30.12.2012 Views

tumor in the light of the revised SIOP-01 classification

tumor in the light of the revised SIOP-01 classification

tumor in the light of the revised SIOP-01 classification

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ISSN 1427−4426<br />

THE CHILDREN’S<br />

MEMORIAL HEALTH<br />

INSTITUTE<br />

VOLUME 10 NUMBER 3–4 WINTER 2006<br />

OFFICIAL JOURNAL<br />

OF THE POLISH PAEDIATRIC<br />

PATHOLOGY SOCIETY<br />

AND SECTION OF ONCOLOGICAL<br />

SURGERY OF POLISH ASSOCIATION<br />

OF PAEDIATRIC SURGEONS<br />

Annals <strong>of</strong><br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

COLLEGIUM<br />

MEDICUM<br />

NICOLAUS<br />

COPERNICUS<br />

UNIVERSITY


Annals <strong>of</strong> Diagnostic Paediatric Pathology<br />

Official Journal <strong>of</strong> <strong>the</strong> Polish Paediatric Pathology Society<br />

and Section <strong>of</strong> Oncological Surgery <strong>of</strong> Polish Association <strong>of</strong> Paediatric Surgeons<br />

EDITOR-IN-CHIEF<br />

CO-EDITORS<br />

ASSOCIATE EDITORS<br />

PRODUCTION EDITORS<br />

EDITORIAL OFFICE<br />

EDITORIAL BOARD<br />

B. M. WoŸniewicz, Warsaw<br />

B. Cukrowska, Warsaw<br />

A. I. Prokurat, Bydgoszcz<br />

J. Cielecka-Kuszyk, Warsaw A. Bysiek, Cracow<br />

E. Czarnowska, Warsaw P. Czauderna, Gdansk<br />

W. T. Dura, Warsaw J. Godziñski, Wroclaw<br />

M. Grajkowska, Warsaw J. Niedzielski, Lodz<br />

M. Liebhardt, Warsaw W. WoŸniak, Warsaw<br />

A. Wasiutyñski, Warsaw M. Wysocki, Bydgoszcz<br />

P. Ga³¹zka, M. Krauza, CMUMK Bydgoszcz, kikchirdz@cm.umk.pl<br />

Lotos Poligrafia Ltd., Warsaw, www.drukarnia-lotos.pl<br />

Annals <strong>of</strong> Diagnostic Paediatric Pathology<br />

Department <strong>of</strong> Pathology<br />

The Children’s Memorial Health Institute<br />

Aleja Dzieci Polskich 20<br />

04 736 Warszawa, Poland<br />

Tel.: +48−22−815−19−72<br />

Fax: +48−22−815−19−75<br />

E−mail: b.cukrowska@czd.pl, b.wozniewicz@czd.pl<br />

J. P. Barbet, Paris J. Kobos, Lodz<br />

L. A. Boccon-Gibod, Paris G. Karpati, Montreal<br />

P. E. Campbell, Melbourne J. Las Heras, Santiago de Chile<br />

A. Chilarski, Lodz K. Madaliñski, Warsaw<br />

J. Czernik, Wroclaw D. M. F. Menezes, Rio de Janeiro<br />

E. Gilbert-Baarness, Tampa W. A. Newton, Jr., Johnstown<br />

A. A. Greco, New York B. Otte, Brussels<br />

M. D. Haust, London S. A. Pileri, Bologna<br />

A. H<strong>in</strong>ek, Toronto J. Plaschkes, Berne<br />

J. Huber, Utrecht F. Raafat, Birm<strong>in</strong>gham<br />

C. G. Gopalakrishnan, Trivandrum S. W. Sadow<strong>in</strong>ski, Mexico City<br />

S. Gogus, Ankara K. Sawicz-Birkowska, Wroclaw<br />

A. Jankowski, Poznan J. Stejskal, Prague<br />

P. Januszewicz, Warsaw Cz. Stoba, Gdansk<br />

B. Jarz¹b, Gliwice G. Thiene, Padova<br />

B. A. Kakulas, Perth S. Variend, Shieffield<br />

R. O. C. Kaschula, Rondebosch T. H. Wyszyñska, Warsaw<br />

W. Kawalec, Warsaw A. Zimmermann, Berne<br />

The journal is supported by <strong>the</strong> State Committee for Research.<br />

AIMS AND SCOPE<br />

The Annals <strong>of</strong> Diagnostic Paediatric Pathology is an <strong>in</strong>ternational peer−reviewed journal. The focus <strong>of</strong> <strong>the</strong> journal is current progress <strong>in</strong><br />

cl<strong>in</strong>ical paediatric pathology <strong>in</strong> both basic and cl<strong>in</strong>ical applications. Experimental studies and cl<strong>in</strong>ical trials are accepted for publication,<br />

as are case reports supported by literature review. The ma<strong>in</strong> policy <strong>of</strong> <strong>the</strong> Annals is to publish papers that present practical knowledge<br />

that can be applied by cl<strong>in</strong>icians.<br />

© Copyright by Polish Paediatric Pathology Society, 20<strong>01</strong><br />

ISSN 1427-4426


INSTRUCTIONS FOR AUTHORS<br />

General<br />

Send three copies <strong>of</strong> <strong>the</strong> manuscript written <strong>in</strong><br />

English and three full sets <strong>of</strong> illustrations (two<br />

sets suitable for review and one for publication),<br />

with a cover letter, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> complete<br />

name, address, telephone and facsimile<br />

numbers, and e-mail address <strong>of</strong> <strong>the</strong> communicat<strong>in</strong>g<br />

author, and a statement that all authors<br />

have approved <strong>the</strong> manuscript, addressed to:<br />

Bogdan M. Wozniewicz, MD, PhD, ADPP Editor-<strong>in</strong>-Chief,<br />

Annals <strong>of</strong> Diagnostic Paediatric<br />

Pathology, Department <strong>of</strong> Pathology, The Children’s<br />

Memorial Health Institute, Aleja Dzieci<br />

Polskich 20, PL-04736 Warsaw, Poland; Telephone:<br />

(48)-22-815 1972, (48)-22-815 2732;<br />

(48)-22-815 1965; Fax: (48)-22-815 1973;<br />

e-mail: b.cukrowska@czd.pl<br />

Organization <strong>of</strong> Manuscript<br />

Manuscripts, <strong>in</strong>clud<strong>in</strong>g references should be<br />

typed on one side <strong>of</strong> paper with double spac<strong>in</strong>g<br />

and broad marg<strong>in</strong>s. The pages should be numbered<br />

consecutively. The manuscript should be<br />

presented <strong>in</strong> <strong>the</strong> order <strong>in</strong>dicated.<br />

Title page. The first page should conta<strong>in</strong> <strong>the</strong> article’s<br />

title, <strong>the</strong> complete name <strong>of</strong> all authors<br />

(first name, middle <strong>in</strong>itials, surname), <strong>the</strong> departmental<br />

and <strong>in</strong>stitutional affiliations and complete<br />

street or mail<strong>in</strong>g addresses <strong>of</strong> all authors,<br />

<strong>the</strong> telephone and fax numbers and e-mail<br />

address for <strong>the</strong> correspond<strong>in</strong>g author, and <strong>the</strong><br />

city, state and country where <strong>the</strong> work was<br />

performed.<br />

Abstract and key words. An abstract <strong>of</strong> not more<br />

than 250 words should beg<strong>in</strong> on page 2. It<br />

should be a factual, not descriptive, statement<br />

<strong>of</strong> study objectives, methods, pr<strong>in</strong>cipal results,<br />

and conclusions. Use Index Medicus terms<br />

from medical subject head<strong>in</strong>gs where possible.<br />

For <strong>the</strong> purpose <strong>of</strong> cod<strong>in</strong>g and subject <strong>in</strong>dex<strong>in</strong>g<br />

provide up to six key words <strong>in</strong> alphabetical<br />

order immediately follow<strong>in</strong>g <strong>the</strong> abstract.<br />

Text. The text should be organized <strong>in</strong>to an <strong>in</strong>troductory<br />

section, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> background<br />

and purpose <strong>of</strong> <strong>the</strong> study, and <strong>the</strong>n <strong>in</strong>to sections<br />

titled “Methods”, “Results” and “Discussion”.<br />

In certa<strong>in</strong> circumstances <strong>the</strong> nature <strong>of</strong> <strong>the</strong><br />

report does not lend itself to this format. Underl<strong>in</strong>e<br />

any words or phrases to be emphasized by<br />

italics.<br />

Acknowledgments. Grant support and <strong>in</strong>dividuals<br />

who were <strong>of</strong> direct help <strong>in</strong> <strong>the</strong> reported work<br />

should be acknowledged by a brief statement<br />

on a separate page immediately follow<strong>in</strong>g <strong>the</strong><br />

text.<br />

References. References must be typed double<br />

spaced and listed <strong>in</strong> consecutive alphabetical<br />

and numerical order. All references must be cited<br />

<strong>in</strong> <strong>the</strong> text or tables. Once a reference has<br />

been cited, all subsequent citation should be to<br />

<strong>the</strong> orig<strong>in</strong>al number. Unpublished data and personal<br />

communications are not acceptable references.<br />

All references must be verified aga<strong>in</strong>st<br />

<strong>the</strong> orig<strong>in</strong>al documents. Abbreviations <strong>of</strong> jour-<br />

nals must conform to those <strong>in</strong> <strong>the</strong> list <strong>of</strong> Journals<br />

<strong>in</strong>dexed <strong>in</strong> Index Medicus.<br />

Journals. References to journal articles should<br />

<strong>in</strong>clude surnames and <strong>in</strong>itials <strong>of</strong> author(s) (list<br />

all authors if fewer than seven; if seven or more,<br />

list only <strong>the</strong> first three, followed by et al.),<br />

year, full title <strong>of</strong> article, abbreviated journal<br />

name, volume, and <strong>in</strong>clusive pag<strong>in</strong>ation:<br />

Dresdale DT, Schults M, Michtom RJ (1991)<br />

Primary pulmonary hypertension. I. Cl<strong>in</strong>ical and<br />

hemodynamic study. Am J Med 11: 686–705<br />

Books. References to a book should <strong>in</strong>clude<br />

surnames and <strong>in</strong>itials <strong>of</strong> author(s), year, title <strong>of</strong><br />

book, city, publisher and edition:<br />

Jones KL (1988) Smith’s recognizable patterns<br />

<strong>of</strong> human malformation, 4th edn. Saunders,<br />

Philadelphia<br />

Chapter <strong>in</strong> a book. References to a chapter <strong>in</strong><br />

a book should <strong>in</strong>clude surnames and <strong>in</strong>itials <strong>of</strong><br />

authors), year, chapter title, editor(s), book title,<br />

publisher, city, volume (if applicable), section<br />

(if applicable), and <strong>in</strong>clusive pag<strong>in</strong>ation:<br />

Thurlbeck WM (1992) Respiratory system. In:<br />

Dimmick JE, Kalousek DK (eds) Developmental<br />

pathology <strong>of</strong> <strong>the</strong> embryo and fetus. Lipp<strong>in</strong>cott,<br />

Philadelphia, pp 437–449<br />

Papers <strong>in</strong> conference proceed<strong>in</strong>gs or abstracts.<br />

These references should <strong>in</strong>clude surnames and<br />

<strong>in</strong>itials <strong>of</strong> author(s), year, title, title <strong>of</strong> conference,<br />

city, publisher, and <strong>in</strong>clusive pag<strong>in</strong>ation.<br />

Kjaer I (1994) The prenatal axial skeleton as<br />

marker <strong>of</strong> normal and pathological development<br />

<strong>of</strong> <strong>the</strong> human central nervous system. In:<br />

Alfred Benzon Symposium: Bra<strong>in</strong> Lesions <strong>in</strong><br />

<strong>the</strong> New-born. Munksgaard, Copenhagen, 37:<br />

124–138<br />

Polendo R, Lowe GN, McDougall S, Hahn TJ<br />

(1994) Mechanism <strong>of</strong> prostagland<strong>in</strong> regulation<br />

<strong>of</strong> proteoglycan syn<strong>the</strong>sis <strong>in</strong> rat chondrocytic<br />

cells (abstract). J Bone M<strong>in</strong>er Res 9: S187<br />

Tables. Each table should be typed double spaced<br />

on a separate sheet <strong>of</strong> paper, numbered consecutively<br />

with Arabic numbers, and conta<strong>in</strong><br />

a brief title at <strong>the</strong> top. All tables must be cited<br />

<strong>in</strong> <strong>the</strong> text.<br />

Figures. Legends for figures should be typed<br />

double spaced on a separate sheet and numbered<br />

consecutively with Arabic numbers correspond<strong>in</strong>g<br />

to <strong>the</strong> figures. The figure legend should<br />

be as clear as possible and should fully<br />

describe <strong>the</strong> contents <strong>the</strong> figure. All figures<br />

must be cited <strong>in</strong> <strong>the</strong> text. Figures should be pr<strong>of</strong>essionally<br />

drawn and photographed and submitted<br />

<strong>in</strong> triplicate as black and white, high<br />

quality glossy pr<strong>in</strong>ts. Special attention should<br />

be paid to focus and contrast. Do not submit<br />

orig<strong>in</strong>al artwork. Symbols, letters, arrows, and<br />

numbers must be <strong>of</strong> sufficient size and contrast<br />

to be clearly recognizable when <strong>the</strong> figure is<br />

reduced to publication size. Paste a label on <strong>the</strong><br />

back <strong>of</strong> each figure, <strong>in</strong>dicat<strong>in</strong>g its number, name<br />

<strong>of</strong> author, title <strong>of</strong> paper, and <strong>the</strong> desired<br />

orientation. The optimal size for a figure is<br />

8.6 × 10 cm (3.4 × 4 <strong>in</strong>ch). If appropriate and<br />

acceptable <strong>the</strong>se will be available for retrieval<br />

by readers <strong>in</strong> <strong>the</strong> onl<strong>in</strong>e electronic version <strong>of</strong><br />

<strong>the</strong> journal. A limited number <strong>of</strong> illustrations <strong>in</strong><br />

full color will be considered, but <strong>the</strong> author<br />

may be required to bear <strong>the</strong> costs <strong>of</strong> part or all<br />

<strong>of</strong> <strong>the</strong>ir reproduction. Artwork to accepted manuscripts<br />

will not be returned unless a written<br />

request accompanies <strong>the</strong> page pro<strong>of</strong>s.<br />

Electronic submission <strong>of</strong> f<strong>in</strong>al accepted manuscripts.<br />

Please send an electronic version <strong>of</strong><br />

your manuscript with <strong>the</strong> f<strong>in</strong>al, accepted, double<br />

spaced hard copy. It is <strong>the</strong> author’s responsibility<br />

to ensure that <strong>the</strong> disk and hard copy<br />

match. Disks may be prepared on a PC <strong>in</strong> any<br />

version <strong>of</strong> Word or WordPerfect. Do not use<br />

desktop publish<strong>in</strong>g s<strong>of</strong>tware. Keep <strong>the</strong> document<br />

as simple as possible and avoid complex<br />

formatt<strong>in</strong>g. Follow <strong>the</strong> <strong>in</strong>structions for references<br />

very carefully. If <strong>in</strong>correctly styled, <strong>the</strong> value<br />

<strong>of</strong> <strong>the</strong> diskette submission will be reduced.<br />

Abbreviations, spell<strong>in</strong>g and units. Standard<br />

abbreviations and units listed <strong>in</strong> <strong>the</strong> Council <strong>of</strong><br />

Biology Editors Style Manual: A Guide for<br />

Authors, Editors and Publishers <strong>in</strong> <strong>the</strong> Biological<br />

Sciences (5th edn, Be<strong>the</strong>sda, Md, Council<br />

<strong>of</strong> Biology Editors, 1983) should be used. All<br />

quantitative measurements should be <strong>in</strong> conventional<br />

metric units, followed when appropriate<br />

by <strong>the</strong> SI unit <strong>in</strong> paren<strong>the</strong>ses.<br />

Permissions. Copyrighted material from o<strong>the</strong>r<br />

sources must be accompanied by written permission<br />

from both <strong>the</strong> publisher and author for<br />

reproduction. Any personal communication<br />

used <strong>in</strong> <strong>the</strong> text must be accompanied by a letter<br />

agree<strong>in</strong>g to be quoted as written.<br />

Review and action. Manuscripts will be exam<strong>in</strong>ed<br />

by <strong>the</strong> editorial staff and sent to two reviewers.<br />

Authors will be notified <strong>of</strong> <strong>the</strong> disposition<br />

<strong>of</strong> <strong>the</strong>ir manuscript with<strong>in</strong> 60 days.<br />

Case reports. Limit abstract to 150 words, use<br />

no more than three tables or figures and limit<br />

references to 15. Additional illustrations may<br />

be submitted for onl<strong>in</strong>e storage and retrieval.<br />

Letters to <strong>the</strong> editor. Letters to <strong>the</strong> editor <strong>in</strong>tended<br />

for publication should not exceed 800<br />

words <strong>in</strong> length. Up to three references and two<br />

illustrations may accompany <strong>the</strong> letter. Letters<br />

must <strong>in</strong>clude <strong>the</strong> name, departmental and <strong>in</strong>stitutional<br />

affiliation and complete mail<strong>in</strong>g address<br />

<strong>of</strong> <strong>the</strong> author. The editorial board reserves<br />

<strong>the</strong> right to accept, reject, or excerpt letters<br />

without chang<strong>in</strong>g <strong>the</strong> views expressed by <strong>the</strong><br />

author (s).<br />

Page Pro<strong>of</strong>s and Offpr<strong>in</strong>ts. All material accepted<br />

for publication is subjected to copyedit<strong>in</strong>g.<br />

Authors will receive page pro<strong>of</strong>s <strong>of</strong> articules<br />

before publication and should answer all queries<br />

and carefully check all editorial changes<br />

at this po<strong>in</strong>t. Offpr<strong>in</strong>ts may be ordered at cost<br />

price when <strong>the</strong> page pro<strong>of</strong>s are returned.


Annals <strong>of</strong> Diagnostic Paediatric Pathology<br />

Official Journal <strong>of</strong> <strong>the</strong> Polish Paediatric Pathology Society<br />

and Section <strong>of</strong> Oncological Surgery <strong>of</strong> Polish Association <strong>of</strong> Paediatric Surgeons<br />

Volume 10 Number 3–4 W<strong>in</strong>ter 2006<br />

Review<br />

paper<br />

Orig<strong>in</strong>al<br />

papers<br />

Case<br />

report<br />

CONTENTS<br />

Pathobiology <strong>of</strong> arrhythmogenic right ventricular cardiomyopathy . . . . . . . . . . . . . . . . . . 65<br />

El¿bieta Czarnowska, Bo¿ena Cukrowska<br />

Is it possible to diagnose Hirschsprung’s disease and allied disorders on suction<br />

rectal biopsy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

Anna Piaseczna-Piotrowska<br />

Treatment <strong>of</strong> malignant pheochromocytoma <strong>in</strong> children . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br />

Jolanta Krajewska, Kornelia Hasse-Lazar, Barbara Jarz¹b<br />

Paediatric differentiated thyroid cancer – differences <strong>in</strong> biology and treatment . . . . . . . . 81<br />

Daria Handkiewicz-Junak, Barbara Jarz¹b<br />

Blue Native Electrophoresis: an additional useful tool to study deficiencies<br />

<strong>of</strong> mitochondrial respiratory cha<strong>in</strong> complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br />

Agnieszka Karkuciñska-Wiêckowska, Katarzyna Czajka, Micha³ Wasilewski, Jolanta Sykut-Cegielska,<br />

Maciej Pronicki, Bo¿ena Cukrowska, Ewa Pronicka, Krzyszt<strong>of</strong> Zab³ocki, Jerzy Duszyñski, Mariusz R. Wiêckowski<br />

Comparison between <strong>the</strong> efficiency <strong>of</strong> hair follicle- and epidermal-derived keratynocyte<br />

cell cultures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

Tomasz Drewa, Bartosz Nadolski, Ilona Sir, Artur Czaplewski, Przemys³aw Ga³¹zka, Andrzej I. Prokurat<br />

Histopathologic features <strong>of</strong> Wilms’ <strong>tumor</strong> <strong>in</strong> <strong>the</strong> <strong>light</strong> <strong>of</strong> <strong>the</strong> <strong>revised</strong> <strong>SIOP</strong>-<strong>01</strong> <strong>classification</strong><br />

– one centre retrospective analysis <strong>of</strong> 44 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97<br />

Jerzy Niedzielski, Rafa³ Becht, Katarzyna Taran<br />

Outcome <strong>of</strong> wide liver resections <strong>in</strong> children . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103<br />

Adam Bysiek, Joanna Palka, Andrzej Zaj¹c, Sab<strong>in</strong>a Kantorowicz, Miros³aw Krysta, Bartosz Bogusz,<br />

Wojciech Górecki, Anna Taczanowska-Niemczuk, Ma³gorzata Zamora<br />

The study on <strong>the</strong> pathogenesis <strong>of</strong> <strong>in</strong>test<strong>in</strong>al dismotility and malabsorbtion <strong>in</strong> gastroschisis<br />

on experimental model – chicken embryo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />

Hanna Bu³hak-Guz, Reg<strong>in</strong>a Cybulska, Ewa Czichos, Tomasz Krawczyk, Andrzej Kulig, Andrzej Chilarski<br />

Humoral and cytok<strong>in</strong>e responses <strong>in</strong>duced by probiotic Lactobacillus casei and paracasei<br />

stra<strong>in</strong>s <strong>in</strong> children with atopic dermatitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115<br />

Bo¿ena Cukrowska, Ilona Rosiak, Aldona Ceregra, Joanna Freszel, Gra¿yna Zakrzewska, El¿bieta Klewicka,<br />

Ilona Motyl, Zdzis³awa Libudzisz<br />

Cervical approach to anterior mediast<strong>in</strong>al <strong>tumor</strong>s <strong>in</strong> children . . . . . . . . . . . . . . . . . . . . . . . 121<br />

Miros³aw M. Krysta, Wojciech J. Górecki, Adam M. Bysiek, Witold H. Mie¿yñski, Krzyszt<strong>of</strong> A. Solecki,<br />

Bartosz J. Bogusz<br />

Rare case <strong>of</strong> calcyfy<strong>in</strong>g fibrous pseudotumour <strong>of</strong> <strong>the</strong> lung <strong>in</strong> 6 years old girl . . . . . . . . . . . 125<br />

Przemys³aw Przewratil, Anna Sitkiewicz, Józef Kobos, Ewa Andrzejewska<br />

Malignant fibrous histiocytoma at 6 years old boy – a case report . . . . . . . . . . . . . . . . . . . . 129<br />

Micha³ Rólski, Jerzy Harasymczuk, Przemys³aw Mañkowski, Andrzej Jankowski, Pawe³ Kroll,<br />

Ma³gorzata Warzywoda, Ewa Trejster<br />

Umbilical remnant abnormalities: a review <strong>of</strong> 5 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br />

Ma³gorzata Pacholska, Ma³gorzata Chrupek, Irena Daniluk-Matraœ, Przemys³aw Ga³¹zka, Magdalena Chrzanowska,<br />

Roman KaŸmirczuk, Piotr Brzeziñski, Sylwia Drewa, Zdzis³aw Skok, Andrzej Igor Prokurat<br />

Meros<strong>in</strong> deficient congenital muscle dystrophy <strong>in</strong> children – cl<strong>in</strong>ical features<br />

and retrospective immunohistochemical study <strong>of</strong> own muscle biopsy material . . . . . . . . . 137<br />

Maciej Pronicki, Hanna Mierzewska, Tamara Szymañska-Dêbiñska, Agnieszka Karkuciñska-Wiêckowska,<br />

El¿bieta Karczmarewicz, Tomasz Kmieæ


64<br />

SUBSCRIPTION<br />

Subscriptions: Published 2 numbers per year, subscriptions are sold on a calendar year basis by <strong>the</strong><br />

volume number designated for that year. Payment by check <strong>in</strong> US dollars and credit cards (Visa card only).<br />

Pr<strong>of</strong>essional researches subscription: 40 € (outside Europe) per year, 20 € (Europe) per year.<br />

Library and <strong>in</strong>stitutions subscriptions: 250 € (outside Europe) per year, 200 € (Europe) per year.<br />

I wish to pay my ADPP subscription G<br />

Name ____________________________________<br />

Address __________________________________<br />

City ______________________________________<br />

Postal Code _______________________________<br />

Country ___________________________________<br />

Phone ____________________________________<br />

Fax ______________________________________<br />

E−mail ____________________________________<br />

_________________________________________<br />

Signature<br />

Please sign and return this form to:<br />

Annals <strong>of</strong> Diagnostic Paediatric Pathology<br />

Department <strong>of</strong> Pathology<br />

The Children’s Memorial Health Institute<br />

Aleja Dzieci Polskich 20<br />

04 736 Warszawa, Poland<br />

Tel.: +48−22−815−19−72<br />

Fax: +48−22−815−19−75<br />

E−mail: b.cukrowska@czd.pl<br />

b.wozniewicz@czd.pl<br />

Europe Outside Europe<br />

Individual 20 € G 40 € G<br />

Institution 200 € G 250 € G<br />

Please <strong>in</strong>dicate method <strong>of</strong> payment<br />

Visa G<br />

Name _______________________________<br />

Card Number _________________________<br />

Expiry Date ___________________________<br />

by check G<br />

Pay to <strong>the</strong> order <strong>of</strong><br />

Polish Paediatric Pathology Society<br />

Bank BPH<br />

Al. Jana Pawla II 23<br />

00−854 Warsaw<br />

account No 106<strong>01</strong>028−310000561979


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 65–69<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Pathobiology <strong>of</strong> arrhythmogenic right ventricular cardiomyopathy<br />

El¿bieta Czarnowska, Bo¿ena Cukrowska<br />

Department <strong>of</strong> Pathology<br />

The Children's Memorial Health Institute<br />

Warsaw, Poland<br />

Arrhythmogenic right ventricle cardiomyopathy (ARVC) is<br />

a myocardial disease characterized by replacement <strong>of</strong><br />

myocardium by fatty or fibro-fatty tissue, primarily <strong>in</strong> <strong>the</strong> right<br />

ventricle (RV) and <strong>in</strong>volvement <strong>of</strong> <strong>the</strong> left ventricle <strong>in</strong> nearly<br />

half cases. [29]. The disease processes orig<strong>in</strong>ate from<br />

subepicardium and extend to <strong>the</strong> subendocardium, usually (<strong>in</strong><br />

80% cases) spar<strong>in</strong>g ventricular septum [8].<br />

ARVC familial occurrence with autosomal dom<strong>in</strong>ant<br />

<strong>in</strong>heritance, variable expression and <strong>in</strong>complete penetrance is<br />

estimated from 1/2000 to 1/5000 [10]. The disease affects<br />

men more frequently than women <strong>in</strong> ratio 3:1. Hered<strong>of</strong>amilial<br />

background is found <strong>in</strong> about 50% <strong>of</strong> cases. Usually <strong>the</strong><br />

disease <strong>in</strong>heritance is autosomal dom<strong>in</strong>ant with <strong>in</strong>complete<br />

penetrance and variable expression. Till now, six <strong>of</strong> disease<br />

genes (plakoglob<strong>in</strong>, desmoplak<strong>in</strong>, plakophil<strong>in</strong>-2, desmogle<strong>in</strong>-<br />

2, RyR2, TGFß3) have been identified [4, 13, 22, 27, 29, 31].<br />

The disease is at high risk <strong>of</strong> sudden death, particularly<br />

<strong>in</strong> young people and athletes [9]. Pathogenesis <strong>of</strong> <strong>the</strong> disease<br />

despite <strong>of</strong> genetic f<strong>in</strong>d<strong>in</strong>gs is still poorly known.<br />

Cl<strong>in</strong>ical features<br />

Abstract<br />

Characteristic cl<strong>in</strong>ical abnormalities <strong>in</strong>clude delayed depolarization,<br />

epsilon waves and <strong>in</strong>verted T waves <strong>in</strong> <strong>the</strong> right precordial<br />

leads, late potentials, ventricular dilatation, systolic<br />

Address for correspondence<br />

Arrhythmogenic right ventricular cardiomyopathy is a disease characterised by replacement <strong>of</strong> ma<strong>in</strong>ly right<br />

ventricular myocardium by fatty or fibro-fatty tissue but its pathomechanizm still not completely known.<br />

In <strong>the</strong> review cl<strong>in</strong>ical features <strong>of</strong> <strong>the</strong> disease, histopathology <strong>of</strong> endomyocardial biopsy specimens, disease<br />

pathobiology are presented, and pathomechanism <strong>in</strong> <strong>the</strong> context <strong>of</strong> genetic mutations is discussed.<br />

Key words: arrhythmogenic right ventricular cardiomyopathy, anatomopathology, histopathology, gene<br />

mutation, pathomechanism<br />

El¿bieta Czarnowska tel. +22 8151971<br />

Department <strong>of</strong> Pathology fax +22 8151975<br />

The Children’s Memorial Health Institute e-mail: e.czarnowska@czd.pl<br />

04-736 Warsaw<br />

Al. Dzieci Polskich 20<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

and wall motion <strong>in</strong>jury. Palpitation and syncope due to occurrence<br />

<strong>of</strong> ventricular tachycardia <strong>of</strong> right ventricular orig<strong>in</strong>,<br />

with left bundle branch block are frequent. Electrical <strong>in</strong>stability<br />

may be triggered by exercise or stress. Standarized<br />

diagnostic criteria <strong>of</strong> ARVC diagnosis are based on <strong>the</strong> presence<br />

<strong>of</strong> 2 major or 1 major plus 2 m<strong>in</strong>or or 4 m<strong>in</strong>or criteria<br />

established by an <strong>in</strong>ternational task force [21], and shown <strong>in</strong><br />

Table 1.<br />

It could be po<strong>in</strong>ted that cl<strong>in</strong>ical presentation <strong>of</strong> <strong>the</strong> disease<br />

is related to range <strong>of</strong> myocardial pathology and can<br />

subdivided <strong>in</strong>to three phases:<br />

! Concealed phase without symptoms and m<strong>in</strong>or electrical<br />

<strong>in</strong>stability; patients are frequently asymptomatic<br />

but at risk <strong>of</strong> sudden death, particularly dur<strong>in</strong>g <strong>in</strong>tense<br />

physical exertion;<br />

! Overt phase with symptomatic ventricular arrhythmia,<br />

patients present palpitation, and/or syncope,<br />

morphological abnormalities can be detect by imag<strong>in</strong>g<br />

techniques (Echo, Magnetic Resonance);<br />

! Advanced phase with sever myocardial loss caus<strong>in</strong>g<br />

impairment contractility <strong>of</strong> <strong>the</strong> right ventricle [7].<br />

In <strong>the</strong> advanced phase <strong>the</strong> disease may cl<strong>in</strong>ically mimic<br />

dilated cardiomyopathy and <strong>in</strong> <strong>the</strong> end stage <strong>the</strong> left ventricle<br />

abnormalities may be <strong>in</strong>volved. It should be emphasized<br />

that patients <strong>of</strong>ten present broader spectrum <strong>of</strong> disease


66<br />

Table 1<br />

Major and m<strong>in</strong>or criteria for cl<strong>in</strong>ical diagnosis <strong>of</strong> ARVC. [adopted from Corrado et al. 2006]<br />

MAJOR MINOR<br />

Family history disease confirmed at necroscopy sudden death at 12year and absence<br />

RBBB<br />

■ susta<strong>in</strong>ed or nonsusta<strong>in</strong>ed LBBB,<br />

ventricular tachycardia<br />

Documented <strong>in</strong> ECG or Holter,<br />

extrasystoles (>1000/24h on Holter)<br />

global or regional severe dilation and reduction<strong>of</strong> RV ejection mild global RV dilation or ejection fraction<br />

dysfunction and fraction withwith no or mild LV <strong>in</strong>volvement; reduction with normal LV; segmental<br />

structural alterations localized RV aneurysms severe segmental<br />

dilatation <strong>of</strong> RV<br />

dilation <strong>of</strong> RV, regional hypok<strong>in</strong>esia<br />

EMBs fibr<strong>of</strong>atty replacement <strong>of</strong> myocardium<br />

Abbreviations: RBBB – right bundle branch block, LBBB – left bundle branch block, abN – abnormal, EMBs – endomyocardial<br />

biopsies, ECG – electrocardiogram<br />

and <strong>the</strong> phases mentioned above can be hardly recognized.<br />

The disease expression is hardly diagnosed particularly at<br />

early stages and <strong>in</strong> children, who did not yet develop full cl<strong>in</strong>ical<br />

disease features.<br />

Anatomopathological features<br />

Two variants <strong>of</strong> ARVC hearts accord<strong>in</strong>g to <strong>the</strong> nature <strong>of</strong> myocardium<br />

replacement by fatty and fibr<strong>of</strong>atty tissue can be dist<strong>in</strong>guished<br />

(Fig. 1) [11]. This replacement occurs <strong>in</strong> a seg-<br />

Fig. 1 Progressive fatty replacement <strong>of</strong> <strong>the</strong> myocardium <strong>in</strong> <strong>the</strong> right ventricle<br />

wall (RV) with th<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> RV wall<br />

mental, patchy fashion. The consequences <strong>of</strong> ventricle wall<br />

structural <strong>in</strong>jury are diffuse hypok<strong>in</strong>esis or regional wall motion<br />

abnormalities. The presence <strong>of</strong> fat and/or fibrosis <strong>in</strong> <strong>the</strong><br />

RV coexisted with <strong>the</strong> degenerative changes <strong>of</strong> <strong>the</strong> myocytes<br />

trapped with<strong>in</strong> area and <strong>the</strong>ir loss are adequate <strong>in</strong> diagnosis<br />

<strong>of</strong> ARVC [8].<br />

In <strong>the</strong> fatty variant diffuse (<strong>in</strong> 20% cases) or segmental<br />

(80% cases) pattern <strong>of</strong> fatty localization <strong>in</strong> <strong>the</strong> RV is observed.<br />

Moreover, septum is <strong>in</strong>volved <strong>in</strong> 20% cases [2].<br />

A marked decrease <strong>of</strong> myocardial cells associated with replacement<br />

by fatty cells starts <strong>in</strong> <strong>the</strong> area called “triangle <strong>of</strong> dysplasia”<br />

that is <strong>the</strong> right ventricle outflow tract, <strong>the</strong> apex and<br />

<strong>the</strong> <strong>in</strong>ferior wall. In this type <strong>of</strong> heart <strong>in</strong>filtration <strong>of</strong> <strong>in</strong>flammatory<br />

cells is rarely observed.<br />

The fibro-fatty variant hearts exhibit thicken<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

right ventricle wall < 3mm and <strong>in</strong>flammatory cell <strong>in</strong>filtration<br />

<strong>in</strong> 2/3 <strong>of</strong> cases [2]. This <strong>in</strong>filtration may contribute to electrical<br />

<strong>in</strong>stability and sudden death and <strong>the</strong> disease progress<br />

to heart failure. What is an etiologic agent trigger<strong>in</strong>g <strong>in</strong>flammatory<br />

process rema<strong>in</strong>s not clear s<strong>in</strong>ce <strong>the</strong> presence <strong>of</strong> cardiotropic<br />

viruses is controversial [7]. Some <strong>in</strong>vestigators did<br />

not f<strong>in</strong>d cardiotropic viruses [6] while o<strong>the</strong>r reported <strong>the</strong> presence<br />

<strong>of</strong> retroviruses and adenoviruses <strong>in</strong> 59% cases <strong>of</strong> 12<br />

sporadic ARVC [5,14].<br />

F<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> endomyocardial biopsy samples<br />

The histological f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> fatty or fibr<strong>of</strong>atty tissue <strong>in</strong> endomyocardial<br />

biopsy (EMB) samples are not diagnostic per


se and <strong>the</strong>y can be observed <strong>in</strong> myocarditis and o<strong>the</strong>r cardiomyopathies.<br />

In ARVC fatty or fibr<strong>of</strong>atty tissue <strong>in</strong> EMBs<br />

coexist with cardiomyocytes loss. Analysis <strong>of</strong> significant<br />

number <strong>of</strong> biopsy samples made by Angel<strong>in</strong>i et al. suggests<br />

that <strong>the</strong> amount <strong>of</strong> fibro-fatty tissue exceed<strong>in</strong>g 43% <strong>of</strong> <strong>the</strong><br />

samples toge<strong>the</strong>r with loss <strong>of</strong> myocytes is diagnostic [1]<br />

(Fig. 2). It has also been shown that EMBs analysis improves<br />

diagnostic accuracy <strong>in</strong> ARVC, be<strong>in</strong>g more sensitive tool<br />

than nuclear magnetic resonance (89% vs. 56%) [23]. It<br />

must be however taken <strong>in</strong>to consideration that analysis <strong>of</strong><br />

biopsy specimens can be negative at early stages <strong>of</strong> <strong>the</strong> disease<br />

and <strong>in</strong> children due to segmental pattern <strong>of</strong> myocardial<br />

replacement.<br />

Fig. 2 Section <strong>of</strong> <strong>the</strong> right ventricle endomyocardial biopsy samples sta<strong>in</strong>ed<br />

with Trichrom. Microscopic magnification ×20. Adipose tissue – F,<br />

myocytes – red sta<strong>in</strong><strong>in</strong>g, fibrous tissue – blue sta<strong>in</strong><strong>in</strong>g<br />

A high cell death by apoptosis was reported <strong>in</strong><br />

ARVC, although <strong>the</strong>re is discrepancy among <strong>in</strong>vestigators<br />

about <strong>in</strong>tensity <strong>of</strong> this process [20, 25, 32]. The apoptosis has<br />

been discussed as potential mechanism <strong>of</strong> myocardial atrophy<br />

and consequence <strong>of</strong> desmosomes <strong>in</strong>jury.<br />

Recent electron microscopical studies revealed abnormalities<br />

<strong>of</strong> cellular junction located at <strong>in</strong>tercalated disc, i.e.<br />

desmosomes, fascia adherens and nexuses. In <strong>the</strong> past has been<br />

noticed that coupl<strong>in</strong>gs at <strong>in</strong>tercalated disc are pale [15].<br />

The recent morphometric analysis have shown <strong>the</strong> <strong>in</strong>crease<br />

<strong>of</strong> desmosome mean length and wideness <strong>of</strong> gap between cell<br />

membrane <strong>in</strong> <strong>the</strong> area <strong>of</strong> desmosmes and fascia adherens<br />

(Fig. 3A), and presence <strong>of</strong> abnormally short junctions composed<br />

<strong>of</strong> series reap<strong>in</strong>g coupl<strong>in</strong>gs (found <strong>in</strong> 11 out <strong>of</strong> 21 cases)<br />

(Fig. 3B), and decreased number <strong>of</strong> nexuses per 10 m<br />

cell membrane unit [3]. No statistically significant differences<br />

among <strong>the</strong> ultrastructural features have been found between<br />

cases with diagnosed gene mutation and genotype negative<br />

patients [3].<br />

F<br />

F<br />

F<br />

Fig. 3 Cardiomyocyte coupl<strong>in</strong>gs at <strong>in</strong>tercalated disc. A) “Pale” contrast <strong>of</strong><br />

junctions and long desmosome <strong>in</strong> this area (arrow). Microscopic<br />

magnification ×10 000. B) Region <strong>of</strong> <strong>the</strong> junctions with series <strong>of</strong> short<br />

desmosomes (arrows). Microscopic magnification ×30 000<br />

Genetic<br />

ARVC is mostly <strong>in</strong>herited <strong>in</strong> autosomal dom<strong>in</strong>ant fashion but<br />

recessive variant called Naxos disease is also known. Ten types<br />

<strong>of</strong> disease are known (Table 2).<br />

Naxos disease is characterized by common heart abnormalities<br />

coexisted with palmoplantar keratoderma and<br />

wool hair. Two base pair deletion <strong>in</strong> <strong>the</strong> plakoglob<strong>in</strong>e gene<br />

has been identified [21]. Plakoglob<strong>in</strong> is one <strong>of</strong> major constituent<br />

<strong>of</strong> desmosmes.<br />

Table 2<br />

ARVC types and genetics. D – autosomal dom<strong>in</strong>ant, R – autosomal<br />

recessive, TGF-ß3 – transform<strong>in</strong>g growth factor<br />

beta-3, RyR2 – ryanod<strong>in</strong>e receptor 2, DSP – desmoplak<strong>in</strong>e,<br />

PKP2 – plakophil<strong>in</strong> 2, DSG2 – desmogle<strong>in</strong> 2, PKG – plakoglob<strong>in</strong><br />

Disease Chromosome Gene Mode <strong>of</strong><br />

type locus defect transmission<br />

AKPK1 14q24.3 TGF- 3 D<br />

AKPK2 1q42-q43 RyR2 D<br />

AKPK3 14q12-q22 ? D<br />

AKPK4 2q32.1-q32.3 ? D<br />

AKPK5 3p23 ? D<br />

AKPK6 10p12-p14 ? D<br />

AKPK7 10q22.3 ? D<br />

AKPK8 6p24 DSP D<br />

AKPK9 PKP2 D<br />

AKPK10 18q12,1 DSG2 D<br />

Naxos disease 17q21 PKG R<br />

67


68<br />

Among gene l<strong>in</strong>ked to autosomal dom<strong>in</strong>ant ARVC<br />

were found genes cod<strong>in</strong>g o<strong>the</strong>r than plakoglob<strong>in</strong> prote<strong>in</strong>s related<br />

to mechanical junctions, i.e. desmoplak<strong>in</strong> [28], plakophil<strong>in</strong>-2<br />

[13], desmogle<strong>in</strong>-2 [27]. Desmoplak<strong>in</strong> toge<strong>the</strong>r<br />

with plakoglob<strong>in</strong> anchores to cadher<strong>in</strong>s, desmogle<strong>in</strong> or desmocol<strong>in</strong>,<br />

which comprise <strong>the</strong> transmembrane component <strong>of</strong><br />

desmosome. Plakophil<strong>in</strong> is located <strong>in</strong> <strong>the</strong> outer dense plaque<br />

<strong>of</strong> desmosomes and l<strong>in</strong>ks cadher<strong>in</strong>s to desmoplak<strong>in</strong>e. Because<br />

<strong>the</strong>se four prote<strong>in</strong>s are <strong>in</strong>volved <strong>in</strong> ARVC <strong>the</strong> disease<br />

is considered as a disease <strong>of</strong> <strong>the</strong> desmosomes. Desmosomes<br />

prote<strong>in</strong>s are l<strong>in</strong>ked to act<strong>in</strong> network while fascia adherens<br />

prote<strong>in</strong>s to <strong>in</strong>termediate filaments e.g. desm<strong>in</strong> network. Therefore,<br />

abnormalities <strong>in</strong> prote<strong>in</strong>s <strong>of</strong> both desmosomes and fascia<br />

adherens might lead to impairment <strong>of</strong> cell-cell contact<br />

[17]. Impaired cell mechanical coupl<strong>in</strong>g may predispose cardiomyocytes<br />

to detachment and death under conditions <strong>of</strong><br />

mechanical stress. Destabilization <strong>of</strong> cell-cell adhesion<br />

complex also disturb normal turnover <strong>of</strong> conex<strong>in</strong>es, <strong>the</strong> element<br />

<strong>of</strong> gap junction (nexuses), which play a role <strong>in</strong> electrical<br />

cell coupl<strong>in</strong>g. Dim<strong>in</strong>ished expression <strong>of</strong> connex<strong>in</strong> 43 at<br />

<strong>the</strong> <strong>in</strong>tercalated disc has been also observed <strong>in</strong> patients with<br />

Naxos disease [16]. This feature <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>the</strong> role <strong>of</strong><br />

nexuses <strong>in</strong> ion transport and transfer <strong>of</strong> electrical stimulation<br />

may result <strong>in</strong> heterogeneous electrical conduction and arrhythmia.<br />

O<strong>the</strong>r found genes l<strong>in</strong>ked to autosomal dom<strong>in</strong>ant<br />

ARVC are cardiac ryanod<strong>in</strong>e receptor 2 (RyR2) and transform<strong>in</strong>g<br />

growth factor beta-3 (TGF -3). Mutations <strong>in</strong> gene RyR2<br />

results from substitution <strong>of</strong> am<strong>in</strong>o acids <strong>in</strong> doma<strong>in</strong>s which<br />

are critical for regulation <strong>of</strong> <strong>the</strong> calcium channel. Up to present<br />

mutations <strong>in</strong> RyR2 association with cardiac diseases beside<br />

<strong>of</strong> ARVC 2 has been also found <strong>in</strong> catecholam<strong>in</strong>ergic<br />

polymorphic ventricular tachycardia [28] and familial poly-<br />

morphic ventricular tachycardia diseases [18]. These diseases<br />

and ARVC are characterized by effort-<strong>in</strong>duced polymorphic<br />

ventricular arrhythmias and a risk <strong>of</strong> sudden death.<br />

These might be due to fact that mutation <strong>in</strong> RyR2 alter <strong>the</strong><br />

ability <strong>of</strong> calcium channel to rema<strong>in</strong>s closed and thus stress<br />

or physical effort <strong>in</strong>itiate <strong>in</strong>tercellular calcium overload lead<strong>in</strong>g<br />

to severe arrhythmias.<br />

In affected probants <strong>of</strong> ARVC type 1 a nucleotide<br />

substitution <strong>in</strong> 5’UTR and <strong>in</strong> one subject substitution <strong>in</strong><br />

3’UTR <strong>in</strong> <strong>the</strong> TGF-ß3 gene were detected [4]. It is known<br />

that transform<strong>in</strong>g growth factor <strong>of</strong> TGF-ß family <strong>in</strong>hibits<br />

proliferation <strong>of</strong> many type <strong>of</strong> cells and stimulate mesenchymal<br />

cells to proliferate and promote fibrosis [19].<br />

Pathomechanism<br />

In <strong>the</strong> context <strong>of</strong> defects <strong>in</strong> <strong>in</strong>tercellular junction <strong>of</strong> cardiomyocytes<br />

it suggested that volume overload <strong>in</strong> <strong>the</strong> right ventricle<br />

would produce myocardial over-stretch. It is known<br />

that stretched cardiomyocytes exhibit abnormal release <strong>of</strong><br />

calcium from ryanod<strong>in</strong>e receptor channel [26] what affects<br />

<strong>in</strong>tracellular calcium concentration. Volume overload <strong>in</strong><br />

subjects, carriers <strong>of</strong> mutation <strong>in</strong> RYR2 can also lead to calcium<br />

overload. Both disconnection <strong>of</strong> cellular junctions and<br />

calcium overload can be also related to <strong>in</strong>creased cardiomyocyte<br />

apoptosis (Fig. 5). It has been suggested that fibr<strong>of</strong>atty<br />

replacement is repair process. However recently Garcia-<br />

-Gras et al. (2006) explor<strong>in</strong>g <strong>the</strong> effects desmoplak<strong>in</strong>e deficiency<br />

on Wnt/ß caten<strong>in</strong> signal<strong>in</strong>g found that translocation<br />

<strong>of</strong> plakoglob<strong>in</strong> <strong>in</strong>to cardiomyocyte nuclei led to up-regulation<br />

<strong>of</strong> genes implicated <strong>in</strong> adipogenesis [12]. This signal<strong>in</strong>g<br />

pathway could clear <strong>in</strong>creased quantity <strong>of</strong> fat <strong>in</strong> ARVC<br />

hearts.<br />

Fig. 4 Molecular model <strong>of</strong> adherens junction and desmosome organization Fig. 5 Proposed patomechanism <strong>of</strong> ARVC


Literature<br />

1. Angel<strong>in</strong>i A, Thiene G, B<strong>of</strong>fa GM, et al.<br />

(1996) Endomyocardial biopsy <strong>in</strong> right<br />

ventricular cardiomyopathy. Am Heart<br />

J 132: 203–206<br />

2. Basso C, Thiene G, Corrado D, et al.<br />

(1996) Arrhythmogenic right ventricular<br />

cardiomyopathy: dysplasia, dystrophy<br />

or myocarditis? Circulation 94:<br />

983–991<br />

3. Basso C, Czarnowska E, Della Barbera<br />

M, et al. (2006) Ultrastructural evidence<br />

<strong>of</strong> <strong>in</strong>tercalated disc remodel<strong>in</strong>g <strong>in</strong> arrhythmogenic<br />

right ventricular cardiomyopathy:<br />

an electron microscopy <strong>in</strong>vestigations<br />

on endomyocardial biopsy.<br />

Eur Hear J 27: 1847–1854<br />

4. Beffagna G, Occhi G, Nava A, et al.<br />

(2005) Regulatory mutations <strong>in</strong> transform<strong>in</strong>g<br />

growth factor- 3 gene cause arrhythmogenic<br />

right ventricular cardiomyopathy<br />

type 1. Cardiovasc Res 65:<br />

366–373<br />

5. Bowles NE, Ni J, Towb<strong>in</strong> JA (2002)<br />

The detection <strong>of</strong> cardiotropic viruses <strong>in</strong><br />

myocardium <strong>of</strong> patients with arrhythmogenic<br />

right ventricular dysplasia/cardiomyopathy.<br />

J Am Coll Cardiol 39:<br />

892–5<br />

6. Calabrese F, Angel<strong>in</strong>i A, Thiene G, et<br />

al. (2000) No detection <strong>of</strong> enteroviral<br />

genome <strong>in</strong> <strong>the</strong> myocardium <strong>of</strong> patients<br />

with arrhythmogenic right ventricular<br />

cardiomyopathy. J Cl<strong>in</strong> Pathol 53:<br />

382–387<br />

7. Calabrese F, Basso C, Carturan E, Valente<br />

M, Thiene G (2006) Arrhythmogenic<br />

right ventricular cardiomyopathy/dysplasia:<br />

is <strong>the</strong>re a role for viruses?<br />

Cardiovasc Pathol 15: 11–17<br />

8. Corrado D, Basso C, Thiene G,<br />

McKenna WJ, et al. (1997) Spectrum <strong>of</strong><br />

cl<strong>in</strong>icopathologic manifestations <strong>of</strong> arrhythmogenic<br />

right ventricular cardiomyopathy/dysplasia:<br />

a multicenter study.<br />

J Am Mol Cardiol 30: 1512–1520<br />

9. Corrado D, Thiene G, Nava A, et al.<br />

(1990) Sudden death <strong>in</strong> young competitive<br />

athletes: cl<strong>in</strong>ico-pathologic correlations<br />

<strong>in</strong> 22 cases. Am J Med 89:<br />

588–96<br />

10. Corrado D, Thiene G (2006) Arrhythmogenic<br />

right ventricular cardiomyopathy/dysplasia.<br />

Cl<strong>in</strong>ical impact <strong>of</strong> molecular<br />

genetic studies. Circulation 113:<br />

1634–1337<br />

11. D’Amati G, Leone O, Di Gidia CRT, et<br />

al. (20<strong>01</strong>) Arrhythmogenic right ventricular<br />

cardiomyopathy: Cl<strong>in</strong>icopathologic<br />

correlation based on revision def<strong>in</strong>ition<br />

<strong>of</strong> pathologic patterns. Human Pathol<br />

32: 1078–1086<br />

12. Garcia-Gras E, Lombardi F, Giocondo<br />

MJ, et al. (2006) Suppression <strong>of</strong> canonical<br />

Wnt/beta-caten<strong>in</strong> signal<strong>in</strong>g by<br />

nuclear plakoglob<strong>in</strong> recapitulates phenotype<br />

<strong>of</strong> arrhythmogenic right ventricular<br />

cardiomyopathy. J Cl<strong>in</strong> Invest<br />

116: 2<strong>01</strong>2–2021<br />

13. Gerull B, Heuser A, Wichter T, et al.<br />

(2004) Mutations <strong>in</strong> <strong>the</strong> desmosomal<br />

prote<strong>in</strong> plakophil<strong>in</strong>-2 common <strong>in</strong> arrhythmogenic<br />

right ventricular cardiomyopathy.<br />

Nat Genet 36: 1162–1164<br />

14. Grumbach IM, Heim A, Vonh<strong>of</strong> S, et<br />

al. (1998) Coxsackievirus genome <strong>in</strong><br />

myocardium <strong>of</strong> patients with arrhythmogenic<br />

right ventricular dysplasia/cardiomyopathy.<br />

Cardiology 89: 241–245<br />

15. Guiraudon CM. (1998) Histologic diagnosis<br />

<strong>of</strong> right ventricular dysplasia: an<br />

ultrastructural study. Eur Heart J 10:<br />

D9–D99<br />

16. Kaplan SR, Gard JJ, Protonotarios N, et<br />

al. (2004) Remodel<strong>in</strong>g <strong>of</strong> myocyte gap<br />

junctions <strong>in</strong> arrhythmogenic right ventricular<br />

cardiomyopathy due to a deletion<br />

<strong>in</strong> plakoglob<strong>in</strong> (Naxos disease).<br />

Heart Rhythm 1: 3–11<br />

17. Kostetetskii I, Li J, Xiong Y, et al.<br />

(2005) Induced deletion <strong>of</strong> <strong>the</strong> N-cadher<strong>in</strong><br />

gene <strong>in</strong> <strong>the</strong> heart leads to dissolution<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>tercalated disc structure.<br />

Circ Res 96: 346–354<br />

18. Lait<strong>in</strong>en PJ, Brown KM, Piippo K, et al.<br />

(20<strong>01</strong>) Mutations <strong>of</strong> <strong>the</strong> cardiac ryanod<strong>in</strong>e<br />

receptor (RyR2) gene <strong>in</strong> familial<br />

polymorphic ventricular tachycardia.<br />

Circulation 103: 485–490<br />

19. Leask A, Abraham DJ (2004) TGF-beta<br />

signal<strong>in</strong>g and <strong>the</strong> fibrotic response. FA-<br />

SEB J 18: 816–827<br />

20. Mallat Z, Tedgui A, Fontaliran F, et al.<br />

(1996) Evidence <strong>of</strong> apoptosis <strong>in</strong> arrhythmogenic<br />

right ventricular dysplasia.<br />

N Engl J Med 335: 1190–1196<br />

21. McKenna WJ, Thiene G, Nava A, et al.<br />

(1994) Diagnosis <strong>of</strong> arrhythmogenic right<br />

ventricular dysplasia/cardiomyopathy.<br />

Task Force <strong>of</strong> <strong>the</strong> Work<strong>in</strong>g Group<br />

Myocardial and Pericardial Disease <strong>of</strong><br />

<strong>the</strong> European Society <strong>of</strong> cardiology and<br />

<strong>of</strong> <strong>the</strong> Scientific Council on Cardiomyopathies<br />

<strong>of</strong> <strong>the</strong> International Society<br />

and Federation <strong>of</strong> Cardiology. Br Heart<br />

J 71: 215–8<br />

69<br />

22. McKoy G, Protonotarios N, Crosby A,<br />

et al. (2000) Identification <strong>of</strong> a deletion<br />

<strong>in</strong> plakoglob<strong>in</strong> <strong>in</strong> arrhythmogenic right<br />

ventricular cardiomyopathy with palmoplantar<br />

keratoderma and woolly hair<br />

(Naxos disease). Lancet 355:<br />

2119–24<br />

23. Menghetti L, Basso C, Nava A, et al.<br />

(1996) Sp<strong>in</strong>-echo nuclear magnetic resonance<br />

for tissue characterization <strong>in</strong><br />

arrhythmogenic right ventricular cardiomyopathy.<br />

Heart 76: 467–470<br />

24. Nava A, Bauce B, Basso C, et al. (2000)<br />

Cl<strong>in</strong>ical pr<strong>of</strong>ile and long-term followup<br />

<strong>of</strong> 37 families with arrhythmogenic<br />

right ventricular cardiomyopathy. J Am<br />

Coll Cardiol 36: 2226–2233<br />

25. Nishikawa T., Ishiyama S., Nagata M,<br />

et al. (1999) Programmed cell death <strong>in</strong><br />

<strong>the</strong> myocardium <strong>of</strong> arrhythmogenic right<br />

ventricular cardiomyopathy <strong>in</strong> children<br />

and adults. Cardiovasc Pathol 8:<br />

185–9<br />

26. Petr<strong>of</strong>f MG, Kim SH, Pepe S, et al.<br />

(20<strong>01</strong>) Endogenous nitric oxide mechanisms<br />

mediate <strong>the</strong> stretch dependence<br />

<strong>of</strong> Ca2+ release <strong>in</strong> cardiomyocytes. Nat<br />

Cell Biol 3: 867–873<br />

27. Pillichou K, Nava A, Basso C, et al.<br />

(2006) Mutations <strong>in</strong> desmogle<strong>in</strong>-2 gene<br />

are associated with arrhythmogenic right<br />

ventricular cardiomyopathy. Circulation<br />

13: 1171–1179<br />

28. Priori SG, Napolitano C, Memmi M,<br />

Colombi B, et al. (2002) Cl<strong>in</strong>ical and<br />

molecular characterization <strong>of</strong> patients<br />

with catecholam<strong>in</strong>ergic polymorphic<br />

ventricular tachycardia. Circulation<br />

106: 69–74<br />

29. Rampazzo A, Nava A, Malcarida S, et<br />

al. (2002) Mutation <strong>in</strong> human desmoplak<strong>in</strong><br />

doma<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g to plakoglob<strong>in</strong><br />

causes a dom<strong>in</strong>ant form <strong>of</strong> arrhythmogenic<br />

right ventricular cardiomyopathy.<br />

Am J Hum Genet 71: 1200–1206<br />

30. Richardson P, McKenna WJ, Bristow<br />

M, et al. (1996) Report <strong>of</strong> <strong>the</strong> 1995<br />

WHO/ISFC task force on <strong>the</strong> def<strong>in</strong>ition<br />

and <strong>classification</strong> <strong>of</strong> cardiomyopathies.<br />

Circulation 93: 841–842<br />

31. Tiso N., Stephan D. A., Nava A., et al.<br />

(20<strong>01</strong>) Identification <strong>of</strong> mutation <strong>in</strong> <strong>the</strong><br />

cardiac ryanod<strong>in</strong>e receptor gene <strong>in</strong> families<br />

affected with arrhythmogenic<br />

right ventricular cardiomyopathy type 2<br />

(ARVD2). Hum Mol Genet 10: 189–194<br />

32. Valente M., Calabrese F., Thiene G, et<br />

al. (1998) In vivo evidence <strong>of</strong> apoptosis<br />

<strong>in</strong> arrhythmogenic right ventricular cardiomyopathy.<br />

Am J Pathol 152: 479–84


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 71–74<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Is it possible to diagnose Hirschsprung's disease<br />

and allied disorders on suction rectal biopsy?<br />

Anna Piaseczna-Piotrowska<br />

Departament <strong>of</strong> Pediatric Surgery and Urology<br />

Polish Mo<strong>the</strong>r's Health Institute<br />

Lodz, Poland<br />

Abstract<br />

Our knowledge <strong>of</strong> <strong>the</strong> pathomorphology <strong>of</strong> Hirschsprung’s<br />

disease (HD) and allied disorders, especially <strong>in</strong>test<strong>in</strong>al neuronal<br />

dysplasia (IND) and hypoganglionosis is ma<strong>in</strong>ly based<br />

on <strong>in</strong>formation derived from histological and histochemical<br />

exam<strong>in</strong>ations. The diagnosis <strong>of</strong> HD and allied disorders can<br />

be established by full-thickness rectal biopsy and evaluation<br />

<strong>of</strong> <strong>the</strong> myenteric plexus, but <strong>the</strong> easier and less <strong>in</strong>vasive suction<br />

rectal biopsies (SRB) have superseded this procedure.<br />

SRB gives excellent results <strong>in</strong> exclud<strong>in</strong>g <strong>the</strong> diagnosis <strong>of</strong><br />

HD, although positive diagnosis <strong>of</strong> HD requires confirmation<br />

by full thickness biopsy usually at <strong>the</strong> time <strong>of</strong> colostomy or<br />

pull through operation.<br />

Obta<strong>in</strong><strong>in</strong>g optimal suction biopsy specimens to confirm<br />

or rule out HD or allied disorders requires good equipment<br />

and a meticulous technique. SRB sections should be taken<br />

at 3, 5, and 7 cm just above <strong>the</strong> pect<strong>in</strong>ate l<strong>in</strong>e. The biopsy<br />

at 7 cm is omitted <strong>in</strong> neonates [6, 10, 14, 18, 20, 23]. It is<br />

important that <strong>the</strong> submucosa is <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> specimen. An<br />

adequate biopsy is 3 to 4 mm <strong>in</strong> diameter and 1 to 2 mm deep<br />

[10, 26]. Small size <strong>of</strong> sample with a sparse distribution <strong>of</strong><br />

submucosal ganglia cells <strong>in</strong> <strong>the</strong> normal gut may lead to an<br />

erroneous diagnosis <strong>of</strong> HD or allied disorders. None<strong>the</strong>less,<br />

Address for correspondence<br />

The <strong>in</strong>troduction <strong>of</strong> suction rectal biopsy (SRB) while mak<strong>in</strong>g <strong>the</strong> procedure less traumatic for <strong>the</strong> patient<br />

has made <strong>the</strong> diagnosis <strong>of</strong> Hirschsprung’s disease (HD) and allied disorders more difficult for <strong>the</strong><br />

pathologist. The development <strong>of</strong> histochemical techniques for <strong>the</strong> detection <strong>of</strong> acetylochol<strong>in</strong>esterase<br />

(AChE) and nicot<strong>in</strong>amide adenos<strong>in</strong>e d<strong>in</strong>ucleotide phosphate-diaphorase (NADPH-d) was a considerable<br />

advance <strong>in</strong> <strong>the</strong> diagnosis <strong>of</strong> this disorders. The aim <strong>of</strong> this study was to evaluate <strong>the</strong> results <strong>of</strong> AChE and<br />

NADPH-d sta<strong>in</strong><strong>in</strong>g <strong>in</strong> SRBs <strong>of</strong> patients present<strong>in</strong>g with chronic constipation or dysmotility problems.<br />

Key words: enzyme histochemistry, Hirschsprung’s disease, hypoganglionosis, <strong>in</strong>test<strong>in</strong>al neuronal<br />

dysplasia, suction rectal biopsy<br />

Anna Piaseczna-Piotrowska Tel. No: 0 48 42 271 21 36<br />

Polish Mo<strong>the</strong>r’s Health Institute Fax No: 0 48 42 271 13 58<br />

Rzgowska 281/289 E-mail: annapiaseczna@yahoo.com<br />

93-322 Lodz, Poland<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

unless a patient has HD, ganglion cells are almost always encountered<br />

if more than 50–75 sections are exam<strong>in</strong>ed from an<br />

adequate biopsy [26]. Only 55–65% <strong>of</strong> <strong>the</strong> sections with vertical<br />

cuts <strong>of</strong> mucosa show nerve ganglia. The yield <strong>of</strong> nerve<br />

ganglia cells is much higher <strong>in</strong> biopsies larger <strong>the</strong>n 5 mm cut<br />

parallel to <strong>the</strong> mucosal surface [10, 16, 18, 21].<br />

The <strong>in</strong>terpretation <strong>of</strong> morphological f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> SRB<br />

specimens is <strong>of</strong>ten difficult and <strong>in</strong> particular dependent on<br />

<strong>the</strong> sta<strong>in</strong><strong>in</strong>g methods used. Considerable experience is required<br />

to obta<strong>in</strong> a reliable diagnosis if hematoxyl<strong>in</strong> and eos<strong>in</strong><br />

(H&E) sta<strong>in</strong><strong>in</strong>g is used. Hypoganglionosis and ultrashort HD<br />

can be diagnosed wrong. The <strong>in</strong>troduction <strong>of</strong> new histochemistry<br />

methods ei<strong>the</strong>r AChE reaction <strong>in</strong> RSB specimens had<br />

made a morphological diagnosis easier and more reliable<br />

[24]. AChE is especially expressed <strong>in</strong> nerve fibres and ganglia<br />

cells [7, 9, 15, 24]. Nitric oxide (NO) has recently been<br />

recognised as a non adrenergic, non chol<strong>in</strong>ergic neurotransmitter<br />

that mediates relaxation <strong>of</strong> <strong>the</strong> smooth muscle <strong>of</strong> <strong>the</strong><br />

gastro<strong>in</strong>test<strong>in</strong>al tract (GIT). Histochemical studies have<br />

shown that NO-synthase is identical to NADPH-d. Several<br />

<strong>in</strong>vestigators have demonstrated, that NADPH-d activity is<br />

markedly altered <strong>in</strong> HD and allied disorders [20, 23–25].


72<br />

Fig. 1 SRB <strong>in</strong> normal bowel. (A) AChE sta<strong>in</strong><strong>in</strong>g shows few AChE-positive<br />

nerve fibres present <strong>in</strong> <strong>the</strong> LP and MM. Ganglia cells are visible <strong>in</strong> <strong>the</strong><br />

submucosal layer. (B) NADPH-d histochemistry shows strong activity <strong>in</strong><br />

submucosal ganglia cells and large numbers <strong>of</strong> NADPH-d positive nerve<br />

fibres <strong>in</strong> MM<br />

Normal SRB specimens conta<strong>in</strong> only a few f<strong>in</strong>e chol<strong>in</strong>ergic<br />

nerves <strong>in</strong> <strong>the</strong> lam<strong>in</strong>a propria (LP) (Fig. 1). In <strong>the</strong> normal<br />

muscularis mucosa (MM) a small number <strong>of</strong> nerve fibres<br />

are always present. Ganglia cells <strong>in</strong> <strong>the</strong> submucosal layer are<br />

evident [1, 3, 9, 14, 21, 26].<br />

The histochemical diagnosis <strong>of</strong> HD is based on <strong>the</strong><br />

fact that <strong>the</strong> chol<strong>in</strong>ergic nerve fibers <strong>of</strong> <strong>the</strong> aganglionic segment<br />

are prom<strong>in</strong>ent and that <strong>the</strong>se fibres conta<strong>in</strong> an <strong>in</strong>creased<br />

<strong>of</strong> amount <strong>of</strong> AChE (Fig. 2) [1, 7, 9, 15, 21]. Three AChE<br />

histochemistry patterns <strong>of</strong> <strong>the</strong> rectal suction biopsy are established<br />

[1, 3, 15]:<br />

Newborn pattern: AChE- positive thick nerve trunks<br />

or coarse nerve fibres are present <strong>in</strong> submucosa layer. Characteristically<br />

<strong>the</strong>re is absence <strong>of</strong> AChE activity <strong>in</strong> <strong>the</strong> LP and<br />

weak activity <strong>in</strong> MM. This pattern is predom<strong>in</strong>ant <strong>in</strong> <strong>in</strong>fants<br />

up to 3 months.<br />

Fig. 2 SRB <strong>in</strong> HD (A) AChE-positive nerve fibres are markedly <strong>in</strong>creased<br />

<strong>in</strong> <strong>the</strong> LP and MM. Ganglia cells are absent <strong>in</strong> submucosae. (B) NADPH-d<br />

activity <strong>in</strong> <strong>the</strong> MM is completely absent and hypertrophic nerve trunks sta<strong>in</strong><br />

very weak. No ganglia cells can be found<br />

Classic pattern: Increased AChE positive th<strong>in</strong> nerve<br />

fibres are present <strong>in</strong> <strong>the</strong> MM with a clear <strong>in</strong>filtration <strong>in</strong> <strong>the</strong><br />

LP. This pattern is ma<strong>in</strong>ly seen <strong>in</strong> children older <strong>the</strong>n 1 year.<br />

Intermedite pattern: This pattern not related to age.<br />

It shows AChE positive nerve fibres <strong>in</strong> <strong>the</strong> three layers <strong>of</strong><br />

SRB specimens but <strong>in</strong> one or more layers <strong>the</strong> nerve fibres are<br />

spare.<br />

There is no evidence <strong>of</strong> ganglia cells <strong>in</strong> all patterns.<br />

In total colonic aganglionosis <strong>the</strong> changes may appear<br />

particularly mild with only a few nerve trunks <strong>in</strong> <strong>the</strong> submucosa.<br />

There may be no <strong>in</strong>crease <strong>of</strong> AChE positive nerve<br />

fibres <strong>in</strong> <strong>the</strong> LP and only a mild to moderate <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

MM [9].<br />

The lack or marked deficiency <strong>of</strong> NO-synthase conta<strong>in</strong><strong>in</strong>g<br />

nerve fibres <strong>in</strong> aganglionic colon was reported by several<br />

<strong>in</strong>vestigators. NADPH-d activity <strong>in</strong> <strong>the</strong> MM is completely<br />

absent and hypertrophic nerve trunks sta<strong>in</strong> very weak.<br />

There is no evidence <strong>of</strong> ganglia cells <strong>in</strong> <strong>the</strong> submucosa [20].<br />

The histological criteria <strong>of</strong> IND keep chang<strong>in</strong>g. In<br />

Meier’s-Ruge orig<strong>in</strong>al description (1971), hyperplasia <strong>of</strong><br />

ganglia cells and <strong>in</strong>creased AChE activity <strong>in</strong> parasympa<strong>the</strong>tic<br />

nerve fibres <strong>in</strong> <strong>the</strong> LP were regarded as <strong>the</strong> most important<br />

diagnostic criteria [5, 11, 23–25]. In 1995, Borchard and<br />

Meier-Ruge presented guidel<strong>in</strong>es for identify<strong>in</strong>g IND <strong>in</strong><br />

SRB. These comprised two obligatory criteria: hyperplasia <strong>of</strong><br />

submucosus plexus and an <strong>in</strong>crease <strong>in</strong> AChE -positive nerve<br />

fibres around <strong>the</strong> submucosal blood vessels, and two additional<br />

criteria: neuronal heterotophia and <strong>in</strong>creased AChE activity<br />

<strong>in</strong> <strong>the</strong> LP [4, 23, 24, 25]. More recently, Meier-Ruge et<br />

al, described hyperganglionosis and <strong>in</strong>creased AChE activity<br />

as age-dependent f<strong>in</strong>d<strong>in</strong>gs and giant ganglia as <strong>the</strong> most<br />

characteristic diagnostic feature (although this can be a normal<br />

f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> neonates) [5, 17, 23, 24]. Submucosal giant<br />

ganglia (conta<strong>in</strong><strong>in</strong>g more than 7 nerve cells) comprise only<br />

3–5% <strong>of</strong> all ganglia <strong>in</strong> IND and are usually not seen with<strong>in</strong><br />

6–7 cm above <strong>the</strong> pect<strong>in</strong>ate l<strong>in</strong>e [5, 8, 16, 17, 19, 23, 25].<br />

In summary, histochemical diagnosis <strong>of</strong> IND <strong>in</strong> SRB<br />

is very difficult. Some characteristic features suggest<strong>in</strong>g <strong>the</strong><br />

presence <strong>of</strong> this disorder are hyperganglionosis <strong>of</strong> <strong>the</strong> submucosus<br />

plexus, giant ganglia, ectopic ganglia, <strong>in</strong>creased<br />

AChE-positive nerve fibres around submucosal blood vessels<br />

and <strong>in</strong>creased AChE-positive nerve fibres <strong>in</strong> LP (Fig. 3)<br />

[2, 5, 10, 12, 13, 17, 18, 23, 24, 27–29].<br />

The diagnosis <strong>of</strong> hypoganglionosis <strong>in</strong> SRB usually is<br />

very difficult to establish SRB specimens from <strong>the</strong>se patients<br />

show absence <strong>of</strong> submucosal ganglia cells or small s<strong>in</strong>gle<br />

ganglia cells and very scant activity <strong>in</strong> LP and MM (Fig. 4).<br />

Full thickness rectal biopsy and morphometric studies are essential<br />

to confirm this diagnosis [22–24].<br />

General agreement exists on <strong>the</strong> diagnosis <strong>of</strong> HD on<br />

<strong>the</strong> basis <strong>of</strong> SRB specimens, but controversy exists regard<strong>in</strong>g<br />

<strong>the</strong> identification <strong>of</strong> different <strong>in</strong>nervation disorders based<br />

upon SRB conta<strong>in</strong><strong>in</strong>g only <strong>the</strong> part <strong>of</strong> <strong>the</strong> Meissner’s plexus<br />

[15, 20]. Many biopsies are disappo<strong>in</strong>t<strong>in</strong>g because only superficial<br />

mucosal fragments without submucosa and MM are<br />

obta<strong>in</strong>ed. The histochemical diagnosis <strong>of</strong> IND and hypoganglionosis<br />

<strong>in</strong> adequate SRBs is particularly difficult. The use


Fig. 3 SRB <strong>in</strong> IND. (A) AChE sta<strong>in</strong><strong>in</strong>g shows hyperplasia <strong>of</strong> <strong>the</strong> submucosal<br />

plexus and giant submucosal ganglia, marked <strong>in</strong>crease AChE-positive nerve<br />

fibres around blood vessels. (B) NADPH-d positive nerve fibres <strong>in</strong> MM are<br />

usually moderate. Submucosal giant ganglia sta<strong>in</strong> strongly<br />

<strong>of</strong> two different histochemical sta<strong>in</strong><strong>in</strong>g methods i.e. AChE<br />

and NADPH-d may facilitate diagnosis <strong>of</strong> <strong>the</strong>se disorders [4,<br />

5, 11, 13, 14, 16, 20].<br />

In conclusion, histochemical sta<strong>in</strong><strong>in</strong>g for <strong>the</strong> detection<br />

<strong>of</strong> AChE and NADPH-d activity <strong>in</strong> SRBs is a simple and reliable<br />

method for <strong>the</strong> diagnosis <strong>of</strong> Hirschsprung’s disease, <strong>in</strong>-<br />

References<br />

1. Alves de Brito I, Maksoud JG (1987)<br />

Evolution with age <strong>of</strong> <strong>the</strong> acetylchol<strong>in</strong>esterase<br />

activity <strong>in</strong> rectal suction biopsy<br />

<strong>in</strong> Hirschsprung’s disease. J Pediatr<br />

Surg 22: 425–430<br />

2. Berry CL (1993) Intest<strong>in</strong>al neuronal<br />

dysplasia: does it exist or has it been <strong>in</strong>vented?<br />

Virchows Arch A Pathol Anat<br />

422: 183–184<br />

3. Chentanez V, Chittmittrapap S, Cheepsoonthorn<br />

P, Agthong S (2000) New<br />

<strong>classification</strong> <strong>of</strong> histochemical sta<strong>in</strong><strong>in</strong>g<br />

patterns <strong>of</strong> acetylchol<strong>in</strong>esterase activity<br />

<strong>in</strong> rectal suction biopsy <strong>in</strong> Hirschsprung’s<br />

disease. J. Med Assoc Thai 83:<br />

1196–12<strong>01</strong><br />

4. Cord-Udy CL,. Smith VV, Ahmed S,<br />

Risdon RA Milla PJ (1997) An evaluation<br />

<strong>of</strong> <strong>the</strong> role <strong>of</strong> rectal suction biopsy<br />

<strong>in</strong> <strong>the</strong> diagnosis <strong>of</strong> <strong>in</strong>test<strong>in</strong>al neuronal<br />

dysplasia. J Pediatr Gastr Nutr 24:<br />

1–9<br />

5. Gillick J, Tazawa H, Puri P (20<strong>01</strong>) Intest<strong>in</strong>al<br />

neuronal dysplasia: results <strong>of</strong><br />

treatment <strong>in</strong> 33 patients. J Pediatr Surg<br />

36: 777–779<br />

6. Hirose R, Hirata Y, Yamada T, Kawana<br />

T, Taguchi T, Suita S (1993) The<br />

simple technique <strong>of</strong> rectal mucosal<br />

biopsy for <strong>the</strong> diagnosis <strong>of</strong> Hirschsprung’s<br />

disease. J Pediatr Surg 28:<br />

942–944<br />

7. Holschneider AM, Meier-Ruge W, Ure<br />

BM (1994) Hirschrung’s disease and allied<br />

disorders-a review. Eur J Pediatr<br />

Surg 4: 260–266<br />

8. Holschneider AM,. Puri P (2000) Intest<strong>in</strong>al<br />

neuronal dysplasia. In: Holschneider<br />

AM, Puri P (eds), Hirschsprung’s<br />

disease and allied Disorders. Harwood<br />

Academic Publishers, pp 147–153<br />

9. Howard ER (1972) Hirschsprung’s disease:<br />

a review <strong>of</strong> <strong>the</strong> morphology and<br />

physiology. Postgraduate Med J: 48:<br />

471–477<br />

10. Kapur RP (1999) Hirschsprung’s disease<br />

and o<strong>the</strong>r enteric dysganglionoses.<br />

Crit Rev Cl Lab Sci 36: 225–273<br />

11. Kobayashi H, Hirakawa H, Puri P<br />

(1996) What are <strong>the</strong> diagnostic criteria<br />

for <strong>in</strong>test<strong>in</strong>al neuronal dysplasia? Pediatr<br />

Surg Int 10: 459–464<br />

Fig. 4 SRB <strong>in</strong> hypoganglionosis. (A) AChE sta<strong>in</strong><strong>in</strong>g shows absence ganglia<br />

cells with no or extremely weak AChE activity <strong>in</strong> <strong>the</strong> MM and LP. (B)<br />

NADPH-d histochemistry shows a few NADPH-d positive nerve fibres <strong>in</strong><br />

<strong>the</strong> MM and absent submucosal ganglia cells<br />

test<strong>in</strong>al neuronal dysplasia and hypoganglionosis. SRB is<br />

a useful and valuable method to confirm or exclude Hirschsprung’s<br />

disease. It is <strong>of</strong> little value <strong>in</strong> <strong>the</strong> recognition <strong>of</strong> IND<br />

and hypoganglionosis. Presence <strong>of</strong> <strong>the</strong>se neuronal <strong>in</strong>test<strong>in</strong>al<br />

disorders should be confirmed by full thickness biopsies and<br />

morphological study.<br />

73<br />

12. Koletzko S, Bullauff A, Hadziselimovic<br />

F, Enck P (1993) Is histological diagnosis<br />

<strong>of</strong> <strong>in</strong>test<strong>in</strong>al dysplasia related to cl<strong>in</strong>ical<br />

and manometric f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> constipated<br />

children? Results <strong>of</strong> a pilot study.<br />

J Pediatr Gastr Nutr 17: 59–65<br />

13. Koletzko S, Jesch J, Faus-Kebler T, et<br />

al (1999) Rectal biopsy for diagnosis <strong>of</strong><br />

<strong>in</strong>test<strong>in</strong>al neuronal dysplasia <strong>in</strong> children:<br />

a prospective multicentre study on<br />

<strong>in</strong>terobserver variation and cl<strong>in</strong>ical outcome.<br />

Gut 9: 853–861<br />

14. Lake BD, Puri P, Nixon HH, Nixon<br />

HH, Claireaux AE, (1978) Hirschsprung’s<br />

disease. An appraisal <strong>of</strong> histochemically<br />

demonstrated acetylchol<strong>in</strong>esterase<br />

activity <strong>in</strong> suction rectal biopsy<br />

specimens as an aid to diagnosis.<br />

Arch Pathol Lab Med 102: 244–247<br />

15. Meier-Ruge W (2000) Histological<br />

Diagnosis and Differential Diagnosis.<br />

Holschneider AM, Puri P (ed): Hirschsprung’s<br />

Disease and Allied Disorders.<br />

Harwood Academic Publishers, pp<br />

252–265


74<br />

16. Meier-Ruge WA, Brönnimann PB,<br />

Gambazzi F, Schmid PC, Schmidt CP,<br />

Stoss F (1995) Histopathological criteria<br />

for <strong>in</strong>test<strong>in</strong>al neuronal dysplasia <strong>of</strong><br />

<strong>the</strong> submucosal plexus (type B). Virchows<br />

Arch 426: 549–556<br />

17. Meier-Ruge WA, Gambazzi F, Käufeler<br />

RE, Schmid P, Schmidt ChP (1994)<br />

The Neuropathological Diagnosis <strong>of</strong><br />

Neuronal Intest<strong>in</strong>al Dysplasia (NID B).<br />

Eur J Pediatr. Surg 4: 267–273<br />

18. Meier-Ruge WA, Schärli AF, Stoss F<br />

(1995) How to improve histopathological<br />

results <strong>in</strong> <strong>the</strong> biopsy diagnosis <strong>of</strong> gut<br />

dysganglionosis. A methodological review.<br />

Pediatr Surg Int 10: 454–458<br />

19. Meier-Ruge WA, Schmidt PC, Stoss F<br />

(1995) Intest<strong>in</strong>al neuronal dysplasia and<br />

its morphometric evidences. Pediatr<br />

Surg Int 10: 447–453<br />

20. Miyazaki E, Ohshiro K, Puri P (1998)<br />

NADPH-diaphorase histochemical sta<strong>in</strong><strong>in</strong>g<br />

<strong>of</strong> suction rectal biopsies <strong>in</strong> <strong>the</strong><br />

diagnosis <strong>of</strong> Hirschsprung’s disease and<br />

allied disorders. Pediatr Surg Int 13:<br />

464–467<br />

21. Monfore-Munoz H, Gonzales-Gomez I,<br />

Rowland JM, Land<strong>in</strong>g BH (1998) Increased<br />

submucosal nerve trunk caliber<br />

<strong>in</strong> aganglionosis. A “positive” and objective<br />

f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> suction biopsies and<br />

segmental resections <strong>in</strong> Hirschsprung’s<br />

disease. Arch Pathol Lab Med 122:<br />

721–725<br />

22. Munakata K, Okabe I, Morita K, (1985)<br />

Cl<strong>in</strong>ical and histological studies <strong>of</strong> neuronal<br />

<strong>in</strong>test<strong>in</strong>al dysplasia. J Pediatr Surg<br />

20: 231–235<br />

23. Puri P (1997) Variants <strong>of</strong> Hirschsprung’s<br />

disease. J Pediatr Surg 32:<br />

149–157<br />

24. Puri P (1998) Preface <strong>of</strong> Hirschsprung’s<br />

disease and related disorders – recent<br />

progress. Sem<strong>in</strong> Pediatr Surg 7:<br />

137–139<br />

25. Puri P, Wester T (1998) Intest<strong>in</strong>al neuronal<br />

dysplasia. Sem<strong>in</strong> Pediatr Surg 7:<br />

181–186<br />

26. Qualman SJ, Pysher T, Schauer G<br />

(1997) Hirschsprung’s disease: differential<br />

diagnosis and seguelae. In:<br />

Dahms BB, Qualman SJ (eds) Gastro<strong>in</strong>test<strong>in</strong>al<br />

disease (Perspectives <strong>in</strong> Pediatric<br />

Pathology, Vol 20). S. Karger AG,<br />

Basel (Switzerland) pp: 111–126<br />

27. Schärli AF (1992) Neuronal <strong>in</strong>test<strong>in</strong>al<br />

dysplasia. Pediatr Surg Int 2: 2–7<br />

28. Schärli AF, Meier-Ruge W (1981) Localized<br />

and dissem<strong>in</strong>ate forms <strong>of</strong> neuronal<br />

<strong>in</strong>test<strong>in</strong>al dysplasia mimick<strong>in</strong>g Hirschsprung’s<br />

disease. J Pediatr Surg 16:<br />

164–170<br />

29. Sch<strong>of</strong>ield DE, Yunis EY (1991) Intest<strong>in</strong>al<br />

neuronal dyspasia. J Pediatr Gastr<br />

Nutr 12 (2): 182–189


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 75–79<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Treatment <strong>of</strong> malignant pheochromocytoma <strong>in</strong> children<br />

Jolanta Krajewska, Kornelia Hasse-Lazar, Barbara Jarz¹b<br />

Nuclear Medic<strong>in</strong>e and Endocr<strong>in</strong>e Oncology Department<br />

M. Sklodowska−Curie Memorial Cancer Center<br />

and Institute <strong>of</strong> Oncology, Gliwice Branch<br />

Gliwice, Poland<br />

Introduction<br />

Abstract<br />

Pheochromocytoma and paraganglioma are unusual neoplasms<br />

<strong>in</strong> children. Both <strong>tumor</strong>s develop from chromaff<strong>in</strong><br />

cells and produce catecholam<strong>in</strong>es <strong>in</strong>clud<strong>in</strong>g norep<strong>in</strong>ephr<strong>in</strong>e,<br />

ep<strong>in</strong>ephr<strong>in</strong>e and dopam<strong>in</strong>e. Tumors that derive from <strong>the</strong> adrenal<br />

medulla are def<strong>in</strong>ed as pheochromocytomas, whereas<br />

extraadrenal <strong>tumor</strong>s are named paragangliomas [4, 22, 23].<br />

Pheochromocytoma is diagnosed <strong>in</strong> approximately<br />

1% <strong>of</strong> pediatric hypertensive patients. About 20% <strong>of</strong> <strong>the</strong>se<br />

<strong>tumor</strong>s occur <strong>in</strong> children, mostly <strong>in</strong> preadolescent boys and<br />

teenage girls with an <strong>in</strong>cidence <strong>of</strong> 2 per million [5]. The<br />

most common symptoms <strong>in</strong> children are: hypertension, headaches,<br />

palpitations, sweat<strong>in</strong>g and nausea [2, 22]. Blood<br />

pressure elevation is ra<strong>the</strong>r permanent <strong>in</strong> contrast to adults<br />

who develop paroxysmal hypertension <strong>in</strong> 30% <strong>of</strong> cases [2].<br />

It is important to differentiate between paragangliomas and<br />

neuroblastomas, <strong>the</strong> last more common <strong>in</strong> pediatric population,<br />

because <strong>of</strong> <strong>the</strong>ir similarity <strong>in</strong> location, histologic features<br />

and ability to secrete hormones [5, 22]. Neuroblastomas<br />

usually are found <strong>in</strong> retroperitoneum, orig<strong>in</strong> from neural<br />

crest cells and produce vanillylmandelic acid (VMA) and<br />

Address for correspondence<br />

Pheochromocytoma is a rare neoplasm <strong>in</strong> children with <strong>the</strong> great difficulties <strong>in</strong> dist<strong>in</strong>ction between benign<br />

and malignant <strong>tumor</strong>s on <strong>the</strong> basis <strong>of</strong> histopathological exam<strong>in</strong>ation. The only unequivocal evidence <strong>of</strong><br />

malignancy are distant metastases <strong>in</strong> sites where chromaff<strong>in</strong> tissue is absent. Although <strong>the</strong> treatment <strong>of</strong><br />

choice is radical surgical resection <strong>of</strong> primary <strong>tumor</strong> and metastases <strong>the</strong> adjuvant <strong>the</strong>rapy is necessary.<br />

131 I-MIBG <strong>the</strong>rapy is <strong>the</strong> first-l<strong>in</strong>e systemic treatment. Somatostat<strong>in</strong> analogues labeled with 90 Y make an<br />

alternative <strong>the</strong>rapeutic option for patients with no 131 I-MIBG uptake. Chemo<strong>the</strong>rapy, based on<br />

cyclophosphamide, v<strong>in</strong>crist<strong>in</strong>e and dacarbaz<strong>in</strong>e is reserved for patients with recurrent and progressive<br />

disease or without satisfactory response to previous treatment.<br />

Key words: 131 I MIBG <strong>the</strong>rapy, malignant pheochromocytoma, treatment<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

homovanillic acid (HVA). Catecholam<strong>in</strong>es are produced<br />

rarely.<br />

Approximately 25% <strong>of</strong> pheochromocytomas are associated<br />

with hereditary syndromes [21]. Genetic predisposition<br />

is found as von Hippel-L<strong>in</strong>dau disease due to VHL gene<br />

mutations, multiple endocr<strong>in</strong>e neoplasia type 2A and 2B<br />

(MEN) due to RET protooncogene mutations, <strong>in</strong> familiar paraganglioma/pheochromocytoma<br />

syndromes associated with<br />

mutations <strong>of</strong> succ<strong>in</strong>ate dehydrogenase family genes (SDHB,<br />

SDHC and SDHD) and neur<strong>of</strong>ibromatosis type 1 (NF1) due<br />

to NF gene mutations [12, 21]. RET and VHL-dependent pheochromocytomas<br />

are almost exclusively benign. The risk <strong>of</strong><br />

malignancy is <strong>the</strong> highest <strong>in</strong> SDHB mutation carriers [12].<br />

The risk <strong>of</strong> malignancy reported <strong>in</strong> <strong>the</strong> literature on<br />

adult population is about 10% but it ranges between <strong>of</strong><br />

5–26% depend<strong>in</strong>g on malignancy def<strong>in</strong>ition and population<br />

<strong>in</strong>vestigated [6, 10, 12, 28]. The 5-year survival rate <strong>of</strong> patients<br />

with malignant pheochromocytoma varies between<br />

34–60% [2, 4, 18, 19, 24, 28]. However, more than 20-year<br />

survival was also observed [2, 4, 28]. Children more <strong>of</strong>ten<br />

have bilateral, multiple or extraadrenal <strong>tumor</strong>s [2, 5, 16, 23].<br />

Similarly, malignant <strong>tumor</strong>s, although very rare, occur more<br />

Jolanta Krajewska MD Tel: +48 32 27893<strong>01</strong>, fax +48 32 278 93 25<br />

Nuclear Medic<strong>in</strong>e and Endocr<strong>in</strong>e Oncology Department E-mail: jkrajewska@io.gliwice.pl<br />

M. Sklodowska-Curie Memorial Cancer Center and Institute <strong>of</strong> Oncology<br />

Wybrze¿e AK 15<br />

44-1<strong>01</strong> Gliwice


76<br />

frequent <strong>in</strong> pediatric population. Ciftci et al diagnosed malignant<br />

pheochromocytoma <strong>in</strong> 19% <strong>of</strong> cases [5] whereas <strong>in</strong> one<br />

<strong>of</strong> <strong>the</strong> largest case series on pheochromocytoma and paraganglioma<br />

<strong>in</strong> children from Mayo Cl<strong>in</strong>ic <strong>the</strong> malignancy rate<br />

was 47% [23]. Five- and 10-year disease-specific survival <strong>in</strong><br />

<strong>the</strong> last group was 78% and 31% respectively [23].<br />

The unequivocal dist<strong>in</strong>ction between benign and malignant<br />

<strong>tumor</strong>s on <strong>the</strong> basis <strong>of</strong> histopathological exam<strong>in</strong>ation<br />

is not possible. The only evidence <strong>of</strong> malignancy are <strong>the</strong> distant<br />

metastases <strong>in</strong> sites where normal chromaff<strong>in</strong> tissue is<br />

absent. They localize mostly <strong>in</strong> bones (44%), lymph nodes<br />

and liver (37%) and lungs (27%) [19]. However, <strong>the</strong>re are<br />

a few prognostic factors that can suggest malignancy, such<br />

as: <strong>tumor</strong> size larger than 5–6 cm, extraadrenal localization,<br />

local <strong>in</strong>vasion at <strong>the</strong> time <strong>of</strong> surgery and abnormal DNA ploidy<br />

(aneuploidy and tetraploidy) [6, 10, 12, 23]. Some data<br />

report that <strong>in</strong>hib<strong>in</strong> or activ<strong>in</strong> β subunit expression which is<br />

weak or absent <strong>in</strong> malignant <strong>tumor</strong>s may predict malignancy<br />

[4]. Tumor necrosis, nuclear atypia, vascular or capsular<br />

<strong>in</strong>vasion and mitotic <strong>in</strong>dex are not useful to dist<strong>in</strong>guish benign<br />

and malignant <strong>tumor</strong>s [28].<br />

Successful treatment <strong>of</strong> malignant pheochromocytoma<br />

requires a multidiscipl<strong>in</strong>ary approach and is based on surgery,<br />

targeted radio<strong>the</strong>rapy with 131 I-MIBG, chemo<strong>the</strong>rapy<br />

and pharmaco<strong>the</strong>rapy.<br />

Surgery<br />

Radical surgical resection <strong>of</strong> primary <strong>tumor</strong> and metastases<br />

after a period <strong>of</strong> pharmacological α-adrenergic blockade is<br />

<strong>the</strong> treatment <strong>of</strong> choice [5, 6, 18, 19, 22, 23, 27, 28]. However,<br />

<strong>in</strong> patients with dissem<strong>in</strong>ated disease radical surgical approach<br />

is <strong>of</strong>ten not possible. Even palliative surgery to reduce<br />

<strong>tumor</strong> burden can improve <strong>the</strong> response to fur<strong>the</strong>r <strong>the</strong>rapy<br />

[18, 28]. Most operations are performed as open<br />

laparotomy with full abdomen exam<strong>in</strong>ation <strong>in</strong>clud<strong>in</strong>g contralateral<br />

adrenal gland, lymph nodes and o<strong>the</strong>r known sites <strong>of</strong><br />

extraadrenal <strong>tumor</strong>s [4, 12, 13, 16, 22, 27]. Dur<strong>in</strong>g <strong>the</strong> last<br />

years m<strong>in</strong>imally <strong>in</strong>vasive surgery has been widely applied<br />

and now <strong>tumor</strong> can be removed safely and successfully by<br />

laparoscopic approach [4, 10, 13, 27]. However, <strong>tumor</strong>s greater<br />

than 8 cm should not be operated this way due to <strong>in</strong>creased<br />

risk <strong>of</strong> malignancy [27]. Tumor resection can lead to serious<br />

complications because <strong>of</strong> <strong>the</strong> excessive release <strong>of</strong> catecholam<strong>in</strong>es<br />

and to postoperative hemodynamic and<br />

metabolic disturbances as a result <strong>of</strong> sudden decrease <strong>in</strong> catecholam<strong>in</strong>e<br />

levels [2]. There are no significant differences<br />

<strong>in</strong> blood pressure and heart rate between laparoscopic and<br />

open surgery [22]. To lower blood pressure and avoid hypertensive<br />

crisis patients should be pretreated pharmacologically<br />

us<strong>in</strong>g α-blockade [2–5, 10, 12, 13, 22, 27, 28]. Phenoxybenzam<strong>in</strong>e<br />

hydrochloride (Dibenzyl<strong>in</strong>e) is a non-specific<br />

β-adrenergic receptor antagonist. The most frequent side effects<br />

are orthostatic hypotension, tachycardia and prolonged<br />

hypotension after <strong>tumor</strong> removal [2–4]. To circumvent <strong>the</strong>se<br />

disadvantages selective α 1 -receptor antagonists such as<br />

prazos<strong>in</strong>, terazos<strong>in</strong> or doxazos<strong>in</strong> can be applied [2–4]. In ca-<br />

se <strong>of</strong> cardiac arrhythmias or tachycardia β-adrenergic receptor<br />

antagonists (propranolol or cardioselective) or lidoca<strong>in</strong>e<br />

should be used [2, 12]. β-receptor blockers must not be given<br />

alone or started before α-receptor antagonist due to possibility<br />

<strong>of</strong> paradoxical <strong>in</strong>crease <strong>in</strong> blood pressure accompanied<br />

by heart failure and pulmonary oedema [2, 28]. However,<br />

even if pharmacological treatment is sufficient it may<br />

not prevent severe <strong>in</strong>traoperative hypertension, tachycardia<br />

and ventricular arrhythmias [2–4, 10, 27]. The adequate preoperative<br />

preparation criteria are given <strong>in</strong> table 1. Patients survival<br />

rates range from 97,7–100% and residual hypertension<br />

is observed <strong>in</strong> 27% to 38% cases [22].<br />

Table 1<br />

Criteria <strong>of</strong> adequate preoperative pharmacological preparation<br />

[2]<br />

1. Sup<strong>in</strong>e arterial pressure ≤160/90 mmHg<br />

2. Orthostatic hypotension not exceed<strong>in</strong>g 80/45 mmHg<br />

3. ECG: ST segment or T wave free <strong>of</strong> changes for at<br />

least 2 weeks<br />

4. ≤ 1 ventricular ectopic beat every 5 m<strong>in</strong>.<br />

Radiopharmaceuticals<br />

The first-l<strong>in</strong>e systemic treatment <strong>of</strong> malignant pheochromocytoma<br />

is targeted radio<strong>the</strong>rapy. S<strong>in</strong>ce 1983 many centers<br />

have reported successful use <strong>of</strong> metaiodobenzylguanid<strong>in</strong>e labeled<br />

with 131 I ( 131 I-MIBG) [6, 11, 12, 17-20, 24, 25, 28].<br />

MIBG is a structural analogue <strong>of</strong> guanetid<strong>in</strong>e, actively taken<br />

up and stored <strong>in</strong> sympa<strong>the</strong>tic neurons and related cells similarly<br />

to norep<strong>in</strong>ephr<strong>in</strong>e [14, 17, 18]. Cellular MIBG uptake<br />

is connected with two mechanisms: active uptake type I and<br />

passive diffusion [18]. Accumulation and retention <strong>of</strong><br />

131 I-MIBG <strong>in</strong> <strong>tumor</strong> cells depends on expression <strong>of</strong> catecholam<strong>in</strong>e<br />

transporters on cell surface and <strong>in</strong> cytoplasmatic granules,<br />

where catecholam<strong>in</strong>es are stored [6]. The mechanism<br />

<strong>of</strong> cytotoxic action is based on <strong>the</strong> emission <strong>of</strong> beta radiation<br />

from decay<strong>in</strong>g radionuclide 131 I [7]. 131 I-MIBG <strong>the</strong>rapy is applied<br />

<strong>in</strong> patients with positive diagnostic 131 I-MIBG whole<br />

body sc<strong>in</strong>tigraphy confirm<strong>in</strong>g pathological focal uptake <strong>in</strong><br />

metastatic lesions. Life expectancy more than one month is<br />

desired [7]. 131 I-MIBG is adm<strong>in</strong>istered as a slow <strong>in</strong>travenous<br />

<strong>in</strong>fusion (30 m<strong>in</strong> – 4 h). S<strong>in</strong>gle <strong>the</strong>rapeutic dose ranges between<br />

70–300 mCi (2,6–11,2 GBq), usually dose is 200 mCi<br />

(7,4GBq), with cumulative activity between 200–1800 mCi<br />

(7,4 – 66,6 GBq) [6, 7, 11, 17–20, 25, 28]. To prevent thyroidal<br />

uptake and hypothyroidism potassium iodate (170 mg)<br />

or potassium iodide (100–200 mg) should be given orally<br />

48 h before 131 I-MIBG adm<strong>in</strong>istration and cont<strong>in</strong>ued for up<br />

to 10 days post <strong>the</strong>rapy. The usual dos<strong>in</strong>g <strong>in</strong> adults is 3 × 20<br />

drops <strong>of</strong> Lugol’s solution. The medicaments which may <strong>in</strong>fluence<br />

on uptake or/and retention <strong>of</strong> 131 I-MIBG have to be<br />

withdrawn for 1–2 weeks before treatment. These drugs are<br />

presented <strong>in</strong> table 2 [7, 11, 17].


Table 2<br />

The drugs which may <strong>in</strong>terfere with <strong>the</strong> uptake and/or<br />

retention <strong>of</strong> 131 I MIBG [7]<br />

Proved <strong>in</strong>terference Probable <strong>in</strong>terference<br />

Labetalol Adrenergic blockers:<br />

bretylium, guanethid<strong>in</strong>e<br />

Reserp<strong>in</strong>e Sympathomimetics:<br />

Amphetam<strong>in</strong>e, dopam<strong>in</strong>e,<br />

isoprenal<strong>in</strong>e, terbutal<strong>in</strong>e<br />

Calcium channel Phenothiaz<strong>in</strong>es:<br />

blockers chlorpromaz<strong>in</strong>e, promethaz<strong>in</strong>e<br />

Tricyclic antidepressant: Butyrophenones:<br />

Amitriptyl<strong>in</strong>e, imipram<strong>in</strong>e droperidol, haloperidol<br />

Sympathomimetics: Thioxanth<strong>in</strong>es<br />

ephedr<strong>in</strong>e<br />

Coca<strong>in</strong>e<br />

maprotil<strong>in</strong>e, trazodone<br />

131 I-MIBG <strong>the</strong>rapy is usually well-tolerated with m<strong>in</strong>imal<br />

side-effects. Nausea and vomit<strong>in</strong>g may be present dur<strong>in</strong>g<br />

48 h after 131 I-MIBG adm<strong>in</strong>istration [7, 19, 28]. Hypertensive<br />

crises occur rarely, are caused by release <strong>of</strong> catecholam<strong>in</strong>es<br />

from <strong>tumor</strong> and require α-blockade. Mild bone marrow suppression<br />

is typically observed 4–6 weeks post <strong>the</strong>rapy especially<br />

<strong>in</strong> patients with bone marrow <strong>in</strong>volvement or with impaired<br />

renal function. The limit<strong>in</strong>g factor for this treatment is<br />

cumulative bone marrow toxicity with persistent hematological<br />

effects connected with myelosuppression. Hypothyroidism<br />

may develop <strong>in</strong> some patients after <strong>in</strong>adequate thyroid blockade.<br />

The risk <strong>of</strong> secondary cancer should also be considered.<br />

Garaventa et al described 119 children with neuroblastoma treated<br />

with 131 I-MIBG and chemo<strong>the</strong>rapy. In 5 cases <strong>of</strong> study patients<br />

second malignant neoplasms were observed, <strong>in</strong> particular<br />

two cases <strong>of</strong> myeloid leukemia, one <strong>of</strong> malignant schwannoma,<br />

one <strong>of</strong> angiomatous fibrous histiocytoma and one <strong>of</strong><br />

rhabdomyosarcoma. The authors emphasize <strong>the</strong> importance <strong>of</strong><br />

long-term follow-up <strong>in</strong> children treated with this approach [9].<br />

131 I-MIBG <strong>the</strong>rapy leads to 30–58% objective responses<br />

def<strong>in</strong>ed as a reduction <strong>of</strong> <strong>tumor</strong> size and/or hormone levels<br />

greater than 50% [12, 28]. Moreover, 50–75% <strong>of</strong> patients<br />

show essential improvement <strong>in</strong> general condition and<br />

quality <strong>of</strong> life [28]. Mukherjee et al reported a series <strong>of</strong> 37<br />

patients with neuroendocr<strong>in</strong>e <strong>tumor</strong>s (15 with malignant pheochromocytoma<br />

or paraganglioma) treated with 131 I-MIBG.<br />

The mean s<strong>in</strong>gle dose was 189 mCi (range 70–300 mCi) and<br />

mean cumulative activity was 592 mCi (range 200–1592<br />

mCi). None <strong>of</strong> <strong>the</strong> patients showed a complete remission.<br />

Partial or complete symptomatic improvement was noticed<br />

<strong>in</strong> 100% <strong>of</strong> cases. 89% <strong>of</strong> patients had a complete or partial<br />

hormonal response and <strong>in</strong> 53% <strong>tumor</strong> reduction was observed<br />

[20]. Lam et al also confirmed complete symptomatic<br />

and complete or partial biochemical improvement <strong>in</strong> two patients<br />

with repeated 131 I-MIBG <strong>the</strong>rapy with high cumulati-<br />

ve activity (1000 mCi and 1800 mCi). The disease has been<br />

stabilized for several years with no serious side-effect <strong>of</strong> this<br />

treatment [18]. Similarly, good palliative effect <strong>of</strong> 131 I-MIBG<br />

<strong>the</strong>rapy is reported by Hoefnagel and Kon<strong>in</strong>gs [11, 17]. Rose<br />

et al described 12 patients treated with high-dose<br />

131 I-MIBG <strong>the</strong>rapy with median s<strong>in</strong>gle activity 800 mCi (range<br />

386–866 mCi) and median cumulative dose 1<strong>01</strong>5 mCi<br />

(range 386–1690 mCi). 25% <strong>of</strong> <strong>the</strong>m achieved complete remission<br />

that has been susta<strong>in</strong>ed with up to 8 years <strong>of</strong> follow-up.<br />

Two <strong>of</strong> <strong>the</strong>se patients had bone and s<strong>of</strong>t tissue metastases.<br />

Moreover, 70% <strong>of</strong> patients showed symptomatic and<br />

hormonal response. In 42% stable disease was stated. Grade<br />

3–4 thrombocytopenia and neutropenia were noticed after<br />

80% <strong>of</strong> treatments <strong>in</strong> this study and usually were transient.<br />

However, <strong>the</strong> authors did not observe a correlation between<br />

dose (mCi/kg) and hematologic toxicity [24].<br />

Somatostat<strong>in</strong> analogues labeled with 90 Y make an alternative<br />

<strong>the</strong>rapeutic option for patients with no 131 I-MIBG<br />

uptake or without favorable result <strong>of</strong> 131 I-MIBG treatment [6,<br />

12, 28]. However, <strong>the</strong> expression <strong>of</strong> somatostat<strong>in</strong> receptors<br />

on surface <strong>of</strong> pheochromocytoma <strong>tumor</strong> cells is lower than<br />

on gastro<strong>in</strong>test<strong>in</strong>al endocr<strong>in</strong>e <strong>tumor</strong>s. Unfortunately, <strong>the</strong>re<br />

are no sufficient data about <strong>the</strong> efficacy <strong>of</strong> this treatment and<br />

fur<strong>the</strong>r studies are required.<br />

Chemo<strong>the</strong>rapy<br />

In 1988 Averbuch reported for <strong>the</strong> first time that comb<strong>in</strong>ation<br />

<strong>of</strong> cyclophosphamide, v<strong>in</strong>crist<strong>in</strong>e and dacarbaz<strong>in</strong>e (CVD) was<br />

effective aga<strong>in</strong>st malignant pheochromocytoma [1]. The relatively<br />

large series <strong>in</strong>clud<strong>in</strong>g 14 patients showed favorable biochemical<br />

and <strong>tumor</strong> responses (79% and 57%, respectively)<br />

with mean duration <strong>of</strong> 21 months and m<strong>in</strong>imal side-effects,<br />

ma<strong>in</strong>ly bone marrow toxicity and hypotension [1, 2]. Tada et<br />

al described 3 patients with multiple metastases treated with<br />

CVD chemo<strong>the</strong>rapy and α-methyl-p-tyros<strong>in</strong>e. They showed<br />

that this comb<strong>in</strong>ation was safe and improved <strong>the</strong> cl<strong>in</strong>ical course<br />

[26]. Sisson at al comb<strong>in</strong>ed 131 I-MIBG <strong>the</strong>rapy with<br />

CVD <strong>in</strong> 6 patients with good response <strong>in</strong> 2 cases [25]. Unfortunately,<br />

<strong>the</strong> effect <strong>of</strong> chemo<strong>the</strong>rapy was transient without<br />

clear impact on long-term survival. However, occasional<br />

long-term survivors were described [15]. Thus, it is <strong>in</strong>dicated<br />

only <strong>in</strong> cases <strong>of</strong> failure <strong>of</strong> o<strong>the</strong>r types <strong>of</strong> treatment. [1, 15, 19].<br />

External radio<strong>the</strong>rapy<br />

External radio<strong>the</strong>rapy is not very effective. It is used as a palliative<br />

treatment <strong>of</strong> chronic pa<strong>in</strong> <strong>in</strong> patients suffer<strong>in</strong>g from<br />

bone metastases and symptoms <strong>of</strong> local <strong>tumor</strong> compression<br />

[19, 23, 28]. However, <strong>the</strong>re is no data about efficacy <strong>of</strong> radiation<br />

<strong>the</strong>rapy <strong>in</strong> pheochromocytoma.<br />

O<strong>the</strong>r methods<br />

There are some data <strong>in</strong> <strong>the</strong> literature describ<strong>in</strong>g successful<br />

embolization and radi<strong>of</strong>requency ablation <strong>of</strong> pheochromocytoma<br />

metastases [28].<br />

77


78<br />

Patients with persistent hypertension need chronic<br />

pharmaco<strong>the</strong>rapy based on α and β receptor antagonists. Calcium<br />

channel blockers also manage an effective blood pressure<br />

control without overshoot and orthostatic hypotension<br />

[2-5, 12, 28]. In case <strong>of</strong> <strong>in</strong>tolerance or resistance to α-blockers<br />

α-methylparatyros<strong>in</strong>e can be used to decrease <strong>tumor</strong> catecholam<strong>in</strong>e<br />

production [2, 28]. There are also some cl<strong>in</strong>ical<br />

experiences with unlabeled somatostat<strong>in</strong> analogues, but <strong>the</strong><br />

first results are not promis<strong>in</strong>g and no <strong>tumor</strong> regression or hormone<br />

level reduction were observed [28].<br />

Follow-up<br />

Long term, lifetime follow-up is necessary <strong>in</strong> all patients with<br />

pheochromocytoma because recurrent disease or distant metastases<br />

can develop even more than 15–20 years after successful<br />

resection <strong>of</strong> apparently benign primary <strong>tumor</strong> [6, 8,<br />

10, 12, 13, 27, 28]. Follow-up should <strong>in</strong>clude blood pressure<br />

References<br />

1. Averbach SD, Steakley CS, Young RN,<br />

et al (1988) Malignant pheochromocytoma:<br />

effective treatment with a comb<strong>in</strong>ation<br />

<strong>of</strong> cyclophosphamide, v<strong>in</strong>crist<strong>in</strong>e<br />

and dacarbaz<strong>in</strong>e. Ann Intern Med<br />

109: 267–273<br />

2. Bravo EL (1994) Evolv<strong>in</strong>g concepts <strong>in</strong><br />

<strong>the</strong> pathophysiology, diagnosis and treatment<br />

<strong>of</strong> pheochromocytoma. Endocr<br />

Rev 15: 356–368<br />

3. Bravo EL (2004) Pheochromocytoma:<br />

current perspectives <strong>in</strong> <strong>the</strong> pathogenesis,<br />

diagnosis and management. Arq<br />

Bras endocr<strong>in</strong>ol Metab 48: 746–750<br />

4. Bravo EL, Tagle R (2003) Pheochromocytoma:<br />

state-<strong>of</strong>-<strong>the</strong>-art and future<br />

prospects. Endocr Rev 24: 539–553<br />

5. Ciftci AO, Tanyel FC, Senocak ME,<br />

Buyukpamukcu N (20<strong>01</strong>) Pheochromocytoma<br />

<strong>in</strong> children. J Pediatr Surg 36:<br />

447–452<br />

6. Eisenh<strong>of</strong>er G, Bornste<strong>in</strong> SR, Brouwers<br />

FM, et al (2004) Malignant pheochromocytoma:<br />

current status and <strong>in</strong>itiatives<br />

for future progress. Endocr<strong>in</strong>e-Related<br />

Cancer 11: 423–436<br />

7. European Association <strong>of</strong> Nuclear Medic<strong>in</strong>e<br />

(2003) Guidel<strong>in</strong>es for 131 I–metaiodobenzylguanid<strong>in</strong>e<br />

<strong>the</strong>rapy. Eur J<br />

Nucl Med 30: BP23–BP26<br />

8. Fitzgerald PA, Goldfien A (2004) Adrenal<br />

Medulla. In: Greenspan FS, Gardner<br />

DG (Eds) Basic and cl<strong>in</strong>ical endocr<strong>in</strong>ology.<br />

Lange Medical Books/<br />

McGraw-Hill New York, pp 439–477<br />

9. Garaventa A, Gamb<strong>in</strong>i C, Villavecchia<br />

G, et al (2003) Second malignancies <strong>in</strong><br />

children with neuroblastoma after comb<strong>in</strong>ed<br />

treatment with 131 I-metaiodobenzylguanid<strong>in</strong>e.<br />

Cancer 97: 1332–1338<br />

10. Goldste<strong>in</strong> RE, O’Neill JA, Holcomb<br />

GW, et al (1999) Cl<strong>in</strong>ical experience<br />

over 48 years with pheochromocytoma.<br />

Ann Surg 229: 755–766<br />

11. Hoefnagel CA, Schornagel J, Valdes<br />

Olmos RA (1991) 131 I-metaiodobenzylguanid<strong>in</strong>e<br />

<strong>the</strong>rapy <strong>of</strong> malignant pheochromocytoma:<br />

<strong>in</strong>terference <strong>of</strong> medication.<br />

J Nucl Biol Med 35: 308–312<br />

12. Januszewicz W, Jarz¹b B, Januszewicz<br />

A, Prejbisz A (2005) Malignant pheochromocytoma.<br />

Arterial Hypertension<br />

9: 132–140 (<strong>in</strong> Polish)<br />

13. Januszewicz W, Prejbisz A, Januszewicz<br />

A, Pêczkowska M (2002) guz<br />

chromoch³onny-choroba o wielu obliczach.<br />

Arterial Hypertension 6:<br />

217–227 (<strong>in</strong> Polish)<br />

14. Januszewicz W, Wocial B, Chodakowska<br />

J et al. (1991) Z³oœliwy guz chromoch³onny.<br />

Pol Tyg Lek 48: 664–667<br />

(<strong>in</strong> Polish)<br />

15. Kaltas G, Mukherjee JJ, Plowman PN,<br />

Grossman AB (20<strong>01</strong>) The Role <strong>of</strong> chemo<strong>the</strong>rapy<br />

<strong>in</strong> <strong>the</strong> nonsurgical management<br />

<strong>of</strong> malignant neuroendocr<strong>in</strong>e tumours.<br />

Cl<strong>in</strong> Endocr<strong>in</strong>ol 55: 575–587<br />

16. Kaufman BH, Telander RL, van Heerden<br />

JA, Zimmerman D, Sheps SG,<br />

Dawson B (1983) Pheochromocytoma<br />

an <strong>the</strong> pediatric age group: current status.<br />

J Pediatr Surg 18: 879–884<br />

measurement, biochemical tests and imag<strong>in</strong>g studies. The first<br />

evaluation <strong>of</strong> plasma metanephr<strong>in</strong>e level or 24-hour ur<strong>in</strong>e collection<br />

for fractionated catecholam<strong>in</strong>es, metanephr<strong>in</strong>es is recommended<br />

approximately 2–6 weeks after <strong>the</strong> operation [8,<br />

22]. The next exam<strong>in</strong>ations should be obta<strong>in</strong>ed quarterly dur<strong>in</strong>g<br />

<strong>the</strong> first year after surgery and fur<strong>the</strong>r annually [6, 8]. Serum<br />

chromogran<strong>in</strong>-A can be also a good <strong>tumor</strong> marker, but<br />

only <strong>in</strong> patients with normal renal function [2, 4, 8]. Imag<strong>in</strong>g<br />

procedures <strong>in</strong>clud<strong>in</strong>g computed tomography (CT), magnetic<br />

resonance imag<strong>in</strong>g (MRI), 131 I or 123 I MIBG sc<strong>in</strong>tigraphy and<br />

new modalities such as somatostat<strong>in</strong> receptor sc<strong>in</strong>tigraphy or<br />

positron emission tomography (PET) should be performed on<br />

<strong>the</strong> basis <strong>of</strong> biochemical test f<strong>in</strong>d<strong>in</strong>gs [22].<br />

Conclud<strong>in</strong>g, successful treatment <strong>of</strong> malignant pheochromocytoma<br />

still rema<strong>in</strong>s a challenge for scientists and cl<strong>in</strong>icians.<br />

Fur<strong>the</strong>r <strong>in</strong>vestigations <strong>of</strong> genetic predispositions,<br />

new molecular prognostic markers and new <strong>the</strong>rapeutical approaches<br />

are required.<br />

17. Kon<strong>in</strong>gs JE, Brun<strong>in</strong>g PF, Abel<strong>in</strong>g NG,<br />

van Gennip AH, Hoefnagel CA (1990)<br />

Diagnosis and treatment <strong>of</strong> malignant<br />

pheochromocytoma with 131 I-metaiodobenzylguanid<strong>in</strong>e:<br />

a case report. Radio<strong>the</strong>rapy<br />

and Oncology 17: 103–108<br />

18. Lam MG, Lips CJ, Jager PL, et al<br />

(2005) Repeated 131 I-metaiodobenzylguanid<strong>in</strong>e<br />

<strong>the</strong>rapy <strong>in</strong> two patients with<br />

malignant pheochromocytoma. J Cl<strong>in</strong><br />

Endocr<strong>in</strong>ol Metab 90: 5888–5895<br />

19. Lio S, Napolitano G, Giuliani C, et al<br />

(1991) A overview on <strong>the</strong> management<br />

<strong>of</strong> malignant pheochromocytoma. J<br />

Nucl Biol Med 35: 263–265<br />

20. Mukherjee JJ, Kaltas GA, Islam N, et al<br />

(20<strong>01</strong>) Treatment <strong>of</strong> metastatic carc<strong>in</strong>oids<br />

tumours, pheochromocytoma, paraganglioma<br />

and nedullary thyroid carc<strong>in</strong>oma<br />

<strong>of</strong> <strong>the</strong> thyroid with 131 I-metaiodobenzylguanid<strong>in</strong>e.<br />

Cl<strong>in</strong> Endocr<strong>in</strong>ol 55:<br />

47–60<br />

21. Neumann DR, Bausch B, McWh<strong>in</strong>ney<br />

SR, et al (2002) Germ-l<strong>in</strong>e mutations <strong>in</strong><br />

nonsyndromic pheochromocytoma. N<br />

Engl J Med 346: 1459–466<br />

22. Pacak K, L<strong>in</strong>ehan WM, Eisenh<strong>of</strong>er G,<br />

Mc Clellan MW, Goldste<strong>in</strong> DS (20<strong>01</strong>)<br />

Recent Advances <strong>in</strong> genetics, diagnosis,<br />

localization and treatment <strong>of</strong> pheochromocytoma.<br />

Ann Intern Med 134:<br />

315–329<br />

23. Pham TH, Moir Ch, Thompson GB, et<br />

al (2006) Pheochromocytoma and paraganglioma<br />

<strong>in</strong> children: a review <strong>of</strong> medical<br />

surgical management at a tertiary<br />

care center. Pediatrics 118: 1109–1117


24. Rose B, Matthay K, Price D, et al<br />

(2003) High-dose 131 I-metaiodobenzylguanid<strong>in</strong>e<br />

<strong>the</strong>rapy for 12 patient with<br />

malignant pheochromocytoma. Cancer<br />

98: 239–248<br />

25. Sisson JC, Shapiro BM, Shulk<strong>in</strong> BL,<br />

Urba S, Zempel S, Spaudl<strong>in</strong>g S (1999)<br />

Treatment <strong>of</strong> malignant pheochromocytoma<br />

with 131 I-metaiodobenzylguanid<strong>in</strong>e<br />

and chemo<strong>the</strong>rapy. Am J Cl<strong>in</strong> Oncol<br />

22: 364–370<br />

26. Tada K, Okuda Y, Yamashita K (1998)<br />

Three cases <strong>of</strong> malignant phoechromocytoma<br />

treated with cyclophosphamide,<br />

v<strong>in</strong>crist<strong>in</strong>e and dacarbas<strong>in</strong>e comb<strong>in</strong>ation<br />

chemo<strong>the</strong>rapy and alpha-methyl-ρtyros<strong>in</strong>e<br />

to control hypercatecholam<strong>in</strong>emia.<br />

Horm Res 49: 295–297<br />

79<br />

27. Williams DT, Dann S, Wheeler MH<br />

(2003) Pheochromocytoma – views on<br />

current management. EJSO 29:<br />

483–490<br />

28. Yu J, Pacak K (2002) Management <strong>of</strong><br />

malignant pheochromocytoma. Endocr<strong>in</strong>ologist<br />

12: 291–299


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 81–87<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Paediatric differentiated thyroid cancer – differences <strong>in</strong> biology<br />

and treatment<br />

Daria Handkiewicz-Junak, Barbara Jarz¹b<br />

Departments <strong>of</strong> Nuclear Medic<strong>in</strong>e and Endocr<strong>in</strong>e Oncology<br />

Maria Sklodowska−Curie Memorial Cancer Center<br />

and Institute <strong>of</strong> Oncology, Gliwice Branch<br />

Gliwice, Poland<br />

Abstract<br />

Childhood cancer is not a one disease entity, but ra<strong>the</strong>r<br />

a spectrum <strong>of</strong> different malignancies vary<strong>in</strong>g by type <strong>of</strong> histopathology,<br />

site <strong>of</strong> disease orig<strong>in</strong>, age and sex. In this age<br />

group majority <strong>of</strong> malignancies is due to non epi<strong>the</strong>lial malignant<br />

neoplasms – leukemias and lymphomas, central nervous<br />

system tumours, sarcomas or <strong>the</strong> embryonal cancers<br />

such as neuroblastoma, ret<strong>in</strong>oblastoma and Wilms’ tumours.<br />

Carc<strong>in</strong>omas – malignant tumours <strong>of</strong> epi<strong>the</strong>lial orig<strong>in</strong> – are<br />

very rare, particularly before <strong>the</strong> adolescents years. In contrast<br />

to <strong>the</strong> adult population, where carc<strong>in</strong>omas comprise<br />

overwhelm<strong>in</strong>g majority <strong>of</strong> malignancies, <strong>in</strong> children and<br />

younger than 20 years <strong>the</strong>y comprise only about 9% <strong>of</strong> all<br />

cancers. Among <strong>the</strong>m, differentiated thyroid cancer (DTC)<br />

contributes to a dist<strong>in</strong>ctly higher morbidity than carc<strong>in</strong>oma<br />

<strong>in</strong> any o<strong>the</strong>r localization (only malignant melanomas exhibit<br />

<strong>the</strong> similar <strong>in</strong>cidence) [2].<br />

Incidence rates <strong>of</strong> thyroid carc<strong>in</strong>oma <strong>in</strong> children and<br />

adolescent younger than 20 <strong>of</strong> age constitute about 2% <strong>of</strong> all<br />

thyroid cancers. They are practically negligible <strong>in</strong> very<br />

young children, although s<strong>in</strong>gle cases, cl<strong>in</strong>ically evident already<br />

<strong>in</strong> 4–6 months old children or even neonates were described<br />

<strong>in</strong> <strong>the</strong> literature [23, 36, 53]. An average annual rate<br />

Address for correspondence<br />

Childhood differentiated thyroid cancer (DTC) is a rare disease <strong>in</strong> children account<strong>in</strong>g for only about 2%<br />

<strong>of</strong> all thyroid cancers. It has some undeniable differences with adult DTC rang<strong>in</strong>g from molecular biology<br />

to cl<strong>in</strong>ical outcome: 1) higher susceptibility to carc<strong>in</strong>ogenetic effect <strong>of</strong> ionizat<strong>in</strong>g radiation, 2) higher<br />

prevalence <strong>of</strong> RET/PTC rearrangements, 3) larger primary <strong>tumor</strong> at diagnosis; 4) metastatic pattern and<br />

features. Although recurrence rates tend to be higher <strong>in</strong> children, cause-specific mortality rema<strong>in</strong>s low. To<br />

achieve it, a multidiscipl<strong>in</strong>ary approach comprises some comb<strong>in</strong>ation <strong>of</strong> surgery, radioiod<strong>in</strong>e (131I)<br />

ablation, and thyroid hormone <strong>the</strong>rapy applied at vary<strong>in</strong>g <strong>in</strong>tensities is crucial.<br />

Key words: differentiated thyroid cancer, children, biology<br />

Daria Handkiewicz-Junak, M.D, Ph.D. Phone: +48 32 27893<strong>01</strong><br />

Wybrze¿e Armii Krajowej 15 Fax: +48-32-2789325<br />

44-100 Gliwice E-mail: dhandkiewicz@io.gliwice.pl<br />

Poland<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

<strong>of</strong> DTC per million <strong>in</strong>creases sharply <strong>in</strong> <strong>the</strong> teenagers, be<strong>in</strong>g<br />

at that time additionally <strong>in</strong>fluenced by sex. The age-specific<br />

<strong>in</strong>cidence rates for males and females beg<strong>in</strong> to diverge at age<br />

<strong>of</strong> 10 years and from age 13 <strong>the</strong> rates <strong>in</strong>crease substantially<br />

for females [2, 22] (Fig. 1).<br />

Although thyroid cancer is a rare disease <strong>in</strong> children<br />

any thyroid nodule should be viewed with suspicion and <strong>the</strong><br />

diagnostic approach should be more aggressive <strong>in</strong> children<br />

than <strong>in</strong> adults. The mean <strong>in</strong>cidence <strong>of</strong> thyroid carc<strong>in</strong>omas <strong>in</strong><br />

Fig. 1 Age distribution <strong>of</strong> differentiated thyroid cance


82<br />

childhood thyroid nodules is about 25% rang<strong>in</strong>g from 10 to<br />

50% [37] and is higher than <strong>the</strong> average <strong>in</strong>cidence <strong>of</strong> 5% to<br />

15% <strong>in</strong> adult population with thyroid nodules [17].<br />

Etiology and etiopathogenesis<br />

There were two dist<strong>in</strong>ct peaks <strong>in</strong> <strong>the</strong> <strong>in</strong>cidence <strong>of</strong> thyroid<br />

cancer <strong>in</strong> children and young adults. The first rise, seen <strong>in</strong> <strong>the</strong><br />

middle <strong>of</strong> XX century, was due to previous irradiation <strong>of</strong> head,<br />

neck and upper thorax as a form <strong>of</strong> <strong>the</strong>rapy for childhood<br />

conditions – acne, t<strong>in</strong>ea capitis, enlarged tonsils and hemangiomas<br />

[13, 31, 48]. The risk was significantly elevated<br />

10–19 yr after exposure, peak<strong>in</strong>g at 20–30 years, and decreas<strong>in</strong>g<br />

40 years after exposure [50]. After radiation ceased to<br />

be used for <strong>the</strong> treatment <strong>of</strong> <strong>the</strong>se conditions <strong>the</strong> peak <strong>of</strong> thyroid<br />

carc<strong>in</strong>omas decl<strong>in</strong>ed by half and ioniz<strong>in</strong>g radiation was<br />

established as one <strong>of</strong> <strong>the</strong> most prom<strong>in</strong>ent risk factor for thyroid<br />

cancer [6]. The second peak <strong>of</strong> thyroid cancer <strong>in</strong>cidence<br />

<strong>in</strong> children, observed <strong>in</strong> some East European countries<br />

was related to an <strong>in</strong>ternal uptake <strong>of</strong> radioiod<strong>in</strong>e 131I follow<strong>in</strong>g<br />

<strong>the</strong> Chernobyl disaster <strong>in</strong> 1986 [61]. The peak started<br />

just 4–5 years after exposure, reach<strong>in</strong>g its maximum <strong>in</strong> <strong>the</strong><br />

mid-1990s, and <strong>the</strong> disease developed ma<strong>in</strong>ly <strong>in</strong> children<br />


anaplastic cancer, even if <strong>the</strong>y show some degree <strong>of</strong> differentiation,<br />

and are <strong>of</strong>ten found <strong>in</strong> microcarc<strong>in</strong>oma which do<br />

not exhibit propensity to develop a cl<strong>in</strong>ically aggressive disease<br />

[57].<br />

Alternative way <strong>of</strong> MAPK signall<strong>in</strong>g pathway is mutation<br />

<strong>of</strong> BRAF gene. Among several mutations, a thym<strong>in</strong>e<br />

to aden<strong>in</strong>e <strong>in</strong>version <strong>in</strong> <strong>the</strong> nucleotide 1799 is <strong>the</strong> most common.<br />

It results <strong>in</strong> a substitution <strong>of</strong> a val<strong>in</strong>e with a glutamic<br />

acid at residue 600 <strong>of</strong> <strong>the</strong> prote<strong>in</strong> and lead to a constitutive<br />

activation <strong>of</strong> BRAF k<strong>in</strong>ase [10]. To date, multiple studies have<br />

confirmed that BRAF mutation is <strong>the</strong> most common event<br />

<strong>in</strong> sporadic adult papillary carc<strong>in</strong>omas and occurs <strong>in</strong> approximately<br />

45% <strong>of</strong> all cases [63]. In contrast to adult papillary<br />

carc<strong>in</strong>omas, paediatric tumours (both sporadic and radiation-<strong>in</strong>duced)<br />

have a low prevalence <strong>of</strong> BRAF mutations<br />

(0–12%) [28, 38]. In addition to papillary carc<strong>in</strong>omas, BRAF<br />

mutations are found <strong>in</strong> thyroid anaplastic and poorly differentiated<br />

carc<strong>in</strong>omas, typically <strong>in</strong> those tumours that also<br />

conta<strong>in</strong> areas <strong>of</strong> well differentiated papillary carc<strong>in</strong>oma [39].<br />

In those tumours, mutant BRAF is detectable <strong>in</strong> both well<br />

differentiated and poorly differentiated or anaplastic tumour<br />

areas, provid<strong>in</strong>g evidence that it occurs early <strong>in</strong> <strong>tumor</strong>igenesis<br />

and predisposes to tumour dedifferentiation. Kamagai et<br />

al. [27] observed only one case <strong>of</strong> BRAF mutation <strong>in</strong> 46 PTC<br />

cases diagnosed under 15 years <strong>of</strong> age, and this was a rare<br />

case <strong>of</strong> poorly differentiated cancer.<br />

Apart from older age <strong>in</strong> several studies, <strong>the</strong> presence<br />

<strong>of</strong> BRAF mutation has been found to correlate with more<br />

frequent extrathyroidal extension, advanced tumour stage<br />

at presentation, and tumour recurrence [8]. BRAF mutation<br />

was found to be an <strong>in</strong>dependent predictor <strong>of</strong> tumour<br />

recurrence, even <strong>in</strong> patients with stage I and II <strong>of</strong> <strong>the</strong> disease<br />

[64]. Importantly, BRAF mutations have also been associated<br />

with <strong>the</strong> decreased ability <strong>of</strong> <strong>tumor</strong>s to trap I-131<br />

and treatment failure <strong>of</strong> <strong>the</strong> recurrent disease [46, 64]. However,<br />

<strong>the</strong> association between BRAF mutation and more<br />

aggressive tumour behaviour has not been found <strong>in</strong> some<br />

o<strong>the</strong>r studies [59].<br />

It is a matter <strong>of</strong> future <strong>in</strong>vestigations to answer <strong>the</strong> question<br />

whe<strong>the</strong>r differences <strong>in</strong> mutations as a function <strong>of</strong> age<br />

accounts for <strong>the</strong> well documented but yet poorly understood<br />

observation that age is a relevant prognostic <strong>in</strong>dicator for patients<br />

with papillary thyroid carc<strong>in</strong>oma.<br />

Cl<strong>in</strong>ical presentation and outcome<br />

It is generally believed that differentiated thyroid carc<strong>in</strong>oma,<br />

recognised <strong>in</strong> patients younger than 45–50 years has a better<br />

outcome than <strong>in</strong> older patients. Age at diagnosis is <strong>in</strong>cluded<br />

<strong>in</strong> majority <strong>of</strong> cl<strong>in</strong>ical scor<strong>in</strong>g system <strong>of</strong> differentiated thyroid<br />

carc<strong>in</strong>oma like AGES (patient age, histologic grade <strong>of</strong><br />

<strong>the</strong> tumour, tumour extent and size <strong>of</strong> primary tumour) or<br />

MACIS (metastases, patient age, completeness <strong>of</strong> surgical<br />

resection, local <strong>in</strong>vasion and size <strong>of</strong> primary tumour) from<br />

Mayo Cl<strong>in</strong>ic. In all <strong>classification</strong>s younger age at diagnosis<br />

correlates with better prognosis. Accord<strong>in</strong>g to AJCC (American<br />

Jo<strong>in</strong>t Committee on Caner) patients with distant meta-<br />

83<br />

stases but be<strong>in</strong>g younger than 45 years <strong>of</strong> age are considered<br />

to be <strong>in</strong> stage II <strong>of</strong> disease while those older than 45 are <strong>in</strong><br />

stage IV.<br />

Favourable outcome <strong>in</strong> younger patients is based on<br />

low mortality rate. The highest specific overall survival is<br />

observed <strong>in</strong> children and adolescents where it approaches<br />

100%. However cancer deaths do occur <strong>in</strong> this age group [2].<br />

Although mortality rates <strong>in</strong> children and adolescents<br />

are much lower than <strong>in</strong> adults, <strong>in</strong> children disease is <strong>of</strong>ten more<br />

advanced at presentation and <strong>the</strong>re is a higher risk <strong>of</strong> disease<br />

recurrence [6, 20, 24, 65]. Papillary microcarc<strong>in</strong>oma def<strong>in</strong>ed<br />

as tumour less than 1–1,5 cm, is a rare diagnosis <strong>in</strong> children<br />

and <strong>in</strong> most studies accounts for less than 3% <strong>of</strong> PTC<br />

diagnosis [7,25] while <strong>in</strong> adults up to 36% <strong>of</strong> thyroid caner<br />

are below 1 cm [51]. Zimmerman et al [65] described 9% <strong>of</strong><br />

<strong>tumor</strong>s under 1 cm <strong>in</strong> children <strong>in</strong> comparison to 22% <strong>in</strong> adults.<br />

The wide range <strong>of</strong> prevalence <strong>in</strong> published studies may represent<br />

differ<strong>in</strong>g thoroughness <strong>of</strong> thyroid gland section<strong>in</strong>g (e.g.<br />

<strong>the</strong> number <strong>of</strong> section<strong>in</strong>g levels), completeness <strong>of</strong> thyroidectomy,<br />

<strong>the</strong> histological criteria for diagnos<strong>in</strong>g papillary thyroid<br />

cancer, population / geographic differences and possible<br />

differs <strong>in</strong> <strong>in</strong>tensity <strong>of</strong> thyroid screen<strong>in</strong>g. For example, Demidchik<br />

et al. [11] <strong>in</strong> <strong>the</strong>ir recent study <strong>of</strong> radiation <strong>in</strong>duced thyroid<br />

cancer, reported that <strong>in</strong> 73% <strong>of</strong> children thyroid cancer<br />

had less than 2 cm. Thus, it seems that <strong>the</strong> problem <strong>of</strong> children<br />

with DTC diagnosed less than 1–2 cm <strong>in</strong> diameter is probably<br />

important only <strong>in</strong> subgroups with extensive screen<strong>in</strong>g<br />

due to radiation exposure but not <strong>in</strong> children with sporadic caner.<br />

There is not only larger primary tumour, but also a higher<br />

propensity for lymph node and distant metastases <strong>in</strong><br />

childhood DTC [20, 65]. An extremely high propensity for<br />

lymph node metastases is exhibit by radiation <strong>in</strong>duced PTC<br />

(>80%). In sporadic PTC <strong>in</strong> children <strong>the</strong> <strong>in</strong>cidence node metastases<br />

is high and range from 40% to 60%. In our study,<br />

where cl<strong>in</strong>ical outcome <strong>of</strong> DTC <strong>in</strong> children and adolescents<br />

younger than 18 years <strong>of</strong> age was compared with young<br />

adults, we showed that <strong>in</strong>cidence <strong>of</strong> lymph node and distant<br />

metastases was respectively two and four times higher <strong>in</strong><br />

children than <strong>in</strong> young adults (Table 1).<br />

The rate <strong>of</strong> distant metastases at diagnosis <strong>of</strong> PTC<br />

shows two peaks, first <strong>in</strong> childhood and <strong>the</strong> second <strong>in</strong> patients<br />

older than 60 years [33]. In children, distant metastases<br />

outside <strong>the</strong> lungs are very rare. The literature conta<strong>in</strong>s<br />

only a few reports <strong>of</strong> bone lesions or o<strong>the</strong>r localization <strong>of</strong> distant<br />

metastases [47]. Unlike adult lesions, pediatric pulmonary<br />

DTC metastases are overwhelm<strong>in</strong>gly miliary and seldom<br />

nodular, and when detected radiographically, are almost<br />

always functional [43, 62]. For example, among 95 Byelorussian<br />

children with Chernobyl-<strong>in</strong>duced DTC lung metastases,<br />

92 (97%) had dissem<strong>in</strong>ated, and only 3 (3%), nodular<br />

pulmonary radioiod<strong>in</strong>e uptake [43]. This type <strong>of</strong> lung metastases<br />

– dissem<strong>in</strong>ated <strong>in</strong>volvement <strong>of</strong> miliary type – was also<br />

typically seen by o<strong>the</strong>r groups [1, 12].<br />

The high prevalence <strong>of</strong> functional metastases <strong>in</strong> pediatric<br />

DTC may be related to differences <strong>in</strong> sodium iodide<br />

symporter (NIS) expression. While NIS expression is redu-


84<br />

Table 1<br />

Cl<strong>in</strong>ical characteristic <strong>of</strong> children and young adults with DTC (lit)<br />

ced <strong>in</strong> cancer cells, childhood <strong>tumor</strong>s appear to have greater<br />

and more frequently detectable expression than adult <strong>tumor</strong>s<br />

[42, 47]. In <strong>the</strong> absence <strong>of</strong> TSH stimulation, NIS expression<br />

is undetectable <strong>in</strong> ~65% <strong>of</strong> papillary and ~56% <strong>of</strong> follicular<br />

cancers <strong>in</strong> patients age < 20 years [42]. In contrast, NIS<br />

expression is absent or reduced from normal <strong>in</strong> ~90% <strong>of</strong><br />

adult DTC, as assessed by reverse transcription polymerase<br />

cha<strong>in</strong> reaction [47]. Expression <strong>of</strong> o<strong>the</strong>r iod<strong>in</strong>e transport-related<br />

molecules, pendr<strong>in</strong> and apical iodide transporter<br />

(AIT), also has been found to be reduced <strong>in</strong> pediatric<br />

(Wiench, manuscript <strong>in</strong> preparation) as well as <strong>in</strong> adult DTC<br />

[18, 29], but it is unclear if it expression is greater <strong>in</strong> childhood<br />

DTC.<br />

The greater NIS expression <strong>in</strong> pediatric than <strong>in</strong> adult<br />

DTC implies greater differentiation and radioiod<strong>in</strong>e responsiveness<br />

<strong>in</strong> <strong>the</strong> former, which may be relevant to outcome.<br />

In young patients, recurrence risk was <strong>in</strong>creased <strong>in</strong> NIS-negative<br />

versus NIS-positive <strong>tumor</strong>s, even when TNM status and<br />

treatment were similar [42]. The degree <strong>of</strong> NIS expression <strong>in</strong><br />

primary DTC lesions correlated with subsequent radioiod<strong>in</strong>e<br />

uptake <strong>in</strong> metastastases [4] and <strong>the</strong> cl<strong>in</strong>ical response <strong>of</strong> recurrences<br />

[35].<br />

The net major characteristic <strong>of</strong> pediatric versus adult<br />

DTC is a generally higher recurrence rate. With 16.6 years’<br />

follow-up, this rate approaches 40% <strong>in</strong> patients with PTC<br />

diagnosed when


more efficient than use <strong>of</strong> lower activities <strong>of</strong> ~1,1 GBq. The<br />

higher activities are also more efficient <strong>in</strong> detect<strong>in</strong>g and treat<strong>in</strong>g<br />

distant (ma<strong>in</strong>ly lung) metastases. As an alternative to<br />

this fixed activity protocol, some centres give 3,7 MBq/kg <strong>of</strong><br />

body weight (range: 1,85–7,4 MBq/kg). Ano<strong>the</strong>r alternative,<br />

based on Reynolds’ calculations, is <strong>the</strong> use <strong>of</strong> diagrams adjust<strong>in</strong>g<br />

<strong>the</strong> adult activity to <strong>the</strong> age <strong>of</strong> <strong>the</strong> treated child, with<br />

larger decreases <strong>in</strong> younger children [45]. Accord<strong>in</strong>g to this<br />

system, a 15-year-old should receive about 5/6, a 10-yearold,<br />

1/2, and a 5-year-old, 1/3 <strong>the</strong> adult activity.<br />

References<br />

1. Bal CS, Kumar A, Chandra P, Dwivedi<br />

SN, Mukhopadhyaya S (2004) Is chest<br />

x-ray or high-resolution computed tomography<br />

scan <strong>of</strong> <strong>the</strong> chest sufficient<br />

<strong>in</strong>vestigation to detect pulmonary metastasis<br />

<strong>in</strong> pediatric differentiated thyroid<br />

cancer? Thyroid 14: 217–225<br />

2. Bernste<strong>in</strong> L, Gurney J (1999) Carc<strong>in</strong>omas<br />

and o<strong>the</strong>r malignant epi<strong>the</strong>lial neoplasms.<br />

In: Cancer <strong>in</strong>cidence and survival<br />

among children and adolescents:<br />

United States SEER Program 1975–<br />

1995. Harness JK, Thompson NW,<br />

McLeod MK (Eds) Cancer Statistics<br />

Branch, National Cancer Institute, Be<strong>the</strong>sda<br />

3. Bongarzone I, Vigneri P, Mariani L,<br />

Coll<strong>in</strong>i P, Pilotti S, Pierotti MA (1998)<br />

RET/NTRK1 rearrangements <strong>in</strong> thyroid<br />

gland <strong>tumor</strong>s <strong>of</strong> <strong>the</strong> papillary carc<strong>in</strong>oma<br />

family: correlation with cl<strong>in</strong>icopathological<br />

features. Cl<strong>in</strong>ical Cancer<br />

Research 4: 223–228<br />

4. Castro MR, Bergert ER, Goellner JR,<br />

Hay ID, Morris JC (20<strong>01</strong>) Immunohistochemical<br />

analysis <strong>of</strong> sodium iodide<br />

symporter expression <strong>in</strong> metastatic differentiated<br />

thyroid cancer: correlation<br />

with radioiod<strong>in</strong>e uptake. J Cl<strong>in</strong> Endocr<strong>in</strong>ol<br />

Metab 86: 5627–5632<br />

5. Cardis E, Kesm<strong>in</strong>iene A, Ivanov V et al.<br />

(2005) Risk <strong>of</strong> thyroid cancer after<br />

exposure to 131I <strong>in</strong> childhood. J Natl<br />

Cancer Inst 97: 724–732<br />

6. Catel<strong>in</strong>ois O, Verger P, Colonna M,<br />

Rogel A, Hemon D, Tirmarche M<br />

(2004) Project<strong>in</strong>g <strong>the</strong> time trend <strong>of</strong> thyroid<br />

cancers: its impact on assessment<br />

<strong>of</strong> radiation-<strong>in</strong>duced cancer risks. Health<br />

Phys 87: 606–614<br />

7. Chow SM, Law SC, Mendenhall WM,<br />

Au SK, Yau S, Mang O, Lau WH<br />

(2004) Differentiated thyroid carc<strong>in</strong>oma<br />

<strong>in</strong> childhood and adolescence-cl<strong>in</strong>ical<br />

course and role <strong>of</strong> radioiod<strong>in</strong>e. Pediatr<br />

Blood Cancer 42: 176–183<br />

Conclusions<br />

8. Ciampi R, Nikiforov YE (2006) ret/ptc<br />

rearrangements and braf mutations <strong>in</strong><br />

thyroid <strong>tumor</strong>igenesis. Endocr<strong>in</strong>ology.<br />

31 (ahead publication)<br />

9. Cooper DS, Doherty GM, et al (2006)<br />

The American Thyroid Association Guidel<strong>in</strong>es<br />

Taskforce. Management guidel<strong>in</strong>es<br />

for patients with thyroid nodules<br />

and differentiated thyroid cancer. Thyroid<br />

162: 109–142<br />

10. Davies H, Bignell GR, Cox C, et al<br />

(2002) Mutations <strong>of</strong> <strong>the</strong> BRAF gene <strong>in</strong><br />

human cancer. Nature 417: 949–995<br />

11. Demidchik YE, Demidchik EP, Re<strong>in</strong>ers<br />

C, et al (2006) Comprehensive cl<strong>in</strong>ical<br />

assessment <strong>of</strong> 740 cases <strong>of</strong> surgically<br />

treated thyroid cancer <strong>in</strong> children <strong>of</strong> Belarus.<br />

Ann Surg 243: 525–532<br />

12. Dottor<strong>in</strong>i ME, Vignati A, Mazzucchelli<br />

L, Lomuscio G, Colombo L (1997)<br />

Differentiated thyroid carc<strong>in</strong>oma <strong>in</strong><br />

children and adolescents: a 37-year<br />

experience <strong>in</strong> 85 patients. J Nucl Med<br />

38: 669–675<br />

13. Duffy BJ, Fitzgerald PJ (1950) Cancer<br />

<strong>of</strong> <strong>the</strong> thyroid <strong>in</strong> children. A report <strong>of</strong> 28<br />

children. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 10:<br />

1296–1308<br />

14. Faggiano A, Coulot J, Bellon N, et al<br />

(2004) Age-dependent variation <strong>of</strong> follicular<br />

size and expression <strong>of</strong> iod<strong>in</strong>e<br />

transporters <strong>in</strong> human thyroid tissue. J<br />

Nucl Med 45: 232–237<br />

15. Farahati J, Demidchik EP, Biko J, Re<strong>in</strong>ers<br />

C (2000) Inverse association between<br />

age at <strong>the</strong> time <strong>of</strong> radiation exposure<br />

and extent <strong>of</strong> disease <strong>in</strong> cases <strong>of</strong> radiation-<strong>in</strong>duced<br />

childhood thyroid<br />

carc<strong>in</strong>oma <strong>in</strong> Belarus. Cancer 88:<br />

1470–1476<br />

16. Fenton CL, Lukes Y, Nicholson D, D<strong>in</strong>auer<br />

CA, Francis GL, Tuttle RM<br />

(2000) The ret/PTC mutations are common<br />

<strong>in</strong> sporadic papillary thyroid carc<strong>in</strong>oma<br />

<strong>of</strong> children and young adults. J<br />

Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 85: 1170–1175<br />

There are many peculiarities <strong>in</strong> <strong>the</strong> <strong>in</strong>itial presentation and <strong>the</strong><br />

course <strong>of</strong> DTC <strong>in</strong> children when compared to adult patients.<br />

Despite differences <strong>in</strong> molecular biology, and cl<strong>in</strong>ical picture,<br />

medical <strong>in</strong>terventions are similar for both children and<br />

adults. Present research directed at <strong>the</strong> better understand<strong>in</strong>g <strong>of</strong><br />

molecular mechanism underly<strong>in</strong>g pathogenesis <strong>of</strong> thyroid<br />

cancer will likely lead to molecularly orientated diagnosis,<br />

prognosis and <strong>the</strong>rapy <strong>of</strong> differentiated thyroid cancer.<br />

85<br />

17. Frates MC, Benson CB, Doubilet PM,<br />

et al (2006) Prevalence and distribution<br />

<strong>of</strong> carc<strong>in</strong>oma <strong>in</strong> patients with solitary<br />

and multiple thyroid nodules on sonography.<br />

J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 91:<br />

3411–3417<br />

18. Gerard AC, Daumerie C, Mestdagh C,<br />

et al (2003) Correlation between <strong>the</strong><br />

loss <strong>of</strong> thyroglobul<strong>in</strong> iod<strong>in</strong>ation and <strong>the</strong><br />

expression <strong>of</strong> thyroid-specific prote<strong>in</strong>s<br />

<strong>in</strong>volved <strong>in</strong> iod<strong>in</strong>e metabolism <strong>in</strong> thyroid<br />

carc<strong>in</strong>omas. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab<br />

88: 4977–4983<br />

19. Grieco M, Santoro M, Berl<strong>in</strong>gieri MT,<br />

et al (1990) PTC is a novel rearranged<br />

form <strong>of</strong> <strong>the</strong> ret proto-oncogene and is<br />

frequently detected <strong>in</strong> vivo <strong>in</strong> human<br />

thyroid papillary carc<strong>in</strong>omas. Cell 60:<br />

557–563<br />

20. Handkiewicz-Junak D, Kalemba B, Roskosz<br />

J, et al (20<strong>01</strong>) Prognostic factors<br />

for differentiated thyroid carc<strong>in</strong>oma <strong>in</strong><br />

young patients. Nowotwory 51:<br />

365–371<br />

21. Handkiewicz-Junak D, Roskosz J, Kukulska<br />

A, et al (2006) Thyroid remnant<br />

ablation <strong>in</strong> differentiated thyroid cancer<br />

<strong>in</strong> children – tool for decreas<strong>in</strong>g locoregional<br />

recurrence and diagnosis <strong>of</strong> lung<br />

metastases. Eur J Nucl Med 32 (Supp<br />

1): S65<br />

22. Harach HR, Williams ED (1995) Childhood<br />

thyroid cancer <strong>in</strong> England and<br />

Wales. Br J Cancer 72: 777–783<br />

23. Harness JK, Thompson NW, McLeod<br />

MK, Pasieka JL, Fukuuchi A (1992)<br />

Differentiated thyroid carc<strong>in</strong>oma <strong>in</strong><br />

children and adolescents. World J Surg<br />

16: 547–553<br />

24. Jarzab B, Handkiewicz-Junak D, Wloch<br />

J (2005) Juvenile differentiated thyroid<br />

carc<strong>in</strong>oma and <strong>the</strong> role <strong>of</strong> radioiod<strong>in</strong>e <strong>in</strong><br />

its treatment: a qualitative review. Endocr<br />

Relat Cancer 12: 773–803


86<br />

25. Jarzab B, Handkiewicz Junak D, Wloch<br />

J, Kalemba B, Roskosz J, Kukulska A,<br />

Puch Z. (2000) Multivariate analysis <strong>of</strong><br />

prognostic factors for differentiated<br />

thyroid carc<strong>in</strong>oma <strong>in</strong> children. Eur J<br />

Nucl Med 27: 833–841<br />

26. Katoh R, Bray CE, Suzuki K, et al<br />

(1995) Growth activity <strong>in</strong> hyperplastic<br />

and neoplastic human thyroid determ<strong>in</strong>ed<br />

by an immunohistochemical sta<strong>in</strong><strong>in</strong>g<br />

procedure us<strong>in</strong>g monoclonal antibody<br />

MIB-1. Hum Pathol 26: 139–146<br />

27. Kumagai A, Namba H, Mitsutake N, et<br />

al (2006) Childhood thyroid carc<strong>in</strong>oma<br />

with BRAFT1799A mutation shows<br />

unique pathological features <strong>of</strong> poor<br />

differentiation. Oncol Rep 16: 123–126<br />

28. Kumagai A, Namba H, Saenko VA et al<br />

(2004) Low frequency <strong>of</strong> BRAFT<br />

1796A mutations <strong>in</strong> childhood thyroid<br />

carc<strong>in</strong>omas. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab<br />

89: 4280–4284<br />

29. Lacroix L, Pourcher T, Magnon C, et al<br />

(2004) Expression <strong>of</strong> <strong>the</strong> apical iodide<br />

transporter <strong>in</strong> human thyroid tissues:<br />

a comparison study with o<strong>the</strong>r iodide<br />

transporters. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab<br />

89: 1423–1428<br />

30. Landau D, V<strong>in</strong>i L, A’Hern R, Harmer C<br />

(2000) Thyroid cancer <strong>in</strong> children: <strong>the</strong><br />

Royal Marsden Hospital experience.<br />

Eur J Cancer 36: 214–220<br />

31. Lub<strong>in</strong> JH, Schafer DW, Ron E, Stovall<br />

M, Carroll RJ (2004) A reanalysis <strong>of</strong><br />

thyroid neoplasms <strong>in</strong> <strong>the</strong> Israeli t<strong>in</strong>ea<br />

capitis study account<strong>in</strong>g for dose uncerta<strong>in</strong>ties.<br />

Radiat Res 161: 359–368<br />

32. Mahoney MC, Lawvere S, Falkner KL,<br />

et al (2004) Thyroid cancer <strong>in</strong>cidence<br />

trends <strong>in</strong> Belarus: exam<strong>in</strong><strong>in</strong>g <strong>the</strong> impact<br />

<strong>of</strong> Chernobyl. Int J Epidemiol 33:<br />

1025–1033<br />

33. Mazzaferri EL, Jhiang SM (1994)<br />

Long-term impact <strong>of</strong> <strong>in</strong>itial surgical and<br />

medical <strong>the</strong>rapy on papillary and follicular<br />

thyroid cancer. Am J Med 97:<br />

418–428<br />

34. Mazzaferri EL, Kloos RT (20<strong>01</strong>) Cl<strong>in</strong>ical<br />

review 128: Current approaches to<br />

primary <strong>the</strong>rapy for papillary and follicular<br />

thyroid cancer. J Cl<strong>in</strong> Endocr<strong>in</strong>ol<br />

Metab 86: 1447–1463<br />

35. Mian C, Lacroix L, Alzieu L, et al<br />

(20<strong>01</strong>) Sodium iodide symporter and<br />

pendr<strong>in</strong> expression <strong>in</strong> human thyroid<br />

tissues. Thyroid 11: 825–830<br />

36. Newman KD, Black T, Heller G, et al<br />

(1998) Differentiated thyroid cancer:<br />

determ<strong>in</strong>ants <strong>of</strong> disease progression <strong>in</strong><br />

patients


54. Schlumberger M, De Vathaire F, Travagli<br />

JP, Vassal G, Lemerle J, Parmentier<br />

C, Tubiana M (1987) Differentiated<br />

thyroid carc<strong>in</strong>oma <strong>in</strong> childhood: long<br />

term follow-up <strong>of</strong> 72 patients. J Cl<strong>in</strong><br />

Endocr<strong>in</strong>ol Metab 65: 1088–1094<br />

55. Sigurdson AJ, Ronckers CM, Mertens<br />

AC, et al (2005) Primary thyroid cancer<br />

after a first tumour <strong>in</strong> childhood (<strong>the</strong><br />

Childhood Cancer Survivor Study):<br />

a nested case-control study. Lancet 365:<br />

2<strong>01</strong>4–2023<br />

56. Soares P, Fonseca E, Wynford-Thomas<br />

D, Sobr<strong>in</strong>ho-Simoes M (1998) Sporadic<br />

retrearranged papillary carc<strong>in</strong>oma <strong>of</strong><br />

<strong>the</strong> thyroid: a subset <strong>of</strong> slow grow<strong>in</strong>g,<br />

less aggressive thyroid neoplasms? J<br />

Pathol 185: 71–78<br />

57. Tall<strong>in</strong>i G, Santoro M, Helie M, Carlomagno<br />

F, Salvatore G, Chiappetta G<br />

(1998) RET/PTC oncogene activation<br />

def<strong>in</strong>es a subset <strong>of</strong> papillary thyroid<br />

carc<strong>in</strong>omas lack<strong>in</strong>g evidence <strong>of</strong> progression<br />

to poorly differentiated or undifferentiated<br />

<strong>tumor</strong> phenotypes. Cl<strong>in</strong><br />

Cancer Res 4: 287–294<br />

58. Thompson GB, Hay ID (2004) Current<br />

strategies for surgical management and<br />

adjuvant treatment <strong>of</strong> childhood papillary<br />

thyroid carc<strong>in</strong>oma. World J Surg.<br />

28: 1187–1198<br />

59. Trovisco V, Soares P, Preto et al (2005)<br />

Type and prevalence <strong>of</strong> BRAF mutations<br />

are closely associated with papillary<br />

thyroid carc<strong>in</strong>oma histotype and<br />

patients’ age but not withtumour aggressiveness.<br />

Virchows Arch 446:<br />

589–595<br />

60. Wiench M, Wloch J, Oczko M, Gubala<br />

E, Jarzab B (20<strong>01</strong>) Rearrangement <strong>of</strong><br />

<strong>the</strong> RET gene <strong>in</strong> papillary thyroid carc<strong>in</strong>oma.<br />

Wiad Lek 54 (Suppl 1): 64–71<br />

(<strong>in</strong> Polish)<br />

61. Williams D (1996) Thyroid cancer and<br />

<strong>the</strong> Chernobyl accident. J Cl<strong>in</strong> Endocr<strong>in</strong>ol<br />

Metab 81: 6–8<br />

62. Vassilopoulou-Sell<strong>in</strong> R, Kle<strong>in</strong> MJ,<br />

Smith TH, et al (1993) Pulmonary metastases<br />

<strong>in</strong> children and young adults<br />

with differentiated thyroid cancer. Cancer<br />

71: 1348–1352<br />

87<br />

63. X<strong>in</strong>g M (2005) BRAF mutation <strong>in</strong> thyroid<br />

cancer. Endocr Relat Cancer 12:<br />

245–262<br />

64. X<strong>in</strong>g M, Westra WH, Tufano RP, et al<br />

(2005) BRAF mutation predicts a poorer<br />

cl<strong>in</strong>ical prognosis for papillary thyroid<br />

cancer. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab<br />

90: 6373–6379<br />

65. Zimmerman D, Hay ID, Gough IR, et al<br />

(1988) Papillary thyroid carc<strong>in</strong>oma <strong>in</strong><br />

children and adults: long-term followup<br />

<strong>of</strong> 1039 patients conservatively treated<br />

at one <strong>in</strong>stitution dur<strong>in</strong>g three decades.<br />

Surgery 104: 1157–1166


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 89–92<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Blue Native Electrophoresis: an additional useful tool to study<br />

deficiencies <strong>of</strong> mitochondrial respiratory cha<strong>in</strong> complexes<br />

Agnieszka Karkuciñska-Wiêckowska 1 , Katarzyna Czajka 2 , Micha³ Wasilewski 2 ,<br />

Jolanta Sykut-Cegielska 3 , Maciej Pronicki 1 , Bo¿ena Cukrowska 1 , Ewa Pronicka 3 ,<br />

Krzyszt<strong>of</strong> Zab³ocki 2 , Jerzy Duszyñski 2 , Mariusz R. Wiêckowski 2<br />

1 Department <strong>of</strong> Pathology<br />

3 Division <strong>of</strong> Metabolic Diseases, Department <strong>of</strong> Pediatric<br />

The Children's Memorial Health Institute<br />

Warsaw, Poland<br />

2 Department <strong>of</strong> Cellular Biochemistry<br />

Nencki Institute <strong>of</strong> Experimental Biology, Polish Academy <strong>of</strong> Sciences<br />

Warsaw, Poland<br />

Introduction<br />

Abstract<br />

Blue Native polyacrylamide gel electrophoresis (BN-PAGE),<br />

orig<strong>in</strong>ally described by Schägger and von Jagow <strong>in</strong> 1991 [4],<br />

is an elegant method to study prote<strong>in</strong> complexes from mitochondrial<br />

membranes. It is important that BN-PAGE enables<br />

separation <strong>of</strong> membrane prote<strong>in</strong> complexes from organelles<br />

Address for correspondence<br />

Several mitochondrial disorders are connected with <strong>the</strong> decreased activity <strong>of</strong> <strong>the</strong> respiratory cha<strong>in</strong> which<br />

leads to disturbance <strong>in</strong> cell metabolism and eventually to severe pathologic changes <strong>in</strong> <strong>the</strong> organism.<br />

Localization and measurement <strong>of</strong> changes <strong>in</strong> <strong>the</strong> amount and activity <strong>of</strong> respiratory cha<strong>in</strong> complexes can<br />

provide important <strong>in</strong>formation <strong>of</strong> <strong>the</strong> disease etiology. Components <strong>of</strong> <strong>the</strong> mitochondrial respiratory cha<strong>in</strong>,<br />

located <strong>in</strong> <strong>the</strong> <strong>in</strong>ner mitochondrial membrane and grouped <strong>in</strong> four complexes (additionally, mitochondrial<br />

ATPase is called – complex V), are work<strong>in</strong>g toge<strong>the</strong>r provid<strong>in</strong>g a pathway for redox processes. A wide<br />

spectrum <strong>of</strong> methods enables study<strong>in</strong>g <strong>the</strong> activity <strong>of</strong> respiratory cha<strong>in</strong> complexes <strong>in</strong> tissues, cell cultures<br />

and <strong>in</strong> isolated mitochondria. Under special experimental conditions <strong>the</strong> activity <strong>of</strong> each complex can be<br />

measured separately us<strong>in</strong>g spectrophotometric methods. Acrylamide Blue Native Electrophoresis,<br />

commonly used <strong>in</strong> molecular biology to study composition <strong>of</strong> prote<strong>in</strong> complexes and prote<strong>in</strong>-prote<strong>in</strong><br />

<strong>in</strong>teractions, can be successfully adapted for diagnosis <strong>of</strong> mitochondrial diseases connected with<br />

abnormalities <strong>of</strong> <strong>the</strong> respiratory cha<strong>in</strong>. BN-PAGE and <strong>in</strong>-gel activity assay can be successfully applied ei<strong>the</strong>r<br />

for detection <strong>of</strong> respiratory cha<strong>in</strong> complex deficiency or for visualization deficiencies <strong>of</strong> <strong>in</strong>dividual complex<br />

activities.<br />

Key words: Blue Native Electrophoresis, mitochondria, respiratory cha<strong>in</strong> complexes, mitochondrial disorders<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

or membrane fractions, keep<strong>in</strong>g <strong>the</strong>ir properties and enzymatic<br />

activities unchanged. BN-PAGE, supplemented by<br />

o<strong>the</strong>r methods, e.g., <strong>in</strong> gel activity assay, spectrophotometric<br />

measurement <strong>of</strong> <strong>the</strong> mitochondrial respiratory cha<strong>in</strong> activity<br />

and SDS-PAGE (as a second dimension), can be successfully<br />

used <strong>in</strong> diagnosis <strong>of</strong> respiratory cha<strong>in</strong> complex deficiencies.<br />

Mariusz R. Wiêckowski 3 Pasteur Street, 02-093 Warsaw, Poland<br />

Laboratory <strong>of</strong> Bioenergetics, Biomembranes and Metabolic Regulation tel. +48 22 589-23-72<br />

Department <strong>of</strong> Cellular Biochemistry fax +48 22 822-53-42<br />

Nencki Institute <strong>of</strong> Experimental Biology e-mail: m.wieckowski@nencki.gov.pl<br />

Polish Academy <strong>of</strong> Sciences


90<br />

Isolation <strong>of</strong> mitochondria and sample preparation<br />

for BN-electrophoresis<br />

Isolation <strong>of</strong> mitochondrial fraction from biopsies <strong>of</strong> skeletal<br />

muscles and cultured human sk<strong>in</strong> fibroblasts was made accord<strong>in</strong>g<br />

to <strong>the</strong> method previously described by Klement et al.<br />

[3] and Van Coster et al. [2]. Briefly, skeletal muscles biopsies<br />

from patients kept at –80 o C were defrost, cut <strong>in</strong>to small<br />

pieces and resuspended <strong>in</strong> homogenization buffer. 75 cm 2<br />

flask <strong>of</strong> cultured patient’s fibroblast was trypsynized. Cells<br />

were washed twice <strong>in</strong> PBS and resuspended <strong>in</strong> homogenization<br />

buffer conta<strong>in</strong><strong>in</strong>g digiton<strong>in</strong> (8 mg/ml). Cells were <strong>in</strong>cubated<br />

on ice for 15 m<strong>in</strong>utes and after were diluted twice with<br />

homogenization buffer. Skeletal muscles and fibroblast were<br />

homogenized <strong>in</strong> a glass Potter-Elvehjem homogenizer<br />

with a motor-driven Teflon pestle on ice. The homogenate <strong>of</strong><br />

skeletal muscles was centrifuged at 1,500 × g for 5 m<strong>in</strong> twice.<br />

The f<strong>in</strong>al supernatant was collected and centrifuged at<br />

10,000 × g for 10 m<strong>in</strong>. The homogenate form patients fibroblast<br />

was resuspended twice with homogenization buffer and<br />

centrifuged at 10,000 × g for 10 m<strong>in</strong>. At this step, f<strong>in</strong>al mitochondrial<br />

pellets can be immediately use for sample preparation<br />

or alternatively frozen <strong>in</strong> –80 o C for fur<strong>the</strong>r use.<br />

Dur<strong>in</strong>g <strong>the</strong> first step <strong>of</strong> sample preparation for<br />

BN-PAGE, mitochondrial membranes are resuspended <strong>in</strong> <strong>the</strong><br />

am<strong>in</strong>ocaproic acid buffer [1.5M 6-am<strong>in</strong>ocaproic acid, 50 mM<br />

Bis-Tris pH 7.0], what stabilizes prote<strong>in</strong> complexes dur<strong>in</strong>g solubilization<br />

and electrophoresis. Then, prote<strong>in</strong> complexes should<br />

be solubilized <strong>in</strong> nonionic detergent. Digiton<strong>in</strong> is one <strong>of</strong> <strong>the</strong><br />

mildest. Dodecylmaltoside (a mild neutral detergent) is stronger<br />

compar<strong>in</strong>g to digiton<strong>in</strong>, whereas Triton X-100 shows <strong>in</strong>termediate<br />

behavior. The choice <strong>of</strong> a detergent depends on <strong>the</strong><br />

stability <strong>of</strong> <strong>the</strong> prote<strong>in</strong> complex <strong>of</strong> <strong>in</strong>terest dur<strong>in</strong>g solubilization.<br />

Usually, to separate complexes <strong>of</strong> <strong>the</strong> mitochondrial respiratory<br />

cha<strong>in</strong>, n-dodecyl-β-D-maltoside is used for solubilization<br />

<strong>of</strong> mitochondrial membranes. Samples are <strong>in</strong>cubated on<br />

ice for 20–30 m<strong>in</strong>utes and <strong>the</strong>n centrifuged 100 000 × g for<br />

15 m<strong>in</strong> to remove unsolubilized material. Prote<strong>in</strong> concentration<br />

<strong>in</strong> <strong>the</strong> supernatant was determ<strong>in</strong>ed accord<strong>in</strong>g to Bradford’s<br />

method us<strong>in</strong>g Bio-Rad prote<strong>in</strong> estimation kit [1].<br />

The next step <strong>of</strong> sample preparation is an addition <strong>of</strong><br />

Coomassie Brilant Blue G250 dye to <strong>the</strong> solubilized material.<br />

In BN electrophoresis <strong>the</strong> electrophoretic mobility <strong>of</strong> prote<strong>in</strong><br />

complexes is determ<strong>in</strong>ed by <strong>the</strong> size and shape <strong>of</strong> <strong>the</strong> complexes<br />

and not by <strong>the</strong> negative charge <strong>of</strong> bound Coomassie<br />

blue dye. Thus, prote<strong>in</strong>s are not separated accord<strong>in</strong>g to <strong>the</strong><br />

charge/mass ratio but accord<strong>in</strong>g to size <strong>in</strong> acrylamide gradient<br />

gels. Dye molecules bound to prote<strong>in</strong>s impose a charge<br />

shift that even basic prote<strong>in</strong>s can migrate to <strong>the</strong> anode dur<strong>in</strong>g<br />

BN-PAGE [5].<br />

Also, <strong>in</strong> a proper amount, Coomassie blue preserves<br />

<strong>the</strong> structure <strong>of</strong> prote<strong>in</strong> complexes. A detailed scheme <strong>of</strong><br />

sample preparation is presented <strong>in</strong> Figure 1. Samples prepared<br />

<strong>in</strong> this way can be loaded on <strong>the</strong> gel directly or, alternatively,<br />

can be stored for one month at –80 o C. As an example<br />

<strong>of</strong> <strong>in</strong>ternal standard, sample prepared from bov<strong>in</strong>e heart mitochodria<br />

frozen at -80°C can be used.<br />

Fig. 1 Sample preparation for BN electrophoresis<br />

Gel preparation<br />

To enhance separation <strong>of</strong> <strong>in</strong>dividual OXPHOS complexes,<br />

a proper acrylamide gel gradient should be used. To study<br />

usefulness <strong>of</strong> BN-PAGE <strong>in</strong> <strong>the</strong> diagnosis <strong>of</strong> mitochondrial<br />

disorders, <strong>the</strong> acrylamide gel gradient <strong>of</strong> 5–12% and <strong>the</strong> size<br />

<strong>of</strong> 1 mm/16 cm/20 cm was prepared. The ready to use “recipe”<br />

for gel preparation, with calculated proportions <strong>of</strong> <strong>in</strong>dividual<br />

compounds, is presented <strong>in</strong> Table 1. To avoid rapid<br />

polymerization <strong>of</strong> <strong>the</strong> gel, it is necessary to pre-cool all solutions<br />

before montage <strong>of</strong> <strong>the</strong> gradient mixer. The gradient<br />

gel prepared <strong>in</strong> this way polymerizes at room temperature<br />

about 20–30 m<strong>in</strong>utes. Afterwards, stack<strong>in</strong>g gel can be formed<br />

and <strong>the</strong> gel is ready to use. Alternatively, it can be stored<br />

for two days at 4 o C.<br />

Table 1<br />

Composition <strong>of</strong> <strong>the</strong> solutions for 5–12% acrylamide gel<br />

formation<br />

Stack<strong>in</strong>g Separation Separation<br />

(4%) (5%) (12%)<br />

30% Acrylamide 0.9 ml 2.5 ml 6 ml<br />

3 × Gel buffer 1.5 ml 4.997 ml 4.997 ml<br />

92.5% Glycerol -------- 1.83 ml 3.25 ml<br />

H2O 3.5 ml 5.673 ml 0.753 ml<br />

TEMED 10 μl 15 μl 15 μl<br />

10% APS 50 μl 40 μl 40 μl<br />

Total 5.96 ml 15 ml 15 ml<br />

Gel buffer (3x): 150 mM Bis-Tris, 1.5 M am<strong>in</strong>ocaproic acid,<br />

adjusted to pH 7.0 with HCl at 4 o C.


Electrophoresis<br />

Generally, at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g samples are driven by <strong>the</strong> applied<br />

voltage slowly until <strong>the</strong>y have entered <strong>the</strong> stack<strong>in</strong>g gel, typically<br />

50 V for 30 m<strong>in</strong> – 1 h. Afterwards <strong>the</strong> voltage is <strong>in</strong>creased<br />

to 300 V. When <strong>the</strong> front reaches 1/3 length <strong>of</strong> <strong>the</strong> gel,<br />

cathode buffer B must be replaced by <strong>the</strong> colorless cathode<br />

buffer (Cathode buffer A – without Coomassie). Electrophoresis<br />

can be cont<strong>in</strong>ued at 300 V until <strong>the</strong> blue dye front reaches<br />

<strong>the</strong> end <strong>of</strong> <strong>the</strong> gel. It is important to run <strong>the</strong> gel <strong>in</strong> a cold<br />

room or, alternatively, to use a central cool<strong>in</strong>g core, which<br />

prevents <strong>the</strong>rmal band distortion and loss <strong>of</strong> complex activity<br />

dur<strong>in</strong>g electrophoresis. The optimal composition <strong>of</strong> electrophoresis<br />

buffers is presented bellow:<br />

Anode buffer: 50 mM Bis-Tris/HCl, pH 7.0, at 4 o C<br />

Cathode buffer A: 50 mM Tric<strong>in</strong>e, 15 mM Bis-Tris/HCl, pH 7.0, at 4 o C<br />

Cathode buffer B: cathode buffer A + 0.02% Coomassie Blue G-250<br />

Typical picture <strong>of</strong> <strong>the</strong> BN-PAGE <strong>of</strong> rat heart mitochondria<br />

(H) and mitochondria enriched membrane fraction<br />

from human cultured fibroblasts (F), that we usually get is<br />

presented <strong>in</strong> Figure 2. It is visible that <strong>in</strong> samples from cultured<br />

sk<strong>in</strong> fibroblasts, evaluation <strong>of</strong> <strong>the</strong> amounts <strong>of</strong> OXPHOS<br />

complexes is more difficult than <strong>in</strong> rat heart mitochondria,<br />

due to high background sta<strong>in</strong><strong>in</strong>g. In Figure 3 we show representative<br />

BN-PAGE <strong>of</strong> rat liver and rat heart mitochondria.<br />

Fig. 2 Typical picture <strong>of</strong> <strong>the</strong> Blue Native electrophoresis <strong>of</strong> bov<strong>in</strong>e heart<br />

mitochondria (H) – 30 μg and mitochondria from human sk<strong>in</strong> fibroblasts (F)<br />

– 30 μg (gel 5–12%)<br />

Fig. 3 Different content <strong>of</strong> complex I <strong>in</strong> rat liver and heart mitochondria demonstrated by<br />

BN-PAGE and spectrophotometric measurement <strong>of</strong> complex I activity<br />

Comparison <strong>of</strong> prote<strong>in</strong> complex pr<strong>of</strong>iles <strong>of</strong> <strong>the</strong>se samples<br />

shows that rat heart mitochondria conta<strong>in</strong> higher amount <strong>of</strong><br />

complex I than mitochondria isolated from liver. This result<br />

was confirmed by <strong>the</strong> measurement <strong>of</strong> <strong>the</strong> complex I activity<br />

<strong>in</strong> mitochondria from both tissues us<strong>in</strong>g spectrophotometric<br />

method. To observe similar activity <strong>of</strong> complex I it was<br />

necessary to use 60 and 120 μg <strong>of</strong> rat heart and liver mitochondria<br />

respectively. This result <strong>in</strong>dicates that BN electrophoresis<br />

is fully compatible with <strong>the</strong> spectrophotometric measurement<br />

<strong>of</strong> OXPHOS activity. The use <strong>of</strong> densitometry can<br />

considerably <strong>in</strong>crease its sensitivity.<br />

In-gel activity assay<br />

Dur<strong>in</strong>g Blue Native electrophoresis OXPHOS complexes reta<strong>in</strong><br />

<strong>the</strong>ir enzymatic activity [2]. To visualize activity <strong>of</strong> <strong>in</strong>dividual<br />

respiratory cha<strong>in</strong> complexes, <strong>the</strong> gel has to be <strong>in</strong>cubated<br />

at room temperature with <strong>the</strong> follow<strong>in</strong>g solutions:<br />

Complex I: In 3 mM Tris-HCl buffer (pH 7.4) dissolve: 1 mg<br />

NADH and 5 mg nitrotetrazolium blue (NBT).<br />

Complex II: To <strong>the</strong> 1.5 mM phosphate buffer (pH 7.4) add 5 mM<br />

EDTA, 10 mM KCN, 0.2 mM phenaz<strong>in</strong>e methasulfate,<br />

50 mM succ<strong>in</strong>ic acid and 5 mg nitrotetrazolium<br />

blue (NBT).<br />

Complex IV:In 9 ml 50 mM phosphate buffer (pH 7.4) dissolve<br />

5 mg 3,3’-Diamidobenzid<strong>in</strong>e tetrahydrochloride<br />

(DAB), 200 μg catalase, 10 mg cytochrome c and<br />

750 mg sucrose.<br />

Complex V: In buffer conta<strong>in</strong><strong>in</strong>g: 35 mM Tris-HCl, 270 mM glyc<strong>in</strong>e,<br />

14 mM MgSO 4 (pH 7.8) dissolve 0.2% Pb<br />

(NO 3 ) 2 and 8 mM ATP.<br />

When <strong>the</strong> color reaction is well visible, <strong>the</strong> gel can be<br />

fixed <strong>in</strong> <strong>the</strong> water solution <strong>of</strong> 10% methanol and 1% acetic<br />

acid. The gel so processed can be left <strong>in</strong> <strong>the</strong> fixation solution<br />

for fur<strong>the</strong>r analysis. In <strong>the</strong> case <strong>of</strong> complex V fixation should<br />

be avoided because it causes disappearance <strong>of</strong> <strong>the</strong> white<br />

band characteristic for <strong>the</strong> active form <strong>of</strong> complex V. Figure<br />

4 presents a typical picture <strong>of</strong> <strong>the</strong> <strong>in</strong>-gel activity assay performed<br />

for BN-PAGE <strong>of</strong> rat heart mitochondria. In <strong>the</strong> presence<br />

<strong>of</strong> enzymatic active OXPHOS complexes characteristic<br />

sta<strong>in</strong><strong>in</strong>g (color reaction) is observed. Results presented<br />

Fig. 4 In gel activity assay after BN-PAGE <strong>of</strong> rat heart<br />

mitochondria (30 μg) (gel 5–12%)<br />

91


92<br />

<strong>in</strong> Figure 5 <strong>in</strong>dicate that comb<strong>in</strong>ation <strong>of</strong> BN-PAGE and <strong>in</strong>-<br />

-gel activity assay can be successfully applied for detection<br />

<strong>of</strong> <strong>in</strong>dividual respiratory cha<strong>in</strong> complex activity deficiencies<br />

(<strong>in</strong> this case complex IV). As it is presented, only 10 μg <strong>of</strong><br />

mitochondria isolated from <strong>the</strong> skeletal muscle biopsy is sufficient<br />

to measure activity <strong>of</strong> complex IV us<strong>in</strong>g <strong>in</strong>-gel assay.<br />

Fig. 5 In gel activity assay for <strong>the</strong> evaluation <strong>of</strong> complex IV activity <strong>in</strong><br />

skeletal muscle mitochondria from healthy volunteer and patient with <strong>the</strong><br />

COX deficiency<br />

Perspectives<br />

A great advantage <strong>of</strong> <strong>the</strong> comb<strong>in</strong>ed method <strong>of</strong> BN-PAGE and<br />

<strong>in</strong>-gel activity assay is that relatively small quantities <strong>of</strong> tissue<br />

are required for evaluat<strong>in</strong>g <strong>the</strong> amount and <strong>the</strong> activity<br />

Bibliography<br />

1. Bradford MM (1976) A rapid and sensitive<br />

method for <strong>the</strong> quantitation <strong>of</strong> microgram<br />

quantities <strong>of</strong> prote<strong>in</strong> utiliz<strong>in</strong>g<br />

<strong>the</strong> pr<strong>in</strong>ciple <strong>of</strong> prote<strong>in</strong>-dye b<strong>in</strong>d<strong>in</strong>g.<br />

Anal. Biochemistry 72: 248–254<br />

2. Van Coster R, Smet J, George E, De<br />

Meirleir L, Seneca S, Van Hove J, Sebire<br />

G, Verhelst H, De Bleecker J, Van<br />

Vlem B, Verloo P and Leroy J (20<strong>01</strong>)<br />

Blue native polyacrylamide gel electrophoresis:<br />

a powerful tool <strong>in</strong> diagnosis <strong>of</strong><br />

oxidative phosphorylation defects. Pediatr<br />

Res. 50: 658–65<br />

<strong>of</strong> <strong>the</strong> mitochondrial respiratory cha<strong>in</strong> complexes. Only<br />

30 mg <strong>of</strong> heart muscle, 50 mg <strong>of</strong> skeletal muscle is needed<br />

to isolate mitochondria and to perform BN electrophoresis<br />

and <strong>in</strong>-gel activity assay [2]. Comparison <strong>of</strong> different methods<br />

for isolation and separation <strong>of</strong> <strong>the</strong> respiratory cha<strong>in</strong><br />

complexes shows that <strong>the</strong> resolution <strong>of</strong> BN-PAGE is higher<br />

than o<strong>the</strong>r methods such as Superose 6 gel filtration or sucrose-gradient<br />

ultracentrifugation.<br />

Most <strong>of</strong> <strong>the</strong> mtDNA mutations are heteroplasmic, so<br />

<strong>the</strong> correspond<strong>in</strong>g catalytic activities <strong>of</strong> respiratory cha<strong>in</strong><br />

complexes may vary significantly from cell to cell. Therefore,<br />

to make a correct diagnosis <strong>of</strong> <strong>the</strong> deficiency <strong>of</strong> respiratory<br />

cha<strong>in</strong> complexes, o<strong>the</strong>r methods, as histochemical colorimetric<br />

reactions (directly applied to <strong>the</strong> tissues and allow<strong>in</strong>g<br />

evaluation <strong>of</strong> <strong>the</strong> OXPHOS catalytic activity <strong>in</strong><br />

<strong>in</strong>dividual cells) and spectrophotometric technique (allow<strong>in</strong>g<br />

to measure OXPHOS activity <strong>in</strong> crude homogenates <strong>of</strong> <strong>the</strong><br />

tissue) should be used simultaneously with BN-PAGE.<br />

Acknowledgment<br />

3. Klement P, Nijtmans LGJ, Van den Bogert<br />

C and Houstek J (1995) Analysis <strong>of</strong><br />

oxidative Phosphorylation complexes<br />

<strong>in</strong> cultured human fibroblasts and am<strong>in</strong>ocytes<br />

by Blue-Native-Electrophoresis<br />

us<strong>in</strong>g mitoplasts isolated with <strong>the</strong> help<br />

<strong>of</strong> digiton<strong>in</strong>. Anal. Biochemistry 231:<br />

218–224<br />

Research was supported by Internal Project <strong>of</strong> The Children’s<br />

Memorial Health Institute Nr 158/06 (pr<strong>in</strong>cipal <strong>in</strong>vestigator<br />

– doc. B. Cukrowska), Internal Project <strong>of</strong> The<br />

Children’s Memorial Health Institute Nr 161/06 (pr<strong>in</strong>cipal<br />

<strong>in</strong>vestigator – doc. M. Pronicki) and Grant Nr PB<br />

0890/PO5/2005/29 (pr<strong>in</strong>cipal <strong>in</strong>vestigator – pr<strong>of</strong>. E. Pronicka).<br />

4. Schägger H and von Jagow G (1991)<br />

Blue native electrophoresis for isolation<br />

<strong>of</strong> membrane prote<strong>in</strong> complexes <strong>in</strong> enzymatically<br />

active form. Anal. Biochem<br />

199: 223–231<br />

5. Wittig I, Braun H-P and Schägger H<br />

(2006) Blue native PAGE. Nature Protocols<br />

1: 418–428


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 93–96<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Comparison between <strong>the</strong> efficiency <strong>of</strong> hair follicle-<br />

and epidermal-derived keratynocyte cell cultures<br />

Tomasz Drewa 1 , Bartosz Nadolski 1 , Ilona Sir 2 , Artur Czaplewski 1 ,<br />

Przemys³aw Ga³¹zka 3 , Andrzej I. Prokurat 3<br />

1 Department <strong>of</strong> Tissue Eng<strong>in</strong>eer<strong>in</strong>g<br />

3 Department <strong>of</strong> Pediatric Surgery<br />

Nicolaus Copernicus University<br />

Collegium Medicum <strong>in</strong> Bydgoszcz, Poland<br />

2 Department <strong>of</strong> Pathology<br />

Oncology Center<br />

Bydgoszcz, Poland<br />

Introduction<br />

Abstract<br />

Graft<strong>in</strong>g <strong>of</strong> <strong>the</strong> autologous cultured human epi<strong>the</strong>lium is<br />

a standard treatment <strong>of</strong> <strong>the</strong> burned patients [1]. Hypertrophic<br />

scarr<strong>in</strong>g and sk<strong>in</strong> graft contracture are major causes <strong>of</strong><br />

morbidity after burn <strong>in</strong>juries. The application <strong>of</strong> cultured<br />

epi<strong>the</strong>lial autografts to burn wounds is known to reduce<br />

scarr<strong>in</strong>g and contraction [6]. Cl<strong>in</strong>ical strategies to decrease<br />

hypertrophic scar should <strong>in</strong>clude an attempt at early wound<br />

closure with sk<strong>in</strong> graft<strong>in</strong>g or <strong>the</strong> application <strong>of</strong> cultured epi<strong>the</strong>lial<br />

autografts [5]. The use <strong>of</strong> cultured kerat<strong>in</strong>ocytes <strong>in</strong><br />

burned patients m<strong>in</strong>imizes <strong>the</strong> areas <strong>of</strong> autologous sk<strong>in</strong> harvest<strong>in</strong>g<br />

and reduces <strong>the</strong> amount <strong>of</strong> blood transfusions [14].<br />

The crucial po<strong>in</strong>t <strong>of</strong> cellular <strong>the</strong>rapy <strong>in</strong> <strong>the</strong> treatment <strong>of</strong> burned<br />

patients is to obta<strong>in</strong> <strong>the</strong> maximal area <strong>of</strong> cultured kera-<br />

Address for correspondence<br />

Graft<strong>in</strong>g <strong>of</strong> <strong>the</strong> autologous cultured human epi<strong>the</strong>lium is a standard treatment <strong>of</strong> burned patients. The aim<br />

<strong>of</strong> this study was to compare efficiency <strong>of</strong> hair follicle-derived kerat<strong>in</strong>ocyte culture and epidermal-derived<br />

kerat<strong>in</strong>ocyte culture. Epidermal-derived and hair follicle-derived cultures were established and cultured<br />

3 weeks without feeder layer at 37 o C and 5% CO 2 atmosphere. Cell viability, morphology and cytokerat<strong>in</strong><br />

expression was exam<strong>in</strong>ed. Three (3) epidermal and 17 hair follicles kerat<strong>in</strong>ocyte cultures were established.<br />

The cells <strong>in</strong> all cultures have epi<strong>the</strong>lial-like morphology and were positive for cytokerat<strong>in</strong>es. Dur<strong>in</strong>g <strong>the</strong><br />

3 weeks <strong>the</strong> 5 cm 2 <strong>of</strong> confluent monolayer was obta<strong>in</strong>ed from all follicles. Epidermal-derived kerat<strong>in</strong>ocytes<br />

obta<strong>in</strong>ed from 3 rats covered 3 × 75 cm 2 flasks with<strong>in</strong> 3 weeks. Our results show that hair follicle-derived<br />

culture cannot serve as <strong>the</strong> only source to built autologous graft for burned patient.<br />

Key words: burns treatment, epidermal-derived kerat<strong>in</strong>ocytes, hair-follicle kerat<strong>in</strong>ocytes<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

t<strong>in</strong>ocytes monolayer for transplantation. The aim <strong>of</strong> this<br />

study was to establish culture <strong>of</strong> kerat<strong>in</strong>ocytes from hair<br />

follicle and compare it to <strong>the</strong> epidermal derived kerat<strong>in</strong>ocyte<br />

culture.<br />

Methods<br />

Animals<br />

Three Wistar male rats ag<strong>in</strong>g 6 months, which served as<br />

a control group <strong>of</strong> ano<strong>the</strong>r experiment were used <strong>in</strong> this<br />

work. Specimens were obta<strong>in</strong>ed after <strong>the</strong> animals were sacrificed<br />

us<strong>in</strong>g carbon dioxide overdose. The donor site had been<br />

dis<strong>in</strong>fected preoperatively with a 0.5% solution <strong>of</strong> chlorhexid<strong>in</strong>e<br />

<strong>in</strong> 70% alcohol. Hairless sk<strong>in</strong> specimens <strong>of</strong> approximately<br />

1 cm2 were harvested from 3 rats. Additionally <strong>the</strong><br />

Tomasz Drewa, M.D., PhD, FEBU Phone: +48525853737, Fax: +4852585374<br />

Department <strong>of</strong> Tissue Eng<strong>in</strong>eer<strong>in</strong>g E-mail: tomaszdrewa@wp.pl<br />

Chair <strong>of</strong> Medical Biology www.tisssue-eng<strong>in</strong>eer<strong>in</strong>g.webpark.pl<br />

Karlowicza 24<br />

85-092 Bydgoszcz, Poland


94<br />

8 vibrissae follicles were dissected from each rat. Before dissection<br />

from <strong>the</strong> sk<strong>in</strong> each hair was cut 4 mm long.<br />

Epidermal-derived primary rat kerat<strong>in</strong>ocyte culture<br />

The epidermis was twice r<strong>in</strong>sed with a buffered sal<strong>in</strong>e<br />

solution (PBS, Sigma, Germany) and <strong>the</strong>n <strong>in</strong>cubated overnight<br />

<strong>in</strong> a 0.25% tryps<strong>in</strong> solution (Sigma, Germany) at 4oC. After <strong>the</strong> <strong>in</strong>cubation, <strong>the</strong> basal layer <strong>of</strong> <strong>the</strong> epidermis, conta<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> kerat<strong>in</strong>ocytes, was scraped <strong>of</strong>f. The scraped-<strong>of</strong>f kerat<strong>in</strong>ocytes<br />

were placed <strong>in</strong> tubes and centrifuged at 500 g for<br />

5 m<strong>in</strong>. The supernatant was removed and <strong>the</strong> residue was suspended<br />

<strong>in</strong> 5 ml <strong>of</strong> medium <strong>in</strong> T-flasks (Gre<strong>in</strong>er, Germany).<br />

The kerat<strong>in</strong>ocyte culture medium conta<strong>in</strong>ed Dulbecco’s Modified<br />

Eagle Medium (DMEM) and Ham’s F-12 at a 3:1 ratio,<br />

supplemented with 10% FBS. The medium was supplemented<br />

with <strong>in</strong>sul<strong>in</strong>, transfer<strong>in</strong>, triiodothyron<strong>in</strong>e, hydrocortisone,<br />

EGF and antibiotics: penicill<strong>in</strong> (50 U/ml) and<br />

streptomyc<strong>in</strong> (0.05 mg/ml) (Sigma, Germany) [15]. Cells<br />

were cultured 3 weeks without feeder layer.<br />

Hair follicle-derived primary rat kerat<strong>in</strong>ocyte culture<br />

Dissected follicles were digested <strong>in</strong> enzymatic bath<br />

(Dispase 12 mg/ml, Gibco, US) overnight at 4oC. Then <strong>the</strong><br />

follicles were digested 30 m<strong>in</strong> <strong>in</strong> room temperature <strong>in</strong> 0.1%<br />

Tryps<strong>in</strong> / 0.02% Edetate Disodium Dihydrate (Na2DDA) solution<br />

(Sigma, Germany). One follicle was put <strong>in</strong> separate<br />

well and pressed us<strong>in</strong>g <strong>the</strong> piece <strong>of</strong> glass. 2 ml <strong>of</strong> kerat<strong>in</strong>ocyte<br />

medium conta<strong>in</strong>ed DMEM and Ham’s F-12 at 3:1 ratio,<br />

supplemented with 20% <strong>of</strong> foetal bov<strong>in</strong>e serum and additives<br />

described above was added to each well. Culture was conducted<br />

3 weeks at 37oC and 5% CO2 atmosphere and proper humidity.<br />

The presence <strong>of</strong> kerat<strong>in</strong>ocytes <strong>in</strong> <strong>the</strong> culture was confirmed<br />

by an assessment <strong>of</strong> cell morphology and cytokerat<strong>in</strong><br />

expression with <strong>the</strong> use <strong>of</strong> wide-spectrum anti-cytokerat<strong>in</strong> antibodies<br />

(Pancytokerat<strong>in</strong> MMF, Dako, Denmark). The dimensions<br />

<strong>of</strong> monolayers were compared under <strong>in</strong>verted microscope<br />

(Nikon Eclipse TS100, Japan) equipped with digital camera<br />

(Nikon E5400, Japan). Cell viability was assessed us<strong>in</strong>g<br />

trypan blue exclusion tests. Cell viability was presented as<br />

a ratio <strong>of</strong> liv<strong>in</strong>g cells to <strong>the</strong> total cell number <strong>in</strong> each culture.<br />

Results<br />

Three primary epidermal kerat<strong>in</strong>ocyte cell cultures were established<br />

accord<strong>in</strong>g to Rhe<strong>in</strong>wald and Green method and 17<br />

hair follicles were <strong>the</strong> source for primary cultures. The all<br />

cultures were positive for cytokerat<strong>in</strong>s. The epidermal-derived<br />

kerat<strong>in</strong>ocytes started to grow on <strong>the</strong> 2nd day after isolation<br />

(Fig. 1). The hair follicle-derived kerat<strong>in</strong>ocytes migrated<br />

and attached to <strong>the</strong> flask surface after 14 days (Fig. 2).<br />

The morphological features <strong>of</strong> kerat<strong>in</strong>ocytes monolayers grow<strong>in</strong>g<br />

from hair follicle and epidermis were similar. The cells<br />

<strong>in</strong> all cultures have epi<strong>the</strong>lial-like morphology (Fig. 3 and<br />

Fig. 4). Dur<strong>in</strong>g <strong>the</strong> observation time i.e. 21 days, <strong>the</strong> total size<br />

<strong>of</strong> 5cm2 <strong>of</strong> confluent monolayer was obta<strong>in</strong>ed from all follicles.<br />

Epidermal-derived kerat<strong>in</strong>ocytes obta<strong>in</strong>ed from 3 rats<br />

covered 3 × 75 cm 2 flasks with<strong>in</strong> 3 weeks. Cultures derived<br />

Fig. 1 The epidermal derived kerat<strong>in</strong>ocytes started to grow on <strong>the</strong> 2 nd day<br />

after isolation procedure. The clusters <strong>of</strong> divid<strong>in</strong>g cells can be visible.<br />

Inverted microscope, magnification 100×<br />

Fig. 2 The hair follicle derived kerat<strong>in</strong>ocytes started to migrate and attached<br />

to <strong>the</strong> grow<strong>in</strong>g surface on <strong>the</strong> 14th day after culture establish<strong>in</strong>g. The black<br />

area is <strong>the</strong> hair follicle from which cells migrate. Inverted microscope,<br />

magnification 100×<br />

Fig. 3 The epidermal derived kerat<strong>in</strong>ocytes covered <strong>the</strong> whole 75 cm 2<br />

culture flask <strong>in</strong> <strong>the</strong> end <strong>of</strong> experiment i.e. on <strong>the</strong> 21st day. Inverted<br />

microscope, magnification 100×


Fig. 4 The hair follicle derived kerat<strong>in</strong>ocytes started to form <strong>the</strong> confluent<br />

monolayer after 3 weeks. The black area is <strong>the</strong> rat hair. Inverted microscope,<br />

magnification 100×<br />

from epidermis were characterized by small amount <strong>of</strong> <strong>the</strong> fibroblasts-like<br />

cells with<strong>in</strong> <strong>the</strong> period <strong>of</strong> <strong>the</strong> first week after<br />

culture establish<strong>in</strong>g. Those fibroblasts-like cells disappeared<br />

with<strong>in</strong> <strong>the</strong> 2nd week <strong>of</strong> culture. Cell viability <strong>in</strong> hair follicles<br />

derived cultured was 85.1 + 7.0%. Epidermal-derived kerat<strong>in</strong>ocytes<br />

were characterized by 80.7 + 11.2% viability.<br />

Discussion<br />

In recent years cultured human sk<strong>in</strong> has been used as a source<br />

<strong>of</strong> new sk<strong>in</strong> to engraft onto damaged areas <strong>of</strong> burned patients,<br />

represent<strong>in</strong>g one <strong>of</strong> <strong>the</strong> first <strong>the</strong>rapeutic uses <strong>of</strong> stem<br />

cells [2]. The hair follicle bulge area is an abundant, easily<br />

accessible source <strong>of</strong> actively grow<strong>in</strong>g, pluripotent adult stem<br />

cells. The hair-follicle stem cells provide an important accessible,<br />

autologous source <strong>of</strong> adult stem cells for regenerative<br />

medic<strong>in</strong>e [7]. It was previously demonstrated that spread<strong>in</strong>g<br />

<strong>in</strong> vitro cultured human kerat<strong>in</strong>ocytes are autocr<strong>in</strong>e-<strong>in</strong>duced<br />

phenomena [3, 20].<br />

We have presented that kerat<strong>in</strong>ocytes growth is <strong>in</strong>dependent<br />

<strong>of</strong> fibroblasts feeder layer. The wound heal<strong>in</strong>g processes<br />

can be stimulated dist<strong>in</strong>ctly by Kerat<strong>in</strong>ocyte Growth<br />

Factor [8]. Kerat<strong>in</strong>ocytes regulate <strong>the</strong> expression <strong>of</strong> kerat<strong>in</strong>ocyte<br />

growth factor (KGF) <strong>in</strong> fibroblasts and decrease <strong>the</strong> connective<br />

tissue activity dur<strong>in</strong>g <strong>the</strong> end-stage <strong>of</strong> wound heal<strong>in</strong>g<br />

[12, 21].<br />

The lower region <strong>of</strong> <strong>the</strong> outer root sheath (ORS) <strong>of</strong> vibrissae<br />

follicles <strong>of</strong> adult mice conta<strong>in</strong>s clonogenic kerat<strong>in</strong>ocytes<br />

[13]. Human ORS cells can be <strong>in</strong>duced to develop highly<br />

differentiated epidermal equivalents [9]. Fusenig et al.,<br />

observed that differentiation decl<strong>in</strong><strong>in</strong>g from epi<strong>the</strong>lial cells<br />

from epidermis (NEK) over hair follicle outer root sheath<br />

(ORS) to hair matrix cells (HMC) [4]. In this work we have<br />

shown that cell culture establish<strong>in</strong>g from hair follicle and epidermis<br />

have <strong>the</strong> similar morphology <strong>in</strong> vitro.<br />

The success <strong>of</strong> kerat<strong>in</strong>ocytes graft<strong>in</strong>g is depended on<br />

<strong>the</strong> area covered with cultured epidermal cells. The total area<br />

<strong>of</strong> confluent hair-derived monolayer was small (5cm2). The<br />

surface <strong>of</strong> <strong>the</strong> epidermal-derived culture was several times<br />

greater dur<strong>in</strong>g <strong>the</strong> observation time. Thus we suggest, that <strong>the</strong><br />

hair follicle derived cultures are not sufficient for build<strong>in</strong>g<br />

graft for burned patient. The hair follicle-derived culture could<br />

be used as co-culture with epidermal cells to built cellular<br />

grafts. The cl<strong>in</strong>ical relevance <strong>of</strong> stem cells lies primarily<br />

<strong>in</strong> <strong>the</strong>ir <strong>the</strong>rapeutic potential with reconstruction <strong>of</strong> epi<strong>the</strong>lia<br />

by reimplantation <strong>of</strong> autologous stem cells. However, <strong>the</strong> benefit-to-risk<br />

ratio cannot yet be accurately estimated [18].<br />

The strategy to use hair follicle-derived kerat<strong>in</strong>ocytes for<br />

burned patient seems to be very attractive, but several problems<br />

should be resolved. On <strong>of</strong> <strong>the</strong> most important is <strong>the</strong> time<br />

necessary to obta<strong>in</strong> confluent layer. The culture <strong>of</strong> hair<br />

follicle-derived cells started to grow after 2 weeks. With<strong>in</strong><br />

<strong>the</strong> same period <strong>of</strong> time epidermal kerat<strong>in</strong>ocytes was reach<strong>in</strong>g<br />

confluence. Till now <strong>the</strong>re is no method to accelerate<br />

hair follicle-derived cells growth and short <strong>the</strong> time <strong>of</strong> culture.<br />

Burned patient requires immediate graft<strong>in</strong>g.<br />

The tissue-eng<strong>in</strong>eered, differentiated hair follicle-derived<br />

equivalent has been used only <strong>in</strong> chronic patients treatment<br />

i.e. vascular leg ulcers [19]. The management <strong>of</strong> chronic<br />

patients does not require any hurry to get <strong>the</strong> confluent<br />

culture. We thought that <strong>the</strong>re is a possibility to enrich epidermal-derived<br />

cultures with hair follicle-derived cells. This<br />

improvement would have several advantages. Epi<strong>the</strong>lial stem<br />

cells have been implicated <strong>in</strong> wound heal<strong>in</strong>g [10]. The hair<br />

follicle conta<strong>in</strong>s kerat<strong>in</strong>ocytes characterized by an extensive<br />

proliferative capacity. Some <strong>of</strong> <strong>the</strong>se cells are able to undergo<br />

at least 130 doubl<strong>in</strong>gs [16]. Kerat<strong>in</strong>ocyte graft with hair<br />

follicle- and epidermal-derived cells would represent higher<br />

proliferative potential. It is very important that follicular epi<strong>the</strong>lium<br />

is characterized with <strong>the</strong> expression <strong>of</strong> CD200 (OX-<br />

2, transmembrane glycoprote<strong>in</strong>) which modulates tolerance<br />

on graft [17]. The modulation <strong>of</strong> <strong>the</strong> <strong>in</strong>flammatory response<br />

is crucial element <strong>of</strong> cellular <strong>the</strong>rapy. The hair follicle-derived<br />

kerat<strong>in</strong>ocytes are protected from ultraviolet radiation,<br />

which is known mutagenic for human kerat<strong>in</strong>ocytes [11].<br />

In conclusion, it seems that <strong>the</strong> hair follicle-derived<br />

culture cannot serve as <strong>the</strong> only source to built autologous<br />

graft for burned patient. The hair follicle-derived cells could<br />

be used as a supplement for epidermal-derived autologous<br />

graft <strong>in</strong> <strong>the</strong> future.<br />

95


96<br />

References<br />

1. Aihara M (1989) Ultrastructural study<br />

<strong>of</strong> grafted autologous cultured human<br />

epi<strong>the</strong>lium. Br J Plast Surg 42: 35–42<br />

2. Alonso L, Fuchs E (2003) Stem cells <strong>of</strong><br />

<strong>the</strong> sk<strong>in</strong> epi<strong>the</strong>lium. Proc Natl Acad Sci<br />

U S A 100 Suppl 1: 11830–11835<br />

3. Du<strong>in</strong>slaeger L, Verbeken G, Reper P et<br />

al. (1996) Lyophilized kerat<strong>in</strong>ocyte cell<br />

lysates conta<strong>in</strong> multiple mitogenic activities<br />

and stimulate closure <strong>of</strong> meshed<br />

sk<strong>in</strong> autograft-covered burn wounds<br />

with efficiency similar to that <strong>of</strong> fresh<br />

allergenic kerat<strong>in</strong>ocyte cultures. Plast<br />

Reconstr Surg 98: 110–117<br />

4. Fusenig NE, Limat A, Stark HJ, Breitkreutz<br />

D (1994) Modulation <strong>of</strong> <strong>the</strong> differentiated<br />

phenotype <strong>of</strong> kerat<strong>in</strong>ocytes<br />

<strong>of</strong> <strong>the</strong> hair follicle and from epidermis.<br />

J Dermatol Sci 7 Suppl: S142–151<br />

5. Garner WL (1998) Epidermal regulation<br />

<strong>of</strong> dermal fibroblast activity. Plast<br />

Reconstr Surg 102: 135–139<br />

6. Harrison CA, Gossiel F, Bullock AJ, e<br />

al (2006) Investigation <strong>of</strong> kerat<strong>in</strong>ocyte<br />

regulation <strong>of</strong> collagen I syn<strong>the</strong>sis by<br />

dermal fibroblasts <strong>in</strong> a simple <strong>in</strong> vitro<br />

model. Br J Dermatol 154: 4<strong>01</strong>–410<br />

7. H<strong>of</strong>fman RM (2006) The pluripotency<br />

<strong>of</strong> hair follicle stem cells. Cell Cycle 5:<br />

232–233<br />

8. Kopp J, Wang GY, Kulmburg P, et al<br />

(2004) Accelerated wound heal<strong>in</strong>g by<br />

<strong>in</strong> vivo application <strong>of</strong> kerat<strong>in</strong>ocytes<br />

overexpress<strong>in</strong>g KGF. Mol Ther 10:<br />

86–96<br />

9. Limat A, Hunziker T (2002) Use <strong>of</strong> epidermal<br />

equivalents generated from follicular<br />

outer root sheath cells <strong>in</strong> vitro<br />

and for autologous graft<strong>in</strong>g <strong>of</strong> chronic<br />

wounds. Cells Tissues Organs 172:<br />

79–85<br />

10. Lyle S, Christ<strong>of</strong>idou-Solomidou M, Liu<br />

Y, et al (1998) The C8/144B monoclonal<br />

antibody recognizes cytokerat<strong>in</strong> 15<br />

and def<strong>in</strong>es <strong>the</strong> location <strong>of</strong> human hair<br />

follicle stem cells. J Cell Sci 111:<br />

3179–3188<br />

11. Nelson D, Gay RJ (1993) Effects <strong>of</strong> UV<br />

irradiation on a liv<strong>in</strong>g sk<strong>in</strong> equivalent.<br />

Photochem Photobiol 57: 830–837<br />

12. Now<strong>in</strong>ski D, Hoijer P, Engstrand T, et<br />

al (2002) Kerat<strong>in</strong>ocytes <strong>in</strong>hibit expression<br />

<strong>of</strong> connective tissue growth factor<br />

<strong>in</strong> fibroblasts <strong>in</strong> vitro by an <strong>in</strong>terleuk<strong>in</strong>-<br />

1alpha-dependent mechanism. J Invest<br />

Dermatol 119: 449–455<br />

13. Oshima H, Rochat A, Kedzia C, Kobayashi<br />

K, Barrandon Y (20<strong>01</strong>) Morphogenesis<br />

and renewal <strong>of</strong> hair follicles<br />

from adult multipotent stem cells. Cell<br />

104: 233–245<br />

14. Rab M, Koller R, Ruzicka M, Burda G,<br />

et al (2005) Should dermal scald burns<br />

<strong>in</strong> children be covered with autologous<br />

sk<strong>in</strong> grafts or with allergenic cultivated<br />

kerat<strong>in</strong>ocytes? - “The Viennese concept”.<br />

Burns 31: 578–586<br />

15. Rhe<strong>in</strong>wald JG, Green H (1975) Serial<br />

cultivation <strong>of</strong> stra<strong>in</strong>s <strong>of</strong> human epidermal<br />

keratyncytes: <strong>the</strong> formation <strong>of</strong> kerat<strong>in</strong>iz<strong>in</strong>g<br />

colonies from s<strong>in</strong>gle cells.<br />

Cell 6: 331<br />

16. Rochat A, Kobayashi K, Barrandon Y<br />

(1994) Location <strong>of</strong> stem cells <strong>of</strong> human<br />

hair follicles by clonal analysis. Cell 76:<br />

1063–1073<br />

17. Rosenblum MD, Olasz EB, Yancey<br />

KB, et al (2004) Expression <strong>of</strong> CD200<br />

on epi<strong>the</strong>lial cells <strong>of</strong> <strong>the</strong> mur<strong>in</strong>e hair<br />

follicle: a role <strong>in</strong> tissue specific immune<br />

tolerance? J Invest Dermatol 123:<br />

880–887<br />

18. Rzepka K, Schaarschmidt G, Nagler M,<br />

Wohlrab J (2005) Epidermal stem cells.<br />

J Dtsch Dermatol Ges 3: 962–973<br />

19. Tausche AK, Skaria M, Bohlen L, et al<br />

(2003) An autologous epidermal equivalent<br />

tissue eng<strong>in</strong>eered from follicular<br />

outer root sheath kerat<strong>in</strong>ocytes is as effective<br />

as split-thickness sk<strong>in</strong> autograft<br />

<strong>in</strong> recalcitrant vascular leg ulcers. Wound<br />

Repair Regen 11: 248–252<br />

20. Tench<strong>in</strong>i ML, Morra F, Soranzo C,<br />

Malcovati M (1995) Effects <strong>of</strong> kerat<strong>in</strong>ocyte-secreted<br />

soluble factors on spread<strong>in</strong>g,<br />

number <strong>of</strong> dendrites and cell-cell<br />

contacts <strong>of</strong> human epidermal melanocytes<br />

and dermal fibroblasts: a quantitative<br />

analysis. Epi<strong>the</strong>lial Cell Biol 4:<br />

143–155<br />

21. Witte RP, Kao WJ (2005) Kerat<strong>in</strong>ocyte-fibroblast<br />

paracr<strong>in</strong>e <strong>in</strong>teraction: <strong>the</strong><br />

effects <strong>of</strong> substrate and culture condition.<br />

Biomaterials 26: 3673–3682


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 97–102<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Histopathologic features <strong>of</strong> Wilms’ <strong>tumor</strong><br />

<strong>in</strong> <strong>the</strong> <strong>light</strong> <strong>of</strong> <strong>the</strong> <strong>revised</strong> <strong>SIOP</strong>-<strong>01</strong> <strong>classification</strong> –<br />

one centre retrospective analysis <strong>of</strong> 44 cases<br />

Jerzy Niedzielski 1 , Rafa³ Becht 1 , Katarzyna Taran 2<br />

1 Department <strong>of</strong> Pediatric Surgery and Oncology<br />

2 Department <strong>of</strong> Pathology<br />

University School <strong>of</strong> Medic<strong>in</strong>e,<br />

Lodz, Poland<br />

Introduction<br />

Abstract<br />

Wilms’ <strong>tumor</strong> (nephroblastoma) (WT) represents 8–10% <strong>of</strong><br />

<strong>the</strong> malignances that occur <strong>in</strong> <strong>the</strong> pediatric age group and is<br />

<strong>the</strong> most frequent <strong>of</strong> common solid <strong>tumor</strong>s <strong>in</strong> children<br />

(except for CNS <strong>tumor</strong>s) [5, 11]. The peak <strong>in</strong> <strong>the</strong> <strong>in</strong>cidence<br />

is observed between 1 and 5 years <strong>of</strong> age, and <strong>the</strong> <strong>tumor</strong> rarely<br />

occurs <strong>in</strong> adolescents and adults [11]. Associated congenital<br />

anomalies are found <strong>in</strong> approximately 10–15% <strong>of</strong><br />

children with WT, and <strong>the</strong> most frequent are urogenital defects<br />

[9]. WT is thought to be composed <strong>of</strong> primitive metanephric<br />

blastema. The classic nephroblastoma is made up <strong>of</strong><br />

vary<strong>in</strong>g proportions <strong>of</strong> three cell types – blastemal, stromal<br />

Address for correspondence<br />

Authors reviewed records <strong>of</strong> 44 children with Wilms’ <strong>tumor</strong> (WT), aged one month to 11 years, treated<br />

between 1993 and 20<strong>01</strong> (9 years). All patients underwent multimodal <strong>the</strong>rapy accord<strong>in</strong>g to <strong>the</strong> <strong>SIOP</strong><br />

protocols. 9 patients had favourable, 30 standard, 4 unfavourable, and one patient unclassified histologic<br />

type <strong>of</strong> WT (<strong>SIOP</strong>-93). 36 children were <strong>in</strong> cl<strong>in</strong>ical stage I and II (81.8%) and majority had standard <strong>tumor</strong><br />

histology (68.1%). A blastemal subtype <strong>of</strong> WT was found <strong>in</strong> most <strong>of</strong> <strong>the</strong> patients with standard histology<br />

(60%), while an anaplastic WT dom<strong>in</strong>ated with<strong>in</strong> <strong>the</strong> unfavourable histology group (75%). Complications<br />

occurred <strong>in</strong> 10 children (22.7%); 4 <strong>of</strong> <strong>the</strong>m died (9.1%). Event-free survival (EFS) was 86.4%, overall<br />

survival (OS) 90.9%. Follow up period ranged from 4 to 12 yrs. (mean 8.7). Simulated analysis (<strong>SIOP</strong>-<strong>01</strong>)<br />

revealed that 5 patients (11.4%) with favourable histology moved to <strong>the</strong> <strong>in</strong>termediate risk type, while 18<br />

(40.9%) with standard histology moved to <strong>the</strong> high risk type. The blastemal subtype became <strong>the</strong> most<br />

common <strong>in</strong> high risk <strong>tumor</strong>s (81.8%) and toge<strong>the</strong>r with <strong>the</strong> anaplastic subtype was responsible for mortality<br />

<strong>in</strong> this group (3/22 – 13.6%). A poorly differentiated epi<strong>the</strong>lial subtype was <strong>the</strong> most frequent (41.2%) and<br />

<strong>the</strong> only feature with decreased OS <strong>in</strong> <strong>in</strong>termediate risk <strong>tumor</strong>s. In authors’ op<strong>in</strong>ion, it should not be<br />

considered as an <strong>in</strong>termediate risk histological feature <strong>of</strong> WT.<br />

Key words: anaplastic and blastemal subtype, cl<strong>in</strong>ical pathological correlation, poorly differentiated<br />

epi<strong>the</strong>lial subtype, subtype, prognosis, Wilms’ <strong>tumor</strong><br />

Pr<strong>of</strong>. Jerzy Niedzielski MD, PhD Phone: (4842) 6177711<br />

Department <strong>of</strong> Pediatric Surgery and Urology Fax: (4842) 6177705<br />

36/50 Sporna str. jniedzielski@usk4.umed.lodz.pl<br />

91-738 Lodz, Poland<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

and epi<strong>the</strong>lial, but <strong>the</strong>y are not all present <strong>in</strong> every case. The<br />

blastemal cells usually show dist<strong>in</strong>ctive patterns <strong>of</strong> rosettes,<br />

tubules and pseudonodules. The stromal structure may conta<strong>in</strong><br />

mesenchymal component with metaplasia to striated muscles,<br />

cartilage and fat tissue [5, 9].<br />

The prognosis <strong>of</strong> patients with WT is related to <strong>the</strong> <strong>tumor</strong><br />

cl<strong>in</strong>ical stage, histological features <strong>of</strong> <strong>the</strong> <strong>tumor</strong> and treatment<br />

protocols. The overall survival rate <strong>in</strong> children with<br />

WT is approximately 90% regardless <strong>the</strong> cl<strong>in</strong>ical stage [2, 4,<br />

5, 8, 10, 11].<br />

The aim <strong>of</strong> this study was to evaluate <strong>the</strong> course <strong>of</strong> disease<br />

and results <strong>of</strong> <strong>the</strong>rapy <strong>in</strong> patients with WT treated <strong>in</strong><br />

one centre <strong>in</strong> relation to histological <strong>tumor</strong> features accord<strong>in</strong>g


98<br />

to <strong>SIOP</strong> (International Society <strong>of</strong> Pediatric Oncology) <strong>classification</strong><br />

<strong>of</strong> 1993 and verified by means <strong>of</strong> <strong>classification</strong><br />

<strong>SIOP</strong>-20<strong>01</strong> [1, 9, 10, 11].<br />

Material and methods<br />

Authors reviewed records <strong>of</strong> 44 children with WT treated at<br />

<strong>the</strong> Department <strong>of</strong> Pediatric Surgery and Oncology <strong>of</strong> <strong>the</strong><br />

University School <strong>of</strong> Medic<strong>in</strong>e <strong>in</strong> Lodz between 1993 and<br />

20<strong>01</strong>. Follow up period ranged from 4 to 12 yrs. (mean 8.7).<br />

There were 23 girls (52%) and 21 boys (48%), aged one<br />

month to 11 years (mean age 5 years). All patients underwent<br />

multimodal <strong>the</strong>rapy accord<strong>in</strong>g to <strong>the</strong> <strong>SIOP</strong> protocols. Treatment<br />

was <strong>in</strong>itiated with neoadjuvant chemo<strong>the</strong>rapy (ACTD<br />

– dact<strong>in</strong>omyc<strong>in</strong>, VCR – v<strong>in</strong>crist<strong>in</strong>e) without histologic verification,<br />

diagnosis be<strong>in</strong>g based on cl<strong>in</strong>ical presentation and<br />

results <strong>of</strong> imag<strong>in</strong>g studies. Surgical removal <strong>of</strong> <strong>the</strong> <strong>tumor</strong><br />

with <strong>in</strong>volved kidney was performed after 4-week-long (35<br />

patients) or 6-week-long (5 children) <strong>in</strong>itial chemo<strong>the</strong>rapy.<br />

Restag<strong>in</strong>g was performed and adjuvant chemo<strong>the</strong>rapy was<br />

adm<strong>in</strong>istered after histologic diagnosis <strong>of</strong> <strong>the</strong> <strong>tumor</strong> was established<br />

(ACTD – dact<strong>in</strong>omyc<strong>in</strong>, VCR – v<strong>in</strong>crist<strong>in</strong>e, EPI –<br />

epirubic<strong>in</strong>, IFO – ifosfamide, VP-16 – etoposide, CBDCA –<br />

carboplat<strong>in</strong>). Radiation <strong>the</strong>rapy was applied additionally <strong>in</strong><br />

10 children with locoregional progression <strong>of</strong> <strong>the</strong> neoplasm.<br />

In 4 <strong>in</strong>fants under 6 months <strong>of</strong> age <strong>the</strong> treatment began with<br />

primary surgical removal <strong>of</strong> <strong>the</strong> <strong>tumor</strong> without neoadjuvant<br />

chemo<strong>the</strong>rapy.<br />

The assessment <strong>of</strong> <strong>the</strong> cl<strong>in</strong>ical course <strong>of</strong> <strong>the</strong> disease <strong>in</strong>cluded:<br />

presence <strong>of</strong> distant metastases (M) detected at <strong>the</strong> diagnosis<br />

or dur<strong>in</strong>g <strong>the</strong>rapy, local recurrence <strong>of</strong> <strong>tumor</strong> confirmed<br />

by means <strong>of</strong> imag<strong>in</strong>g studies, progression <strong>of</strong> <strong>the</strong> disease and<br />

deaths. The overall survival rate was calculated <strong>in</strong> <strong>the</strong> entire<br />

group <strong>of</strong> children with WT as well as <strong>in</strong> consecutive subgroups<br />

related to <strong>the</strong> cl<strong>in</strong>ical stage and <strong>tumor</strong> histologic features.<br />

The removed <strong>tumor</strong>s were assessed histologically at<br />

<strong>the</strong> Department <strong>of</strong> Pathomorphology <strong>of</strong> <strong>the</strong> Institute <strong>of</strong> Pediatrics<br />

<strong>in</strong> Lodz accord<strong>in</strong>g to <strong>the</strong> <strong>SIOP</strong>-1993 work<strong>in</strong>g <strong>classification</strong><br />

<strong>of</strong> renal <strong>tumor</strong>s <strong>of</strong> childhood. Results were verified<br />

at <strong>the</strong> Department <strong>of</strong> Pathology <strong>of</strong> <strong>the</strong> Institute <strong>of</strong> Mo<strong>the</strong>r and<br />

Child <strong>in</strong> Warsaw. Patients were grouped <strong>in</strong> four pathological<br />

categories:<br />

Table 1<br />

Group 1 – <strong>tumor</strong>s with „favourable” histology (low grade<br />

malignancy),<br />

Group 2 – <strong>tumor</strong>s with „standard” histology (medium grade<br />

malignancy),<br />

Group 3 – <strong>tumor</strong>s with „unfavourable” histology (high grade<br />

malignancy),<br />

Group 4 – <strong>tumor</strong>s <strong>of</strong> unclassified histology due to extensive<br />

necrosis.<br />

For <strong>the</strong> purpose <strong>of</strong> this work <strong>the</strong> histopathologic diagnoses<br />

were reclassified accord<strong>in</strong>g to <strong>the</strong> <strong>revised</strong> <strong>SIOP</strong>-20<strong>01</strong><br />

work<strong>in</strong>g <strong>classification</strong> <strong>of</strong> renal <strong>tumor</strong>s <strong>of</strong> childhood to create<br />

a simulated analysis <strong>of</strong> a cl<strong>in</strong>ical course. Patients were divided<br />

<strong>in</strong> three groups: low, <strong>in</strong>termediate and high risk <strong>tumor</strong>s.<br />

The cl<strong>in</strong>ical stag<strong>in</strong>g <strong>of</strong> <strong>tumor</strong>s was done follow<strong>in</strong>g <strong>the</strong><br />

National Wilms’ Tumor Study Group (NWTSG) <strong>in</strong> <strong>the</strong> <strong>SIOP</strong><br />

modification [2, 5, 9]. The obta<strong>in</strong>ed results were subjected to<br />

a statistical analysis us<strong>in</strong>g chi2 test and Yule ratio (Q).<br />

Results<br />

Sex, age and number <strong>of</strong> patients regard<strong>in</strong>g histological types <strong>of</strong> Wilms’<br />

Of 44 patients with Wilms’ <strong>tumor</strong>, favourable histology was<br />

found <strong>in</strong> 9 children (20,5%), standard histology <strong>in</strong> 30 <strong>in</strong>stances<br />

(68,2%), unfavourable histology <strong>in</strong> 4 cases (9%) and <strong>in</strong><br />

one patient (2,3%) histological type <strong>of</strong> <strong>tumor</strong> could not be determ<strong>in</strong>ed<br />

due to its extensive necrosis, <strong>the</strong> effect <strong>of</strong> neoadjuvant<br />

chemo<strong>the</strong>rapy (<strong>SIOP</strong>-93). There was no predom<strong>in</strong>ance<br />

<strong>of</strong> any <strong>of</strong> sexes observed <strong>in</strong> any <strong>of</strong> four histological groups.<br />

The average age was comparable <strong>in</strong> patients with standard<br />

and unfavourable <strong>tumor</strong> types. Children with favourable histological<br />

features were significantly younger (p < 0,0<strong>01</strong>)<br />

(Table 1). Thirty six (36) out <strong>of</strong> 44 children were <strong>in</strong> cl<strong>in</strong>ical<br />

stage I and II (81,8%) and <strong>the</strong> majority were classified as hav<strong>in</strong>g<br />

standard histological type <strong>of</strong> <strong>tumor</strong> (30/44 – 68,1%). N<strong>in</strong>e<br />

patients with favourable <strong>tumor</strong> histology were <strong>in</strong> cl<strong>in</strong>ical<br />

stage I (66,7%) and II (33,3%). Patients with standard histology<br />

were distributed <strong>in</strong> four cl<strong>in</strong>ical stage groups, although<br />

most <strong>of</strong> <strong>the</strong>m were <strong>in</strong> stage I and II (23/30 – 76,7%). All<br />

4 children with unfavourable histological features were classified<br />

as stage II only, and <strong>the</strong> patient with uncategorized histological<br />

type <strong>of</strong> WT was <strong>in</strong> stage IV (Table 2). Survival<br />

analysis was performed <strong>in</strong> consecutive cl<strong>in</strong>ical stages <strong>in</strong> or-<br />

Histological features Number <strong>of</strong> patients Sex Age Mean age<br />

<strong>of</strong> Wilms’ <strong>tumor</strong> (%)<br />

(<strong>SIOP</strong>-93) M F<br />

I favourable 9 (20,5%) 4 5 1 mo – 4 yrs 2,2 yrs<br />

II standard 30 (68,2%) 15 15 1 mo – 8 yrs 3,4 yrs<br />

III unfavourable 4 (9,0%) 2 2 1 – 6 yrs 3,5 yrs<br />

IV unclassified 1 (2,3%) 0 1 11 yrs –<br />

TOTAL 44 (100%) 21 23 1 mo – 11 yrs 5 yrs


Table 2<br />

Number <strong>of</strong> patients and survival rate <strong>in</strong> respective cl<strong>in</strong>ical stages <strong>of</strong> Wilms’ <strong>tumor</strong> (NWTSG) regard<strong>in</strong>g histopathological<br />

<strong>classification</strong> (<strong>SIOP</strong>-93)<br />

Histological types <strong>of</strong> Cl<strong>in</strong>ical stage No <strong>of</strong> patients Survival rate<br />

Wilms’ <strong>tumor</strong> (<strong>SIOP</strong>-93) (NWTS) (%) (%)<br />

Favourable I<br />

II<br />

6<br />

3<br />

9 (20,5%)<br />

6 (100%)<br />

3 (100%)<br />

9 (100%)<br />

Standard I 16 14 (87.5%)<br />

II<br />

III<br />

7<br />

3<br />

30 (68,1%)<br />

7 (100%)<br />

2 (66,7%)<br />

IV 4 4 (100%)<br />

Unfavourable II 4 4 (9,1%) 3 (75%)<br />

Unclassified IV 1 1 (2,3%) 1 (100%)<br />

TOTAL 44 (100%) 40 (90,9%)<br />

der to exam<strong>in</strong>e possible correlation between <strong>the</strong> course <strong>of</strong> disease<br />

and cl<strong>in</strong>ical stage <strong>of</strong> <strong>tumor</strong> determ<strong>in</strong>ed at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g<br />

<strong>of</strong> disease follow<strong>in</strong>g NWTS (Table 2). But no such correlation<br />

was found <strong>in</strong> <strong>the</strong> exam<strong>in</strong>ed group. Complications <strong>of</strong> neoplastic<br />

disease were observed <strong>in</strong> ten children (22,7%). Metastatic<br />

disease was present <strong>in</strong> 4 cases (9,1%); <strong>in</strong> two patients<br />

at <strong>the</strong> diagnosis and <strong>in</strong> two dur<strong>in</strong>g <strong>the</strong>rapy with lung (3/4 –<br />

75%) and liver (1/4 – 25%) <strong>in</strong>volvement. There were 6 relapses<br />

(13,6%) and four deaths (9,1%). The highest diversity <strong>of</strong><br />

<strong>the</strong> course <strong>of</strong> disease was observed <strong>in</strong> children with a standard<br />

histological type <strong>of</strong> <strong>tumor</strong>. In this group <strong>of</strong> patients <strong>the</strong>re<br />

were 3 cases <strong>of</strong> metastatic disease, five relapses and three<br />

deaths. Out <strong>of</strong> 4 patients with unfavourable histological type<br />

one child died after recurrence and progression <strong>of</strong> disease<br />

(Table 3). The rema<strong>in</strong><strong>in</strong>g 38 patients (86,4%) completed <strong>the</strong><br />

Table 3<br />

27 (90%)<br />

<strong>the</strong>rapy and are free <strong>of</strong> disease with follow up period rang<strong>in</strong>g<br />

from 3 to 11 years (mean 7,7 years). Event-free survival<br />

(EFS) was 86.4% as compared to overall survival (OS) <strong>of</strong><br />

90,9%. Survival rate <strong>of</strong> 100% was observed <strong>in</strong> patients with<br />

favourable and unclassified histological type <strong>of</strong> <strong>tumor</strong>. In <strong>the</strong><br />

group <strong>of</strong> standard histology, 90% <strong>of</strong> children were cured<br />

compared to 75% survivors <strong>in</strong> <strong>the</strong> group <strong>of</strong> unfavourable histology<br />

(Table 2). Comparison <strong>of</strong> OS between <strong>SIOP</strong>-93 and<br />

simulated <strong>SIOP</strong>-<strong>01</strong> analysis revealed <strong>in</strong>crease <strong>in</strong> strategic<br />

groups <strong>of</strong> <strong>in</strong>termediate and high risk <strong>tumor</strong>s (Tables 2 and 4).<br />

With reference to <strong>in</strong>troduction <strong>of</strong> <strong>the</strong> <strong>revised</strong> <strong>SIOP</strong>-<br />

20<strong>01</strong> work<strong>in</strong>g <strong>classification</strong> <strong>of</strong> renal <strong>tumor</strong>s <strong>of</strong> childhood, <strong>the</strong><br />

authors performed „simulated” analysis <strong>of</strong> <strong>the</strong> cl<strong>in</strong>ical course<br />

<strong>of</strong> disease and distribution <strong>of</strong> patients <strong>in</strong> consecutive cl<strong>in</strong>ical<br />

stages. Simulation revealed that 5 patients (11,4%) with<br />

Complications <strong>of</strong> Wilms’ <strong>tumor</strong> regard<strong>in</strong>g histopathological <strong>classification</strong>s <strong>of</strong> <strong>SIOP</strong>-93 and <strong>SIOP</strong>-<strong>01</strong><br />

Complications <strong>SIOP</strong>-93 <strong>SIOP</strong>-<strong>01</strong><br />

Favourable Standard Unfavourable Unclassified Low risk Intermediate<br />

risk<br />

High risk<br />

Metastases<br />

(n=4)<br />

None 3 (3bl) None 1 1 (cn) None 3 (3bl)<br />

Recurrences<br />

(n=6)<br />

None 5 (3bl, 1da,1pde) 1 (bl) None None 1 (pde) 5 (4bl, 1da)<br />

Deaths<br />

(n=4)<br />

None 3 (2bl, 1pde) 1 (da) None None 1 (pde) 3 (2bl, 1da)<br />

TOTAL – 11 2 1 1 2 11<br />

Legends: bl – blastemal subtype, cn – complete necrosis, da – diffuse anaplasia, pde – poorly differentiated epi<strong>the</strong>lial subtype<br />

(epi<strong>the</strong>lial acc. <strong>SIOP</strong>-<strong>01</strong>)<br />

99


100<br />

Table 4<br />

Number <strong>of</strong> patients and survival rate <strong>in</strong> respective cl<strong>in</strong>ical stages <strong>of</strong> Wilms’ <strong>tumor</strong> (NWTSG) simulated on <strong>the</strong> basis <strong>of</strong> <strong>the</strong><br />

<strong>revised</strong> <strong>SIOP</strong>-<strong>01</strong> <strong>classification</strong><br />

Histological types <strong>of</strong> Cl<strong>in</strong>ical stage Number <strong>of</strong> patients Survival rate<br />

Wilms’ <strong>tumor</strong> (<strong>SIOP</strong>-<strong>01</strong>) (NWTS) (%) (%)<br />

Low risk <strong>tumor</strong>s I 2 2 (100%)<br />

II 2 5 (11,4%) 2 (100%) 5 (100%)<br />

IV 1 1 (100%)<br />

Intermediate risk <strong>tumor</strong>s I 12 11 (91.7%)<br />

II 4 17 (38,6%) 4 (100%) 16 (94.1%)<br />

IV 1 1 (100%)<br />

High risk <strong>tumor</strong>s I 8 7 (87,5%)<br />

II<br />

III<br />

8<br />

3<br />

22 (50%)<br />

7 (87,5%)<br />

2 (66,7%)<br />

19 (86.4%)<br />

IV 3 3 (100%)<br />

TOTAL 44 (100%) 40 (90,9%)<br />

favourable <strong>tumor</strong> histology moved to <strong>the</strong> <strong>in</strong>termediate risk<br />

type, while 18 children (40,9%) with standard histology moved<br />

to <strong>the</strong> high risk type, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> total number <strong>of</strong> children<br />

<strong>in</strong> this group to 22 (50%) (Table 4). All but two patients<br />

with complications <strong>of</strong> neoplastic disease were classified as<br />

hav<strong>in</strong>g high risk <strong>tumor</strong>s <strong>in</strong> <strong>the</strong> simulated analysis based on<br />

<strong>the</strong> <strong>revised</strong> <strong>SIOP</strong>-<strong>01</strong> <strong>classification</strong>. The only death <strong>in</strong> <strong>the</strong> group<br />

<strong>of</strong> <strong>in</strong>termediate risk <strong>tumor</strong>s was <strong>the</strong> patient with poorly<br />

differentiated epi<strong>the</strong>lial feature <strong>of</strong> WT (Table 3).<br />

Table 5<br />

Analyz<strong>in</strong>g <strong>the</strong> possible correlation between <strong>the</strong> stage<br />

<strong>of</strong> disease and histological features <strong>of</strong> <strong>tumor</strong> accord<strong>in</strong>g to<br />

<strong>SIOP</strong>-93 <strong>classification</strong>, patients were divided <strong>in</strong>to groups depend<strong>in</strong>g<br />

on histopathological diagnosis. The majority <strong>of</strong> cases<br />

with favourable histology were highly differentiated epi<strong>the</strong>lial<br />

and foetal-cystic subtypes. Most <strong>of</strong> <strong>the</strong> patients with<br />

standard <strong>tumor</strong> histology had a blastemal subtype (18/30 –<br />

60%), while with<strong>in</strong> <strong>the</strong> unfavourable histology group an anaplastic<br />

subtype <strong>of</strong> <strong>tumor</strong> dom<strong>in</strong>ated (3/4 – 75%) (Table 5).<br />

Complications <strong>of</strong> Wilms’ <strong>tumor</strong> regard<strong>in</strong>g histopathological <strong>classification</strong>s <strong>of</strong> <strong>SIOP</strong>-93 and <strong>SIOP</strong>-<strong>01</strong><br />

Histological Histological features <strong>of</strong> <strong>tumor</strong> Histological features <strong>of</strong> <strong>tumor</strong><br />

subtypes (<strong>SIOP</strong>-93) (<strong>SIOP</strong>-<strong>01</strong>)<br />

<strong>of</strong> Wilms’ Favourable Standard Unfavourable Unclassified Low risk Intermediate High risk<br />

<strong>tumor</strong> risk<br />

Foetal-cystic 3 (100) 3 (100)<br />

Fibrocystic 1 (100) 1 (100)<br />

Epi<strong>the</strong>lial (highly<br />

differentiated)<br />

4 (100) 4 (100)<br />

Mesoblastic 1 (100) 1 (100)<br />

Epi<strong>the</strong>lial (poorly<br />

differentiated)<br />

7 (85,7) 7 (85,7)<br />

Blastemal 18 (88,9) 18 (88,9)<br />

Stromal 5 (100) 5 (100)<br />

Diffuse anaplasia 3 (66,7) 3 (66,7)<br />

Sarcomatous 1 (100) 1 (100)<br />

Completely necrotic 1 (100) 1 (100)<br />

TOTAL (n=44)<br />

( ) OS <strong>in</strong> %.<br />

9 30 4 1 5 17 22


Simulated <strong>SIOP</strong>-<strong>01</strong> analysis showed that blastemal subtype<br />

became <strong>the</strong> most common feature <strong>of</strong> high risk histology<br />

(18/22 – 81,8%) and toge<strong>the</strong>r with <strong>the</strong> anaplastic subtype was<br />

responsible for mortality <strong>in</strong> this group (3/22 – 13,6%). A poorly<br />

differentiated epi<strong>the</strong>lial subtype was <strong>the</strong> most frequent<br />

(7/17 – 41,2%) and <strong>the</strong> only feature with decreased OS <strong>in</strong> <strong>the</strong><br />

group <strong>of</strong> <strong>in</strong>termediate risk <strong>tumor</strong>s (Table 5). Survival rate <strong>of</strong><br />

children with WT ranged <strong>in</strong> <strong>the</strong> present study from 66,7% to<br />

100% depend<strong>in</strong>g on histological subtype <strong>of</strong> <strong>the</strong> <strong>tumor</strong>. Mortality<br />

was associated with three histological subtypes: diffuse<br />

anaplasia, low differentiated epi<strong>the</strong>lial and blastemal (Tables<br />

5 and 6).<br />

Table 6<br />

Survival rate <strong>in</strong> relation to histologic subtype <strong>of</strong> Wilms’<br />

<strong>tumor</strong><br />

Histological Number Deaths Survival<br />

subtypes<br />

<strong>of</strong> <strong>tumor</strong><br />

<strong>of</strong> patients rate<br />

Diffuse anaplasia 3 1 66,7%<br />

Poorly differentiated<br />

epi<strong>the</strong>lial<br />

7 1 85,7%<br />

Blastemal 18 2 88,9%<br />

All o<strong>the</strong>rs 16 - 100%<br />

TOTAL 44 4 90,9%<br />

Discussion<br />

More than thirty years ago Currie at al. noticed <strong>the</strong> correlation<br />

between histological type <strong>of</strong> <strong>the</strong> <strong>tumor</strong> and cl<strong>in</strong>ical course<br />

<strong>of</strong> <strong>the</strong> disease [3]. Beckwith at al. were next, whose studies<br />

on WT histological structure allowed for <strong>the</strong> first time<br />

to separate two histological groups <strong>of</strong> favourable and unfavourable<br />

correlation with <strong>the</strong> cl<strong>in</strong>ical course [2]. Subsequent<br />

histopathological <strong>classification</strong>s supervised by <strong>SIOP</strong> and<br />

NWTSG created a third group: <strong>tumor</strong>s with standard histology<br />

or <strong>tumor</strong>s <strong>of</strong> <strong>in</strong>termediate malignancy [4, 6, 9, 10].<br />

The retrospective analysis performed by <strong>the</strong> authors<br />

<strong>in</strong> <strong>the</strong> group <strong>of</strong> 44 patients with WT treated <strong>in</strong> one centre between<br />

1993 and 20<strong>01</strong> revealed <strong>the</strong> 9% <strong>in</strong>cidence <strong>of</strong> <strong>tumor</strong>s<br />

with unfavourable histological features (Table 2) which was<br />

comparable with <strong>the</strong> <strong>SIOP</strong> data [10]. However, <strong>in</strong> <strong>the</strong> <strong>light</strong><br />

<strong>of</strong> <strong>the</strong> <strong>revised</strong> <strong>SIOP</strong>-<strong>01</strong> <strong>classification</strong> <strong>the</strong>se data appeared to<br />

be considerably lower and mislead<strong>in</strong>g. The simulation<br />

(<strong>SIOP</strong>-<strong>01</strong>) performed by authors demonstrated clearly that<br />

half <strong>of</strong> all treated patients (22/44 – 50%) were classified as<br />

high risk <strong>tumor</strong>s which was confirmed by <strong>the</strong> cl<strong>in</strong>ical course<br />

<strong>of</strong> disease (Table 4). Such a spectacular and significant<br />

(p < 0,00<strong>01</strong>) <strong>in</strong>crease <strong>in</strong> number <strong>of</strong> patients <strong>of</strong> this group can<br />

1<strong>01</strong><br />

be expla<strong>in</strong>ed by re<strong>classification</strong> and mov<strong>in</strong>g <strong>the</strong> children<br />

with blastemal <strong>tumor</strong> feature from <strong>the</strong> standard (<strong>SIOP</strong>-93) to<br />

<strong>the</strong> high risk group (<strong>SIOP</strong>-<strong>01</strong>) (Table 5). The observation by<br />

Re<strong>in</strong>hard et al. <strong>of</strong> a 90% <strong>in</strong>cidence <strong>of</strong> <strong>in</strong>termediate risk and<br />

7% only <strong>of</strong> high risk <strong>tumor</strong>s differed markedly from our f<strong>in</strong>d<strong>in</strong>gs<br />

[8].<br />

The statistical dependence between patient’s age and<br />

sex and histological type <strong>of</strong> <strong>tumor</strong> was not demonstrated. However,<br />

<strong>the</strong> mean age <strong>of</strong> children with <strong>tumor</strong>s <strong>of</strong> favourable<br />

histology (2,2 years) was lower than mean age <strong>of</strong> patients<br />

with standard and unfavourable types <strong>of</strong> <strong>tumor</strong> (respectively:<br />

3,4 and 3,5 years). The low cl<strong>in</strong>ical stages (I and II) were<br />

observed <strong>in</strong> <strong>tumor</strong>s with favourable histology (low risk <strong>tumor</strong>s<br />

accord<strong>in</strong>g to <strong>SIOP</strong>-<strong>01</strong>) while <strong>the</strong> high ones (III and IV)<br />

<strong>in</strong> <strong>the</strong> standard type <strong>tumor</strong>s (high risk <strong>tumor</strong>s accord<strong>in</strong>g to<br />

<strong>SIOP</strong>-<strong>01</strong>). However, <strong>the</strong> cl<strong>in</strong>ical course <strong>of</strong> disease was not<br />

statistically dependent on <strong>the</strong> <strong>tumor</strong> stage <strong>in</strong> <strong>the</strong> analyzed<br />

group <strong>of</strong> patients.<br />

In perform<strong>in</strong>g <strong>the</strong> study <strong>the</strong> authors exam<strong>in</strong>ed <strong>the</strong> <strong>in</strong>cidence<br />

<strong>of</strong> complications <strong>of</strong> neoplastic disease (metastases,<br />

recurrences, disease progression and mortality rate) as well as<br />

<strong>the</strong> survival rate <strong>in</strong> relation to histological diagnosis. It appeared<br />

that <strong>the</strong> highest <strong>in</strong>cidence <strong>of</strong> metastases (3/30 – 10%), relapses<br />

(5/30 – 16,7%) and fatal course (3/30 – 10%) that was<br />

found <strong>in</strong> <strong>the</strong> group <strong>of</strong> standard histological features <strong>of</strong> <strong>tumor</strong><br />

accord<strong>in</strong>g to <strong>SIOP</strong>-93 moved to <strong>the</strong> group <strong>of</strong> high risk <strong>tumor</strong>s<br />

after <strong>the</strong> <strong>SIOP</strong>-<strong>01</strong> re<strong>classification</strong> (Table 3) with correspond<strong>in</strong>g<br />

data <strong>of</strong> metastases – 13,6% (3/22), relapses – 22,7%<br />

(5/22) and deaths – 13,6% (3/22). The OS after re<strong>classification</strong><br />

<strong>in</strong>creased with statistical significance from 90% to 94%<br />

<strong>in</strong> <strong>the</strong> standard histology group (Q = 0,23) and from 75% to<br />

86,4% <strong>in</strong> <strong>the</strong> high risk group (Q = 0,36) (Tables 2 and 4) and<br />

<strong>the</strong> last one was higher than given <strong>in</strong> <strong>the</strong> literature [4, 7].<br />

The overall survival rate <strong>of</strong> patients with WT presented<br />

<strong>in</strong> this study differed <strong>in</strong> consecutive histological subtypes.<br />

It was significantly lower (Q = 1,0) <strong>in</strong> patients with <strong>the</strong><br />

follow<strong>in</strong>g subtypes <strong>of</strong> <strong>tumor</strong> <strong>in</strong>dependent <strong>of</strong> <strong>classification</strong>:<br />

anaplastic (66,7%), poorly differentiated epi<strong>the</strong>lial (85,7%)<br />

and blastemal (88,9%). This clearly shows that not only anaplastic<br />

and blastemal but also poorly differentiated epi<strong>the</strong>lial<br />

subtype <strong>of</strong> WT is associated with high malignancy and poor<br />

prognosis <strong>in</strong> comparison with all o<strong>the</strong>r subtypes <strong>in</strong> which<br />

a fatal course <strong>of</strong> disease was not observed. The authors have<br />

paid particular attention to <strong>the</strong> poorly differentiated epi<strong>the</strong>lial<br />

feature <strong>of</strong> WT, which as <strong>the</strong> only one out <strong>of</strong> three discussed<br />

histological subtypes was not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> high risk <strong>tumor</strong><br />

group <strong>of</strong> <strong>the</strong> new <strong>revised</strong> <strong>SIOP</strong>-<strong>01</strong> <strong>classification</strong> (<strong>the</strong><br />

common epi<strong>the</strong>lial subtype <strong>of</strong> <strong>in</strong>termediate risk <strong>tumor</strong>s).<br />

This f<strong>in</strong>d<strong>in</strong>g needs fur<strong>the</strong>r <strong>in</strong>vestigation. If it proves<br />

to be true, an adjustment <strong>of</strong> <strong>the</strong> <strong>classification</strong> should be considered.<br />

In <strong>the</strong> authors’ op<strong>in</strong>ion, because <strong>the</strong> survival rate <strong>of</strong><br />

patients with poorly differentiated epi<strong>the</strong>lial subtype was<br />

even lower than <strong>in</strong> children with blastemal subtype <strong>of</strong> <strong>tumor</strong>,<br />

<strong>the</strong> former subtype should not be considered a standard histological<br />

feature <strong>of</strong> WT.


102<br />

References<br />

1. Baccon-Gibod LA (1998) Pathological<br />

evaluation <strong>of</strong> renal <strong>tumor</strong>s <strong>in</strong> children:<br />

International Society <strong>of</strong> Pediatric Oncology<br />

approach. Pediatr Pathol 18:<br />

243–248<br />

2. Beckwith JB, Palmer NF (1978) Histopathology<br />

and prognosis <strong>of</strong> Wilms’ <strong>tumor</strong>.<br />

Cancer 41: 1937–1948<br />

3. Currie DP (1973) Wilms’ <strong>tumor</strong>: a cl<strong>in</strong>ical<br />

pathological correlation. J Urol<br />

109: 495–500<br />

4. D’Angio GJ, Breslow N, Beckwith JB<br />

et al. (1989) Treatment <strong>of</strong> Wilms’ <strong>tumor</strong>:<br />

results <strong>of</strong> <strong>the</strong> Third National<br />

Wilms’ Tumor Study. Cancer 64:<br />

349–359<br />

5. Green DM, Coppes MJ, Breslow NE et<br />

al. (1997) Wilms <strong>tumor</strong>. In: Pr<strong>in</strong>ciples<br />

and practice <strong>in</strong> Pediatric Oncology. Pizzo<br />

PA, Poplack DG (eds) 3rd ed., Lipp<strong>in</strong>cott-Raven<br />

Publishers, Philadelphia,<br />

USA, pp: 733–759<br />

6. Perek D, Dembowska-Bag<strong>in</strong>ska B,<br />

Wieckowska J (1998) Korelacja obrazu<br />

patomorfologicznego z przebiegiem<br />

kl<strong>in</strong>icznym i wynikami leczenia w guzach<br />

Wilmsa leczonych w jednym<br />

oœrodku. Ped Pol 12: 1253–1259<br />

7. Pianezza ML, Rub<strong>in</strong> S, Bass J et al.<br />

(2004) Wilms’ <strong>tumor</strong> at <strong>the</strong> Children’s<br />

Hospital <strong>of</strong> Eastern Ontario: 1990–20<strong>01</strong>.<br />

Can J Urol 11 (1): 2151–2156<br />

8. Re<strong>in</strong>hard H, Semler O, Burger D et al.<br />

(2004) Results <strong>of</strong> <strong>the</strong> <strong>SIOP</strong> 93-<strong>01</strong>/<br />

GPOH trial and study for <strong>the</strong> treatment<br />

<strong>of</strong> patients with unilateral nonmetastatic<br />

Wilms’ <strong>tumor</strong>. Kl<strong>in</strong> Pediatr 216 (3):<br />

132–140<br />

9. Sawicz-Birkowska K, Rabczynski J<br />

(1996) Histologiczna ocena nerczaków.<br />

Zalecenia Komitetu Patologów Miêdzynarodowego<br />

Towarzystwa Pediatrów<br />

Onkologów (<strong>SIOP</strong>). Podst Med<br />

Kl<strong>in</strong> Doœw 5 (supl. 2): 97–103<br />

10. Tournade MF, Com-Hougue C, Voute<br />

PA et al. (1993) Results <strong>of</strong> <strong>the</strong> sixth International<br />

Society <strong>of</strong> Pediatric Oncology<br />

Wilms’ Tumor trial and study: a risk-adapted<br />

<strong>the</strong>rapeutic approach <strong>in</strong><br />

Wilms’ <strong>tumor</strong>. J Cl<strong>in</strong> Oncol 11:<br />

1<strong>01</strong>4–1023<br />

11. Wozniak W (20<strong>01</strong>) Nowotwory lite<br />

u dzieci. In: Onkologia kl<strong>in</strong>iczna. Krzakowski<br />

M (ed), vol. 2, Borgis, Warszawa,<br />

pp: 556–603 (<strong>in</strong> Polish)


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 103–107<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Outcome <strong>of</strong> wide liver resections <strong>in</strong> children<br />

Adam Bysiek, Joanna Palka, Andrzej Zaj¹c, Sab<strong>in</strong>a Kantorowicz,<br />

Miros³aw Krysta, Bartosz Bogusz, Wojciech Górecki,<br />

Anna Taczanowska-Niemczuk, Ma³gorzata Zamora<br />

Department <strong>of</strong> Paediatric Surgery<br />

Children's Hospital, Jagiellonian University<br />

Krakow, Poland<br />

Introduction<br />

Abstract<br />

Compar<strong>in</strong>g to <strong>the</strong> adult population, partial hepatic resections<br />

<strong>in</strong> children are not commonly performed. Primary hepatic<br />

neoplasms, constitut<strong>in</strong>g less than two percent <strong>of</strong> all pediatric<br />

<strong>tumor</strong>s, are <strong>the</strong> major <strong>in</strong>dication for resection [2, 4, 5, 14].<br />

Approximately three quarters <strong>of</strong> all liver lesions are malignant.<br />

Epi<strong>the</strong>lial <strong>tumor</strong>s, hepatoblastoma and hepatocarc<strong>in</strong>oma,<br />

are <strong>the</strong> most common and account for 90% <strong>of</strong> hepatic<br />

malignancies. One third <strong>of</strong> childhood liver <strong>tumor</strong>s are benign.<br />

They <strong>in</strong>clude vascular malformations, adenomas, focal<br />

nodular hyperplasia, mesenchymal hamartomas and various<br />

Address for correspondence<br />

Hepatoblastoma, hepatocarc<strong>in</strong>oma and, much less <strong>of</strong>ten, focal nodular hyperplasia and mesenchymal<br />

hamartoma are <strong>the</strong> major <strong>in</strong>dications for liver resection. This paper presents <strong>the</strong> outcome for children treated<br />

surgically because <strong>of</strong> liver <strong>tumor</strong>s. Between January 1999 and July 2006, 13 partial hepatic resections were<br />

performed <strong>in</strong> <strong>the</strong> Department <strong>of</strong> Paediatric Surgery Children's Hospital, Jagiellonian University. Indications<br />

were hepatoblastoma <strong>in</strong> 8 patients (62%), focal nodular hyperplasia <strong>in</strong> 2 (15%), mesenchymal hamartoma<br />

<strong>in</strong> 2 (15%), and metastatic nephroblastoma <strong>in</strong> 1 (8%). In 6 patients (46%) right hemihepatectomy was<br />

performed, <strong>in</strong> 2 (15%) extended right hemihepatectomy, <strong>in</strong> 1 (8%) – right hemihepatectomy with lateral<br />

part <strong>of</strong> <strong>the</strong> left lobe, <strong>in</strong> 3 patients (23%) left hemihepatectomy and <strong>in</strong> 1 (8%) posterio-lateral portion <strong>of</strong> <strong>the</strong><br />

right lobe was resected. There were no perioperative deaths. Eleven patients, <strong>in</strong>clud<strong>in</strong>g all <strong>of</strong> <strong>the</strong> patients<br />

with benign lesions, cont<strong>in</strong>ue to live and develop normally without signs <strong>of</strong> illness. One child with<br />

hepatoblastoma died three months after surgery, <strong>the</strong>re is one recurrence <strong>of</strong> hepatoblastoma. Six patients<br />

after treatment <strong>of</strong> hepatoblastoma are disease free with median follow up <strong>of</strong> 56 months. Surgery is <strong>the</strong><br />

treatment <strong>of</strong> choice <strong>in</strong> resectable hepatic lesions. In <strong>the</strong> children with malignant <strong>tumor</strong>s <strong>the</strong> chemo<strong>the</strong>rapy,<br />

followed by surgery gives a big chance <strong>of</strong> survival. Tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> low risk <strong>of</strong> complications <strong>of</strong><br />

liver resections and good outcomes associated <strong>the</strong>rewith, we consider hepatic resection a better choice for<br />

children with mesenchymal hamartoma and progress<strong>in</strong>g FNH than <strong>the</strong> risk <strong>of</strong> malignant transformation and<br />

progression possibly requir<strong>in</strong>g hepatic transplantation <strong>in</strong> <strong>the</strong> future.<br />

Key words: child, focal nodular hyperplasia, hepatoblastoma, liver resection, mesenchymal hamartoma<br />

Adam Bysiek MD PhD Phone: +48-12-658-15-50<br />

Department <strong>of</strong> Paediatric Surgery Fax: +48-12-658-13-25<br />

Children’s Hospital, Jagiellonian University<br />

265 Wielicka St.<br />

PL-30-663 Kraków, Poland<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

types <strong>of</strong> cysts. Nowadays thanks to progress <strong>in</strong> understand<strong>in</strong>g<br />

<strong>of</strong> hepatic anatomy, achievements <strong>in</strong> pre and postoperative<br />

multi drug chemo<strong>the</strong>rapy, survival <strong>of</strong> children with hepatic<br />

malignant <strong>tumor</strong>s has improved [2, 4, 12, 14]. Hepatic resection<br />

still rema<strong>in</strong>s a challenge for pediatric surgeons due to location<br />

and risk <strong>of</strong> surgical complications. However, <strong>in</strong> specialized<br />

centers good results <strong>of</strong> hepatic resections encourage<br />

to operate not only malignant but also potentially dangerous<br />

benign lesions such as mesenchymal hamartoma and selected<br />

cases <strong>of</strong> focal nodular hyperplasia (FNH) [15]. This article<br />

presents our experience with partial hepatic resection <strong>in</strong><br />

thirteen consecutive patients dur<strong>in</strong>g seven years period.


104<br />

Patients and methods<br />

Between January 1999 and July 2006, thirteen partial hepatic<br />

resections were performed <strong>in</strong> <strong>the</strong> Department <strong>of</strong> Paediatric<br />

Surgery Children’s Hospital, Jagiellonian University.<br />

Resections were performed on six girls (46%) and seven<br />

boys (54%). Their ages ranged from 3 weeks to 15 years<br />

(mean 4.2 years). The <strong>in</strong>dication for surgery was hepatoblastoma<br />

<strong>in</strong> eight cases (62%), focal nodular hyperplasia <strong>in</strong> two<br />

cases (15%), mesenchymal hamartoma <strong>in</strong> two cases (15%),<br />

and <strong>in</strong> one case hepatic metastase <strong>of</strong> nephroblastoma (8%).<br />

Basic cl<strong>in</strong>ical data are described <strong>in</strong> Table 1.<br />

Table 1<br />

Cl<strong>in</strong>ical data <strong>of</strong> children with hepatic resections<br />

ted <strong>in</strong> reduction <strong>of</strong> AFP levels. After complet<strong>in</strong>g <strong>the</strong> preoperative<br />

chemo<strong>the</strong>rapy <strong>the</strong> children were scheduled for surgery.<br />

Based on a pretreatment CT exam<strong>in</strong>ation two patients were<br />

qualified as <strong>the</strong> PRETEXT III group, but after preoperative<br />

chemo<strong>the</strong>rapy, an <strong>in</strong>traoperative assessment <strong>of</strong> <strong>the</strong> extent<br />

<strong>of</strong> <strong>the</strong> <strong>tumor</strong> allowed for s<strong>in</strong>gle lobe resection. The upper abdom<strong>in</strong>al<br />

transverse <strong>in</strong>cision was used <strong>in</strong> all <strong>of</strong> <strong>the</strong> cases. We<br />

conducted five right hemihepatectomies, one left hemihepatectomy,<br />

one right bisegmentectomy, and one right lobectomy<br />

with left lateral bisegmentectomy. After surgery assessment<br />

accord<strong>in</strong>g to <strong>the</strong> Intergroup CCG/POG Stag<strong>in</strong>g System<br />

showed that six children were <strong>in</strong> stage I, one <strong>in</strong> stage II<br />

No Sex Age at diagnosis Diagnosis PRETEXT Operation Follow-up<br />

(months) (months)<br />

1 F 7 HBL III L lobectomy 31<br />

2 F 5 days HBL II R lobectomy 84<br />

3 F 49 HBL II R bisegmentectomy 54<br />

4 M 25 HBL II R lobectomy 52<br />

5 M 38 HBL II R lobectomy 91<br />

6 M 32 HBL III R lobectomy and<br />

L lateral bisegmentectomy<br />

death<br />

7 F 113 HBL II R lobectomy 25<br />

8 F 69 HBL III R lobectomy recurrence<br />

9 M 27 WT II L lobectomy 25<br />

10 M 36 FNH III Extended R lobectomy 34<br />

11 M 168 FNH II L lobectomy 44<br />

12 F 0,4 MH II R lobectomy 109<br />

13 M 21 MH III Extended R lobectomy 32<br />

HBL – hepatoblastoma, WT – metastasis <strong>of</strong> Wilms <strong>tumor</strong>, FNH – focal nodular hyperplasia, MH – mesenchymal<br />

hamartoma, L – left, R – right<br />

Patients with hepatoblastoma<br />

The age at <strong>the</strong> diagnosis among patients with hepatoblastoma<br />

ranged between 3 days and 113 months (mean 41,6 months).<br />

The open biopsy was electively used to establish diagnosis <strong>in</strong><br />

six patients. In one patient chemo<strong>the</strong>rapy was started without<br />

pathological assessment <strong>of</strong> a type <strong>of</strong> <strong>tumor</strong> rely<strong>in</strong>g on <strong>the</strong><br />

typical presentation and highly elevated concentration <strong>of</strong> serum<br />

alfa-fetoprote<strong>in</strong>. One <strong>of</strong> <strong>the</strong> patients (5 days old newborn)<br />

had urgent laparotomy because <strong>of</strong> oligovolemic shock after<br />

massive bleed<strong>in</strong>g to <strong>the</strong> <strong>tumor</strong>. Dur<strong>in</strong>g this procedure a biopsy<br />

was taken. The extent <strong>of</strong> <strong>the</strong> <strong>tumor</strong> was assessed accord<strong>in</strong>g<br />

to <strong>the</strong> PRETEXT <strong>classification</strong>. Five children were <strong>in</strong> <strong>the</strong> 2nd<br />

PRETEXT stage and three <strong>in</strong> <strong>the</strong> 3rd.<br />

The preoperative chemo<strong>the</strong>rapy was conducted accord<strong>in</strong>g<br />

to <strong>the</strong> <strong>SIOP</strong>EL-3 protocol. In all <strong>of</strong> <strong>the</strong> patients it resul-<br />

and one <strong>in</strong> stage III <strong>of</strong> <strong>the</strong> disease. The <strong>SIOP</strong>EL- 3 protocol<br />

was cont<strong>in</strong>ued.<br />

Patients with focal nodular hyperplasia (FNH)<br />

One <strong>of</strong> <strong>the</strong> patients, three years old boy, was admitted to <strong>the</strong><br />

hospital because <strong>of</strong> respiratory <strong>in</strong>fection. The <strong>in</strong>itial diagnosis<br />

<strong>of</strong> hepatic <strong>tumor</strong> was made <strong>in</strong>cidentally dur<strong>in</strong>g abdom<strong>in</strong>al<br />

ultrasound. The AFP level was not <strong>in</strong>creased. The abdom<strong>in</strong>al<br />

CT revealed right hepatic lobe <strong>tumor</strong> (PRETEXT II).<br />

The diagnosis <strong>of</strong> hamartoma was made upon <strong>the</strong> laparoscopic<br />

biopsy. The child was observed for three years and was<br />

asymptomatic. The control CT showed progression <strong>of</strong> <strong>the</strong> <strong>tumor</strong><br />

that extended to <strong>the</strong> medial portion <strong>of</strong> <strong>the</strong> left lobe (PRE-<br />

TEXT III). We decided to remove <strong>the</strong> <strong>tumor</strong> and extended<br />

right hepatectomy was performed.


In our second patient <strong>the</strong> <strong>in</strong>itial ultrasound was performed<br />

because <strong>of</strong> nonspecific abdom<strong>in</strong>al pa<strong>in</strong>. Abdom<strong>in</strong>al<br />

CT done afterwards showed left hepatic lobe <strong>tumor</strong> (PRE-<br />

TEXT II), highly contrast enhanc<strong>in</strong>g. The <strong>in</strong>itial diagnosis <strong>of</strong><br />

haemangioma was made. Dur<strong>in</strong>g one year observation period<br />

<strong>the</strong> AFP level was low but enlargement <strong>of</strong> <strong>the</strong> <strong>tumor</strong> size was<br />

observed. Angiography excluded haemangioma. The child<br />

was scheduled for surgery and left hemihepatectomy was<br />

performed. Pathological exam<strong>in</strong>ation result was focal nodular<br />

hyperplasia.<br />

Patients with mesenchymal hamartoma<br />

A twelve days old female newborn was admitted to our <strong>in</strong>stitution<br />

with <strong>in</strong>itial diagnosis <strong>of</strong> congenital hepatic <strong>tumor</strong>.<br />

Abdom<strong>in</strong>al CT revealed right hepatic lobe <strong>tumor</strong> (PRETEXT<br />

II). AFP level was s<strong>light</strong>ly <strong>in</strong>creased. The patient was qualified<br />

for primary resection <strong>of</strong> <strong>the</strong> <strong>tumor</strong>. When <strong>the</strong> child was<br />

n<strong>in</strong>eteen days old a right hemihepatecomy was performed.<br />

Pathological diagnosis revealed mesenchymal hamartoma.<br />

Ano<strong>the</strong>r patient, ten years old boy, was brought to our<br />

hospital after abdom<strong>in</strong>al trauma. Abdom<strong>in</strong>al ultrasound revealed<br />

liver <strong>tumor</strong>. Giant hepatic <strong>tumor</strong> <strong>of</strong> I, VII, VIII and<br />

partially V and VI segments was observed <strong>in</strong> contrast CT.<br />

AFP level was normal. After 5 months <strong>of</strong> observation and no<br />

signs <strong>of</strong> regression <strong>of</strong> <strong>the</strong> <strong>tumor</strong> we decided to resect <strong>the</strong> lesion.<br />

Right extended hepatectomy was performed. Pathological<br />

exam<strong>in</strong>ation revealed mesenchymal hamartoma.<br />

Patient with metastase <strong>of</strong> nephroblastoma<br />

Two years old boy was admitted to our hospital because <strong>of</strong><br />

huge left kidney <strong>tumor</strong>. Abdom<strong>in</strong>al and chest CT scans sho-<br />

Table 2<br />

Cl<strong>in</strong>ical data <strong>of</strong> children with hepatic resections (cont<strong>in</strong>ued)<br />

wed metastatic <strong>tumor</strong>s <strong>in</strong> left liver lobe (PRETEXT II) and<br />

<strong>in</strong> lungs. Preoperative chemo<strong>the</strong>rapy for nephroblastoma was<br />

given. Left kidney with <strong>tumor</strong> was removed and left hepatectomy<br />

was performed. Chemo<strong>the</strong>rapy resulted <strong>in</strong> regression<br />

<strong>of</strong> lung lesions.<br />

Results<br />

105<br />

In none <strong>of</strong> <strong>the</strong> patients <strong>the</strong> volume <strong>of</strong> <strong>in</strong>traoperative blood<br />

transfusion exceeded 50 ml per 100 ml <strong>of</strong> circulat<strong>in</strong>g blood<br />

(Table 2) In two children it was not needed. In five patients<br />

no dra<strong>in</strong>s were left <strong>in</strong> abdom<strong>in</strong>al cavity. In <strong>the</strong> rest <strong>of</strong> <strong>the</strong> children<br />

(except patient No. 1 with right hepatic duct lesion) dra<strong>in</strong>s<br />

were kept for 1–3 days.<br />

There were no perioperative deaths. There was one<br />

major perioperative complication. Dur<strong>in</strong>g surgery <strong>in</strong> patient<br />

No. 1 <strong>in</strong>cidental lesion <strong>of</strong> right hepatic duct was diagnosed.<br />

The absorbable tissue adhesive was used to close <strong>the</strong> defect.<br />

After surgery <strong>the</strong>re was a prolonged bile dra<strong>in</strong>age from <strong>the</strong><br />

peritoneal cavity. Conservative treatment resulted <strong>in</strong> recovery<br />

and no fur<strong>the</strong>r surgery was needed. Oral feed<strong>in</strong>g was <strong>in</strong>troduced<br />

on days 1–3 <strong>in</strong> all patients except patient No. 1. Eleven<br />

patients, <strong>in</strong>clud<strong>in</strong>g all <strong>of</strong> <strong>the</strong> patients with benign lesions,<br />

are alive and develop normally without signs <strong>of</strong> illness. There<br />

was one death <strong>in</strong> patient No. 6, with hepatoblastoma (PRE-<br />

TEXT III, POG III) three months after surgery, because <strong>of</strong><br />

rapid progression <strong>of</strong> <strong>the</strong> illness. There was one recurrence <strong>of</strong><br />

hepatoblastoma (PRETEXT III, POG II) <strong>in</strong> patient No. 8, six<br />

months after primary surgery. In this patient <strong>the</strong> primary <strong>tumor</strong><br />

was adjacent to <strong>the</strong> <strong>in</strong>ferior vena cava. Second surgery<br />

with nonanatomic resection <strong>of</strong> <strong>the</strong> lesion was performed. In<br />

No. Weight Intraoperatively Percentage Peritonealdra<strong>in</strong>age Oral feed<strong>in</strong>g Antibiotics<br />

(kg) transfused <strong>of</strong> circulat<strong>in</strong>g (days) <strong>in</strong>troduction post. op.<br />

blood volume blood (days post.op.) (days)<br />

(ml) (%)<br />

1 7.8 0 0 8 20 42<br />

2 3.8 0 0 3 4 8<br />

3 19.2 150 9,7 0 3 4<br />

4 12.4 440 41,7 1 2 7<br />

5 12.6 230 21,5 1 2 7<br />

6 16.7 440 32,9 3 4 2<br />

7 26.6 660 30,7 0 4 10<br />

8 19.5 220 14,1 2 3 5<br />

9 13 220 20,1 0 3 8<br />

10 19.7 240 15,2 0 1 6<br />

11 53 540 14,5 3 3 5<br />

12 2.3 100 48,3 1 3 11<br />

13 12.5 440 41,3 0 3 5


106<br />

those two children (patient No. 6 and No. 8) <strong>the</strong> regression<br />

<strong>of</strong> AFP level after <strong>in</strong>itial chemo<strong>the</strong>rapy and surgery was less<br />

than 90% (68% and 87% respectively) as opposed to <strong>the</strong> rest<br />

<strong>of</strong> <strong>the</strong> patients where regression was over 90% (Table 3) Six<br />

patients after treatment <strong>of</strong> hepatoblastoma are disease free<br />

with median follow up <strong>of</strong> 56 months. The disease free survival<br />

is showed <strong>in</strong> Table 1. The patient who underwent hepatic<br />

resection because <strong>of</strong> nephroblastoma metastasis is <strong>in</strong> good<br />

condition, with no signs <strong>of</strong> illness.<br />

Table 3<br />

Serum alfa fetoprote<strong>in</strong> level <strong>in</strong> patients with hepatoblastoma<br />

No AFP levels (ng/ml) Regression rate<br />

Preoperative Postoperative (%)<br />

1 5 667 202 96<br />

2 37 680 231 99<br />

3 10 530 834 92<br />

4 57 700 922 98<br />

5 5 856 313 95<br />

6 74 150 23 870 68<br />

7 114 860 3 99<br />

8 125 305 16 437 87<br />

Discussion<br />

Multi drug chemo<strong>the</strong>rapy and surgical resection <strong>of</strong> <strong>the</strong> <strong>tumor</strong><br />

are well established standards <strong>in</strong> treatment <strong>of</strong> hepatoblastoma.<br />

The treatment <strong>of</strong> hepatoblastoma is an example <strong>of</strong> <strong>the</strong><br />

great advances made <strong>in</strong> pediatric oncology over <strong>the</strong> past few<br />

decades. This has been achieved by advances <strong>in</strong> surgical<br />

techniques and <strong>the</strong> use <strong>of</strong> chemo<strong>the</strong>rapy [4]. Five year survival<br />

rates are higher than 70% [12, 14].<br />

Focal nodular hyperplasia (FNH) is a relatively rare<br />

benign liver <strong>tumor</strong>, <strong>of</strong>ten asymptomatic and discovered <strong>in</strong>cidentally<br />

[6, 11]. It is <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g diagnosed as a result<br />

<strong>of</strong> <strong>the</strong> widespread use <strong>of</strong> ultrasound, computed tomography<br />

<strong>in</strong> <strong>the</strong> evaluation <strong>of</strong> patients with non-specific abdom<strong>in</strong>al<br />

symptoms [7]. There is no agreement on <strong>the</strong> malignant potential<br />

<strong>of</strong> FNH. The histopathological features <strong>of</strong> a fibrolamellar<br />

variant <strong>of</strong> hepatocarc<strong>in</strong>oma (FL-HCC) suggest a direct<br />

l<strong>in</strong>k between this <strong>tumor</strong> and FNH and some authors hypo<strong>the</strong>size<br />

a direct evolution from FNH to FL-HCC [13, 17].<br />

There were reports on cases <strong>of</strong> hepatocellular carc<strong>in</strong>oma aris<strong>in</strong>g<br />

with<strong>in</strong> FNH [9, 13]. The ma<strong>in</strong> problem <strong>in</strong> management<br />

derives from <strong>the</strong> frequent difficulty <strong>in</strong> differentiat<strong>in</strong>g FNH<br />

from adenoma and fibrolamellar hepatocellular cancer. It is<br />

well known that FNH may regress spontaneously [3], but <strong>in</strong><br />

some cases <strong>the</strong>re may be a progression <strong>of</strong> <strong>the</strong> lesion [8]. In<br />

our series we encountered two cases <strong>of</strong> FNH with tendency<br />

to progress. The decision to resect <strong>the</strong> <strong>tumor</strong>s was made to<br />

protect children from potential <strong>in</strong>volvement <strong>of</strong> all liver tissue.<br />

Fig. 1 Right lobe with <strong>tumor</strong> prepared to resection<br />

Fig. 2 Right lobe removed<br />

Fig. 3 Resected left lobe with <strong>tumor</strong><br />

Hepatic mesenchymal hamartoma is a hamartomatous<br />

growth <strong>of</strong> mesenchymal tissue <strong>in</strong> <strong>the</strong> liver <strong>of</strong> uncerta<strong>in</strong><br />

etiology, but cytogenetic studies have suggested that <strong>the</strong> <strong>tumor</strong><br />

may be a neoplasm ra<strong>the</strong>r than a hamartoma [16]. It is<br />

a space occupy<strong>in</strong>g lesion that can potentially compress adjacent<br />

organs result<strong>in</strong>g <strong>in</strong> various complications <strong>in</strong>clud<strong>in</strong>g death<br />

[1, 15]. Although rare, malignant transformation to embryonal<br />

sarcoma (malignant mesenchymoma) has been re-


ported [10]. In some cases a spontaneous regression can be<br />

observed [16]. Because <strong>of</strong> <strong>the</strong> potential malignant transformation<br />

and size enlargement most <strong>of</strong> <strong>the</strong> authors agree that<br />

<strong>the</strong> treatment <strong>of</strong> choice should be surgical resection [15]. The<br />

authors <strong>of</strong> this paper agree with that k<strong>in</strong>d <strong>of</strong> <strong>the</strong>rapeutical approach.<br />

Tak<strong>in</strong>g <strong>in</strong>to account a relatively low risk <strong>of</strong> compli-<br />

References<br />

1. Arfa MN, Gharbi L, Zaafrani MR, et al<br />

(2003) Cystic mesenchymal hamartoma<br />

<strong>of</strong> <strong>the</strong> liver report <strong>of</strong> a case and review<br />

<strong>of</strong> <strong>the</strong> literature. Hepatogastroenterology<br />

50 suppl. 2: ccxlix: ccli<br />

2. Carceller A, Blanchard H, Champagne<br />

J, St-Vil D, Bensoussan AL (20<strong>01</strong>) Surgical<br />

resection and chemo<strong>the</strong>rapy improve<br />

survival rate for patients with hepatoblastoma.<br />

J Pediatr Surg 36 (5):<br />

755–759<br />

3. Di Stasi M, Caturelli E, de Sio I, Salmi<br />

A, Buscar<strong>in</strong>i E, Buscar<strong>in</strong>i L (1996) Natural<br />

history <strong>of</strong> focal nodular hyperplasia<br />

<strong>of</strong> <strong>the</strong> liver: An ultrasound study. J<br />

Cl<strong>in</strong> Ultrasound 24: 345–350<br />

4. Ek<strong>in</strong>ci S, Karnak I, Tanyel FC, et al<br />

(2006) Hepatic lobectomies <strong>in</strong> children:<br />

experience <strong>of</strong> a center <strong>in</strong> <strong>the</strong> <strong>light</strong><br />

<strong>of</strong> chang<strong>in</strong>g management <strong>of</strong> malignent<br />

liver <strong>tumor</strong>s. Pediatr Surg Int 22 (3):<br />

228–232<br />

5. Emre S, Mc Kenna GJ (2004) Liver <strong>tumor</strong>s<br />

<strong>in</strong> children. Pediatr Transplant<br />

8 (6): 632–638<br />

6. F<strong>in</strong>ch MD, Crosbie JL, Currie E, Garden<br />

OJ (1995) An 8-year experience <strong>of</strong><br />

hepatic resection: <strong>in</strong>dications and outcome.<br />

Br J Surg 85: 315–319<br />

7. Lizardi-Cervera J, Cuellar-Gamboa L,<br />

Motola-Kuba D (2006) Focal nodular<br />

hyperplasia and hepatic adenoma: a review.<br />

Ann Hepatol 5 (3): 206–211<br />

8. Okada t, Sasaki F, Kamiyama T, et al<br />

(2006) Management and algorithm for<br />

focal nodular hyperplasia <strong>of</strong> <strong>the</strong> liver <strong>in</strong><br />

children. Eur J Pediatr Surg 14 (4):<br />

235–240<br />

9. Petsas T, Tsamandas A, Tsota I, et al<br />

(2006) A case <strong>of</strong> hepatocellular carc<strong>in</strong>oma<br />

aris<strong>in</strong>g with<strong>in</strong> large focal nodular<br />

hyperplasia with review <strong>of</strong> <strong>the</strong> literature.<br />

World J Gastroenterol 28; 12 (40):<br />

6567–571<br />

10. Rammanujam TM, Ramesh JC, Goh<br />

DW, et al (1999) Malignant transformation<br />

<strong>of</strong> mesenchymal hamartoma <strong>of</strong> <strong>the</strong><br />

liver: case report and <strong>the</strong> review <strong>of</strong> <strong>the</strong><br />

literature. J Pediatr Surg 34: 1684–1686<br />

11. Reddy KR, Kilgerman S, Levi J, et al<br />

(20<strong>01</strong>) Benign and solid <strong>tumor</strong>s <strong>of</strong> <strong>the</strong><br />

liver: relationschip to sex, age, size <strong>of</strong><br />

<strong>tumor</strong>, and outcome. Am Surg 67:<br />

173–178<br />

12. Roebuck DJ, Perliongo G (2006) Hepatoblastoma:<br />

an oncological review. Pediatr<br />

Radiol 36 (3): 183–186<br />

107<br />

cations associated with liver resections as well as good outcomes<br />

result<strong>in</strong>g <strong>the</strong>refrom, we consider hepatic resection<br />

a better choice for children with progress<strong>in</strong>g FNH and with<br />

mesenchymal hamartoma than <strong>the</strong> risk <strong>of</strong> malignant transformation<br />

and progression possibly requir<strong>in</strong>g hepatic transplantation<br />

<strong>in</strong> <strong>the</strong> future [8, 15].<br />

13. Saul SH, Titelbaum DS., Ganslet TS, et<br />

al (1987) The fibrolamellar variant <strong>of</strong><br />

hepatocellular carc<strong>in</strong>oma. Its associat<strong>in</strong><br />

with focal nodular hyperplasia. Cancer<br />

60: 3049–3055<br />

14. von Schwe<strong>in</strong>itz D (2006) Management<br />

<strong>of</strong> liver <strong>tumor</strong>s <strong>in</strong> childchood. Sem<strong>in</strong><br />

Pediatr Surg 15 (1): 17–24<br />

15. Siddiqui MA, McKenna BJ (2006) Hepatic<br />

mesenchymal hamartoma: a short<br />

review. Arch Pathol Lab Med 130 (10):<br />

1567–1569<br />

16. Str<strong>in</strong>ger MD, Alizai NK (2005) Mesenchymal<br />

hamartoma <strong>of</strong> <strong>the</strong> liver: a systematic<br />

review. J Pediatr Surg 40 (11):<br />

1681–1690<br />

17. Vecchio FM, Fabiano A, Ghirlanda G,<br />

Manna R, Massi G (1984) Fibrolamellar<br />

carc<strong>in</strong>oma <strong>of</strong> <strong>the</strong> liver: <strong>the</strong> malignant<br />

counterpart <strong>of</strong> focal nodular hyperplasia<br />

with oncocytic change. Am J Cl<strong>in</strong> Pathol<br />

81: 521–526


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 109–113<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

The study on <strong>the</strong> pathogenesis <strong>of</strong> <strong>in</strong>test<strong>in</strong>al dismotility<br />

and malabsorbtion <strong>in</strong> gastroschisis on experimental model<br />

– chicken embryo<br />

Hanna Bu³hak-Guz 1 , Reg<strong>in</strong>a Cybulska 2 , Ewa Czichos 3 , Tomasz Krawczyk 3 ,<br />

Andrzej Kulig 3 , Andrzej Chilarski 1<br />

1 Department <strong>of</strong> Pediatric Surgery and Urology<br />

3 Departament <strong>of</strong> Cl<strong>in</strong>ical Pathomorphology<br />

Polish Mo<strong>the</strong>rs's Health Institute<br />

Lodz, Poland<br />

2 Institute <strong>of</strong> Histology and Embriology <strong>of</strong> Agricultural Academy<br />

Lubl<strong>in</strong>, Poland<br />

Introduction<br />

Abstract<br />

In gastroschisis (G) bowel loops protrude through a narrow,<br />

paraumbilical defect <strong>in</strong> <strong>the</strong> abdom<strong>in</strong>al wall <strong>of</strong> <strong>the</strong> fetus <strong>in</strong>to<br />

<strong>the</strong> amniotic cavity and float freely <strong>in</strong> <strong>the</strong> amniotic fluid<br />

exposed to its irritat<strong>in</strong>g activity lead<strong>in</strong>g to aseptic perivisceritis.<br />

Impairment <strong>of</strong> peristalsis <strong>of</strong> <strong>the</strong> bowels and food malab-<br />

Address for correspondence<br />

Gastroschisis (G) is a congenital defect <strong>of</strong> <strong>the</strong> abdom<strong>in</strong>al wall characterized by translocation <strong>of</strong> <strong>in</strong>test<strong>in</strong>al<br />

loops outside <strong>the</strong> abdom<strong>in</strong>al cavity dur<strong>in</strong>g fetal life through a defect usually located on <strong>the</strong> right side <strong>of</strong> <strong>the</strong><br />

umbilical cord. Translocated fragment <strong>of</strong> <strong>in</strong>test<strong>in</strong>es <strong>in</strong> <strong>the</strong> extraembryonic cavity is exposed to direct contact<br />

with <strong>the</strong> amniotic fluid (AF) and excrements conta<strong>in</strong>ed <strong>in</strong> it (ur<strong>in</strong>e and meconium). The abnormalities <strong>of</strong><br />

<strong>in</strong>test<strong>in</strong>al function vary <strong>in</strong> <strong>in</strong>tensity and <strong>the</strong> question arises whe<strong>the</strong>r dysfunction <strong>of</strong> <strong>the</strong> alimentary tract<br />

results form morphological changes <strong>in</strong> <strong>the</strong> whole <strong>in</strong>test<strong>in</strong>al wall or only <strong>in</strong> <strong>the</strong> translocated loops. The<br />

designed experiments are aimed to answer this question, and also to determ<strong>in</strong>e <strong>the</strong> character and extension<br />

<strong>of</strong> changes <strong>in</strong> <strong>the</strong> abdom<strong>in</strong>al wall. The study consisted <strong>of</strong> an experimental creation <strong>of</strong> G on chicken embryos<br />

model and <strong>the</strong> subsequent comparison <strong>of</strong> <strong>the</strong> histopathological picture <strong>of</strong> <strong>the</strong> bowel wall <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>traabdom<strong>in</strong>al loops versus <strong>the</strong> exteriorized ones. The histopathological exam<strong>in</strong>ation revealed lesions <strong>in</strong><br />

<strong>the</strong> eviscerated loops (exposed to AF activity) <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> congestion <strong>of</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>al villi, accumulation<br />

<strong>of</strong> erythrocytes <strong>in</strong> <strong>the</strong> villus vessels, concentration <strong>of</strong> <strong>in</strong>flammatory small-round cells <strong>in</strong> <strong>the</strong> serosa. Our<br />

results showed that: 1) <strong>the</strong> experimental studies on G showed <strong>the</strong> differences <strong>in</strong> <strong>the</strong> histopathological picture<br />

<strong>of</strong> <strong>the</strong> eviscerated bowel loops as compared to <strong>the</strong> <strong>in</strong>traabdom<strong>in</strong>al ones, 2) lesions <strong>in</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>al<br />

epi<strong>the</strong>lium (<strong>the</strong> congestion <strong>of</strong> <strong>the</strong> villi) result from <strong>the</strong> bowel constriction and can be responsible for<br />

malabsorption <strong>in</strong> G patients, 3) <strong>in</strong>flammatory lesions <strong>in</strong> <strong>the</strong> serosa are caused by <strong>the</strong> irritat<strong>in</strong>g <strong>in</strong>fluence <strong>of</strong><br />

<strong>the</strong> AF and can be responsible for postnatal peristalsis impairment.<br />

Key words: chicken embryo, gastroschisis, <strong>in</strong>test<strong>in</strong>al damage<br />

Hanna Bu³hak-Guz Phone: + 48 42 2712136<br />

Department <strong>of</strong> Pediatric Surgery and Urology E-mail: hbulhak@wp.pl<br />

Polish Mo<strong>the</strong>rs's Health Institute<br />

Rzgowska St. 281/289<br />

93-338 Lodz, Poland<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

sorption occurr<strong>in</strong>g <strong>in</strong> newborns treated for G are a serious cl<strong>in</strong>ical<br />

problem and have an <strong>in</strong>fluence on <strong>the</strong> method, length<br />

and costs <strong>of</strong> <strong>the</strong> treatment [17].<br />

In relation to <strong>the</strong> occur<strong>in</strong>g bowel malfunction <strong>of</strong> various<br />

severity, <strong>the</strong> question arises whe<strong>the</strong>r <strong>the</strong> alimentary<br />

tract disfunction results from <strong>the</strong> morphological changes <strong>in</strong><br />

<strong>the</strong> bowel wall <strong>in</strong> <strong>the</strong> eviscerated loops only or perhaps <strong>the</strong>y


110<br />

exist <strong>in</strong> <strong>the</strong> entire <strong>in</strong>test<strong>in</strong>e and whe<strong>the</strong>r <strong>the</strong> changes <strong>of</strong> <strong>the</strong> AF<br />

composition will protect <strong>the</strong> bowels float<strong>in</strong>g <strong>in</strong> it aga<strong>in</strong>st <strong>the</strong><br />

formation <strong>of</strong> <strong>the</strong>se lesions.<br />

The aim <strong>of</strong> <strong>the</strong> study<br />

The aim <strong>of</strong> <strong>the</strong> study was to expla<strong>in</strong> <strong>the</strong> pathogenesis <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>test<strong>in</strong>e malfunction <strong>in</strong> <strong>the</strong> course <strong>of</strong> G on <strong>the</strong> experimental<br />

model (<strong>the</strong> chicken embryos) and to answer <strong>the</strong> question<br />

whe<strong>the</strong>r <strong>the</strong> morphological changes <strong>in</strong> <strong>the</strong> bowel wall, which<br />

may be <strong>the</strong> underly<strong>in</strong>g cause <strong>of</strong> <strong>the</strong> consequent functional disturbances<br />

<strong>of</strong> <strong>the</strong> alimentary tract, refer to eviscerated loops<br />

only or <strong>the</strong> whole <strong>in</strong>test<strong>in</strong>e. If this is <strong>the</strong> case what is <strong>the</strong> character<br />

<strong>of</strong> <strong>the</strong>se lesions?<br />

Material and method<br />

The experimental research was conducted <strong>in</strong> <strong>the</strong> Department<br />

<strong>of</strong> Laboratory Animals at <strong>the</strong> Polish Mo<strong>the</strong>r's Health Institute<br />

(PMHI) with <strong>the</strong> consent <strong>of</strong> The Local Ethics Committee<br />

for Research on Animals.<br />

The eggs with 9-day-old chicken embryos (Gallus domesticus)<br />

obta<strong>in</strong>ed from <strong>the</strong> Poultry Hatch<strong>in</strong>g Farm <strong>in</strong><br />

Rzgów were <strong>in</strong>cubated <strong>in</strong> a hatch<strong>in</strong>g chamber at <strong>the</strong> temperature<br />

<strong>of</strong> 37,7 Celsius, 60% humidity and <strong>the</strong> tray rotation<br />

every two hours. On <strong>the</strong> 14 th <strong>of</strong> embryonic life (which corresponds<br />

with <strong>the</strong> second trimester <strong>in</strong> mammals), G was created<br />

experimentally accord<strong>in</strong>g to <strong>the</strong> accepted experimental<br />

model under <strong>the</strong> surgical microscope guidance with <strong>the</strong> use<br />

<strong>of</strong> microsurgical technique (Fig. 1) [18].<br />

Follow<strong>in</strong>g <strong>the</strong> closure <strong>of</strong> <strong>the</strong> egg shell with <strong>the</strong> sterile<br />

dress<strong>in</strong>g, <strong>the</strong> embryos were replaced to <strong>the</strong> hatch<strong>in</strong>g chamber<br />

and fur<strong>the</strong>r <strong>in</strong>cubation took place till <strong>the</strong> 20 th day. For <strong>the</strong><br />

assessment <strong>of</strong> <strong>the</strong> dynamics <strong>of</strong> morphological changes occurr<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> bowels, <strong>the</strong> creation <strong>of</strong> G was performed on <strong>the</strong><br />

Fig. 1 The view <strong>of</strong> created gastroschisis <strong>in</strong> operat<strong>in</strong>g microscope (11 th day<br />

<strong>of</strong> <strong>in</strong>cubation)<br />

subsequent days <strong>of</strong> embryonic development i.e. from 11 th to<br />

14 th day.<br />

The experiment was completed while at least 3 live<br />

embryos with G from each experimental day were achieved.<br />

The sacrificed embryos were measured and weighed<br />

for <strong>the</strong> general assessment (Fig. 2). Follow<strong>in</strong>g <strong>the</strong> macroscopic<br />

evaluation <strong>of</strong> <strong>the</strong> abdom<strong>in</strong>al wall and eviscerated bowels,<br />

<strong>the</strong> whole removed <strong>in</strong>test<strong>in</strong>e was divided <strong>in</strong>to 2 parts:<br />

<strong>in</strong>traabdom<strong>in</strong>al loops and eviscerated loops – positioned<br />

outside <strong>the</strong> abdom<strong>in</strong>al cavity and <strong>the</strong>n fixed <strong>in</strong> 4% buffered<br />

formal<strong>in</strong>e solution. The control group was constituted by<br />

<strong>the</strong> bowels deriv<strong>in</strong>g from <strong>the</strong> embryos no manipulation was<br />

performed on and <strong>the</strong> group <strong>of</strong> sham operations from <strong>the</strong><br />

correspond<strong>in</strong>g developmental days, divided <strong>in</strong>to 2 portions<br />

ei<strong>the</strong>r. The histological preparations (rout<strong>in</strong>e hematoxyl<strong>in</strong>e<br />

and eos<strong>in</strong> sta<strong>in</strong><strong>in</strong>g) was performed at <strong>the</strong> Cl<strong>in</strong>ical Pathomorphology<br />

Department <strong>of</strong> PMHI and <strong>the</strong> microscopic specimens<br />

were evaluated <strong>in</strong> a <strong>light</strong> microscope <strong>in</strong>dependently<br />

<strong>in</strong> 2 centres: <strong>the</strong> Cl<strong>in</strong>ical Pathomorphology Department <strong>of</strong><br />

PMHI and <strong>the</strong> Institute <strong>of</strong> Histology and Embryology <strong>of</strong> <strong>the</strong><br />

Agricultural Academy <strong>in</strong> Lubl<strong>in</strong>. There were specimens deriv<strong>in</strong>g<br />

from 34 embryos: 17 from <strong>the</strong> control group and 17<br />

from <strong>the</strong> G group.<br />

Fig. 2 The macroscopic view <strong>of</strong> gastroschisis <strong>in</strong> chicken (21 st day <strong>of</strong><br />

<strong>in</strong>cubation)<br />

Results<br />

The specimens obta<strong>in</strong>ed from 34 embryos were assessed histopathologically:<br />

17 from <strong>the</strong> G group and 17 from <strong>of</strong> <strong>the</strong><br />

control group (5 from 11 th day <strong>of</strong> <strong>in</strong>cubation, 11 from 12 th ,<br />

8 from 13 th and 10 from 14 th respectively) (Table 1).<br />

In 2 cases no G was found (self-cure) and <strong>in</strong> 1 ano<strong>the</strong>r<br />

concomitant bowel obstruction was recognized (Fig. 3).<br />

The histopathology <strong>of</strong> eviscerated bowel (G) exposed<br />

to AF <strong>in</strong> 8 (57 %) cases revealed significant congestion <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>test<strong>in</strong>al villi and <strong>the</strong> accumulation <strong>of</strong> erythrocytes <strong>in</strong>


Table 1<br />

Type <strong>of</strong> procedure and number <strong>of</strong> operated chicken embryos<br />

Type <strong>of</strong> manipulation Day <strong>of</strong> <strong>in</strong>cubation Total<br />

11 12 13 14<br />

Control group<br />

Sham operation<br />

� No manipulation<br />

� Isotonic salt solution<br />

1 2 1 1 5<br />

on amniotic membrane<br />

� Isotonic salt solution<br />

and cutt<strong>in</strong>g <strong>of</strong> amniotic<br />

1 3 1 0 5<br />

membrane 1 2 1 3 7<br />

Total<br />

Gastroschisis group<br />

3 7 3 4 17<br />

� Gastroschisis<br />

� Gastroschisis and<br />

2 2 4 6 14<br />

<strong>in</strong>test<strong>in</strong>al atresia<br />

� Spontaneous recovery<br />

1 1<br />

<strong>of</strong> gastroschisis 2 2<br />

Total 2 4 5 6 17<br />

Fig. 3 The macroscopic view <strong>of</strong> gastroschisis and <strong>in</strong>test<strong>in</strong>al atresia (21 st day<br />

<strong>of</strong> <strong>in</strong>cubation)<br />

<strong>the</strong> villus vessels (Fig. 4). These alterations were not observed<br />

<strong>in</strong> <strong>the</strong> bowel slides <strong>of</strong> <strong>the</strong> same embryos rema<strong>in</strong><strong>in</strong>g <strong>in</strong>side<br />

<strong>the</strong> abdom<strong>in</strong>al cavity or <strong>in</strong> <strong>the</strong> control groups (Fig. 5).<br />

No lesions were observed <strong>in</strong> <strong>the</strong> muscular membrane, whereas<br />

<strong>in</strong> <strong>the</strong> serosa <strong>of</strong> <strong>the</strong> extraabdom<strong>in</strong>al bowel <strong>in</strong>flammatory<br />

small round-cells accumulations were present (Fig. 6).<br />

In one case, gastroschisis was connected with <strong>in</strong>test<strong>in</strong>al<br />

atresia. Abnormal histological picture was seen <strong>in</strong> both<br />

parts <strong>of</strong> atretic bowel. There were small, flatten, pleomorphic<br />

villi <strong>in</strong> proximal loop and quite normal built villi <strong>in</strong> distal loop<br />

(Fig. 7).<br />

A<br />

B<br />

Fig. 5 The control group – normal histological view <strong>of</strong> <strong>in</strong>test<strong>in</strong>al villi<br />

111<br />

Fig. 4 The microscopic view <strong>of</strong> eviscerated bowel loop – significant congestion<br />

<strong>of</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>al villi and <strong>the</strong> accumulation <strong>of</strong> erythrocytes <strong>in</strong> <strong>the</strong> villus<br />

vessels: A) 11 th day <strong>of</strong> <strong>in</strong>cubation, B) 14 th day <strong>of</strong> <strong>in</strong>cubation<br />

In o<strong>the</strong>r two cases, <strong>the</strong> spontaneous recovery <strong>of</strong> gastroschisis<br />

was found with normal microscopic picture <strong>of</strong> <strong>in</strong>test<strong>in</strong>al<br />

wall like <strong>in</strong> control group.


112<br />

Fig. 6 The gastroschisis – <strong>in</strong>flammatory small round-cells <strong>in</strong> serous membrane<br />

A<br />

B<br />

Fig. 7 The microscopic view <strong>of</strong> gastroschisis and <strong>in</strong>test<strong>in</strong>al atresia: A) The<br />

proximal atretic loop – small, flatten, pleomorphic villi, B) <strong>the</strong> distal atretic<br />

loop – normal villi<br />

Discussion<br />

Gastroschisis is a congenital anomaly <strong>of</strong> <strong>the</strong> abdom<strong>in</strong>al wall<br />

with small and large bowel evisceration outside <strong>the</strong> abdom<strong>in</strong>al<br />

cavity through a defect <strong>in</strong> <strong>the</strong> abdom<strong>in</strong>al wall, usually located<br />

right to <strong>the</strong> appropriately situated umbilical cord. Bowels<br />

are not covered with <strong>the</strong> hernia sack. In many cases <strong>in</strong><br />

<strong>the</strong> 3 rd trimester <strong>of</strong> pregnancy aseptic perivisceritis develops<br />

due to <strong>the</strong> irritat<strong>in</strong>g <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> amniotic fluid. The wall<br />

<strong>of</strong> <strong>the</strong> exteriorized gut is <strong>in</strong>flamed, thickened, with a fibrous<br />

peel on its surface [14].<br />

The etiology <strong>of</strong> <strong>the</strong> anomaly and its orig<strong>in</strong> still rema<strong>in</strong><br />

unclear.<br />

Despite <strong>of</strong> significant decrease <strong>in</strong> <strong>the</strong> neonatal mortality<br />

(from 30% <strong>in</strong> <strong>the</strong> 70’s <strong>of</strong> 20 th century to 4–10% currently),<br />

<strong>the</strong> prognosis still rema<strong>in</strong>s serious connected with life-<br />

-threaten<strong>in</strong>g developmental disturbances <strong>of</strong> <strong>the</strong> fetus (<strong>in</strong>trauter<strong>in</strong>e<br />

growth retardation – IUGR, prematurity, preterm<br />

delivery, oligohydramnios, aseptic perivisceritis) and <strong>of</strong> <strong>the</strong><br />

newborn (from <strong>the</strong> growth retardation due to malabsorption<br />

and peristalsis disorders to short bowel syndrome) [9, 16].<br />

The orig<strong>in</strong> <strong>of</strong> <strong>the</strong> lesions <strong>in</strong> <strong>the</strong> wall <strong>of</strong> eviscerated bowel<br />

and its progression, both <strong>in</strong> experimental animals and <strong>in</strong><br />

humans with G depends on <strong>the</strong> two phenomena: 1) <strong>in</strong>flammatory<br />

response <strong>of</strong> <strong>the</strong> bowel to <strong>the</strong> contact with AF and pro-<br />

-<strong>in</strong>flammatory cytok<strong>in</strong>es <strong>in</strong> it, 2) compression <strong>of</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>es<br />

at <strong>the</strong> level <strong>of</strong> <strong>the</strong> defect <strong>in</strong> <strong>the</strong> abdom<strong>in</strong>al wall and compression<br />

– related ischemic lesions [11, 12].<br />

In <strong>the</strong> case <strong>of</strong> a narrow defect <strong>in</strong> <strong>the</strong> abdom<strong>in</strong>al wall,<br />

compression <strong>of</strong> mesentery and its vessels may occur and subsequently<br />

wall hypoxia and related consequences rang<strong>in</strong>g<br />

from <strong>the</strong> lumen constriction, to obstruction and even to <strong>the</strong><br />

selfamputation <strong>of</strong> <strong>the</strong> herniated loops. The constriction <strong>of</strong> <strong>the</strong><br />

defect and/or <strong>in</strong>creas<strong>in</strong>g oedema <strong>of</strong> <strong>the</strong> bowel wall can <strong>in</strong>tensify<br />

ischemic processes (vessel disaster <strong>the</strong>ory), may cause<br />

<strong>in</strong>trauter<strong>in</strong>e fetal hypoxia and consequently lead to <strong>the</strong> <strong>in</strong>trauter<strong>in</strong>e<br />

growth retardation (IUGR), oligohydramnios and preterm<br />

delivery [3].<br />

The impact <strong>of</strong> AF on <strong>in</strong>test<strong>in</strong>es as an irritat<strong>in</strong>g factor<br />

contribut<strong>in</strong>g to <strong>in</strong>flammatory lesion <strong>of</strong> <strong>the</strong> bowel wall still rema<strong>in</strong>s<br />

unclear. There are two hypo<strong>the</strong>tical models expla<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> detrimental <strong>in</strong>fluence <strong>of</strong> AF: ‘ur<strong>in</strong>ary’ and ‘digestive’. In<br />

<strong>the</strong> ‘ur<strong>in</strong>ary model’ it is thought that <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> <strong>the</strong> course<br />

<strong>of</strong> pregnancy osmolality <strong>of</strong> AF (predom<strong>in</strong>antly compris<strong>in</strong>g fetal<br />

ur<strong>in</strong>e <strong>in</strong> <strong>the</strong> 3 rd trimester) damages <strong>the</strong> bowel wall <strong>of</strong> <strong>the</strong> fetus<br />

[10, 19]. Accord<strong>in</strong>g to <strong>the</strong> ‘digestive’ model a deleterious<br />

effect is mostly connected with digestive enzymes [2, 4, 6, 15].<br />

Numerous experimental studies (on chicken embryos<br />

and mammal fetuses) were conducted to <strong>in</strong>vestigate <strong>the</strong> <strong>in</strong>fluence<br />

<strong>of</strong> ur<strong>in</strong>e <strong>in</strong>gredients and meconium digestive enzymes<br />

on <strong>the</strong> bowel wall [6, 10, 15, 19]. Also AF composition<br />

alterations (volume, density, chlor<strong>in</strong>e and urea contents) dependent<br />

on <strong>the</strong> gestational phase may be responsible for <strong>the</strong><br />

<strong>in</strong>flammatory lesions [8, 15]. Oligohydramnios accompany<strong>in</strong>g<br />

some <strong>of</strong> <strong>the</strong> cases <strong>of</strong> G and related <strong>in</strong>creased concentration<br />

<strong>of</strong> <strong>the</strong> aforementioned <strong>in</strong>gredients can be <strong>in</strong> a close relationship<br />

with <strong>the</strong> pathological changes <strong>in</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>al<br />

wall. Currently, it is believed that <strong>the</strong> digestive enzymes <strong>of</strong><br />

<strong>the</strong> meconium are responsible for <strong>the</strong> <strong>in</strong>flammatory bowel lesions<br />

(alkal<strong>in</strong>e phophatase, enteric bicarbohydrates, tryps<strong>in</strong>).<br />

The isolated presence <strong>of</strong> meconium <strong>in</strong> AF is not sufficient<br />

s<strong>in</strong>ce below a certa<strong>in</strong> threshold level <strong>the</strong> <strong>in</strong>duction <strong>of</strong> serous<br />

enteritis does not occur. It may account for cl<strong>in</strong>ical observations<br />

<strong>of</strong> vary<strong>in</strong>g severity <strong>of</strong> <strong>in</strong>flammatory lesions <strong>in</strong> <strong>the</strong> bowel<br />

wall <strong>in</strong> neonates with <strong>the</strong> same defect – gastroschisis [4].<br />

Previously conducted experimental studies focused<br />

mostly <strong>in</strong> <strong>the</strong> factors trigger<strong>in</strong>g lesions <strong>in</strong> <strong>the</strong> bowels and <strong>the</strong><br />

type <strong>of</strong> lesions occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> bowel wall [1, 2, 7, 13, 15].


Presented results seems to prove that <strong>the</strong> ensu<strong>in</strong>g lesions are<br />

limited to eviscerated loops only. So it can be concluded that<br />

<strong>the</strong> severity <strong>of</strong> motor and absorption disorders corresponds<br />

with <strong>the</strong> capacity <strong>of</strong> eviscerated loops. The character <strong>of</strong> lesions<br />

confirms both aforementioned pathomechanisms <strong>of</strong> bowel<br />

damage (congestion <strong>of</strong> villi – compression and ischaemic<br />

alterations, <strong>the</strong> accumulations <strong>of</strong> microround <strong>in</strong>flammatory<br />

cells <strong>in</strong> <strong>the</strong> serosa – response to <strong>the</strong> irritat<strong>in</strong>g <strong>in</strong>fluence <strong>of</strong> AF).<br />

Conclusions:<br />

1. The experimental studies on G showed <strong>the</strong> differences <strong>in</strong><br />

<strong>the</strong> histopathological picture <strong>of</strong> <strong>the</strong> eviscerated bowel loops<br />

as compared to <strong>the</strong> <strong>in</strong>traabdom<strong>in</strong>al ones.<br />

References<br />

1. Aktug T, Erdag G, Kargi A, Akgur FM,<br />

Tibboel D (1995) Amnio-allantoic fluid<br />

exchange for <strong>the</strong> prevention <strong>of</strong> <strong>in</strong>test<strong>in</strong>al<br />

damage <strong>in</strong> gastroschisis: an experimental<br />

study on chick embryos. J Ped<br />

Surg 30 (3): 384–387<br />

2. Aktug T, Ucan B, Olguner M, Akgur<br />

FM, Ozer E, Caliskan S, Onvural B<br />

(1998) Amnio-allantoic fluid exchange<br />

for <strong>the</strong> prevention <strong>of</strong> <strong>in</strong>test<strong>in</strong>al damage<br />

<strong>in</strong> gastroschisis III: determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong><br />

waste products removed by exchange.<br />

Eur J Pediatr Surg 8: 326–328<br />

3. Albert A, Sancho MA, Julia V, Diaz F,<br />

Bombi JA, Morales L (20<strong>01</strong>) Intest<strong>in</strong>al<br />

damage <strong>in</strong> gastroschisis is <strong>in</strong>dependent<br />

<strong>of</strong> <strong>the</strong> size <strong>of</strong> <strong>the</strong> abdom<strong>in</strong>al defect. Pediatr<br />

Surg Int 17: 116–119<br />

4. Api A, Olunger M, Hakguder G, Ates<br />

O, Ozer E, Akgur FM (20<strong>01</strong>) Intest<strong>in</strong>al<br />

damage <strong>in</strong> gastroschisis correlates with<br />

<strong>the</strong> concentration <strong>of</strong> <strong>in</strong>traamniotic meconium.<br />

J Ped Surg 36 (12): 1811–1815<br />

5. Bruner JP (2004) „Amnioexchange”<br />

for gastroschisis. Ultrasound <strong>in</strong> Obstetricsss<br />

and Gynecology, 24: 224<br />

6. Correia-P<strong>in</strong>to J, Tavares ML, Baptista<br />

MJ, Henriques-Coelho T, Estevao-Costa<br />

J, Flake AW, Leite-Moreira F<br />

(2002) Meconium dependence <strong>of</strong> bowel<br />

damage <strong>in</strong> gastroschisis. J Ped Surg 37<br />

(1): 31–35<br />

2. Lesions <strong>in</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>al epi<strong>the</strong>lium (<strong>the</strong> congestion <strong>of</strong> <strong>the</strong><br />

villi) result from <strong>the</strong> bowel constriction and can be responsible<br />

for malabsorption <strong>in</strong> G patients.<br />

3. Inflammatory lesions <strong>in</strong> <strong>the</strong> serosa are caused by <strong>the</strong> irritat<strong>in</strong>g<br />

<strong>in</strong>fluence <strong>of</strong> <strong>the</strong> AF and can be responsible for postnatal<br />

peristalsis impairment.<br />

Acknowledgments<br />

7. De Torre BL, Tovar A, Uriarte S, Aldazabal<br />

P (1991) Transperitoneal exchanges<br />

<strong>of</strong> water and solutes <strong>in</strong> <strong>the</strong> fetus<br />

with gastroschisis. Experimental study<br />

<strong>in</strong> <strong>the</strong> chick embryo. Eur J Pediatr Surg<br />

1: 346–352<br />

8. Kanmaz T, Yagmurlu A, Aktug T,<br />

Gokcora H (20<strong>01</strong>) The effect <strong>of</strong> amnio-<br />

-allantoic fluid pH on <strong>the</strong> <strong>in</strong>test<strong>in</strong>es: an<br />

experimental study <strong>in</strong> <strong>the</strong> chick embryo<br />

gastroschisis model. J Ped Surg 36 (9):<br />

1341–1345<br />

9. Kimble RM, Blakelock R, Cass D<br />

(1999) Vanish<strong>in</strong>g gut <strong>in</strong> <strong>in</strong>fants with gastroschisis.<br />

Ped Surg Int 15: 483–485<br />

10. Kluck P, Tibboel D, Van Der Kamp<br />

AWM, Molenaar JC (1983) The effect<br />

<strong>of</strong> fetal ur<strong>in</strong>e on <strong>the</strong> development <strong>of</strong> <strong>the</strong><br />

bowel <strong>in</strong> gastroschisis. J Ped Surg 18<br />

(1): 47–50<br />

11. Langer JC, Bell JG, Castillo RO, Crombleholme<br />

TM, Longaker MT, Duncan<br />

BW, Bradley SM, F<strong>in</strong>kbe<strong>in</strong>er WE, Verrier<br />

ED, Harrison MR (1990) Etiology<br />

<strong>of</strong> <strong>in</strong>test<strong>in</strong>al damage <strong>in</strong> gastroschisis, II.<br />

Tim<strong>in</strong>g and reversibility <strong>of</strong> histological<br />

changes, mucosal function, and contractility.<br />

J Ped Surg 25 (11):<br />

1122–1126<br />

12. Langer JC, Longaker MT, Crombleholme<br />

TM, Bond SJ, F<strong>in</strong>kbe<strong>in</strong>er WE, Rudolphc<br />

A, Verrier ED, Harrison MR<br />

(1989) Etiology <strong>of</strong> <strong>in</strong>test<strong>in</strong>al damage <strong>in</strong><br />

gastroschisis. I: Effect <strong>of</strong> amniotic fluid<br />

exposure and bowel constriction <strong>in</strong><br />

a fetal lamb model. J Ped Surg 24 (10):<br />

992–997<br />

113<br />

Authors are very grateful to <strong>the</strong> laboratory staff <strong>of</strong> <strong>the</strong> Department<br />

<strong>of</strong> Laboratory Animals and <strong>the</strong> Department <strong>of</strong> Cl<strong>in</strong>ical<br />

Pathomorphology, Polish Mo<strong>the</strong>rs’s Health Institute for<br />

substantial support dur<strong>in</strong>g this research.<br />

13. Luton D, De Lagausie P, Guibourdenche<br />

J, Pechmaur M, Sibony O, Aigra<strong>in</strong><br />

Y, Oury JF, Blot P (2000) Influence <strong>of</strong><br />

amnio<strong>in</strong>fusion <strong>in</strong> a model <strong>of</strong> <strong>in</strong> utero<br />

created gastroschisis <strong>in</strong> <strong>the</strong> pregnant<br />

ewe. Fetal Diagn Ther 15: 224–228<br />

14. Luton D, Guibourdenche J, Vuillard E,<br />

Bruner J, De Lagausie P (2003) Prenatal<br />

management <strong>of</strong> gastroschisis: <strong>the</strong><br />

place <strong>of</strong> amnioexchange procedure.<br />

Cl<strong>in</strong> Per<strong>in</strong>atol 30: 551–572<br />

15. Olguner M, Akgur FM, Api A, Ozer E,<br />

Aktug T (2000) The effect <strong>of</strong> <strong>in</strong>traamniotic<br />

human neonatal ur<strong>in</strong>e and meconium<br />

on <strong>the</strong> <strong>in</strong>test<strong>in</strong>es <strong>of</strong> <strong>the</strong> chick embryo<br />

with gastroschisis. J Ped Surg 35<br />

(3): 458–461<br />

16. Str<strong>in</strong>gel G, Filler RM (1979) Prognostic<br />

factors <strong>in</strong> omphalocele and gastoschisis.<br />

J Ped Surg 14 (5): 515–519<br />

17. Sydorak RM, Nijagal A, Sbragia L,<br />

Tsao K, Phibbs RH, Schmitt SK, Lee H,<br />

Farmer DL, Harrison MR, Albanese CT<br />

(2002) Gastroschsis: small hole, big<br />

cost. J Ped Surg 37 (12): 1669–1672<br />

18. Tibboel D, Molenaar JC, Van Nie CJ<br />

(1979) New perspectives <strong>in</strong> fetal surgery:<br />

<strong>the</strong> chicken embryo. J Ped Surg 14<br />

(4): 438–440<br />

19. Tibboel D, Ra<strong>in</strong>e P, Mcnee M, Azmy<br />

A, Kluck P, Young D, Molenaar JC<br />

(1986) Developmental aspects <strong>of</strong> gastroschisis.<br />

J Ped Surg 21 (10): 865–869


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 115–119<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Humoral and cytok<strong>in</strong>e responses <strong>in</strong>duced by probiotic<br />

Lactobacillus casei and paracasei stra<strong>in</strong>s <strong>in</strong> children<br />

with atopic dermatitis<br />

Bo¿ena Cukrowska 1 , Ilona Rosiak 1 , Aldona Ceregra 2 , Joanna Freszel 3 ,<br />

Gra¿yna Zakrzewska 3 , El¿bieta Klewicka 4 , Ilona Motyl 4 , Zdzis³awa Libudzisz 4<br />

1 Department <strong>of</strong> Pathology<br />

2 Department <strong>of</strong> Paediatrics<br />

The Children's Memorial Health Institute<br />

Warsaw, Poland<br />

3 Warsaw Agricultural University<br />

Warsaw, Poland<br />

4 Institute <strong>of</strong> Fermentation Technology and Microbiology<br />

Technical University <strong>of</strong> Lodz<br />

Lodz, Poland<br />

Introduction<br />

Abstract<br />

Probiotics are live microorganisms that when <strong>in</strong>gested might<br />

have a positive effect on disorders <strong>in</strong> which immunological<br />

disturbances occur [7]. Experimental and cl<strong>in</strong>ical studies<br />

have <strong>in</strong>dicated that probiotics can significantly <strong>in</strong>flu-<br />

Address for correspondence<br />

Probiotic bacteria have been shown to be useful <strong>in</strong> both prevention and treatment <strong>of</strong> atopic dermatitis (AD)<br />

<strong>in</strong> children. Recently we <strong>in</strong>dentified novel probiotic Lactobacillus casei and paracasei sta<strong>in</strong>s which<br />

improved cl<strong>in</strong>ical syndromes <strong>of</strong> AD <strong>in</strong> children with cow’s milk (CM) allergy. The aim <strong>of</strong> <strong>the</strong> study was<br />

to analyze <strong>the</strong> effect <strong>of</strong> those stra<strong>in</strong>s on production <strong>of</strong> secretory and circulat<strong>in</strong>g anti-Lactobacillus antibodies<br />

as well as on modulation <strong>of</strong> serum cytok<strong>in</strong>e pr<strong>of</strong>ile. The study <strong>in</strong>cluded 60 children with recognized AD<br />

caused by CM allergy. Patients were randomized <strong>in</strong> a double-bl<strong>in</strong>d design to receive ei<strong>the</strong>r placebo or <strong>the</strong><br />

mixture <strong>of</strong> Lactobacillus casei LOCK 0900, L. casei LOCK 0908 and L. paracasei LOCK 0919 for<br />

3 months <strong>in</strong> daily dose 5×10 9 . Antibody and cytok<strong>in</strong>e responses were measured us<strong>in</strong>g immunoenzymatic<br />

methods before bacteria application, just after f<strong>in</strong>ish<strong>in</strong>g bacteria <strong>in</strong>-take and 5 months later. We observed<br />

an <strong>in</strong>crease <strong>in</strong> antibody secretion ma<strong>in</strong>ly <strong>of</strong> IgA isotype <strong>in</strong> stools, but without statistical significance<br />

(p=0,08). Cytok<strong>in</strong>e pr<strong>of</strong>ile analyses showed activation <strong>of</strong> pro<strong>in</strong>flammatory IL-12 (p=0,06) and IL-18<br />

(p=0,03) after 8-month last<strong>in</strong>g observation. We conclude that <strong>the</strong> improvement <strong>of</strong> cl<strong>in</strong>ical syndromes after<br />

Lactobacillus bacteria <strong>in</strong>-take is dependent on modulation <strong>of</strong> cytok<strong>in</strong>e balance, and <strong>in</strong> this process IL-18<br />

seems to play <strong>the</strong> most important role.<br />

Key words: allergy, antibody response, cytok<strong>in</strong>es, IL-18, Lactobacillus, probiotics<br />

Bo¿ena Cukrowska, MD, PhD fax: +48 22 8151975<br />

Department <strong>of</strong> Pathology e-mail: b.cukrowska@czd.pl<br />

The Children’s Memorial Health Institute<br />

Aleja Dzieci Polskich 20<br />

04-736 Warsaw, Poland<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

ence <strong>the</strong> immune responses <strong>of</strong> host <strong>in</strong> promot<strong>in</strong>g <strong>the</strong> production<br />

<strong>of</strong> secretory and circulat<strong>in</strong>g antibodies (Abs), and<br />

alter<strong>in</strong>g <strong>the</strong> balance <strong>of</strong> pro<strong>in</strong>flammatory (Th1)/proallergic<br />

(Th2) responses and <strong>the</strong> cytok<strong>in</strong>e production pr<strong>of</strong>ile [2, 7,<br />

15]. Recently, a role <strong>of</strong> probiotic bacteria, especially Lactobacillus<br />

rhamnosus stra<strong>in</strong> GG (LGG), both <strong>in</strong> prevention


116<br />

and treatment <strong>of</strong> allergic diseases was demonstrated [8, 9,<br />

13, 18, 19]. LGG adm<strong>in</strong>istrated to pregnant women reduced<br />

<strong>the</strong> <strong>in</strong>cidence <strong>of</strong> allergy <strong>in</strong> <strong>the</strong>ir children after 2 and<br />

4 years. Application <strong>of</strong> LGG to <strong>in</strong>fants with atopic dermatitis<br />

(AD) decreased <strong>the</strong> severity <strong>of</strong> <strong>the</strong> disease. This stra<strong>in</strong><br />

<strong>in</strong>duced an <strong>in</strong>crease <strong>the</strong> pro<strong>in</strong>flammatory cytok<strong>in</strong>e response<br />

<strong>in</strong> peripheral lymphocytes <strong>in</strong> <strong>in</strong>fants with IgE-associated<br />

AD and activated production <strong>of</strong> secretory IgA [11, 12, 16,<br />

17]. It seems that antibodies, especially occurr<strong>in</strong>g on mucosa<br />

could react with allergens protect<strong>in</strong>g <strong>the</strong>ir translocation<br />

through mucosal barrier. On <strong>the</strong> o<strong>the</strong>r hand improvement<br />

<strong>of</strong> disease symptoms could be <strong>in</strong>duced by activation<br />

<strong>of</strong> Th1 cytok<strong>in</strong>es which ma<strong>in</strong>ta<strong>in</strong> Th1/Th2 balance <strong>in</strong> allergic<br />

children [2, 7].<br />

We identified novel probiotic Lactobacillus casei and<br />

paracasei stra<strong>in</strong>s which given to children with cow’s milk<br />

(CM) allergy demonstrat<strong>in</strong>g AD improved cl<strong>in</strong>ical syndromes<br />

<strong>in</strong> IgE-allergic patients [1, 5]. The aim <strong>of</strong> this study was<br />

to analyze <strong>the</strong> effect <strong>of</strong> probiotic Lactobacillus casei and paracasei<br />

stra<strong>in</strong>s on production <strong>of</strong> secretory and circulat<strong>in</strong>g anti-Lactobacillus<br />

Abs <strong>in</strong> sera and stools as well as on modulation<br />

<strong>of</strong> cytok<strong>in</strong>e pr<strong>of</strong>ile <strong>in</strong> children with AD.<br />

Patients and methods<br />

Patients’ characteristics and study design<br />

The study <strong>in</strong>cluded 60 children aged 3 months – 18 months<br />

(mean age 10 months) with atopic dermatitis caused by CM<br />

allergy, who did not received antibiotics and probiotics for<br />

at least 3 months before <strong>the</strong> study. CM allergy was proved<br />

by challenge with CM formula. Dur<strong>in</strong>g <strong>the</strong> study children received<br />

hydrolyzed milk formula or were breast fed. In case<br />

<strong>of</strong> breast feed<strong>in</strong>g women were on CMP-free diet. Patients<br />

were randomized <strong>in</strong> a double-bl<strong>in</strong>d design to receive ei<strong>the</strong>r<br />

placebo or a mixture <strong>of</strong> three probiotic stra<strong>in</strong>s: Lactobacillus<br />

casei LOCK 0900, L. casei LOCK 0908, L. paracasei LOCK<br />

0919 for 3 months <strong>in</strong> daily dose 5×109 . Cl<strong>in</strong>ical improvement<br />

was evaluated us<strong>in</strong>g Severity Scor<strong>in</strong>g <strong>of</strong> Atopic Dermatitis<br />

(SCORAD) before bacteria application (time 0), at <strong>the</strong> end<br />

<strong>of</strong> <strong>the</strong>ir <strong>in</strong>-take (3 m) and 5 months later (8 m). At <strong>the</strong> same<br />

time sera and faeces were collected for measurement <strong>of</strong> antibody<br />

and cytok<strong>in</strong>e levels. F<strong>in</strong>ally, 44 children f<strong>in</strong>ished <strong>the</strong><br />

whole study and determ<strong>in</strong>ation <strong>of</strong> Ab levels were done <strong>in</strong> 33<br />

children. Faeces were diluted with PBS <strong>in</strong> concentration<br />

1 g/ml, vortex and centrifuged. Fecal supernatants were collected<br />

and frozen <strong>in</strong> – 20oC. The <strong>in</strong>fants participated <strong>in</strong> <strong>the</strong> study with <strong>the</strong> <strong>in</strong>formed<br />

consent <strong>of</strong> <strong>the</strong>ir parents and <strong>the</strong> study was approved by<br />

<strong>the</strong> Ethics Committee <strong>of</strong> <strong>the</strong> Children’s Memorial Health Institute.<br />

Detection <strong>of</strong> specific anti-Lactobacillus Ab<br />

The Ab response was estimated <strong>in</strong> <strong>the</strong> sera by enzyme l<strong>in</strong>ked<br />

immunosorbent assay (ELISA) as previously described by<br />

Cukrowska et al [4] us<strong>in</strong>g heat-<strong>in</strong>activat<strong>in</strong>g mixture <strong>of</strong> probiotic<br />

Lactobacillus bacteria as a antigen. Microplates were<br />

coated with bacteria suspended <strong>in</strong> PBS at a concentration <strong>of</strong><br />

10 8 /ml. After overnight <strong>in</strong>cubation bacteria were fixed to <strong>the</strong><br />

plates by a10-m<strong>in</strong> <strong>in</strong>cubation with 0,025% glutaraldehyde.<br />

The plates were <strong>the</strong>n washed with tap water and phosphate<br />

sal<strong>in</strong>e buffer (PBS) pH 7,4, and blocked with 5% normal goat<br />

serum (Sigma Chemical Co, St. Louis, MO, USA) for<br />

30 m<strong>in</strong> <strong>in</strong> room temperature. After wash<strong>in</strong>g samples duplicates<br />

were applied. Serum samples were diluted <strong>in</strong> 1% bov<strong>in</strong>e<br />

serum album<strong>in</strong> (BSA) /PBS <strong>in</strong> follow<strong>in</strong>g dilutions: for<br />

IgA Ab 1:50 and 1:200, for IgM 1:100 and 1:500, for IgG<br />

1:200 and 1: 800. Fecal samples were applied without dilution.<br />

Standard normal human adult serum was always added<br />

<strong>in</strong> a five-fold dilution start<strong>in</strong>g from 1:100 as a positive control,<br />

1% <strong>of</strong> BSA be<strong>in</strong>g used as a negative control. After overnight<br />

<strong>in</strong>cubation at 4 o C and wash<strong>in</strong>g, polyclonal goat anti-human<br />

IgA, IgG or IgM conjugated to peroxidase (Jacson Immnoresearch)<br />

diluted 1:2000 <strong>in</strong> 1%BSA/PBS were added.<br />

F<strong>in</strong>ally, <strong>the</strong> plates were washed and 50 μl <strong>of</strong> solution conta<strong>in</strong><strong>in</strong>g<br />

o-phenylenediam<strong>in</strong>e dihydrochloride (Sigma Chemical<br />

Co, St. Louis, MO, USA) was added. The reaction was stopped<br />

with acid sulphuric and <strong>the</strong> plates were read on micro-<br />

-ELISA reader at 450. The level <strong>of</strong> Ab activity was expressed<br />

as arbitrary units (AU) calculat<strong>in</strong>g from <strong>the</strong> calibration<br />

curve, <strong>in</strong> which standard normal human serum diluted 1:100<br />

conta<strong>in</strong>ed 100 AU.<br />

Cytok<strong>in</strong>e determ<strong>in</strong>ation<br />

In sera pro<strong>in</strong>flammatory <strong>in</strong>terleuk<strong>in</strong>-18 (IL-18), IL-12, <strong>in</strong>terferon-gamma<br />

(IFN-gamma), regulatory transform<strong>in</strong>g<br />

growth factor –beta 1 (TGF-beta1) and proallergic IL-4, IL-<br />

5 were measured. The cytok<strong>in</strong>e level was determ<strong>in</strong>ed as previously<br />

described by Rosiak et al us<strong>in</strong>g R&D System Kits<br />

[14]. Briefly, 50 μl <strong>of</strong> supernatants was added to a microtitter<br />

well coated with <strong>the</strong> specific monoclonal antibody and<br />

left for 24 hour <strong>in</strong> 4oC. After <strong>in</strong>cubation <strong>the</strong> wells were washed<br />

and 100 μl <strong>of</strong> detection antibody was added to each<br />

well and <strong>the</strong> plates were <strong>in</strong>cubated for 2 hours <strong>in</strong> room temperature.<br />

Then <strong>the</strong> wells were washed aga<strong>in</strong> and 100 μl <strong>of</strong><br />

streptavid<strong>in</strong> was added for 20 m<strong>in</strong>utes. F<strong>in</strong>ally, <strong>the</strong> plates<br />

were washed and 50 μl <strong>of</strong> solution conta<strong>in</strong><strong>in</strong>g o-phenylenediam<strong>in</strong>e<br />

dihydrochloride (Sigma Chemical Co, St. Louis,<br />

MO, USA) was added. The reaction was stopped with acid<br />

sulphuric and <strong>the</strong> plates were read on micro-ELISA reader<br />

at 450. The amounts <strong>of</strong> cytok<strong>in</strong>es were calculated from <strong>the</strong><br />

standard curve. The results were expressed <strong>in</strong> pg/mL as arithmetical<br />

means.<br />

Statistical analysis<br />

The results were statistically analyzed us<strong>in</strong>g parametric t-test<br />

and nonparametric Mann-Whitney test. P


<strong>in</strong> Ab levels ma<strong>in</strong>ly <strong>of</strong> IgA and IgM isotopes was detected<br />

dur<strong>in</strong>g 8-month last<strong>in</strong>g observation <strong>in</strong> patients receiv<strong>in</strong>g Lactobacillus<br />

stra<strong>in</strong>s as well as <strong>in</strong> placebo group. Although Lactobacillus<br />

bacteria <strong>in</strong>-take <strong>in</strong>duced s<strong>light</strong>ly higher amounts <strong>of</strong><br />

IgA anti-Lactobacillus Abs <strong>in</strong> sera as compared with sera <strong>of</strong><br />

children receiv<strong>in</strong>g placebo <strong>the</strong> statistical significance was not<br />

achieved (Fig. 1). In stools IgA anti-Lactobacillus Abs dom<strong>in</strong>ated,<br />

and only m<strong>in</strong>imal amounts <strong>of</strong> IgM and IgG Abs were<br />

found (Fig. 2). In contrast to circulat<strong>in</strong>g Abs which <strong>in</strong>cre-<br />

AU<br />

AU<br />

AU<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

IgA<br />

0 m 3 m<br />

Lactobacillus Placebo<br />

IgM<br />

0 m 3 m<br />

Lactobacillus Placebo<br />

IgG<br />

0 m 3 m<br />

Lactobacillus Placebo<br />

Fig. 1 Specific anti-Lactobacillus Abs <strong>in</strong> sera <strong>of</strong> children receiv<strong>in</strong>g Lactobacillus<br />

stra<strong>in</strong>s (black bars) and placebo (white bars)<br />

Abs were measured by immunoenzymatic assays. There was no statistical<br />

significance between Lactobacillus and placebo groups.<br />

117<br />

ased dur<strong>in</strong>g 8-month observation <strong>in</strong> both groups, an <strong>in</strong>crease<br />

<strong>in</strong> Ab level <strong>in</strong> stools was observed only <strong>in</strong> children receiv<strong>in</strong>g<br />

Lactobacillus stra<strong>in</strong>s. An <strong>in</strong>crease was found only just after<br />

f<strong>in</strong>ish<strong>in</strong>g <strong>the</strong> bacteria <strong>in</strong>-take (3 m). After next 5 months Ab<br />

amounts decreased to <strong>the</strong> level observed <strong>in</strong> placebo group.<br />

An <strong>in</strong>crease was found <strong>in</strong> all isotypes, but did not achieve <strong>the</strong><br />

statistical significance <strong>in</strong> patients supplemented with probiotics<br />

<strong>in</strong> comparison with placebo group, although for IgA Ab<br />

p=0,08.<br />

Fig. 2 Specific anti-Lactobacillus Abs <strong>in</strong> stools <strong>of</strong> children receiv<strong>in</strong>g Lactobacillus<br />

stra<strong>in</strong>s (black bars) and placebo (white bars)<br />

Abs were measured by immunoenzymatic assays. *statistical significance<br />

between children receiv<strong>in</strong>g Lactobacillus stra<strong>in</strong>s and placebo.


118<br />

Cytok<strong>in</strong>e level <strong>in</strong> sera<br />

IL-4 and IL-5 was not detected <strong>in</strong> most (>90%) sera, and<br />

IFN-gamma was found <strong>in</strong> 5 children with group receiv<strong>in</strong>g<br />

probiotics and <strong>in</strong> 4 from control placebo group. IL-12, IL-18<br />

and TGF-beta1 were detected <strong>in</strong> sera <strong>of</strong> all children. The statistical<br />

significance between studied groups was found only<br />

for IL-18 (Fig. 3). IL-18 cont<strong>in</strong>uously decreased <strong>in</strong> placebo<br />

group after 3 and 5 months. In Lactobacillus group it ma<strong>in</strong>ta<strong>in</strong>ed<br />

at <strong>the</strong> same level after f<strong>in</strong>ish<strong>in</strong>g bacteria <strong>in</strong>- take (3 m),<br />

and <strong>in</strong>creased 5 months later (p=0,03). Likely to IL-18, IL-12<br />

s<strong>light</strong>ly <strong>in</strong>creased after 8-month observation <strong>in</strong> children receiv<strong>in</strong>g<br />

probiotics <strong>in</strong> comparison with placebo group, but without<br />

statistical significance (p=0,06) (Fig. 4). TGF-beta1<br />

ma<strong>in</strong>ta<strong>in</strong>ed at similar levels <strong>in</strong> both groups dur<strong>in</strong>g <strong>the</strong> whole<br />

study (Fig. 5).<br />

Discussion<br />

Different probiotic stra<strong>in</strong>s have been shown to be useful <strong>in</strong><br />

<strong>the</strong> treatment <strong>of</strong> AD <strong>in</strong> children [7, 13, 18, 19]. As atopic diseases<br />

are characterized by imbalance <strong>of</strong> Th1/Th2 cytok<strong>in</strong>e<br />

pr<strong>of</strong>ile, it is believed that probiotics affect <strong>the</strong> immune system<br />

by enhanc<strong>in</strong>g <strong>of</strong> regulatory and/or pro<strong>in</strong>flammatory cytokies<br />

production and by reduc<strong>in</strong>g Th2 cytok<strong>in</strong>e release [2].<br />

In addition, probiotics are able to <strong>in</strong>duce a production <strong>of</strong> secretory<br />

and circulat<strong>in</strong>g Abs which create <strong>the</strong> first l<strong>in</strong>e <strong>of</strong> defense<br />

aga<strong>in</strong>st external antigens <strong>in</strong>clud<strong>in</strong>g allergens.<br />

Our group presented that novel probiotic L. casei and<br />

L. paracasei stra<strong>in</strong>s markedly reduced <strong>the</strong> severity <strong>of</strong> AD <strong>in</strong><br />

<strong>in</strong>fants <strong>in</strong> randomized placebo controlled study [5]. After<br />

3 months <strong>of</strong> treatment SCORAD <strong>in</strong>dex significantly decreased<br />

only <strong>in</strong> group receiv<strong>in</strong>g probiotics, and <strong>in</strong> IgE-dependent<br />

allergy was significantly lower <strong>in</strong> comparison with placebo<br />

group. In vitro analyses <strong>of</strong> those stra<strong>in</strong>s us<strong>in</strong>g blood<br />

cell cultures <strong>of</strong> atopic children have shown that <strong>the</strong>y are potent<br />

<strong>in</strong>ducer <strong>of</strong> both pro-<strong>in</strong>flammatory and regulatory cytok<strong>in</strong>es,<br />

and on <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong>y do not trigger pro-allergic<br />

responses [14]. In present <strong>in</strong> vivo study we have shown that<br />

L. casei and paracasei stra<strong>in</strong>s activate both humoral and cytok<strong>in</strong>e<br />

responses <strong>in</strong> children with CM allergy demonstrat<strong>in</strong>g<br />

AD. Bacteria <strong>in</strong>duced production <strong>of</strong> anti-Lactobacillus Abs<br />

ma<strong>in</strong>ly <strong>of</strong> IgA isotype <strong>in</strong> gut. Although <strong>the</strong> level <strong>of</strong> secretory<br />

IgA Abs <strong>in</strong>creased after f<strong>in</strong>ish<strong>in</strong>g <strong>of</strong> bacteria <strong>in</strong>-take it<br />

was not statistically significant as compared with placebo<br />

group, and <strong>the</strong>n after 5 months <strong>the</strong> amounts <strong>of</strong> Abs decreased<br />

to <strong>the</strong> level found <strong>in</strong> placebo group. We supposed that<br />

children response to probiotic bacteria by production <strong>of</strong> anti-Lactobacillus<br />

Abs, but this humoral activation is limited<br />

at time. Our earlier studies performed on germ-free piglets<br />

associated with non-pathogenic Escheichia coli O86 as well<br />

as with newborn children to whom probiotic stra<strong>in</strong>s <strong>of</strong> E. coli<br />

O83 were given presented that probiotic bacteia <strong>in</strong>duced<br />

production <strong>of</strong> specific Abs, but this response occurred <strong>in</strong><br />

short period after bacteria application [3, 4]. In piglets E. coli<br />

colonization <strong>in</strong>duced production <strong>of</strong> specific IgA Abs <strong>in</strong><br />

gut as early as 4 days after bacteria <strong>in</strong>-take. The level <strong>of</strong> tho-<br />

Fig. 3 The level <strong>of</strong> IL-18 <strong>in</strong> sera <strong>of</strong> children receiv<strong>in</strong>g Lactobacillus stra<strong>in</strong>s<br />

and placebo<br />

IL-18 levels were measured by immunoenzymatic method before bacteria<br />

<strong>in</strong>-take (0m), just after f<strong>in</strong>ish<strong>in</strong>g bacteria receiv<strong>in</strong>g (3m) and 5 months later<br />

(8m). *statistical significance between children receiv<strong>in</strong>g Lactobacillus stra<strong>in</strong>s<br />

and placebo.<br />

Fig. 4 The level <strong>of</strong> IL-12 <strong>in</strong> sera <strong>of</strong> children receiv<strong>in</strong>g Lactobacillus stra<strong>in</strong>s<br />

and placebo<br />

IL-12 levels were measured by immunoenzymatic method before bacteria<br />

<strong>in</strong>-take (0m), just after f<strong>in</strong>ish<strong>in</strong>g bacteria receiv<strong>in</strong>g (3m) and 5 months later<br />

(8m). *statistical significance between children receiv<strong>in</strong>g Lactobacillus stra<strong>in</strong>s<br />

and placebo.<br />

Fig. 5 The level <strong>of</strong> TGF-beta1 <strong>in</strong> sera <strong>of</strong> children receiv<strong>in</strong>g Lactobacillus<br />

stra<strong>in</strong>s and placebo<br />

TGF-beta1 levels were measured by immunoenzymatic method before bacteria<br />

<strong>in</strong>-take (0m), just after f<strong>in</strong>ish<strong>in</strong>g bacteria receiv<strong>in</strong>g (3m) and 5 months<br />

later (8m). There was no statistical significance between children receiv<strong>in</strong>g<br />

Lactobacillus stra<strong>in</strong>s and placebo.<br />

se Abs rapidly decreased after 15 days, but <strong>in</strong>creased <strong>in</strong> sera.<br />

In newborn we observed a significant <strong>in</strong>crease <strong>in</strong> secretory<br />

IgA Ab level start<strong>in</strong>g from 2 weeks after bacteria <strong>in</strong>-take,<br />

but after 8 weeks <strong>the</strong> level decreased although still it was


higher (without statistical significance) than <strong>in</strong> control groups<br />

<strong>of</strong> children. This phenomenon is expla<strong>in</strong>ed by <strong>the</strong> development<br />

<strong>of</strong> oral tolerance to <strong>in</strong>test<strong>in</strong>al non-pathogenic bacteria<br />

[15].<br />

Lactobacillus casei/paracasei stra<strong>in</strong>s <strong>in</strong>duced not only<br />

humoral responses but also activated cytok<strong>in</strong>e production<br />

<strong>in</strong> children. In <strong>in</strong> vitro studies <strong>the</strong>y activated blood cells <strong>of</strong><br />

children with AD to production <strong>of</strong> IL-12, IL-18, TNF-alpha<br />

and IFN-gamma <strong>in</strong> higher amounts than known polyclonal<br />

activator PHA [14]. Simultaneously, Lactobacillus stra<strong>in</strong>s <strong>in</strong>hibited<br />

IL-5 secretion. Now we showed that <strong>in</strong> vivo <strong>the</strong>y s<strong>light</strong>ly<br />

<strong>in</strong>duced pro<strong>in</strong>flammatory IL-12 and significantly modulated<br />

production <strong>of</strong> IL-18. We observed that serum IL-18<br />

<strong>in</strong> placebo group decreased dur<strong>in</strong>g <strong>the</strong> whole study and this<br />

decrease correlated with cl<strong>in</strong>ical improvement. In placebo<br />

group SCORAD decreased after 3 month and <strong>the</strong>n after<br />

5 months as well [5]. In contrast, <strong>in</strong> children receiv<strong>in</strong>g probiotics<br />

<strong>in</strong> spite <strong>of</strong> better cl<strong>in</strong>ical improvement than <strong>in</strong> placebo<br />

group, IL-18 did not decrease. Probiotics activated IL-18<br />

production at <strong>the</strong> same level after f<strong>in</strong>ish<strong>in</strong>g <strong>of</strong> bacteria <strong>in</strong>-ta-<br />

References<br />

1. Ceregra A, Kozakova H, Czarnowska<br />

E, et al (2005) Effect <strong>of</strong> gastro<strong>in</strong>test<strong>in</strong>al<br />

application <strong>of</strong> probiotic Lactobacillus<br />

casei/paracasei stra<strong>in</strong>s on bacteria translocation<br />

and cytok<strong>in</strong>e production. Folia<br />

Histochem Cytobiol 43 (Supl 1): 28<br />

2. Cukrowska B (2002) The role <strong>of</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>al<br />

micr<strong>of</strong>lora <strong>in</strong> <strong>the</strong> development<br />

<strong>of</strong> allergies: <strong>the</strong> modulation <strong>of</strong> <strong>the</strong> immune<br />

system by probiotics. Ann Diag<br />

Paediatr Pathol 2002, 6, 89–96.<br />

3. Cukrowska B, Kozakova H, Rehakova<br />

Z, S<strong>in</strong>kora J, Tlaskalova-Hogenova H<br />

(20<strong>01</strong>) Specific antibody and immunoglobul<strong>in</strong><br />

responses after <strong>in</strong>test<strong>in</strong>al colonization<br />

<strong>of</strong> germ-free piglets with non-<br />

-pathogenic Escherichia coli O86. Immunobiology<br />

204: 425–433<br />

4. Cukrowska B, Lod<strong>in</strong>ova-Zadnikova R,<br />

Enders C, Sonnenborg U, Schulze J,<br />

Tlaskalova-Hogenova H (2002) Specific<br />

proliferative and antibody responses<br />

<strong>of</strong> premature <strong>in</strong>fants to <strong>in</strong>test<strong>in</strong>al colonization<br />

with non-pathogenic probiotic<br />

E. coli stra<strong>in</strong> Nissle 1917. Scand J Immunol<br />

55: 204–209<br />

5. Cukrowska B, Piontek E, Najberg E, et<br />

al (2005) The effect <strong>of</strong> new probiotic<br />

Lactobacillus casei and casei/paracasei<br />

stra<strong>in</strong>s on gut ecosystem and cl<strong>in</strong>ical<br />

symptoms <strong>of</strong> children with atopic dermatitis.<br />

Allegy Cl<strong>in</strong> Immunol Intern<br />

(Supl 1): 1645<br />

ke, and even s<strong>light</strong>ly <strong>in</strong>creased its secretion 5 months later.<br />

It was shown that monocytes from patients with AD secreted<br />

reduced amounts <strong>of</strong> IL-18 [6], and it is known fact that<br />

IL-18 is a potent pro<strong>in</strong>flammatory cytok<strong>in</strong>e able to <strong>in</strong>duce<br />

IFN-gamma, TNF-alpha and IL-1 [10]. This pro<strong>in</strong>flammatory<br />

effect is <strong>the</strong> result <strong>of</strong> co-operation with IL-12, which <strong>in</strong> our<br />

study was s<strong>light</strong>ly higher <strong>in</strong> children receiv<strong>in</strong>g probiotics. On<br />

<strong>the</strong> o<strong>the</strong>r hand IL-18 <strong>in</strong> <strong>the</strong> absence <strong>of</strong> IL-12 <strong>in</strong>duces naive<br />

T-cell <strong>in</strong>to Th2. Thus, IL-18 is a unique cytok<strong>in</strong>e that stimulates<br />

both Th1 and Th2 responses depend<strong>in</strong>g on its cytok<strong>in</strong>e<br />

milieu [10]. We supposed that probiotic Lactobacillus casei<br />

and paracasei stra<strong>in</strong>s used <strong>in</strong> our study exert <strong>the</strong> beneficial<br />

effects <strong>in</strong> allergic patients by regulation <strong>of</strong> Th1/Th2 cytok<strong>in</strong>e<br />

pr<strong>of</strong>ile by IL-18, i.e. cytok<strong>in</strong>e which plays an important<br />

role <strong>in</strong> <strong>the</strong> overall immune response.<br />

Acknowledgment<br />

6. Higashi N, Gesser B, Kawana S, Thestrup-Pedersen<br />

K (20<strong>01</strong>) Expression <strong>of</strong><br />

IL-18 mRNA and secretion <strong>of</strong> IL-18 are<br />

reduced <strong>in</strong> monocytes from patients<br />

with atopic dermatitis. J Allergy Cl<strong>in</strong><br />

Immunol 108: 607–614<br />

7. Isolauri E, Matika<strong>in</strong>en S, Vuopio-Varkila<br />

J, et al (2000) Probiotics <strong>in</strong> <strong>the</strong> management<br />

<strong>of</strong> atopic eczema. Cl<strong>in</strong> Exp<br />

Allergy 30: 1604–1610<br />

8. Kalliomaki M, Salm<strong>in</strong>en S, Arvilommi<br />

H., Koro P, Kosk<strong>in</strong>en P, Isolauri E<br />

(20<strong>01</strong>) Probiotics <strong>in</strong> primary prevention<br />

<strong>of</strong> atopic disease: a randomized placebo-<br />

-controlled trial. Lancet 357: 1076–1079<br />

9. Kalliomaki M, Salm<strong>in</strong>en S, Poussa T,<br />

Arvilommi H, Isolauri R (2003) Probiotics<br />

and prevention <strong>of</strong> atopic disease:<br />

4-year follow-up <strong>of</strong> a randomized placebo-controlled<br />

trial. Lancet 361:<br />

1869–1871<br />

10. Nakanishi K, Yoshimoto T, Tsutsui H,<br />

Okamura H (20<strong>01</strong>) Interleuk<strong>in</strong>-18 is<br />

a unique cytok<strong>in</strong>e that stimulates both<br />

Th1 and Th2 responses depend<strong>in</strong>g on<br />

its cytok<strong>in</strong>e milieu. Cytok<strong>in</strong>e Growth<br />

Factors Rev 12: 53–72<br />

11. Pochard P, Gosset P, Grangette C, et al<br />

(2002) Lactic acid bacteria <strong>in</strong>hibit TH2<br />

cytok<strong>in</strong>e production by mononuclear<br />

cells from allergic patients. J Allergy<br />

Cl<strong>in</strong> Immunol 32: 563–570<br />

12. Pohjavuori E, Viljanen M, Korpela R<br />

(2004) Lactobacillus GG effect <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g<br />

IFN-gamma production <strong>in</strong> <strong>in</strong>fants<br />

with cow’s milk allergy. J Allergy<br />

Cl<strong>in</strong> Immunol 114: 131–136<br />

119<br />

This study is supported by <strong>the</strong> State Committee for Research<br />

(project 2P05E 067 26).<br />

13. Rosenfeld V, Benfeldt E, Nielsen SD,<br />

et al (2003) Effects <strong>of</strong> probiotic Lactobacillus<br />

stra<strong>in</strong>s <strong>in</strong> children with atopic<br />

dermatitis. J Allergy Cl<strong>in</strong> Immunol<br />

111: 389–395<br />

14. Rosiak I, Witos³aw U, Ceregra A, et al<br />

(2006) The impact <strong>of</strong> probiotic Lactobacillus<br />

casei and paracasei stra<strong>in</strong>s on<br />

cytok<strong>in</strong>e pr<strong>of</strong>ile <strong>in</strong> children with atopic<br />

dermatitis. Ann Diag Paediatr Pathol<br />

10: 37–42<br />

15. Tlaskalova-Hogenova H, Stepankova<br />

R, Hudcovic T, et al (2004) Commensal<br />

bacteria (normal mikr<strong>of</strong>lora), mucosal<br />

immunity and chronic <strong>in</strong>flammatory<br />

and autoimmune diseases. Immunol<br />

Lett 93: 97–10<br />

16. (2005) Probiotic effects on faecal <strong>in</strong>flammatory<br />

markers and on faecal IgA<br />

<strong>in</strong> food allergic atopic eczema/dermatitis<br />

syndrome <strong>in</strong>fants. Pediatr Allergy<br />

Immunol 16: 65–71<br />

17. <strong>of</strong> <strong>in</strong>flammation as a possible mechanism<br />

<strong>of</strong> probiotic effect <strong>in</strong> atopic eczema-dermatitis<br />

syndrome. J Allergy Cl<strong>in</strong><br />

Immuno 115: 1254–1259<br />

18. Viljanen M, Savilahti E, Haahtela T, et<br />

al (2005) Probiotics <strong>in</strong> <strong>the</strong> treatment <strong>of</strong><br />

atopic eczema/dermatitis syndrome <strong>in</strong><br />

<strong>in</strong>fants: a double-bl<strong>in</strong>d placebo-controlled<br />

trial. Allergy 60: 494–500<br />

19. Westen S, Halbert A, Richmond P, Prescott<br />

SL (2005) Effects <strong>of</strong> probiotics on<br />

atopic dermatitis: a randomized controlled<br />

trial. Arch Dis Child 90: 892–897


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 121–124<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Cervical approach to anterior mediast<strong>in</strong>al <strong>tumor</strong>s <strong>in</strong> children<br />

Miros³aw M. Krysta 1 , Wojciech J. Górecki 1 , Adam M. Bysiek 1 ,<br />

Witold H. Mie¿ynski 2 , Krzyszt<strong>of</strong> A. Solecki 1 , Bartosz J. Bogusz 1<br />

1 Department <strong>of</strong> Pediatric Surgery<br />

2 Department <strong>of</strong> Pathology<br />

The Children's Hospital <strong>of</strong> <strong>the</strong> Jagiellonian University<br />

Cracow, Poland<br />

Introduction<br />

Abstract<br />

Mediast<strong>in</strong>al <strong>tumor</strong>s show many k<strong>in</strong>ds <strong>of</strong> histology <strong>in</strong>clud<strong>in</strong>g<br />

malignancy, thus surgery is <strong>in</strong>dicated <strong>in</strong> almost all cases with<br />

<strong>the</strong> exception <strong>of</strong> malignant lymphomas [6]. Recent advances<br />

<strong>in</strong> thoracoscopic surgery have dramatically altered <strong>the</strong> approach<br />

to <strong>in</strong>trathoracic lesions <strong>in</strong> pediatric patients [8]. Most <strong>tumor</strong>s<br />

found <strong>in</strong> anterior superior mediast<strong>in</strong>um are derived<br />

from <strong>the</strong> thymus and are usually benign [5]. The anterior superior<br />

mediast<strong>in</strong>um is accessible through a cervical approach<br />

that presents a less <strong>in</strong>vasive alternative to thoracoscopy <strong>in</strong><br />

obta<strong>in</strong><strong>in</strong>g a tissue diagnosis and resect<strong>in</strong>g thymic tissue [1].<br />

The aim <strong>of</strong> our study was to assess <strong>the</strong> safety and effectiveness<br />

<strong>of</strong> <strong>the</strong> cervical approach <strong>in</strong> 11 children with <strong>tumor</strong>s <strong>of</strong><br />

<strong>the</strong> anterior superior mediast<strong>in</strong>um.<br />

Patients and methods<br />

Between 1996 and 2005, eleven children (8 boys and 3 girls)<br />

aged 1 to 18 years (mean 12) were referred to our service for<br />

Address for correspondence<br />

Recent advance <strong>in</strong> thoracoscopy reduce <strong>the</strong> need for thoracotomy for pediatric patients with mediast<strong>in</strong>al<br />

<strong>tumor</strong>s. The aim <strong>of</strong> our study is to evaluate <strong>the</strong> safety and effectiveness <strong>of</strong> a m<strong>in</strong>imally <strong>in</strong>vasive cervical<br />

approach to anterior mediast<strong>in</strong>al <strong>tumor</strong>s. A case series <strong>of</strong> 11 pediatric patients with anterior mediast<strong>in</strong>al<br />

<strong>tumor</strong>s treated through a m<strong>in</strong>imally <strong>in</strong>vasive cervical approach. Total thymectomy was performed <strong>in</strong><br />

8 children and near total thymectomy <strong>in</strong> 3. Three children required partial sternotomy for exposure. All<br />

wounds healed primary without postoperative complications. All f<strong>in</strong>al histological reports matched<br />

<strong>in</strong>traoperative f<strong>in</strong>d<strong>in</strong>gs. Persistent thymus was found <strong>in</strong> 5, thymic hyperplasia <strong>in</strong> 3, thymic degeneration <strong>in</strong><br />

2 and atrophy <strong>of</strong> thymus <strong>in</strong> 1 patient. We conclude that <strong>the</strong> transcervical approach to <strong>the</strong> anterior<br />

mediast<strong>in</strong>um is m<strong>in</strong>imal <strong>in</strong>vasive, safe and effective. Thymus may persist beyond <strong>the</strong> preschool age and<br />

constitutes for cl<strong>in</strong>ical dilemma. Thymic hyperplasia may confuse assessment <strong>in</strong> oncological patients.<br />

Key words: mediast<strong>in</strong>al <strong>tumor</strong>, persistent thymus, transcervical thymectomy<br />

Wojciech Górecki, MD voice: +48126580232<br />

Department <strong>of</strong> Pediatric Surgery fax: +48126581325<br />

The Children’s Hospital <strong>of</strong> <strong>the</strong> Jagiellonian University mobile: +48602756661<br />

265 Wielicka St. e-mail: migoreck@cyf-kr.edu.pl<br />

30-663 Kraków, Poland<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

histological verification <strong>of</strong> a <strong>tumor</strong> found <strong>in</strong> <strong>the</strong> anterior superior<br />

mediast<strong>in</strong>um. Seven children had primary <strong>tumor</strong>s, and<br />

four presented with a possible residual mass after treatment<br />

<strong>of</strong> mediast<strong>in</strong>al lymphoma. The diagnosis was established by<br />

CT scan <strong>in</strong> 9 children and MRI <strong>in</strong> 2.<br />

Surgery was performed under general anes<strong>the</strong>sia with<br />

endotracheal <strong>in</strong>tubation <strong>in</strong> <strong>the</strong> sup<strong>in</strong>e position. A transverse<br />

sk<strong>in</strong> <strong>in</strong>cision was made above <strong>the</strong> sternum. The platysma was<br />

<strong>in</strong>cised horizontally and dissection was advanced vertically<br />

to pretracheal space. The lower border <strong>of</strong> <strong>the</strong> wound with<br />

manubrium was raised and dissection proceeded beh<strong>in</strong>d <strong>the</strong><br />

upper border <strong>of</strong> <strong>the</strong> sternum <strong>in</strong>to <strong>the</strong> retro-sternal space. The<br />

tissue <strong>in</strong> <strong>the</strong> superior anterior mediast<strong>in</strong>um was dissected<br />

with <strong>in</strong>tention <strong>of</strong> removal. If necessary, a vertical upper sternotomy<br />

extend<strong>in</strong>g to <strong>the</strong> 3rd <strong>in</strong>tercostals space was performed<br />

to optimize exposure. Histological assessment <strong>of</strong> all tissue<br />

specimens was undertaken <strong>in</strong>tra-operatively. If <strong>the</strong> mass<br />

was diagnosed as normal thymus tissue and a total thymectomy<br />

would have required extensive exposure, <strong>the</strong> thymic<br />

remnant was left <strong>in</strong> place. Residual <strong>tumor</strong> after treatment for


122<br />

mediast<strong>in</strong>al lymphoma was removed if possible but biopsied<br />

and left <strong>in</strong> place if removal would have required extensive<br />

dissection. After hemostasis was achieved, all wounds were<br />

closed without a dra<strong>in</strong>.<br />

Results<br />

Three children required partial sternotomy to optimize exposure.<br />

Thymic tissue was found <strong>in</strong> all children. Total thymectomy<br />

was performed <strong>in</strong> 8 and near total <strong>in</strong> 3 children. A residual<br />

mass was found <strong>in</strong> 3 <strong>of</strong> 4 children with lymphoma, and<br />

thymic hyperplasia <strong>in</strong> one. In 2 <strong>of</strong> <strong>the</strong>m <strong>the</strong> mass was excised,<br />

and <strong>in</strong> <strong>the</strong> third child it was left <strong>in</strong> place after a negative<br />

<strong>in</strong>traoperative biopsy. All f<strong>in</strong>al histological reports matched<br />

<strong>the</strong> macro and microscopic <strong>in</strong>traoperative f<strong>in</strong>d<strong>in</strong>gs. The<br />

f<strong>in</strong>al diagnoses were summarized with consecutive references<br />

to examples <strong>of</strong> radiological images (Table 1). The patient<br />

with thymic hyperplasia and unilocular thymic cyst is a very<br />

unique entity (Fig. 1). Scharifker claimed <strong>in</strong> 2006 that<br />

such case has not been previously published [9]. All wounds<br />

healed primary without postoperative complications. Two<br />

children had repeated thoracic CT scans at 1 and 3 months<br />

postoperatively for a mediast<strong>in</strong>al hematoma <strong>of</strong> <strong>the</strong> retrosternal<br />

space that resolved spontaneously.<br />

Discussion<br />

Video-assisted thoracoscopic surgery, median sternotomy<br />

and <strong>the</strong> transcervical approach can achieve <strong>the</strong> same degree<br />

<strong>of</strong> radical thymectomy [11]. The latter technique is technically<br />

easier, quicker and less <strong>in</strong>vasive.<br />

Half <strong>of</strong> <strong>the</strong> children <strong>in</strong> our series had a normal persistent<br />

thymus, mostly found <strong>in</strong>cidentally. Recognition <strong>of</strong> po-<br />

Table 1<br />

Diagnosis <strong>in</strong> 11 patients with anterior mediast<strong>in</strong>al mass<br />

Macroscopic F<strong>in</strong>al histological Cl<strong>in</strong>ical Number Example <strong>of</strong><br />

<strong>in</strong>taoperative f<strong>in</strong>d<strong>in</strong>gs report diagnosis <strong>of</strong> patients cl<strong>in</strong>ical diagnosis<br />

Normal look<strong>in</strong>g thymic<br />

tissue<br />

Normal thymic tissue Persistent thymus 5 (2*#) Fig. 1<br />

Enlarged fragile thymic<br />

tissue<br />

Normal thymic tissue Thymic hyperplasia 2 (1*) Fig. 2<br />

Enlarged fibrotic Focal lymphatic Thymic degeneration 2 Fig. 3<br />

thymus or cystic degeneration<br />

Enlarged thymus Normal thymic tissue Thymic hyperplasia 1 Fig. 4<br />

with unilocular cyst with unilocular cyst<br />

Atrophic thymus Fibrosous tissue Atrophy <strong>of</strong> thymus 1*# Fig. 5<br />

* – patients suspected to have residual <strong>tumor</strong> after mediast<strong>in</strong>al lymphoma<br />

# – residual <strong>tumor</strong> found – no active process detected<br />

Fig. 1 MRI <strong>of</strong> 15 year old boy with persistent thymus<br />

Fig. 2 CT scan <strong>of</strong> 1 year old boy with thymic hyperplasia


Fig. 3 CT imag<strong>in</strong>g <strong>of</strong> thymic degeneration <strong>in</strong> 5 year old boy<br />

Fig. 4 CT image <strong>of</strong> thymic hyperplasia with unilocular cyst <strong>in</strong> 5 year old boy<br />

ssible persistence and normal variation <strong>in</strong> <strong>the</strong> CT appearance<br />

<strong>of</strong> <strong>the</strong> thymus <strong>in</strong> young patients may prevent <strong>the</strong> false-positive<br />

diagnosis <strong>of</strong> a neoplasm [4].<br />

One patient <strong>in</strong> <strong>the</strong> series had thymic hyperplasia after<br />

chemo<strong>the</strong>rapy for Hodgk<strong>in</strong> disease, a common f<strong>in</strong>d<strong>in</strong>g that<br />

occurs <strong>in</strong> more than one third <strong>of</strong> patients with thymic <strong>in</strong>volvement<br />

<strong>in</strong> Hodgk<strong>in</strong>’s lymphoma despite a full cl<strong>in</strong>ical remission<br />

after treatment [13]. Moreover, thymic hyperplasia<br />

is well known as a potential differential diagnosis <strong>of</strong> media-<br />

References<br />

1. Crucitti F, Zucchetti F, Doglietto GB<br />

(1977) The cervical approach <strong>in</strong> surgery<br />

<strong>of</strong> <strong>the</strong> thymus for myas<strong>the</strong>nia. Comparison<br />

with <strong>the</strong> trans-sternal route.<br />

Considerations on 75 operated patients.<br />

M<strong>in</strong>erva Chir 32: 543–547<br />

st<strong>in</strong>al space-occupy<strong>in</strong>g lesions and also as a long-term complication<br />

<strong>in</strong> patients cured <strong>of</strong> Hodgk<strong>in</strong>’s disease [10]. This<br />

may raise doubt concern<strong>in</strong>g possible <strong>tumor</strong> recurrence [2].<br />

An evolv<strong>in</strong>g alternative to transcervical biopsy and<br />

resection <strong>of</strong> a thymic mass may be percutaneous CT-guided<br />

needle biopsy, which allows access to <strong>the</strong> lesion <strong>in</strong> virtually<br />

all mediast<strong>in</strong>al locations [3]. This may <strong>in</strong>deed become <strong>the</strong><br />

method <strong>of</strong> choice for <strong>the</strong> study <strong>of</strong> mediast<strong>in</strong>al <strong>tumor</strong>s <strong>in</strong> <strong>the</strong><br />

future [7]. However, <strong>in</strong> one <strong>of</strong> six patients an image-guided<br />

needle biopsy does need yield adequate tissue for diagnosis,<br />

and <strong>the</strong>refore <strong>the</strong> transcervical approach will be <strong>in</strong>dicated <strong>in</strong><br />

<strong>the</strong>se cases [12].<br />

Conclusions<br />

2. Cum<strong>in</strong> I, Mech<strong>in</strong>aud F, Harousseau JL<br />

(1996) Thymus hyperplasia follow<strong>in</strong>g<br />

chemo<strong>the</strong>rapy. Presse Med 25: 291–292<br />

3. Gupta S, Seaberg K, Wallace MJ, et al<br />

(2005) Imag<strong>in</strong>g-guided percutaneous<br />

biopsy <strong>of</strong> mediast<strong>in</strong>al lesions: different<br />

approaches and anatomic considerations.<br />

Radiographics 25: 763–786<br />

123<br />

Fig. 5 Chest X-ray <strong>of</strong> 18 year old girl with residual <strong>tumor</strong> after HL. Atrophic<br />

thymus and residual <strong>tumor</strong> were subsequently removed<br />

The transcervical approach to <strong>the</strong> anterior mediast<strong>in</strong>um is<br />

m<strong>in</strong>imal <strong>in</strong>vasive, safe and effective. Thymus may persist<br />

beyond <strong>the</strong> preschool age and constitutes for cl<strong>in</strong>ical dilemma.<br />

Thymic hyperplasia may confuse assessment <strong>in</strong> oncological<br />

patients.<br />

4. Heiberg E, Wolverson MK, Sundaram<br />

M, Nouri S (1982) Normal thymus: CT<br />

characteristics <strong>in</strong> subjects under age 20.<br />

AJR Am J Roentgenol 138: 491–494<br />

5. Maruszynski M, Plachta H, Kott M, Obara<br />

A (1994) Surgical treatment <strong>of</strong> mediast<strong>in</strong>al<br />

<strong>tumor</strong>s from personal material.<br />

Pneumonol Alergol Pol 62: 491–495


124<br />

6. Masaoka A (1985) Treatment <strong>of</strong> mediast<strong>in</strong>al<br />

<strong>tumor</strong>. To Kagaku Ryoho 12:<br />

1383–1391<br />

7. Romero-Guadarrama MB, Duran-Padilla<br />

MA, Cruz-Ortiz H, et al (2004)<br />

Diagnosis <strong>of</strong> thymolipoma with f<strong>in</strong>e needle<br />

aspiration biopsy. Report <strong>of</strong> a case<br />

<strong>in</strong>itially misdiagnosed as liposarcoma.<br />

Acta Cytol 48: 441–446<br />

8. Ro<strong>the</strong>nberg SS (1998) Thoracoscopy <strong>in</strong><br />

<strong>in</strong>fants and children. Sem<strong>in</strong> Pediatr<br />

Surg 7: 194–2<strong>01</strong><br />

9. Scharifker D (2006) True thymic hyperplasia<br />

associated with a unilocular thymic<br />

cyst: an unusual comb<strong>in</strong>ation not<br />

previously reported. Ann Diagn Pathol<br />

10: 32–35<br />

10. Sche<strong>in</strong>pflug K, Schmitt J, Jentsch-Ullrich<br />

K, Roessner A, Franke A (2003)<br />

Thymic hyperplasia follow<strong>in</strong>g successful<br />

treatment for nodular-scleros<strong>in</strong>g<br />

Hodgk<strong>in</strong>’s disease. Leuk Lymphoma<br />

44: 1615–1617<br />

11. Seguier-Lipszyc E, Bonnard A, Evrard<br />

P, Garel C, De Ribier A, Aigra<strong>in</strong> Y, de<br />

Lagausie P (2005) Left thoracoscopic<br />

thymectomy <strong>in</strong> children. Surg Endosc<br />

19: 140–142<br />

12. Shabb NS, Fahl M, Shabb B, Haswani<br />

P, Zaatari G (1998) F<strong>in</strong>e-needle aspiration<br />

<strong>of</strong> <strong>the</strong> mediast<strong>in</strong>um: a cl<strong>in</strong>ical, radiologic,<br />

cytologic, and histologic study<br />

<strong>of</strong> 42 cases. Diagn Cytopathol 19:<br />

428–436<br />

13. Wernecke K, Vassallo P, Rutsch F, Peters<br />

PE, Potter R (1991) Thymic <strong>in</strong>volvement<br />

<strong>in</strong> Hodgk<strong>in</strong> disease: CT and sonographic<br />

f<strong>in</strong>d<strong>in</strong>gs. Radiology 181:<br />

375–383


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 125–128<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Rare case <strong>of</strong> calcyfy<strong>in</strong>g fibrous pseudotumour<br />

<strong>of</strong> <strong>the</strong> lung <strong>in</strong> 6 years old girl<br />

Przemys³aw Przewratil 1 , Anna Sitkiewicz 1 , Józef Kobos 2 , Ewa Andrzejewska 1<br />

1 Department <strong>of</strong> Pediatric Surgery and Oncology<br />

2 Department <strong>of</strong> Pathology <strong>of</strong> Age <strong>of</strong> Development<br />

Medical University <strong>of</strong> Lodz<br />

Introduction<br />

Abstract<br />

Inflammatory <strong>tumor</strong>s (<strong>in</strong>flammatory my<strong>of</strong>ibroblastic <strong>tumor</strong><br />

– IMT) are rare benign <strong>tumor</strong>s ma<strong>in</strong>ly <strong>in</strong> children and youth.<br />

About 20% <strong>of</strong> cases are accompanied by fever, body weight<br />

loss and progress<strong>in</strong>g anaemia. They are present ma<strong>in</strong>ly <strong>in</strong><br />

a lung or abdomen, however, <strong>the</strong>y might also be <strong>in</strong> o<strong>the</strong>r organs<br />

[2, 3, 6]. Their cl<strong>in</strong>ical course may even suggest a malignant<br />

neoplasm due to its local <strong>in</strong>vasiveness and tendency<br />

to recurrence (10–25%). They may also metastasize (about<br />

5%) or become malignant. Sizes <strong>of</strong> this <strong>tumor</strong> are varied<br />

and depend on its localization; usually <strong>the</strong>y vary between<br />

5–10 cm. Histologically, <strong>the</strong>y consist <strong>of</strong> mi<strong>of</strong>ibroblasts, lymphocytes,<br />

plasmatic and mesynchymal cells [1, 2, 3]. Not <strong>in</strong>-<br />

Address for correspondence<br />

Six-year old girl was addmited to <strong>the</strong> surgery department with diagnosis <strong>of</strong> thoracic <strong>tumor</strong>. CT scans<br />

demonstrated solid <strong>tumor</strong> <strong>of</strong> <strong>the</strong> right thorax. Increased <strong>in</strong>flammatory <strong>in</strong>dex and dist<strong>in</strong>ct anaemia were<br />

detected <strong>in</strong> laboratory tests. On <strong>the</strong> basis <strong>of</strong> CT imag<strong>in</strong>g and neoplastic markers <strong>the</strong> proper diagnosis <strong>of</strong> <strong>the</strong><br />

<strong>tumor</strong> characteristics was not possible. The child was qualified for surgery with suspition <strong>of</strong> mature<br />

teratoma. The giant solid <strong>tumor</strong> <strong>of</strong> <strong>the</strong> right lung, tightly attached to diaphragm was found dur<strong>in</strong>g<br />

thoracotomy. Tumor was excised completly with<strong>in</strong> right lung. Histopathological exam<strong>in</strong>ation revealed<br />

<strong>in</strong>flammatory my<strong>of</strong>ibroblastic <strong>tumor</strong> (IMT) <strong>of</strong> <strong>the</strong> lung with characteristic proliferation <strong>of</strong> my<strong>of</strong>ibroblasts<br />

with def<strong>in</strong>ite <strong>in</strong>filtrations <strong>of</strong> chronic <strong>in</strong>flammatory cells. In central part <strong>of</strong> <strong>the</strong> <strong>tumor</strong> excessive bone<br />

metaplasia fields and calcifications, focally with fields <strong>of</strong> high cellularity were identified.<br />

Immunohistochemical tests were positive for SMA, CD20 and negative for desm<strong>in</strong>e, MC, Alk-1 and p53.<br />

These results with some doubts lead to diagnosis <strong>of</strong> very rare type <strong>of</strong> calcify<strong>in</strong>g fibrous pseudo<strong>tumor</strong> (CFP).<br />

The girl had progression <strong>of</strong> microscopic residual mass <strong>in</strong> <strong>the</strong> chest 6 months after surgery and needed<br />

steroido<strong>the</strong>rapy with good result. The review <strong>of</strong> literature about IMT and CFP <strong>in</strong> children is also presented<br />

<strong>in</strong> this paper.<br />

Key words: calcify<strong>in</strong>g fibrous pseudo<strong>tumor</strong>, <strong>in</strong>flammatory <strong>tumor</strong>, lung <strong>tumor</strong><br />

frequently, <strong>the</strong>y pose diagnostic difficulties. The basis <strong>of</strong> an<br />

effective treatment is a complete excision <strong>of</strong> <strong>the</strong> lesion. In selected<br />

cases, an aggressive supplementary <strong>the</strong>rapy is also taken<br />

<strong>in</strong>to consideration [7].<br />

Case report<br />

Przemys³aw Przewratil, MD, PhD tel./fax (42) 61-77-705, 504 271 279<br />

Department <strong>of</strong> Pediatric Surgery and Oncology e-mail: goral3@<strong>in</strong>teria.pl<br />

Medical University <strong>of</strong> Lodz<br />

ul. Sporna 36/50,<br />

91-738 £ódŸ<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

For many months, a 6-year old girl suffered from recurr<strong>in</strong>g<br />

respiratory system <strong>in</strong>fections. S<strong>in</strong>ce <strong>the</strong> <strong>in</strong>fection appeared<br />

aga<strong>in</strong>, a girl was admitted to <strong>the</strong> pediatric ward. A lungs<br />

X-ray showed an immense chest <strong>tumor</strong>. Moreover, a girl had<br />

a high fever and she had progressive anaemia. CT confirmed<br />

<strong>the</strong> presence <strong>of</strong> a solid <strong>tumor</strong> which took up two thirds <strong>of</strong> <strong>the</strong><br />

right side <strong>of</strong> chest (Fig. 1). Additional tests showed high acu-


126<br />

Fig. 1 CT scan before surgery shows <strong>in</strong>volvement <strong>of</strong> <strong>the</strong> whole right chest<br />

by giant neoplastic <strong>tumor</strong><br />

te phase <strong>in</strong>dicators and progressive anaemia requir<strong>in</strong>g blood<br />

transfusion. After <strong>the</strong> broad spectral antibiotic <strong>the</strong>rapy was<br />

applied, CRP was lowered. On <strong>the</strong> basis <strong>of</strong> image exam<strong>in</strong>ation<br />

(USG, CT) and neoplastic markers (levels <strong>of</strong> catecholam<strong>in</strong>es,<br />

ferrit<strong>in</strong>, LDH, AFP, β-HCG) it was impossible to def<strong>in</strong>e<br />

<strong>the</strong> type <strong>of</strong> <strong>tumor</strong>. A child was qualified for surgery with<br />

<strong>the</strong> prelim<strong>in</strong>ary diagnosis <strong>of</strong> mature teratoma (<strong>in</strong> X-ray exam<strong>in</strong>ation<br />

– calcification with<strong>in</strong> <strong>the</strong> <strong>tumor</strong>). Dur<strong>in</strong>g <strong>the</strong> right-<br />

-side thoracotomy a solid hard <strong>tumor</strong> was found, tightly jo<strong>in</strong>ed<br />

with diaphragm and embrac<strong>in</strong>g a lower and middle lung<br />

lobe. After <strong>the</strong> partial dissection and cutt<strong>in</strong>g <strong>the</strong> <strong>tumor</strong>, it was<br />

found that a vascular lung stalk was affected and that it was<br />

closely jo<strong>in</strong>ed with pericardium. A <strong>tumor</strong> was completely removed<br />

toge<strong>the</strong>r with <strong>the</strong> right lung (Fig. 2) and dra<strong>in</strong>age to<br />

pleural cavity was <strong>in</strong>serted.<br />

Fig. 2 Inflammatory <strong>tumor</strong> <strong>of</strong> <strong>the</strong> righ lung after removal. Intact part <strong>of</strong><br />

pulmonary tissue <strong>in</strong> <strong>the</strong> upper lobe is visible<br />

Macroscopically, a white-grayish elastic <strong>tumor</strong>, <strong>in</strong>filtrat<strong>in</strong>g<br />

almost <strong>the</strong> whole lung, with no necrosis or hemorrhage<br />

foci was described. A <strong>tumor</strong> was partially surrounded by<br />

a th<strong>in</strong> capsule and did not exceed <strong>the</strong> resected lung tissues.<br />

In <strong>the</strong> medial part, a <strong>tumor</strong> had hardness and consistency <strong>of</strong><br />

a bone. Microscopically, f<strong>in</strong>d<strong>in</strong>gs obta<strong>in</strong>ed revealed that a <strong>tumor</strong><br />

ma<strong>in</strong>ly consisted <strong>of</strong> bundles <strong>of</strong> sp<strong>in</strong>dle-shaped cells with<br />

my<strong>of</strong>ibroblastic morphology (Fig. 3). In some preparations,<br />

a rich <strong>in</strong>filtration from lymphoid, plasmatic cells and granulocytes.<br />

Focally, <strong>in</strong>tensified fibrosis, hyal<strong>in</strong>ization and calcifications<br />

were revealed. In some preparations, vascular and<br />

pericyte proliferation as well as my<strong>of</strong>ibroblast proliferation<br />

<strong>in</strong> follicles were revealed. Focally, big non-typical cells with<br />

dist<strong>in</strong>ct nucleolus also were observed. In some preparations,<br />

<strong>tumor</strong> texture revealed a high “cellularity” with osteoplasia<br />

fields. In peripheral tissues, <strong>in</strong> macroscopically unchanged<br />

lung, <strong>the</strong>re was no <strong>tumor</strong> <strong>in</strong>filtration. The exam<strong>in</strong>ation also<br />

<strong>in</strong>dicated that <strong>the</strong> <strong>tumor</strong> excision was complete. Moreover,<br />

a series <strong>of</strong> immunohistochemical tests revealed a strong<br />

expression <strong>of</strong> SMA <strong>in</strong> proliferation cells and CD20 <strong>in</strong> most<br />

<strong>of</strong> <strong>the</strong> mononuclear cells. No expression <strong>of</strong> desm<strong>in</strong>e, MC,<br />

Alk-1, p53 <strong>in</strong> <strong>the</strong> <strong>tumor</strong> cells was revealed.<br />

Fig. 3 Tumor specimen ma<strong>in</strong>ly consisted <strong>of</strong> bundles <strong>of</strong> sp<strong>in</strong>dle-shaped cells<br />

with my<strong>of</strong>ibroblastic morphology<br />

In summary, a histopathologic exam<strong>in</strong>ation revealed<br />

a rare type <strong>of</strong> <strong>in</strong>flammatory <strong>tumor</strong> (<strong>in</strong>flammatory my<strong>of</strong>ibroblastic<br />

<strong>tumor</strong>) with excessive bone metaplasia fields and calcifications,<br />

focally with fields <strong>of</strong> high cellularity (Fig. 4).<br />

In <strong>the</strong> postoperative course, no significant postoperative<br />

complications were reported. As a result <strong>of</strong> fur<strong>the</strong>r treatment,<br />

<strong>in</strong>clud<strong>in</strong>g 6 days <strong>in</strong> an <strong>in</strong>tensive care ward (breath<strong>in</strong>g<br />

support, analgosedation, broad spectral antibiotic <strong>the</strong>rapy,<br />

blood transfusion) normalization <strong>of</strong> acute phase <strong>in</strong>dicators<br />

and blood morphology was achieved. On <strong>the</strong> 18th day after<br />

operation, a patient with full respiratory function was discharged<br />

and fur<strong>the</strong>r outpatient treatment was recommended.<br />

PET (positon emission tomography) exam<strong>in</strong>ation<br />

carried out 6 months after operation revealed residual lesion


Fig. 4 Specimen from central part <strong>of</strong> <strong>tumor</strong> with excessive bone metaplasia<br />

fields and calcifications, focally with fields <strong>of</strong> high cellularity<br />

<strong>in</strong> <strong>the</strong> right part <strong>of</strong> <strong>the</strong> chest. Therefore, immunosuppressive<br />

treatment with steroids was launched (Encorton for one<br />

month). PET monitor<strong>in</strong>g exam<strong>in</strong>ation carried out 10 months<br />

later revealed regression <strong>of</strong> <strong>the</strong> above mentioned lesion. Up<br />

till now, a girl develops correctly, does not show any respiratory<br />

system disorders or immune deficiencies (2 years from<br />

operation).<br />

Discussion<br />

A first description <strong>of</strong> an <strong>in</strong>flammatory <strong>tumor</strong> comes from<br />

1937 and s<strong>in</strong>ce <strong>the</strong>n, about 300 cases <strong>of</strong> his <strong>tumor</strong> <strong>in</strong> children,<br />

<strong>in</strong> different localizations, were reported. Most <strong>of</strong>ten, it is located<br />

<strong>in</strong> lungs and it affects one organ. In <strong>the</strong> English-language<br />

academic literature, one can come across diversified nomenclature,<br />

among o<strong>the</strong>rs plasma cell granuloma, <strong>in</strong>flammatory<br />

pseudo<strong>tumor</strong>, and most <strong>of</strong>ten used – IMT [2, 7].<br />

Reasons for <strong>the</strong> <strong>in</strong>flammatory <strong>tumor</strong> occurrence are<br />

still unclear. Accord<strong>in</strong>g to one <strong>of</strong> <strong>the</strong> <strong>the</strong>ories, it is a typical<br />

locally aggressive neoplastic <strong>tumor</strong>. Recent research on <strong>the</strong><br />

limited groups <strong>of</strong> patients revealed <strong>the</strong> presence <strong>of</strong> <strong>the</strong> clonal<br />

cytogenetic disorders <strong>of</strong> ALK (anaplastic lymphoma k<strong>in</strong>ase)<br />

gene on 2p chromosome and <strong>the</strong> ALK prote<strong>in</strong> expression,<br />

similarly to anaplastic gigantocellular lymphoma. The<br />

cl<strong>in</strong>ical course also suggests <strong>the</strong> neoplastic character <strong>of</strong> <strong>the</strong><br />

<strong>tumor</strong> [2, 11]. Accord<strong>in</strong>g to o<strong>the</strong>r <strong>the</strong>ory, <strong>the</strong> formation <strong>of</strong><br />

<strong>the</strong>se pathologic masses results from immunological reactions<br />

to <strong>in</strong>fections or o<strong>the</strong>r stimulatory factor such as operations,<br />

<strong>in</strong>juries or exposure to radiation [1, 6, 7]. Mycobacterial<br />

orig<strong>in</strong> <strong>of</strong> <strong>the</strong> <strong>in</strong>flammatory <strong>tumor</strong>s was also reported, i.e.<br />

<strong>in</strong> patients with HIV <strong>in</strong>fection. Bacterial structures <strong>in</strong> <strong>the</strong> <strong>tumor</strong><br />

cells, visible <strong>in</strong> an electron microscope exam<strong>in</strong>ation may<br />

also suggest <strong>in</strong>fectional orig<strong>in</strong> [2, 4, 10].<br />

An <strong>in</strong>flammatory <strong>tumor</strong> poses diagnostic difficulties<br />

s<strong>in</strong>ce it does not provoke <strong>the</strong> <strong>in</strong>crease <strong>in</strong> neoplastic markers<br />

<strong>in</strong> serum. Radiological image <strong>of</strong> this <strong>tumor</strong> is also difficult<br />

to diversify. CT may properly locate <strong>the</strong> lesion but it does not<br />

expla<strong>in</strong> its character [1, 6]. In <strong>the</strong> case <strong>of</strong> our patient, <strong>the</strong> neo-<br />

127<br />

plastic process was considerably advanced and it affected <strong>the</strong><br />

two thirds <strong>of</strong> <strong>the</strong> chest; <strong>the</strong> <strong>tumor</strong> had numerous calcifications,<br />

which, <strong>in</strong> <strong>the</strong> absence <strong>of</strong> positive neoplastic markers,<br />

could suggest mature teratoma. A basis for diagnosis is <strong>the</strong>refore<br />

a histopathologic exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> whole removed<br />

<strong>tumor</strong>.<br />

A characteristic feature <strong>of</strong> <strong>in</strong>flammatory <strong>tumor</strong>s is <strong>the</strong><br />

proliferation <strong>of</strong> fibroblasts and my<strong>of</strong>ibroblasts with def<strong>in</strong>ite<br />

<strong>in</strong>filtrations <strong>of</strong> chronic <strong>in</strong>flammatory cells, <strong>in</strong> particular, plasmatic<br />

cells. This differentiates <strong>the</strong>m from fascitis or fibromatosis.<br />

Exceptionally, necrosis foci or calcifications may<br />

occur, as well as cytomorphologic malignancy features [2, 3,<br />

5, 11].<br />

There are three histological types which may occur<br />

with<strong>in</strong> one <strong>tumor</strong> with different predom<strong>in</strong>ance: 1) myxoidal/vascular<br />

type, resembl<strong>in</strong>g granulation <strong>in</strong>flammatory tissues,<br />

2) sp<strong>in</strong>dle-shaped type with fields <strong>of</strong> different cellular<br />

density, 3) hypocellular pattern densely collagenized and rem<strong>in</strong>iscent<br />

<strong>of</strong> fibrous scar [3]. In <strong>the</strong> presented case, a histopathological<br />

image mostly corresponded to <strong>the</strong> given characteristics,<br />

however focally <strong>the</strong>re were changes <strong>of</strong> different<br />

k<strong>in</strong>d.<br />

In immunohistochemical exam<strong>in</strong>ations, <strong>in</strong>flammatory<br />

<strong>tumor</strong>s reveal positive reaction to SMA (smooth muscle act<strong>in</strong><br />

– 92%) and MSA (muscle specific act<strong>in</strong> – 89%) and, to<br />

a lesser degree, to desm<strong>in</strong> (69%) and kerat<strong>in</strong> (36%). It confirms<br />

<strong>the</strong> my<strong>of</strong>ibroblastic phenotype <strong>of</strong> <strong>the</strong> sp<strong>in</strong>dle-shaped<br />

cells. Recent f<strong>in</strong>d<strong>in</strong>gs also reveal <strong>the</strong> ALK prote<strong>in</strong> overexpression<br />

<strong>in</strong> <strong>the</strong> <strong>tumor</strong> cells [3, 10, 11]. In <strong>the</strong> discussed patient<br />

a strong SMA expression <strong>in</strong> proliferative cells and<br />

CD20 <strong>in</strong> most mononuclear cells was found. However, no<br />

expression <strong>of</strong> desm<strong>in</strong>, MC, Alk-1, p53 <strong>in</strong> <strong>the</strong> <strong>tumor</strong> cells was<br />

found. A high heterogenicity <strong>of</strong> <strong>the</strong> <strong>in</strong>flammatory <strong>tumor</strong>s goes<br />

toge<strong>the</strong>r with <strong>the</strong>ir different degree <strong>of</strong> aggressiveness. Up<br />

till now, no def<strong>in</strong>ite histological criteria to forecast <strong>the</strong> cl<strong>in</strong>ical<br />

course <strong>of</strong> <strong>the</strong> <strong>tumor</strong> have been determ<strong>in</strong>ed. Cytogenetic<br />

research determ<strong>in</strong><strong>in</strong>g <strong>the</strong> <strong>tumor</strong>’s DNA might be helpful. It<br />

seems that <strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> cellular atypia, occurrence <strong>of</strong><br />

ganglion-resembl<strong>in</strong>g cells, p53 expression and DNA aneuploidia<br />

may <strong>in</strong>dicate <strong>the</strong> potentially aggressive <strong>tumor</strong> type<br />

with <strong>the</strong> <strong>in</strong>creased tendency to recurrence and maliganat<br />

transformation [7, 10, 11].<br />

When suspect<strong>in</strong>g <strong>the</strong> malignant proliferation <strong>in</strong> differential<br />

diagnostics one needs to consider <strong>the</strong> s<strong>of</strong>t tissues <strong>tumor</strong>s,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>in</strong>flammatory malignant fibrous histiocytoma,<br />

sarcomatoid carc<strong>in</strong>oma, angiosarcoma, leiomyosarcoma,<br />

fibrosarcoma. RMS. It might also be a direction <strong>of</strong> a potential<br />

transformation <strong>in</strong>to a malignant type <strong>of</strong> an <strong>in</strong>flammatory<br />

<strong>tumor</strong> [2, 7].<br />

A discussed case <strong>of</strong> a lung <strong>tumor</strong> <strong>in</strong> a 6-year old girl<br />

deserves a particular attention s<strong>in</strong>ce <strong>in</strong> its central part, specific<br />

morphological changes were found. These changes let us<br />

qualify this <strong>tumor</strong> as a special type <strong>of</strong> <strong>in</strong>flammatory <strong>tumor</strong>,<br />

calcify<strong>in</strong>g fibrous pseudo<strong>tumor</strong> (CFP). It is an extremely rare<br />

<strong>tumor</strong>, histologically classified as a separate group. It is<br />

characterized by a considerable hyal<strong>in</strong>ization and dystrophic<br />

calcification. This type <strong>of</strong> changes may locally recur, but <strong>the</strong>


128<br />

distant metastases were not reported [3, 8, 12]. There are few<br />

reports <strong>of</strong> this type <strong>of</strong> <strong>tumor</strong>. They affect neck, digestive<br />

tract, mediast<strong>in</strong>um and pleural cavity [8]. Reports <strong>of</strong> this type<br />

<strong>of</strong> <strong>tumor</strong> located <strong>in</strong> a lung appeared for <strong>the</strong> first time <strong>in</strong><br />

<strong>the</strong> medical academic literature <strong>in</strong> <strong>the</strong> years 2003 and 2004<br />

[9, 12]. We might <strong>the</strong>refore presume that <strong>the</strong> presented case<br />

is one <strong>of</strong> <strong>the</strong> few documented cases <strong>in</strong> <strong>the</strong> world.<br />

A type <strong>of</strong> calcify<strong>in</strong>g <strong>tumor</strong> is histologically characterised<br />

by hypocellular hyal<strong>in</strong>ized collagenous tissue with<br />

psammomatous and/or dystrophic calcifications and patchy<br />

lymphoplasmacytic <strong>in</strong>filtrates, however, <strong>the</strong> calcifications<br />

might have different advancement degree. In <strong>the</strong> presented<br />

case, focally, <strong>in</strong>tense fibrosis and hyal<strong>in</strong>ization as well as calcifications<br />

were visible. In immunohistochemical exam<strong>in</strong>ations<br />

CFP <strong>in</strong>dicates a positive reaction with vimet<strong>in</strong>, CD34<br />

and XIIIa factor, but a negative reaction with epi<strong>the</strong>lial membrane<br />

antigen, kerat<strong>in</strong>, SMA, desm<strong>in</strong>, S-100 prote<strong>in</strong> and<br />

ALK [8, 9, 12, 13]. In <strong>the</strong> presented case, a reaction with<br />

SMA was <strong>in</strong>tensely positive and a reaction with ALK and desm<strong>in</strong><br />

negative. It is <strong>the</strong>refore difficult to <strong>in</strong>terpret that unam-<br />

References<br />

1. Cerfolio RJ, Allen MS, Nascimento<br />

AG, Deschamps C, Trastek VF, Miller<br />

DL, Pairolero PC (1999) Inflammatory<br />

pseudo<strong>tumor</strong>s <strong>of</strong> <strong>the</strong> lung. Ann Thorac<br />

Surg 67: 933–936<br />

2. Dehner LP (2000) The enigmatic <strong>in</strong>flammatory<br />

pseudotumours: <strong>the</strong> current<br />

state <strong>of</strong> our understand<strong>in</strong>g, or misunderstand<strong>in</strong>g.<br />

J Pathol 192: 277–279<br />

3. Fletcher CDM (20<strong>01</strong>) S<strong>of</strong>t tissue <strong>tumor</strong>s<br />

In: Fletcher CDM Diagnostic Histopathology<br />

<strong>of</strong> Tumors, Churchil Liv<strong>in</strong>gstone,<br />

London, pp1500–15<strong>01</strong><br />

4. Gale N, Zidar N, Podboj J, Volavsek M,<br />

Luzar B (2003) Inflammatory my<strong>of</strong>ibroblastic<br />

tumour <strong>of</strong> paranasal s<strong>in</strong>uses<br />

with fatal outcome: reactive lesion or<br />

tumour? J Cl<strong>in</strong> Pathol 56: 715–717<br />

5. Hill KA, Gonzales-Crussi F, Chou PM<br />

(20<strong>01</strong>) Calcify<strong>in</strong>g fibrous pseudo<strong>tumor</strong><br />

versus <strong>in</strong>flammatory my<strong>of</strong>ibroblastic<br />

<strong>tumor</strong>: a histological and immunohistochemical<br />

comparison. Mod Pathol 14:<br />

784–790<br />

6. Hoer J, Ste<strong>in</strong>au G, Fuzesi L, Gunawan<br />

B, Schumpelick V (1999) Inflammatory<br />

pseudo<strong>tumor</strong> <strong>of</strong> <strong>the</strong> diaphragm. Pediatr<br />

Surg Int 15: 387–390<br />

7. Karnak I, Senocak ME, Ciftci AO, Caglar<br />

M (20<strong>01</strong>) Inflammatory my<strong>of</strong>ibroblastic<br />

<strong>tumor</strong> <strong>in</strong> children: diagnosis and<br />

treatment. J Ped Surg 36: 908–912<br />

8. Nascimento AF, Ruiz R, Hornick JL,<br />

Fletcher CD (2002) Calcify<strong>in</strong>g fibrous<br />

“pseudo<strong>tumor</strong>”: cl<strong>in</strong>icopathologic study<br />

<strong>of</strong> 15 cases and analysis <strong>of</strong> its relationship<br />

to <strong>in</strong>flammatory my<strong>of</strong>ibroblastic<br />

<strong>tumor</strong>. Int J Surg Pathol 10: 189–196<br />

9. Peachel M, Mayo J, Kalloger S, Fl<strong>in</strong>t J,<br />

English J (2003) Calcify<strong>in</strong>g fibrous<br />

pseudotumour <strong>of</strong> <strong>the</strong> lung Thorax 58:<br />

1<strong>01</strong>8–1<strong>01</strong>9<br />

10. Sarker A, An C, Davis M, Praprotnik D,<br />

McCarthy LJ, Orazi A. (2003) Inflammatory<br />

pseudo<strong>tumor</strong> <strong>of</strong> <strong>the</strong> spleen <strong>in</strong><br />

a 6-year-old child: a cl<strong>in</strong>icopathologic<br />

study. Arch Pathol Lab Med. 127:<br />

e127–130<br />

biguously. Most probably, expression <strong>of</strong> <strong>the</strong> exam<strong>in</strong>ed prote<strong>in</strong>s<br />

changes <strong>in</strong> <strong>the</strong> <strong>in</strong>dividual parts <strong>of</strong> <strong>the</strong> <strong>tumor</strong>.<br />

There is a <strong>the</strong>ory that CFP is a f<strong>in</strong>al stage <strong>of</strong> <strong>the</strong> <strong>in</strong>flammatory<br />

<strong>tumor</strong> advancement [5, 12, 13]. In our patient,<br />

a lung <strong>tumor</strong> was enormous, affected two thirds <strong>of</strong> <strong>the</strong> chest,<br />

which <strong>in</strong>dicates that <strong>the</strong> disease course lasted for many months,<br />

maybe even years, which could support this <strong>the</strong>ory. Some<br />

hypo<strong>the</strong>ses claim that <strong>the</strong> discussed proliferation is<br />

a completely different <strong>tumor</strong> from IMT. The grounds for<br />

such speculations is <strong>the</strong> lack <strong>of</strong> ALK and SMA prote<strong>in</strong> <strong>in</strong><br />

CFP tissues, as well as <strong>the</strong> fact that IMP rarely conta<strong>in</strong>s calcifications<br />

[5, 13].<br />

Upon <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> histological material and immunohistochemical<br />

results <strong>of</strong> <strong>the</strong> removed <strong>tumor</strong>, <strong>the</strong>re are<br />

three speculations: 1. this <strong>tumor</strong> is a CFP with non-typical<br />

positive SMA expression, 2. this <strong>tumor</strong> is a mixed form, <strong>in</strong>clud<strong>in</strong>g<br />

both IMT and CFP components, 3. it is an <strong>in</strong>flammatory<br />

<strong>tumor</strong>, which due to a long development period, was<br />

subject <strong>of</strong> calcification, characteristic for CFP, <strong>in</strong> <strong>the</strong> central<br />

part.<br />

11. Sastre-Garau X, Couturier J, Derre J,<br />

Aurias A, Klijanienko J, Lagace R<br />

(2003) Inflammatory my<strong>of</strong>ibroblastic<br />

tumour (<strong>in</strong>flammatory pseudotumour)<br />

<strong>of</strong> <strong>the</strong> breast. Cl<strong>in</strong>icopathological and<br />

genetic analysis <strong>of</strong> a case with evidence<br />

for clonality. J Pathol 200: 269–271<br />

12. Soyer T, Ciftci AO, Gucer S, Orhan D,<br />

Senocak ME (2004) Calcify<strong>in</strong>g fibrous<br />

pseudo<strong>tumor</strong> <strong>of</strong> lung: a previously<br />

unreported entity. J Ped Surg 39:<br />

1729–1730<br />

13. Van Dorpe J, Ectors N, Geboes K,<br />

D’Hoore A, Sciot R (1999) Is calcify<strong>in</strong>g<br />

fibrous pseudo<strong>tumor</strong> a late scleros<strong>in</strong>g<br />

stage <strong>of</strong> <strong>in</strong>flammatory my<strong>of</strong>ibroblastic<br />

<strong>tumor</strong>? Am J Surg Pathol 23: 329–335


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 129–131<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Malignant fibrous histiocytoma at 6 years old boy<br />

– a case report<br />

Micha³ Rólski 1 , Jerzy Harasymczuk 1 , Przemys³aw Mañkowski 1 ,<br />

Andrzej Jankowski 1 , Pawe³ Kroll 1 , Ma³gorzata Warzywoda 2 , Ewa Trejster 3<br />

1 Department <strong>of</strong> Pediatric Surgery, Traumatology & Urology<br />

2 Department <strong>of</strong> Pediatric Radiology<br />

3 Department <strong>of</strong> Pathomorphology<br />

Poznan University <strong>of</strong> Medical Sciences<br />

Poland<br />

Introduction<br />

Malignant fibrous histiocytoma (MFH) <strong>of</strong> <strong>the</strong> gastro<strong>in</strong>test<strong>in</strong>al<br />

tract – primary and metastatic is uncommon, even though<br />

it is most frequently diagnosed malignant s<strong>of</strong>t tissue <strong>tumor</strong><br />

<strong>in</strong> adults. In <strong>the</strong> world literature only 22 cases <strong>of</strong> MFH<br />

<strong>of</strong> <strong>the</strong> gastro<strong>in</strong>test<strong>in</strong>al tract were described, but only <strong>in</strong> adult<br />

patients [5, 10, 11]. That is a reason, why we present MFH<br />

<strong>of</strong> stomach <strong>in</strong> 6-year-old boy.<br />

Case report<br />

Abstract<br />

Six years old boy was admitted to Department <strong>of</strong> Pediatric<br />

Surgery, Traumatology & Urology, Poznan University <strong>of</strong><br />

Medical Sciences from regional hospital because <strong>of</strong> considerable<br />

anemia caused by bleed<strong>in</strong>g from gastro<strong>in</strong>test<strong>in</strong>al tract<br />

and bronchopneumonia. The child was pale; we observed<br />

loss <strong>of</strong> weight and melena.<br />

In <strong>in</strong>itial ultrasonography (USG), a solid hypogenic<br />

homogenous mass was visible around <strong>the</strong> subphrenic part <strong>of</strong><br />

<strong>the</strong> esophagus and close to <strong>the</strong> cardia and posterior wall <strong>of</strong><br />

<strong>the</strong> stomach. There were no calcifications. Subsequent USG<br />

exam<strong>in</strong>ations with color and Power Doppler showed multifocal,<br />

solid, vascularized mass surrounded with s<strong>light</strong>ly en-<br />

Address for correspondence<br />

Authors present a case <strong>of</strong> very rare primary neoplasm <strong>of</strong> stomach – malignant fibrous histiocytoma at<br />

6 years old boy. Surgical procedures were performed with a good <strong>the</strong>rapeutic result.<br />

Key words: children, malignant fibrous histiocytoma, stomach<br />

Jerzy Harasymczuk, MD, PhD Phone: 061 8475228<br />

Department <strong>of</strong> Pediatric Surgery, Traumatology & Urology E-mail: harasymczuk@o2.pl<br />

Poznan University <strong>of</strong> Medical Sciences<br />

Szpitalna 27/33<br />

60-572 Poznañ<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

larged lymph nodes (1,5 cm). Sizes <strong>of</strong> <strong>the</strong> <strong>tumor</strong>s were<br />

4,0 × 2,5 × 3,5 cm; 4,0 × 3,3 × 3,5 cm and 1,3 × 1,8 cm. All<br />

o<strong>the</strong>r abdom<strong>in</strong>al organs were normal <strong>in</strong> USG. There was no<br />

free fluid <strong>in</strong> peritoneum cavity (Fig. 1).<br />

A gastro<strong>in</strong>test<strong>in</strong>al passage (<strong>of</strong> <strong>the</strong> esophagus and <strong>the</strong><br />

stomach) was performed at <strong>the</strong> same time. It showed w<strong>in</strong>d<strong>in</strong>g<br />

and s<strong>light</strong> narrow<strong>in</strong>g esophagus <strong>in</strong> its subphrenic part,<br />

without any disturbances <strong>of</strong> a contrast medium passage.<br />

Fig. 1 Ultrasound scan <strong>of</strong> abdomen shows gastric <strong>tumor</strong>


130<br />

There was irregularity <strong>of</strong> <strong>the</strong> stomach marg<strong>in</strong> <strong>in</strong> <strong>the</strong> cardia<br />

and fundus region similar to fill<strong>in</strong>g defect. It suggested an<br />

extra- or <strong>in</strong>tramural mass <strong>of</strong> <strong>the</strong> stomach and/or esophagus<br />

(Fig. 2).<br />

An abdom<strong>in</strong>al CT scan showed an asymmetrical thicken<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> esophageal walls on phrenic level. A lumen <strong>in</strong><br />

this part <strong>of</strong> <strong>the</strong> esophagus was slit-like. The <strong>in</strong>filtration <strong>in</strong>volved<br />

<strong>the</strong> cardia and <strong>the</strong> lesser curvature <strong>of</strong> <strong>the</strong> stomach on <strong>the</strong><br />

serous membrane side. The size <strong>of</strong> this irregular unhomogenous<br />

solid mass was 4.8x3.8 cm. Some <strong>of</strong> <strong>the</strong> lymph nodes<br />

were visible around. The liver, spleen, pancreas, kidneys and<br />

adrenal glands were normal. The orig<strong>in</strong> <strong>of</strong> <strong>the</strong> mass seemed<br />

to be <strong>the</strong> wall <strong>of</strong> <strong>the</strong> stomach (Fig. 3).<br />

Due to growth <strong>of</strong> <strong>the</strong> <strong>tumor</strong> and appearance <strong>of</strong> metastases<br />

on back wall <strong>of</strong> stomach a decision about surgical treatment<br />

was made. Anterior stomach wall was opened and large<br />

<strong>tumor</strong> descend<strong>in</strong>g from antrum and m<strong>in</strong>or curve was<br />

Fig. 2 A gastro<strong>in</strong>test<strong>in</strong>al passage preoperative study<br />

Fig. 3 Abdom<strong>in</strong>al CT <strong>of</strong> 6-year-old boy<br />

found. A neoplasm fill<strong>in</strong>g fundus and gastric trunk was observed.<br />

The biopsy was taken for histopathology exam<strong>in</strong>ation<br />

and a gastrostomy was performed. Soon after <strong>the</strong> operation<br />

gastrostomy was blocked by <strong>tumor</strong> tissues. Accord<strong>in</strong>g to histopathology<br />

radical surgical treatment was performed. Resection<br />

<strong>of</strong> <strong>in</strong>traabdom<strong>in</strong>al part <strong>of</strong> esophagus, cardia, and stomach<br />

trunk toge<strong>the</strong>r with nearby nodes and spleen was performed.<br />

Rema<strong>in</strong><strong>in</strong>g part <strong>of</strong> a stomach wall was attached with<br />

s<strong>in</strong>gle stitches to <strong>the</strong> distal part <strong>of</strong> esophagus. Next pyloroplasty<br />

accord<strong>in</strong>g to Mikulicz was performed. No complications<br />

were observed <strong>in</strong> <strong>the</strong> postoperative course. Oral feed<strong>in</strong>g<br />

was started on 6. postoperative day. Until today – <strong>the</strong> boy is<br />

still do<strong>in</strong>g well.<br />

Discussion<br />

In <strong>the</strong> 1978 Weiss and Enz<strong>in</strong>ger [10] described 200 cases<br />

with MFH typically arises <strong>in</strong> one <strong>of</strong> <strong>the</strong> extremities and less<br />

commonly at <strong>the</strong> retroperitoneal space <strong>of</strong> abdomen. This largest<br />

review showed that this <strong>tumor</strong> is most common between<br />

50-70 ages and 70% <strong>of</strong> patients are male.<br />

In our op<strong>in</strong>ion and experience from diagnostic po<strong>in</strong>t<br />

<strong>of</strong> view MFH localized <strong>in</strong> <strong>the</strong> stomach and <strong>the</strong> esophagus is<br />

very difficult to recognize with only one imag<strong>in</strong>g method [7].<br />

We have used three <strong>of</strong> <strong>the</strong>m: contrast enema, USG and CT.<br />

Each <strong>of</strong> <strong>the</strong>m has provided us with important <strong>in</strong>formation for<br />

cl<strong>in</strong>ical po<strong>in</strong>t <strong>of</strong> view. The first imag<strong>in</strong>g should be ultrasonography,<br />

as usual <strong>in</strong> case <strong>of</strong> abdom<strong>in</strong>al problems signs. We<br />

suggest that <strong>the</strong> next method may be contrast enema because<br />

<strong>of</strong> its value <strong>in</strong> functional assessment <strong>of</strong> <strong>the</strong> digestive tract.<br />

CT scan was very important for preoperative plann<strong>in</strong>g for<br />

surgical surgical approach.<br />

Adjuvant chemo<strong>the</strong>rapy rema<strong>in</strong>s controversial for<br />

s<strong>of</strong>t tissue sarcomas, with some randomized cl<strong>in</strong>ical studies<br />

show<strong>in</strong>g a clear advantage <strong>in</strong> overall or disease free survival<br />

rate [2, 3, 6, 9], whereas o<strong>the</strong>r show no benefit <strong>of</strong> adjuvant<br />

chemo<strong>the</strong>rapy [1, 4, 8].<br />

Conclusions<br />

Cl<strong>in</strong>ical follow-up exam<strong>in</strong>ation conducted every 3 months<br />

showed good general condition, <strong>in</strong>crease <strong>of</strong> body weight and<br />

normalization <strong>of</strong> laboratory data. Ultrasonography and contrast<br />

X-ray exam<strong>in</strong>ation showed no symptoms <strong>of</strong> metastases<br />

or local expansion <strong>of</strong> <strong>the</strong> <strong>tumor</strong>. Because <strong>of</strong> various op<strong>in</strong>ions<br />

about chemo<strong>the</strong>rapy <strong>in</strong> such cases, we decided to restrict <strong>the</strong><br />

treatment to surgery with cont<strong>in</strong>uous monitor<strong>in</strong>g <strong>of</strong> cl<strong>in</strong>ical<br />

state <strong>in</strong>clud<strong>in</strong>g regular USG and laboratory exam<strong>in</strong>ations.<br />

Patient after two years <strong>of</strong> follow-up rema<strong>in</strong>s <strong>in</strong> a good general<br />

condition.


References<br />

1. Alvegard TA (1986) Adjuvant chemo<strong>the</strong>rapy<br />

with Adriamyc<strong>in</strong> <strong>in</strong> high-grade<br />

malignant s<strong>of</strong>t-tissue sarcoma: a Scand<strong>in</strong>avian<br />

randomized study. Proc Am<br />

Soc Cl<strong>in</strong> Oncol 5: 485<br />

2. Benjam<strong>in</strong> RS, Terianian TO, Fenogilo<br />

CJ, et al (1987) The importance <strong>of</strong> comb<strong>in</strong>ation<br />

chemo<strong>the</strong>rapy for adjuvant treatment<br />

<strong>of</strong> high-risk patients with s<strong>of</strong>t-<br />

-tissue sarcomas <strong>of</strong> <strong>the</strong> extremities. In:<br />

Salomon SE (ed) Adjuvant Therapy <strong>of</strong><br />

Cancer. Grune and Stratton, Orlando,<br />

pp 734–744<br />

3. Chang AE, Knisella T, Glatste<strong>in</strong> E, et al<br />

(1988) Adjuvant chemo<strong>the</strong>rapy for<br />

patient with high-grade s<strong>of</strong>t-tissue sarcomas<br />

<strong>of</strong> extremity. J Cl<strong>in</strong> Oncol 6:<br />

1491–1500<br />

4. Edmonson JH (1985) Systemic chemo<strong>the</strong>rapy<br />

follow<strong>in</strong>g complete excision <strong>of</strong><br />

nonosseous sarcomas. Mayo Cl<strong>in</strong>ic<br />

Experience 3: 89–107<br />

5. Enz<strong>in</strong>ger FM, Weiss SW (1988) S<strong>of</strong>t<br />

tissue <strong>tumor</strong>s. CV Mosby Company, St.<br />

Louis<br />

6. Gherl<strong>in</strong>zoni F, Bacci G, Picci P, et al<br />

(1986) A randomized trial for <strong>the</strong> treatment<br />

<strong>of</strong> high-grade s<strong>of</strong>t tissue sarcomas<br />

<strong>of</strong> <strong>the</strong> extremities: Prelim<strong>in</strong>ary observations,<br />

J Cl<strong>in</strong> Oncol 4: 552–558<br />

7. Meyers MA, McSweeney J (1972) Secondary<br />

neoplasm’s <strong>of</strong> <strong>the</strong> bowel. Radiology<br />

105: 2098–2103<br />

8. Pezzi CM, Pollock RE, Evan HL, et al<br />

(1990) Preoperative chemo<strong>the</strong>rapy for<br />

s<strong>of</strong>t tissue sarcomas <strong>of</strong> extremities. Ann<br />

Surg 211: 476–481<br />

131<br />

9. Pezzi CM, Rawl<strong>in</strong>gs MS, Esgro JJ, et al<br />

(1992) Prognostic factors <strong>in</strong> 227 Patients<br />

with Malignant Fibrous Histiocytoma.<br />

Cancer 69 (8): 2098–2103<br />

10. Weiss SW, Enz<strong>in</strong>ger FM (1978) Malignant<br />

fibrous histiocytoma: An analysis<br />

<strong>of</strong> 200 cases. Cancer 41: 2250–2266<br />

11. Zhang W, Tanaka K, Oda K, et al<br />

(1993) Benign Fibrous Histiocytoma <strong>of</strong><br />

<strong>the</strong> stomach: report case. Surgery Today<br />

23 (12): 1089–1093


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 133–136<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Umbilical remnant abnormalities: a review <strong>of</strong> 5 cases<br />

Ma³gorzata Pacholska 1 , Ma³gorzata Chrupek 1 , Irena Daniluk-Matraœ 1 ,<br />

Przemys³aw Ga³¹zka 1 , Magdalena Chrzanowska 1 , Roman KaŸmirczuk 2 ,<br />

Piotr Brzeziñski 2 , Sylwia Drewa 3 , Zdzis³aw Skok 4 , Andrzej Igor Prokurat 1<br />

1 Department <strong>of</strong> Pediatric Surgery<br />

2 Department <strong>of</strong> Anaes<strong>the</strong>siology and Intensive Care<br />

3 Department <strong>of</strong> Radiology<br />

4 Department <strong>of</strong> Pathology<br />

Nicolaus Copernicus University<br />

Collegium Medicum <strong>in</strong> Bydgoszcz, Poland<br />

Introduction<br />

Abstract<br />

Umbilical cord anomalies <strong>in</strong> <strong>the</strong> neonate <strong>in</strong>clude abdom<strong>in</strong>al<br />

wall defects, omphalomesenteric duct remnants, and urachal<br />

remnants [7]. The urachus is a vestigial fibromuscular tube<br />

from <strong>the</strong> apex <strong>of</strong> <strong>the</strong> bladder to <strong>the</strong> umbilicus, whereas patent<br />

omphalomesenteric duct is a fistula between <strong>the</strong> ileum<br />

and <strong>the</strong> umbilicus. Omphalomesenteric duct and urachal<br />

remnants may persist due to patency <strong>of</strong> <strong>the</strong> entire structures<br />

or some portion <strong>of</strong> it. Four major variants are described <strong>in</strong><br />

most series: s<strong>in</strong>us, cyst, diverticulum, and patent omphalomesenteric<br />

duct or patent urachus respectively [8]. Correct<br />

differential diagnosis between <strong>the</strong>se anomalies is usually made<br />

after careful cl<strong>in</strong>ical exam<strong>in</strong>ation as well as assessment <strong>of</strong><br />

discharged umbilical fluid <strong>in</strong> laboratory tests. Recently ultrasound<br />

exam<strong>in</strong>ation has emerged as <strong>the</strong> study <strong>of</strong> choice <strong>in</strong> del<strong>in</strong>eat<strong>in</strong>g<br />

<strong>the</strong>se anomalies [12].<br />

Only a few cases <strong>of</strong> persistent patency <strong>of</strong> both yolk<br />

sac remnants have been reported <strong>in</strong> <strong>the</strong> literature [6]. We report<br />

five cases <strong>of</strong> various umbilical remnants abnormalities<br />

Address for correspondence<br />

Umbilical cord anomalies <strong>in</strong> <strong>the</strong> neonate <strong>in</strong>clude abdom<strong>in</strong>al wall defects, omphalomesenteric duct remnants,<br />

and urachal remnants. Correct differential diagnosis between <strong>the</strong>se anomalies is sometimes difficult and<br />

usually made due to careful cl<strong>in</strong>ical exam<strong>in</strong>ation as well as assessment <strong>of</strong> discharged umbilical fluid <strong>in</strong><br />

laboratory tests. Only a few cases <strong>of</strong> persistent patency <strong>of</strong> both yolk sac remnants have been reported <strong>in</strong><br />

<strong>the</strong> literature. We report five cases <strong>of</strong> various umbilical remnants abnormalities <strong>in</strong> newborns, <strong>in</strong> one<br />

comb<strong>in</strong>ed with patency <strong>of</strong> omphalomesenteric duct and <strong>the</strong> presence <strong>of</strong> <strong>the</strong> urachal s<strong>in</strong>us.<br />

Key words: patent omphalomesenteric duct, umbilical cord anomalies, urachal remnants<br />

Ma³gorzata Pacholska Phone: 052 585 40 15<br />

Department <strong>of</strong> Pediatric Surgery Fax: 052 585 40 95<br />

Nicolaus Copernicus University E-mail: kikchirdz@cm.umk.pl<br />

Collegium Medicum <strong>in</strong> Bydgoszcz<br />

Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

<strong>in</strong> newborns treated <strong>in</strong> <strong>the</strong> Department <strong>of</strong> Pediatric Surgery<br />

<strong>in</strong> Bydgoszcz, between October 2004 and January 2005, <strong>in</strong><br />

one case comb<strong>in</strong>ed with patency <strong>of</strong> omphalomesenteric duct<br />

and <strong>the</strong> presence <strong>of</strong> <strong>the</strong> urachal s<strong>in</strong>us.<br />

Case 1<br />

A 3-day-old boy, product <strong>of</strong> uneventful vag<strong>in</strong>al delivery <strong>in</strong><br />

39 HBD, presented with umbilical cord discharge. Careful<br />

physical exam<strong>in</strong>ation showed fistula <strong>in</strong> <strong>the</strong> umbilicus with<br />

fecal discharge exuded through this fistula. Gram sta<strong>in</strong> and<br />

culture <strong>of</strong> <strong>the</strong> fluid were negative for <strong>in</strong>fection. Periumbilical<br />

area also seemed to be free <strong>of</strong> <strong>in</strong>fection. Baby was referred<br />

for <strong>the</strong> operation. At surgery, a supraumbilical transverse<br />

<strong>in</strong>cision was made expos<strong>in</strong>g patent omphalomesenteric<br />

duct which was resected with <strong>the</strong> small segment <strong>of</strong> bowel<br />

and <strong>the</strong> ileum was anastomosed (Fig. 1). Pathologic analysis<br />

<strong>of</strong> <strong>the</strong> umbilical cord confirmed <strong>the</strong> presence <strong>of</strong> ileal-jejunal<br />

type <strong>of</strong> mucosa without heterothopic tissue. The child’s postoperative<br />

recovery was uneventful.


134<br />

Fig. 1 Patent omphalomesenteric duct <strong>in</strong> 3 day-old neonate /case 1/<br />

Case 2<br />

A baby boy was born at 34 weeks’ gestation, <strong>the</strong> delivery<br />

was uneventful. At <strong>the</strong> age <strong>of</strong> 24 days he was referred to our<br />

cl<strong>in</strong>ic from an outside <strong>in</strong>stitution. S<strong>in</strong>ce 3 weeks after patient’s<br />

birth, his parents noticed mild local swell<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

umbilicus and periodically small amount <strong>of</strong> a yellow fluid<br />

dra<strong>in</strong>age from <strong>the</strong> umbilicus, similar to <strong>the</strong> patient’s ur<strong>in</strong>e.<br />

Physical exam<strong>in</strong>ation showed small, thick fistula <strong>in</strong> umbilicus.<br />

Diagnosis based on ultrasound and fistulography revealed<br />

persistent urachus. Patient was operated on when he was<br />

30 days-old. The patent urachus was resected and <strong>the</strong> bladder<br />

was sutured (Fig. 2). Histopathology revealed typical<br />

bladder mucosa. No o<strong>the</strong>r anomalies were noted. Postoperative<br />

void<strong>in</strong>g and ultrasonography <strong>of</strong> bladder and kidneys were<br />

normal.<br />

Fig. 2 Patent urachus <strong>in</strong> 3 week-old neonate /case 2/<br />

Case 3<br />

A full term baby boy with rout<strong>in</strong>e prenatal care, but no prenatal<br />

ultrasound exam<strong>in</strong>ations, was referred from an outside<br />

<strong>in</strong>stitution after an uneventful delivery. The patient was noted<br />

to have an umbilical cord hernia and patent omphalome-<br />

senteric duct. Diagnosis was based on careful cl<strong>in</strong>ical exam<strong>in</strong>ation<br />

(Fig. 3). At laparotomy umbilical cord hernia was repaired<br />

and patent omphalomesenteric duct was identified. Limited<br />

segmental small bowel resection, <strong>in</strong>clud<strong>in</strong>g pesistent<br />

omphalo-mesenteric duct was completed. The postoperative<br />

specimen histology revealed only <strong>in</strong>test<strong>in</strong>al mucosa l<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> fistula, and no gastric mucosa was identified. The child’s<br />

postoperative recovery was uneventful.<br />

Fig. 3 Umbilical cord hernia and patent omphalomesenteric duct seen with<strong>in</strong><br />

<strong>the</strong> hernia <strong>in</strong> full term neonate /case 3/<br />

Case 4<br />

A baby boy was born at 35 weeks’ gestation. At <strong>the</strong> age <strong>of</strong><br />

3 days he was referred to our cl<strong>in</strong>ic from an outside <strong>in</strong>stitution<br />

because <strong>of</strong> umbilical cord discharge. Careful cl<strong>in</strong>ical<br />

exam<strong>in</strong>ation revealed two umbilical fistulas and moderate<br />

sk<strong>in</strong> irritation around umbilicus. Umbilical cord had been<br />

moist from cont<strong>in</strong>ued fluid and gases dra<strong>in</strong>age from <strong>the</strong> upper<br />

umbilical fistula. No o<strong>the</strong>r anomalies were noted. Ultrasound<br />

exam<strong>in</strong>ation suggested also urachal anomaly. For this<br />

reason we performed fistulogram reveal<strong>in</strong>g urachal s<strong>in</strong>us ly<strong>in</strong>g<br />

caudal to <strong>the</strong> upper umbilical fistula (Fig. 4).<br />

At <strong>the</strong> surgery patent omphalomesenteric duct was<br />

resected with small segment <strong>of</strong> bowel and <strong>the</strong> ileum was reanastomosed<br />

(Fig. 5). Urachal s<strong>in</strong>us was than separated and<br />

resected. Histopathological exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> operative<br />

specimens revealed normal ileal and ur<strong>in</strong>ary mucosa respectively.<br />

Postoperative void<strong>in</strong>g and ultrasonography <strong>of</strong> bladder<br />

and kidneys were normal. The child’s postoperative recovery<br />

was uneventful.<br />

Case 5<br />

A 1-day-old male was born at 32 weeks’ gestation after an<br />

uneventful per<strong>in</strong>atal course. After birth he developed cl<strong>in</strong>ical<br />

picture <strong>of</strong> ileus with bilious vomit<strong>in</strong>g and abdom<strong>in</strong>al distension<br />

(Table 1). He passed also a small amount <strong>of</strong> pale<br />

meconium. An abdom<strong>in</strong>al x-ray study confirmed an <strong>in</strong>test<strong>in</strong>al<br />

obstruction (Fig. 6). Cl<strong>in</strong>ical exam<strong>in</strong>ation revealed two<br />

separated fistulas <strong>in</strong> umbilicus, with a stool dra<strong>in</strong>age through<br />

one <strong>of</strong> <strong>the</strong> fistula. At laparotomy proximal and distal segment


Fig. 4 Fistulogram <strong>of</strong> urachal s<strong>in</strong>us ly<strong>in</strong>g caudal to <strong>the</strong> upper umbilical<br />

fistula <strong>in</strong> 3-day old neonate /case 4/<br />

Fig. 5 Patent omphalomesenteric duct <strong>in</strong> <strong>the</strong> same patient /case 4/<br />

Table 1<br />

Summary <strong>of</strong> cl<strong>in</strong>ical features <strong>in</strong> <strong>the</strong> whole group <strong>of</strong> neonates<br />

with omphalomesenteric duct and urachal remnants<br />

Case Leak from Redness Ileal Age at<br />

umbilicus around obstruction surgery<br />

umbilicus /days/<br />

1 + – – 4<br />

2 + – – 30<br />

3 + – – 2<br />

4 + + – 6<br />

5 + – + 2<br />

<strong>of</strong> small bowel were opened with<strong>in</strong> <strong>the</strong> umbilicus with limited<br />

patency <strong>of</strong> proximal loop. No o<strong>the</strong>r anomalies were noted.<br />

Follow<strong>in</strong>g resection <strong>of</strong> small segments <strong>of</strong> proximal (moderately<br />

distended) and distal ileum a primary end-to-end ileo-ileal<br />

anastomosis was performed. The postoperative course<br />

was uneventful.<br />

Discussion<br />

135<br />

Fig. 6 Abdom<strong>in</strong>al x-ray <strong>of</strong> 1 day-old neonate with two separated fistulas <strong>in</strong><br />

<strong>the</strong> umbilicus and <strong>the</strong> limited patency <strong>of</strong> proximal loop. Note <strong>the</strong> radiological<br />

picture <strong>of</strong> ileus /case 5/<br />

Umbilical discharge <strong>in</strong> an <strong>in</strong>fant occurs usually due to granulation<br />

tissue, reta<strong>in</strong>ed umbilical cord elements, <strong>in</strong>fection or<br />

s<strong>in</strong>uses <strong>of</strong> ei<strong>the</strong>r <strong>the</strong> urachus or <strong>the</strong> omphalomesenteric (vitell<strong>in</strong>e)<br />

duct [10]. In case <strong>of</strong> persistent umbilical discharge<br />

not due to <strong>in</strong>fectious granulation tissue, persistent patency <strong>of</strong><br />

embryologic remnants must be considered [6]. Establish<strong>in</strong>g<br />

<strong>of</strong> f<strong>in</strong>al diagnosis <strong>in</strong> such cases on <strong>the</strong> cl<strong>in</strong>ical background<br />

sometimes become difficult.<br />

In our series all hospitalized <strong>in</strong>fants were male and<br />

two <strong>of</strong> <strong>the</strong>m were born before 36th week <strong>of</strong> gestation. Although<br />

<strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> disorders <strong>of</strong> umbilicus are rare three<br />

<strong>of</strong> five reviewed <strong>in</strong>fants had composite abnormalities <strong>of</strong><br />

umbilicus [2]. Two <strong>of</strong> <strong>the</strong>m had both persistent patent yolk<br />

sac anomalies. All <strong>of</strong> <strong>the</strong>se children had cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>gs as<br />

a exuded liquid or gases through <strong>the</strong> fistula <strong>in</strong> <strong>the</strong> umbilicus,<br />

hernia <strong>of</strong> umbilical cord, local swell<strong>in</strong>g or redness around<br />

umbilicus. Those symptoms reviled dur<strong>in</strong>g <strong>the</strong> first careful<br />

cl<strong>in</strong>ical exam<strong>in</strong>ation are <strong>of</strong> high importance <strong>in</strong> <strong>the</strong> case <strong>of</strong><br />

newborn with suspicion <strong>of</strong> congenital umbilical anomaly. In<br />

all our cases diagnosis was based on cl<strong>in</strong>ical and radiological<br />

f<strong>in</strong>d<strong>in</strong>gs and was established <strong>in</strong> all cases before operation<br />

(Table 2). Authors preferred additionally to cl<strong>in</strong>ical exam<strong>in</strong>ation<br />

to perform abdom<strong>in</strong>al ultrasound. This exam<strong>in</strong>ation<br />

has emerged as a very useful non-<strong>in</strong>vasive diagnostic method<br />

<strong>in</strong> del<strong>in</strong>eat<strong>in</strong>g omphalomesenteric and urachal anomalies [1,<br />

12]. In two <strong>of</strong> three cases where contrast radiological exami-


136<br />

Table 2<br />

Summary <strong>of</strong> cl<strong>in</strong>ical and radiological confirmations <strong>of</strong> presence<br />

<strong>of</strong> omphalomesenteric duct and urachal remnants <strong>in</strong><br />

<strong>the</strong> whole group <strong>of</strong> neonates<br />

Case Cl<strong>in</strong>ical Ultrasono- Fistulo- Intraexam<strong>in</strong>ation<br />

graphy graphy operative<br />

diagnosis<br />

1 + – – +<br />

2 + + + +<br />

3 + – – +<br />

4 + + + +<br />

5 + – + +<br />

nations were undertaken, cystography or fistulography were<br />

necessary to visualize urachal patology (Table 2). Accord<strong>in</strong>g<br />

to Lizerbram, ultrasonography may not depict a small patent<br />

urachus and/or omphalomesenteric duct and <strong>in</strong> <strong>the</strong>se cases he<br />

proposed T2-weighted images due to <strong>the</strong> high T2 signal <strong>in</strong>tensity<br />

<strong>of</strong> fluid with<strong>in</strong> both tracts. However, <strong>the</strong> T1-weighted<br />

gadol<strong>in</strong>ium- enhanced sequence did not add fur<strong>the</strong>r <strong>in</strong>formation<br />

beyond that seen by cystography [6]. In our cases, ultrasonography<br />

performed by skilled radiologist allowed to<br />

visualise urachal remnants quite accurately.<br />

Although few reports discuss <strong>the</strong> spontaneous regression<br />

<strong>of</strong> <strong>the</strong> fistula <strong>in</strong> case <strong>of</strong> persistent umbilical remnant, we<br />

recommend surgery as def<strong>in</strong>itive procedure to confirm and<br />

treat <strong>the</strong>se anomalies [4]. Early surgical management is ne-<br />

References<br />

1. Avni EF, Matos C, Diard R, et al (1988)<br />

Midl<strong>in</strong>e omphalovesical anomalies <strong>in</strong><br />

children: contribution <strong>of</strong> ultrasound<br />

imag<strong>in</strong>g. Urol Radiol 10: 189–194<br />

2. Boyle G, Rosenberg HK, O’Neill J<br />

(1988) An unusual presentation <strong>of</strong> an<br />

<strong>in</strong>fected urachal cyst. Cl<strong>in</strong> Pediatr 27:<br />

130–134<br />

3. Kalter CS, Williams MC, Vaughn V, et<br />

al (1994) Sonographic diagnosis <strong>of</strong><br />

a large umbilical cord pseudocyst. Am<br />

Inst US Med 13: 487–489<br />

4. Kamii Y, Zaki AM, Honna T, Tsuchida<br />

Y (1992) Spontaneous regression <strong>of</strong> patent<br />

omphalomesetneric duct: from a fistula<br />

to Meckel’s diverticulum. J Pediatr<br />

Surg 27: 115–116<br />

5. Konvol<strong>in</strong>ka CW (2002) Patent omphalomesenteric<br />

duct. Surgery 131: 689–690<br />

6. Lizerbram EK, Mahour GH, Gilsanz V<br />

(1997) Dual patency <strong>of</strong> <strong>the</strong> omphalomesenteric<br />

duct and urachus. Radiol 27:<br />

244–246<br />

7. Lugo B, McNulty J, Emil S (2006)<br />

Bladder prolapse through a patent urachus:<br />

fetal and neonatal features. Journal<br />

<strong>of</strong> Pediatric Surgery 41: E5–E7<br />

8. McCollum MO, MacNeily AE, Blair<br />

GK (2003) Surgical implications <strong>of</strong><br />

urachal remnants: presentation and management.<br />

J Pediatr Surg 38: 798–803<br />

9. Nobuhara KK, Lukish JR, Hartman<br />

GE, Gilbert JC (2004) The Giant Umbilical<br />

Cord: An Unusual Presentation <strong>of</strong><br />

a Patent Urachus. J Pediatr Surg 39:<br />

128–129<br />

cessary because congenital umbilical cord anomalies can<br />

present with acute life-threaten<strong>in</strong>g complications such as<br />

small bowel prolapse, obstruction, <strong>in</strong>test<strong>in</strong>al <strong>in</strong>flammation/hemorrhage<br />

<strong>in</strong> a patent omphalomesenteric duct and risk<br />

<strong>of</strong> malignancy [11].<br />

We agre also with <strong>the</strong> importance <strong>of</strong> pathological study<br />

<strong>of</strong> operative specimens due to possibility <strong>of</strong> presence <strong>of</strong><br />

ectopic gastric mucosa or pancreatic tissue <strong>in</strong> both Meckel’s<br />

diverticulum and omphalomesenteric cyst; however, <strong>the</strong> presence<br />

<strong>of</strong> gastric mucosa has not been reported <strong>in</strong> omphalomesenteric<br />

fistula [5]. In our cases all specimens <strong>in</strong> H&E sta<strong>in</strong><strong>in</strong>g<br />

did not reveal any abnormal tissue <strong>in</strong> <strong>the</strong> resected remnants.<br />

We strongly underl<strong>in</strong>e, <strong>the</strong> need <strong>of</strong> careful cl<strong>in</strong>ical<br />

exam<strong>in</strong>ation <strong>of</strong> umbilical region due to neccesarity <strong>of</strong> exclusion<br />

<strong>of</strong> abdom<strong>in</strong>al wall defects. Omphalocele and umbilical<br />

cord pseudocysts have been found to be associated with<br />

aneuploidy when o<strong>the</strong>r fetal abnormalities are noted on prenatal<br />

ultrasound scan [3]. Nobuhara recommend karyotype<br />

determ<strong>in</strong>ation <strong>in</strong> <strong>the</strong>se specific cases. For <strong>the</strong>se patients a widened<br />

diagnostic evaluation protocol is proposed <strong>in</strong> cooperation<br />

with cl<strong>in</strong>ical genetic consultant, for coexist<strong>in</strong>g congenital<br />

anomalies <strong>in</strong> o<strong>the</strong>r life-important organs [9].<br />

It is important for <strong>the</strong> paediatric surgeons to have<br />

a thorough understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> embryology, anatomy, presentation,<br />

and relevant <strong>in</strong>vestigations for <strong>the</strong>se anomalies. In<br />

summary this knowledge results <strong>in</strong> a proper surgical management<br />

and if needed, <strong>in</strong>traoperative modification <strong>of</strong> <strong>the</strong> surgical<br />

technique <strong>in</strong> cases <strong>of</strong> complicated anomaly. This will<br />

result, as <strong>in</strong> presented series, <strong>in</strong> an excellent outcomes <strong>of</strong> treated<br />

patients.<br />

10. Skandalakis JE, Gray SW (1994) In:<br />

Embriology for surgeons: <strong>the</strong> embryological<br />

basis for <strong>the</strong> treatment <strong>of</strong> congenital<br />

anomalies, Williams and Wilk<strong>in</strong>s,<br />

Baltimore, pp 675–712<br />

11. Storms P, Pexters J, Vandekerkh<strong>of</strong> J<br />

(1988) Small omphalocele with ileal<br />

prolapse through a patent omphalomesenteric<br />

duct: a case report and review<br />

<strong>of</strong> literature. Acta Chir Belg 88:<br />

392–394<br />

12. Ueno T, Hashimoto H, Yokoyama H, et<br />

al (2003) Urachal anomalies: ultrasonography<br />

and management. J Pediatr Surg<br />

38: 1203–1207


Annals <strong>of</strong> Diagnostic Paediatric Pathology 2006, 10 (3–4): 137–140<br />

© Copyright by Polish Paediatric Pathology Society Annals <strong>of</strong><br />

Meros<strong>in</strong> deficient congenital muscle dystrophy <strong>in</strong> children<br />

– cl<strong>in</strong>ical features and retrospective immunohistochemical study<br />

<strong>of</strong> own muscle biopsy material<br />

Maciej Pronicki 1 , Hanna Mierzewska 2 , Tamara Szymañska-Dêbiñska 1 ,<br />

Agnieszka Karkuciñska-Wiêckowska 1 , El¿bieta Karczmarewicz 3 , Tomasz Kmieæ 4<br />

1 Department <strong>of</strong> Pathology<br />

2 Division <strong>of</strong> Metabolic Disorders, Endocr<strong>in</strong>ology and Diabetology<br />

3 Department <strong>of</strong> Biochemistry and Experimental Medic<strong>in</strong>e<br />

4 Department <strong>of</strong> Neurology and Epileptology<br />

The Children's Memorial Health Institute<br />

Warsaw, Poland<br />

Introduction<br />

Abstract<br />

Congenital muscle dystrophy (CMD) is a heterogenous group<br />

<strong>of</strong> muscle disordes characterised by early cl<strong>in</strong>ical presentation,<br />

usually at birth or <strong>in</strong> neonatal period. Dystrophic myopathic<br />

pattern <strong>of</strong> skeletal muscle <strong>in</strong> biopsy consists a common<br />

but non specific feature <strong>of</strong> all types. Typically muscle<br />

shows extensive muscle fibre damage with <strong>in</strong>tense <strong>in</strong>terstitial<br />

and replacement fibrosis. Cl<strong>in</strong>ically CMD is characterised<br />

by weakness, hypotonia, atrophy <strong>of</strong> muscles, sometimes<br />

jo<strong>in</strong>t contractures [8, 3].<br />

Nearly half <strong>of</strong> CMD cases <strong>in</strong> humans is associated<br />

with deficiency <strong>of</strong> lam<strong>in</strong><strong>in</strong> alpha 2 subunit (called meros<strong>in</strong>)<br />

<strong>in</strong> muscle. Those cases are frequently associated with central<br />

Address for correspondence<br />

Congenital muscle dystrophy (CMD) is a heterogenous group <strong>of</strong> muscle disorders characterised by early<br />

cl<strong>in</strong>ical presentation, dystrophic myopathic pattern <strong>of</strong> skeletal muscle <strong>in</strong> biopsy, weakness, hypotonia,<br />

atrophy <strong>of</strong> muscles, sometimes jo<strong>in</strong>t contractures. Nearly half <strong>of</strong> CMD cases <strong>in</strong> humans is associated with<br />

deficiency <strong>of</strong> lam<strong>in</strong><strong>in</strong> alpha 2 subunit (meros<strong>in</strong>). The gene LAMA2 responsible for <strong>the</strong> production <strong>of</strong> lam<strong>in</strong><strong>in</strong><br />

2 is located on chromosome 6q2. Pattern <strong>of</strong> <strong>in</strong>heritance is autosomal recessive. The most widely used<br />

diagnostic procedure <strong>of</strong> meros<strong>in</strong> deficient CMD (MD CMD) is immunohistochemical confirmation <strong>in</strong><br />

skeletal muscle biopsy specimen. The aim <strong>of</strong> <strong>the</strong> study was retrospective immunohistochemical<br />

exam<strong>in</strong>ation <strong>of</strong> meros<strong>in</strong> <strong>in</strong> frozen archival skeletal muscle biopsy specimens. In available samples <strong>of</strong> 18<br />

children selected for <strong>the</strong> study on <strong>the</strong> basis <strong>of</strong> age, skeletal muscle histology and cl<strong>in</strong>ical presentation, <strong>the</strong><br />

study revealed meros<strong>in</strong> deficiency <strong>in</strong> 4 children, two boys and two girls aged 4–16 months at <strong>the</strong> time <strong>of</strong><br />

biopsy. Authors analyse and discuss cl<strong>in</strong>ical presentation, muscle histology, spectrophotmetric analysis <strong>of</strong><br />

respiratory cha<strong>in</strong> complexes <strong>in</strong> retrospectively revealed children with MD CMD.<br />

Key words: congenital muscular dystrophy, meros<strong>in</strong>, meros<strong>in</strong> deficient congenital muscular dystrophy,<br />

meros<strong>in</strong> immunohistochemistry<br />

Maciej Pronicki, MD, PhD. Phone: +48 22 815 19 60<br />

Department <strong>of</strong> Pathology Fax: +48 22 815 19 75<br />

The Children’s Memorial Health Institute<br />

Al. Dzieci Polskich 20<br />

04-730 Warsaw, Poland<br />

Diagnostic<br />

Paediatric<br />

Pathology<br />

nervous system <strong>in</strong>volvement with cerebral white matter lesions<br />

which may be observed <strong>in</strong> MR imag<strong>in</strong>g [12, 6]. Lam<strong>in</strong><strong>in</strong>s<br />

are prote<strong>in</strong>s located <strong>in</strong> basement membranes <strong>of</strong> diverse<br />

tissues. Meros<strong>in</strong> deficient CMD (MDCMD) is <strong>the</strong> first <strong>of</strong><br />

congenital dystrophies <strong>in</strong> which <strong>the</strong> biochemical defect and<br />

genetic background has been identified. [11]. The gene<br />

LAMA2 responsible for <strong>the</strong> production <strong>of</strong> lam<strong>in</strong><strong>in</strong> α2 is located<br />

on chromosome 6q2 [4]. Inheritance is autosomal recessive.<br />

Secondary meros<strong>in</strong> deficiency was also described <strong>in</strong><br />

a form <strong>of</strong> CMD with gene mutation localised on chromosome1q42<br />

[2]. The degree <strong>of</strong> meros<strong>in</strong> reduction may differ <strong>in</strong><br />

<strong>in</strong>dividual patients what is reflected by different degree <strong>of</strong><br />

cl<strong>in</strong>ical severity <strong>of</strong> <strong>the</strong> disease [1, 9]. Some children may<br />

even atta<strong>in</strong> <strong>the</strong> ability to walk with or without support. In mo-


138<br />

re severe cases myopathy is early and pr<strong>of</strong>ound lead<strong>in</strong>g to death<br />

due to hypoventilation and <strong>in</strong>fection. As <strong>in</strong> o<strong>the</strong>r muscular<br />

dystrophies <strong>the</strong>re is still no specific cure for MDCMD but<br />

physio<strong>the</strong>rapy and diverse supportive measures or even surgical<br />

<strong>in</strong>tervention may alleviate <strong>the</strong> symptoms and delay <strong>the</strong><br />

progression <strong>of</strong> <strong>the</strong> disease.<br />

S<strong>in</strong>ce <strong>in</strong>troduction <strong>of</strong> anti-meros<strong>in</strong> monoclonal antibodies<br />

to laboratory practice, <strong>the</strong> diagnosis is ma<strong>in</strong>ly based<br />

on immunohistochemical studies confirm<strong>in</strong>g <strong>the</strong> absence or<br />

feduction <strong>of</strong> meros<strong>in</strong> <strong>in</strong> muscle or <strong>in</strong> sk<strong>in</strong>. Sk<strong>in</strong> biopsies may<br />

reveal lack <strong>of</strong> meros<strong>in</strong> present <strong>in</strong> neural elements, but are not<br />

suitable for detection <strong>of</strong> prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> pathogenesis <strong>of</strong><br />

o<strong>the</strong>r myopathies so are not useful <strong>in</strong> differential diagnosis<br />

<strong>in</strong> patients <strong>in</strong> whom <strong>the</strong> meros<strong>in</strong> is not lack<strong>in</strong>g [7]. Some laboratories<br />

perform genetic tests which ultimately proove <strong>the</strong><br />

diagnosis, but this method is not widely available. As is <strong>the</strong><br />

case for most o<strong>the</strong>r prote<strong>in</strong>s studied immunohistochemically<br />

<strong>in</strong> diagnosis <strong>of</strong> myopathies <strong>the</strong> normal expression <strong>of</strong> meros<strong>in</strong><br />

is sarcolemmal as shown on Fig. 1 [10].<br />

Aim <strong>of</strong> <strong>the</strong> study<br />

Our study consists <strong>of</strong> retrospective immunohistochemical<br />

exam<strong>in</strong>ation <strong>of</strong> meros<strong>in</strong> <strong>in</strong> frozen archival skeletal muscle<br />

biopsy specimens obta<strong>in</strong>ed dur<strong>in</strong>g <strong>the</strong> years 1996–2004,<br />

when this method had not been used <strong>in</strong> rout<strong>in</strong>e biopsy assessment.<br />

Selection <strong>of</strong> patients was based on cl<strong>in</strong>ical symptoms,<br />

early presentation and dystrophic pattern <strong>of</strong> muscle damage<br />

on <strong>light</strong> microscopy.<br />

Patients and methods<br />

Initially <strong>the</strong> group <strong>of</strong> 34 patients (15 boys and 19 girls) was<br />

selected for <strong>the</strong> study from <strong>the</strong> whole pediatric biopsy material<br />

(n=320) us<strong>in</strong>g <strong>the</strong> above mentioned criteria. Their age<br />

ranged from 3 weeks to 6 years at <strong>the</strong> time <strong>of</strong> biopsy. Assessment<br />

<strong>of</strong> archival muscle samples revealed that only 18 frozen<br />

tissue blocks obta<strong>in</strong>ed from 9 girls and 9 boys are suitable<br />

for fur<strong>the</strong>r ivestigation due to technical reasons. Cl<strong>in</strong>ical<br />

Fig. 1 Normal sarcolemmal expression <strong>of</strong> meros<strong>in</strong> <strong>in</strong> human skeletal muscle<br />

shown immunohistochemically<br />

presentation or suspicion at <strong>the</strong> time <strong>of</strong> biopsy comprised:<br />

floppy child; sp<strong>in</strong>al muscular atrophy; congenital dystrophy;<br />

congenital myopathy; mitochondrial myopathy/respiratory<br />

cha<strong>in</strong> disorder. Archival histopathology reports concluded<br />

<strong>the</strong> follow<strong>in</strong>g: congenital muscle dystrophy, muscle dystrophy,<br />

nonspecific myopathy, miositis.<br />

Apart from controlled meros<strong>in</strong> immunohistochemistry<br />

<strong>the</strong> muscle was reassessed <strong>in</strong> rout<strong>in</strong>e myopathology panel<br />

<strong>of</strong> sta<strong>in</strong>s and reactions compris<strong>in</strong>g: hematoxyl<strong>in</strong> and<br />

eos<strong>in</strong>; modified Gomori trichrome; oil red O; succ<strong>in</strong>ate dehydrogenase;<br />

NADH dehydrogenase; cytochrome c oxidase;<br />

acid phosphatase; myos<strong>in</strong> ATP-ase at pH 4,3/4,6/9,4. Spectrophotometric<br />

assay <strong>of</strong> respiratory cha<strong>in</strong> complexes was also<br />

<strong>in</strong>cluded <strong>in</strong>to <strong>the</strong> study. Methods <strong>of</strong> biochemical <strong>in</strong>vestigation<br />

were described earlier [5].<br />

Results<br />

Immunohistochemical analysis revealed 4 patients (two boys<br />

and two girls) with meros<strong>in</strong> deficiency <strong>in</strong> muscle. Characteristics<br />

<strong>of</strong> <strong>the</strong>ir cl<strong>in</strong>ical, pathological, and biochemical features<br />

are as follows:<br />

Patient 1<br />

PR. A boy, born after uneventful pregnancy and delivery, as<br />

a second child to unrelated parents. Birth weight was 2200 g,<br />

length 48 cm, Apgar score was 8. From <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g muscle<br />

hypotonia and poor suckl<strong>in</strong>g were observed as well as hypomotility.<br />

EMG was myopathic. Serum creat<strong>in</strong>e k<strong>in</strong>ase concentration<br />

was markedly elevated – 809 – 1334 u/l. (normal<br />

value – to 157 u/l.), and am<strong>in</strong>otranspherases were mildly elevated<br />

(ASPAT – 63-95 IU, AlAT- 57-60 IU). Dur<strong>in</strong>g <strong>in</strong>fancy<br />

<strong>the</strong> child was floppy and his motor milestones were delayed.<br />

He had slim habitus, dolichocephaly and long and slim f<strong>in</strong>gers.<br />

His muscles were atrophic and tendency to contractures were<br />

observed. Bra<strong>in</strong> MRI showed abnormal cerebral white matter<br />

signal localised ma<strong>in</strong>ly <strong>in</strong> periventricular areas and <strong>in</strong> anterior<br />

and posterior limbs <strong>of</strong> <strong>in</strong>ternal capsule (Fig. 2). Mild ventricular<br />

enlargement and mild temporal atrophy were also found.<br />

Muscle biopsy was performed at <strong>the</strong> age <strong>of</strong> 12 months.<br />

Patient 2<br />

WD. A boy born as a first child <strong>of</strong> unrelated parents. Pregnancy<br />

and delivery was uneventful. Birth weight was 3180g. Apgar<br />

was 8. After birth muscular weakness as well as mild cyanosis<br />

were abserved. Congenital complex heart defect (ASD<br />

+ VSD) was detected. The child was apa<strong>the</strong>thic and hypok<strong>in</strong>etic.<br />

His muscles were atrophic. The contractures <strong>of</strong> wrists,<br />

knees and ankles developed as well as progressive funnel<br />

chest deformity. Serum creat<strong>in</strong>e k<strong>in</strong>ase was markedly elevated<br />

2348 – 1813 u/l. Am<strong>in</strong>otranspherases were normal. EMG<br />

was myopathic. Muscle biopsy was performed at <strong>the</strong> age <strong>of</strong><br />

2,5 months. MRI <strong>of</strong> <strong>the</strong> bra<strong>in</strong> was not performed.<br />

Patient 3<br />

NK. A girl born after first unevenful pregnancy and delivery<br />

to noncosangu<strong>in</strong>eous parents. Birth weight was 3090g,


Fig. 2 2 MRI lesions <strong>of</strong> patient 1<br />

Apgar score was 10. From <strong>the</strong> 8th day <strong>of</strong> life she was markedly<br />

hypotonic and had dyspnoe. X-ray exam<strong>in</strong>ation showed<br />

pneumonia and enlargment <strong>of</strong> <strong>the</strong> heart. EMG was myopathic.<br />

ECG showed partial heart block (RBBB). Serum<br />

creat<strong>in</strong>e k<strong>in</strong>ase concentration was markedly elevated – 2751<br />

– 1780 u/l and am<strong>in</strong>otranspherases were s<strong>light</strong>ly elevated<br />

AlAT – 117 IU, AspAT – 117 IU. Muscle biopsy was performed<br />

at <strong>the</strong> age <strong>of</strong> 4 months. Her motor milestones were<br />

delayed but her <strong>in</strong>telectual development is very good at <strong>the</strong><br />

age <strong>of</strong> 2,5 years.<br />

Patient 4<br />

OE, a girl born as a first child to unrelated parents. Pregnancy<br />

was complicated by maternal diabetes, delivery was uneventful.<br />

Birth weigh was 2600g, Apgar score was 10. S<strong>in</strong>ce<br />

neonatal period she was hypotonic. Progressive muscular<br />

weakness was observed dur<strong>in</strong>g physio<strong>the</strong>rapy. On physical<br />

exam<strong>in</strong>ation muscular wast<strong>in</strong>g and lack <strong>of</strong> tendon reflexes<br />

were detected. Her motor milestones was markedly delayed,<br />

but <strong>in</strong>telect was spared. Creat<strong>in</strong>e k<strong>in</strong>ase concentration <strong>in</strong> serum<br />

was <strong>in</strong>creased – 894 – 1177 u/l. EMG was myopathic.<br />

Bra<strong>in</strong> MRI showed signal abnormality <strong>of</strong> hemispheric periventricular<br />

white matter. U-fibers were also partially <strong>in</strong>volved.<br />

Lateral ventricles were mildly widened. Muscle biopsy<br />

was performed at <strong>the</strong> age <strong>of</strong> 16 months.<br />

Muscle biopsy –<br />

histopathology and spectrophotometric assay<br />

Muscle biopsy features <strong>of</strong> all children displayed <strong>the</strong> same<br />

pattern concluded orig<strong>in</strong>ally as muscle dystrophy or congenital<br />

muscle dystrophy. Replacement fibrosis was most pronounced<br />

<strong>in</strong> patient 4 <strong>in</strong> whom <strong>the</strong> biopsy was performed at<br />

16 months. Apart from this f<strong>in</strong>d<strong>in</strong>g <strong>the</strong>re were no significant<br />

differences <strong>in</strong> muscle lesions (Fig. 3 and 4). Immunohistochemical<br />

exam<strong>in</strong>ation revealed <strong>the</strong> same total lack <strong>of</strong> meros<strong>in</strong><br />

reactivity <strong>in</strong> all children (Fig. 5).<br />

139<br />

Fig. 3 Skeletal muscle histology <strong>of</strong> patient 2. Light microscopy <strong>of</strong> frozen<br />

section sta<strong>in</strong>ed with hematoxyl<strong>in</strong> and eos<strong>in</strong><br />

Fig. 4 Skeletal muscle histology <strong>of</strong> patient 4. Light microscopy <strong>of</strong> frozen<br />

section sta<strong>in</strong>ed with hematoxyl<strong>in</strong> and eos<strong>in</strong><br />

Fig. 5 Immunohistochemical reaction for meros<strong>in</strong> <strong>in</strong> MD CMD (patient 4).<br />

Compare with Fig. 1


140<br />

Spectrophotometric study was possible to start only <strong>in</strong><br />

patients 1 and 4 due to lack <strong>of</strong> muscle tissue <strong>in</strong> samples obta<strong>in</strong>ed<br />

dur<strong>in</strong>g biopsy, resultig from predom<strong>in</strong>ance <strong>of</strong> fibrous and<br />

adipose tissue. However, <strong>in</strong> exam<strong>in</strong>ed two muscle homogenate<br />

samples, citrate synthase activity appeared below <strong>the</strong> level<br />

<strong>of</strong> assay reliability for <strong>the</strong> assessment <strong>of</strong> respiratory cha<strong>in</strong> complexes<br />

activity (Patient 1. – 36 nmol/m<strong>in</strong>/mg and patient 4. –<br />

40 nmol/m<strong>in</strong>/mg, reference value 96,5 – 150,1 nmol/m<strong>in</strong>/mg).<br />

Discussion<br />

Cl<strong>in</strong>ical presentation <strong>of</strong> our MD CMD patients is characterised<br />

by relative homogeneity. They were floppy children from<br />

birth. Muscle hypotonia that was ra<strong>the</strong>r nonprogressive, was<br />

observed permanently and motor milestones were markedly<br />

delayed. All children had elevated concentration <strong>of</strong> creat<strong>in</strong>e<br />

k<strong>in</strong>ase.<br />

The above cl<strong>in</strong>ical picture is however non-specific<br />

and it must be emphasised that <strong>the</strong>re are no typical cl<strong>in</strong>ical<br />

or biochemical features <strong>of</strong> MD CMD. All children had moderately<br />

or markedly elevated creat<strong>in</strong>e k<strong>in</strong>ase concentration.<br />

Increase <strong>of</strong> CK were <strong>in</strong> range <strong>of</strong> 1000 – 2700 u/l, what is ra<strong>the</strong>r<br />

characteristic for all types <strong>of</strong> CMD. It is not so high as<br />

<strong>in</strong> Duchenne muscular dystrophy where <strong>the</strong> level is over<br />

10000 – 20 000 u/l. but is higher than <strong>in</strong> congenital myopathies<br />

where <strong>the</strong> CK level is mildly elevated or normal. All<br />

children had myopathic electromyography what is not characteristic<br />

for myopathy or dystrophy.<br />

References<br />

1. Allamand V, Sunada Y, Salich MA, at<br />

al (1997) Mild congenital muscular<br />

dystrophy <strong>in</strong> two patients with an <strong>in</strong>ternally<br />

deleted lam<strong>in</strong><strong>in</strong> alpha-2 cha<strong>in</strong>.<br />

Hum Mol Genet 6: 747–752<br />

2. Brock<strong>in</strong>gton M, Sewry CA, Hermann<br />

R, at al (2000) Assignment <strong>of</strong> a form <strong>of</strong><br />

congenital muscular dystrophy with secondary<br />

meros<strong>in</strong> deficiency to chromosome<br />

1q42. Am J Hum Genet 66:<br />

428–435<br />

3. Gordon E, H<strong>of</strong>fman E, Pegoraro E<br />

(2005) Congenital muscular dystrophy<br />

overview. Gene Reviews.<br />

4. Hillaire D, Leclerc A, Faure S, Topaloglu<br />

H, Chiannikulchai N, Guicheney P,<br />

Gr<strong>in</strong>al L (1994) Localisation <strong>of</strong> meros<strong>in</strong><br />

negative congenital muscular dystrophy<br />

to chromosome 6q2 by homozygosity<br />

mapp<strong>in</strong>g. Hum Mol Genet 3:<br />

1657–1661<br />

Typical pitfalls <strong>in</strong> cl<strong>in</strong>ical suspicion / <strong>in</strong>terpretation<br />

<strong>in</strong>clude differential diagnosis <strong>of</strong> so called “floppy <strong>in</strong>fant syndrome”.<br />

This syndrome is heterogenous and symptoms are<br />

not characteristic so <strong>in</strong>itial cl<strong>in</strong>ical suspitions were: sp<strong>in</strong>al<br />

muscular atrophy, congenital muscular myopathy, congenital<br />

muscular atrophy, Pompe disease and o<strong>the</strong>r metabolic diseases,<br />

as well as mitochondrial/OXPHOS disorders. MRI<br />

f<strong>in</strong>d<strong>in</strong>gs may suggest o<strong>the</strong>r leukodystrophies especially <strong>of</strong><br />

metabolic orig<strong>in</strong> (MRI <strong>of</strong> <strong>the</strong> first patient was described as<br />

„metachromatic leucodystrophy or o<strong>the</strong>r metabolic leukodystrophy”).<br />

All our patients showed relatively homogenous pattern<br />

<strong>of</strong> skeletal muscle pathology <strong>in</strong> microscopic exam<strong>in</strong>ation.<br />

Histopathological exam<strong>in</strong>ation showed dystrophic pattern<br />

<strong>in</strong> rout<strong>in</strong>e sta<strong>in</strong>s which is not specific, so immunohistochemistry<br />

with anti-meros<strong>in</strong> antibody is needed to confirm<br />

<strong>the</strong> diagnosis.<br />

In MD CMD it appeared difficult to obta<strong>in</strong> muscle<br />

biopsy specimen conta<strong>in</strong><strong>in</strong>g representative fragment <strong>of</strong> skeletal<br />

muscle tissue be<strong>in</strong>g suitable for biochemical <strong>in</strong>vestigation<br />

<strong>of</strong> respiratory cha<strong>in</strong> complexes activity <strong>in</strong> muscle homogenate.<br />

Acknowledgement<br />

5. Karczmarewicz E, Bielecka L, Kulczycka<br />

H, Lorenc LS, Pronicka E<br />

(1997) Analytical relibility <strong>of</strong> spectrophotometric<br />

analysis <strong>of</strong> <strong>the</strong> activity <strong>of</strong><br />

mitochondrial respiratory cha<strong>in</strong> complexes<br />

<strong>in</strong> muscle homogenates. Diagn<br />

Lab 33: 493–503<br />

6. Lamer S, Carlier RY, P<strong>in</strong>ard JM (1998)<br />

Congenital muscular dystrophy: use <strong>of</strong><br />

bra<strong>in</strong> MR imag<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs to predict<br />

meros<strong>in</strong> deficiency. Radiology 6:<br />

811–816<br />

7. Marb<strong>in</strong>i A, Bellonoa MF, Ferrari A,<br />

Lodesani M, Gemignani F (1997) Immunohistochemical<br />

study <strong>of</strong> meros<strong>in</strong>-<br />

-negative congenital muscular dystrophy:<br />

lam<strong>in</strong><strong>in</strong> á2 deficiency <strong>in</strong> sk<strong>in</strong> biopsy.<br />

Acta Neuropathol 94: 103–108<br />

8. Parano E, Pavone L, Fiumara A, Falsaperla<br />

R, Trifiletti RR, Dobyns WB<br />

(1995) Congenital muscular dystrophies:<br />

cl<strong>in</strong>ical review and proposed<br />

<strong>classification</strong>. Pediatr Neurol 13:<br />

97–103<br />

Research was supported by Internal Project <strong>of</strong> The Children’s<br />

Memorial Health Institute Nr 100/05 (pricipal <strong>in</strong>verstigator<br />

– M. Pronicki).<br />

9. Philpot J, Sewry C, Pennock J, Dubovitz<br />

V (1995) Cl<strong>in</strong>ical phenotype <strong>in</strong><br />

congenital muscular dystrophy: correlation<br />

with expression <strong>of</strong> meros<strong>in</strong> <strong>in</strong> skeletal<br />

muscle. Neuromuscul Disord 5:<br />

3<strong>01</strong>–305<br />

10. Tews DS, Goebel HH (2005) Diagnostic<br />

immunohistochemistry <strong>in</strong> neuromuscular<br />

disorders. Histopathology 46:<br />

1–23<br />

11. Tome FM, Evangelista T, Leclerc A,<br />

Sunada Y, Manoie E, Estoumet B, Barois<br />

A, Campbell KP (1994) Congenital<br />

muscular dystrophy with meros<strong>in</strong> deficiency.<br />

C R Acad. Sci 317: 351–357<br />

12. Van der Knaap MS, Valk J (2005) Congenital<br />

muscular dystrophies. In: Magnetic<br />

esonance <strong>of</strong> myel<strong>in</strong>ation and myel<strong>in</strong><br />

Disorders. Third edition. Ed. Spr<strong>in</strong>ger,.<br />

Berl<strong>in</strong>-Heidelberg, New York, p<br />

451–468

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!