti percentuali) e a costi nettamente maggiori.<br />
Non sembra quindi opportuno proseguire verso una<br />
scelta del genere, considerando i limitati vantaggi in rapporti<br />
ai costi. Dal punto di vista del<strong>la</strong> resistenza specifica (M2),<br />
invece, si possono ottenere miglioramenti considerevoli.<br />
Re<strong>la</strong>tivamente alle prestazioni di rigidezza flessionale, i grafici<br />
mostrano che vi sono soluzioni in grado di fornire buoni miglioramenti:<br />
in partico<strong>la</strong>re le leghe di alluminio sembrano<br />
offrire le migliori soluzioni.<br />
La rosa di candidati per l’applicazione, si restringe pertanto ai<br />
materiali riportati in Tab. 1, con i re<strong>la</strong>tivi indici di prestazione<br />
riferiti al materiale attualmente in uso (apice “0”).<br />
Informazioni di supporto e scelta del materiale<br />
Le informazioni ricavate dagli indici di prestazione hanno<br />
0 M /M 2 2<br />
5.50<br />
3.59<br />
2.60<br />
1.92<br />
2.77<br />
2.50<br />
1.53<br />
2.15<br />
3.07<br />
0 M /M 3 3<br />
1.00<br />
1.00<br />
1.00<br />
1.79<br />
1.68<br />
1.67<br />
1.69<br />
1.64<br />
1.67<br />
0 M /M 4 4<br />
2.3<br />
2.3<br />
1.9<br />
2.2<br />
2.8<br />
2.6<br />
1.9<br />
2.3<br />
3.0<br />
s<br />
Tab. 1<br />
indici<br />
di prestazione<br />
dei materiali<br />
candidati.<br />
Materials<br />
indexes for<br />
candidate<br />
materials.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 3
Selezione materiali
Memorie >><br />
mol<strong>la</strong> in seguito a variazioni del<strong>la</strong> quota z del contatto ruotasuolo.<br />
In ogni caso, per qualsiasi scuotimento del<strong>la</strong> sospensione<br />
<strong>la</strong> mol<strong>la</strong> rimane sempre sollecitata a compressione. Il filo del<strong>la</strong> mol<strong>la</strong><br />
è avvolto a spirale attorno ad un cilindro fittizio di diametro<br />
costante, denominato diametro di avvolgimento. Come già<br />
accennato, il componente deve rispettare determinati ingombri<br />
per consentirne il montaggio: in partico<strong>la</strong>re un parametro che non<br />
può essere modificato è il diametro interno del<strong>la</strong> mol<strong>la</strong>. Tale quota<br />
è infatti limitata dal<strong>la</strong> necessità di montare all’interno del<strong>la</strong> mol<strong>la</strong><br />
l’ammortizzatore. Un’altra specifica tecnica che non deve essere<br />
modificata è <strong>la</strong> rigidezza; tale parametro infatti influenza il comportamento<br />
dinamico del<strong>la</strong> vettura e viene quindi stabilito in fase<br />
progettuale per ottenere le prestazioni dinamiche volute. Anche<br />
questo parametro verrà quindi mantenuto costante. Per quanto<br />
riguarda <strong>la</strong> lunghezza del<strong>la</strong> mol<strong>la</strong>, si cercherà di mantener<strong>la</strong> il più<br />
possibile simile a quel<strong>la</strong> di origine, in modo da ridurre al minimo<br />
eventuali modifiche su componenti necessari al fissaggio<br />
del<strong>la</strong> mol<strong>la</strong>, come per esempio i piattelli; ovviamente esistono<br />
limitazioni legate all’ingombro longitudinale ma una variazione<br />
di qualche millimetro può essere concessa. Va osservato che si<br />
tratta di una mol<strong>la</strong> con passo e diametro medio di avvolgimento<br />
costanti; <strong>la</strong> sua caratteristica forza-spostamento sarà quindi<br />
lineare. Il dimensionamento ha portato ai valori riportati in<br />
Tab. 2, espressi in termini di variazione percentuale per ragioni<br />
di riservatezza.<br />
ANALISI ED ALLEGGERIMENTO BARRA ANTIROLLIO<br />
La barra antirollio svolge un compito di ausilio al sistema sospensivo<br />
so<strong>la</strong>mente in situazioni in cui si ha trasferimento di carico.<br />
Gli estremi del<strong>la</strong> barra sono fissati ai braccio superiore del<br />
sistema sospensivo: in tal modo quando si verifica un trasferimento<br />
di carico tra le due ruote dell’assale, gli scuotimenti verticali di<br />
verso opposto tra le due ruote generano un momento torcente sul<strong>la</strong><br />
barra, che quindi viene sollecitata a torsione. Il componente è mostrato<br />
in Fig. 5.<br />
Un parametro fondamentale che sintetizza il comportamento<br />
del<strong>la</strong> barra stessa è <strong>la</strong> sua rigidezza torsionale: più <strong>la</strong> barra è<br />
rigida maggiore sarà <strong>la</strong> resistenza che essa opporrà e di conseguenza<br />
minori saranno gli scuotimenti del sistema sospensivo<br />
dell’assale.<br />
Nel dimensionare il componente quindi l’aspetto principale da<br />
s<br />
Tab. 2<br />
Dimensionamento del<strong>la</strong> mol<strong>la</strong> in lega di titanio e<br />
re<strong>la</strong>tiva riduzione di peso.<br />
Dimensioning of titanium alloy spring and consequent<br />
weight reduction.<br />
Selezione materiali<br />
s<br />
Fig. 5<br />
Barra antirollio.<br />
Anti-roll bar.<br />
tenere i considerazione sarà <strong>la</strong> rigidezza torsionale che si vorrà<br />
ottenere; come si vedrà in seguito tale proprietà dipende sia da<br />
quote dimensionali (diametro del<strong>la</strong> barra, lunghezza del braccio di<br />
torsione) che dalle proprietà del materiale.<br />
Traduzione dei requisiti di progetto<br />
Oltre alle funzioni esposte al paragrafo precedente, un parametro<br />
importante per <strong>la</strong> selezione del materiale è <strong>la</strong> massima<br />
temperatura di esercizio: <strong>la</strong> barra infatti è situata in prossimità del<br />
motore e dell’impianto di scarico del<strong>la</strong> vettura, e si troverà quindi<br />
a <strong>la</strong>vorare ad una temperatura leggermente superiore a quel<strong>la</strong> ambiente.<br />
Come limite inferiore è stata imposta una temperatura di<br />
<strong>la</strong>voro di 70° C.<br />
Un altro aspetto da tenere in considerazione è il comportamento<br />
del materiale in caso di frattura: <strong>la</strong> caratteristica desiderata, ovviamente,<br />
è che in caso di cedimenti il materiale non ceda di schianto<br />
ma resista il più possibile al<strong>la</strong> propagazione del<strong>la</strong> cricca. Il parametro<br />
solitamente utilizzato per definire il comportamento di un<br />
materiale in caso di cedimento è <strong>la</strong> tenacità a frattura. La<br />
traduzione dei requisiti di progetto è <strong>la</strong> seguente:<br />
- Funzione: barra di torsione<br />
- Vincoli: rigidezza torsionale, resistenza a rottura, resistenza a fatica<br />
e ad agenti atmosferici, vincoli geometrici di ingombro; temperatura<br />
di impiego superiore a 70°C; tenacità a frattura superiore a<br />
15 MPa m 1/2 .<br />
- Obiettivo: ottenere rigidezza di progetto con minimo peso<br />
- Variabile libera: materiale da utilizzare, dimensione del<strong>la</strong> sezione<br />
resistente<br />
Screening e c<strong>la</strong>ssificazione: calcolo indici di prestazione e individuazione<br />
materiali alternativi<br />
L’indice di prestazione per <strong>la</strong> rigidezza torsionale e per <strong>la</strong> resistenza<br />
torsionale sono i seguenti [5]:<br />
(7)<br />
(8)<br />
Il re<strong>la</strong>tivo diagramma di scelta, nel<strong>la</strong> zona di interesse, è riportato<br />
in Fig. 6.<br />
In base alle considerazioni effettuate in precedenza re<strong>la</strong>tivamente<br />
all’utilizzo di componenti in materiale composito, <strong>la</strong> scelta più<br />
ragionevole sembra quel<strong>la</strong> delle leghe di alluminio da trattamento<br />
termico e/o deformazione p<strong>la</strong>stica. In base all’analisi del grafico le<br />
leghe migliori sono quelle delle serie 5000 e 2000. In partico<strong>la</strong>re<br />
le leghe migliori sono quelle del<strong>la</strong> serie 5000, che presentano<br />
caratteristiche di resistenza sufficienti e una densità leggermente<br />
inferiore rispetto alle altre serie, massimizzando così l’indice di<br />
prestazione. Una scelta opportuna potrebbero essere le leghe 5052<br />
e 5086. Tuttavia, semplificando <strong>la</strong> geometria del componente,<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 5
Selezione materiali
Memorie >><br />
Metalli leggeri<br />
INNOVATIVE TECHNOLOGIES IN<br />
MOULD RELEASE AGENTS<br />
G.Natesh, A. Colori<br />
The drive for improved fuel efficiencies in the automobile industry has led to continuing growth in aluminium<br />
die casting as manufacturers strive to reduce the weight of automobiles by rep<strong>la</strong>cing steel with light metal components.<br />
Larger and more complex parts are being cast and this has set new challenges to die casters in their<br />
quest for improved quality and productivity. The paper examines the impact of these trends on die lubrication<br />
and discusses an innovative lubrication technology that has evolved to satisfy these requirements.<br />
KEYWORDS: : mould release agent, die-casting, high temperature, automotive, die lubricant, solder protection,<br />
leidenfrost effect<br />
High Pressure die-casting is a very popu<strong>la</strong>r process for making<br />
complex mechanical parts out of light metals like aluminium<br />
and magnesium alloys. It is capable of rapidly producing parts<br />
with high dimensional accuracy. High pressure die-casting<br />
grew along with the growth of the automobile industry, where<br />
the demands of assembly line manufacture spurred the<br />
demand for a quick reliable way to make components. With<br />
the growth of JIT manufacturing, the automobile industry still<br />
continues to be the dominant user of high-pressure die cast<br />
parts. Other end uses for die casting include recreational vehicles,<br />
power tools, electrical machinery, electronic components<br />
and house-ware. The rapid growth of the world economy has<br />
spurred a demand for all of these products and the European<br />
die cast industry is gearing up to meet this demand.<br />
The rising cost of fuel and increasingly stringent environment<br />
and fuel performance regu<strong>la</strong>tions are forcing the auto industry<br />
to seek novel ways to achieve these goals. Weight reduction<br />
of vehicles is a key step to reducing fuel consumption, so<br />
the industry is actively looking at rep<strong>la</strong>cing steel components<br />
with aluminium and magnesium castings. With constant innovation<br />
in aluminium alloys and casting technology, improved<br />
strength and other properties are being engineered, that allows<br />
bigger and more complex parts to be die cast. Engine blocks,<br />
instrument panels and complete door frames are just some of<br />
the examples of aluminium components now being produced<br />
by die-casting. This has led to a trend towards bigger die-cast<br />
machines and <strong>la</strong>rger shot weights.<br />
The complexity of these <strong>la</strong>rge parts makes it difficult to design<br />
internal cooling to adequately cool all parts of the die uniformly.<br />
A natural consequence of this is that die surface temperatures<br />
have increased. Previously, the die surface temperatures<br />
before spray used to range between 250°C to 350°C. With the<br />
estimenti di allumina, corrosi<br />
one, leghe di alluminio, LEIS, EIS, ENA<br />
mina, corrosi<br />
one, leghe di alluminio, LEI<br />
mina, corrosi<br />
one, leghe di alluminio, LEI<br />
<strong>la</strong>rge components, the maximum temperature can be as high<br />
as 400°C while the cooler portions of the die may be as low as<br />
200°C.<br />
This leads to the development of localized hot spots which, in<br />
turn, create solder problems. This p<strong>la</strong>ces a greater dependence<br />
on the die lubricant to provide cooling for the die surface. Yet<br />
the higher temperatures encountered before the spray make<br />
this difficult to do because of the Leidenfrost effect. This requires<br />
greater quantities of die lubricant to be sprayed, which<br />
increase cycle times and costs.<br />
The Leidenfrost phenomenon is well known to die casters.<br />
When water is sprayed on to a hot surface, which is at a temperature<br />
well above the boiling point of water, it is unable to<br />
make contact with the metal surface. Instead, the drops of water<br />
float on a cushion of water vapor and thus are unable to<br />
wet the surface (Fig. 1). Die lubricant active materials are therefore,<br />
unable to be <strong>la</strong>id down on the die surface. The highest<br />
temperature at which water, or a water based die lubricant,<br />
can contact the metal surface is known as the Leidenfrost temperature.<br />
Our research focused on two separate approaches to develop<br />
high performance die lubricants. The first was to try and in-<br />
s<br />
Fig. 1<br />
Schematic rendering of the Leidenfrost phenomenon.<br />
Rappresentazione grafica del fenomeno di Leidenfrost.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 1
Metalli leggeri
Memorie >><br />
a<br />
b<br />
s<br />
Fig. 5<br />
a) Old product (after 8 hours); b) New Product<br />
(after 8 hours).<br />
a) Vecchia tecnologia (dopo 8 ore); b) Nuova tecnologia<br />
(dopo 8 ore).<br />
The first case is from a North American die caster making<br />
engine blocks with steel cylinder inserts on a 3500 T Ube®<br />
machine with a total cycle time of less than 120 seconds. They<br />
were getting good solder protection, with low overspray and<br />
in-cavity buildup with a conventional die lubricant. When<br />
they started casting a new engine design, they noticed solder<br />
formation near the water jacket area on the part. This required<br />
them to do die polishing for about 30 minutes once every<br />
8 hours. Running at richer concentrations did not help, giving<br />
buildup that also needed to be polished. Increasing the<br />
spray duration also had a major impact on productivity.<br />
We took thermal images of the die before and after spray to<br />
monitor temperature profiles and spray distribution. The temperature<br />
ranged from 450°F to 750°F (232°C to 399°C) before<br />
spray on the ejector die. We also observed that the previous<br />
product was not covering the problem area adequately particu<strong>la</strong>rly<br />
at the high temperature zones. The new Safety-Lube®<br />
product could wet the hot surface earlier providing better co-<br />
Metalli leggeri<br />
s<br />
Fig. 6<br />
Thermal image of die before spray.<br />
Immagine termica dello stampo prima del<strong>la</strong> spruzzatura.<br />
s<br />
Fig. 7<br />
Thermal image of die after spray (old product).<br />
Immagine termica dello stampo dopo <strong>la</strong> spruzzatura (vecchia<br />
tecnologia).<br />
verage and could rapidly form an adequate lubricating film<br />
at the high temperatures seen on the die. Fig. 5 shows the<br />
dramatic reduction in solder. The improved performance<br />
from the Safety-Lube® product eliminated the need to polish<br />
every shift and reduced the cleaning time by 50%.<br />
The second example is from a European die caster making<br />
automotive components, who were extremely concerned<br />
about the long cycle times needed to make a particu<strong>la</strong>r casting.<br />
They also had problems with porosity, soldering and<br />
in-cavity build-up which led to poor yields and productivity.<br />
Investigation of the problem revealed a clear pattern. Fig. 6<br />
shows that the die temperatures before spray ranged from<br />
417°C to 230°C across the face of the die.<br />
The incumbent product was unable to form adequate protective<br />
film against solder, therefore a long spray time was needed.<br />
However, this caused some areas of the die to be cooled<br />
excessively, leading to in-cavity build and porosity. Reducing<br />
the spray time gave solder, and in both cases downtime was<br />
needed to do die polishing. As can be seen in Fig. 7, the typical<br />
die temperatures after spray with the conventional product<br />
ranged from 250°C to 160°C.<br />
From this analysis, it was clear that we needed to form good<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 3
Metalli leggeri
Memorie >><br />
Trattamenti superficiali<br />
MODERN THERMAL ELECTRON BEAM<br />
PROCESSES – RESEARCH RESULTS<br />
AND INDUSTRIAL APPLICATION<br />
R. Zenker<br />
Thermal electron beam (EB) technologies are becoming more and more attractive especially<br />
because they are ecologically friendly and energy saving on the one hand and highly precise, excellently<br />
control<strong>la</strong>ble and highly productive on the other hand.<br />
Using three-dimensional energy transfer fields, the interaction conditions between the EB and the surface<br />
of the material, the conditions of the heat conduction in the material, the geometry of the part, and the load<br />
conditions of the component can be taken into account. High flexibility, precision, and reproducibility are<br />
typical characteristics of EB technologies and facilities. High productivity is achieved by new technological<br />
solutions like simultaneous interaction of the EB in several processing areas (spots) or by carrying out several<br />
processes simultaneously in modern EB facilities and systems (such as multi-chamber, lock-type and other<br />
concepts). The influence of beam parameters and energy transfer conditions on the microstructure of the<br />
materials and its properties will be discussed for different EB technologies. Information on ideal treatment<br />
conditions will be given. The paper deals with the current development state regarding beam deflection<br />
techniques, technological processes and some facility concepts, and with the state of industrial application.<br />
KEYWORDS: electron beam processes, surface treatment, combined technologies, welding, engraving, profiling,<br />
beam deflection techniques, materials (structure-property re<strong>la</strong>tion), applications<br />
INTRODUCTION<br />
By using the advantages of EB, modern EB technologies differ<br />
from other technologies in their advantageous characteristics<br />
(Tab. 1).<br />
These characteristics are typical for all EB technologies, i.e.<br />
welding, surface treatment, surface ab<strong>la</strong>tion or perforation,<br />
which are carried out as one-spot techniques. If a multi-spot<br />
technique or multi-process technology is applied, the effects of<br />
these characteristics are much more effectively.<br />
The present paper will exemp<strong>la</strong>rily demonstrate the state of<br />
the art of development and application of EB technologies.<br />
MULTI-TOOL ELECTRON BEAM<br />
Beam deflection techniques<br />
The development of the two-dimensional high-frequency<br />
Rolf Zenker<br />
TU Bergakademie Freiberg, IWT,<br />
Zenker Consult, Mittweida, Germany<br />
Paper presented at the European Conference „Innovation in heat<br />
treatment for industrial competitiveness”, Verona, 7-9 May,<br />
organised by AIM<br />
beam deflection technique was the beginning of a new area<br />
of thermal electron beam (EB) technologies. The high speed<br />
scanning (HSS) technique has been avai<strong>la</strong>ble since 1986 [1]-[3].<br />
In 2000 a high frequency 3D beam deflection technique was<br />
created with new possibilities for load and couture specific EB<br />
technologies, not only for surface treatment [4]-[10] but also<br />
for welding [7][10]-[13] and engraving [14]-[15]. These beam<br />
deflection techniques are based on the fact that the EB can act<br />
simultaneously in several spots [10]-[13]. In this case the same<br />
task is realised in every spot.<br />
A defined and exact positioning of the (mostly oscil<strong>la</strong>tion)<br />
Electron beam (EB)<br />
excellent formability and deflect ability<br />
good beam profile<br />
high efficiency<br />
<strong>la</strong>rge penetration depth<br />
high beam stability<br />
EB technologies<br />
high productivity<br />
excellent flexibility<br />
good process safety<br />
high reproducibility<br />
ecologically friendly<br />
s<br />
Tab. 1<br />
Characteristics of EB and EB technologies (behind<br />
others) .<br />
Principali caratteristiche del fascio elettronico e delle tecnologie EB.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> aprile 2009 1
Trattamenti superficiali
Memorie >><br />
Combined surface treatment (tools, automotive components)<br />
Combination EBH/Nitriding<br />
With regard to complex load conditions for most tools and<br />
components, especially close to the surface, the properties attainable<br />
by single treatments (mechanical, thermal, thermochemical<br />
and coating technologies), in particu<strong>la</strong>r, often are<br />
insufficient. Therefore, combined processes (duplex or hybrid<br />
process) (Fig. 6a) came into the focus of examinations and<br />
meanwhile of industrial application [17]-[20].<br />
In case of the sequence of the combined surface treatment<br />
combination EBH+nitriding (N) or nitrocarburising (NC) the<br />
level of the processing temperature of N or NC in re<strong>la</strong>tion to<br />
the tempering temperature of the bulk material determines the<br />
success of this treatment combination.<br />
The better the tempering stability of the steel the smaller is the<br />
hardness reduction in the previously produced EBH <strong>la</strong>yer as a<br />
result of the subsequent nitriding process.<br />
It is true that a subsequent EBH after N (NC) transforms the<br />
compound <strong>la</strong>yer partially (wider seam of pores), but the hardness<br />
of the diffusion <strong>la</strong>yer is higher than after EBH or N (NC)<br />
[21]. In case of the component shown in Fig. 6b hardness rises<br />
by ~ 200HV0.3 (Fig. 6c).<br />
It has been shown that in the case of optimised process parameters<br />
the advantages of this combined treatment complement<br />
Trattamenti superficiali<br />
a b c<br />
s<br />
Fig. 4<br />
EB hardening of a power train component (two-process EBH technology) - a) Controlling component; b) Twoprocess<br />
technology; c) EB hardening depths.<br />
Indurimento superficiale mediante EB di un componente di un sistema di potenza (tecnologia EBH).<br />
a b c<br />
s<br />
Fig. 5<br />
EB Hardening of a spherical surface (f<strong>la</strong>sh technique) - a) Calotte carrier; b) Energy transfer field; c) Process<br />
thermocycle.<br />
Indurimento superficiale mediante EBH di una superficie sferica (tecnica f<strong>la</strong>sh).<br />
each other and the disadvantages of the single processes cancel<br />
each other out at least partially [20][21].<br />
Combination of EBH and HC<br />
Hard coatings based on titanium, aluminium or chromium<br />
carbides are successfully applied as hard wear resistant <strong>la</strong>yers<br />
for tools and components. These hard but also brittle coatings<br />
are often unable to bring their excellent properties fully to bear<br />
on re<strong>la</strong>tively soft base materials. Therefore the base materials<br />
are usually subjected to additional heat treatment before or after<br />
hard coating [22]-[24]. It is possible to limit the heat treatment<br />
to the highest loaded areas and up to the depth where a<br />
martensitic transformation is necessary. The thermal loading<br />
of the overall component is minimised.<br />
With regard to a subsequent heat treatment of hard coated<br />
steels it allows for prevention of undesirable changes of composition,<br />
structure and properties of the hard coating [25][26].<br />
A very short interaction time and the process-re<strong>la</strong>ted vacuum<br />
support these effects. Moreover, the electron beam hardening<br />
technology is well known to cause small changes in size and<br />
shape which means that distortion is also reduced in that way<br />
also. A combined EBH+HC is successful only if the treating<br />
temperature of the hard coating process is lower than the tempering<br />
temperature of the bulk material [26].<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> aprile 2009 3
Trattamenti superficiali
Memorie >><br />
Regarding the application of the HC+EBH combination the<br />
surface deformation due to the martensitic transformation<br />
must be taken into consideration (Fig. 7c).<br />
EB WELDING<br />
Welding of steel (powertrain components)<br />
A typical powertrain welding unit is shown in Fig. 8a). The<br />
conventional procedure used for the EB or <strong>la</strong>ser welding of<br />
gear components is a tack welding in a first step and then<br />
the joining of the two welding partners by single-pool welding<br />
in a second step.<br />
By contrast, in multi-pool welding the components are fixed<br />
simultaneously at the time of the first interaction of the EB<br />
with the material at several points (Fig. 8b).<br />
It follows in the same processing step a simultaneous movement<br />
of several melting pools along one and the same welding<br />
seam (Fig. 8b) up to an over<strong>la</strong>pping zone in the area<br />
which has already been welded. The number of welding<br />
pools depends on the size and geometry of the part and on<br />
the deflection width of the EB. In comparison to the above<br />
mentioned two-step technology the welding time is reduced<br />
up to one third and also the distortion is minimized because<br />
of the lower heating of the parts [7][10][13].<br />
A speciality of multi-pool EB welding is that the welding<br />
seam is not perpendicu<strong>la</strong>r to the surface (Fig. 8b). The incidence<br />
angle of the EB and, consequently, the seam depend<br />
on the welding diameter of the welding circle and the distance<br />
between beam source and component (Fig. 8c) [10]<br />
[13].<br />
One important fact for a successful application of multi-pool<br />
welding is that the program must be optimized in re<strong>la</strong>tion to<br />
the jump frequency of the beam from one melting pool to the<br />
next and the beam oscil<strong>la</strong>tion for an open vapour capil<strong>la</strong>ry.<br />
Welding of al alloys (cylinder liner ensembles)<br />
The production of engine blocks as hybrid casting is state of<br />
the art. In the automotive industry cast iron cylinder liners<br />
are usually applied but there are also cylinder liners made of<br />
spray-formed Al materials. The cast engine block either consists<br />
of different Al or Mg alloys.<br />
One of the technical difficulties is the precise positioning of<br />
each cylinder liner in the mould, one after the other. A technologically<br />
more smarter and more profitable technology is the<br />
Trattamenti superficiali<br />
positioning of the liners as so called “liner ensemble” (Fig. 9a).<br />
In this case several (2…6) cylinder liners are assembled by EB<br />
welding and positioned in the mould as an ensemble in one<br />
step. The technical expenditure is much lower [10][15].<br />
Electron beam welding for that application is realised with<br />
two-spot techniques using a welding spot and a smoothing<br />
spot in one run (Fig. 9c, d).<br />
It has to be taken into account that water jackets are integrated<br />
between the cylinder liners which must stay open after welding.<br />
Because of the high penetration depth of the EB, the welding<br />
takes p<strong>la</strong>ce only from one side across the water channel up<br />
to a depth of 45 mm without closing it (Fig. 9c, d). The diameter<br />
of the hole must be ≥ 3.0 mm, but this is normal standard<br />
design. The fact that the liners are welded from one side contributes<br />
to a very economical production [15].<br />
The application of the two-spot (pool) technique is necessary<br />
because most spray formed alloys cannot be welded easily and<br />
have a very rough welding bead. The task of the second spot<br />
is to smooth the bead.<br />
EB SURFACE ABLATING<br />
Engraving (shaft for force fit with tube)<br />
EB engraving follows the well-known method of producing<br />
<strong>la</strong>teral surface patterns to improve the sliding conditions [27]<br />
[28], produce reservoirs for colour particles [29], texture the<br />
cold rolls to improve sheet quality [30] and - in this present<br />
case - to increase the friction in force fits [13].<br />
The principle of these different processes is the same (Fig. 10).<br />
At first, the EB with a small diameter remelts the surface in<br />
a small pool (Fig. 10a). Then a vapour capil<strong>la</strong>ry is produced<br />
because of the high beam energy. The vaporised material and<br />
some of the liquid material squirt out of the capil<strong>la</strong>ry and a<br />
molten shell is formed around it (Fig. 10b). Depending on the<br />
material and the beam parameters dimples and/or protrusions<br />
develop (Fig. 10c).<br />
By applying the EB multi-spot technique, many protrusions<br />
can be generated simultaneously around dimples, as spot lines<br />
(up to 200 spots per line, Fig. 11a) or as patterns (on a p<strong>la</strong>ne<br />
surface up to 3.500 spots) during less than 0.15 ms [31].<br />
Large protrusions (Fig. 11b, c) are desired and necessary for<br />
force fits of shaft/tube assemblies. The dimples (Fig. 11c) are<br />
necessary because they prepare the material for the protrusions.<br />
a b c d<br />
s<br />
Fig. 9<br />
Two-spot welding of cylinder liner ensembles - a) Cylinder liner ensemble; b) Single cylinder with water channels;<br />
c) Welding seam (schematic); d) Welding seam.<br />
Saldatura a due fasci di un complesso di elementi cilindrici allineati.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> aprile 2009 5
Trattamenti superficiali Tm, Casting) and<br />
- metallurgical connection in combination with mechanical interlocking<br />
(Tm, Insert ~ Tm, Casting)<br />
As it is known, further factors such as the casting method and<br />
conditions, temperature control, the position in the mould, etc.<br />
affect the result with regard to the form fit and connection between<br />
insert and casting.<br />
If the insert is made of an Al alloy as well as the casting the contact<br />
between insert and casting is generally good (mechanical<br />
interlocking and metallurgical connection, Fig. 12c). Ultrasonic<br />
measurements support these results. In areas where there is no<br />
contact the ultrasonic waves are reflected at the interface. In<br />
case of metallurgical connection there is no or a weak signal<br />
(Fig. 12e).<br />
To assess the bond strength of castings with profiled inserts,<br />
samples were analysed using static tensile tests. The analyses<br />
showed that a bond strength which was 3…10 times higher<br />
than it was for non-profiled inserts (1…2.5 kN) was achieved<br />
by EB profiling [15] (basis: force up to the point where the insert/casting<br />
connection is separated). This may be attributed<br />
in particu<strong>la</strong>r to the fact that the breaking of samples did not<br />
occur at the interface between insert and casting, as it was the<br />
case in non-profiled reference samples, but predominantly in<br />
the casting.<br />
6 aprile 2009
Memorie >><br />
300<br />
3] PANZER, S.; MÜLLER, M.: Härten von Oberflächen mit<br />
Elektronenstrahlen. In: HTM 43(1980), 2, pp. 103-111<br />
4] ZENKER, R., Electron beam surface treatment: industrial<br />
application and prospects. In: Surface Engineering 12(1996),<br />
4, pp. 296-297<br />
5] ZENKER, R.; WAGNER, E.; FURCHHEIM, B.: Electron<br />
beam – a modern energy source for surface treatment. In:<br />
6th International Seminar of IFHT: Advanced Heat Treatment<br />
Techniques Towards the 21st Century: 15.-18.10.1997,<br />
Kyongju, 1997<br />
6] ZENKER, R.; FRENKLER, N.; PTASZEK, T.: Electron<br />
beam surface treatment of Al, Mg, and Ti alloys. In: Proceedings<br />
of the 7th International Seminar of IFHT: Heat treatment<br />
and surface engineering of light alloys: 15.-17.9.1999,<br />
Budapest, 1999, pp. 18-21<br />
7] ZENKER, R.: Electron beam surface treatment and multipool<br />
welding – state of the art. In: EBEAM 2002, International<br />
Conference on High-Power Electron Beam Technology:<br />
27.-29.10.2002, Hilton Head Is<strong>la</strong>nd, 2002, pp. 12-1–12-5<br />
8] ZENKER, R.: Structure and properties of electron beam<br />
surface treatment. In: Advanced Engineering Materials<br />
6(2004), 7, pp. 581-588<br />
9] ZENKER, R.: Elektronenstrahl-Randschichtbehandlung,<br />
Innovative Technologie für höchste industrielle Ansprüche.<br />
Monographie, pro-beam AG & Co. KGaA, 2003<br />
10] ZENKER, R.: Elektronenstrahlbearbeitung für Powertrainkomponenten.<br />
In: Kooperationsforum Metalle im Automobilbau,<br />
Innovationsforum in Be- und Verarbeitung,<br />
29.11.2005, Hof, 2005<br />
11] MATTAUSCH, G.; MORGNER, H.; DAENHARDT, J.;<br />
ET. AL.: Survey of electron beam technologies at FEP. In:<br />
Proceedings / EBEAM 2002: International Conference on<br />
Trattamenti superficiali<br />
a b c<br />
s<br />
Fig. 12<br />
Multi track profiling of bearing insert.<br />
Profilo a più tracce di un partico<strong>la</strong>re di cuscinetto.<br />
d e<br />
High-Power Electron Beam Technology, Hilton Head Is<strong>la</strong>nd,<br />
27.-29.10.2002, pp. 11/1-11/11<br />
12] LOEWER, T.: Analysis, visualisation and accurate description<br />
of an electron beam for high repeatability of industrial<br />
production processes. In: Proceedings of the 7th<br />
International Conference on Electron Beam Technologies,<br />
Varna, 1.-6.6.2003, pp. 45-50<br />
13] ZENKER, R.; BUCHWALDER, A.; FRENKLER, N.;<br />
THIEMER, S.: Moderne Elektronenstrahltechnologien zum<br />
Fügen und zur Randschichtbehandlung. In: Vakuum in der<br />
Praxis, 17(2005), 2, pp. 66-72<br />
14] ZENKER, R.; BUCHWALDER, A.; SPIES, H.-J.: New<br />
electron beam technologies for surface treatment. In: Proceedings<br />
of the 7th International Conference on Electron<br />
Beam Technologies: 1.-6.6.2003, Varna, 2003, pp. 202-209<br />
15] ZENKER, R.; KRUG, P.; BUCHWALDER, A.; DICK-<br />
MANN, T.; FRENKLER, N.; THIEMER, S.: Elektronenstrahlschweißen<br />
und –profilieren von sprühkompaktierten<br />
Zylinder<strong>la</strong>ufbuchsen aus Al-Si-Werkstoffen. In: Zylinder<strong>la</strong>ufbahn,<br />
Kolben, Pleuel – Innovative Systeme im Vergleich,<br />
Tagung Böblingen, 7.-8.03.2006, VDI-Ver<strong>la</strong>g GmbH: Düsseldorf,<br />
2006, VDI-Berichte 1906, pp. 259-274<br />
16] BUCHWALDER, A.: Beitrag zur Flüssigphasen-Randschichtbehandlung<br />
von Bauteilen aus Aluminiumwerkstoffen<br />
mittels Elektronenstrahl. Dissertation TU Bergakademie<br />
Freiberg, 2007<br />
17] ZENKER, R.: Kombinierte thermochemisch-thermische<br />
Wärmebehandlung. Neue Hütte 28(1983), 10, pp. 379-385<br />
18] SPIES, H.-J.: Erhöhung des Verschleißschutzes von Eisenwerkstoffen<br />
durch die Duplex-Randschichttechnik.<br />
Stahl und Eisen 117(1997), 6, pp. 45-62<br />
19] KEßLER, O., HOFFMANN, F., MAYR, P.: Combinations<br />
of coating and heat treating processes: establishing a system<br />
for combined processes and examples. Surf. Coat. Technol.,<br />
108-109(1998), pp. 211-216<br />
20] ZENKER, R., SPIES, H.-J.: 15 Jahre industrielle Anwendung<br />
der Elektronenstrahl Randschicht-behandlung. 57. Härtereikolloquium,<br />
Wiesbaden, Germany, Oct 10-12, 2001<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> aprile 2009 7
Trattamenti superficiali
Memorie >><br />
Alluminio e leghe<br />
SQUEEZE CAST AUTOMOTIVE<br />
APPLICATIONS AND DESIGN<br />
CONSIDERATIONS<br />
Z. Brown, C. Barnes, J. Bigelow , P. Dodd<br />
With an increasing emphasis on vehicle weight reduction, the demand for lighter weight automotive components<br />
continues to increase. Squeeze casting is an established shape-casting process that is capable of producing<br />
lightweight, high integrity automotive components that can be used for structural applications.<br />
In recent years the squeeze casting process has been used with various aluminum alloys to produce<br />
near-net shape components requiring high strength, ductility, pressure tightness or high wear resistance<br />
[1]. Squeeze casting has proven to be an economical casting process for high volume applications and<br />
offers design and materials engineers an alternative to conventional casting processes such as gravity<br />
permanent mold (GPM), low pressure die casting (LPDC), sand cast aluminum/ iron, and conventional<br />
high pressure die casting (HPDC).<br />
This paper describes Contech’s squeeze casting technology (P2000 TM ) and provides examples of high<br />
volume automotive components manufactured at Contech. This paper also includes product design<br />
considerations, an overview of process simu<strong>la</strong>tion techniques, a comparison of mechanical properties, and case<br />
studies for select automotive components.<br />
KEYWORDS: squeeze casting, aluminum, automotive applications, die casting, safety critical<br />
INTRODUCTION<br />
Conventional HPDC is a well-established process for the<br />
manufacturing of a wide variety of aluminum automotive<br />
components such as engine blocks, pump housings, oil<br />
pans, and transmission components. Conventional HPDC<br />
has many advantages including near-net shape capability,<br />
low manufacturing cost, and excellent dimensional accuracy<br />
and repeatability.<br />
Achievable casting performance is limited however, due to defects<br />
that emerge during the casting process such as gas and<br />
shrink porosity, <strong>la</strong>minations, and inclusions. In addition,<br />
HPDC components are not considered heat treatable, which<br />
further limits achievable performance.<br />
For applications that require higher component integrity<br />
(high strength and ductility, reduced porosity, uniform<br />
microstructure, and ability to heat treat), alternative cast-<br />
Zach Brown, Chuck Barnes, Joe Bigelow<br />
Contech U.S. LLC<br />
Paul Dodd<br />
Contech UK LLC<br />
Paper presented at the International Conference “High Tech<br />
DieCasting”, Montichiari, 9-10 April 2008, organised by AIM<br />
ing processes such as squeeze casting should be considered.<br />
Squeeze casting is an established process that builds upon conventional<br />
HPDC practices and is used to manufacture various<br />
automotive components that require high strength and<br />
ductility, as well as applications that require high pressure<br />
tightness or wear resistance. Examples include steering<br />
column components, steering knuckles, control arms,<br />
suspension links, pump housings, and various powertain<br />
components [1]. The squeeze casting process is capable<br />
of producing components with dimensional accuracy and<br />
near-net shape capability that is equal to conventional HPDC.<br />
Unlike HPDC however, the squeeze casting process is capable<br />
of producing higher integrity components. As a result,<br />
design engineers are able to further optimize current aluminum<br />
designs or substitute aluminum in p<strong>la</strong>ce of heavy materials<br />
such as steel and cast iron.<br />
SQUEEZE CASTING TECHNOLOGY (P2000 TM )<br />
Squeeze casting can be divided into two categories; “direct”<br />
and “indirect”. Direct squeeze casting, often termed “liquidmetal<br />
forging”, consists of pouring metal into a lower die contained<br />
within a hydraulic press. The upper die closes over the<br />
lower die and high pressure is applied throughout the entire<br />
solidification process. In contrast, indirect squeeze casting consists<br />
of pouring molten metal into the cold chamber of a die<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 1
Alluminio e leghe
Memorie >><br />
s<br />
Fig. 3<br />
Example of an aluminum bearing cap that was<br />
converted from GPM to the P2000TM squeeze cast<br />
process. All secondary machining operations were<br />
eliminated.<br />
Esempio di una calotta in alluminio prodotto mediante<br />
squeeze casting (P2000TM ) anzichè in gravità in<br />
conchiglia. Tutte le operazioni secondarie di <strong>la</strong>vorazione<br />
sono state eliminate.<br />
Solidification simu<strong>la</strong>tions are used mainly to predict shrink<br />
porosity and evaluate directional solidification. Fill simu<strong>la</strong>tions<br />
are used to identify potential fill re<strong>la</strong>ted issues such<br />
as <strong>la</strong>minations due to merging flow fronts, turbulence, and<br />
improper venting.<br />
Tooling design engineers rely on these tools when optimizing<br />
gating size and location, cooling line p<strong>la</strong>cement, cooling media<br />
and temperature, die configuration, and process development.<br />
New process simu<strong>la</strong>tion techniques are now being used<br />
to predict the microstructure at various locations throughout<br />
the casting. Since strength and ductility are influenced by<br />
the microstructure, this tool can be used to predict mechanical<br />
properties at various locations throughout the casting. This<br />
information can then be used when interpreting FEA results.<br />
Other new developments allow for the prediction of residual<br />
stresses induced during the casting and heat treating process.<br />
Most commercially avai<strong>la</strong>ble FEA software does not<br />
consider residual stress. High residual stress can result in<br />
lower than expected component performance and dimensional<br />
capability.<br />
Design Recommendations<br />
The squeeze casting process is capable of producing complex<br />
geometries with high dimensional accuracy and repeatability.<br />
This allows designers to create near-net shapes, thus<br />
Alloy-Temper<br />
A356- T6<br />
ADC12-F<br />
ADC12- T5<br />
ADC12- T6<br />
Yield (MPa)<br />
220-260<br />
140-170<br />
230-260<br />
290-320<br />
Tensile (MPa)<br />
290-340<br />
200-270<br />
280-320<br />
344-380<br />
s<br />
Tab. 1<br />
indici di prestazione dei materiali candidati.<br />
Materials indexes for candidate materials.<br />
% Elongation<br />
9-15<br />
2-3.5<br />
1-3<br />
2-5<br />
Alluminio e leghe<br />
s<br />
Fig. 4<br />
Example of P2000TM squeeze cast knuckle.<br />
Esempio di snodo prodotto con <strong>la</strong> tecnica di squeeze<br />
castingP2000TM .<br />
minimizing secondary machining operations. Fig. 3 shows an<br />
example of an aluminum bearing cap that was converted from<br />
gravity permanent mold to squeeze casting. Due to the near net<br />
shape capability of the squeeze casting process, all secondary<br />
machine operations were eliminated. The use of precision<br />
cores with minimal draft (less than .5º per side) eliminated<br />
the need for a secondary drilling operation. The f<strong>la</strong>tness<br />
and surface finish requirements were achieved in the ascast<br />
condition, eliminating the milling operation.<br />
For applications that require high mechanical stiffness, design<br />
engineers must consider both the modulus of e<strong>la</strong>sticity<br />
and section modulus. Modulus of e<strong>la</strong>sticity is a function of the<br />
stiffness of the alloy itself and is fairly simi<strong>la</strong>r for most aluminum<br />
casting alloys. Section modulus is a function of stiffness<br />
from the casting geometry. Increasing the section modulus<br />
through design can offset issues with a lower modulus of<br />
e<strong>la</strong>sticity. Complex geometries such as ribs, pockets, and<br />
u-shaped sections can be used to increase section modulus. It<br />
is recommended to avoid drastic wall thickness changes and<br />
iso<strong>la</strong>ted thick sections. By avoiding localized thick sections and<br />
drastic wall thickness changes, the tendency to form shrink<br />
porosity is greatly reduced. Iso<strong>la</strong>ted thick sections can also induce<br />
stress concentration points and cause casting defects such<br />
as hot tears and heat sinks.<br />
Material Selection<br />
One important advantage of the squeeze casting process is that<br />
it is can be used with various alloy/ heat treat combinations<br />
that can be tailored to meet design requirements. Primary alloys,<br />
such as A356 (AlSi7Mg) are used in the T6 condition for<br />
applications that require high strength and ductility such as<br />
control arms, steering knuckles, and suspension links. Secondary<br />
alloys such as<br />
ADC12 (AlSi11Cu3Fe) are used in the<br />
as-cast, T5, and T6 conditions for applications<br />
that require high strength,<br />
pressure tightness, and wear resistance.<br />
Typical mechanical properties<br />
are shown in Tab. 1.<br />
P2000TM Hardness (HBN)<br />
85-100<br />
95-105<br />
110-130<br />
120-140<br />
APPLICATIONS<br />
Fig. 4 shows an example of a squeeze<br />
cast front steering knuckle. In this<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 3
Alluminio e leghe
Memorie >><br />
Alluminio e leghe<br />
CASTABILITY MEASURES FOR<br />
DIECASTING ALLOYS: FLUIDITY,<br />
HOT TEARING, AND DIE SOLDERING<br />
B. Dewhirst, S. Li, P. Hogan, D. Apelian<br />
Tautologically, castability is a critical requirement in any casting process. Traditionally, castability in sand<br />
and permanent mold applications is thought to depend heavily on fluidity and hot tearing. Given<br />
capital investments in dies, die soldering is a critical parameter to consider for diecasting. We discuss<br />
quantitative and robust methods to insure repeatable metal casting for diecasting applications by investigating<br />
these three areas. Weight reduction initiatives call for progressively thinner sections, which in turn<br />
are dependent on reliable fluidity. Quantitative investigation of hot tearing is revealing how stress develops<br />
and yields as alloys solidify, and this has implications on part distortion even when pressure-casting<br />
methodologies preclude hot tearing failures.<br />
Understanding the underlying mechanism of die soldering presents opportunities to develop methods<br />
to avoid costly downtime and extend die life. Through an understanding of castability parameters,<br />
greater control over the diecasting process can be achieved.<br />
KEYWORD: castability, die soldering, fluidity, hot tearing, part distortion, residual stress<br />
INTRODUCTION<br />
Over the years, castability has been addressed through various<br />
angles and perspectives. However no matter what has<br />
been accomplished, it is fair to state that at the present there<br />
is not a single method that the community can point to as a<br />
means of defining an alloy’s castability in terms of measurable<br />
quantitative parameters. It is critical that means for<br />
controlling the casting process be developed. Without robust<br />
measures, one will not be able to control the casting process.<br />
It is the <strong>la</strong>tter that is the motivating force behind this project.<br />
Hopefully, the investigative techniques being developed in<br />
this research will become standardized so that an accepted<br />
lexicon and methodology is practiced throughout the<br />
casting community.<br />
This paper will focus on three parallel lines of research with<br />
applicability to light metals diecasting: fluidity, hot tearing<br />
(as it re<strong>la</strong>tes to stresses developing within solidifying metals<br />
as a function of chemistry and microstructure), and die soldering.<br />
Each of these three areas of research has the potential<br />
to positively benefit the HPDC industry, either directly or as<br />
B. Dewhirst, S. Li, P. Hogan, D. Apelian<br />
Metal Processing Institute - WPI, 100 Institute Road -<br />
Worcester, MA 01609 USA<br />
Paper presented at the International Conference High Tech<br />
DieCasting, Montichiari, 9-10 April 2008, organised by AIM<br />
an accompanying benefit to research conducted for other<br />
purposes.<br />
Vacuum fluidity testing allows for the evaluation of various<br />
alloys and process modifications in a <strong>la</strong>boratory setting<br />
under rapid solidification conditions, but suffers from<br />
a poor reputation and, as a consequence, has principally been<br />
used for qualitative experimentation. Hot tearing, a consequence<br />
of stresses developing during feeding until the casting<br />
tears itself apart, is not found in alloys used in HPDC, but the<br />
investigative techniques being applied to understand hot<br />
tearing are providing a window into how these stresses<br />
develop. Die soldering is important because, in improperly<br />
designed castings, soldering can be a significant problem that<br />
can severely inhibit productivity.<br />
FLUIDITY<br />
Fluidity is a material’s ability to flow into and fill a given cavity,<br />
as measured by the dimensions of that cavity under specified<br />
experimental conditions, and fluidity is heavily dependent<br />
on heat flow during solidification.<br />
Investigations into the impact of foundry variables such as<br />
mold coatings, alloying additions, head pressure, and especially<br />
superheat have been investigated and corre<strong>la</strong>ted with<br />
mechanisms. For sand and permanent mold castings, it is<br />
abundantly clear that increasing solidification range results<br />
in decreasing fluidity (all other factors being equal). Specific<br />
investigations are often alloy or metal/mold/coating<br />
specific in scope, but very subtle influences of minor varia-<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 37
Alluminio e leghe
Memorie >><br />
s<br />
Fig. 1<br />
Cast Iron Mold designed to detect the onset of<br />
the hot tearing. Commercial cast alloy 713 and 518<br />
were evaluated; the former is known to be sensitive to<br />
hot tearing, and the <strong>la</strong>tter has good resistance to hot<br />
tearing. The pouring temperature was set at 60˚C<br />
above the melting point of the alloy during this effort.<br />
The mold temperature was maintained around 200˚C.<br />
Stampo in ghisa progettato per rilevare l’insorgenza di<br />
cricche a caldo. Sono state valutate le leghe commerciali<br />
713 e 518; <strong>la</strong> prima è risaputa essere sensibile al<strong>la</strong><br />
criccatura a caldo, mentre <strong>la</strong> seconda ha una buona<br />
resistenza verso tale fenomeno. In questa prova <strong>la</strong> co<strong>la</strong>ta<br />
è stata eseguita a una temperatura di 60˚C al di sopra<br />
del punto di fusione del<strong>la</strong> lega.La temperatura dello<br />
stampo è stata mantenuta intorno ai 200˚C.<br />
Hot tearing susceptibility of alloys is greatly influenced<br />
by solidification behavior of molten metal in the mushy<br />
zone. Solidification can be divided into four stages [15]: (i)<br />
Mass feeding where the liquid and solid are free to move; (ii)<br />
Interdendrtic feeding when the dendrites begin to contact<br />
each other, and a coherent solid network forms; (iii)<br />
Interdendritic separation. With increasing fraction solid, the<br />
liquid network becomes fragmented. If liquid feeding is not<br />
adequate, a cavity may form. As thermal contraction occurs,<br />
strains are developed and if the strain imposed on the network<br />
is greater than a critical value, a hot tear will form and<br />
propagate. Lastly, in stage (iv), Interdendritic bridging or<br />
solid feeding occurs. Simply stated, hot tearing occurs if the<br />
solidification shrinkage and thermal deformation of the solid<br />
cannot be compensated by liquid flow.<br />
Measuring the development of strains and the evolution<br />
of hot tearing during solidification is not trivial. The<br />
Metal Processing Institute is a member of the Light Metals<br />
Alliance, and we have teamed up with our alliance partner<br />
CANMET to address hot tearing in aluminum alloys. The<br />
constrained bar mold used in this study was developed at<br />
CANMET Materials Technology Laboratory (MTL) and designed<br />
to measure load and temperature during solidification.<br />
Fig. 1 shows one of the mold p<strong>la</strong>tes and testing setup.<br />
The mold is made of cast iron and coated with insu<strong>la</strong>ting mold<br />
wash. The test piece has two arms. One test arm (12.5mm) is<br />
constrained at one end with heavy section (22.5mm) to keep<br />
the bar from contraction, so the tension will be developed<br />
and hence cracking could be induced during solidification. The<br />
other arm is for load and temperature measurement with<br />
one end connected to a load cell. This opened end of the<br />
mold is closed with a graphite cylinder block which can move<br />
freely in horizontal direction. The block is connected to the solidifying<br />
material on inner side with a screw and on external<br />
Alluminio e leghe<br />
s<br />
Fig. 2<br />
(a) Temperature-load-time curves of alloy 713;<br />
(b) Derivative of Load vs. time curve.<br />
(a) Curve temperatura-carico-tempo per <strong>la</strong> lega 713;<br />
(b) andamento del<strong>la</strong> derivata del carico vs. tempo.<br />
side with a load cell. Two K-type thermocouples are used for<br />
the temperature measurement. One is positioned at the riser<br />
end and the other at the end of the bar as shown in Fig. 1.<br />
After pouring the melt into the mold, the temperature and<br />
load were recorded with a computer data acquisition system.<br />
Fig. 2 and 3 show the measured temperatures and load recorded<br />
during casting as a function of time for alloy 713 and 518<br />
respectively. The load represents the tension force developed<br />
in the casting during solidification. The cooling curve T1 was<br />
recorded with thermocouple tip positioned at the riser end<br />
and T2 with thermocouple tip at the end of the bar as shown in<br />
Fig. 1. A rapid rise in temperature (both curves) was observed<br />
immediately after pouring and the temperature started falling<br />
shortly. It’s noticed that negative loads (compressive forces)<br />
were developed shortly after pouring for the tests, probably<br />
due to the pressure head of the melt [16]. When the rod begins<br />
to solidify but cannot contract freely, the tension force increases.<br />
Fig. 2(b) and 3(b) are derivatives of load vs. time curve to<br />
determine onset of hot tearing. An obvious change in the rate<br />
suggests that cracking might occur there.<br />
From Fig. 2b, load began developing at proximately 9 seconds<br />
and the solidification temperature was around 617˚C (Fig.2a),<br />
then increased rapidly. It is shown that the rate changed<br />
abruptly to zero at 16.5 seconds, suggesting a severe tear occurred<br />
there.<br />
Hot tearing occurred at around 530˚C, corresponding to 94%<br />
solid, according to Pandat Scheil solidification calcu<strong>la</strong>tion.<br />
The technique developed to measure hot tearing tendency is<br />
a valuable tool to differentiate between alloys and to use it to<br />
optimize alloys for high integrity castings.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 39
Alluminio e leghe
Memorie >><br />
s<br />
Fig. 5<br />
Phase diagram of Aluminum-10% Silicon and<br />
low solubility of Fe.<br />
Diagramma di stato dell’ alluminio-10% silicio con bassa<br />
solubilità del ferro.<br />
the die surface and reduces the contact area and the reaction<br />
between the two.<br />
High temperatures and high melt velocity are process conditions<br />
which lead to soldering.<br />
Of the two, high temperature is the most important to avoid in<br />
order to prevent soldering.<br />
This can most effectively be done through careful design of<br />
the die. By configuring the part and optimizing the design of<br />
the die cooling system, the potential for soldering can be greatly<br />
reduced. It is very important to consider this during the<br />
design phase of a die because once a die is manufactured it<br />
is very difficult to reduce any hot spots. Other potential solutions<br />
include using additional spray in the high solder areas to<br />
reduce temperature or the use of inserts with high conduction<br />
coefficients.<br />
Impingement velocity is important to control as well. The die<br />
surface should be coated with lubricants and is likely oxidized<br />
from prior treatment. A high impingement velocity can wash<br />
these protective coatings off of the die surface, exposing the<br />
die steel to the aluminum alloy and begin erosion of the die<br />
surface. Both of these effects will promote the beginning of die<br />
soldering.<br />
SSM processing can help to reduce both the temperature and<br />
velocities apparent in the casting system, and should help reduce<br />
die soldering [12].<br />
Die coatings can be useful as a diffusion barrier between the<br />
steel in the die and the aluminum in the cast alloy. An effective<br />
coating must be able to withstand the harsh conditions at<br />
the surface of the die, however. Coatings which are sometimes<br />
used include CrN+W, CrN, (TiAl)N and CrC [19]. Additionally,<br />
surface treatments such as nitriding and nitro-carburizing<br />
can help to strengthen the surface and prevent erosion, which<br />
accelerates the soldering process by roughening the surface<br />
and creating local temperature excursions at the peaks of the<br />
die surface which solder very quickly.<br />
Accurate modeling of the casting process during the design<br />
phase is very important to an effective control against die soldering.<br />
All of the previously mentioned controls require ad-<br />
Alluminio e leghe<br />
s<br />
Fig. 6<br />
Change in viscosity of an Al-Si alloy with the<br />
addition of 230ppm Sr [18].<br />
Variazione del<strong>la</strong> viscosità di una lega Al-Si con l’aggiunta<br />
di 230 ppm di stronzio. [18].<br />
ditional cost during the design and manufacturing of the die,<br />
and it must be understood how badly soldering will affect the<br />
process before the costs of any of those controls can be justified.<br />
CONCLUSIONS<br />
Though these three alloy characteristics seem tangentially<br />
re<strong>la</strong>ted, they are factors that influence castability. In order to<br />
control these castability indices, it is necessary to develop experimental<br />
methods until robust quantitative analysis is possible.<br />
Once quantitative data can be extracted, the improvement<br />
in our understanding will occur. In the case of die soldering,<br />
multiple possible avenues to reduce the problem have been<br />
identified. Even when the initial intention was to resolve problems<br />
occurring in sand and permanent mold castings, such as<br />
hot tearing, the information gleaned about how stresses develop<br />
in liquid metal has wider applicability. Though die casting<br />
usually assures good fluidity through the use of pressure, if<br />
fluidity (and the factors which influence its variation) are well<br />
understood, it is possible to operate within tighter processing<br />
windows.<br />
REFERENCES<br />
1] D.V. RAGONE, C.M. ADAMS, H.F. TAYLOR, AFS Trans. 64,<br />
(1956), p.640.<br />
2] D.V. RAGONE, C.M. ADAMS, H.F. TAYLOR, AFS Trans. 64,<br />
(1956), p.653.<br />
3] M.C. FLEMINGS, Brit. Foundryman 57, (1964), p.312.<br />
4) M.C. FLEMINGS, Solidification Processing. McGraw-Hill,<br />
New York (1974).<br />
5] M.C. FLEMINGS, E. NIYAMA, H.F. TAYLOR, AFS Trans. 69,<br />
(1961), p.625.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 41
Alluminio e leghe
Memorie >><br />
Magnesio e leghe<br />
A PROBABILISTIC APPROACH FOR<br />
MODELLING OF FRACTURE IN<br />
MAGNESIUM DIE-CASTINGS<br />
C. Dørum, D. Dispinar, O.S. Hopperstad, T. Berstad<br />
Quasi-static tensile tests with specimens cut from a generic cast component are performed to characterise the<br />
mechanical behaviour of the high-pressure die cast magnesium alloy AM60. The experimental data is used<br />
to establish a probabilistic methodology for finite element modelling of thin-walled die castings subjected to<br />
quasi-static loading. The cast magnesium alloy AM60 is described using an e<strong>la</strong>stic-p<strong>la</strong>stic constitutive model<br />
consisting of a high-exponent, isotropic yield criterion, the associated flow <strong>la</strong>w and an isotropic hardening rule.<br />
A novel probabilistic approach for modelling of fracture in thin-walled magnesium die-castings using finite<br />
element analysis is developed. The Cockcroft-Latham criterion for ductile fracture is adopted with the fracture<br />
parameter assumed to follow a modified weakest link Weibull distribution. Comparison between the experimental<br />
and predicted behaviour of the cast magnesium tensile specimens gives very promising results.<br />
KEYWORDS: magnesium, die-castings, ductile fracture, weibull distribution, finite element analysis<br />
INTRODUCTION<br />
With increased focus on environmental issues, structural designers<br />
in the transport industry are forced to search for light-weight<br />
solutions. New materials are considered for vehicle design if<br />
they provide benefits at an affordable cost. The cold-chamber<br />
high pressure die casting method is an important production<br />
method for aluminium and magnesium castings; particu<strong>la</strong>r suitable<br />
for fully automatic, high productivity, high volume production<br />
of complex near net shape parts.A major challenge with this<br />
production method is to optimise the process parameters with<br />
respect to the part design and the solidification characteristics<br />
of the alloy in order to obtain a sound casting without casting<br />
defects. Unba<strong>la</strong>nced filling and <strong>la</strong>ck of thermal control can cause<br />
bifilms, porosity and surface defects due to turbulence and solidification<br />
shrinkage. Consequently, the fracture behaviour of<br />
cast components can be of stochastic character.<br />
To be efficient in the development of new products it is necessary<br />
to use finite element (FE) analysis to ensure a structural design<br />
that exploits the material. In order to be able to obtain a reli-<br />
C. Dørum<br />
SINTEF Materials and Chemistry, No-0314 Oslo, Norway<br />
Structural Impact Laboratory (SIMLab), Centre for Research-based<br />
Innovation, No-7491 Trondheim, Norway<br />
D. Dispinar<br />
SINTEF Materials and Chemistry, No-7465 Trondheim, Norway<br />
O.S. Hopperstad<br />
Structural Impact Laboratory (SIMLab), Centre for Research-based<br />
Innovation, No-7491 Trondheim, Norway<br />
T. Berstad<br />
SINTEF Materials and Chemistry, No-7465 Trondheim, Norway<br />
Structural Impact Laboratory (SIMLab), Centre for Research-based<br />
Innovation, No-7491 Trondheim, Norway<br />
able prediction of the structural behaviour using such analyses,<br />
an accurate description of the material behaviour is essential.<br />
Hence, a reliable failure criterion is also required, that enables<br />
the designer to exploit the potential of the cast material. This<br />
work presents a new probabilistic approach for finite-element<br />
modelling of the structural behaviour of thin-walled cast magnesium<br />
components.<br />
Fig. 1 shows the geometry of the generic AM60 component in-<br />
s<br />
Fig. 1<br />
Illustration of generic cast component: Length<br />
= 400 mm, thickness = 2.5 mm, width = 80 mm,<br />
height = 40 mm.<br />
Illustrazione di un generico componente pressoco<strong>la</strong>to:<br />
Lunghezza = 400 mm, spessore = 2.5 mm, <strong>la</strong>rghezza =<br />
80 mm, altezza = 40 mm.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 51
Magnesio e leghe
Memorie >><br />
s<br />
Fig. 4<br />
SEM images from the fracture surface of<br />
samples showing the crumpled oxides.<br />
Immagini SEM del<strong>la</strong> superficie di frattura dei campioni<br />
che mostrano gli ossidi.<br />
criterion is reached. The model has been implemented in explicit<br />
finite element code LS-DYNA [4].<br />
The high-exponent isotropic yield criterion [5, 6] is written in<br />
the form<br />
(1)<br />
where σ 1 and σ 2 are principal stresses in p<strong>la</strong>ne stress and k is<br />
a material parameter. The flow stress σ y is defined by the isotropic<br />
hardening rule<br />
(2)<br />
where ε e is the effective p<strong>la</strong>stic strain, σ 0 is the proportionality<br />
limit, and Q i and C i are hardening parameters. Using a least<br />
squares method, the hardening parameters were determined<br />
from the Cauchy stress versus logarithmic p<strong>la</strong>stic strain curves<br />
in Fig. . Any variation in flow stress with position in the casting<br />
was not accounted for in the FE simu<strong>la</strong>tions, and thus a mean<br />
hardening curve was applied.<br />
In the present model, a criterion of ductile fracture proposed<br />
by Cockcroft and Latham [7] is added. The fracture criterion is<br />
coupled with the element-erosion algorithm avai<strong>la</strong>ble in LS-<br />
DYNA [4]. As the fracture criterion is reached in an element,<br />
this element is removed (eroded) from the finite element model.<br />
The fracture criterion can be expressed as<br />
(3)<br />
where σ 1 is the maximum principal stress and W c is the critical<br />
value of the integral W. Hence, fracture occurs when W = W c .<br />
Henceforth, W c will be referred to as the fracture parameter,<br />
while W will be denoted the Cockcroft-Latham integral. It is<br />
seen that fracture cannot occur when the maximum principal<br />
stress is compressive and that neither stresses nor strains alone<br />
are sufficient to cause fracture. Furthermore, the fracture strain<br />
increases with decreasing stress triaxiality (in the shear tests,<br />
the stress triaxiality is significantly reduced compared to the<br />
uniaxial tension test).<br />
The uniaxial tensile test specimens failed before the point of diffuse<br />
necking for the AM60 alloy, and, accordingly, the stress and<br />
strain field are uniform up to fracture. Hence, the fracture parameter<br />
is obtained as the area under the work-hardening curve.<br />
Zhou and Molinari [8, 9] propose a micro-cracking model for<br />
brittle materials (ceramics) considering the stochastic distribution<br />
of internal defects. The model introduces a Weibull distri-<br />
Magnesio e leghe<br />
s<br />
Fig. 5<br />
Picture of test specimens with flow lines on the<br />
surface.<br />
Immagine dei campioni di prova con linee di scorrimento<br />
sul<strong>la</strong> superficie.<br />
bution [10] of the local strength of cohesive elements. Thus, the<br />
probability of introducing a weak cohesive element increases<br />
with the cohesive element size. Inspired by this idea, the fracture<br />
parameter of a finite element is assumed to follow a modified<br />
weakest-link Weibull distribution in the current study.<br />
The Weibull distribution gives the fracture probability P (σ) of<br />
a material volume to under effective tensile loading, i.e.<br />
(4)<br />
where V is the volume, V 0 is the scaling volume, σ 0 is the scaling<br />
stress, and m is the Weibull modulus. Since cast magnesium<br />
is not a brittle material, the use of a critical fracture stress<br />
is not justified. Instead, the Cockcroft-Latham ductile fracture<br />
criterion is adopted, and the fracture probability of a material<br />
volume is recast as<br />
(5)<br />
where W c0 is the scaling value of the fracture parameter. By<br />
using a random number generator and inverse sampling, this<br />
Weibull distribution of fracture parameters can then be assigned<br />
to the integration points in the FE mesh. With this approach,<br />
a small element in the FE model will most probably be<br />
given more ductile material properties than a <strong>la</strong>rger element.<br />
Fig 6. compares the numerical predictions with the experimental<br />
results from the tensile tests on cast magnesium AM60.<br />
Here, the uniaxial tension test specimens were modelled by<br />
720 shell elements (i.e., a characteristic element size equal to<br />
1.0 mm) It is seen that the observed experimental scatter is well<br />
reproduced numerically.<br />
CONCLUDING REMARKS<br />
The quasi-static behaviour of high-pressure die cast magnesium<br />
alloy AM60 has been studied through tensile tests. The specimens<br />
were taken from various positions in the cast profile. The<br />
experimental data were used to develop a probabilistic method<br />
for finite element modelling of thin-walled die castings subjected<br />
to quasi-static loading. The ductility of the specimens cut from<br />
the castings depends on the position in the casting. There are also<br />
significant variations in ductility when comparing the measured<br />
characteristics of specimens cut from different castings that were<br />
cast under equal casting conditions. Thus, as a result of unstable<br />
flow of the liquid magnesium in the mould cavity, the mechanical<br />
properties of the casting are of stochastic nature. By combin-<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 53
Magnesio e leghe
Memorie >><br />
Acciaio inossidabile<br />
THE EFFECT OF AUSTENITE VOLUME<br />
FRACTION ON THE DEFORMATION<br />
RESISTANCE OF 409 STAINLESS<br />
STEELS DURING HOT-STRIP ROLLING<br />
D. Chae, S. Lee, S. Son<br />
The mill log data obtained from the hot-strip rolling of 409 stainless steels were analyzed in order to investigate<br />
the effect of the chemical composition on the deformation resistance. The results showed that the deformation<br />
resistance depended sensitively on the austenite stabilizing capability of the material chemistry, suggesting<br />
the austenite volume fraction as a dominant factor in controlling the deformation resistance. Deformation<br />
resistance ratio (DRR) was defined as a ratio of the deformation resistance of a two-phase (ferritic+austenitic)<br />
microstructure to that of a fully ferritic microstructure. The dependence of DRR on the austenite volume<br />
fraction appeared to be linear, which was also observed by the p<strong>la</strong>ne strain compression tests performed on the<br />
<strong>la</strong>boratory specimens with various austenite volume fractions. The implication of this result is that during the<br />
hot-strip rolling of 409 stainless steels with a two-phase microstructure, these steels are likely to deform in an<br />
equal-strain manner.<br />
KEYWORDS: 409 stainless steel, mean flow stress, deformation resistance, two-phase material, austenite potential<br />
and mill log analysis<br />
INTRODUCTION<br />
In hot-strip rolling, precise thickness control requires an accurate<br />
prediction of the roll force. The accurate prediction of<br />
the roll force, in turn, depends on the accurate calcu<strong>la</strong>tion of<br />
the hot flow strength of the material because it significantly<br />
affects the pressure at the interface between the work roll and<br />
the rolled material. In order to calcu<strong>la</strong>te the hot flow strength<br />
as a function of rolling parameters which are representative<br />
of each rolling pass, an average flow strength, hereafter called<br />
UNS<br />
S40910<br />
S40920<br />
S40930<br />
S40945<br />
S40975<br />
C<br />
0.030<br />
N<br />
0.030<br />
Dongchul Chae, Soochan Lee,<br />
Seung<strong>la</strong>k Son<br />
Posco, Pohang, Korea<br />
Paper presented at the 3rd International Conference Thermomechanical<br />
Processing of Steels, organised by AIM, Padova, 10-12 September 2008<br />
‘deformation resistance’ is defined over the total applied strain<br />
during a rolling pass[1, 2]. Industrially, deformation resistance<br />
is analyzed using mill log data to develop and refine rolling<br />
mill models.<br />
The 409 stainless steels are characterized by re<strong>la</strong>tively low<br />
carbon and nitrogen contents with approximately 11% chromium<br />
in their chemical compositions (Tab. 1). Titanium (and/<br />
or niobium) is usually added enough to tie up carbon and nitrogen<br />
atoms. Due to the fact that titanium is a strong ferrite<br />
former, these steels are fully ferritic in an annealed condition.<br />
Composition percentage, max or range<br />
Cr Ni<br />
Other elements<br />
10.5- 0.5 Ti 6(C+N) min, 0.5 max; Nb 0.17 max<br />
11.7 0.5 Ti 8(C+N) min, Ti 0.15-0.5; Nb 0.10 max<br />
0.5 Ti+Nb 0.08+8(C+N) min, 0.75max; Ti 0.05 min<br />
0.5 Nb 0.18-0.40, Ti 0.05-0.20<br />
0.5-1.0 Ti 6(C+N) min, 0.75 max<br />
s<br />
Tab. 1<br />
Chemical compositions of ferritic<br />
stainless steel grades containing 11% chromium<br />
in ASTM A 240/A 240M-00.<br />
Composizione chimica dei gradi di acciaio inossidabile ferritico<br />
contenenti 11% cromio negli ASTM A 240/A 240M-00.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> febbraio 2009 55
Acciaio inossidabile
Memorie >><br />
s<br />
Fig. 2<br />
The effect of chemical composition on the<br />
austenite volume fraction. The two ingots were quenched<br />
after the heat treatment at 950~1250°C for 1 hour.<br />
Effetto del<strong>la</strong> composizione chimica sul<strong>la</strong> frazione in volume<br />
del austenite. I due lingotti sono stati temprati dopo<br />
trattamento termico a 950~1250°C per 1 ora.<br />
Acciaio inossidabile<br />
DISCUSSION<br />
The Shaffler diagram represents the as-solidified microstructure<br />
after a rapid cooling as a function of Cr-equivalent<br />
and Ni-equivalent [10]. It is noteworthy that the<br />
compositional range of 409 stainless steels is near the twophase<br />
(martensitic+ferritic) boundary in the Shaffler diagram.<br />
Because the presence of martensite implies the thermal<br />
transformation from austenite, it is likely that the material<br />
may have an austenite phase at high temperatures. This<br />
seems to be closely re<strong>la</strong>ted to one of the significant features<br />
of the Fe-Cr equilibrium diagram, that is, the phase<br />
boundary between austenite and ferrite fields, known as<br />
the gamma loop. Based on the Fe-Cr equilibrium diagram,<br />
approximately 11% Cr is near the nose of the gamma loop.<br />
Therefore, austenite is likely to form at high temperatures.<br />
In addition, it is also well known that the role of austenite<br />
stabilizing elements such as carbon and nitrogen is to shift<br />
the gamma loop to higher chromium content. Therefore,<br />
the small fluctuation in the austenite stabilizing capability<br />
of the material chemistry can possibly affect the phase ba<strong>la</strong>nce<br />
between ferrite and austenite significantly.<br />
It can be seen in Fig. 2 that, for two 409 ingots produced<br />
in a <strong>la</strong>boratory, the high temperature microstructure consists<br />
of two phases, austenite+ferrite, and the maximum<br />
amount of austenite occurs at about 1050 °C.<br />
The microstructures of the 12mm thick hot rolled p<strong>la</strong>tes<br />
exposed at 1050°C for 5 minutes<br />
are shown in Fig. 3. The microstructure<br />
of the material A (in Tab.<br />
2) is observed to be fully ferritic<br />
as shown in Fig. 3(a). The region<br />
of light contrast in Fig. 3(b) corresponds<br />
to the elongated martensite<br />
transformed from austenite.<br />
As the Ni-equivalent of the materials<br />
increases, the banded array<br />
of alternating <strong>la</strong>yers of ferrite and<br />
martensite (i.e., austenite) becomes<br />
distinctive. The consequence of the<br />
highest Ni-equivalent is the formation<br />
of a 100% martensitic microstructure<br />
(Fig. 3(e)).<br />
Fig. 3<br />
Light micrographs<br />
quenched after the heat<br />
treatment at 1050°C for 5<br />
minutes in the case of (a) the<br />
material A, (b) the material<br />
B, (c) the material C, (d) the<br />
material D and (e) the material<br />
F in Table 2. Murakami etchant<br />
was used for etching.<br />
Micrografie di pezzi temprati<br />
dopo trattamento termico a<br />
1050°C per 5 minuti nel caso del<br />
(a) materiale A, (b) materiale B,<br />
(c) materiale C, (d)<br />
materiale D e (e) materiale F<br />
di Tebel<strong>la</strong> 2. Per l’attacco chimico<br />
è stato utilizzato il reagente di<br />
Murakami.<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> febbraio 2009 57<br />
s
Acciaio inossidabile
Material<br />
M1<br />
M2<br />
M3<br />
M4<br />
lowing equation:<br />
Memorie >><br />
C<br />
0.005<br />
~<br />
0.015<br />
[4]<br />
where, P, B, Ld and Qp are roll<br />
force, strip width, the projected<br />
length of the arc of contact between<br />
the roll and the rolled material<br />
and Sims geometrical factor, respectively.<br />
It should be reminded<br />
that the MFS obtained from the<br />
stress-strain curve can be compared<br />
to the deformation resistance<br />
obtained from the rolling data. Thus, MFS in Equ. 2 were<br />
rep<strong>la</strong>ced with Km. Then, the DRR is also defined from the<br />
deformation resistance calcu<strong>la</strong>ted from the mill log data.<br />
where, Km,α and Km,γ are the deformation resistances of a<br />
single ferritic microstructure and a single austenitic microstructure,<br />
respectively.<br />
The dependence of deformation resistance on the entry<br />
temperature was analyzed from the first rolling pass, F1,<br />
to the <strong>la</strong>st rolling pass, F7. Four materials were examined<br />
in details. The differences in the composition and the microstructure<br />
are summarized in Tab. 3. Among the four<br />
materials, it was observed that M2 and M4 had two phase<br />
(ferrite+austenite) microstructures right before the entry to<br />
F1. The austenite volume fractions of M2 and M3 materials<br />
right before the entry to F1 were measured to be 7% and<br />
33% as shown in Fig. 6, respectively while austenite formation<br />
was not found from the M1 and M4 materials.<br />
The rolling conditions for the materials, M2, M3 and M4,<br />
were also much simi<strong>la</strong>r to those of M1 except for the entry<br />
temperatures. It is a usual occurrence that if the rolling<br />
temperature increases, then the deformation resistance decreases.<br />
This usual expectation is confirmed from the observation<br />
that the deformation resistance of the fully ferritic<br />
M4 is lower at the same pass than that of the fully ferritic<br />
M1 because the rolling temperature of M4 was higher than<br />
that of M1. However, comparing the responses of M1 with<br />
those of M2 and M3, a significant trend is observed (Fig.<br />
[5]<br />
Acciaio inossidabile<br />
Chemical composition (wt%)<br />
N C+N Cr-equivalent Ni-equivalent<br />
0.005 0.010 12.95 0.68<br />
~ ~ 12.48 0.75<br />
0.010 0.025 12.20 0.93<br />
13.03 0.48<br />
Austenite volume<br />
fraction before F1 (%)<br />
~0<br />
7<br />
33<br />
~0<br />
s<br />
Tab. 3<br />
Chemical compositions of the four materials(wt%) and their austenite volume fraction observed before the entry to the<br />
first pass, F1, of the hot–strip finishing mill. Ni-equivalent and Cr-equivalent are defined as Ni+0.5Mn+30C+0.3Cu+25N and<br />
Cr+2.0Si+1.5Mo+5.5Al+1.5Ti, respectively.<br />
Composizione chimica dei quattro materiali (% in peso) e loro frazione di austenite (in volume) rilevata dopo ingresso al<strong>la</strong> prima<br />
passata, F1, nel <strong>la</strong>minatoio di finitura. Ni e Cr equivalenti definiti rispettivamente come Ni+0.5Mn+30C+0.3Cu+25N e<br />
Cr+2.0Si+1.5Mo+5.5Al+1.5Ti.<br />
s<br />
Fig. 6<br />
Microstructures of (a) the material M2 and<br />
(b) M3. Martensitic phases (i.e., high temperature<br />
austenitic phases) with dark contrast are elongated<br />
along the rolling direction.<br />
Microstrutture di (a) il materiale M2 e (b) materiale<br />
M3. Con contrasto scuro le fasi martensitiche (ex fasi<br />
austenitiche alle alte temperature) con contrasto scuro<br />
sono allungate lungo <strong>la</strong> direzione di <strong>la</strong>minazione.<br />
7(a)). The deformation resistances of the two-phase materials,<br />
M2 and M3 are higher than that of the fully ferritic<br />
material, M1, even though the rolling temperatures were<br />
higher in the case of M2 and M3.<br />
This unexpected behaviour can be understood by the presence<br />
of the higher volume fraction of hard austenite in the<br />
microstructure of the materials, M2 and M3.<br />
An attempt was made to calcu<strong>la</strong>te the DRR values during<br />
the first pass, F1, for the materials shown in Tab. 3. In order<br />
to calcu<strong>la</strong>te the DRR, the dependence of deformation<br />
resistance on the entry temperature must be known for the<br />
fully ferritic material. Therefore, additional mill logs were<br />
analysed. Twenty seven materials with six different chemical<br />
compositions were selected for the investigation. The<br />
applied strains were in the range of 0.45~0.50 and the strain<br />
rates were between 7.5 to 9.5/sec. Thus, the rolling conditions<br />
except for the temperature were almost constant. The<br />
samples for the microstructural examination were taken<br />
right before the entry to the first pass, F1, and all the microstructures<br />
investigated using an optical microscope were<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> febbraio 2009 59
Acciaio inossidabile
Memorie >><br />
Acciaio inossidabile<br />
s<br />
Fig. 8<br />
The dependence of DRR as a function of (a) the measured austenite volume fraction and (b) the calcu<strong>la</strong>ted<br />
austenite potential. The line fit in Fig. 5(b) was superimposed to compare the DRRs from the experiments with those<br />
from the mill log analyses.<br />
Variazione del DRR in funzione di (a) frazione in volume dell’austenite misurata e (b) potenziale di austenite calco<strong>la</strong>to. La<br />
linea inserita in Fig. 5(b) è stata aggiunta per confrontare i DRR delle sperimentali con quelli dedotti dall’ analisi dei documenti<br />
di produzione.<br />
resistance ratio (DRR) was defined as a ratio of the deformation<br />
resistance of a two-phase microstructure to that of a<br />
fully ferritic microstructure. The DRR appears to vary linearly<br />
with the austenite volume fraction, thus implying that<br />
the material is likely to deform in an equal-strain manner<br />
along the hot rolling direction.<br />
REFERENCES<br />
1) William L. Roberts, Hot Rolling of Steels, Marcel Dekker<br />
Inc., 1983, p.649<br />
2) V<strong>la</strong>dimir B. Ginzburg and Robert Bal<strong>la</strong>s, F<strong>la</strong>t Rolling<br />
Fundamentals, Marcel Dekker Inc., 2000, p.199<br />
3) Robert G. Nooning, Jr., Master Thesis, University of<br />
Pittsburgh, 2002, p76.<br />
4) T. M. Maccagno, J. J. Jonas, S. Yue, B. J. McCrady, R. Slobodian<br />
and D. Deeks, ISIJ International, Vol. 34, 1994, No.<br />
11, p.917.<br />
5) T. M. Maccagno, J. J. Jonas and P. D. Hodgson, ISIJ International,<br />
Vol. 36, 1996, No. 6, p.720.<br />
6) F. Siciliano Jr., K. Minami, T. M. Maccagno and J. J. Jonas,<br />
ISIJ International, Vol. 36, 1996, No. 12, p.1500.<br />
s<br />
Fig. 9<br />
The dependence of DRR during a first rolling pass, F1, as a function of (a) the calcu<strong>la</strong>ted austenite potential<br />
and (b) the Cr-equivalent & Ni-equivalent. Three dimensional data have been projected on the two dimensional p<strong>la</strong>nes<br />
in Fig. 8(b).<br />
La dipendenza del DRR durante il primo passaggio di <strong>la</strong>minazione, F1, in funzione di (a) potenziale di austenite calco<strong>la</strong>to e (b)<br />
Cr e Ni equivalenti. I dati tridimensionali sono stati proiettati sui piani bidimensionali di Fig. 8(b).<br />
<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> febbraio 2009 61
Acciaio inossidabile