29.12.2012 Views

la metallurgia italiana - Gruppo Italiano Frattura

la metallurgia italiana - Gruppo Italiano Frattura

la metallurgia italiana - Gruppo Italiano Frattura

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Memorie >><br />

Selezione materiali<br />

CRITERI DI SCELTA DEL MATERIALE<br />

PER L’ALLEGGERIMENTO DI VETTURE<br />

SPORTIVE AD ALTE PRESTAZIONI<br />

P. Veronesi, A. Pivetti, A. Baldini, M. Loiacono, G. Poli<br />

Per le vetture di lusso ad alte prestazioni, il primo elemento di competitività è dato dalle prestazioni dinamiche<br />

del<strong>la</strong> vettura, ragion per cui il fattore peso sta assumendo nel tempo una rilevanza crescente. L’introduzione<br />

di normative sempre più severe in ambito di emissioni, strettamente corre<strong>la</strong>te al consumo del<strong>la</strong><br />

vettura ha inoltre indotto i progettisti a spostare <strong>la</strong> propria attenzione non più sul<strong>la</strong> potenza pura ma sul<br />

rapporto potenza/peso. In questo ambito, è stato studiato l’alleggerimento di una vettura sportiva ad<br />

alte prestazioni, in partico<strong>la</strong>re di una Lamborghini Murcié<strong>la</strong>go, andando a proporre nuovi materiali per<br />

<strong>la</strong> realizzazione di partico<strong>la</strong>ri del gruppo sospensivo. Ottimizzando <strong>la</strong> scelta del materiale, è possibile ridurre<br />

il peso, rispetto al<strong>la</strong> soluzione attuale, del 30-35% re<strong>la</strong>tivamente al<strong>la</strong> mol<strong>la</strong> sospensione anteriore, del 50-70%<br />

re<strong>la</strong>tivamente al<strong>la</strong> barra antirollio posteriore, nonché alleggerire il braccio anteriore inferiore dal 3 al<br />

30%, dipendentemente dallo stato tensionale del componente, impiegando opportunamente acciai basso legati,<br />

leghe di alluminio e leghe di titanio.<br />

PAROLE CHIAVE: acciaio, alluminio e leghe, mat. compositi, titanio e leghe, selezione materiali<br />

INTRODUZIONE<br />

Negli ultimi 20 anni <strong>la</strong> progettazione e realizzazione di autoveicoli<br />

ha subito notevoli cambiamenti per poter venire incontro<br />

a nuove e differenti esigenze da parte degli utenti.<br />

Innanzitutto sono cambiati gli standard per quanto riguarda<br />

confort e abitabilità: lo spazio a disposizione dei passeggeri<br />

è aumentato ad ogni nuova generazione di veicoli e con esso le<br />

dimensioni delle vetture.<br />

Paralle<strong>la</strong>mente a questo, <strong>la</strong> richiesta di vetture sempre più sicure<br />

per gli occupanti ma anche per i pedoni ha reso necessario<br />

un aumento delle dimensioni medie delle vetture e di conseguenza<br />

un aumento di peso delle stesse [1].<br />

Negli ultimi anni ci si è però resi conto che questo trend<br />

non poteva proseguire poiché il miglioramento tecnologico<br />

di propulsori e combustibili, per quanto notevole, non sarebbe<br />

stato in grado di compensare l’aumento di peso delle vetture,<br />

soprattutto considerando le richieste sempre maggiori del mercato<br />

in termini di prestazioni dinamiche (migliore accelera-<br />

P. Veronesi, G. Poli<br />

Dipartimento di Ingegneria dei Materiali e dell’Ambiente,<br />

Via Vignolese 905, 4110 Modena - Italy<br />

A. Baldini, M. Loiacono<br />

Dipartimento di Ingegneria Meccanica,<br />

Via Vignolese 905, 4110 Modena - Italy<br />

A. Pivetti<br />

Lamborghini, Via Modena 12, S. Agata Bolognese - Bologna - Italy<br />

zione, ripresa, maneggevolezza, minori consumi/emissioni). Il<br />

peso di una vettura infatti può influenzare numerosi parametri<br />

del<strong>la</strong> progettazione oltre che le prestazioni del veicolo stesso:<br />

- veicoli più pesanti richiedono maggiori potenze per ottenere<br />

prestazioni analoghe a mezzi più leggeri; questo<br />

comporta solitamente un maggiore consumo di carburante<br />

e quindi maggiori emissioni di CO 2 .<br />

- Un peso maggiore significa anche maggiori inerzie e quindi<br />

minor prontezza di risposta ai comandi e minor piacere di guida.<br />

- In caso di incidente una maggiore massa implica una maggiore<br />

energia cinetica da dissipare e quindi richiede delle prestazioni<br />

di resistenza strutturale maggiori da parte del veicolo<br />

In questo ambito è opportuno inoltre ricordare i nuovi limiti<br />

di emissioni di CO 2 (130 g/km) imposti dal<strong>la</strong> Comunità Europea<br />

che entreranno in vigore nel 2012: per riuscire a rientrare<br />

in tali limiti sarà fondamentale <strong>la</strong>vorare su una riduzione dei<br />

pesi delle vetture, perché <strong>la</strong> so<strong>la</strong> efficienza dei motori non sarà<br />

assolutamente sufficiente. I problemi maggiori li incontreranno<br />

sicuramente le vetture di dimensione medio-grande, nonché<br />

quelle ad alte prestazioni, che sono l’oggetto di studio del<br />

presente <strong>la</strong>voro.<br />

Nel settore delle vetture di lusso ad alte prestazioni il primo<br />

elemento di competitività è dato dalle prestazioni dinamiche<br />

del<strong>la</strong> vettura; in questo settore, il fattore peso sta assumendo nel<br />

tempo una rilevanza sempre maggiore. L’introduzione di normative<br />

sempre più severe in ambito di emissioni, strettamente<br />

corre<strong>la</strong>te al consumo del<strong>la</strong> vettura ha infatti indotto i progettisti<br />

a spostare <strong>la</strong> propria attenzione non più sul<strong>la</strong> potenza pura<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 1


Selezione materiali


Memorie >><br />

a<br />

b<br />

s<br />

Fig. 2<br />

diagrammi di scelta per tirante rigido di massa<br />

minima e per trave rigida di massa minima, con indici<br />

dei materiali rapportati al materiale attualmente in uso<br />

per il componente.<br />

Selection diagrams for a stiff tie having minimum mass<br />

and for stiff beam having minimum mass; materials<br />

indexes are normalized to the properties of the material<br />

currently used for the component.<br />

Materiale<br />

AISI 94B30 (G94301), temprato e rinvenuto a 205°C<br />

AISI 4042 (DIN 42MnMo7), temprato e rinv. a 205°C<br />

AISI 4340 (UNI 40NiCrMo7), normalizzato<br />

Al-Lega da getto S520.0<br />

Al-2026 T3<br />

Al-2024 T3<br />

Al-6082 T4 (anche forgiato)<br />

Al-7020 T5<br />

Al-7033 T6<br />

Selezione materiali<br />

0 M /M 1 1<br />

1.02<br />

1.00<br />

1.10<br />

1.06<br />

1.00<br />

0.99<br />

0.99<br />

0.96<br />

0.96<br />

s<br />

Fig. 3<br />

Costo per unità di massa dei materiali – database<br />

CES-Edupack 2005.<br />

Suspension system: front lower arm.<br />

ni alternative in grado di conferire migliori prestazioni al componente,<br />

re<strong>la</strong>tivamente all’obiettivo individuato e ai vincoli agenti.<br />

Un fattore inizialmente non considerato, ma che può giocare un<br />

ruolo determinante nel<strong>la</strong> scelta del materiale, è il costo. In Fig. 3<br />

è rappresentato il diagramma re<strong>la</strong>tivo al costo per unità di massa<br />

di differenti tipologie di materiali, con indicate le barre re<strong>la</strong>tive<br />

ad acciai, leghe di alluminio e titanio.<br />

Dall’analisi dei grafici di Fig. 2 e 3, si può notare come dal punto<br />

di vista del<strong>la</strong> rigidezza specifica (M1), si ha una famiglia di materiali<br />

in grado di avere prestazioni superiori all’acciaio: le leghe di<br />

titanio; tuttavia i miglioramenti sono possibili ma in misura<br />

ridotta (pochi punti percentuali) e a costi nettamente maggiori.<br />

Non sembra quindi opportuno proseguire verso una<br />

scelta del genere, considerando i limitati vantaggi in rapporti<br />

ai costi. Dal punto di vista del<strong>la</strong> resistenza specifica (M2),<br />

invece, si possono ottenere miglioramenti considerevoli.<br />

Re<strong>la</strong>tivamente alle prestazioni di rigidezza flessionale, i grafici<br />

mostrano che vi sono soluzioni in grado di fornire buoni miglioramenti:<br />

in partico<strong>la</strong>re le leghe di alluminio sembrano<br />

offrire le migliori soluzioni.<br />

La rosa di candidati per l’applicazione, si restringe pertanto ai<br />

materiali riportati in Tab. 1, con i re<strong>la</strong>tivi indici di prestazione<br />

riferiti al materiale attualmente in uso (apice “0”).<br />

Informazioni di supporto e scelta del materiale<br />

Le informazioni ricavate dagli indici di prestazione hanno<br />

0 M /M 2 2<br />

5.50<br />

3.59<br />

2.60<br />

1.92<br />

2.77<br />

2.50<br />

1.53<br />

2.15<br />

3.07<br />

0 M /M 3 3<br />

1.00<br />

1.00<br />

1.00<br />

1.79<br />

1.68<br />

1.67<br />

1.69<br />

1.64<br />

1.67<br />

0 M /M 4 4<br />

2.3<br />

2.3<br />

1.9<br />

2.2<br />

2.8<br />

2.6<br />

1.9<br />

2.3<br />

3.0<br />

s<br />

Tab. 1<br />

indici<br />

di prestazione<br />

dei materiali<br />

candidati.<br />

Materials<br />

indexes for<br />

candidate<br />

materials.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 3


Selezione materiali


Memorie >><br />

mol<strong>la</strong> in seguito a variazioni del<strong>la</strong> quota z del contatto ruotasuolo.<br />

In ogni caso, per qualsiasi scuotimento del<strong>la</strong> sospensione<br />

<strong>la</strong> mol<strong>la</strong> rimane sempre sollecitata a compressione. Il filo del<strong>la</strong> mol<strong>la</strong><br />

è avvolto a spirale attorno ad un cilindro fittizio di diametro<br />

costante, denominato diametro di avvolgimento. Come già<br />

accennato, il componente deve rispettare determinati ingombri<br />

per consentirne il montaggio: in partico<strong>la</strong>re un parametro che non<br />

può essere modificato è il diametro interno del<strong>la</strong> mol<strong>la</strong>. Tale quota<br />

è infatti limitata dal<strong>la</strong> necessità di montare all’interno del<strong>la</strong> mol<strong>la</strong><br />

l’ammortizzatore. Un’altra specifica tecnica che non deve essere<br />

modificata è <strong>la</strong> rigidezza; tale parametro infatti influenza il comportamento<br />

dinamico del<strong>la</strong> vettura e viene quindi stabilito in fase<br />

progettuale per ottenere le prestazioni dinamiche volute. Anche<br />

questo parametro verrà quindi mantenuto costante. Per quanto<br />

riguarda <strong>la</strong> lunghezza del<strong>la</strong> mol<strong>la</strong>, si cercherà di mantener<strong>la</strong> il più<br />

possibile simile a quel<strong>la</strong> di origine, in modo da ridurre al minimo<br />

eventuali modifiche su componenti necessari al fissaggio<br />

del<strong>la</strong> mol<strong>la</strong>, come per esempio i piattelli; ovviamente esistono<br />

limitazioni legate all’ingombro longitudinale ma una variazione<br />

di qualche millimetro può essere concessa. Va osservato che si<br />

tratta di una mol<strong>la</strong> con passo e diametro medio di avvolgimento<br />

costanti; <strong>la</strong> sua caratteristica forza-spostamento sarà quindi<br />

lineare. Il dimensionamento ha portato ai valori riportati in<br />

Tab. 2, espressi in termini di variazione percentuale per ragioni<br />

di riservatezza.<br />

ANALISI ED ALLEGGERIMENTO BARRA ANTIROLLIO<br />

La barra antirollio svolge un compito di ausilio al sistema sospensivo<br />

so<strong>la</strong>mente in situazioni in cui si ha trasferimento di carico.<br />

Gli estremi del<strong>la</strong> barra sono fissati ai braccio superiore del<br />

sistema sospensivo: in tal modo quando si verifica un trasferimento<br />

di carico tra le due ruote dell’assale, gli scuotimenti verticali di<br />

verso opposto tra le due ruote generano un momento torcente sul<strong>la</strong><br />

barra, che quindi viene sollecitata a torsione. Il componente è mostrato<br />

in Fig. 5.<br />

Un parametro fondamentale che sintetizza il comportamento<br />

del<strong>la</strong> barra stessa è <strong>la</strong> sua rigidezza torsionale: più <strong>la</strong> barra è<br />

rigida maggiore sarà <strong>la</strong> resistenza che essa opporrà e di conseguenza<br />

minori saranno gli scuotimenti del sistema sospensivo<br />

dell’assale.<br />

Nel dimensionare il componente quindi l’aspetto principale da<br />

s<br />

Tab. 2<br />

Dimensionamento del<strong>la</strong> mol<strong>la</strong> in lega di titanio e<br />

re<strong>la</strong>tiva riduzione di peso.<br />

Dimensioning of titanium alloy spring and consequent<br />

weight reduction.<br />

Selezione materiali<br />

s<br />

Fig. 5<br />

Barra antirollio.<br />

Anti-roll bar.<br />

tenere i considerazione sarà <strong>la</strong> rigidezza torsionale che si vorrà<br />

ottenere; come si vedrà in seguito tale proprietà dipende sia da<br />

quote dimensionali (diametro del<strong>la</strong> barra, lunghezza del braccio di<br />

torsione) che dalle proprietà del materiale.<br />

Traduzione dei requisiti di progetto<br />

Oltre alle funzioni esposte al paragrafo precedente, un parametro<br />

importante per <strong>la</strong> selezione del materiale è <strong>la</strong> massima<br />

temperatura di esercizio: <strong>la</strong> barra infatti è situata in prossimità del<br />

motore e dell’impianto di scarico del<strong>la</strong> vettura, e si troverà quindi<br />

a <strong>la</strong>vorare ad una temperatura leggermente superiore a quel<strong>la</strong> ambiente.<br />

Come limite inferiore è stata imposta una temperatura di<br />

<strong>la</strong>voro di 70° C.<br />

Un altro aspetto da tenere in considerazione è il comportamento<br />

del materiale in caso di frattura: <strong>la</strong> caratteristica desiderata, ovviamente,<br />

è che in caso di cedimenti il materiale non ceda di schianto<br />

ma resista il più possibile al<strong>la</strong> propagazione del<strong>la</strong> cricca. Il parametro<br />

solitamente utilizzato per definire il comportamento di un<br />

materiale in caso di cedimento è <strong>la</strong> tenacità a frattura. La<br />

traduzione dei requisiti di progetto è <strong>la</strong> seguente:<br />

- Funzione: barra di torsione<br />

- Vincoli: rigidezza torsionale, resistenza a rottura, resistenza a fatica<br />

e ad agenti atmosferici, vincoli geometrici di ingombro; temperatura<br />

di impiego superiore a 70°C; tenacità a frattura superiore a<br />

15 MPa m 1/2 .<br />

- Obiettivo: ottenere rigidezza di progetto con minimo peso<br />

- Variabile libera: materiale da utilizzare, dimensione del<strong>la</strong> sezione<br />

resistente<br />

Screening e c<strong>la</strong>ssificazione: calcolo indici di prestazione e individuazione<br />

materiali alternativi<br />

L’indice di prestazione per <strong>la</strong> rigidezza torsionale e per <strong>la</strong> resistenza<br />

torsionale sono i seguenti [5]:<br />

(7)<br />

(8)<br />

Il re<strong>la</strong>tivo diagramma di scelta, nel<strong>la</strong> zona di interesse, è riportato<br />

in Fig. 6.<br />

In base alle considerazioni effettuate in precedenza re<strong>la</strong>tivamente<br />

all’utilizzo di componenti in materiale composito, <strong>la</strong> scelta più<br />

ragionevole sembra quel<strong>la</strong> delle leghe di alluminio da trattamento<br />

termico e/o deformazione p<strong>la</strong>stica. In base all’analisi del grafico le<br />

leghe migliori sono quelle delle serie 5000 e 2000. In partico<strong>la</strong>re<br />

le leghe migliori sono quelle del<strong>la</strong> serie 5000, che presentano<br />

caratteristiche di resistenza sufficienti e una densità leggermente<br />

inferiore rispetto alle altre serie, massimizzando così l’indice di<br />

prestazione. Una scelta opportuna potrebbero essere le leghe 5052<br />

e 5086. Tuttavia, semplificando <strong>la</strong> geometria del componente,<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 5


Selezione materiali


Memorie >><br />

Metalli leggeri<br />

INNOVATIVE TECHNOLOGIES IN<br />

MOULD RELEASE AGENTS<br />

G.Natesh, A. Colori<br />

The drive for improved fuel efficiencies in the automobile industry has led to continuing growth in aluminium<br />

die casting as manufacturers strive to reduce the weight of automobiles by rep<strong>la</strong>cing steel with light metal components.<br />

Larger and more complex parts are being cast and this has set new challenges to die casters in their<br />

quest for improved quality and productivity. The paper examines the impact of these trends on die lubrication<br />

and discusses an innovative lubrication technology that has evolved to satisfy these requirements.<br />

KEYWORDS: : mould release agent, die-casting, high temperature, automotive, die lubricant, solder protection,<br />

leidenfrost effect<br />

High Pressure die-casting is a very popu<strong>la</strong>r process for making<br />

complex mechanical parts out of light metals like aluminium<br />

and magnesium alloys. It is capable of rapidly producing parts<br />

with high dimensional accuracy. High pressure die-casting<br />

grew along with the growth of the automobile industry, where<br />

the demands of assembly line manufacture spurred the<br />

demand for a quick reliable way to make components. With<br />

the growth of JIT manufacturing, the automobile industry still<br />

continues to be the dominant user of high-pressure die cast<br />

parts. Other end uses for die casting include recreational vehicles,<br />

power tools, electrical machinery, electronic components<br />

and house-ware. The rapid growth of the world economy has<br />

spurred a demand for all of these products and the European<br />

die cast industry is gearing up to meet this demand.<br />

The rising cost of fuel and increasingly stringent environment<br />

and fuel performance regu<strong>la</strong>tions are forcing the auto industry<br />

to seek novel ways to achieve these goals. Weight reduction<br />

of vehicles is a key step to reducing fuel consumption, so<br />

the industry is actively looking at rep<strong>la</strong>cing steel components<br />

with aluminium and magnesium castings. With constant innovation<br />

in aluminium alloys and casting technology, improved<br />

strength and other properties are being engineered, that allows<br />

bigger and more complex parts to be die cast. Engine blocks,<br />

instrument panels and complete door frames are just some of<br />

the examples of aluminium components now being produced<br />

by die-casting. This has led to a trend towards bigger die-cast<br />

machines and <strong>la</strong>rger shot weights.<br />

The complexity of these <strong>la</strong>rge parts makes it difficult to design<br />

internal cooling to adequately cool all parts of the die uniformly.<br />

A natural consequence of this is that die surface temperatures<br />

have increased. Previously, the die surface temperatures<br />

before spray used to range between 250°C to 350°C. With the<br />

estimenti di allumina, corrosi<br />

one, leghe di alluminio, LEIS, EIS, ENA<br />

mina, corrosi<br />

one, leghe di alluminio, LEI<br />

mina, corrosi<br />

one, leghe di alluminio, LEI<br />

<strong>la</strong>rge components, the maximum temperature can be as high<br />

as 400°C while the cooler portions of the die may be as low as<br />

200°C.<br />

This leads to the development of localized hot spots which, in<br />

turn, create solder problems. This p<strong>la</strong>ces a greater dependence<br />

on the die lubricant to provide cooling for the die surface. Yet<br />

the higher temperatures encountered before the spray make<br />

this difficult to do because of the Leidenfrost effect. This requires<br />

greater quantities of die lubricant to be sprayed, which<br />

increase cycle times and costs.<br />

The Leidenfrost phenomenon is well known to die casters.<br />

When water is sprayed on to a hot surface, which is at a temperature<br />

well above the boiling point of water, it is unable to<br />

make contact with the metal surface. Instead, the drops of water<br />

float on a cushion of water vapor and thus are unable to<br />

wet the surface (Fig. 1). Die lubricant active materials are therefore,<br />

unable to be <strong>la</strong>id down on the die surface. The highest<br />

temperature at which water, or a water based die lubricant,<br />

can contact the metal surface is known as the Leidenfrost temperature.<br />

Our research focused on two separate approaches to develop<br />

high performance die lubricants. The first was to try and in-<br />

s<br />

Fig. 1<br />

Schematic rendering of the Leidenfrost phenomenon.<br />

Rappresentazione grafica del fenomeno di Leidenfrost.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 1


Metalli leggeri


Memorie >><br />

a<br />

b<br />

s<br />

Fig. 5<br />

a) Old product (after 8 hours); b) New Product<br />

(after 8 hours).<br />

a) Vecchia tecnologia (dopo 8 ore); b) Nuova tecnologia<br />

(dopo 8 ore).<br />

The first case is from a North American die caster making<br />

engine blocks with steel cylinder inserts on a 3500 T Ube®<br />

machine with a total cycle time of less than 120 seconds. They<br />

were getting good solder protection, with low overspray and<br />

in-cavity buildup with a conventional die lubricant. When<br />

they started casting a new engine design, they noticed solder<br />

formation near the water jacket area on the part. This required<br />

them to do die polishing for about 30 minutes once every<br />

8 hours. Running at richer concentrations did not help, giving<br />

buildup that also needed to be polished. Increasing the<br />

spray duration also had a major impact on productivity.<br />

We took thermal images of the die before and after spray to<br />

monitor temperature profiles and spray distribution. The temperature<br />

ranged from 450°F to 750°F (232°C to 399°C) before<br />

spray on the ejector die. We also observed that the previous<br />

product was not covering the problem area adequately particu<strong>la</strong>rly<br />

at the high temperature zones. The new Safety-Lube®<br />

product could wet the hot surface earlier providing better co-<br />

Metalli leggeri<br />

s<br />

Fig. 6<br />

Thermal image of die before spray.<br />

Immagine termica dello stampo prima del<strong>la</strong> spruzzatura.<br />

s<br />

Fig. 7<br />

Thermal image of die after spray (old product).<br />

Immagine termica dello stampo dopo <strong>la</strong> spruzzatura (vecchia<br />

tecnologia).<br />

verage and could rapidly form an adequate lubricating film<br />

at the high temperatures seen on the die. Fig. 5 shows the<br />

dramatic reduction in solder. The improved performance<br />

from the Safety-Lube® product eliminated the need to polish<br />

every shift and reduced the cleaning time by 50%.<br />

The second example is from a European die caster making<br />

automotive components, who were extremely concerned<br />

about the long cycle times needed to make a particu<strong>la</strong>r casting.<br />

They also had problems with porosity, soldering and<br />

in-cavity build-up which led to poor yields and productivity.<br />

Investigation of the problem revealed a clear pattern. Fig. 6<br />

shows that the die temperatures before spray ranged from<br />

417°C to 230°C across the face of the die.<br />

The incumbent product was unable to form adequate protective<br />

film against solder, therefore a long spray time was needed.<br />

However, this caused some areas of the die to be cooled<br />

excessively, leading to in-cavity build and porosity. Reducing<br />

the spray time gave solder, and in both cases downtime was<br />

needed to do die polishing. As can be seen in Fig. 7, the typical<br />

die temperatures after spray with the conventional product<br />

ranged from 250°C to 160°C.<br />

From this analysis, it was clear that we needed to form good<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 3


Metalli leggeri


Memorie >><br />

Trattamenti superficiali<br />

MODERN THERMAL ELECTRON BEAM<br />

PROCESSES – RESEARCH RESULTS<br />

AND INDUSTRIAL APPLICATION<br />

R. Zenker<br />

Thermal electron beam (EB) technologies are becoming more and more attractive especially<br />

because they are ecologically friendly and energy saving on the one hand and highly precise, excellently<br />

control<strong>la</strong>ble and highly productive on the other hand.<br />

Using three-dimensional energy transfer fields, the interaction conditions between the EB and the surface<br />

of the material, the conditions of the heat conduction in the material, the geometry of the part, and the load<br />

conditions of the component can be taken into account. High flexibility, precision, and reproducibility are<br />

typical characteristics of EB technologies and facilities. High productivity is achieved by new technological<br />

solutions like simultaneous interaction of the EB in several processing areas (spots) or by carrying out several<br />

processes simultaneously in modern EB facilities and systems (such as multi-chamber, lock-type and other<br />

concepts). The influence of beam parameters and energy transfer conditions on the microstructure of the<br />

materials and its properties will be discussed for different EB technologies. Information on ideal treatment<br />

conditions will be given. The paper deals with the current development state regarding beam deflection<br />

techniques, technological processes and some facility concepts, and with the state of industrial application.<br />

KEYWORDS: electron beam processes, surface treatment, combined technologies, welding, engraving, profiling,<br />

beam deflection techniques, materials (structure-property re<strong>la</strong>tion), applications<br />

INTRODUCTION<br />

By using the advantages of EB, modern EB technologies differ<br />

from other technologies in their advantageous characteristics<br />

(Tab. 1).<br />

These characteristics are typical for all EB technologies, i.e.<br />

welding, surface treatment, surface ab<strong>la</strong>tion or perforation,<br />

which are carried out as one-spot techniques. If a multi-spot<br />

technique or multi-process technology is applied, the effects of<br />

these characteristics are much more effectively.<br />

The present paper will exemp<strong>la</strong>rily demonstrate the state of<br />

the art of development and application of EB technologies.<br />

MULTI-TOOL ELECTRON BEAM<br />

Beam deflection techniques<br />

The development of the two-dimensional high-frequency<br />

Rolf Zenker<br />

TU Bergakademie Freiberg, IWT,<br />

Zenker Consult, Mittweida, Germany<br />

Paper presented at the European Conference „Innovation in heat<br />

treatment for industrial competitiveness”, Verona, 7-9 May,<br />

organised by AIM<br />

beam deflection technique was the beginning of a new area<br />

of thermal electron beam (EB) technologies. The high speed<br />

scanning (HSS) technique has been avai<strong>la</strong>ble since 1986 [1]-[3].<br />

In 2000 a high frequency 3D beam deflection technique was<br />

created with new possibilities for load and couture specific EB<br />

technologies, not only for surface treatment [4]-[10] but also<br />

for welding [7][10]-[13] and engraving [14]-[15]. These beam<br />

deflection techniques are based on the fact that the EB can act<br />

simultaneously in several spots [10]-[13]. In this case the same<br />

task is realised in every spot.<br />

A defined and exact positioning of the (mostly oscil<strong>la</strong>tion)<br />

Electron beam (EB)<br />

excellent formability and deflect ability<br />

good beam profile<br />

high efficiency<br />

<strong>la</strong>rge penetration depth<br />

high beam stability<br />

EB technologies<br />

high productivity<br />

excellent flexibility<br />

good process safety<br />

high reproducibility<br />

ecologically friendly<br />

s<br />

Tab. 1<br />

Characteristics of EB and EB technologies (behind<br />

others) .<br />

Principali caratteristiche del fascio elettronico e delle tecnologie EB.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> aprile 2009 1


Trattamenti superficiali


Memorie >><br />

Combined surface treatment (tools, automotive components)<br />

Combination EBH/Nitriding<br />

With regard to complex load conditions for most tools and<br />

components, especially close to the surface, the properties attainable<br />

by single treatments (mechanical, thermal, thermochemical<br />

and coating technologies), in particu<strong>la</strong>r, often are<br />

insufficient. Therefore, combined processes (duplex or hybrid<br />

process) (Fig. 6a) came into the focus of examinations and<br />

meanwhile of industrial application [17]-[20].<br />

In case of the sequence of the combined surface treatment<br />

combination EBH+nitriding (N) or nitrocarburising (NC) the<br />

level of the processing temperature of N or NC in re<strong>la</strong>tion to<br />

the tempering temperature of the bulk material determines the<br />

success of this treatment combination.<br />

The better the tempering stability of the steel the smaller is the<br />

hardness reduction in the previously produced EBH <strong>la</strong>yer as a<br />

result of the subsequent nitriding process.<br />

It is true that a subsequent EBH after N (NC) transforms the<br />

compound <strong>la</strong>yer partially (wider seam of pores), but the hardness<br />

of the diffusion <strong>la</strong>yer is higher than after EBH or N (NC)<br />

[21]. In case of the component shown in Fig. 6b hardness rises<br />

by ~ 200HV0.3 (Fig. 6c).<br />

It has been shown that in the case of optimised process parameters<br />

the advantages of this combined treatment complement<br />

Trattamenti superficiali<br />

a b c<br />

s<br />

Fig. 4<br />

EB hardening of a power train component (two-process EBH technology) - a) Controlling component; b) Twoprocess<br />

technology; c) EB hardening depths.<br />

Indurimento superficiale mediante EB di un componente di un sistema di potenza (tecnologia EBH).<br />

a b c<br />

s<br />

Fig. 5<br />

EB Hardening of a spherical surface (f<strong>la</strong>sh technique) - a) Calotte carrier; b) Energy transfer field; c) Process<br />

thermocycle.<br />

Indurimento superficiale mediante EBH di una superficie sferica (tecnica f<strong>la</strong>sh).<br />

each other and the disadvantages of the single processes cancel<br />

each other out at least partially [20][21].<br />

Combination of EBH and HC<br />

Hard coatings based on titanium, aluminium or chromium<br />

carbides are successfully applied as hard wear resistant <strong>la</strong>yers<br />

for tools and components. These hard but also brittle coatings<br />

are often unable to bring their excellent properties fully to bear<br />

on re<strong>la</strong>tively soft base materials. Therefore the base materials<br />

are usually subjected to additional heat treatment before or after<br />

hard coating [22]-[24]. It is possible to limit the heat treatment<br />

to the highest loaded areas and up to the depth where a<br />

martensitic transformation is necessary. The thermal loading<br />

of the overall component is minimised.<br />

With regard to a subsequent heat treatment of hard coated<br />

steels it allows for prevention of undesirable changes of composition,<br />

structure and properties of the hard coating [25][26].<br />

A very short interaction time and the process-re<strong>la</strong>ted vacuum<br />

support these effects. Moreover, the electron beam hardening<br />

technology is well known to cause small changes in size and<br />

shape which means that distortion is also reduced in that way<br />

also. A combined EBH+HC is successful only if the treating<br />

temperature of the hard coating process is lower than the tempering<br />

temperature of the bulk material [26].<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> aprile 2009 3


Trattamenti superficiali


Memorie >><br />

Regarding the application of the HC+EBH combination the<br />

surface deformation due to the martensitic transformation<br />

must be taken into consideration (Fig. 7c).<br />

EB WELDING<br />

Welding of steel (powertrain components)<br />

A typical powertrain welding unit is shown in Fig. 8a). The<br />

conventional procedure used for the EB or <strong>la</strong>ser welding of<br />

gear components is a tack welding in a first step and then<br />

the joining of the two welding partners by single-pool welding<br />

in a second step.<br />

By contrast, in multi-pool welding the components are fixed<br />

simultaneously at the time of the first interaction of the EB<br />

with the material at several points (Fig. 8b).<br />

It follows in the same processing step a simultaneous movement<br />

of several melting pools along one and the same welding<br />

seam (Fig. 8b) up to an over<strong>la</strong>pping zone in the area<br />

which has already been welded. The number of welding<br />

pools depends on the size and geometry of the part and on<br />

the deflection width of the EB. In comparison to the above<br />

mentioned two-step technology the welding time is reduced<br />

up to one third and also the distortion is minimized because<br />

of the lower heating of the parts [7][10][13].<br />

A speciality of multi-pool EB welding is that the welding<br />

seam is not perpendicu<strong>la</strong>r to the surface (Fig. 8b). The incidence<br />

angle of the EB and, consequently, the seam depend<br />

on the welding diameter of the welding circle and the distance<br />

between beam source and component (Fig. 8c) [10]<br />

[13].<br />

One important fact for a successful application of multi-pool<br />

welding is that the program must be optimized in re<strong>la</strong>tion to<br />

the jump frequency of the beam from one melting pool to the<br />

next and the beam oscil<strong>la</strong>tion for an open vapour capil<strong>la</strong>ry.<br />

Welding of al alloys (cylinder liner ensembles)<br />

The production of engine blocks as hybrid casting is state of<br />

the art. In the automotive industry cast iron cylinder liners<br />

are usually applied but there are also cylinder liners made of<br />

spray-formed Al materials. The cast engine block either consists<br />

of different Al or Mg alloys.<br />

One of the technical difficulties is the precise positioning of<br />

each cylinder liner in the mould, one after the other. A technologically<br />

more smarter and more profitable technology is the<br />

Trattamenti superficiali<br />

positioning of the liners as so called “liner ensemble” (Fig. 9a).<br />

In this case several (2…6) cylinder liners are assembled by EB<br />

welding and positioned in the mould as an ensemble in one<br />

step. The technical expenditure is much lower [10][15].<br />

Electron beam welding for that application is realised with<br />

two-spot techniques using a welding spot and a smoothing<br />

spot in one run (Fig. 9c, d).<br />

It has to be taken into account that water jackets are integrated<br />

between the cylinder liners which must stay open after welding.<br />

Because of the high penetration depth of the EB, the welding<br />

takes p<strong>la</strong>ce only from one side across the water channel up<br />

to a depth of 45 mm without closing it (Fig. 9c, d). The diameter<br />

of the hole must be ≥ 3.0 mm, but this is normal standard<br />

design. The fact that the liners are welded from one side contributes<br />

to a very economical production [15].<br />

The application of the two-spot (pool) technique is necessary<br />

because most spray formed alloys cannot be welded easily and<br />

have a very rough welding bead. The task of the second spot<br />

is to smooth the bead.<br />

EB SURFACE ABLATING<br />

Engraving (shaft for force fit with tube)<br />

EB engraving follows the well-known method of producing<br />

<strong>la</strong>teral surface patterns to improve the sliding conditions [27]<br />

[28], produce reservoirs for colour particles [29], texture the<br />

cold rolls to improve sheet quality [30] and - in this present<br />

case - to increase the friction in force fits [13].<br />

The principle of these different processes is the same (Fig. 10).<br />

At first, the EB with a small diameter remelts the surface in<br />

a small pool (Fig. 10a). Then a vapour capil<strong>la</strong>ry is produced<br />

because of the high beam energy. The vaporised material and<br />

some of the liquid material squirt out of the capil<strong>la</strong>ry and a<br />

molten shell is formed around it (Fig. 10b). Depending on the<br />

material and the beam parameters dimples and/or protrusions<br />

develop (Fig. 10c).<br />

By applying the EB multi-spot technique, many protrusions<br />

can be generated simultaneously around dimples, as spot lines<br />

(up to 200 spots per line, Fig. 11a) or as patterns (on a p<strong>la</strong>ne<br />

surface up to 3.500 spots) during less than 0.15 ms [31].<br />

Large protrusions (Fig. 11b, c) are desired and necessary for<br />

force fits of shaft/tube assemblies. The dimples (Fig. 11c) are<br />

necessary because they prepare the material for the protrusions.<br />

a b c d<br />

s<br />

Fig. 9<br />

Two-spot welding of cylinder liner ensembles - a) Cylinder liner ensemble; b) Single cylinder with water channels;<br />

c) Welding seam (schematic); d) Welding seam.<br />

Saldatura a due fasci di un complesso di elementi cilindrici allineati.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> aprile 2009 5


Trattamenti superficiali Tm, Casting) and<br />

- metallurgical connection in combination with mechanical interlocking<br />

(Tm, Insert ~ Tm, Casting)<br />

As it is known, further factors such as the casting method and<br />

conditions, temperature control, the position in the mould, etc.<br />

affect the result with regard to the form fit and connection between<br />

insert and casting.<br />

If the insert is made of an Al alloy as well as the casting the contact<br />

between insert and casting is generally good (mechanical<br />

interlocking and metallurgical connection, Fig. 12c). Ultrasonic<br />

measurements support these results. In areas where there is no<br />

contact the ultrasonic waves are reflected at the interface. In<br />

case of metallurgical connection there is no or a weak signal<br />

(Fig. 12e).<br />

To assess the bond strength of castings with profiled inserts,<br />

samples were analysed using static tensile tests. The analyses<br />

showed that a bond strength which was 3…10 times higher<br />

than it was for non-profiled inserts (1…2.5 kN) was achieved<br />

by EB profiling [15] (basis: force up to the point where the insert/casting<br />

connection is separated). This may be attributed<br />

in particu<strong>la</strong>r to the fact that the breaking of samples did not<br />

occur at the interface between insert and casting, as it was the<br />

case in non-profiled reference samples, but predominantly in<br />

the casting.<br />

6 aprile 2009


Memorie >><br />

300<br />

3] PANZER, S.; MÜLLER, M.: Härten von Oberflächen mit<br />

Elektronenstrahlen. In: HTM 43(1980), 2, pp. 103-111<br />

4] ZENKER, R., Electron beam surface treatment: industrial<br />

application and prospects. In: Surface Engineering 12(1996),<br />

4, pp. 296-297<br />

5] ZENKER, R.; WAGNER, E.; FURCHHEIM, B.: Electron<br />

beam – a modern energy source for surface treatment. In:<br />

6th International Seminar of IFHT: Advanced Heat Treatment<br />

Techniques Towards the 21st Century: 15.-18.10.1997,<br />

Kyongju, 1997<br />

6] ZENKER, R.; FRENKLER, N.; PTASZEK, T.: Electron<br />

beam surface treatment of Al, Mg, and Ti alloys. In: Proceedings<br />

of the 7th International Seminar of IFHT: Heat treatment<br />

and surface engineering of light alloys: 15.-17.9.1999,<br />

Budapest, 1999, pp. 18-21<br />

7] ZENKER, R.: Electron beam surface treatment and multipool<br />

welding – state of the art. In: EBEAM 2002, International<br />

Conference on High-Power Electron Beam Technology:<br />

27.-29.10.2002, Hilton Head Is<strong>la</strong>nd, 2002, pp. 12-1–12-5<br />

8] ZENKER, R.: Structure and properties of electron beam<br />

surface treatment. In: Advanced Engineering Materials<br />

6(2004), 7, pp. 581-588<br />

9] ZENKER, R.: Elektronenstrahl-Randschichtbehandlung,<br />

Innovative Technologie für höchste industrielle Ansprüche.<br />

Monographie, pro-beam AG & Co. KGaA, 2003<br />

10] ZENKER, R.: Elektronenstrahlbearbeitung für Powertrainkomponenten.<br />

In: Kooperationsforum Metalle im Automobilbau,<br />

Innovationsforum in Be- und Verarbeitung,<br />

29.11.2005, Hof, 2005<br />

11] MATTAUSCH, G.; MORGNER, H.; DAENHARDT, J.;<br />

ET. AL.: Survey of electron beam technologies at FEP. In:<br />

Proceedings / EBEAM 2002: International Conference on<br />

Trattamenti superficiali<br />

a b c<br />

s<br />

Fig. 12<br />

Multi track profiling of bearing insert.<br />

Profilo a più tracce di un partico<strong>la</strong>re di cuscinetto.<br />

d e<br />

High-Power Electron Beam Technology, Hilton Head Is<strong>la</strong>nd,<br />

27.-29.10.2002, pp. 11/1-11/11<br />

12] LOEWER, T.: Analysis, visualisation and accurate description<br />

of an electron beam for high repeatability of industrial<br />

production processes. In: Proceedings of the 7th<br />

International Conference on Electron Beam Technologies,<br />

Varna, 1.-6.6.2003, pp. 45-50<br />

13] ZENKER, R.; BUCHWALDER, A.; FRENKLER, N.;<br />

THIEMER, S.: Moderne Elektronenstrahltechnologien zum<br />

Fügen und zur Randschichtbehandlung. In: Vakuum in der<br />

Praxis, 17(2005), 2, pp. 66-72<br />

14] ZENKER, R.; BUCHWALDER, A.; SPIES, H.-J.: New<br />

electron beam technologies for surface treatment. In: Proceedings<br />

of the 7th International Conference on Electron<br />

Beam Technologies: 1.-6.6.2003, Varna, 2003, pp. 202-209<br />

15] ZENKER, R.; KRUG, P.; BUCHWALDER, A.; DICK-<br />

MANN, T.; FRENKLER, N.; THIEMER, S.: Elektronenstrahlschweißen<br />

und –profilieren von sprühkompaktierten<br />

Zylinder<strong>la</strong>ufbuchsen aus Al-Si-Werkstoffen. In: Zylinder<strong>la</strong>ufbahn,<br />

Kolben, Pleuel – Innovative Systeme im Vergleich,<br />

Tagung Böblingen, 7.-8.03.2006, VDI-Ver<strong>la</strong>g GmbH: Düsseldorf,<br />

2006, VDI-Berichte 1906, pp. 259-274<br />

16] BUCHWALDER, A.: Beitrag zur Flüssigphasen-Randschichtbehandlung<br />

von Bauteilen aus Aluminiumwerkstoffen<br />

mittels Elektronenstrahl. Dissertation TU Bergakademie<br />

Freiberg, 2007<br />

17] ZENKER, R.: Kombinierte thermochemisch-thermische<br />

Wärmebehandlung. Neue Hütte 28(1983), 10, pp. 379-385<br />

18] SPIES, H.-J.: Erhöhung des Verschleißschutzes von Eisenwerkstoffen<br />

durch die Duplex-Randschichttechnik.<br />

Stahl und Eisen 117(1997), 6, pp. 45-62<br />

19] KEßLER, O., HOFFMANN, F., MAYR, P.: Combinations<br />

of coating and heat treating processes: establishing a system<br />

for combined processes and examples. Surf. Coat. Technol.,<br />

108-109(1998), pp. 211-216<br />

20] ZENKER, R., SPIES, H.-J.: 15 Jahre industrielle Anwendung<br />

der Elektronenstrahl Randschicht-behandlung. 57. Härtereikolloquium,<br />

Wiesbaden, Germany, Oct 10-12, 2001<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> aprile 2009 7


Trattamenti superficiali


Memorie >><br />

Alluminio e leghe<br />

SQUEEZE CAST AUTOMOTIVE<br />

APPLICATIONS AND DESIGN<br />

CONSIDERATIONS<br />

Z. Brown, C. Barnes, J. Bigelow , P. Dodd<br />

With an increasing emphasis on vehicle weight reduction, the demand for lighter weight automotive components<br />

continues to increase. Squeeze casting is an established shape-casting process that is capable of producing<br />

lightweight, high integrity automotive components that can be used for structural applications.<br />

In recent years the squeeze casting process has been used with various aluminum alloys to produce<br />

near-net shape components requiring high strength, ductility, pressure tightness or high wear resistance<br />

[1]. Squeeze casting has proven to be an economical casting process for high volume applications and<br />

offers design and materials engineers an alternative to conventional casting processes such as gravity<br />

permanent mold (GPM), low pressure die casting (LPDC), sand cast aluminum/ iron, and conventional<br />

high pressure die casting (HPDC).<br />

This paper describes Contech’s squeeze casting technology (P2000 TM ) and provides examples of high<br />

volume automotive components manufactured at Contech. This paper also includes product design<br />

considerations, an overview of process simu<strong>la</strong>tion techniques, a comparison of mechanical properties, and case<br />

studies for select automotive components.<br />

KEYWORDS: squeeze casting, aluminum, automotive applications, die casting, safety critical<br />

INTRODUCTION<br />

Conventional HPDC is a well-established process for the<br />

manufacturing of a wide variety of aluminum automotive<br />

components such as engine blocks, pump housings, oil<br />

pans, and transmission components. Conventional HPDC<br />

has many advantages including near-net shape capability,<br />

low manufacturing cost, and excellent dimensional accuracy<br />

and repeatability.<br />

Achievable casting performance is limited however, due to defects<br />

that emerge during the casting process such as gas and<br />

shrink porosity, <strong>la</strong>minations, and inclusions. In addition,<br />

HPDC components are not considered heat treatable, which<br />

further limits achievable performance.<br />

For applications that require higher component integrity<br />

(high strength and ductility, reduced porosity, uniform<br />

microstructure, and ability to heat treat), alternative cast-<br />

Zach Brown, Chuck Barnes, Joe Bigelow<br />

Contech U.S. LLC<br />

Paul Dodd<br />

Contech UK LLC<br />

Paper presented at the International Conference “High Tech<br />

DieCasting”, Montichiari, 9-10 April 2008, organised by AIM<br />

ing processes such as squeeze casting should be considered.<br />

Squeeze casting is an established process that builds upon conventional<br />

HPDC practices and is used to manufacture various<br />

automotive components that require high strength and<br />

ductility, as well as applications that require high pressure<br />

tightness or wear resistance. Examples include steering<br />

column components, steering knuckles, control arms,<br />

suspension links, pump housings, and various powertain<br />

components [1]. The squeeze casting process is capable<br />

of producing components with dimensional accuracy and<br />

near-net shape capability that is equal to conventional HPDC.<br />

Unlike HPDC however, the squeeze casting process is capable<br />

of producing higher integrity components. As a result,<br />

design engineers are able to further optimize current aluminum<br />

designs or substitute aluminum in p<strong>la</strong>ce of heavy materials<br />

such as steel and cast iron.<br />

SQUEEZE CASTING TECHNOLOGY (P2000 TM )<br />

Squeeze casting can be divided into two categories; “direct”<br />

and “indirect”. Direct squeeze casting, often termed “liquidmetal<br />

forging”, consists of pouring metal into a lower die contained<br />

within a hydraulic press. The upper die closes over the<br />

lower die and high pressure is applied throughout the entire<br />

solidification process. In contrast, indirect squeeze casting consists<br />

of pouring molten metal into the cold chamber of a die<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 1


Alluminio e leghe


Memorie >><br />

s<br />

Fig. 3<br />

Example of an aluminum bearing cap that was<br />

converted from GPM to the P2000TM squeeze cast<br />

process. All secondary machining operations were<br />

eliminated.<br />

Esempio di una calotta in alluminio prodotto mediante<br />

squeeze casting (P2000TM ) anzichè in gravità in<br />

conchiglia. Tutte le operazioni secondarie di <strong>la</strong>vorazione<br />

sono state eliminate.<br />

Solidification simu<strong>la</strong>tions are used mainly to predict shrink<br />

porosity and evaluate directional solidification. Fill simu<strong>la</strong>tions<br />

are used to identify potential fill re<strong>la</strong>ted issues such<br />

as <strong>la</strong>minations due to merging flow fronts, turbulence, and<br />

improper venting.<br />

Tooling design engineers rely on these tools when optimizing<br />

gating size and location, cooling line p<strong>la</strong>cement, cooling media<br />

and temperature, die configuration, and process development.<br />

New process simu<strong>la</strong>tion techniques are now being used<br />

to predict the microstructure at various locations throughout<br />

the casting. Since strength and ductility are influenced by<br />

the microstructure, this tool can be used to predict mechanical<br />

properties at various locations throughout the casting. This<br />

information can then be used when interpreting FEA results.<br />

Other new developments allow for the prediction of residual<br />

stresses induced during the casting and heat treating process.<br />

Most commercially avai<strong>la</strong>ble FEA software does not<br />

consider residual stress. High residual stress can result in<br />

lower than expected component performance and dimensional<br />

capability.<br />

Design Recommendations<br />

The squeeze casting process is capable of producing complex<br />

geometries with high dimensional accuracy and repeatability.<br />

This allows designers to create near-net shapes, thus<br />

Alloy-Temper<br />

A356- T6<br />

ADC12-F<br />

ADC12- T5<br />

ADC12- T6<br />

Yield (MPa)<br />

220-260<br />

140-170<br />

230-260<br />

290-320<br />

Tensile (MPa)<br />

290-340<br />

200-270<br />

280-320<br />

344-380<br />

s<br />

Tab. 1<br />

indici di prestazione dei materiali candidati.<br />

Materials indexes for candidate materials.<br />

% Elongation<br />

9-15<br />

2-3.5<br />

1-3<br />

2-5<br />

Alluminio e leghe<br />

s<br />

Fig. 4<br />

Example of P2000TM squeeze cast knuckle.<br />

Esempio di snodo prodotto con <strong>la</strong> tecnica di squeeze<br />

castingP2000TM .<br />

minimizing secondary machining operations. Fig. 3 shows an<br />

example of an aluminum bearing cap that was converted from<br />

gravity permanent mold to squeeze casting. Due to the near net<br />

shape capability of the squeeze casting process, all secondary<br />

machine operations were eliminated. The use of precision<br />

cores with minimal draft (less than .5º per side) eliminated<br />

the need for a secondary drilling operation. The f<strong>la</strong>tness<br />

and surface finish requirements were achieved in the ascast<br />

condition, eliminating the milling operation.<br />

For applications that require high mechanical stiffness, design<br />

engineers must consider both the modulus of e<strong>la</strong>sticity<br />

and section modulus. Modulus of e<strong>la</strong>sticity is a function of the<br />

stiffness of the alloy itself and is fairly simi<strong>la</strong>r for most aluminum<br />

casting alloys. Section modulus is a function of stiffness<br />

from the casting geometry. Increasing the section modulus<br />

through design can offset issues with a lower modulus of<br />

e<strong>la</strong>sticity. Complex geometries such as ribs, pockets, and<br />

u-shaped sections can be used to increase section modulus. It<br />

is recommended to avoid drastic wall thickness changes and<br />

iso<strong>la</strong>ted thick sections. By avoiding localized thick sections and<br />

drastic wall thickness changes, the tendency to form shrink<br />

porosity is greatly reduced. Iso<strong>la</strong>ted thick sections can also induce<br />

stress concentration points and cause casting defects such<br />

as hot tears and heat sinks.<br />

Material Selection<br />

One important advantage of the squeeze casting process is that<br />

it is can be used with various alloy/ heat treat combinations<br />

that can be tailored to meet design requirements. Primary alloys,<br />

such as A356 (AlSi7Mg) are used in the T6 condition for<br />

applications that require high strength and ductility such as<br />

control arms, steering knuckles, and suspension links. Secondary<br />

alloys such as<br />

ADC12 (AlSi11Cu3Fe) are used in the<br />

as-cast, T5, and T6 conditions for applications<br />

that require high strength,<br />

pressure tightness, and wear resistance.<br />

Typical mechanical properties<br />

are shown in Tab. 1.<br />

P2000TM Hardness (HBN)<br />

85-100<br />

95-105<br />

110-130<br />

120-140<br />

APPLICATIONS<br />

Fig. 4 shows an example of a squeeze<br />

cast front steering knuckle. In this<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 3


Alluminio e leghe


Memorie >><br />

Alluminio e leghe<br />

CASTABILITY MEASURES FOR<br />

DIECASTING ALLOYS: FLUIDITY,<br />

HOT TEARING, AND DIE SOLDERING<br />

B. Dewhirst, S. Li, P. Hogan, D. Apelian<br />

Tautologically, castability is a critical requirement in any casting process. Traditionally, castability in sand<br />

and permanent mold applications is thought to depend heavily on fluidity and hot tearing. Given<br />

capital investments in dies, die soldering is a critical parameter to consider for diecasting. We discuss<br />

quantitative and robust methods to insure repeatable metal casting for diecasting applications by investigating<br />

these three areas. Weight reduction initiatives call for progressively thinner sections, which in turn<br />

are dependent on reliable fluidity. Quantitative investigation of hot tearing is revealing how stress develops<br />

and yields as alloys solidify, and this has implications on part distortion even when pressure-casting<br />

methodologies preclude hot tearing failures.<br />

Understanding the underlying mechanism of die soldering presents opportunities to develop methods<br />

to avoid costly downtime and extend die life. Through an understanding of castability parameters,<br />

greater control over the diecasting process can be achieved.<br />

KEYWORD: castability, die soldering, fluidity, hot tearing, part distortion, residual stress<br />

INTRODUCTION<br />

Over the years, castability has been addressed through various<br />

angles and perspectives. However no matter what has<br />

been accomplished, it is fair to state that at the present there<br />

is not a single method that the community can point to as a<br />

means of defining an alloy’s castability in terms of measurable<br />

quantitative parameters. It is critical that means for<br />

controlling the casting process be developed. Without robust<br />

measures, one will not be able to control the casting process.<br />

It is the <strong>la</strong>tter that is the motivating force behind this project.<br />

Hopefully, the investigative techniques being developed in<br />

this research will become standardized so that an accepted<br />

lexicon and methodology is practiced throughout the<br />

casting community.<br />

This paper will focus on three parallel lines of research with<br />

applicability to light metals diecasting: fluidity, hot tearing<br />

(as it re<strong>la</strong>tes to stresses developing within solidifying metals<br />

as a function of chemistry and microstructure), and die soldering.<br />

Each of these three areas of research has the potential<br />

to positively benefit the HPDC industry, either directly or as<br />

B. Dewhirst, S. Li, P. Hogan, D. Apelian<br />

Metal Processing Institute - WPI, 100 Institute Road -<br />

Worcester, MA 01609 USA<br />

Paper presented at the International Conference High Tech<br />

DieCasting, Montichiari, 9-10 April 2008, organised by AIM<br />

an accompanying benefit to research conducted for other<br />

purposes.<br />

Vacuum fluidity testing allows for the evaluation of various<br />

alloys and process modifications in a <strong>la</strong>boratory setting<br />

under rapid solidification conditions, but suffers from<br />

a poor reputation and, as a consequence, has principally been<br />

used for qualitative experimentation. Hot tearing, a consequence<br />

of stresses developing during feeding until the casting<br />

tears itself apart, is not found in alloys used in HPDC, but the<br />

investigative techniques being applied to understand hot<br />

tearing are providing a window into how these stresses<br />

develop. Die soldering is important because, in improperly<br />

designed castings, soldering can be a significant problem that<br />

can severely inhibit productivity.<br />

FLUIDITY<br />

Fluidity is a material’s ability to flow into and fill a given cavity,<br />

as measured by the dimensions of that cavity under specified<br />

experimental conditions, and fluidity is heavily dependent<br />

on heat flow during solidification.<br />

Investigations into the impact of foundry variables such as<br />

mold coatings, alloying additions, head pressure, and especially<br />

superheat have been investigated and corre<strong>la</strong>ted with<br />

mechanisms. For sand and permanent mold castings, it is<br />

abundantly clear that increasing solidification range results<br />

in decreasing fluidity (all other factors being equal). Specific<br />

investigations are often alloy or metal/mold/coating<br />

specific in scope, but very subtle influences of minor varia-<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 37


Alluminio e leghe


Memorie >><br />

s<br />

Fig. 1<br />

Cast Iron Mold designed to detect the onset of<br />

the hot tearing. Commercial cast alloy 713 and 518<br />

were evaluated; the former is known to be sensitive to<br />

hot tearing, and the <strong>la</strong>tter has good resistance to hot<br />

tearing. The pouring temperature was set at 60˚C<br />

above the melting point of the alloy during this effort.<br />

The mold temperature was maintained around 200˚C.<br />

Stampo in ghisa progettato per rilevare l’insorgenza di<br />

cricche a caldo. Sono state valutate le leghe commerciali<br />

713 e 518; <strong>la</strong> prima è risaputa essere sensibile al<strong>la</strong><br />

criccatura a caldo, mentre <strong>la</strong> seconda ha una buona<br />

resistenza verso tale fenomeno. In questa prova <strong>la</strong> co<strong>la</strong>ta<br />

è stata eseguita a una temperatura di 60˚C al di sopra<br />

del punto di fusione del<strong>la</strong> lega.La temperatura dello<br />

stampo è stata mantenuta intorno ai 200˚C.<br />

Hot tearing susceptibility of alloys is greatly influenced<br />

by solidification behavior of molten metal in the mushy<br />

zone. Solidification can be divided into four stages [15]: (i)<br />

Mass feeding where the liquid and solid are free to move; (ii)<br />

Interdendrtic feeding when the dendrites begin to contact<br />

each other, and a coherent solid network forms; (iii)<br />

Interdendritic separation. With increasing fraction solid, the<br />

liquid network becomes fragmented. If liquid feeding is not<br />

adequate, a cavity may form. As thermal contraction occurs,<br />

strains are developed and if the strain imposed on the network<br />

is greater than a critical value, a hot tear will form and<br />

propagate. Lastly, in stage (iv), Interdendritic bridging or<br />

solid feeding occurs. Simply stated, hot tearing occurs if the<br />

solidification shrinkage and thermal deformation of the solid<br />

cannot be compensated by liquid flow.<br />

Measuring the development of strains and the evolution<br />

of hot tearing during solidification is not trivial. The<br />

Metal Processing Institute is a member of the Light Metals<br />

Alliance, and we have teamed up with our alliance partner<br />

CANMET to address hot tearing in aluminum alloys. The<br />

constrained bar mold used in this study was developed at<br />

CANMET Materials Technology Laboratory (MTL) and designed<br />

to measure load and temperature during solidification.<br />

Fig. 1 shows one of the mold p<strong>la</strong>tes and testing setup.<br />

The mold is made of cast iron and coated with insu<strong>la</strong>ting mold<br />

wash. The test piece has two arms. One test arm (12.5mm) is<br />

constrained at one end with heavy section (22.5mm) to keep<br />

the bar from contraction, so the tension will be developed<br />

and hence cracking could be induced during solidification. The<br />

other arm is for load and temperature measurement with<br />

one end connected to a load cell. This opened end of the<br />

mold is closed with a graphite cylinder block which can move<br />

freely in horizontal direction. The block is connected to the solidifying<br />

material on inner side with a screw and on external<br />

Alluminio e leghe<br />

s<br />

Fig. 2<br />

(a) Temperature-load-time curves of alloy 713;<br />

(b) Derivative of Load vs. time curve.<br />

(a) Curve temperatura-carico-tempo per <strong>la</strong> lega 713;<br />

(b) andamento del<strong>la</strong> derivata del carico vs. tempo.<br />

side with a load cell. Two K-type thermocouples are used for<br />

the temperature measurement. One is positioned at the riser<br />

end and the other at the end of the bar as shown in Fig. 1.<br />

After pouring the melt into the mold, the temperature and<br />

load were recorded with a computer data acquisition system.<br />

Fig. 2 and 3 show the measured temperatures and load recorded<br />

during casting as a function of time for alloy 713 and 518<br />

respectively. The load represents the tension force developed<br />

in the casting during solidification. The cooling curve T1 was<br />

recorded with thermocouple tip positioned at the riser end<br />

and T2 with thermocouple tip at the end of the bar as shown in<br />

Fig. 1. A rapid rise in temperature (both curves) was observed<br />

immediately after pouring and the temperature started falling<br />

shortly. It’s noticed that negative loads (compressive forces)<br />

were developed shortly after pouring for the tests, probably<br />

due to the pressure head of the melt [16]. When the rod begins<br />

to solidify but cannot contract freely, the tension force increases.<br />

Fig. 2(b) and 3(b) are derivatives of load vs. time curve to<br />

determine onset of hot tearing. An obvious change in the rate<br />

suggests that cracking might occur there.<br />

From Fig. 2b, load began developing at proximately 9 seconds<br />

and the solidification temperature was around 617˚C (Fig.2a),<br />

then increased rapidly. It is shown that the rate changed<br />

abruptly to zero at 16.5 seconds, suggesting a severe tear occurred<br />

there.<br />

Hot tearing occurred at around 530˚C, corresponding to 94%<br />

solid, according to Pandat Scheil solidification calcu<strong>la</strong>tion.<br />

The technique developed to measure hot tearing tendency is<br />

a valuable tool to differentiate between alloys and to use it to<br />

optimize alloys for high integrity castings.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 39


Alluminio e leghe


Memorie >><br />

s<br />

Fig. 5<br />

Phase diagram of Aluminum-10% Silicon and<br />

low solubility of Fe.<br />

Diagramma di stato dell’ alluminio-10% silicio con bassa<br />

solubilità del ferro.<br />

the die surface and reduces the contact area and the reaction<br />

between the two.<br />

High temperatures and high melt velocity are process conditions<br />

which lead to soldering.<br />

Of the two, high temperature is the most important to avoid in<br />

order to prevent soldering.<br />

This can most effectively be done through careful design of<br />

the die. By configuring the part and optimizing the design of<br />

the die cooling system, the potential for soldering can be greatly<br />

reduced. It is very important to consider this during the<br />

design phase of a die because once a die is manufactured it<br />

is very difficult to reduce any hot spots. Other potential solutions<br />

include using additional spray in the high solder areas to<br />

reduce temperature or the use of inserts with high conduction<br />

coefficients.<br />

Impingement velocity is important to control as well. The die<br />

surface should be coated with lubricants and is likely oxidized<br />

from prior treatment. A high impingement velocity can wash<br />

these protective coatings off of the die surface, exposing the<br />

die steel to the aluminum alloy and begin erosion of the die<br />

surface. Both of these effects will promote the beginning of die<br />

soldering.<br />

SSM processing can help to reduce both the temperature and<br />

velocities apparent in the casting system, and should help reduce<br />

die soldering [12].<br />

Die coatings can be useful as a diffusion barrier between the<br />

steel in the die and the aluminum in the cast alloy. An effective<br />

coating must be able to withstand the harsh conditions at<br />

the surface of the die, however. Coatings which are sometimes<br />

used include CrN+W, CrN, (TiAl)N and CrC [19]. Additionally,<br />

surface treatments such as nitriding and nitro-carburizing<br />

can help to strengthen the surface and prevent erosion, which<br />

accelerates the soldering process by roughening the surface<br />

and creating local temperature excursions at the peaks of the<br />

die surface which solder very quickly.<br />

Accurate modeling of the casting process during the design<br />

phase is very important to an effective control against die soldering.<br />

All of the previously mentioned controls require ad-<br />

Alluminio e leghe<br />

s<br />

Fig. 6<br />

Change in viscosity of an Al-Si alloy with the<br />

addition of 230ppm Sr [18].<br />

Variazione del<strong>la</strong> viscosità di una lega Al-Si con l’aggiunta<br />

di 230 ppm di stronzio. [18].<br />

ditional cost during the design and manufacturing of the die,<br />

and it must be understood how badly soldering will affect the<br />

process before the costs of any of those controls can be justified.<br />

CONCLUSIONS<br />

Though these three alloy characteristics seem tangentially<br />

re<strong>la</strong>ted, they are factors that influence castability. In order to<br />

control these castability indices, it is necessary to develop experimental<br />

methods until robust quantitative analysis is possible.<br />

Once quantitative data can be extracted, the improvement<br />

in our understanding will occur. In the case of die soldering,<br />

multiple possible avenues to reduce the problem have been<br />

identified. Even when the initial intention was to resolve problems<br />

occurring in sand and permanent mold castings, such as<br />

hot tearing, the information gleaned about how stresses develop<br />

in liquid metal has wider applicability. Though die casting<br />

usually assures good fluidity through the use of pressure, if<br />

fluidity (and the factors which influence its variation) are well<br />

understood, it is possible to operate within tighter processing<br />

windows.<br />

REFERENCES<br />

1] D.V. RAGONE, C.M. ADAMS, H.F. TAYLOR, AFS Trans. 64,<br />

(1956), p.640.<br />

2] D.V. RAGONE, C.M. ADAMS, H.F. TAYLOR, AFS Trans. 64,<br />

(1956), p.653.<br />

3] M.C. FLEMINGS, Brit. Foundryman 57, (1964), p.312.<br />

4) M.C. FLEMINGS, Solidification Processing. McGraw-Hill,<br />

New York (1974).<br />

5] M.C. FLEMINGS, E. NIYAMA, H.F. TAYLOR, AFS Trans. 69,<br />

(1961), p.625.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 41


Alluminio e leghe


Memorie >><br />

Magnesio e leghe<br />

A PROBABILISTIC APPROACH FOR<br />

MODELLING OF FRACTURE IN<br />

MAGNESIUM DIE-CASTINGS<br />

C. Dørum, D. Dispinar, O.S. Hopperstad, T. Berstad<br />

Quasi-static tensile tests with specimens cut from a generic cast component are performed to characterise the<br />

mechanical behaviour of the high-pressure die cast magnesium alloy AM60. The experimental data is used<br />

to establish a probabilistic methodology for finite element modelling of thin-walled die castings subjected to<br />

quasi-static loading. The cast magnesium alloy AM60 is described using an e<strong>la</strong>stic-p<strong>la</strong>stic constitutive model<br />

consisting of a high-exponent, isotropic yield criterion, the associated flow <strong>la</strong>w and an isotropic hardening rule.<br />

A novel probabilistic approach for modelling of fracture in thin-walled magnesium die-castings using finite<br />

element analysis is developed. The Cockcroft-Latham criterion for ductile fracture is adopted with the fracture<br />

parameter assumed to follow a modified weakest link Weibull distribution. Comparison between the experimental<br />

and predicted behaviour of the cast magnesium tensile specimens gives very promising results.<br />

KEYWORDS: magnesium, die-castings, ductile fracture, weibull distribution, finite element analysis<br />

INTRODUCTION<br />

With increased focus on environmental issues, structural designers<br />

in the transport industry are forced to search for light-weight<br />

solutions. New materials are considered for vehicle design if<br />

they provide benefits at an affordable cost. The cold-chamber<br />

high pressure die casting method is an important production<br />

method for aluminium and magnesium castings; particu<strong>la</strong>r suitable<br />

for fully automatic, high productivity, high volume production<br />

of complex near net shape parts.A major challenge with this<br />

production method is to optimise the process parameters with<br />

respect to the part design and the solidification characteristics<br />

of the alloy in order to obtain a sound casting without casting<br />

defects. Unba<strong>la</strong>nced filling and <strong>la</strong>ck of thermal control can cause<br />

bifilms, porosity and surface defects due to turbulence and solidification<br />

shrinkage. Consequently, the fracture behaviour of<br />

cast components can be of stochastic character.<br />

To be efficient in the development of new products it is necessary<br />

to use finite element (FE) analysis to ensure a structural design<br />

that exploits the material. In order to be able to obtain a reli-<br />

C. Dørum<br />

SINTEF Materials and Chemistry, No-0314 Oslo, Norway<br />

Structural Impact Laboratory (SIMLab), Centre for Research-based<br />

Innovation, No-7491 Trondheim, Norway<br />

D. Dispinar<br />

SINTEF Materials and Chemistry, No-7465 Trondheim, Norway<br />

O.S. Hopperstad<br />

Structural Impact Laboratory (SIMLab), Centre for Research-based<br />

Innovation, No-7491 Trondheim, Norway<br />

T. Berstad<br />

SINTEF Materials and Chemistry, No-7465 Trondheim, Norway<br />

Structural Impact Laboratory (SIMLab), Centre for Research-based<br />

Innovation, No-7491 Trondheim, Norway<br />

able prediction of the structural behaviour using such analyses,<br />

an accurate description of the material behaviour is essential.<br />

Hence, a reliable failure criterion is also required, that enables<br />

the designer to exploit the potential of the cast material. This<br />

work presents a new probabilistic approach for finite-element<br />

modelling of the structural behaviour of thin-walled cast magnesium<br />

components.<br />

Fig. 1 shows the geometry of the generic AM60 component in-<br />

s<br />

Fig. 1<br />

Illustration of generic cast component: Length<br />

= 400 mm, thickness = 2.5 mm, width = 80 mm,<br />

height = 40 mm.<br />

Illustrazione di un generico componente pressoco<strong>la</strong>to:<br />

Lunghezza = 400 mm, spessore = 2.5 mm, <strong>la</strong>rghezza =<br />

80 mm, altezza = 40 mm.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 51


Magnesio e leghe


Memorie >><br />

s<br />

Fig. 4<br />

SEM images from the fracture surface of<br />

samples showing the crumpled oxides.<br />

Immagini SEM del<strong>la</strong> superficie di frattura dei campioni<br />

che mostrano gli ossidi.<br />

criterion is reached. The model has been implemented in explicit<br />

finite element code LS-DYNA [4].<br />

The high-exponent isotropic yield criterion [5, 6] is written in<br />

the form<br />

(1)<br />

where σ 1 and σ 2 are principal stresses in p<strong>la</strong>ne stress and k is<br />

a material parameter. The flow stress σ y is defined by the isotropic<br />

hardening rule<br />

(2)<br />

where ε e is the effective p<strong>la</strong>stic strain, σ 0 is the proportionality<br />

limit, and Q i and C i are hardening parameters. Using a least<br />

squares method, the hardening parameters were determined<br />

from the Cauchy stress versus logarithmic p<strong>la</strong>stic strain curves<br />

in Fig. . Any variation in flow stress with position in the casting<br />

was not accounted for in the FE simu<strong>la</strong>tions, and thus a mean<br />

hardening curve was applied.<br />

In the present model, a criterion of ductile fracture proposed<br />

by Cockcroft and Latham [7] is added. The fracture criterion is<br />

coupled with the element-erosion algorithm avai<strong>la</strong>ble in LS-<br />

DYNA [4]. As the fracture criterion is reached in an element,<br />

this element is removed (eroded) from the finite element model.<br />

The fracture criterion can be expressed as<br />

(3)<br />

where σ 1 is the maximum principal stress and W c is the critical<br />

value of the integral W. Hence, fracture occurs when W = W c .<br />

Henceforth, W c will be referred to as the fracture parameter,<br />

while W will be denoted the Cockcroft-Latham integral. It is<br />

seen that fracture cannot occur when the maximum principal<br />

stress is compressive and that neither stresses nor strains alone<br />

are sufficient to cause fracture. Furthermore, the fracture strain<br />

increases with decreasing stress triaxiality (in the shear tests,<br />

the stress triaxiality is significantly reduced compared to the<br />

uniaxial tension test).<br />

The uniaxial tensile test specimens failed before the point of diffuse<br />

necking for the AM60 alloy, and, accordingly, the stress and<br />

strain field are uniform up to fracture. Hence, the fracture parameter<br />

is obtained as the area under the work-hardening curve.<br />

Zhou and Molinari [8, 9] propose a micro-cracking model for<br />

brittle materials (ceramics) considering the stochastic distribution<br />

of internal defects. The model introduces a Weibull distri-<br />

Magnesio e leghe<br />

s<br />

Fig. 5<br />

Picture of test specimens with flow lines on the<br />

surface.<br />

Immagine dei campioni di prova con linee di scorrimento<br />

sul<strong>la</strong> superficie.<br />

bution [10] of the local strength of cohesive elements. Thus, the<br />

probability of introducing a weak cohesive element increases<br />

with the cohesive element size. Inspired by this idea, the fracture<br />

parameter of a finite element is assumed to follow a modified<br />

weakest-link Weibull distribution in the current study.<br />

The Weibull distribution gives the fracture probability P (σ) of<br />

a material volume to under effective tensile loading, i.e.<br />

(4)<br />

where V is the volume, V 0 is the scaling volume, σ 0 is the scaling<br />

stress, and m is the Weibull modulus. Since cast magnesium<br />

is not a brittle material, the use of a critical fracture stress<br />

is not justified. Instead, the Cockcroft-Latham ductile fracture<br />

criterion is adopted, and the fracture probability of a material<br />

volume is recast as<br />

(5)<br />

where W c0 is the scaling value of the fracture parameter. By<br />

using a random number generator and inverse sampling, this<br />

Weibull distribution of fracture parameters can then be assigned<br />

to the integration points in the FE mesh. With this approach,<br />

a small element in the FE model will most probably be<br />

given more ductile material properties than a <strong>la</strong>rger element.<br />

Fig 6. compares the numerical predictions with the experimental<br />

results from the tensile tests on cast magnesium AM60.<br />

Here, the uniaxial tension test specimens were modelled by<br />

720 shell elements (i.e., a characteristic element size equal to<br />

1.0 mm) It is seen that the observed experimental scatter is well<br />

reproduced numerically.<br />

CONCLUDING REMARKS<br />

The quasi-static behaviour of high-pressure die cast magnesium<br />

alloy AM60 has been studied through tensile tests. The specimens<br />

were taken from various positions in the cast profile. The<br />

experimental data were used to develop a probabilistic method<br />

for finite element modelling of thin-walled die castings subjected<br />

to quasi-static loading. The ductility of the specimens cut from<br />

the castings depends on the position in the casting. There are also<br />

significant variations in ductility when comparing the measured<br />

characteristics of specimens cut from different castings that were<br />

cast under equal casting conditions. Thus, as a result of unstable<br />

flow of the liquid magnesium in the mould cavity, the mechanical<br />

properties of the casting are of stochastic nature. By combin-<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> marzo 2009 53


Magnesio e leghe


Memorie >><br />

Acciaio inossidabile<br />

THE EFFECT OF AUSTENITE VOLUME<br />

FRACTION ON THE DEFORMATION<br />

RESISTANCE OF 409 STAINLESS<br />

STEELS DURING HOT-STRIP ROLLING<br />

D. Chae, S. Lee, S. Son<br />

The mill log data obtained from the hot-strip rolling of 409 stainless steels were analyzed in order to investigate<br />

the effect of the chemical composition on the deformation resistance. The results showed that the deformation<br />

resistance depended sensitively on the austenite stabilizing capability of the material chemistry, suggesting<br />

the austenite volume fraction as a dominant factor in controlling the deformation resistance. Deformation<br />

resistance ratio (DRR) was defined as a ratio of the deformation resistance of a two-phase (ferritic+austenitic)<br />

microstructure to that of a fully ferritic microstructure. The dependence of DRR on the austenite volume<br />

fraction appeared to be linear, which was also observed by the p<strong>la</strong>ne strain compression tests performed on the<br />

<strong>la</strong>boratory specimens with various austenite volume fractions. The implication of this result is that during the<br />

hot-strip rolling of 409 stainless steels with a two-phase microstructure, these steels are likely to deform in an<br />

equal-strain manner.<br />

KEYWORDS: 409 stainless steel, mean flow stress, deformation resistance, two-phase material, austenite potential<br />

and mill log analysis<br />

INTRODUCTION<br />

In hot-strip rolling, precise thickness control requires an accurate<br />

prediction of the roll force. The accurate prediction of<br />

the roll force, in turn, depends on the accurate calcu<strong>la</strong>tion of<br />

the hot flow strength of the material because it significantly<br />

affects the pressure at the interface between the work roll and<br />

the rolled material. In order to calcu<strong>la</strong>te the hot flow strength<br />

as a function of rolling parameters which are representative<br />

of each rolling pass, an average flow strength, hereafter called<br />

UNS<br />

S40910<br />

S40920<br />

S40930<br />

S40945<br />

S40975<br />

C<br />

0.030<br />

N<br />

0.030<br />

Dongchul Chae, Soochan Lee,<br />

Seung<strong>la</strong>k Son<br />

Posco, Pohang, Korea<br />

Paper presented at the 3rd International Conference Thermomechanical<br />

Processing of Steels, organised by AIM, Padova, 10-12 September 2008<br />

‘deformation resistance’ is defined over the total applied strain<br />

during a rolling pass[1, 2]. Industrially, deformation resistance<br />

is analyzed using mill log data to develop and refine rolling<br />

mill models.<br />

The 409 stainless steels are characterized by re<strong>la</strong>tively low<br />

carbon and nitrogen contents with approximately 11% chromium<br />

in their chemical compositions (Tab. 1). Titanium (and/<br />

or niobium) is usually added enough to tie up carbon and nitrogen<br />

atoms. Due to the fact that titanium is a strong ferrite<br />

former, these steels are fully ferritic in an annealed condition.<br />

Composition percentage, max or range<br />

Cr Ni<br />

Other elements<br />

10.5- 0.5 Ti 6(C+N) min, 0.5 max; Nb 0.17 max<br />

11.7 0.5 Ti 8(C+N) min, Ti 0.15-0.5; Nb 0.10 max<br />

0.5 Ti+Nb 0.08+8(C+N) min, 0.75max; Ti 0.05 min<br />

0.5 Nb 0.18-0.40, Ti 0.05-0.20<br />

0.5-1.0 Ti 6(C+N) min, 0.75 max<br />

s<br />

Tab. 1<br />

Chemical compositions of ferritic<br />

stainless steel grades containing 11% chromium<br />

in ASTM A 240/A 240M-00.<br />

Composizione chimica dei gradi di acciaio inossidabile ferritico<br />

contenenti 11% cromio negli ASTM A 240/A 240M-00.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> febbraio 2009 55


Acciaio inossidabile


Memorie >><br />

s<br />

Fig. 2<br />

The effect of chemical composition on the<br />

austenite volume fraction. The two ingots were quenched<br />

after the heat treatment at 950~1250°C for 1 hour.<br />

Effetto del<strong>la</strong> composizione chimica sul<strong>la</strong> frazione in volume<br />

del austenite. I due lingotti sono stati temprati dopo<br />

trattamento termico a 950~1250°C per 1 ora.<br />

Acciaio inossidabile<br />

DISCUSSION<br />

The Shaffler diagram represents the as-solidified microstructure<br />

after a rapid cooling as a function of Cr-equivalent<br />

and Ni-equivalent [10]. It is noteworthy that the<br />

compositional range of 409 stainless steels is near the twophase<br />

(martensitic+ferritic) boundary in the Shaffler diagram.<br />

Because the presence of martensite implies the thermal<br />

transformation from austenite, it is likely that the material<br />

may have an austenite phase at high temperatures. This<br />

seems to be closely re<strong>la</strong>ted to one of the significant features<br />

of the Fe-Cr equilibrium diagram, that is, the phase<br />

boundary between austenite and ferrite fields, known as<br />

the gamma loop. Based on the Fe-Cr equilibrium diagram,<br />

approximately 11% Cr is near the nose of the gamma loop.<br />

Therefore, austenite is likely to form at high temperatures.<br />

In addition, it is also well known that the role of austenite<br />

stabilizing elements such as carbon and nitrogen is to shift<br />

the gamma loop to higher chromium content. Therefore,<br />

the small fluctuation in the austenite stabilizing capability<br />

of the material chemistry can possibly affect the phase ba<strong>la</strong>nce<br />

between ferrite and austenite significantly.<br />

It can be seen in Fig. 2 that, for two 409 ingots produced<br />

in a <strong>la</strong>boratory, the high temperature microstructure consists<br />

of two phases, austenite+ferrite, and the maximum<br />

amount of austenite occurs at about 1050 °C.<br />

The microstructures of the 12mm thick hot rolled p<strong>la</strong>tes<br />

exposed at 1050°C for 5 minutes<br />

are shown in Fig. 3. The microstructure<br />

of the material A (in Tab.<br />

2) is observed to be fully ferritic<br />

as shown in Fig. 3(a). The region<br />

of light contrast in Fig. 3(b) corresponds<br />

to the elongated martensite<br />

transformed from austenite.<br />

As the Ni-equivalent of the materials<br />

increases, the banded array<br />

of alternating <strong>la</strong>yers of ferrite and<br />

martensite (i.e., austenite) becomes<br />

distinctive. The consequence of the<br />

highest Ni-equivalent is the formation<br />

of a 100% martensitic microstructure<br />

(Fig. 3(e)).<br />

Fig. 3<br />

Light micrographs<br />

quenched after the heat<br />

treatment at 1050°C for 5<br />

minutes in the case of (a) the<br />

material A, (b) the material<br />

B, (c) the material C, (d) the<br />

material D and (e) the material<br />

F in Table 2. Murakami etchant<br />

was used for etching.<br />

Micrografie di pezzi temprati<br />

dopo trattamento termico a<br />

1050°C per 5 minuti nel caso del<br />

(a) materiale A, (b) materiale B,<br />

(c) materiale C, (d)<br />

materiale D e (e) materiale F<br />

di Tebel<strong>la</strong> 2. Per l’attacco chimico<br />

è stato utilizzato il reagente di<br />

Murakami.<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> febbraio 2009 57<br />

s


Acciaio inossidabile


Material<br />

M1<br />

M2<br />

M3<br />

M4<br />

lowing equation:<br />

Memorie >><br />

C<br />

0.005<br />

~<br />

0.015<br />

[4]<br />

where, P, B, Ld and Qp are roll<br />

force, strip width, the projected<br />

length of the arc of contact between<br />

the roll and the rolled material<br />

and Sims geometrical factor, respectively.<br />

It should be reminded<br />

that the MFS obtained from the<br />

stress-strain curve can be compared<br />

to the deformation resistance<br />

obtained from the rolling data. Thus, MFS in Equ. 2 were<br />

rep<strong>la</strong>ced with Km. Then, the DRR is also defined from the<br />

deformation resistance calcu<strong>la</strong>ted from the mill log data.<br />

where, Km,α and Km,γ are the deformation resistances of a<br />

single ferritic microstructure and a single austenitic microstructure,<br />

respectively.<br />

The dependence of deformation resistance on the entry<br />

temperature was analyzed from the first rolling pass, F1,<br />

to the <strong>la</strong>st rolling pass, F7. Four materials were examined<br />

in details. The differences in the composition and the microstructure<br />

are summarized in Tab. 3. Among the four<br />

materials, it was observed that M2 and M4 had two phase<br />

(ferrite+austenite) microstructures right before the entry to<br />

F1. The austenite volume fractions of M2 and M3 materials<br />

right before the entry to F1 were measured to be 7% and<br />

33% as shown in Fig. 6, respectively while austenite formation<br />

was not found from the M1 and M4 materials.<br />

The rolling conditions for the materials, M2, M3 and M4,<br />

were also much simi<strong>la</strong>r to those of M1 except for the entry<br />

temperatures. It is a usual occurrence that if the rolling<br />

temperature increases, then the deformation resistance decreases.<br />

This usual expectation is confirmed from the observation<br />

that the deformation resistance of the fully ferritic<br />

M4 is lower at the same pass than that of the fully ferritic<br />

M1 because the rolling temperature of M4 was higher than<br />

that of M1. However, comparing the responses of M1 with<br />

those of M2 and M3, a significant trend is observed (Fig.<br />

[5]<br />

Acciaio inossidabile<br />

Chemical composition (wt%)<br />

N C+N Cr-equivalent Ni-equivalent<br />

0.005 0.010 12.95 0.68<br />

~ ~ 12.48 0.75<br />

0.010 0.025 12.20 0.93<br />

13.03 0.48<br />

Austenite volume<br />

fraction before F1 (%)<br />

~0<br />

7<br />

33<br />

~0<br />

s<br />

Tab. 3<br />

Chemical compositions of the four materials(wt%) and their austenite volume fraction observed before the entry to the<br />

first pass, F1, of the hot–strip finishing mill. Ni-equivalent and Cr-equivalent are defined as Ni+0.5Mn+30C+0.3Cu+25N and<br />

Cr+2.0Si+1.5Mo+5.5Al+1.5Ti, respectively.<br />

Composizione chimica dei quattro materiali (% in peso) e loro frazione di austenite (in volume) rilevata dopo ingresso al<strong>la</strong> prima<br />

passata, F1, nel <strong>la</strong>minatoio di finitura. Ni e Cr equivalenti definiti rispettivamente come Ni+0.5Mn+30C+0.3Cu+25N e<br />

Cr+2.0Si+1.5Mo+5.5Al+1.5Ti.<br />

s<br />

Fig. 6<br />

Microstructures of (a) the material M2 and<br />

(b) M3. Martensitic phases (i.e., high temperature<br />

austenitic phases) with dark contrast are elongated<br />

along the rolling direction.<br />

Microstrutture di (a) il materiale M2 e (b) materiale<br />

M3. Con contrasto scuro le fasi martensitiche (ex fasi<br />

austenitiche alle alte temperature) con contrasto scuro<br />

sono allungate lungo <strong>la</strong> direzione di <strong>la</strong>minazione.<br />

7(a)). The deformation resistances of the two-phase materials,<br />

M2 and M3 are higher than that of the fully ferritic<br />

material, M1, even though the rolling temperatures were<br />

higher in the case of M2 and M3.<br />

This unexpected behaviour can be understood by the presence<br />

of the higher volume fraction of hard austenite in the<br />

microstructure of the materials, M2 and M3.<br />

An attempt was made to calcu<strong>la</strong>te the DRR values during<br />

the first pass, F1, for the materials shown in Tab. 3. In order<br />

to calcu<strong>la</strong>te the DRR, the dependence of deformation<br />

resistance on the entry temperature must be known for the<br />

fully ferritic material. Therefore, additional mill logs were<br />

analysed. Twenty seven materials with six different chemical<br />

compositions were selected for the investigation. The<br />

applied strains were in the range of 0.45~0.50 and the strain<br />

rates were between 7.5 to 9.5/sec. Thus, the rolling conditions<br />

except for the temperature were almost constant. The<br />

samples for the microstructural examination were taken<br />

right before the entry to the first pass, F1, and all the microstructures<br />

investigated using an optical microscope were<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> febbraio 2009 59


Acciaio inossidabile


Memorie >><br />

Acciaio inossidabile<br />

s<br />

Fig. 8<br />

The dependence of DRR as a function of (a) the measured austenite volume fraction and (b) the calcu<strong>la</strong>ted<br />

austenite potential. The line fit in Fig. 5(b) was superimposed to compare the DRRs from the experiments with those<br />

from the mill log analyses.<br />

Variazione del DRR in funzione di (a) frazione in volume dell’austenite misurata e (b) potenziale di austenite calco<strong>la</strong>to. La<br />

linea inserita in Fig. 5(b) è stata aggiunta per confrontare i DRR delle sperimentali con quelli dedotti dall’ analisi dei documenti<br />

di produzione.<br />

resistance ratio (DRR) was defined as a ratio of the deformation<br />

resistance of a two-phase microstructure to that of a<br />

fully ferritic microstructure. The DRR appears to vary linearly<br />

with the austenite volume fraction, thus implying that<br />

the material is likely to deform in an equal-strain manner<br />

along the hot rolling direction.<br />

REFERENCES<br />

1) William L. Roberts, Hot Rolling of Steels, Marcel Dekker<br />

Inc., 1983, p.649<br />

2) V<strong>la</strong>dimir B. Ginzburg and Robert Bal<strong>la</strong>s, F<strong>la</strong>t Rolling<br />

Fundamentals, Marcel Dekker Inc., 2000, p.199<br />

3) Robert G. Nooning, Jr., Master Thesis, University of<br />

Pittsburgh, 2002, p76.<br />

4) T. M. Maccagno, J. J. Jonas, S. Yue, B. J. McCrady, R. Slobodian<br />

and D. Deeks, ISIJ International, Vol. 34, 1994, No.<br />

11, p.917.<br />

5) T. M. Maccagno, J. J. Jonas and P. D. Hodgson, ISIJ International,<br />

Vol. 36, 1996, No. 6, p.720.<br />

6) F. Siciliano Jr., K. Minami, T. M. Maccagno and J. J. Jonas,<br />

ISIJ International, Vol. 36, 1996, No. 12, p.1500.<br />

s<br />

Fig. 9<br />

The dependence of DRR during a first rolling pass, F1, as a function of (a) the calcu<strong>la</strong>ted austenite potential<br />

and (b) the Cr-equivalent & Ni-equivalent. Three dimensional data have been projected on the two dimensional p<strong>la</strong>nes<br />

in Fig. 8(b).<br />

La dipendenza del DRR durante il primo passaggio di <strong>la</strong>minazione, F1, in funzione di (a) potenziale di austenite calco<strong>la</strong>to e (b)<br />

Cr e Ni equivalenti. I dati tridimensionali sono stati proiettati sui piani bidimensionali di Fig. 8(b).<br />

<strong>la</strong> <strong>metallurgia</strong> <strong>italiana</strong> >> febbraio 2009 61


Acciaio inossidabile

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!