Logano SK645/SK745 - Buderus
Logano SK645/SK745 - Buderus
Logano SK645/SK745 - Buderus
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>Logano</strong> <strong>SK645</strong>/<strong>SK745</strong><br />
Heat is our element<br />
Technical guide<br />
Issue 10/2010<br />
Fügen Sie auf der Vorgabeseite<br />
das zur Produktgruppe<br />
passende Bild ein.<br />
Sie finden die Bilder auf<br />
der Referenzseite 14:<br />
<strong>Buderus</strong> Product groups.<br />
Anordnung im Rahmen:<br />
- Tops<br />
- Left sides<br />
Low temperature boilers<br />
Output range from<br />
120 kW to 1850 kW
Table of contents<br />
Table of contents<br />
1 Low temperature boilers . . . . . . . . . . . . . . . . . . 4<br />
1.1 Types and output . . . . . . . . . . . . . . . . . . . . . 4<br />
1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />
1.3 Characteristics and special features . . . . . 4<br />
2 Technical description . . . . . . . . . . . . . . . . . . . . . 5<br />
2.1 Equipment level . . . . . . . . . . . . . . . . . . . . . . 5<br />
2.2 Heating water routing . . . . . . . . . . . . . . . . . . 6<br />
2.3 Hot gas routing . . . . . . . . . . . . . . . . . . . . . . . 6<br />
2.4 Dimensions and specification . . . . . . . . . . . 7<br />
2.4.1 <strong>Logano</strong> <strong>SK645</strong> dimensions and<br />
specification . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />
2.4.2 <strong>Logano</strong> <strong>SK745</strong> dimensions and<br />
specification . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />
2.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />
2.5.1 Pressure drop on the water side . . . . . . . . 12<br />
2.5.2 Boiler efficiency . . . . . . . . . . . . . . . . . . . . . 13<br />
2.5.3 Standby loss and flue gas temperature . . 14<br />
3 Burner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />
3.1 Burner selection . . . . . . . . . . . . . . . . . . . . . 15<br />
3.2 Burner requirements . . . . . . . . . . . . . . . . . . 15<br />
4 Regulations and operating conditions . . . . . 16<br />
4.1 Extracts from the regulations . . . . . . . . . . . 16<br />
4.2 Pressure Equipment Directive (PED) and<br />
Health & Safety at Work Act . . . . . . . . . . . 16<br />
4.2.1 Application range . . . . . . . . . . . . . . . . . . . . 16<br />
4.2.2 Categories in accordance with the<br />
Pressure Equipment Directive 97/23/EC 16<br />
4.2.3 Health & Safety at Work Act regarding<br />
steam and hot water boilers . . . . . . . . . . . 17<br />
4.2.4 Overview of the Health & Safety at Work<br />
Act [Germany] . . . . . . . . . . . . . . . . . . . . . . 17<br />
4.3 Operating conditions . . . . . . . . . . . . . . . . . 18<br />
4.3.1 Operating requirements . . . . . . . . . . . . . . . 18<br />
4.3.2 Operating conditions . . . . . . . . . . . . . . . . . 18<br />
4.4 Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />
4.5 Water treatment . . . . . . . . . . . . . . . . . . . . . 19<br />
4.5.1 Definition of terms . . . . . . . . . . . . . . . . . . . 19<br />
4.5.2 Prevention of corrosion damage . . . . . . . . 19<br />
4.5.3 Prevention of damage through scale<br />
formation . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />
4.5.4 Requirements for fill and top-up water . . . 20<br />
4.5.5 Application limits for boilers made from<br />
ferrous materials . . . . . . . . . . . . . . . . . . . . 21<br />
4.5.6 Recording the amounts of fill and top-up<br />
water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />
2<br />
4.5.7 Calculation to determine the permissible<br />
amounts of fill and top-up water . . . . . . . . 23<br />
4.5.8 Chemical heating water additives . . . . . . . 23<br />
4.5.9 Combustion air . . . . . . . . . . . . . . . . . . . . . . 23<br />
5 Heating controls . . . . . . . . . . . . . . . . . . . . . . . . 24<br />
5.1 Logamatic 4000 control system . . . . . . . . 24<br />
5.1.1 Logamatic 4212 control unit . . . . . . . . . . . 24<br />
5.1.2 Logamatic 4321 and Logamatic 4322<br />
control units . . . . . . . . . . . . . . . . . . . . . . . . 24<br />
5.1.3 Logamatic4411 control panel system . . . . 24<br />
5.2 Logamatic telecontrol system . . . . . . . . . . 24<br />
6 DHW heating . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />
6.1 Systems for DHW heating . . . . . . . . . . . . . 25<br />
6.2 DHW temperature controller . . . . . . . . . . . 25<br />
7 System examples . . . . . . . . . . . . . . . . . . . . . . . 26<br />
7.1 Information regarding all system examples 26<br />
7.1.1 Hydraulic connection . . . . . . . . . . . . . . . . . 26<br />
7.1.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />
7.1.3 DHW heating . . . . . . . . . . . . . . . . . . . . . . . 27<br />
7.2 Safety equipment to DIN-EN 12828 and<br />
DIN-EN 12953-6 . . . . . . . . . . . . . . . . . . . . 27<br />
7.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . 27<br />
7.2.2 Arrangement of safety equipment to<br />
DIN-EN 12828; operating temperature<br />
≤ 105 °C; shutdown temperature (high<br />
limit safety cut-out) ≤ 110 °C . . . . . . . . . . 28<br />
7.2.3 Arrangement of safety equipment to<br />
DIN-EN 12953-6; shutdown temperature<br />
(high limit safety cut-out) > 110 °C . . . . . 29<br />
7.3 Sizing and installation information . . . . . . . 30<br />
7.3.1 Boiler circuit pump in the bypass as shunt<br />
pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />
7.3.2 Boiler circuit pump as primary circuit<br />
pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />
7.3.3 Low loss header . . . . . . . . . . . . . . . . . . . . . 33<br />
7.4 Single boiler system <strong>Logano</strong> <strong>SK645</strong> and<br />
<strong>SK745</strong> with boiler control unit . . . . . . . . . 34<br />
7.5 Single boiler system with <strong>Logano</strong> <strong>SK645</strong><br />
and <strong>SK745</strong> boilers: Logamatic Boiler and<br />
heating circuit control with hydraulic<br />
separation . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />
7.6 Single boiler system with <strong>Logano</strong> <strong>SK645</strong><br />
and <strong>SK745</strong> with boiler and heating circuit<br />
control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />
7.7 Single boiler system with <strong>Logano</strong> <strong>SK645</strong><br />
and <strong>SK745</strong> with boiler and heating circuit<br />
control as well as hydraulic balancing . . . 40<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
7.8 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and<br />
<strong>SK745</strong> with boiler and heating circuit<br />
control plus hydraulic balancing . . . . . . . . 42<br />
7.9 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and<br />
<strong>SK745</strong> with boiler and heating circuit<br />
control plus hydraulic balancing . . . . . . . . 44<br />
7.10 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and<br />
<strong>SK745</strong> as well as <strong>Logano</strong> plus SB315 and<br />
SB615 gas condensing boilers with boiler<br />
and heating circuit control . . . . . . . . . . . . . 46<br />
8 Delivery and installation information . . . . . 48<br />
8.1 Delivery method . . . . . . . . . . . . . . . . . . . . . . 48<br />
8.2 Installation information . . . . . . . . . . . . . . . . . 48<br />
9 Installation location . . . . . . . . . . . . . . . . . . . . . 49<br />
9.1 General requirements of the installation<br />
room . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />
9.1.1 Combustion air supply . . . . . . . . . . . . . . . . . 49<br />
9.1.2 Siting combustion equipment . . . . . . . . . . . 49<br />
9.2 Handling details . . . . . . . . . . . . . . . . . . . . . . 50<br />
9.3 Installed dimensions . . . . . . . . . . . . . . . . . . 51<br />
10 Additional equipment and accessories . . . . 52<br />
10.1 Additional safety equipment to<br />
DIN-EN 12828 . . . . . . . . . . . . . . . . . . . . . . 52<br />
10.1.1Safety equipment . . . . . . . . . . . . . . . . . . . . . 52<br />
10.2 Additional noise attenuating equipment . . . 54<br />
10.2.1Requirements . . . . . . . . . . . . . . . . . . . . . . . . 54<br />
10.2.2Boiler support with structure-borne noise<br />
insulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />
10.2.3Flue gas silencer with sealing collar to<br />
insulate against structure-borne noise . . . 56<br />
10.3 Additional accessories . . . . . . . . . . . . . . . . 56<br />
10.3.1Welded flange . . . . . . . . . . . . . . . . . . . . . . . 56<br />
10.3.2Flue sealing collar . . . . . . . . . . . . . . . . . . . . 56<br />
10.3.3Cleaning equipment set . . . . . . . . . . . . . . . 56<br />
11 Flue system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />
11.1 General requirements of the flue system . . 57<br />
11.2 Flue gas parameters . . . . . . . . . . . . . . . . . . 58<br />
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />
Table of contents<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 3
4<br />
1 Low temperature boilers<br />
1 Low temperature boilers<br />
1.1 Types and output<br />
With the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> <strong>Buderus</strong> offers low<br />
temperature boilers with outputs ranging from 120 kW to<br />
1850 kW. The <strong>Logano</strong> <strong>SK645</strong> is available with outputs<br />
ranging from 120 kW to 600 kW, the <strong>Logano</strong> <strong>SK745</strong><br />
covers the output range from 730 kW to 1850 kW.<br />
These boilers feature reversing combustion to<br />
DIN-EN 303 for oil or gas. They are suitable for fuel oil EL<br />
to DIN 51603-1, natural gas or LPG to DVGW G 260.<br />
The boilers can, as an option, be operated with matching<br />
oil and gas burners to EN 267 and EN 676.<br />
These boilers are made from steel and are suitable for<br />
design temperatures of up to 120 °C (shutdown<br />
temperature of the high limit safety cut-out).<br />
1.2 Applications<br />
The <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers<br />
are suitable for all heating systems to DIN-EN 12828 and<br />
DIN-EN 12953-6.<br />
They are used for DHW and central heating in apartment<br />
blocks, municipal and commercial buildings, in district<br />
heating centres as well as for indirect heating of<br />
swimming pools.<br />
For DHW heating, these boilers can be combined with<br />
<strong>Buderus</strong> DHW cylinders.<br />
1.3 Characteristics and special features<br />
High standard seasonal efficiency [to DIN] and<br />
economic viability<br />
The large heating surface of the second pass and high<br />
grade thermal insulation result in excellent heat transfer as<br />
well as low flue gas and standby losses. The result is a<br />
standard seasonal efficiency [to DIN] of up to 93 %.<br />
Minimum circulation volumes are not required.<br />
Quiet operation with clean combustion<br />
The reversing combustion chamber with low combustion<br />
chamber volume loads ensures clean combustion and a<br />
high standard seasonal efficiency.<br />
Boiler supports that act to prevent structure-borne noise<br />
transfer and flue gas silencers result in significantly lower<br />
operating noise.<br />
Easy installation<br />
At the factory, these boilers are fitted with all required<br />
connections, enabling an easy integration into the heating<br />
system. Accessories are matched to these boilers,<br />
ensuring an easy and quick installation. For example, a<br />
safety assembly matched to these boilers safeguards<br />
uncomplicated installation.<br />
Predrilled burner plates make fitting third party burners<br />
easy.<br />
Straight-forward system design<br />
All boilers can be connected simply and in a straightforward<br />
manner to the heating system, since there is no<br />
special need for a minimum flow rate. Not only does this<br />
lead to reduced investment outlay and running costs, but<br />
also less engineering effort.<br />
Supplied fully wired ready for connection<br />
Easy connection to the heating system due to fully<br />
assembled delivery ex works.<br />
Easy maintenance and cleaning<br />
The combustion chamber and the heating surfaces of<br />
these boilers are easily accessible through the large door<br />
at the front that can be pivoted to the left or right. The<br />
smooth steel surfaces of these boilers can be easily<br />
cleaned with the cleaning set supplied as standard.<br />
Easy and convenient operation<br />
The control functions that are matched to the respective<br />
system hydraulics facilitate easy operation. These boilers<br />
can be combined with different <strong>Buderus</strong> control units.<br />
The equipment level of all control units can be extended<br />
individually with auxiliary modules. All control unit<br />
functions can be adjusted in only a few steps – through<br />
the push & turn – facility.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
2 Technical description<br />
2.1 Equipment level<br />
6 720 640 417-01.1il<br />
Fig. 1 <strong>Logano</strong> <strong>SK745</strong> with Logamatic 4321<br />
The <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers<br />
are tested to EN 303, type-tested and CE-designated.<br />
Quality assurance measures to DIN-EN ISO 9001<br />
contribute to the high manufacturing quality and reliability<br />
of functions. The materials used in the <strong>Buderus</strong> low<br />
temperature boilers meet the requirements of EN 303 and<br />
EN 14394. As a result, these boilers operate safely and<br />
reliably.<br />
The boilers feature all-round thermal insulation and<br />
painted casing (RAL 5015). The thermal insulation is<br />
60 mm thick. The combustion chamber and the<br />
secondary heating surfaces are easily accessible through<br />
large front doors that can be pivoted to the left or right.<br />
Technical description<br />
Finely stepped output levels<br />
The <strong>Logano</strong> <strong>SK645</strong> boilers are available with the<br />
following output ratings:<br />
• 120 kW<br />
• 190 kW<br />
• 250 kW<br />
• 300 kW<br />
• 360 kW<br />
• 420 kW<br />
• 500 kW<br />
• 600 kW<br />
The <strong>Logano</strong> <strong>SK745</strong> boilers are available with the<br />
following output ratings:<br />
• 730 kW<br />
• 820 kW<br />
• 1040 kW<br />
• 1200 kW<br />
• 1400 kW<br />
• 1850 kW<br />
Available components<br />
• Logamatic 4212, 4321 and 4322 control units in a<br />
modular design<br />
• Drilled burner plate onto which the pressure-jet gas<br />
and oil burner are mounted<br />
• Plenty of matching accessories ( Chapter 10,<br />
page 52 ff.)<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 5<br />
2
6<br />
2 Technical description<br />
2.2 Heating water routing<br />
Calculated flow and temperature processes<br />
A simulation program enabled the calculation of<br />
influencing factors, such as heat supply, amount of water,<br />
circulation etc. Subject to these factors, the flow and<br />
updraught characteristics as well as the temperature<br />
distribution within the boiler could be calculated and, step<br />
by step, optimised. The results of this simulation program<br />
were translated into the design of these low temperature<br />
boilers.<br />
2.3 Hot gas routing<br />
Inside the combustion chamber, the hot gases are<br />
reversed and flow towards the front of the boiler, where<br />
they are reversed again by the front door and guided into<br />
the second pass. They flow through the pipes, where they<br />
transfer their heat to the boiler water.<br />
AA<br />
Fig. 3 Hot gas flow inside the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
AA Flue gas outlet<br />
RK Return<br />
VK Flow<br />
VSL Safety flow<br />
1 Combustion chamber<br />
2 Flue gas collector<br />
3 Pipes of the second pass<br />
1<br />
2<br />
VSL (VK 1) ) VK (VSL 1) )<br />
Fig. 2 Heating water routing through the<br />
<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
RK Return<br />
VK Flow<br />
VSL Safety flow<br />
1 Pipes of the second pass<br />
2 Combustion chamber<br />
The design and geometry of the second pass ensure a<br />
high heat transfer rate from the hot gas to the boiler water.<br />
RK<br />
1)<br />
<strong>SK745</strong> with 1400 kW and 1850 kW output<br />
RK<br />
VK<br />
VSL<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
3<br />
6 720 640 417-38.1il<br />
1<br />
2<br />
6 720 640 417-37.1il
2.4 Dimensions and specification<br />
2.4.1 <strong>Logano</strong> <strong>SK645</strong> dimensions and specification<br />
Fig. 4 Dimensions, <strong>Logano</strong> <strong>SK645</strong> 120 kW to 600 kW<br />
Technical description<br />
Boiler size Unit 120 190 250 300 360 420 500 600<br />
Rated output kW 120 190 250 300 360 420 500 600<br />
Rated heat input kW 132 209 274 329 393 459 546 655<br />
Length L G mm 1345 1540 1670 1830 1803 2003 1933 2183<br />
Flue gas collector length L A mm 230<br />
Width B mm 780 840 870 870 940 940 1030 1030<br />
Height incl. control unit<br />
Height excl. control unit<br />
Width for transport<br />
Length for transport<br />
Boiler base frame<br />
Flue gas outlet<br />
B<br />
Combustion chamber<br />
length<br />
Combustion chamber<br />
diameter<br />
Burner door depth<br />
Burner door height<br />
H<br />
H K<br />
L GR<br />
B GR<br />
D AA<br />
H AA<br />
L FR 1)<br />
D FR 1)<br />
L T 1)<br />
H B<br />
H<br />
H K<br />
H B<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
A 1 A2<br />
1110<br />
880<br />
700<br />
1295<br />
915<br />
700<br />
200<br />
542<br />
865<br />
390<br />
195<br />
427<br />
1170<br />
940<br />
760<br />
1490<br />
1100<br />
760<br />
200<br />
582<br />
1060<br />
420<br />
195<br />
442<br />
Boiler flow 2) VK mm DN65 DN65 DN65 DN65 DN80 DN80 DN100 DN100<br />
Boiler return 2) RK mm DN65 DN65 DN65 DN65 DN80 DN80 DN100 DN100<br />
Flow safety pipe 2) VSL mm DN40 DN40 DN40 DN50 DN50 DN50 DN50 DN50<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 7<br />
1200<br />
970<br />
790<br />
1620<br />
1240<br />
790<br />
250<br />
597<br />
1190<br />
450<br />
1200<br />
970<br />
790<br />
1780<br />
1400<br />
790<br />
250<br />
597<br />
1350<br />
DEL Inches<br />
R1¼<br />
Drain<br />
HEL mm<br />
200<br />
Tab. 1 Specification and dimensions <strong>Logano</strong> <strong>SK645</strong> 120 kW to 600 kW<br />
L G<br />
BGR LA LGR DEL A 3<br />
VSL VK RK<br />
195<br />
457<br />
450<br />
195<br />
457<br />
1270<br />
1040<br />
860<br />
1773<br />
1373<br />
860<br />
250<br />
632<br />
1260<br />
488<br />
195<br />
477<br />
H F<br />
H AA<br />
H EL<br />
1270<br />
1040<br />
860<br />
1973<br />
1573<br />
860<br />
250<br />
632<br />
1460<br />
488<br />
195<br />
477<br />
D AA<br />
6 720 640 417-02.1il<br />
1360<br />
1130<br />
950<br />
1913<br />
1503<br />
950<br />
300<br />
662<br />
1390<br />
548<br />
195<br />
507<br />
2<br />
1360<br />
1130<br />
950<br />
2163<br />
1753<br />
950<br />
300<br />
662<br />
1640<br />
548<br />
195<br />
507
8<br />
2 Technical description<br />
Boiler size Unit 120 190 250 300 360 420 500 600<br />
Flange height<br />
VK/VSL/RK<br />
Flange<br />
VK/VSL/RK<br />
H F mm 1005 1065 1095 1095 1165 1165 1255 1255<br />
A 1<br />
A 2<br />
A 3<br />
mm<br />
mm<br />
mm<br />
290<br />
170<br />
240<br />
320<br />
205<br />
345<br />
Transport weight kg 447 554 642 691 817 899 1063 1158<br />
Water content l 136 203 233 262 323 367 434 502<br />
Gas content l 129 183 238 268 304 350 420 495<br />
Flue gas temperature 3)<br />
Partial load 60 % 4)<br />
Full load<br />
Flue gas mass flow rate,<br />
oil 3)<br />
Partial load 60 %<br />
Full load<br />
Flue gas mass flow rate,<br />
gas 3)<br />
Partial load 60 %<br />
Full load<br />
CO 2 content, oil<br />
CO 2 content, gas<br />
Pressure drop on the<br />
hot gas side<br />
°C<br />
°C<br />
kg/s<br />
kg/s<br />
kg/s<br />
kg/s<br />
%<br />
%<br />
150<br />
210<br />
0.0316<br />
0.0527<br />
0.0314<br />
0.0523<br />
150<br />
205<br />
0.0494<br />
0.0824<br />
0.0488<br />
0.0813<br />
320<br />
185<br />
495<br />
150<br />
202<br />
0.0646<br />
0.1076<br />
0.0650<br />
0.1084<br />
480<br />
200<br />
470<br />
150<br />
200<br />
0.0769<br />
0.1282<br />
0.0778<br />
0.1297<br />
13<br />
10<br />
353<br />
225<br />
540<br />
150<br />
200<br />
0.0934<br />
0.1557<br />
0.0929<br />
0.1548<br />
553<br />
225<br />
540<br />
150<br />
200<br />
0.1085<br />
0.1809<br />
0.1068<br />
0.1780<br />
423<br />
365<br />
450<br />
150<br />
200<br />
0.1277<br />
0.2129<br />
0.1301<br />
0.2168<br />
673<br />
365<br />
450<br />
150<br />
200<br />
0.1538<br />
0.2564<br />
0.1556<br />
0.2593<br />
mbar 0.80 1.60 1.54 2.70 3.30 3.90 4.70 5.59<br />
Draught required Pa 0<br />
Maximum permissible<br />
temperature, high limit<br />
safety cut-out 5)<br />
Max. permiss. operating<br />
pressure (boiler)<br />
CE-designation,<br />
product ID<br />
°C 120<br />
bar 6<br />
Tab. 1 Specification and dimensions <strong>Logano</strong> <strong>SK645</strong> 120 kW to 600 kW<br />
CE 1015–07<br />
1) Fig. 15, page 15<br />
2) To DIN 2633 (PN 16)<br />
3) Relative to VL80/RL60<br />
4) To DIN-EN 303; the minimum flue gas temperature for the chimney calculation acc. to EN 13384-1 is approx. 12 K lower.<br />
5) Safety limit (high limit safety cut-out); maximum possible flow temperature = safety limit (high limit safety cut-out) - 18 K.<br />
Example: Safety limit (high limit safety cut-out) = 100 °C, maximum possible flow temperature = 100 - 18 = 82 °C<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
2.4.2 <strong>Logano</strong> <strong>SK745</strong> dimensions and specification<br />
B<br />
A 1 A2<br />
Fig. 5 Dimensions, <strong>Logano</strong> <strong>SK745</strong> 730 kW to 1200 kW<br />
Fig. 6 Dimensions, <strong>Logano</strong> <strong>SK745</strong> 1400 kW to 1850 kW<br />
L G<br />
Technical description<br />
BGR LA LGR DEL B<br />
B GR<br />
H<br />
H K<br />
H B<br />
H<br />
HK H B<br />
L A<br />
A 1<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 9<br />
A 3<br />
VSL VK RK<br />
LG A2 A3 VK VSL<br />
RK<br />
L GR<br />
H F<br />
H AA<br />
H EL<br />
H F<br />
H AA<br />
H EL<br />
D AA<br />
6 720 640 417-02.1il<br />
D AA<br />
D EL<br />
2<br />
6 720 640 417-03.1il
10<br />
2 Technical description<br />
Boiler size Unit 730 820 1040 1200 1400 1850<br />
Rated output kW 730 820 1040 1200 1400 1850<br />
Rated heat input kW 795 893 1138 1313 1532 2024<br />
Length L G mm 2150 2350 2410 2710 2990 3410<br />
Flue gas collector length L A mm 215 215 215 215 330 330<br />
Max. length, incl. burner L B mm Burner-dependent<br />
Width B mm 1140 1140 1250 1250 1620 1700<br />
Height incl. control unit<br />
Height excl. control unit<br />
Width for transport<br />
Length for transport<br />
Boiler base frame<br />
Flue gas outlet<br />
Combustion chamber<br />
length<br />
Combustion chamber<br />
diameter<br />
Burner door depth<br />
Burner door height<br />
Boiler flow 2)<br />
Boiler return 2)<br />
Flow safety pipe 2)<br />
Drain<br />
Flange height<br />
VK/VSL/RK<br />
Flange<br />
VK/VSL/RK<br />
H<br />
H K<br />
L GR<br />
B GR<br />
D AA<br />
H AA<br />
L FR 1)<br />
D FR 1)<br />
L T 1)<br />
H B<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
1470<br />
1240<br />
1060<br />
2130<br />
1700<br />
1060<br />
360<br />
727<br />
1585<br />
624<br />
195<br />
547<br />
1470<br />
1240<br />
1060<br />
2330<br />
1900<br />
1060<br />
360<br />
727<br />
1785<br />
624<br />
195<br />
547<br />
1580<br />
1350<br />
1170<br />
2390<br />
1960<br />
1170<br />
360<br />
797<br />
1845<br />
710<br />
195<br />
592<br />
VK mm DN125 DN125 DN125 DN125 DN150 DN200<br />
RK mm DN125 DN125 DN125 DN125 DN150 DN200<br />
VSL mm DN65 DN65 DN80 DN80 DN80 DN100<br />
D EL<br />
H EL<br />
Inches<br />
mm<br />
R1¼<br />
200<br />
R1¼<br />
200<br />
R1¼<br />
200<br />
H F mm 1365 1365 1475 1475 1612 1732<br />
A 1<br />
A 2<br />
A 3<br />
mm<br />
mm<br />
mm<br />
448<br />
350<br />
620<br />
648<br />
350<br />
620<br />
Transport weight kg 1401 1504 1852 2024 2690 3540<br />
Water content l 607 675 822 942 1339 1655<br />
Tab. 2 Specification and dimensions <strong>Logano</strong> <strong>SK745</strong> 730 kW to 1850 kW<br />
463<br />
595<br />
620<br />
1580<br />
1350<br />
1170<br />
2690<br />
2260<br />
1170<br />
360<br />
797<br />
2145<br />
710<br />
195<br />
592<br />
R1¼<br />
200<br />
763<br />
595<br />
620<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
–<br />
1481<br />
1320<br />
2990<br />
2316<br />
1320<br />
400<br />
1070<br />
2120<br />
780<br />
255<br />
635<br />
R1½<br />
196<br />
260<br />
725<br />
725<br />
–<br />
1570<br />
1400<br />
3410<br />
2720<br />
1400<br />
400<br />
1145<br />
2520<br />
860<br />
285<br />
685<br />
R1½<br />
206<br />
260<br />
725<br />
925
Technical description<br />
Boiler size Unit 730 820 1040 1200 1400 1850<br />
Gas content l 618 693 934 1071 1275 1710<br />
Flue gas temperature 3)<br />
Partial load 60 % 4)<br />
Full load<br />
Flue gas mass flow rate,<br />
oil 3)<br />
Partial load 60 %<br />
Full load<br />
Flue gas mass flow rate,<br />
gas 3)<br />
Partial load 60 %<br />
Full load<br />
CO 2 content, oil<br />
CO 2 content, gas<br />
Pressure drop on the<br />
hot gas side<br />
°C<br />
°C<br />
kg/s<br />
kg/s<br />
kg/s<br />
kg/s<br />
%<br />
%<br />
150<br />
198<br />
0.1868<br />
0.3113<br />
0.1869<br />
0.3116<br />
150<br />
198<br />
0.2088<br />
0.3480<br />
0.2102<br />
0.3503<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 11<br />
150<br />
198<br />
0.2651<br />
0.4418<br />
0.2671<br />
0.4451<br />
13<br />
10<br />
150<br />
195<br />
0.3049<br />
0.5082<br />
0.3089<br />
0.5148<br />
150<br />
195<br />
0.3571<br />
0.5952<br />
0.3600<br />
0.5999<br />
150<br />
195<br />
0.4725<br />
0.7875<br />
0.4761<br />
0.7935<br />
mbar 6.10 6.47 7.25 7.74 7.13 9.17<br />
Draught required Pa 0<br />
Maximum permissible<br />
temperature, high limit<br />
safety cut-out 5)<br />
Max. permiss. operating<br />
pressure (boiler)<br />
CE-designation, product<br />
ID<br />
°C 120<br />
bar 6<br />
Tab. 2 Specification and dimensions <strong>Logano</strong> <strong>SK745</strong> 730 kW to 1850 kW<br />
CE 1015–07<br />
1) Fig. 15, page 15<br />
2) To DIN 2633 (PN 16)<br />
3) Relative to VL80/RL60<br />
4) To DIN-EN 303; the minimum flue gas temperature for the chimney calculation acc. to EN 13384-1 is approx. 12 K lower.<br />
5) Safety limit (high limit safety cut-out); maximum possible flow temperature = safety limit (high limit safety cut-out) - 18 K.<br />
Example: Safety limit (high limit safety cut-out) = 100 °C, maximum possible flow temperature = 100 - 18 = 82 °C<br />
2
12<br />
2 Technical description<br />
2.5 Parameters<br />
2.5.1 Pressure drop on the water side<br />
The pressure drop on the water side is the pressure<br />
differential between the boiler flow and return<br />
connections. It depends on the VK/RK connector size<br />
and the heating water flow rate.<br />
ΔpH (mbar)<br />
100<br />
10<br />
1<br />
1<br />
Fig. 7 Pressure drop on the water side <strong>Logano</strong> <strong>SK645</strong><br />
ΔpH Pressure drop<br />
VH Heating water flow rate<br />
1 <strong>SK645</strong>: 120 kW<br />
2 <strong>SK645</strong>: 190 kW, 250 kW, 300 kW<br />
3 <strong>SK645</strong>: 360 kW, 420 kW<br />
4 <strong>SK645</strong>: 500 kW, 600 kW<br />
Calculation example for <strong>SK645</strong> 250 kW:<br />
Given<br />
• ΔT = 15 K<br />
• c = 4.19 kJ/kg × K<br />
• DensityWater = approx. 1000 kg/m 3<br />
ΔP H calculated as follows:<br />
Q = m × c × ΔT<br />
m<br />
m<br />
Q<br />
= --------------c<br />
× ΔT<br />
Result<br />
• m = 14320 kg/h<br />
V H<br />
1 2 3 4<br />
Result<br />
• The intersection of the straight line 2 and V H =<br />
14.3 m 3 /h results in ΔP H = 30 mbar<br />
10<br />
250 kW<br />
= ------------------------------------------------- × 3600 s/h<br />
4,19 kJ/kg K × 15 K<br />
14320 kg/h<br />
1000 kg/m 3<br />
------------------------------ 14,3 m 3 = = /h<br />
100<br />
VH (m3 /h)<br />
6 720 640 417-04.1il<br />
ΔpH (mbar)<br />
100<br />
10<br />
1<br />
10<br />
1 2 3<br />
Fig. 8 Pressure drop on the water side <strong>Logano</strong> <strong>SK745</strong><br />
ΔpH Pressure drop<br />
VH Heating water flow rate<br />
1 <strong>SK745</strong>: 730 kW, 820 kW, 1040 kW, 1200 kW<br />
2 <strong>SK745</strong>: 1400 kW<br />
3 <strong>SK745</strong>: 1850 kW<br />
1000<br />
VH (m3 /h)<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
100<br />
6 720 640 417-05.1il
2.5.2 Boiler efficiency<br />
The boiler efficiency h K identifies the ratio between the<br />
rated output and the rated heat input. It is shown subject<br />
to the average boiler water temperature and the boiler<br />
output.<br />
Hi (%)<br />
96<br />
95<br />
94<br />
93<br />
92<br />
91<br />
1<br />
2<br />
90<br />
50 60 70 80<br />
ϑK (°C)<br />
Fig. 9 Boiler efficiency subject to the average boiler<br />
water temperature (average value for the<br />
complete model range) - <strong>Logano</strong> <strong>SK645</strong><br />
Hi Efficiency, net calorific value<br />
ϑK Average boiler temperature<br />
1 Boiler efficiency at stage 1 (partial load 60 %)<br />
2 Boiler efficiency at stage 2 (full load 100 %)<br />
Calculation example for average boiler water temperature:<br />
ϑK Average boiler water temperature<br />
TRK Return temperature<br />
TVK Flow temperature<br />
Hi (%)<br />
96<br />
95<br />
94<br />
93<br />
92<br />
91<br />
1<br />
2<br />
ϑ K<br />
TVK – TRK = ------------------------<br />
2<br />
Fig. 10 Boiler efficiency subject to the average boiler<br />
water temperature (average value for the<br />
complete model range) - <strong>Logano</strong> <strong>SK745</strong><br />
Hi Efficiency, net calorific value<br />
ϑK Average boiler temperature<br />
1 Boiler efficiency at stage 1 (partial load 60 %)<br />
2 Boiler efficiency at stage 2 (full load 100 %)<br />
6 720 640 417-06.1il<br />
90<br />
50 60 70 80<br />
ϑK (°C)<br />
6 720 640 417-08.1il<br />
Technical description<br />
Fig. 11 Boiler efficiency and flue gas temperature<br />
subject to the boiler load at an average boiler<br />
water temperature of 70 °C - <strong>Logano</strong> <strong>SK645</strong><br />
Hi Efficiency, net calorific value<br />
Q/Qmax Relative boiler load<br />
ϑA Flue gas temperature<br />
1 Boiler efficiency<br />
2 Flue gas temperature<br />
Fig. 12 Boiler efficiency and flue gas temperature<br />
subject to the boiler load at an average boiler<br />
water temperature of 70 °C - <strong>Logano</strong> <strong>SK745</strong><br />
Hi Efficiency, net calorific value<br />
Q/Qmax Relative boiler load<br />
ϑA Flue gas temperature<br />
1 Boiler efficiency<br />
2 Flue gas temperature<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 13<br />
H i (%)<br />
98<br />
96<br />
94<br />
92<br />
90<br />
2<br />
1<br />
ϑ A (°C)<br />
200<br />
180<br />
160<br />
140<br />
120<br />
0 10 20 30 40 50 60 70 80 90<br />
100<br />
100<br />
Q/Qmax (%)<br />
H i (%)<br />
98<br />
96<br />
94<br />
92<br />
90<br />
1<br />
2<br />
6 720 640 417-07.1il<br />
ϑ A (°C)<br />
200<br />
180<br />
160<br />
140<br />
120<br />
0 10 20 30 40 50 60 70 80 90<br />
100<br />
100<br />
Q/Qmax (%)<br />
6 720 640 417-33.1il<br />
2
14<br />
2 Technical description<br />
2.5.3 Standby loss and flue gas temperature<br />
The standby loss is part of the rated heat input that is<br />
required to achieve the specified boiler water<br />
temperature. The cause of this loss is the cooling down of<br />
the boiler through radiation and convection during the<br />
standby time (burner idle time).<br />
qB (%)<br />
0,4<br />
0,3<br />
0,2<br />
0,1<br />
Radiation and convection result in part of the output being<br />
transferred continuously from the boiler surface to the<br />
ambient air. In addition to this surface loss, the boiler can<br />
also cool down to a lesser degree through the chimney<br />
draught. The flue gas temperature depends on the<br />
average boiler water temperature and the boiler load.<br />
Fig. 13 Standby loss and flue gas temperature, subject to the average boiler water temperature - <strong>Logano</strong> <strong>SK645</strong><br />
qB Standby loss<br />
ϑA Flue gas temperature<br />
ϑK Average boiler temperature<br />
1 Flue gas temperature (full load 100 %)<br />
2 Standby loss<br />
3 Flue gas temperature (partial load 60 %)<br />
Fig. 14 Standby loss and flue gas temperature, subject to the average boiler water temperature - <strong>Logano</strong> <strong>SK745</strong><br />
qB Standby loss<br />
ϑA Flue gas temperature<br />
ϑK Average boiler temperature<br />
1 Flue gas temperature (full load 100 %)<br />
2 Standby loss<br />
3 Flue gas temperature (partial load 60 %)<br />
1<br />
3<br />
2<br />
ϑ A (°C)<br />
0<br />
100<br />
50 60 70 80<br />
ϑK (°C)<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
200<br />
180<br />
160<br />
140<br />
120<br />
6 720 640 417-09.1il<br />
q B (%) ϑ A (°C)<br />
0,2<br />
0,1<br />
1<br />
2<br />
3<br />
0<br />
50 60 70<br />
100<br />
80<br />
ϑK (°C)<br />
200<br />
180<br />
160<br />
140<br />
120<br />
6 720 640 417-45.1il
3 Burner<br />
3.1 Burner selection<br />
Either pressure-jet oil or gas burners can be used with the<br />
<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers. The<br />
pressure-jet oil burners must be approved to EN 267, and<br />
the pressure-jet gas burners to EN 676. 2-stage or<br />
modulating burners can be used.<br />
When selecting a burner take into account that the<br />
pressure drop on the hot gas side must be overcome<br />
reliably. When positive pressure at the flue outlet is<br />
required (sizing of the flue system), take this into<br />
consideration in addition to the pressure drop on the hot<br />
gas side.<br />
3.2 Burner requirements<br />
Observe the installation instructions issued by the burner<br />
manufacturer where the burner installation is concerned.<br />
T<br />
1)<br />
D MB<br />
L FR<br />
Fig. 15 Burner installation dimensions<br />
D FR<br />
6 720 640 417-10.1il<br />
DFR Combustion chamber diameter<br />
(dimensions page 7 and page 10)<br />
DMB Maximum diameter<br />
LFR Combustion chamber length<br />
(dimensions page 7 and page 10)<br />
T Burner door depth (dimensions page 7 and<br />
page 10)<br />
1) The blast tube must protrude beyond the lining in the<br />
burner door.<br />
Burner<br />
To make engineering and installation easier, burners and<br />
drilled burner plates are available as accessories for the<br />
<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers. The boilers are<br />
supplied with a dummy plate.<br />
For further details regarding these burners<br />
and associated burner plates, see the current<br />
<strong>Buderus</strong> heating equipment catalogue. The<br />
selection of a suitable burner for the specific<br />
project can be discussed in detail with the<br />
<strong>Buderus</strong> sales office.<br />
<strong>Logano</strong> Boiler<br />
size<br />
<strong>SK645</strong><br />
<strong>SK745</strong><br />
Max. diameter<br />
D MB<br />
[kW] [mm]<br />
120 130<br />
190 240<br />
250 240<br />
300 240<br />
360 290<br />
420 290<br />
500 290<br />
600 290<br />
730 350<br />
820 350<br />
1040 350<br />
1200 350<br />
1400 350<br />
1850 350<br />
Tab. 3 Burner dimensions for <strong>Logano</strong> <strong>SK645</strong> and<br />
<strong>SK745</strong><br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 15<br />
3
16<br />
4 Regulations and operating conditions<br />
4 Regulations and operating conditions<br />
4.1 Extracts from the regulations<br />
The <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers<br />
comply with the requirements to EN 303 and EN 14394,<br />
and they are approved in line with the Pressure<br />
Equipment Directive up to ≤ 120 °C. They are suitable for<br />
heating systems in line with the requirements to<br />
DIN-EN 12828 and the additional requirements to<br />
DIN-EN 12953-6.<br />
Observe the following regarding creation and operation of<br />
the system:<br />
• Standard building regulations<br />
• Statutory regulations<br />
• Country-specific regulations<br />
Installation, oil and gas connection, flue gas connection,<br />
commissioning, power supply, maintenance and repair<br />
work must only be carried out by authorised contractors.<br />
Permits<br />
The local gas supply utility may need to be notified of and<br />
approve the installation of a low temperature boiler with<br />
gas burner. We recommend clarifying the match between<br />
boiler and flue system with the relevant bodies at the<br />
planning stage. Where required, inform your local flue gas<br />
inspector prior to commissioning. It may be necessary to<br />
obtain a permit for the flue system at regional level.<br />
Annual inspection and demand-dependent<br />
maintenance<br />
To ensure the reliability of functions and the energetic<br />
quality, the HEVAC sector recommends at least an annual<br />
inspection. If any condition requiring maintenance work is<br />
identified in the course of an inspection, that maintenance<br />
work must be carried out as required. We recommend to<br />
system users to enter into a maintenance and inspection<br />
contract with a heating contractor or the burner<br />
manufacturer.<br />
4.2 Pressure Equipment Directive (PED) and Health & Safety at Work Act<br />
4.2.1 Application range<br />
The Pressure Equipment Directive applies to safety<br />
temperatures > 110 °C; i.e. a boiler equipped with a high<br />
limit safety cut-out 110 °C is excluded from the provision<br />
of the Pressure Equipment Directive and from the Health<br />
& Safety at Work Act [Germany] where the requirements<br />
for products that must be supervised is concerned.<br />
4.2.2 Categories in accordance with the Pressure Equipment Directive 97/23/EC<br />
The Pressure Equipment Directive identifies four<br />
categories, split according to the respective<br />
pressure:volume product, into which boilers fall.<br />
<strong>Logano</strong> Boiler size Category I Category II Category III Category IV<br />
<strong>SK645</strong><br />
+ Applicable<br />
– N/A<br />
[kW]<br />
p×V≤ 50 p×V≤ 200 p×V≤ 1000 p×V>1000 V > 1000 or p × V > 3000<br />
120 – – + – –<br />
190–500 – – – + –<br />
600 – – – – +<br />
<strong>SK745</strong> 730–1850 – – – – +<br />
Tab. 4 Categories in accordance with the Pressure Equipment Directive 97/23/EC<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
4.2.3 Health & Safety at Work Act regarding steam and hot water boilers<br />
The Health & Safety at Work Act [Germany] enacted on<br />
the 3 October 2002 and applicable to hot water and<br />
steam boiler systems as of 1 January 2003 specifies<br />
demanding requirements, particularly for boilers in<br />
category III and category IV.<br />
Proviso with regard to granting permission<br />
(para. 13 BetrSichV) [Germany]<br />
Assembly, installation and the operation of boilers in<br />
category IV require permission from the relevant authority<br />
[Germany].<br />
Inspection prior to commissioning<br />
(para. 14 BetrSichV)<br />
Boilers category I and II can be checked in situ, i.e. as part<br />
of the system, by an authorised person (master heating<br />
system builder).<br />
4.2.4 Overview of the Health & Safety at Work Act [Germany]<br />
+ Required<br />
– Not required<br />
Proviso with regard<br />
to granting<br />
permission<br />
Regulations and operating conditions<br />
Boilers in categories III and IV must be checked by an<br />
authorised supervisory body in situ, prior to<br />
commissioning.<br />
Repeated inspections (para. 15 BetrSichV)<br />
Boilers in category III with a pressure:volume product<br />
p × V greater than 1000 and boilers in category IV must<br />
be checked regularly by an authorised supervisory body in<br />
situ:<br />
• External inspection no later than after 12 months<br />
• Internal inspection no later than after three years<br />
• Strength test no later than after nine years<br />
The test intervals must be determined by the system user<br />
based on a safety-technical assessment, the result of<br />
which must be checked by an authorised supervisory<br />
body.<br />
Inspection<br />
prior to<br />
commissioning<br />
Repeated<br />
inspections<br />
§13 §14 §15<br />
Boiler category I (up to 50 bar × l) – + 1)<br />
– 1)<br />
Boiler category II (up to 200 bar × l) – + 1)<br />
Boiler category III (up to 1000 bar × l) – + – 1)<br />
Boiler category III (> 1000 bar × l) – + +<br />
Boiler category IV (> 3000 bar × l) + + +<br />
Tab. 5 Overview of the Health & Safety at Work Act [Germany]<br />
1) May be carried out by an authorised person (e.g. master heating system builder)<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 17<br />
– 1)<br />
4
18<br />
4 Regulations and operating conditions<br />
4.3 Operating conditions<br />
4.3.1 Operating requirements<br />
The operating conditions in Tab. 6 are part of the warranty<br />
conditions for the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low<br />
temperature boilers. These operating conditions are<br />
4.3.2 Operating conditions<br />
<strong>Logano</strong> Minimum<br />
flow rate<br />
<strong>SK645</strong><br />
<strong>SK745</strong><br />
<strong>SK645</strong><br />
<strong>SK745</strong><br />
No requirements 1)<br />
No requirements 1)<br />
Boiler operating conditions<br />
assured through a suitable hydraulic circuit and boiler<br />
control (hydraulic connection page 26).<br />
Minimum return temperature in °C With operating<br />
interruptions<br />
With oil combustion With gas combustion<br />
Two-stage<br />
burner<br />
Modulating<br />
burner<br />
Two-stage<br />
burner<br />
Modulating<br />
burner<br />
In conjunction with a Logamatic control unit for modulating low temperature operation<br />
50 50 60 60<br />
In conjunction with a Logamatic control unit for constant boiler water temperatures,<br />
e.g. Logamatic 4212 with ZM427, or with auxiliary external control unit<br />
Tab. 6 Operating conditions for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
1) Ensure that the return temperature sensor FV/FZ is always surrounded by water.<br />
No requirement<br />
The boiler is shut down<br />
automatically by the<br />
Logamatic control unit<br />
50 50 60 60 No requirements<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
4.4 Fuel<br />
Operation with fuel oil<br />
The <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers<br />
can be operated with fuel oil EL to DIN 51603.<br />
All boilers can also be used without restriction with<br />
rapeseed oil. Pressure-jet burners for rapeseed oil can be<br />
obtained from burner manufacturers on request.<br />
Operation with gas<br />
All low temperature boilers are suitable for natural gas E<br />
or LL as well as LPG. Observe the burner manufacturer's<br />
details.<br />
The gas quality must comply with the requirements of the<br />
DVGW Code of Practice G 260 [Germany].<br />
To be able to adjust the gas throughput, install a gas<br />
meter that can be checked, even in the lower load range<br />
of the burner. This also applies to LPG systems.<br />
Biogas (e.g. gas from waste disposal or sewerage works)<br />
can also be used. For this, observe special operating<br />
conditions. Pressure-jet burners for biogas are available<br />
from burner manufacturers on request.<br />
Additional operating conditions for the operation<br />
with biogas<br />
The following operating conditions must be met:<br />
• Operate boiler at constant temperature<br />
• Never permit operating interruptions<br />
• Maintain a minimum return temperature above the dew<br />
point (in this case at least 68 °C), i.e. return<br />
temperature raising measures<br />
• Ensure minimum boiler water temperature of 83 °C<br />
• Clean and maintain the boiler regularly, possibly clean<br />
chemically and then preserve<br />
• Combustion of biogas/waste gas (quality in line with<br />
DVGW G262, Tab. 3):<br />
– Proportion of sulphur and sulphur compounds in the<br />
gas up to a maximum of 1500 mg/m 3 (approx. 0.1 %<br />
by vol.)<br />
– Proportion of chlorine and chlorine compounds in<br />
the gas up to a maximum of 50 mg/m 3<br />
– Proportion of fluoride and fluoride compounds in the<br />
gas up to a maximum of 25 mg/m 3<br />
In view of the high degree of corrosiveness, and in<br />
variance from Fig. 8.5 of our general sales, delivery and<br />
payment terms, the warranty period is limited to 2 years.<br />
Regulations and operating conditions<br />
4.5 Water treatment<br />
As pure water cannot be used for heat transfer, water<br />
quality is important. Poor water quality can lead to<br />
limescale formation and corrosion. Consequently,<br />
particular attention must be paid to water quality, water<br />
treatment and, above all, continuous water monitoring.<br />
Water treatment is an essential factor in ensuring troublefree<br />
operation, availability, a long service life and the<br />
efficiency of the heating system.<br />
4.5.1 Definition of terms<br />
Limescale formation is the formation of hard deposits<br />
on walls inside hot water heating systems. These deposits<br />
are made up of substances contained in the water,<br />
essentially calcium carbonate.<br />
Heating water is any water used for heating purposes in<br />
a hot water heating system.<br />
Fill water is the water used to completely fill the heating<br />
system on the heating water side for the first time and with<br />
which it is then heated up.<br />
Top-up water is any water used to top up the system on<br />
the heating water side after the first time it is heated up.<br />
Operating temperature is the temperature captured at<br />
the flow connector of the heating appliance in a hot water<br />
heating system when operating correctly.<br />
Water volume Vmax is the maximum volume of<br />
untreated fill and top-up water in m 3 that may be<br />
introduced into the system over the entire service life of<br />
the boiler.<br />
Corrosion-inhibiting sealed unvented systems are<br />
heating systems in which no significant amount of oxygen<br />
ingress into the heating water is possible.<br />
4.5.2 Prevention of corrosion damage<br />
In most cases, corrosion plays only a minor role in heating<br />
systems. That is based on the fundamental requirement<br />
that the system is a corrosion-inhibiting sealed unvented<br />
system, i.e. one that prevents a continuous ingress of<br />
oxygen.<br />
Continuous ingress of oxygen leads to corrosion and can<br />
thus cause rusting and the formation of rust sludge.<br />
Sludge formation can not only cause blockages and<br />
therefore a diminished heat supply but also deposits<br />
(similar to limescale deposits) on the hot surfaces of heat<br />
exchangers.<br />
The most important factor with regard to ingress of<br />
oxygen is generally pressure maintenance and, in<br />
particular, the function, correct sizing and adjustment<br />
(pre-charge pressure) of the expansion vessel. Check the<br />
function and pre-charge pressure annually. If continuous<br />
ingress of oxygen cannot be prevented (e.g. due to plastic<br />
pipes that are permeable to oxygen) or if the system<br />
cannot be designed as a sealed unvented system, anticorrosion<br />
measures such as the addition of approved<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 19<br />
4
20<br />
4 Regulations and operating conditions<br />
chemical additives or system separation by means of a<br />
heat exchanger are necessary.<br />
Oxygen binding agents can be used, for example, to bind<br />
the oxygen.<br />
The pH value of untreated heating water should be<br />
between 8.2. and 9.5. Ensure that the pH level changes<br />
after commissioning, especially due to the separation of<br />
oxygen and limescale. It is recommended to check the pH<br />
level after several months of heating system operation.<br />
The water can be alkalised by the addition of trisodium<br />
phosphate, if necessary.<br />
If additives or antifreeze (where approved by<br />
<strong>Buderus</strong>) are used in the heating system,<br />
check the heating water regularly in<br />
accordance with the manufacturer's<br />
instructions. Carry out all necessary<br />
corrections ( Chapter 4.5.8, page 23).<br />
4.5.3 Prevention of damage through scale<br />
formation<br />
VDI 2035-1 “Prevention of damage to hot water central<br />
heating systems through limescale formation”, issue 12/<br />
2005 applies to DHW heating systems to DIN 4753 and<br />
hot water central heating systems to DIN 12828 with a<br />
design operating temperature of up to 100 °C.<br />
One of the aims of the current edition of VDI 2035-1 is<br />
simplification of its application. For that reason, standard<br />
values for the amount of limescale-forming substances<br />
(total alkaline earths) for specified heat output ranges are<br />
recommended. The specifications are based on practical<br />
Total boiler output<br />
[kW]<br />
Q ≤ 50 V max : no requirements<br />
experience that shows that damage due to limescale<br />
formation is dependent on the total heat output, the<br />
system volume, the cumulative volume of fill and top-up<br />
water used over the service life of the system and the<br />
boiler design.<br />
The details given below in respect of <strong>Buderus</strong> boilers are<br />
based on many years of experience and service life tests,<br />
and specify the maximum cumulative amount of fill and<br />
top-up water subject to output, water hardness and boiler<br />
material. This ensures compliance with the aims of<br />
VDI 2035-1 “Prevention of damage through limescale<br />
formation in hot water heating systems”.<br />
Warranty claims in respect of <strong>Buderus</strong> boilers are only<br />
valid in conjunction with the requirements specified herein<br />
and a fully completed system log.<br />
4.5.4 Requirements for fill and top-up water<br />
To protect boilers against limescale damage over their<br />
entire service life and to ensure trouble-free operation, the<br />
total amount of limescale-forming substances in the fill<br />
and top-up water in heating systems must be restricted.<br />
Therefore, the fill and top-up water has to meet certain<br />
requirements that are dependent on the total boiler output<br />
and the resulting total volume of water in the heating<br />
system ( Tab. 7).<br />
The permissible amount of water based on the fill water<br />
quality can be determined simply with the aid of the<br />
diagrams in Fig. 16 and Fig. 17 or a calculation method to<br />
determine the permissible amounts of fill and top-up water<br />
( page 23).<br />
Requirements regarding water hardness and the amount of fill and top-up<br />
water V max<br />
50 ≤ Q ≤ 600 V max: calculate according to diagrams in Fig. 16 and Fig. 17 as well as formula 1<br />
Q > 600 Water treatment is generally required<br />
independent of output For systems with very large water content (> 50 l/kW), water should generally be treated<br />
Tab. 7 Requirements for fill and top-up water for boilers made from ferrous material<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
4.5.5 Application limits for boilers made from ferrous materials<br />
V max (m 3 )<br />
12<br />
10<br />
8<br />
6<br />
4<br />
2<br />
Fig. 16 Boilers ≥ 50 kW to 150 kW made from ferrous materials<br />
HW Water hardness<br />
V max Maximum fill and top-up water over the entire service life<br />
of the boiler<br />
1 Boilers up to 150 kW<br />
2 Boilers up to 130 kW<br />
3 Boilers up to 110 kW<br />
Example<br />
Given:<br />
• Boiler output Q =105 kW<br />
• System volume VA = approx. 1.1 m 3<br />
Result:<br />
• At a water hardness level of 22 °dH, the maximum<br />
amount of fill and top-up water is approx. 1.8 m 3 .<br />
• This system can be filled with untreated tap water.<br />
Regulations and operating conditions<br />
0<br />
0 5 10 15 20 25 30<br />
HW (°dH)<br />
6 720 640 417-35.1il<br />
1<br />
2<br />
3<br />
Measures are required above these output<br />
curves; fill with untreated tap water below the<br />
curves. In multi-boiler systems (< 600 kW<br />
total boiler output) the output curves for the<br />
smallest single boiler apply.<br />
One suitable measure for boilers made from<br />
ferrous material is, for example, total<br />
softening ( current <strong>Buderus</strong> catalogue,<br />
technical customer service, provision of<br />
mobile water treatment systems).<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 21<br />
4
22<br />
4 Regulations and operating conditions<br />
V max (m 3 )<br />
45<br />
40<br />
35<br />
30<br />
25<br />
20<br />
15<br />
10<br />
5<br />
0<br />
0 5 10 15 20 25 30<br />
6 720 640 417-36.1il<br />
Fig. 17 Boilers > 150 kW to 600 kW made from ferrous materials<br />
HW Water hardness<br />
V max Maximum fill and top-up water over the entire service life<br />
of the boiler<br />
1 Boilers up to 600 kW<br />
2 Boilers up to 500 kW<br />
3 Boilers up to 400 kW<br />
4 Boilers up to 300 kW<br />
5 Boilers up to 250 kW<br />
6 Boilers up to 200 kW<br />
Example<br />
Given:<br />
• Boiler output Q =295 kW<br />
• System volume VA = approx. 7.5 m 3<br />
Result:<br />
• At a water hardness level of 18 °dH, the maximum<br />
amount of fill and top-up water is approx. 6.0 m 3 .<br />
• The amount of fill water is already greater than the<br />
permissible amount of fill and top-up water. Fill the<br />
system with treated water.<br />
1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
Measures are required above these output<br />
curves; fill with untreated tap water below the<br />
curves. In multi-boiler systems (< 600 kW<br />
total boiler output) the output curves for the<br />
smallest single boiler apply.<br />
H W (°dH)<br />
One suitable measure for boilers made from<br />
ferrous material is, for example, total<br />
softening ( current <strong>Buderus</strong> catalogue,<br />
technical customer service, provision of<br />
mobile water treatment systems).<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
4.5.6 Recording the amounts of fill and top-up<br />
water<br />
For heating systems > 50 kW, VDI 2035-1 specifies the<br />
fitting of a water meter and the keeping of a system log.<br />
You will find the log with the technical documents<br />
supplied with <strong>Buderus</strong> boilers. Warranty claims in respect<br />
of <strong>Buderus</strong> boilers are only valid in conjunction with the<br />
requirements specified herein and a fully completed log.<br />
4.5.7 Calculation to determine the permissible<br />
amounts of fill and top-up water<br />
The fill and top-up water has to meet certain requirements<br />
depending on the total boiler output and the resulting<br />
water volume of a heating system.<br />
Use the following formula to calculate the maximum<br />
amount of fill water for heating systems ≤ 600 kW that<br />
may be introduced without treatment:<br />
Form. 1 Calculation of the maximum amount of water<br />
that may be introduced without treatment<br />
Ca(HCO3)2 Calcium hydrogen carbonate concentration<br />
in mol/m 3<br />
Q Boiler output in kW (in case of multi-boiler<br />
V max<br />
V max<br />
systems the output of the smallest boiler)<br />
Maximum volume of untreated fill and top-up<br />
water in m 3 that may be introduced over the entire<br />
service life of the boiler<br />
Example<br />
Calculation of the maximum permissible amount of fill and<br />
top-up water Vmax for a heating system with a total boiler<br />
output of 420 kW. The analysis values for carbonate<br />
hardness and calcium hardness are quoted in the older<br />
unit °dH.<br />
Carbonate hardness: 15.7 °dH<br />
Calcium hardness: 11.9 °dH<br />
From the carbonate hardness, we obtain:<br />
Ca (HCO3 ) 2 = 15.7 °dH × 0.179 = 2.8 mol/m3 From the calcium hardness, we obtain:<br />
Ca (HCO3 ) 2 = 11.9 °dH × 0.179 = 2.13 mol/m3 The lower of the two values calculated from the calcium<br />
and carbonate hardness is the definitive figure for<br />
calculating the maximum permissible water volume Vmax. V max<br />
Q<br />
= 0,0626 × -------------------------------<br />
Ca( HCO3) 2<br />
420 kW<br />
0,0626<br />
2,13 mol/m 3<br />
× ------------------------------- 12,3 m 3<br />
= =<br />
Regulations and operating conditions<br />
4.5.8 Chemical heating water additives<br />
If plastic pipes that are permeable to oxygen are used in<br />
underfloor heating systems, the corrosion process can be<br />
prevented by adding chemicals into the heating water. In<br />
such cases, ask the manufacturer of these chemical<br />
additives for a certificate verifying the compatibility with<br />
different parts of the system and the materials used in the<br />
heating system.<br />
Chemical additives for which no such<br />
certificate of compatibility can be issued by<br />
the manufacturer must not be used.<br />
Use of antifreeze<br />
For decades now, antifreeze based on glycol has been<br />
used in heating systems. For example, Antifrogen N made<br />
by Clariant (sold via the <strong>Buderus</strong> wholesale network).<br />
The use of alternatives is acceptable, subject to such<br />
products being the equivalent of Antifrogen N.<br />
Observe the information supplied by the antifreeze<br />
manufacturer. Follow the manufacturer's details regarding<br />
mixing ratios.<br />
The specific thermal capacity of Antifrogen N antifreeze is<br />
lower than the specific thermal capacity of water. To<br />
enable the transfer of the required heat output, increase<br />
the required flow rate accordingly. This should be taken<br />
into account when sizing system components (e.g.<br />
pumps) and the pipework. In addition, a higher flue gas<br />
temperature results, lowering the boiler efficiency.<br />
As the heat transfer medium has a higher viscosity and<br />
density than water, take the higher pressure drop through<br />
the pipework and other system components into account.<br />
The resistance of all plastic components in the system<br />
must be checked separately.<br />
4.5.9 Combustion air<br />
Where combustion air is concerned, ensure that it is not<br />
heavily contaminated with dust and contains no<br />
halogenated compounds. Otherwise there would be a risk<br />
of damage to the combustion chamber and the secondary<br />
heating surfaces.<br />
Halogenated compounds are highly corrosive. These are<br />
contained, for example, in spray cans, thinners, cleaning &<br />
degreasing agents and in solvents.<br />
Design the combustion air supply so that, for example, no<br />
extract air is drawn in from chemical cleaners or paint<br />
shops. Special requirements apply to the supply of<br />
combustion air in the installation room ( page 49).<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 23<br />
4
24<br />
5 Heating controls<br />
5 Heating controls<br />
5.1 Logamatic 4000 control system<br />
A control unit is required to operate boilers. The <strong>Buderus</strong>-<br />
Logamatic control systems are of modular design. This<br />
enables the system to be matched affordably to the<br />
individual applications and equipment installed in the<br />
intended heating system.<br />
Subject to requirements and the heating system layout,<br />
the following are available for selection as the boiler<br />
control system:<br />
• Logamatic 4212 control unit (ZM427 for boiler<br />
operating conditions)<br />
• Logamatic 4321 and 4322 control units<br />
• Logamatic 4411 control panel system<br />
The power contactors of the burner switched by the<br />
control unit may require a burner control panel. As an<br />
alternative, the power contactors may also be integrated<br />
into the <strong>Buderus</strong> control panel system.<br />
The technical guide “Modular Logamatic<br />
4000 control system” contains more detailed<br />
information on the Logamatic 4212, 4321<br />
and 4322 control units.<br />
5.1.1 Logamatic 4212 control unit<br />
The conventional Logamatic 4212 control unit is suitable<br />
for operation with a constant boiler water temperature.<br />
Where a higher-ranking control is used, e.g. a<br />
Logamatic 4411 (DDC systems and building<br />
management systems), the Logamatic 4212 transfers<br />
the burner switching commands to the burner.<br />
The standard equipment contains the safety equipment<br />
for a 2-stage burner operation. Boiler circuit actuators and<br />
boiler circuit pumps can be switched with the ZM427<br />
auxiliary module, thereby safeguarding the boiler<br />
operating conditions. Furthermore, the ZM427 module<br />
facilitates an enabling of the burner stages with a higherranking<br />
control using floating contacts.<br />
5.1.2 Logamatic 4321 and Logamatic 4322<br />
control units<br />
The Logamatic 4321 control unit enables the low<br />
temperature operation of these boilers and provides the<br />
operating conditions in conjunction with the 2-stage or<br />
modulating burner in a single boiler system.<br />
Up to eight heating circuits with actuator can be<br />
controlled with corresponding function modules. The<br />
range of functions also includes the complete boiler<br />
circuit control with optional switching of a boiler circuit<br />
actuator and one boiler circuit pump.<br />
2 and 3-boiler systems require a Logamatic 4321 control<br />
unit that functions as “Master” for the first boiler and one<br />
Logamatic 4322 control unit each as lag appliance for the<br />
second and third boiler. The combination of devices with<br />
corresponding function modules can control up to 22<br />
heating circuits with actuator.<br />
5.1.3 Logamatic 4411 control panel system<br />
The Logamatic 4411 control panel system from <strong>Buderus</strong><br />
is the comprehensive solution, representing advanced<br />
control technology for complex heating systems that<br />
require a system-specific control.<br />
The local sales office assists with the engineering and<br />
supplies optimum system solutions for each individual<br />
case. This also applies to programmable logic controls<br />
(DDC systems) and building management systems.<br />
5.2 Logamatic telecontrol system<br />
The Logamatic telecontrol system is the ideal addition to<br />
all <strong>Buderus</strong> control systems. It comprises several<br />
software and hardware components and enables heating<br />
contractors to provide even better customer support and<br />
services via a powerful remote control facility. It can be<br />
used in rental apartment buildings, holiday homes as well<br />
as in medium and large heating systems. The Logamatic<br />
telecontrol system is suitable for remote monitoring,<br />
parameter setting and fault diagnosis in heating systems.<br />
It offers ideal conditions for heat supply concepts and<br />
maintenance and inspection contracts.<br />
The technical guide “Logamatic Telecontrol<br />
system” contains more detailed information.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
6 DHW heating<br />
6.1 Systems for DHW heating<br />
The <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers<br />
can also be used to provide DHW heating. The <strong>Buderus</strong><br />
Logalux DHW cylinders that are matched to the boiler<br />
output can be used. These are available as vertical and<br />
horizontal versions in different sizes with 150 l to 6000 l<br />
capacity. Subject to application, they are equipped with<br />
an internal indirect coil or an external heat exchanger<br />
( Fig. 18 and Fig. 19).<br />
Fig. 18 DHW heating according the cylinder principle<br />
with internal indirect coils<br />
VH<br />
RH<br />
VS<br />
RS<br />
Fig. 19 DHW heating according to the primary store<br />
principle with external heat exchangers<br />
Key to Fig. 18 and Fig. 19:<br />
AW DHW outlet<br />
EK Cold water inlet<br />
RH Fuel return (to the boiler)<br />
RS Cylinder return<br />
VH Fuel flow (from the boiler)<br />
VS Cylinder flow<br />
AW<br />
The cylinders can be used singly or in combination with<br />
other cylinders. With the primary store system, different<br />
cylinder sizes and different heat exchanger sets can be<br />
combined. System solutions are therefore available for<br />
any demand and many applications.<br />
EK<br />
6 720 640 417-11.1il<br />
AW<br />
EK<br />
6 720 640 417-12.1il<br />
DHW heating<br />
6.2 DHW temperature controller<br />
The DHW temperature is set and regulated either by<br />
means of a module inside the boiler control unit or via a<br />
separate control unit dedicated to DHW heating. The<br />
control units for DHW heating are specifically matched to<br />
the heating control unit and offer many application<br />
options. For more detailed information in this connection,<br />
see the technical guides “Sizing and selecting DHW<br />
cylinders” and “Modular control system Logamatic 4000”.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 25<br />
6
26<br />
7 System examples<br />
7 System examples<br />
7.1 Information regarding all system examples<br />
The examples in this section show options for<br />
hydraulically connecting the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
low temperature boilers without safety criteria.<br />
For detailed information regarding the number, equipment<br />
level and control of the heating circuits as well as on the<br />
installation of DHW cylinders and other consumers, see<br />
the respective technical guides.<br />
The DHW heating systems shown can be implemented as<br />
DHW cylinder or primary store system.<br />
This particular system example does not represent a<br />
binding recommendation for implementing a specific<br />
heating network. The practical implementation is subject<br />
to currently applicable technical rules.<br />
Information regarding further options for system layout<br />
and engineering aids are available from the staff in<br />
<strong>Buderus</strong> sales offices.<br />
7.1.1 Hydraulic connection<br />
Steps for controlling the return and boiler water<br />
temperature<br />
The <strong>Buderus</strong> Logamatic 4321, 4322 and 4212 control<br />
units with the ZM427 auxiliary module, together with the<br />
corresponding boiler or heating circuit actuators, ensure<br />
the required minimum return temperature.<br />
Alternatively, the Logamatic 4321 and 4322 control units<br />
enable operation with minimum boiler water temperature.<br />
Allow for the temperature sensors required<br />
for raising the return temperature as<br />
immersion sensors.<br />
For demand-dependent system suggestions with<br />
explanations of the respective functions and application<br />
limits, see page 30 to page 46.<br />
Heating circuit pumps<br />
Size pumps in central heating systems in accordance with<br />
current technical rules.<br />
Dirt traps<br />
Deposits in heating systems can lead to local overheating,<br />
noise and corrosion. Any resulting boiler damage falls<br />
outside the warranty obligations.<br />
To remove dirt and sludge deposits, flush the heating<br />
system thoroughly prior to installing and commissioning a<br />
boiler in an existing system. In addition, we recommend<br />
the installation of dirt traps or a blow-down facility.<br />
Dirt traps retain contaminants and thereby prevent<br />
operating faults in control devices, pipework and boilers.<br />
Fit these near the lowest point of the heating system in an<br />
easily accessible position. Clean the dirt traps every time<br />
the heating system is serviced.<br />
Position of strategy flow temperature sensor<br />
In multi-boiler systems with strategy flow temperature<br />
sensor (FVS), the sensor should be located as close to<br />
the boiler system as possible. This rule does not apply if a<br />
low loss header is used to provide hydraulic balance.<br />
Additional time lag due to long distances between the<br />
boiler system and the strategy flow temperature sensor<br />
has a negative effect on the control characteristics,<br />
especially in the case of boilers with modulating-control<br />
burners.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
7.1.2 Control<br />
Operating temperatures should be controlled with the<br />
Logamatic control unit taking account of the outside<br />
temperature. The room temperature dependent control of<br />
individual heating circuits (with room temperature sensor<br />
in a reference room) is an option. For this, actuators and<br />
heating circuit pumps are switched constantly by the<br />
Logamatic control unit. Number and version of the<br />
controllable heating circuits are dependent on the<br />
selection and equipment level of the control unit. The<br />
Logamatic control unit also switches the burner,<br />
independently of whether these are 2-stage or modulating<br />
pressure-jet burners. Different burner types can be<br />
combined in multi-boiler systems. 3-phase burner and<br />
3-phase pumps must be electrically connected on site.<br />
These are switched by the Logamatic control unit (230 V).<br />
The technical documents of the control units<br />
include detailed information.<br />
7.2 Safety equipment to DIN-EN 12828 and DIN-EN 12953-6<br />
7.2.1 Requirements<br />
The diagrams and corresponding technical information in<br />
connection with system examples do not cover all<br />
available options. Each system example does not<br />
represent a binding recommendation for a specific<br />
heating network implementation. The practical<br />
implementation is subject to currently applicable technical<br />
rules. Safety equipment shall be installed in accordance<br />
with local regulations.<br />
DIN-EN 12828 specifies the safety equipment for safety<br />
temperatures up to 110 °C. For safety temperatures in<br />
excess of 110 °C refer to DIN-EN 12953-6.<br />
Furthermore, consider the additional requirements<br />
regarding the system operation as specified in the Health<br />
& Safety at Work Act. The schematic diagrams in Fig. 20<br />
to Fig. 23 can be used as engineering aids.<br />
System examples<br />
7.1.3 DHW heating<br />
Given an appropriate design, the DHW temperature<br />
control by means of a Logamatic control unit offers<br />
special functions, such as the switching of a DHW<br />
circulation pump or thermal disinfection to protect against<br />
the growth of legionella bacteria, for example.<br />
In this connection, the technical guide<br />
“Sizing and selecting DHW cylinders”<br />
provides detailed information.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 27<br />
7
28<br />
7 System examples<br />
7.2.2 Arrangement of safety equipment to DIN-EN 12828; operating temperature ≤ 105 °C;<br />
shutdown temperature (high limit safety cut-out) ≤ 110 °C<br />
Boiler ≤ 300 kW; operating temperature ≤ 105 °C;<br />
shutdown temperature (high limit safety cut-out)<br />
≤ 110 °C – direct heating<br />
6/7<br />
11<br />
3 1)<br />
12 13<br />
1<br />
2<br />
4 1)<br />
≤ 300 kW<br />
Fig. 20 Safety equipment to DIN-EN 12828 for boilers<br />
≤ 300 kW with high limit safety cut-out ≤ 110 °C<br />
The figures show the safety equipment to DIN-EN 12828<br />
schematically for the system version – although other<br />
options are available. The practical implementation is<br />
subject to currently applicable technical rules.<br />
5 1)<br />
15<br />
14 15<br />
2 13<br />
10<br />
16<br />
13<br />
17<br />
VK<br />
RK<br />
6 720 640 417-13.1il<br />
Boiler > 300 kW; operating temperature ≤ 105 °C;<br />
shutdown temperature (high limit safety cut-out)<br />
≤ 110 °C – direct heating<br />
8<br />
0,5 %<br />
6/7<br />
11<br />
3 1)<br />
12 13<br />
Fig. 21 Safety equipment to DIN-EN 12828 for boilers<br />
> 300 kW with high limit safety cut-out<br />
≤ 110 °C<br />
Key to Fig. 20 and Fig. 21:<br />
RK Return<br />
VK Flow<br />
1 Heat source<br />
2 Shut-off valve, flow/return<br />
3 Temperature controller (TR)<br />
4 High limit safety cut-out (STB)<br />
5 Temperature measuring facility<br />
6 Diaphragm safety valve MSV 2.5 bar/3.0 bar or<br />
7 Lift spring, safety valve HFS ≥ 2.5 bar<br />
8 Flash trap (ET); not required in systems > 300 kW if,<br />
instead, a high limit safety cut-out ≤ 110 °C and a<br />
maximum pressure limiter per boiler is additionally<br />
provided<br />
9 Maximum pressure limiter<br />
10 Pressure gauge<br />
11 Low water indicator (not in systems ≤ 300 kW).<br />
Alternatively one minimum pressure limiter or a<br />
replacement measure approved by the manufacturer is<br />
provided for each boiler<br />
12 Non-return valve<br />
13 Boiler drain & fill valve (KFE)<br />
14 Expansion line<br />
15 Shut-off valve with lockout against unintentional closure,<br />
e.g. by sealed cap valve<br />
16 Drain upstream of diaphragm expansion vessel<br />
17 Diaphragm expansion vessel (DIN-EN 13831)<br />
1) The maximum achievable flow temperature in combination<br />
with Logamatic control units is approx. 18 K lower than the<br />
shutdown temperature (high limit safety cut-out).<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
1<br />
2<br />
4 1)<br />
> 300 kW<br />
5 1)<br />
15<br />
14 15<br />
2 13<br />
10 9<br />
P<br />
16<br />
13<br />
17<br />
VK<br />
RK<br />
6 720 640 417-14.1il
7.2.3 Arrangement of safety equipment to DIN-EN 12953-6;<br />
shutdown temperature (high limit safety cut-out) > 110 °C<br />
Shutdown temperature (high limit safety cut-out)<br />
> 110 °C, example 1 - direct heating<br />
6 720 640 417-15.1il<br />
Fig. 22 Safety equipment to DIN-EN 12953-6 for<br />
boilers with high limit safety cut-out > 110 °C;<br />
example: Maintaining pressure via a gas buffer<br />
The figures show the safety equipment to DIN-EN 12953-<br />
6 schematically for the system version – although other<br />
options are available.<br />
These figures only show versions where pressure is<br />
maintained via a gas buffer and a pressure maintaining<br />
pump. Additional versions which maintain pressure by<br />
means of various safety equipment can be identified in<br />
DIN-EN 12953-6.<br />
With high limit safety cut-out > 110 °C, long term<br />
requirements (e.g. regular inspections etc.) in accordance<br />
with the Health & Safety at Work Act must be observed.<br />
The practical implementation is subject to currently<br />
applicable technical rules. Implementing the system<br />
engineering with reference to the responsible supervisory<br />
authority is recommended.<br />
System examples<br />
Shutdown temperature (high limit safety cut-out)<br />
> 110 °C, example 2 - direct heating<br />
Fig. 23 Safety equipment to DIN-EN 12953-6 for<br />
boilers with high limit safety cut-out > 110 °C;<br />
example: Maintaining pressure via a pressure<br />
maintaining pump<br />
Key to Fig. 22 and Fig. 23:<br />
RK Return<br />
VK Flow<br />
1 Hot water boiler<br />
2 Maximum pressure limiter [PSZ+A+]<br />
3 Pressure gauge<br />
4 Water level controller<br />
5 Flash trap<br />
6 Safety valve<br />
7 Minimum water level limiter [LSZ-A]<br />
8 Temperature limiter [TZA+A+]<br />
9 Temperature controller<br />
10 Temperature indicator<br />
11 Fill sample facility for checking the water level<br />
12 Shut-off valve - locked to prevent unintentional closing<br />
13 Sealed unvented expansion vessel<br />
14 Minimum pressure limiter [PSZ-A-]<br />
15 Non-return valve<br />
17 Shut-off valve<br />
18 Pipe to the sealed unvented expansion vessel<br />
19 Feed pump<br />
20 Heating facility<br />
22 Pressure maintaining pump<br />
23 Pressure regulator<br />
24 Automatic shut-off valve (N/C)<br />
25 Water level indicator<br />
26 Open vented expansion vessel<br />
27 Pressure maintaining valve - if N/C or if the actual pressure<br />
is lower than the minimum pressure, then item 24 may be<br />
omitted<br />
28 Shut-off valve with optional connection for test pressure<br />
gauge<br />
30 Minimum temperature controller (if required)<br />
31 Drainage system<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 29<br />
7<br />
6 720 640 417-16.1il
30<br />
7 System examples<br />
7.3 Sizing and installation information<br />
7.3.1 Boiler circuit pump in the bypass as shunt pump<br />
Fig. 24 Sample hydraulic circuit for a single boiler system with boiler circuit pump in the bypass for <strong>Logano</strong> <strong>SK645</strong><br />
and <strong>SK745</strong><br />
FR Return temperature sensor<br />
KR Check valve<br />
PK Boiler circuit pump<br />
RK Return<br />
SR Actuator, return temperature raising facility<br />
SV Safety valve<br />
V HK Heating circuit flow rate<br />
VK Flow<br />
V PK Boiler circuit pump flow rate<br />
VSL Safety flow<br />
PK KR<br />
VK A B RK<br />
Boiler circuit pump flow rate V PK<br />
The boiler circuit pump, also referred to as a shunt pump,<br />
is required to regulate the return temperature (sensor<br />
flow). The boiler circuit pump can also be used to<br />
optimise the control characteristics. This makes it<br />
possible to minimise the switching events during the heatup<br />
process. This results in lower emissions.<br />
V PK<br />
Form. 2 Calculating the flow rate of the boiler circuit<br />
pump<br />
c Specific thermal capacityc = 1.16 × 10-3 kWh/(l × K) =<br />
1/860 kWh/(l × K)<br />
Δϑ K Temperature differential for sizing the boiler circuit pump<br />
30 K to 50 K (30 K for optimised heat-up characteristics)<br />
Q K Rated heat output in kW<br />
V PK Boiler circuit pump flow rate in l/h<br />
VSL<br />
SV<br />
QK = -------------------<br />
ΔϑK × c<br />
SR<br />
E H<br />
C D<br />
V PK<br />
FR<br />
F<br />
G<br />
V HK<br />
90 °C<br />
70 °C<br />
6 720 640 417-17.1il<br />
Heating circuit flow rate V HK<br />
QHK VHK =<br />
---------------------------------<br />
( ϑV – ϑR) × c<br />
Form. 3 Calculating the flow rate of the heating circuits<br />
c Specific thermal capacityc = 1.16 × 10-3 kWh/(l × K) =<br />
1/860 kWh/(l × K)<br />
QHK Heating circuit heat input demand in kW<br />
ϑR Heating circuit return temperature in °C<br />
ϑV Heating circuit flow temperature in °C<br />
VHK Heating circuit flow rate in l/h<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
Total boiler flow rate VKges The boiler circuit pump head results from the following:<br />
• Boiler pressure drop at the selected flow rate VPK • Pipework pressure drop<br />
• Individual pressure drop values in the boiler circuit<br />
(Line: A–C–D–B, Fig. 24)<br />
The total boiler flow rate cannot simply be calculated by<br />
adding up the individual flow rates, because of the pump<br />
and system curves. However, as a first estimate, the<br />
simple addition is suitable to get an approximation of a<br />
solution.<br />
Form. 4 Calculating the total boiler flow rate<br />
VHK VKges V PK<br />
Base the sizing of the pipework in the boiler<br />
circuit on a flow velocity of 1 m/s to 1.5 m/s.<br />
VKges ≤<br />
VPK + VHK Heating circuit flow rate in l/h<br />
Maximum total flow rate through the boiler in l/h<br />
(approximation)<br />
Boiler circuit pump flow rate in l/h<br />
Example<br />
Given:<br />
• Rated output QK = 1200 kW<br />
• Heating circuit flow temperature ϑV = 90 °C<br />
• Heating circuit return temperature ϑR = 70 °C<br />
• Temperature differential (selected) ΔϑK = 30 K<br />
Result:<br />
• VPK = 34400 l/h (Line: C–D, Fig. 24)<br />
• VHK = 51600 l/h<br />
(Lines: C–F, D–G and E–H, Fig. 24)<br />
• VKges ~ 86000 l/h<br />
(Lines: A–C and B–D, Fig. 24)<br />
System examples<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 31<br />
7
32<br />
7 System examples<br />
7.3.2 Boiler circuit pump as primary circuit pump<br />
B G<br />
V PK2<br />
SV<br />
SV<br />
VK A H RK VK A H RK<br />
VSL VSL<br />
Fig. 25 Sample hydraulic circuit for a 2-boiler system with boiler circuit pump as primary circuit pump for<br />
<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
FR Return temperature sensor<br />
FVS Strategy flow temperature sensor<br />
PK Boiler circuit pump<br />
RK Return<br />
SR Actuator, return temperature raising facility<br />
SV Safety valve<br />
V HK Heating circuit flow rate<br />
VK Flow<br />
V PK Boiler circuit pump flow rate<br />
VSL Safety flow<br />
Boiler circuit pump flow rate V PK<br />
For systems with primary circuit pumps (e.g. in the case of<br />
low loss headers or non-pressurised distributors)<br />
installing the boiler circuit pump into the return is<br />
recommended.<br />
Form. 5 Approximation formula with sizing factor for the<br />
flow rate of the boiler circuit pump in a single<br />
boiler system<br />
Form. 6 Approximation formula with sizing factor for the<br />
flow rate of the boiler circuit pump in a 2-boiler<br />
system<br />
Size of calculation for formula 5 and formula 6:<br />
VHK Heating circuit flow rate in l/h<br />
VKges Total flow rate of the boiler circuit in l/h<br />
In 2-boiler systems, split the pump rate of the boiler circuit<br />
pumps according to the respective boiler output. Where<br />
several heating circuits are constantly operated with high<br />
flow temperatures and maximum flow rate, the flow rate of<br />
each boiler circuit pump should correspond to the flow<br />
rate of the heating circuit pumps. For systems with gas<br />
condensing boilers, there are special requirements, e.g.<br />
SR2<br />
PK2<br />
VKges, 1 = VHK × (1,0 ... 1,2)<br />
VKges, 2 =<br />
VHK × (1,2 ... 1,5)<br />
C D<br />
B G<br />
V PK1<br />
F<br />
SR1<br />
PK1<br />
FR2 FR1<br />
E<br />
FVS<br />
90 °C<br />
70 °C<br />
maintenance of as low a return temperature as possible.<br />
The pump rate of the boiler circuit pump may need to be<br />
adjusted to the pump rate of the heating circuits.<br />
Sizing the 3-way valve<br />
Size the 3-way valve for the respectively calculated flow<br />
rate. For this, observe the pressure drop when the valve is<br />
fully open, as the control quality is influenced by the<br />
proportional pressure drop.<br />
Primary circuit pump head<br />
The boiler circuit pump head results from the following:<br />
• Boiler pressure drop at the selected flow rate V PK<br />
• Pipework pressure drop<br />
• Individual pressure drop values in the boiler circuit<br />
(Line: A–D–E–H, Fig. 25)<br />
Example<br />
Given:<br />
• Heating circuit heat input demand SQHK = 4000 kW<br />
• Heating circuit flow temperature ϑV = 90 °C<br />
• Heating circuit return temperature ϑR = 70 °C<br />
• Sizing factor (selected) = 1.3<br />
• Heating circuit flow rate VHK = 172000 l/h<br />
Result:<br />
• VKges = VHK × 1.3 = 172000 l/h × 1.3 = 223600 l/h<br />
(lines: C–D and E–F, Fig. 25)<br />
The total flow rate calculated for the boiler side should be<br />
split according to the rated output (in this case 50/50 %):<br />
• Boiler circuit pump flow rate<br />
VPK = 111800 l/h<br />
(lines: A–C, B–G and F–H, Fig. 25)<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
V HK<br />
6 720 640 417-18.1il
7.3.3 Low loss header<br />
A low loss header (hydraulic balancing line) is designed to<br />
provide hydraulic separation between the boiler circuit<br />
and the heating circuits.<br />
Installing a low loss header brings many benefits:<br />
• Sizing boiler circuit pump and actuators is made easy.<br />
• Mutual influencing between the heating water flow<br />
inside the boiler and in the heat consumer circuits is<br />
prevented.<br />
• Boiler and heat consumers are only supplied with the<br />
assigned water flow.<br />
• May be used in single and multi-boiler systems, subject<br />
to the heating circuit control system.<br />
• Actuators on both sides of the low loss header provide<br />
optimum operation if they are sized correctly.<br />
• The hydraulic balancing line can also be used as a<br />
sludge trap, subject to being sized correctly<br />
( page 26).<br />
• Where there is a major pressure drop on the water side<br />
and with large distances between boiler and heating<br />
circuits, a split into primary and secondary side is<br />
possible.<br />
Sizing the low loss header<br />
Correct sizing is crucial to the function of the low loss<br />
header. To safeguard a good separation with<br />
simultaneous function as a sludge trap, size the pipework<br />
so that there is practically no pressure drop between the<br />
flow and return. At the nominal amount of water, a flow<br />
velocity of 0.1 m/s to 0.2 m/s can be expected. This also<br />
enables the simultaneous use as a sludge trap. To be able<br />
to capture the heating circuit flow temperature, provide a<br />
sensor well of 200 mm to 300 mm length in the upper<br />
area of the hydraulic balancing line on the heating circuit<br />
side.<br />
D<br />
=<br />
VK,ges 1<br />
-------------- × ------------v<br />
2827<br />
Form. 7 Calculating the size of the low loss header<br />
D Diameter of the hydraulic balancing line in m<br />
v Flow velocity in m/s<br />
VKges Total flow rate of the boiler circuit in m3/h<br />
System examples<br />
Example<br />
Given:<br />
• Total flow rate VKges = 223.6 m3 /h<br />
• Flow velocity (assumption) v = 0.2 m/s<br />
Result:<br />
• Diameter of the hydraulic balancing line<br />
D ~ 0.63 m<br />
Fig. 26 Main diagram of a low loss header<br />
RH Heating system return<br />
RK Return<br />
VH Heating system flow<br />
VK Flow<br />
1 Female connection for one air vent valve<br />
2 Female connection for a sensor well ½ "<br />
3 Perforated divider<br />
4 Quick-action shut-off valve<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 33<br />
VK<br />
RK<br />
4<br />
D 1<br />
2<br />
3<br />
VH<br />
5 × D<br />
RH<br />
3–4 × D<br />
D<br />
6 720 640 417-19.1il<br />
7
34<br />
7 System examples<br />
7.4 Single boiler system <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with boiler control unit<br />
Fig. 27 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
FB DHW temperature sensor<br />
FK Boiler water temperature sensor<br />
FV Flow temperature sensor<br />
FZ Auxiliary temperature sensor<br />
HK Heating circuit<br />
KR Check valve<br />
PH Heating circuit pump<br />
PK Boiler circuit pump<br />
PS Cylinder primary pump<br />
PZ DHW circulation pump<br />
RK Return<br />
SH Heating circuit actuator<br />
SK Boiler circuit actuator<br />
VK Flow<br />
1) Number and layout of the heating circuits subject to the<br />
Logamatic control unit<br />
The circuit diagram is only a schematic<br />
illustration.<br />
Information for all system examples page 26.<br />
FB<br />
PZ<br />
KR<br />
PS<br />
KR<br />
FK<br />
SK<br />
PK<br />
VK RK<br />
<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />
FZ<br />
HK1<br />
Application range<br />
• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />
• Boiler control with a conventional Logamatic 4212<br />
control unit and ZM427 auxiliary module<br />
• Boiler circuit control with Logamatic 4321 control unit<br />
in conjunction with a third party heating circuit<br />
controller or with special applications<br />
Function description<br />
The Logamatic control unit safeguards the minimum boiler<br />
return temperature. If the actual return temperature<br />
captured by the FZ temperature sensor falls below the set<br />
value whilst the burner is switched on, the control unit<br />
reduces the system flow rate towards the boiler by<br />
switching the SK boiler circuit actuator. At the same time,<br />
hot water from the flow is mixed into the cold water<br />
returning from the system to achieve the set return<br />
temperature.<br />
The boiler circuit actuator is opened towards the<br />
consumer circuits once the minimum return temperature<br />
has been reached.<br />
Special engineering information<br />
• This arrangement is ideally suited for a modernised<br />
system where the heating circuit control is provided by<br />
the higher ranking control (third party control unit).<br />
• This requires an FZ auxiliary temperature sensor.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
HK2<br />
FV1 FV2<br />
PH1<br />
PH2<br />
SH1<br />
SH2<br />
M M<br />
1)<br />
6 720 640 417-20.1il
Selection of control equipment<br />
Logamatic 4212 control unit<br />
6 720 640 417-41.1il<br />
Logamatic 4212 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 42121) conventional control unit for mounting inside the<br />
boiler for operation with a constant boiler water temperature with<br />
TR (90/105 °C) temperature controller; for switching single and<br />
2-stage burners, with adjustable high limit safety cut-out (100/110/<br />
120 °C). Including burner cable, stage 2.<br />
Standard equipment<br />
Safety equipment<br />
ZM425 – Central module as display, incl. thermometer and burner<br />
fault indicator, with two slots for hours run meter for burner stages 1<br />
and 2<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
ZM427 – Auxiliary module to safeguard the boiler operating<br />
conditions for low temperature boilers with minimum return<br />
temperature, for steel boilers and gas condensing boilers with external<br />
condensing heat exchanger (actual flow temperature control) and to<br />
provide a hydraulic shut-off in multi-boiler systems, incl. flow<br />
temperature sensor<br />
ZB – Hours run meter<br />
Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />
Tab. 8 Optional equipment for the Logamatic 4212<br />
control unit in connection with the system<br />
example in Fig. 27<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
The technical documents of the control units include<br />
detailed information.<br />
System examples<br />
Logamatic 4321 control unit<br />
6 720 640 417-42.1il<br />
Logamatic 4321 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 43211) for a single boiler system or as the master control<br />
unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />
temperature controller and adjustable high limit safety cut-out (100/<br />
110/120 °C), for switching single stage, 2-stage or modulating<br />
burners. Including burner cable, stage 2, boiler water and outside<br />
temperature sensors. Can accommodate up to four function modules.<br />
Standard equipment<br />
Safety equipment<br />
CM431 – Controller module<br />
ZM432 – Central module for switching burners and boiler circuit<br />
functions; with manual operating level<br />
MEC2 – Digital programming unit for setting parameters and<br />
checking the control unit; integral room temperature sensor and radio<br />
clock receiver<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
FM441 – Function module for one heating circuit with mixer and<br />
one DHW circuit with DHW circulation pump; incl. DHW temperature<br />
sensor (up to one module per control unit)<br />
FM442 – Function module for two heating circuits with mixer; incl.<br />
one FV/FZ sensor set (up to four modules per control unit)<br />
Room installation set with wall retainer for MEC2 programming unit<br />
and boiler display<br />
Online set with online cable and wall retainer for MEC2 programming<br />
unit<br />
BFU – Remote control incl. room temperature sensor for controlling<br />
a heating circuit from the living space<br />
BFU/F – Remote control like the BFU, but with an integral radio<br />
clock receiver<br />
Separate room temperature sensor for BFU and BFU/F remote<br />
control units<br />
FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />
with mixers or auxiliary temperature sensors for boiler circuit functions;<br />
incl. connection plug and accessories<br />
FG – Flue gas temperature sensor for a digital display of the flue<br />
gas temperature; in a stainless steel sleeve; version suitable for<br />
positive pressure<br />
Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />
Tab. 9 Optional equipment for the Logamatic 4321<br />
control unit in connection with the system<br />
example in Fig. 27<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 35<br />
7
7 System examples<br />
7.5 Single boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers:<br />
Logamatic Boiler and heating circuit control with hydraulic separation<br />
Fig. 28 System example for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with Logamatic boiler and heating circuit control and hydraulic<br />
separation<br />
FK Boiler water temperature sensor<br />
FV Flow temperature sensor<br />
FZ Auxiliary temperature sensor<br />
HK Heating circuit<br />
KR Check valve<br />
PH Heating circuit pump<br />
PK Boiler circuit pump<br />
RK Return<br />
SH Heating circuit actuator<br />
THV Thermostatic valve<br />
VK Flow<br />
VR Return distributor<br />
VV Flow distributor<br />
WH Low loss header<br />
1) Alternative to low loss header (WH)<br />
36<br />
FK<br />
Application range<br />
• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />
• Logamatic boiler and heating circuit control<br />
• Hydraulic separation<br />
• Systems are laid out this way, if a feed pump is<br />
required, e.g. as a result of the sizing of the heating<br />
circuit pumps or if several distributor stations are<br />
required or if the distributor stations are installed at<br />
greater distances.<br />
Brief description of the system<br />
• Control of the minimum return temperature by xxxx of<br />
the heating circuit actuators<br />
• 2-stage or modulating burner operation<br />
• Simple layout<br />
KR<br />
PK<br />
VK RK<br />
<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />
The circuit diagram is only a schematic<br />
illustration.<br />
Information for all system examples page 26.<br />
FZ<br />
FK<br />
WH<br />
THV<br />
FV<br />
PH<br />
SH<br />
HK<br />
Function description<br />
The heating circuits are controlled via heating circuit<br />
modules. To achieve a raising of the return temperature,<br />
the switching of the heating circuit actuators is given a<br />
higher ranking order. The heating water flow rate to the<br />
boiler remains at a reduced level until the set return<br />
temperature is achieved by the flow water being mixed via<br />
the hydraulic separation. The heating circuit control will<br />
then be enabled again.<br />
Special engineering information<br />
• Size the boiler circuit pump for the maximum calculated<br />
flow rate and the pressure drop in the boiler circuit.<br />
Switch the pump to constant operation or with a run-on<br />
time of 60 minutes.<br />
• Allow for a low loss header or, alternatively, a<br />
distributor with bypass and non-return valve.<br />
• In conjunction with Logamatic control units, the<br />
maximum possible flow temperature for a heating<br />
circuit with mixer is 90 °C.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
VV<br />
VR<br />
1)<br />
KR<br />
6 720 640 417-46.1il
Selection of control equipment<br />
Logamatic 4321 control unit<br />
6 720 640 417-42.1il<br />
Logamatic 4321 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 43211) for a single boiler system or as the master control<br />
unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />
temperature controller and adjustable high limit safety cut-out (100/<br />
110/120 °C), for switching single stage, 2-stage or modulating<br />
burners. Including burner cable, stage 2, boiler water and outside<br />
temperature sensors. Can accommodate up to four function modules.<br />
Standard equipment<br />
Safety equipment<br />
CM431 – Controller module<br />
ZM432 – Central module for switching burners and boiler circuit<br />
functions; with manual operating level<br />
MEC2 – Digital programming unit for setting parameters and<br />
checking the control unit; integral room temperature sensor and radio<br />
clock receiver<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
FM441 – Function module for one heating circuit with mixer and<br />
one DHW circuit with DHW circulation pump; incl. DHW temperature<br />
sensor (up to one module per control unit)<br />
FM442 – Function module for two heating circuits with mixer; incl.<br />
one FV/FZ sensor set (up to four modules per control unit)<br />
Room installation set with wall retainer for MEC2 programming unit<br />
and boiler display<br />
Online set with online cable and wall retainer for MEC2 programming<br />
unit<br />
BFU – Remote control incl. room temperature sensor for controlling<br />
a heating circuit from the living space<br />
BFU/F – Remote control like the BFU, but with an integral radio<br />
clock receiver<br />
Separate room temperature sensor for BFU and BFU/F remote<br />
control units<br />
FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />
with mixers or auxiliary temperature sensors for boiler circuit functions;<br />
incl. connection plug and accessories<br />
FG – Flue gas temperature sensor for a digital display of the flue<br />
gas temperature; in a stainless steel sleeve; version suitable for<br />
positive pressure<br />
Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />
Tab. 10 Optional equipment for the Logamatic 4321<br />
control unit in connection with the system<br />
example in Fig. 29<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
The technical documents of the control units include<br />
detailed information.<br />
System examples<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 37<br />
7
38<br />
7 System examples<br />
7.6 Single boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with boiler and heating circuit<br />
control<br />
Fig. 29 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
FB DHW temperature sensor<br />
FK Boiler water temperature sensor<br />
FV Flow temperature sensor<br />
FZ Auxiliary temperature sensor<br />
HK Heating circuit<br />
KR Check valve<br />
PH Heating circuit pump<br />
PS Cylinder primary pump<br />
PZ DHW circulation pump<br />
RK Return<br />
SH Heating circuit actuator<br />
VK Flow<br />
1)<br />
Number and layout of the heating circuits subject to the<br />
Logamatic control unit<br />
FB<br />
PZ FK VK RK<br />
The circuit diagram is only a schematic<br />
illustration.<br />
Information for all system examples page 26.<br />
KR<br />
PS<br />
KR<br />
<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />
FZ<br />
FV1<br />
PH1<br />
SH1<br />
HK1<br />
FV2<br />
PH2<br />
SH2<br />
M M<br />
Application range<br />
• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />
• Boiler and heating circuit control (heating circuits with<br />
actuator) with Logamatic 4321 control unit<br />
Function description<br />
The Logamatic 4321 control unit safeguards the minimum<br />
boiler return temperature. If the actual return temperature<br />
captured by the FZ temperature sensor falls below the set<br />
value whilst the burner is switched on, the control unit<br />
reduces the system flow rate towards the heating circuit<br />
as a result of the higher ranking switching of the SH boiler<br />
circuit actuators. At the same time, hot water from the flow<br />
is mixed into the cold water returning from the system to<br />
achieve the set return temperature.<br />
When the minimum return temperature has been reached,<br />
the system switches over to heating circuit control.<br />
Special engineering information<br />
• This requires an FZ auxiliary temperature sensor.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
1)<br />
HK2<br />
6 720 64 0 417-21.1il
Selection of control equipment<br />
Logamatic 4321 control unit<br />
6 720 640 417-42.1il<br />
Logamatic 4321 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 43211) for a single boiler system or as the master control<br />
unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />
temperature controller and adjustable high limit safety cut-out (100/<br />
110/120 °C), for switching single stage, 2-stage or modulating<br />
burners. Including burner cable, stage 2, boiler water and outside<br />
temperature sensors. Can accommodate up to four function modules.<br />
Standard equipment<br />
Safety equipment<br />
CM431 – Controller module<br />
ZM432 – Central module for switching burners and boiler circuit<br />
functions; with manual operating level<br />
MEC2 – Digital programming unit for setting parameters and<br />
checking the control unit; integral room temperature sensor and radio<br />
clock receiver<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
FM441 – Function module for one heating circuit with mixer and<br />
one DHW circuit with DHW circulation pump; incl. DHW temperature<br />
sensor (up to one module per control unit)<br />
FM442 – Function module for two heating circuits with mixer; incl.<br />
one FV/FZ sensor set (up to four modules per control unit)<br />
Room installation set with wall retainer for MEC2 programming unit<br />
and boiler display<br />
Online set with online cable and wall retainer for MEC2 programming<br />
unit<br />
BFU – Remote control incl. room temperature sensor for controlling<br />
a heating circuit from the living space<br />
BFU/F – Remote control like the BFU, but with an integral radio<br />
clock receiver<br />
Separate room temperature sensor for BFU and BFU/F remote<br />
control units<br />
FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />
with mixers or auxiliary temperature sensors for boiler circuit functions;<br />
incl. connection plug and accessories<br />
FG – Flue gas temperature sensor for a digital display of the flue<br />
gas temperature; in a stainless steel sleeve; version suitable for<br />
positive pressure<br />
Sensor well R½ ,100 mm long for Logamatic cylindrical sensors<br />
Tab. 11 Optional equipment for the Logamatic 4321<br />
control unit in connection with the system<br />
example in Fig. 29<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
The technical documents of the control units include<br />
detailed information.<br />
System examples<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 39<br />
7
40<br />
7 System examples<br />
7.7 Single boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with boiler and heating circuit<br />
control as well as hydraulic balancing<br />
Fig. 30 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
FB DHW temperature sensor<br />
FK Boiler water temperature sensor<br />
FV Flow temperature sensor<br />
FZ Auxiliary temperature sensor<br />
HK Heating circuit<br />
HW Low loss header<br />
KR Check valve<br />
PH Heating circuit pump<br />
PK Boiler circuit pump<br />
PS Cylinder primary pump<br />
PZ DHW circulation pump<br />
RK Return<br />
SH Heating circuit actuator<br />
SK Boiler circuit actuator<br />
VK Flow<br />
1)<br />
FB<br />
Number and layout of the heating circuits subject to the<br />
Logamatic control unit<br />
PS<br />
The circuit diagram is only a schematic<br />
illustration.<br />
Information for all system examples page 26.<br />
PZ<br />
KR<br />
KR<br />
FK<br />
PK<br />
VK RK<br />
<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />
SK<br />
M<br />
FZ<br />
HW<br />
HK1<br />
Application range<br />
• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />
• Boiler control with a conventional Logamatic 4212<br />
control unit plus ZM427 auxiliary module<br />
• Heating circuit control and DHW heating by means of<br />
the higher ranking control unit or constant temperature<br />
mode<br />
Function description<br />
The Logamatic 4212 control unit safeguards the minimum<br />
boiler return temperature via the ZM427 auxiliary module.<br />
If the actual return temperature captured by the FZ<br />
temperature sensor falls below the set value whilst the<br />
burner is switched on, the control unit reduces the system<br />
flow rate towards the boiler by switching the SK boiler<br />
circuit actuator. At the same time, hot water from the flow<br />
is mixed into the cold water returning from the system to<br />
achieve the set return temperature. Once the minimum<br />
return temperature has been reached, the boiler circuit<br />
actuator opens towards the consumer circuits.<br />
Special engineering information<br />
• This arrangement is ideally suited for a modernised<br />
system where the heating circuit control is provided by<br />
the higher ranking control (third party control unit).<br />
• This requires an FZ auxiliary temperature sensor.<br />
• The boiler circuit flow rate must be greater than the<br />
heating circuit flow rate.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
HK2<br />
FV1 FV2<br />
PH1<br />
PH2<br />
SH1<br />
SH2<br />
M M<br />
1)<br />
6 720 640 417-22.1il
Selection of control equipment<br />
Logamatic 4212 control unit<br />
6 720 640 417-41.1il<br />
Logamatic 4212 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 42121) conventional control unit for mounting inside the<br />
boiler for operation with a constant boiler water temperature with<br />
TR (90/105 °C) temperature controller; for switching single and<br />
2-stage burners, adjustable high limit safety cut-out (95/100/110/<br />
120 °C). Including burner cable, stage 2.<br />
Standard equipment<br />
Safety equipment<br />
ZM425 – Central module as display, incl. thermometer and burner<br />
fault indicator, with two slots for hours run meter for burner stages 1<br />
and 2<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
ZM427 – Auxiliary module to safeguard the boiler operating<br />
conditions for low temperature boilers with minimum return<br />
temperature, for steel boilers and gas condensing boilers with external<br />
condensing heat exchanger (actual flow temperature control) and to<br />
provide a hydraulic shut-off in multi-boiler systems, incl. flow<br />
temperature sensor<br />
ZB – Hours run meter<br />
Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />
Tab. 12 Optional equipment for the Logamatic 4212<br />
control unit in connection with the system<br />
example in Fig. 30<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
The technical documents of the control units include<br />
detailed information.<br />
System examples<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 41<br />
7
42<br />
7 System examples<br />
7.8 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with boiler and heating circuit<br />
control plus hydraulic balancing<br />
FB<br />
KR<br />
Fig. 31 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
FB DHW temperature sensor<br />
FK Boiler water temperature sensor<br />
FV Flow temperature sensor<br />
FVS Strategy flow temperature sensor<br />
FZ Auxiliary temperature sensor<br />
HK Heating circuit<br />
HW Low loss header<br />
KR Check valve<br />
PH Heating circuit pump<br />
PK Boiler circuit pump<br />
PS Cylinder primary pump<br />
PZ DHW circulation pump<br />
RK Return<br />
SH Heating circuit actuator<br />
SK Boiler circuit actuator<br />
VK Flow<br />
1) Number and layout of the heating circuits subject to the<br />
Logamatic control unit<br />
2)<br />
Alternative to low loss header<br />
3) <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with return temperature<br />
raising facility<br />
Application range<br />
• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />
• Boiler circuit control with Logamatic 4321 and 4322<br />
control units and FM458 strategy module in<br />
conjunction with a third party heating circuit controller<br />
or with special applications<br />
FVS<br />
SK2 SK1<br />
M<br />
M<br />
FZ 3)<br />
PK2 PK1<br />
PZ FK2 VK RK<br />
FK1 VK RK<br />
KR<br />
PS<br />
The circuit diagram is only a schematic<br />
illustration.<br />
Information for all system examples page 26.<br />
(2)<br />
<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong> <strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />
(1)<br />
HW<br />
FZ 3)<br />
Function description<br />
Both boilers can be hydraulically isolated via the SK boiler<br />
circuit actuator. The boiler sequence can be switched<br />
according to load or time by means of the strategy<br />
module. Sequence reversal and operation in parallel or<br />
series can be selected by means of settings at the control<br />
unit. The lead boiler (1) starts when the actual<br />
temperature captured by the FVS strategy sensor falls<br />
below the set flow temperature. If the heat demand<br />
increases, the lag boiler (2) is automatically started and<br />
the SK boiler circuit actuator opens. With dropping load,<br />
the switching events are reversed.<br />
If the actual return temperature captured by the FZ<br />
temperature sensor falls below the set value whilst the<br />
burner is switched on, the control unit reduces the system<br />
flow rate towards the boiler by switching the SK boiler<br />
circuit actuator. At the same time, hot water from the flow<br />
is mixed into the cold water returning from the system to<br />
achieve the set return temperature.<br />
The boiler circuit actuator is opened towards the<br />
consumer circuits once the minimum return temperature<br />
has been reached.<br />
Special engineering information<br />
• This arrangement is ideally suited for a modernised<br />
system where the heating circuit control is provided by<br />
the higher ranking control (third party control unit).<br />
• A low loss header can also be used to provide sludge<br />
removal.<br />
• A low-pressure distributor with bypass can be used as<br />
an alternative to the low loss header.<br />
• This requires an FZ auxiliary temperature sensor.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
HK1<br />
HK2<br />
FV1 FV2<br />
PH1<br />
PH2<br />
SH1<br />
SH2<br />
M<br />
M<br />
1) KR<br />
2)<br />
6 720 640 417-25.1il
Selection of control equipment<br />
Logamatic 4321 control unit<br />
6 720 640 417-42.1il<br />
Logamatic 4321 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 43211) for a single boiler system or as the master control<br />
unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />
temperature controller and adjustable high limit safety cut-out (100/<br />
110/120 °C), for switching single stage, 2-stage or modulating<br />
burners. Including burner cable, stage 2, boiler water and outside<br />
temperature sensors. Can accommodate up to four function modules.<br />
Standard equipment<br />
Safety equipment<br />
CM431 – Controller module<br />
ZM432 – Central module for switching burners and boiler circuit<br />
functions; with manual operating level<br />
MEC2 – Digital programming unit for setting parameters and<br />
checking the control unit; integral room temperature sensor and radio<br />
clock receiver<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
FM441 – Function module for one heating circuit with mixer and<br />
one DHW circuit with DHW circulation pump; incl. DHW temperature<br />
sensor (up to one module per control unit)<br />
FM442 – Function module for two heating circuits with mixer; incl.<br />
one FV/FZ sensor set (up to four modules per control unit)<br />
Room installation set with wall retainer for MEC2 programming unit<br />
and boiler display<br />
Online set with online cable and wall retainer for MEC2 programming<br />
unit<br />
BFU – Remote control incl. room temperature sensor for controlling<br />
a heating circuit from the living space<br />
BFU/F – Remote control like the BFU, but with an integral radio<br />
clock receiver<br />
Separate room temperature sensor for BFU and BFU/F remote<br />
control units<br />
FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />
with mixers or auxiliary temperature sensors for boiler circuit functions;<br />
incl. connection plug and accessories<br />
FG – Flue gas temperature sensor for a digital display of the flue<br />
gas temperature; in a stainless steel sleeve; version suitable for<br />
positive pressure<br />
Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />
Tab. 13 Optional equipment for the Logamatic 4321<br />
control unit in connection with the system<br />
example in Fig. 31<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
The technical documents of the control units include<br />
detailed information.<br />
System examples<br />
Logamatic 4322 control unit<br />
6 720 640 417-44.1il<br />
Logamatic 4322 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 43221) as lag control unit for a second and third boiler in a<br />
multi-boiler system, with TR (90/105 °C) temperature controller and<br />
adjustable high limit safety cut-out (100/110/120 °C), for switching<br />
single stage, 2-stage or modulating burners. Including burner cable,<br />
stage 2 and boiler water temperature sensors. Can accommodate up<br />
to four function modules.<br />
Standard equipment<br />
Safety equipment<br />
CM431 – Controller module<br />
ZM432 – Central module for switching burners and boiler circuit<br />
functions; with manual operating level<br />
Boiler display to display the boiler water temperature at the control<br />
unit; may be extended with further modules<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
MEC2 – Digital programming unit in place of the boiler display for<br />
setting parameters and checking the control unit; integral room<br />
temperature sensor and radio clock receiver<br />
FM441 – Function module for one heating circuit with mixer and<br />
one DHW circuit with DHW circulation pump; incl. DHW temperature<br />
sensor (up to one module per control unit)<br />
FM442 – Function module for two heating circuits with mixer; incl.<br />
one FV/FZ sensor set (up to four modules per control unit)<br />
Online set with online cable and wall retainer for MEC2 programming<br />
unit<br />
BFU – Remote control incl. room temperature sensor for controlling<br />
a heating circuit from the living space<br />
BFU/F – Remote control like the BFU, but with an integral radio<br />
clock receiver<br />
Separate room temperature sensor for BFU and BFU/F remote<br />
control units<br />
FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />
with mixers or auxiliary temperature sensors for boiler circuit functions;<br />
incl. connection plug and accessories<br />
FA – Additional outside temperature sensor (up to one per<br />
control unit)<br />
FG – Flue gas temperature sensor for a digital display of the flue<br />
gas temperature; in a stainless steel sleeve; version suitable for<br />
positive pressure<br />
Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />
Tab. 14 Optional equipment for the Logamatic 4322<br />
control unit in connection with the system<br />
example in Fig. 31<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 43<br />
7
44<br />
7 System examples<br />
7.9 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with boiler and heating circuit<br />
control plus hydraulic balancing<br />
FB<br />
PZ<br />
KR<br />
PS<br />
KR<br />
Fig. 32 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
FB DHW temperature sensor<br />
FK Boiler water temperature sensor<br />
FRS Strategy return temperature sensor<br />
FV Flow temperature sensor<br />
FVS Strategy flow temperature sensor<br />
HK Heating circuit<br />
HW Low loss header<br />
KR Check valve<br />
PH Heating circuit pump<br />
PK Boiler circuit pump<br />
PS Cylinder primary pumps<br />
PZ DHW circulation pump<br />
RK Return<br />
SH Heating circuit actuator<br />
VK Flow<br />
KR<br />
PK2<br />
1) Number and layout of the heating circuits subject to the<br />
Logamatic control unit<br />
2) Alternative to low loss header<br />
Application range<br />
• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />
• Boiler and heating circuit control (heating circuits with<br />
actuator) with Logamatic 4321 or 4322 control unit<br />
and FM458 strategy module<br />
Function description<br />
The boiler sequence can be switched on the basis of load<br />
and time by means of the strategy module. Sequence<br />
reversal and operation in parallel or series can be selected<br />
by means of settings at the control unit. The lead boiler (1)<br />
starts when the actual temperature captured by the FVS<br />
KR<br />
PK1<br />
FK2 VK RK<br />
FK1 VK RK<br />
(2)<br />
<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />
The circuit diagram is only a schematic<br />
illustration.<br />
Information for all system examples page 26.<br />
(1)<br />
<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />
FRS<br />
HW<br />
FVS<br />
strategy sensor falls below the set flow temperature. The<br />
lag boiler is hydraulically isolated by the KR check valve in<br />
the boiler flow. If the heat demand increases, the lag boiler<br />
(2) is automatically started. With dropping load, the<br />
switching events are reversed.<br />
The Logamatic control unit safeguards the actual return<br />
temperature for both boilers. If the actual return<br />
temperature captured by the FRS strategy return<br />
temperature sensor falls below the set value whilst the<br />
burner is switched on, the control unit reduces the heating<br />
circuit flow rate towards the boiler as a result of the higher<br />
ranking switching of the SH boiler circuit actuators until<br />
the operating temperature has been reached.<br />
Special engineering information<br />
• The PK feed pumps, together with hydraulic balancing<br />
are recommended for several distributor stations or<br />
those that are far apart. A low loss header or,<br />
alternatively, a low-pressure distributor with bypass<br />
and check valve can be used to provide hydraulic<br />
balancing.<br />
• A low loss header can also be used to provide sludge<br />
removal.<br />
• Split the total output 50 % over both boilers. Where a<br />
different output distribution applies, safeguard the<br />
respective flow rates by suitable measures (pipe sizing<br />
and/or balancing valves). Pipework according to<br />
Tichelmann is recommended.<br />
• This requires an FZ auxiliary temperature sensor<br />
(as FRS strategy return temperature sensor).<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
HK1<br />
FV1<br />
PH1<br />
SH1<br />
M<br />
FV2<br />
PH2<br />
SH2<br />
HK2<br />
M<br />
1)<br />
KR<br />
2)<br />
6 720 640 417-26.1il
Selection of control equipment<br />
Logamatic 4321 control unit<br />
6 720 640 417-42.1il<br />
Logamatic 4321 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 43211) for a single boiler system or as the master control<br />
unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />
temperature controller and adjustable high limit safety cut-out (100/<br />
110/120 °C), for switching single stage, 2-stage or modulating<br />
burners. Including burner cable, stage 2, boiler water and outside<br />
temperature sensors. Can accommodate up to four function modules.<br />
Standard equipment<br />
Safety equipment<br />
CM431 – Controller module<br />
ZM432 – Central module for switching burners and boiler circuit<br />
functions; with manual operating level<br />
MEC2 – Digital programming unit for setting parameters and<br />
checking the control unit; integral room temperature sensor and radio<br />
clock receiver<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
FM441 – Function module for one heating circuit with mixer and<br />
one DHW circuit with DHW circulation pump; incl. DHW temperature<br />
sensor (up to one module per control unit)<br />
FM442 – Function module for two heating circuits with mixer; incl.<br />
one FV/FZ sensor set (up to four modules per control unit)<br />
Room installation set with wall retainer for MEC2 programming unit<br />
and boiler display<br />
Online set with online cable and wall retainer for MEC2 programming<br />
unit<br />
BFU – Remote control incl. room temperature sensor for controlling<br />
a heating circuit from the living space<br />
BFU/F – Remote control like the BFU, but with an integral radio<br />
clock receiver<br />
Separate room temperature sensor for BFU and BFU/F remote<br />
control units<br />
FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />
with mixers or auxiliary temperature sensors for boiler circuit functions;<br />
incl. connection plug and accessories<br />
FG – Flue gas temperature sensor for a digital display of the flue<br />
gas temperature; in a stainless steel sleeve; version suitable for<br />
positive pressure<br />
Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />
Tab. 15 Optional equipment for the Logamatic 4321<br />
control unit in connection with the system<br />
example in Fig. 32<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
The technical documents of the control units include<br />
detailed information.<br />
System examples<br />
Logamatic 4322 control unit<br />
6 720 640 417-44.1il<br />
Logamatic 4322 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 43221) as lag control unit for a second and third boiler in a<br />
multi-boiler system, with TR (90/105 °C) temperature controller and<br />
adjustable high limit safety cut-out (100/110/120 °C), for switching<br />
single stage, 2-stage or modulating burners. Including burner cable,<br />
stage 2 and boiler water temperature sensors. Can accommodate up<br />
to four function modules.<br />
Standard equipment<br />
Safety equipment<br />
CM431 – Controller module<br />
ZM432 – Central module for switching burners and boiler circuit<br />
functions; with manual operating level<br />
Boiler display to display the boiler water temperature at the control<br />
unit; may be extended with further modules<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
MEC2 – Digital programming unit in place of the boiler display for<br />
setting parameters and checking the control unit; integral room<br />
temperature sensor and radio clock receiver<br />
FM441 – Function module for one heating circuit with mixer and<br />
one DHW circuit with DHW circulation pump; incl. DHW temperature<br />
sensor (up to one module per control unit)<br />
FM442 – Function module for two heating circuits with mixer; incl.<br />
one FV/FZ sensor set (up to four modules per control unit)<br />
Online set with online cable and wall retainer for MEC2 programming<br />
unit<br />
BFU – Remote control incl. room temperature sensor for controlling<br />
a heating circuit from the living space<br />
BFU/F – Remote control like the BFU, but with an integral radio<br />
clock receiver<br />
Separate room temperature sensor for BFU and BFU/F remote<br />
control units<br />
FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />
with mixers or auxiliary temperature sensors for boiler circuit functions;<br />
incl. connection plug and accessories<br />
FA – Additional outside temperature sensor (up to one per<br />
control unit)<br />
FG – Flue gas temperature sensor for a digital display of the flue<br />
gas temperature; in a stainless steel sleeve; version suitable for<br />
positive pressure<br />
Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />
Tab. 16 Optional equipment for the Logamatic 4322<br />
control unit in connection with the system<br />
example in Fig. 32<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 45<br />
7
46<br />
7 System examples<br />
7.10 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> as well as <strong>Logano</strong> plus SB315 and<br />
SB615 gas condensing boilers with boiler and heating circuit control<br />
FW2<br />
FW3<br />
PZ<br />
KR<br />
Fig. 33 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> as well as <strong>Logano</strong> plus SB315, SB615 and SB735<br />
EK Cold water inlet<br />
FK Boiler water temperature sensor<br />
FVS Strategy flow temperature sensor<br />
FW DHW temperature sensor<br />
FZ Auxiliary temperature sensor<br />
HK Heating circuit<br />
KR Check valve<br />
PH Heating circuit pump<br />
PK Boiler circuit pump<br />
PS Cylinder primary pump<br />
PW Stratification pump<br />
PZ DHW circulation pump<br />
RK Return<br />
SK Boiler circuit actuator<br />
SH Heating circuit actuator<br />
VK Flow<br />
WT Heat exchanger<br />
M<br />
PS<br />
KR<br />
FW1<br />
1)<br />
Number and layout of the heating circuits subject to the<br />
Logamatic control unit<br />
2) Inspection bypass<br />
Application range<br />
• <strong>Logano</strong> plus SB315, SB615 and SB735 gas<br />
condensing boilers<br />
• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />
• Boiler circuit control with Logamatic 4321 and 4322<br />
control units and FM447 strategy module, also in<br />
conjunction with a third party heating circuit controller<br />
or with special applications<br />
Function description<br />
The boiler sequence can be switched on the basis of load<br />
and time by means of the FM447 strategy module. The<br />
lead boiler (1) starts when the actual temperature<br />
PW<br />
EK<br />
WT<br />
FK2<br />
FVS<br />
PK<br />
VK RK<br />
(2)<br />
<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />
The circuit diagram is only a schematic<br />
illustration.<br />
Information for all system examples page 26.<br />
M<br />
SK<br />
FZ<br />
2)<br />
VK<br />
RK<br />
(1)<br />
FK1<br />
<strong>Logano</strong> plus<br />
SB315, SB615,<br />
SB735<br />
PH1<br />
SH1<br />
captured by the strategy flow temperature sensor falls<br />
below the set flow temperature. If the heat demand<br />
increases, the lag boiler (2) is automatically started.<br />
If the gas condensing boiler is connected in series to the<br />
low temperature boiler downstream, the required return<br />
temperature raising will be provided mainly by the gas<br />
condensing boiler.<br />
If the actual return temperature captured by the auxiliary<br />
temperature sensor falls below the set value even though<br />
the burner is switched on, the control unit reduces the<br />
system flow rate towards the low temperature boiler by<br />
switching the boiler circuit actuator. At the same time, hot<br />
water from the flow is mixed into the cold water returning<br />
from the system to achieve the set return temperature.<br />
The boiler circuit actuator is opened towards the<br />
consumer circuits once the minimum return temperature<br />
has been reached.<br />
Special engineering information<br />
• The boiler sequence cannot be reversed.<br />
• Size the heating circuit pumps in accordance with the<br />
calculated maximum pressure drop in the heating and<br />
boiler circuit. The boiler circuit pump overcomes the<br />
pressure drop in the lag boiler at the maximum boiler<br />
flow rate.<br />
• It is recommended to split the total output in<br />
proportions of 50 % to 60 % for the gas condensing<br />
boiler and 40 % to 50 % for the low temperature boiler.<br />
• This requires an auxiliary temperature sensor.<br />
• Implement the connections so that the boiler can<br />
operate independently to ensure an emergency<br />
provision during service/maintenance.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
HK1<br />
FV1 FV2<br />
PH2<br />
SH2<br />
M M<br />
HK2<br />
1)<br />
6 720 640 417-39.1il
Selection of control equipment<br />
Logamatic 4321 control unit<br />
6 720 640 417-42.1il<br />
Logamatic 4321 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 43211) for a single boiler system or as the master control<br />
unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />
temperature controller and adjustable high limit safety cut-out (100/<br />
110/120 °C), for switching single stage, 2-stage or modulating<br />
burners. Including burner cable, stage 2, boiler water and outside<br />
temperature sensors. Can accommodate up to four function modules.<br />
Standard equipment<br />
Safety equipment<br />
CM431 – Controller module<br />
ZM432 – Central module for switching burners and boiler circuit<br />
functions; with manual operating level<br />
MEC2 – Digital programming unit for setting parameters and<br />
checking the control unit; integral room temperature sensor and radio<br />
clock receiver<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
FM441 – Function module for one heating circuit with mixer and<br />
one DHW circuit with DHW circulation pump; incl. DHW temperature<br />
sensor (up to one module per control unit)<br />
FM442 – Function module for two heating circuits with mixer; incl.<br />
one FV/FZ sensor set (up to four modules per control unit)<br />
Room installation set with wall retainer for MEC2 programming unit<br />
and boiler display<br />
Online set with online cable and wall retainer for MEC2 programming<br />
unit<br />
BFU – Remote control incl. room temperature sensor for controlling<br />
a heating circuit from the living space<br />
BFU/F – Remote control like the BFU, but with an integral radio<br />
clock receiver<br />
Separate room temperature sensor for BFU and BFU/F remote<br />
control units<br />
FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />
with mixers or auxiliary temperature sensors for boiler circuit functions;<br />
incl. connection plug and accessories<br />
FG – Flue gas temperature sensor for a digital display of the flue<br />
gas temperature; in a stainless steel sleeve; version suitable for<br />
positive pressure<br />
Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />
Tab. 17 Optional equipment for the Logamatic 4321<br />
control unit in connection with the system<br />
example in Fig. 33<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
The technical documents of the control units include<br />
detailed information.<br />
System examples<br />
Logamatic 4322 control unit<br />
6 720 640 417-44.1il<br />
Logamatic 4322 (possible full complement)<br />
blue auxiliary equipment<br />
Logamatic 43221) as lag control unit for a second and third boiler in a<br />
multi-boiler system, with TR (90/105 °C) temperature controller and<br />
adjustable high limit safety cut-out (100/110/120 °C), for switching<br />
single stage, 2-stage or modulating burners. Including burner cable,<br />
stage 2 and boiler water temperature sensors. Can accommodate up<br />
to four function modules.<br />
Standard equipment<br />
Safety equipment<br />
CM431 – Controller module<br />
ZM432 – Central module for switching burners and boiler circuit<br />
functions; with manual operating level<br />
Boiler display to display the boiler water temperature at the control<br />
unit; may be extended with further modules<br />
Auxiliary equipment<br />
ZM426 – Auxiliary module for the use of a second high limit safety<br />
cut-out, set to 100 °C without flash trap<br />
MEC2 – Digital programming unit in place of the boiler display for<br />
setting parameters and checking the control unit; integral room<br />
temperature sensor and radio clock receiver<br />
FM441 – Function module for one heating circuit with mixer and<br />
one DHW circuit with DHW circulation pump; incl. DHW temperature<br />
sensor (up to one module per control unit)<br />
FM442 – Function module for two heating circuits with mixer; incl.<br />
one FV/FZ sensor set (up to four modules per control unit)<br />
Online set with online cable and wall retainer for MEC2 programming<br />
unit<br />
BFU – Remote control incl. room temperature sensor for controlling<br />
a heating circuit from the living space<br />
BFU/F – Remote control like the BFU, but with an integral radio<br />
clock receiver<br />
Separate room temperature sensor for BFU and BFU/F remote<br />
control units<br />
FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />
with mixers or auxiliary temperature sensors for boiler circuit functions;<br />
incl. connection plug and accessories<br />
FA – Additional outside temperature sensor (up to one per<br />
control unit)<br />
FG – Flue gas temperature sensor for a digital display of the flue<br />
gas temperature; in a stainless steel sleeve; version suitable for<br />
positive pressure<br />
Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />
Tab. 18 Optional equipment for the Logamatic 4322<br />
control unit in connection with the system<br />
example in Fig. 33<br />
1) For boiler water temperatures in excess of 80 °C set the high<br />
limit safety cut-out to 110 °C or 120 °C<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 47<br />
7
48<br />
8 Delivery and installation information<br />
8 Delivery and installation information<br />
8.1 Delivery method<br />
The boiler block can be transported on its base frame, e.g.<br />
using rollers. It is possible to transport the blocks of the<br />
<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers with forklift trucks,<br />
with forks inserted above the base frame. When<br />
transporting the blocks of the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
boilers with a crane, use only the holes in the gusset<br />
plates.<br />
Content of packaging<br />
Boiler block with burner<br />
door<br />
<strong>Logano</strong> <strong>SK645</strong><br />
and <strong>SK745</strong><br />
1 transport unit 1)<br />
Insulated boiler jacket 1 wooden crate<br />
Burner 2)<br />
1 Cardboard box<br />
Control unit2) 1 Cardboard box<br />
Tab. 19 Delivery <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
1) <strong>SK745</strong> with 1400 kW and 1850 kW output are respectively<br />
supplied as two packing units each<br />
2) Not part of the standard boiler delivery<br />
8.2 Installation information<br />
Pipework<br />
• Ensure the boiler can be adequately vented.<br />
• In open vented systems, route pipework with a slope<br />
towards the expansion vessel.<br />
• Never allow for pipe reductions in horizontal pipe runs.<br />
• Lay pipes without stress.<br />
Electrical installation<br />
A permanent connection in line with VDE 0100,<br />
VDE 0116 and VDE 0722 is required [in Germany].<br />
Observe local regulations.<br />
• Take care to ensure correct cable and capillary pipe<br />
routing.<br />
Commissioning<br />
Check the quality of the fill and top-up water.<br />
• Flush the entire heating system before filling with<br />
heating water.<br />
Tightness test<br />
Check the system for leaks in accordance with<br />
DIN 18380. The test pressure is 1.3-times the operating<br />
pressure, but at least 1 bar.<br />
• Separate safety valve from expansion vessel (in sealed<br />
unvented systems) before pressure testing.<br />
Handover<br />
On handover, make operators familiar with the system<br />
functions and its operation; and give them the technical<br />
documentation.<br />
• Draw attention to any special considerations regarding<br />
maintenance; a maintenance and inspection contract is<br />
recommended.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
9 Installation location<br />
9.1 General requirements of the installation room<br />
9.1.1 Combustion air supply<br />
The installation room and the siting of gas appliances<br />
should meet the conditions specified by the respective<br />
national, regional or local bodies appertaining to boiler<br />
rooms and must comply with relevant fire regulations.<br />
For open flue combustion equipment with a total rated<br />
output in excess of 50 kW, the combustion air supply is<br />
deemed to be ensured if a vent to the outside with a clear<br />
opening of at least 150 cm 2 (plus 2 cm 2 for every kilowatt<br />
output above 50 kW rated output) is provided. The<br />
required cross-section may be split over up to two lines<br />
and must be sized to provide the equivalent air flow rate.<br />
General requirements<br />
• Combustion air vents and lines must never be closed<br />
or covered unless there is special safety equipment<br />
that ensures the combustion equipment can only be<br />
operated if the flow cross-section is unobstructed.<br />
• The required cross-section must not be restricted by a<br />
closure or grille.<br />
• An adequate supply of combustion air can also be<br />
verified by other means.<br />
• Observe special requirements appertaining to<br />
combustion equipment operated with LPG.<br />
9.1.2 Siting combustion equipment<br />
Gas combustion equipment with a total rated output in<br />
excess of 50 kW must only be sited in rooms<br />
• that are not used for any alternative purpose<br />
• that have no opening towards other rooms, except<br />
doors<br />
• the doors of which are tight and self-closing<br />
• that can be vented<br />
The burner and flue supply facilities of the combustion<br />
equipment must be able to be switched off at any time by<br />
means of an emergency stop switch located outside the<br />
installation room. Provide a sign adjacent to the<br />
emergency stop switch that reads as follows:<br />
“EMERGENCY STOP SWITCH - COMBUSTION<br />
EQUIPMENT”.<br />
Notwithstanding these rules, combustion equipment<br />
may also be installed in other rooms, provided that:<br />
• the use of these rooms makes this necessary and the<br />
combustion equipment can be operated safely or<br />
• the rooms are in freestanding buildings that only serve<br />
to operate the combustion equipment and fuel storage.<br />
Installation location<br />
Open flue combustion equipment must not be installed:<br />
• in stairwells, except in residential buildings with no<br />
more than two apartments<br />
• in generally accessible hallways that serve as escape<br />
routes<br />
• in garages<br />
In rooms with systems that extract air<br />
Open flue combustion equipment must only be installed in<br />
rooms equipped with systems that extract air subject to<br />
the following conditions:<br />
• simultaneous operation of the combustion equipment<br />
and the air extractor systems will be prevented by<br />
safety interlocks<br />
• flue gas routing is monitored by appropriate safety<br />
equipment<br />
• flue gas will be routed via the air extractor systems or it<br />
will be ensured that such systems cannot create<br />
dangerous negative pressure.<br />
Gas shut-off facility<br />
A thermally-activated shut-off facility (TAE) must be<br />
installed immediately upstream of the gas combustion<br />
equipment.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 49<br />
9
50<br />
9 Installation location<br />
9.2 Handling details<br />
The stated values correspond to the boiler in its delivered<br />
condition. For tight spaces, the front door can be<br />
removed.<br />
<strong>Logano</strong><br />
<strong>SK645</strong><br />
<strong>SK745</strong><br />
Boiler<br />
size<br />
Minimum<br />
length<br />
Minimum<br />
width<br />
Minimum<br />
height<br />
Minimum<br />
weight<br />
1) The weight in operation includes the weight of the boiler, its water content, the control unit, burner, gas ramp and fittings<br />
Weight in<br />
operation 1)<br />
[kW] [mm] [mm] [mm] [kg] [kg]<br />
120 1295 700 1005 447 618<br />
190 1490 760 1065 554 792<br />
250 1620 790 1095 642 912<br />
300 1780 790 1095 691 993<br />
360 1773 860 1165 817 1185<br />
420 1973 860 1165 899 1319<br />
500 1913 950 1255 1063 1552<br />
600 2163 950 1255 1158 1715<br />
730 2130 1060 1365 1401 2068<br />
820 2330 1060 1365 1504 2244<br />
1040 2390 1170 1475 1852 2744<br />
1200 2690 1170 1475 2024 3041<br />
1400 2990 1320 1612 2690 4109<br />
1850 3410 1400 1732 3540 5400<br />
Tab. 20 <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> handling dimensions<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
9.3 Installed dimensions<br />
A S<br />
A V<br />
Fig. 34 Installation room for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
boilers<br />
1) For the <strong>SK745</strong> 1400 kW and 1850 kW, the control unit is<br />
mounted on the l.h. or r.h. side<br />
1)<br />
A H<br />
A S<br />
6 720 640 417-27.1il<br />
<strong>Logano</strong> Boiler size Clearance A H Clearance A V 1)<br />
<strong>SK645</strong><br />
<strong>SK745</strong><br />
1) Observe dimension L BR (burner length) relative to clearances A V and A S (on the closure side of the burner door)<br />
Installation location<br />
When installing your boiler maintain the<br />
recommended minimum dimensions. Select<br />
the recommended wall clearances to enable<br />
easy access for installation, maintenance and<br />
service work.<br />
Site the boiler only in rooms that comply with<br />
the local regulations appertaining to the<br />
siting of boilers. The room must be large<br />
enough to ensure access to the boiler in line<br />
with local regulations.<br />
Clearance A S<br />
[kW] [mm] [mm] [mm]<br />
120–300 1000 2000 250 + L BR<br />
360–600 1000 2100 250 + L BR<br />
730–1200 1000 2200 250 + L BR<br />
1400–1850 2)<br />
Tab. 21 Specified wall clearances<br />
2) Allow for an additional 230 mm on the side where the control unit is mounted.<br />
1000 2500 250 + L BR<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 51<br />
9
52<br />
10 Additional equipment and accessories<br />
10 Additional equipment and accessories<br />
10.1 Additional safety equipment to DIN-EN 12828<br />
DIN-EN 12828 specifies a low water indicator to protect<br />
the boiler against excessive heating.<br />
10.1.1 Safety equipment<br />
In accordance with the currently valid Pressure<br />
Equipment Directive (PED), all facilities and pipework<br />
connected to boilers that are part of heating systems with<br />
safety temperatures in excess of 110 °C are considered<br />
part of the boiler. That means that all components<br />
between the shut off facilities (e.g. slider valves) in the<br />
flow and return as well as the boiler flow and return must<br />
be approved. This also concerns intermediate flow pieces<br />
and valve manifolds to which safety equipment can be<br />
fitted. Subject to the safety level (for this see<br />
DIN-EN 12828 and DIN-EN 12953-6), install different<br />
safety equipment at the various connections.<br />
The boiler safety assemblies are approved to Pressure<br />
Equipment Directive 97/23/EC (TS = 120 °C,<br />
PS = 16 bar). They are suitable in accordance with<br />
DIN-EN 12828 for a maximum operating temperature of<br />
Safety equipment<br />
versions<br />
+ Applicable<br />
– N/A<br />
tR ≤ 105 °C, high limit safety cut-out with<br />
shutdown temperature ≤ 110 °C<br />
to DIN-EN 12828<br />
Low water indicator<br />
For the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature<br />
boilers install a low water indicator or minimum pressure<br />
limiter in line with DIN-EN 12828.<br />
105 °C. Equipment for higher operating temperatures to<br />
DIN-EN 12953-6 on request.<br />
In systems to DIN-EN 12828, the <strong>Logano</strong> <strong>SK645</strong> and<br />
<strong>SK745</strong> low temperature boilers can be equipped with a<br />
safety assembly (accessory). This comprises an<br />
intermediate flow piece, valve manifold, minimum<br />
pressure limiter (low water indicator to DIN-EN 12828),<br />
manostat pipe with shut-off valve and 0–16 bar pressure<br />
gauge. Furthermore, it features three additional available<br />
connections R½ for the connection of further pressure<br />
limiters as well as two additional available connections<br />
R½ at the intermediate flow piece, e.g. for thermometer<br />
and high limit safety cut-out.<br />
Boiler safety assemblies are available in the following<br />
sizes: DN65, DN80, DN100, DN125, DN150 and<br />
DN200.<br />
High limit safety cut-out1) with shutdown<br />
temperature > 110 °C,<br />
≤ 120 °C to DIN-EN 12953-6<br />
Heat source Heat source<br />
≤ 300 kW > 300 kW ≤ 300 kW > 300 kW<br />
Maximum pressure limiter – + + +<br />
High limit safety cut-out set and<br />
maximum pressure limiter<br />
– + 2)<br />
– –<br />
Minimum pressure limiter + 3)<br />
– – –<br />
Minimum pressure limiter – -4) + +<br />
Low water indicator + + – –<br />
Tab. 22 Safety equipment versions for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
1) It is recommended to implement the system engineering with reference to the responsible supervisory authority. Observe the Pressure<br />
Equipment Directive (PED) and the Health & Safety at Work Act [Germany]<br />
2) Where the flash trap to DIN-EN 12828 is omitted in systems with tR ≤ 105 °C (high limit safety cut-out 110 °C)<br />
3) As manufacturer-tested replacement measure for low water indicator to DIN-EN 12828 in system with tR ≤ 105 °C (high limit safety cut-out<br />
110 °C)<br />
4) Replacement for low water indicator to DIN-EN 12828 in system with t R ≤ 105 °C (high limit safety cut-out 110 °C)<br />
Safety component Make Component ID<br />
Maximum pressure limiter Sauter DSH 143 F 001 SDB.00-331<br />
Minimum pressure limiter Sauter DSL 143 F 001 SDWF00-330<br />
High limit safety cut-out Sauter RAK 13.4040 B STB 10 602 000<br />
Minimum pressure limiter Fatini Cosmi2B01ATF0.8 WB 40 28 65 19<br />
Tab. 23 Approval ID for safety components for the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
700<br />
H 1<br />
B<br />
Additional equipment and accessories<br />
Fig. 35 Boiler safety assembly with intermediate flow piece <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> (dim. in mm)<br />
1 Pressure gauge 0–16 bar<br />
2 3 available connections R½ for the connecting of<br />
additional pressure limiters<br />
3 Minimum pressure limiter Sauter DSL143-F001<br />
(low water indicator to DIN-EN 12828)<br />
Fig. 36 Intermediate return piece for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> (dim. in mm)<br />
510<br />
1 Flange connection for expansion line<br />
2 R½ connection for thermometer or temperature sensor<br />
A<br />
1 2 3<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 53<br />
4<br />
5<br />
4<br />
H 2<br />
H 3<br />
10<br />
4 Two available connections R½ on the intermediate flow<br />
piece (e.g. for thermometer and high limit safety cut-out<br />
5 Manostat pipe with shut-off valve<br />
160<br />
6 720 640 417-28.1il<br />
<strong>Logano</strong> Boiler size Type A B H1 H2 H3 [kW] [mm] [mm] [mm] [mm]<br />
120–300 VZ65 DN65/PN 16 450 600 330 500<br />
<strong>SK645</strong><br />
360–420 VZ80 DN80/PN 16 450 575 330 500<br />
500–600 VZ100 DN100/PN 16 460 555 330 480<br />
730–1200 VZ125 DN125/PN 16 475 555 330 480<br />
<strong>SK745</strong><br />
1400 VZ150 DN150/PN 16 490 530 330 480<br />
1850 VZ200 DN200/PN 16 515 530 330 480<br />
Tab. 24 Dimensions, boiler safety assembly with intermediate flow piece for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
2<br />
2<br />
A 1<br />
B<br />
1<br />
A 2<br />
H 2<br />
H 1<br />
160<br />
160<br />
6 720 640 417-29.1il<br />
<strong>Logano</strong> Boiler size Type A1 A2 B H1 H2 [kW] [mm] [mm] [mm]<br />
120–300 RZ65 DN65/PN 16 DN32/PN 40 135 350 175<br />
<strong>SK645</strong><br />
360–420 RZ80 DN80/PN 16 DN40/PN 40 145 350 175<br />
500–600 RZ100 DN100/PN 16 DN50/PN 40 160 350 175<br />
730–1200 RZ125 DN125/PN 16 DN65/PN 16 225 350 175<br />
<strong>SK745</strong><br />
1400 RZ150 DN150/PN 16 DN65/PN 16 240 350 175<br />
1850 RZ200 DN200/PN 16 DN80/PN 16 270 400 200<br />
Tab. 25 Dimensions, intermediate return piece for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
10 Additional equipment and accessories<br />
10.2 Additional noise attenuating equipment<br />
10.2.1 Requirements<br />
Necessity and extent of noise attenuating measures are<br />
subject to the noise level and the disturbance created.<br />
<strong>Buderus</strong> offers three facilities to attenuate noise that are<br />
specifically tailored to the low temperature boilers; these<br />
can be supplemented by further on-site noise protection<br />
measures. On-site measures include pipe fixings that are<br />
equipped with structure-borne noise insulators,<br />
compensators in the connection pipes and flexible<br />
connections to the building. Noise attenuating facilities<br />
require additional space that must be taken into account<br />
at the engineering stage.<br />
10.2.2 Boiler support with structure-borne noise<br />
insulation<br />
Boiler supports that insulate structure-borne noise<br />
prevent a transfer of structure-borne noise to the<br />
foundations and the building. They comprise U-profile<br />
rails into which Ω-shaped bent longitudinal insulation<br />
brackets have been set ( Fig. 37 and Fig. 38). The<br />
longitudinal insulation brackets are made from spring<br />
steel and are coated with a silencing compound to<br />
prevent the radiation of air-borne noise. Under load these<br />
flex approx. 5 mm. When engineering boiler supports with<br />
structure-borne noise insulating properties, take into<br />
account that the installed height of the boiler and<br />
consequently the location of connections to the pipework<br />
will alter accordingly ( Tab. 26, page 55). To<br />
compensate for the flexing distance of the longitudinal<br />
insulation brackets, and to further minimise the<br />
transmission of sound via the water connections, the<br />
installation of pipe compensators in the heating water<br />
pipes is also recommended.<br />
54<br />
6 720 640 417-30.1il<br />
Fig. 37 Example of boiler supports that insulate against<br />
structure-borne noise<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
Additional equipment and accessories<br />
Fig. 38 Boiler support that insulates against structure-borne noise for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> (dim. in mm)<br />
1 Side catch<br />
2 Longitudinal insulation bracket<br />
1) Flex under load approx. 5 mm<br />
1<br />
2<br />
<strong>Logano</strong> Boiler<br />
size<br />
<strong>SK645</strong><br />
<strong>SK745</strong><br />
44<br />
1)<br />
Plinth<br />
dimensions /<br />
Foundation<br />
dimensions<br />
Length<br />
L SO<br />
Width<br />
B SO<br />
A B<br />
B SO<br />
B S<br />
B B<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 55<br />
L S<br />
L SO<br />
U-profile rail Dimensions of longitudinal<br />
insulation bracket<br />
Length<br />
L S<br />
Width<br />
B S<br />
Clearance<br />
A B<br />
6 720 640 417-31.1il<br />
10<br />
Lengths Weight<br />
[kW] [mm] [mm] [mm] [mm] [mm] [mm] [kg]<br />
120 915 700 1060 60 700 4 × 250 10.0<br />
190 1110 760 1060 60 760 4 × 250 10.0<br />
250 1240 790 1060 60 790 4 × 250 10.0<br />
300 1400 790 1360 60 790 2 × 250 + 2 × 312.5 15.0<br />
360 1373 860 1385 60 860 4 × 500 20.0<br />
420 1573 860 1385 60 860 4 × 500 20.0<br />
500 1503 950 1480 60 950 2 × 750 + 2 × 500 9.6<br />
600 1753 950 1560 60 950 2 × 1000 + 2 × 500 15.0<br />
730 1700 1060 1560 60 1060 2 × 1000 + 2 × 500 15.0<br />
820 1900 1060 1900 120 1060 4 × 500 15.0<br />
1040 1960 1170 1900 120 1170 4 × 500 15.0<br />
1200 2260 1170 2120 120 1170 4 × 500 21.0<br />
1400 2316 1320 2240 120 1320 4 × 666 23.0<br />
1850 2720 1400 2485 120 1400 4 × 1000 27.1<br />
Tab. 26 Dimensions, boiler support that insulates against structure-borne noise for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
56<br />
10 Additional equipment and accessories<br />
10.2.3 Flue gas silencer with sealing collar to<br />
insulate against structure-borne noise<br />
A substantial proportion of the combustion noise can<br />
transfer to the building via the flue system. Specially<br />
matched flue gas silencers can significantly reduce the<br />
sound level ( Fig. 39).<br />
The silencer shown, for example ( Fig. 39) achieves an<br />
attenuation level of approx. 10 dB(A) to 15 dB(A) in the<br />
flue. The pressure drop caused by the flue gas silencer<br />
can be disregarded when calculating the flue system.<br />
The flue gas silencer features a support ( Fig. 39,<br />
item 3) and a special sealing collar ( Fig. 40, item 1).<br />
This stepped flue sealing collar and the additional packing<br />
cord achieve a separation of the structure-borne noise<br />
between the boiler and the flue system (connection<br />
piece).<br />
1 2<br />
L 4<br />
D 2<br />
D 3<br />
7<br />
L2 L1 3 4 5 6<br />
Fig. 39 Flue gas silencer with sealing collar to insulate<br />
against structure-borne noise<br />
1 Stepped flue sealing collar<br />
2 Packing cord<br />
3 Flue sealing collar ( Fig. 40)<br />
4 Flue outlet<br />
5 Connector for checking the flue gas temperature<br />
6 Boiler casing<br />
7 Threaded female connection for pipe support<br />
Dimensions<br />
at the flue<br />
gas silencer<br />
Unit Connection diameter<br />
DN200 DN250 DN300 DN360 DN400<br />
D1 mm 200 250 300 360 419<br />
D2 mm 220 270 320 380 425<br />
D3 mm 400 600 600 700 660<br />
L1 mm 1000 650 1090 1240 920<br />
L2 mm 650 550 850 1000 800<br />
L3 mm 300 50 160 160 60<br />
L4 mm 50 50 80 80 60<br />
Tab. 27 Dimensions, flue gas silencer for<br />
<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
D 1<br />
L 3<br />
6 720 640 417-32.1il<br />
10.3 Additional accessories<br />
10.3.1 Welded flange<br />
Welded flanges to DIN 2633, PN 16 can be used to<br />
connect commercially available pipes to the boiler flow<br />
and return.<br />
10.3.2 Flue sealing collar<br />
<strong>Buderus</strong> offers a suitable Flue sealing collar ( Fig. 40)<br />
to provide a safe connection suitable for positive pressure<br />
between the boiler flue outlet and the flue connection<br />
pipe.<br />
The Flue sealing collar is easy to fit and<br />
robust in use. DN200, DN250, DN300,<br />
DN360 and DN400 versions.<br />
6 720 640 417-34.1il 1 2 3<br />
Fig. 40 Flue sealing collar (dim. in mm)<br />
1 Boiler flue outlet<br />
2 Flue sealing collar<br />
3 Flue gas silencer or connection pipe<br />
10.3.3 Cleaning equipment set<br />
The cleaning equipment set comprises a brush with brush<br />
handle. It is used to clean the secondary heating surfaces<br />
and the combustion chamber of the boiler.<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />
60<br />
40
11 Flue system<br />
11.1 General requirements of the flue system<br />
It is essential that the the flue system is sized correctly to<br />
safeguard the correct function and safe boiler operation.<br />
The following recommendations appertaining to the<br />
implementation of flue systems should guarantee troublefree<br />
operation of a combustion system. Non-observation<br />
of these rules can result in substantial operating problems<br />
during combustion and may even result in explosions.<br />
These are frequently acoustic disturbances, impairments<br />
of the combustion stability or excessive vibrations on<br />
assemblies or their components. Low NOx combustion<br />
systems are to be viewed as being more sensitive to<br />
operating faults on account of their combustion control.<br />
Therefore, engineer and implement the flue system with<br />
particular care.<br />
Commonly, the flue system comprises a connection piece<br />
between the heat source and the vertical flue system itself<br />
(chimney).<br />
When sizing and implementing the flue system, comply<br />
with the following requirements:<br />
• Flue systems must be sized in accordance with the<br />
respective national and local regulations and<br />
applicable standards. General requirements relating to<br />
flue systems in and on buildings are specified in the<br />
DIN-EN 1443. The implementation of the flue system<br />
must comply with local building regulations and the<br />
DIN V 18160 [Germany]. Apart from building<br />
regulations, freestanding chimneys are subject to<br />
DIN 1056, DIN 4133 and DIN-EN 13084-1. For flowtechnical<br />
determinations appertaining to size, see the<br />
standards DIN-EN 13384 for flue systems in and on<br />
buildings, and DIN-EN 13084-1 for freestanding<br />
chimneys. Observe country-specific regulations.<br />
• When selecting the material for a flue system, take the<br />
composition and temperatures of the combustion<br />
gases into account to prevent damage and<br />
contamination of the flue parts that are in contact with<br />
flue gas.<br />
• Route flue gases as directly as possible to the chimney<br />
considering the best possible flow characteristics<br />
(e.g. short and with a gradient and the fewest possible<br />
deviations). Provide a separate chimney flue for each<br />
boiler. Take the thermal expansion of the system into<br />
account.<br />
• Implement deviations in the connection pieces as<br />
favourably as possible where flow is concerned by<br />
using bends or deflectors. Connection pieces with<br />
several deviations should be avoided, as they would<br />
have a detrimental effect on air-borne and structureborne<br />
noise as well as the start-up pressure hammer.<br />
Prevent sharp-edged joints between rectangular<br />
connection flanges and the connection pipe. The joint<br />
Flue system<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 57<br />
11<br />
angle should not exceed 30°, the same as for any<br />
reducers/expansions that may be required.<br />
• Where possible, connection pieces should be joined to<br />
the chimney in a flow-optimised way (at an angle less<br />
than 45°). Any terminal pieces at the chimney outlet<br />
must ensure the free exit of flue gas into the open air.<br />
• Any condensate must be able to drain freely over the<br />
entire length, treated in accordance with local<br />
regulations (e.g. ATV Code of Practice 251)<br />
[Germany] and drained off in accordance with local<br />
regulations.<br />
• Provide cleaning apertures in accordance with local<br />
regulations (e.g. DIN 18160-1, DIN 18160-5, IVS<br />
guideline 105), possibly in connection with a local flue<br />
gas inspector or chimney sweep.<br />
• The chimney must be separated from the boiler system<br />
(e.g. with compensators) to break the structure-borne<br />
noise transfer.<br />
• Where the flue damper is set into a flue system, a<br />
safety limit switch “OPEN” must be integrated into the<br />
boiler control. Combustion must only be able to start<br />
when the feedback from the limit switch confirms that<br />
the flue damper is fully open. A temperature drop inside<br />
the boiler is possible on account of the time it takes the<br />
actuator to move the damper into position. Implement<br />
the end position “CLOSED” at the flue damper so that<br />
the flue damper never closes fully. This prevents<br />
damage to the integral burner through heat build up.<br />
As a basis for calculation and for sizing the flue system,<br />
apply the details in Tab. 28 and Tab. 29. The<br />
requirements for the flue system and flue gas routing can<br />
be derived from the results of the calculation and should<br />
be discussed with the local flue gas inspector [where<br />
appropriate] prior to constructing the heating system. The<br />
<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers offer the possibility of<br />
raising flue temperatures that are too low by approx.<br />
20 °C to 30 °C. For this, some of the turbulators that are<br />
accessible from the front after opening the boiler door,<br />
must be moved.
58<br />
11 Flue system<br />
11.2 Flue gas parameters<br />
<strong>Logano</strong> Boiler Level Output Rated heat Flue Required Flue gas<br />
size<br />
input outlet draught temperature1) Fuel<br />
Oil Gas<br />
CO2 Flue gas CO2 Flue gas<br />
content mass content mass<br />
flow rate<br />
flow rate<br />
[kW] [kW] [kW] [mm] [Pa] [°C] [%] [kg/s] [%] [kg/s]<br />
120<br />
2 120<br />
<strong>SK645</strong><br />
1) Basis for calculation of the flue system to DIN-EN 13384-1 and DIN-EN 13384-2<br />
2)<br />
1 72<br />
132<br />
200 0<br />
198<br />
13<br />
0.0560<br />
10<br />
0.0562<br />
3) 80 138 0.0336 0.0337<br />
190<br />
2 1902) 1 114<br />
209<br />
200 0<br />
193<br />
13<br />
0.0887<br />
10<br />
0.0890<br />
3) 126 138 0.0532 0.0534<br />
250<br />
2 2502) 1 150<br />
274<br />
250 0<br />
190<br />
13<br />
0.1163<br />
10<br />
0.1167<br />
3) 164 138 0.0698 0.0700<br />
300<br />
2 3002) 1 180<br />
329<br />
250 0<br />
188<br />
13<br />
0.1396<br />
10<br />
0.1402<br />
3) 360<br />
2 360<br />
200 138 0.0838 0.0841<br />
2) 1 216<br />
393<br />
250 0<br />
188<br />
13<br />
0.1668<br />
10<br />
0.1674<br />
3) 236 138 0.1001 0.1005<br />
420<br />
2 4202) 1 252<br />
459<br />
250 0<br />
188<br />
13<br />
0.1948<br />
10<br />
0.1955<br />
3) 275 138 0.1169 0.1173<br />
500<br />
2 5002) 1 300<br />
546<br />
300 0<br />
188<br />
13<br />
0.2318<br />
10<br />
0.2326<br />
3) 328 138 0.1391 0.1396<br />
600<br />
2 6002) 1 360<br />
655<br />
300 0<br />
188<br />
13<br />
0.2780<br />
10<br />
0.2790<br />
3) 393 138 0.1668 0.1674<br />
Tab. 28 Flue gas parameters <strong>Logano</strong> <strong>SK645</strong><br />
2) Parameters for the largest value of the rated output range<br />
3) Parameters for a partial load with 60 % of rated output<br />
<strong>Logano</strong> Boiler Level Output Rated heat Flue Required Flue gas<br />
size<br />
input outlet draught temperature 1)<br />
Fuel<br />
Oil Gas<br />
CO2 Flue gas CO2 Flue gas<br />
content mass content mass<br />
flow rate<br />
flow rate<br />
[kW] [kW] [kW] [mm] [Pa] [°C] [%] [kg/s] [%] [kg/s]<br />
730<br />
2 730<br />
<strong>SK745</strong><br />
1) Basis for calculation of the flue system to DIN-EN 13384-1 and DIN-EN 13384-2<br />
2)<br />
1 438<br />
795<br />
360 0<br />
186<br />
13<br />
0.3374<br />
10<br />
0.3387<br />
3)<br />
477 138 0.2025 0.2032<br />
820<br />
2 820 2)<br />
1 492<br />
893<br />
360 0<br />
186<br />
13<br />
0.3790<br />
10<br />
0.3804<br />
3)<br />
536 138 0.2274 0.2283<br />
1040<br />
2 1040 2)<br />
1 624<br />
1138<br />
360 0<br />
186<br />
13<br />
0.4830<br />
10<br />
0.4848<br />
3)<br />
1200<br />
2 1200<br />
684 138 0.2898 0.2909<br />
2)<br />
1 720<br />
1313<br />
360 0<br />
193<br />
13<br />
0.5573<br />
10<br />
0.5593<br />
3)<br />
789 138 0.3344 0.3356<br />
1400<br />
2 1400 2)<br />
1 840<br />
1532<br />
400 0<br />
193<br />
13<br />
0.6503<br />
10<br />
0.6526<br />
3)<br />
920 138 0.3902 0.3916<br />
1850<br />
2 1850 2)<br />
1 1110<br />
2024<br />
400 0<br />
193<br />
13<br />
0.8591<br />
10<br />
0.8622<br />
3)<br />
1218 138 0.5155 0.5173<br />
Tab. 29 Flue gas parameters <strong>Logano</strong> <strong>SK745</strong><br />
2) Parameters for the largest value of the rated output range<br />
3) Parameters for a partial load with 60 % of rated output<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
Index<br />
B<br />
Boiler circuit pump ....................................................... 30–32<br />
Boiler efficiency..................................................................... 13<br />
Burner<br />
Burner requirements ....................................................... 15<br />
Burner selection............................................................... 15<br />
C<br />
Chemical additives ............................................................... 23<br />
Cleaning equipment set ...................................................... 56<br />
Combustion air...................................................................... 23<br />
Combustion air supply......................................................... 49<br />
Control system Logamatic 4000<br />
Control panel system Logamatic 4411 ...................... 24<br />
Logamatic 4212............................................................... 24<br />
Logamatic 4321............................................................... 24<br />
Logamatic 4322............................................................... 24<br />
Corrosion................................................................................ 19<br />
D<br />
Delivery.................................................................................... 48<br />
DHW heating......................................................................... 25<br />
DHW temperature control.................................................. 25<br />
F<br />
Fill and top-up water .................................................... 20–23<br />
Flue gas temperature........................................................... 14<br />
Flue sealing collar................................................................. 56<br />
Flue system .................................................................... 57–58<br />
Fuel .......................................................................................... 19<br />
G<br />
Gas shut-off facility............................................................... 49<br />
H<br />
Health and Safety at Work Act [Germany]..................... 17<br />
Heating water routing ............................................................ 6<br />
Hot gas routing ....................................................................... 6<br />
Hydraulic connection........................................................... 26<br />
Hydraulic separation ............................................................ 36<br />
I<br />
Installation information......................................................... 48<br />
Installation room<br />
Combustion air supply.................................................... 49<br />
Installation of combustion equipment ......................... 49<br />
Installed dimensions............................................................. 51<br />
Index<br />
L<br />
Logamatic-Telecontrol system........................................... 24<br />
<strong>Logano</strong> <strong>SK645</strong><br />
Applications ......................................................................... 4<br />
Burner................................................................................. 15<br />
Delivery .............................................................................. 48<br />
Dimensions .................................................................... 7–8<br />
Equipment level................................................................... 5<br />
Features and key benefits................................................. 4<br />
Flue gas parameters ....................................................... 58<br />
Handling details ............................................................... 50<br />
Installed dimensions........................................................ 51<br />
Operating conditions...................................................... 18<br />
Parameters................................................................ 12–14<br />
Specification.................................................................. 7–8<br />
System examples..................................................... 34–47<br />
Types and output................................................................ 4<br />
<strong>Logano</strong> <strong>SK745</strong><br />
Applications ......................................................................... 4<br />
Burner................................................................................. 15<br />
Delivery .............................................................................. 48<br />
Dimensions .................................................................. 9–11<br />
Equipment level................................................................... 5<br />
Features and key benefits................................................. 4<br />
Flue gas parameters ....................................................... 58<br />
Handling details ............................................................... 50<br />
Installed dimensions........................................................ 51<br />
Operating conditions...................................................... 18<br />
Parameters................................................................ 12–14<br />
Specification................................................................ 9–11<br />
System examples..................................................... 34–47<br />
Types and output................................................................ 4<br />
Low loss header.................................................................... 33<br />
Low water indicator.............................................................. 52<br />
N<br />
Noise attenuation<br />
Boiler supports......................................................... 54–55<br />
Flue gas silencer with sealing collar ........................... 56<br />
Requirements ................................................................... 54<br />
O<br />
Operating conditions........................................................... 18<br />
P<br />
Pressure drop on the water side....................................... 12<br />
Pressure Equipment Directive (PED)............................... 16<br />
R<br />
Regulations ............................................................................ 16<br />
Return temperature raising facility.................................... 36<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 59
Index<br />
S<br />
Safety equipment........................................... 27–29, 52–53<br />
Arrangement of safety equipment........................ 28–29<br />
Boiler safety assembly.................................................... 53<br />
Low water indicator......................................................... 52<br />
Requirements ................................................................... 27<br />
Scale formation ..................................................................... 20<br />
Standby loss .......................................................................... 14<br />
System example<br />
Single boiler system........................................................ 36<br />
System examples.......................................................... 34–47<br />
Boiler circuit pump .................................................. 30–32<br />
Boilers <strong>Logano</strong> S825L ................................................... 36<br />
Control ............................................................................... 27<br />
DHW heating.................................................................... 27<br />
Hydraulic connection...................................................... 26<br />
Information................................................................. 26–27<br />
Low loss header............................................................... 33<br />
W<br />
Water treatment............................................................ 19–23<br />
Welded flange....................................................................... 56<br />
60<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
Notes<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 61
Notes<br />
62<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>
Notes<br />
6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 63
Bosch Thermotechnik GmbH<br />
Sophienstrasse 30 - 32<br />
35576 Wetzlar<br />
www.buderus.com<br />
6 720 646 816 (10/2010)<br />
Subject to technical modifications.