01.01.2013 Views

Logano SK645/SK745 - Buderus

Logano SK645/SK745 - Buderus

Logano SK645/SK745 - Buderus

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>Logano</strong> <strong>SK645</strong>/<strong>SK745</strong><br />

Heat is our element<br />

Technical guide<br />

Issue 10/2010<br />

Fügen Sie auf der Vorgabeseite<br />

das zur Produktgruppe<br />

passende Bild ein.<br />

Sie finden die Bilder auf<br />

der Referenzseite 14:<br />

<strong>Buderus</strong> Product groups.<br />

Anordnung im Rahmen:<br />

- Tops<br />

- Left sides<br />

Low temperature boilers<br />

Output range from<br />

120 kW to 1850 kW


Table of contents<br />

Table of contents<br />

1 Low temperature boilers . . . . . . . . . . . . . . . . . . 4<br />

1.1 Types and output . . . . . . . . . . . . . . . . . . . . . 4<br />

1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.3 Characteristics and special features . . . . . 4<br />

2 Technical description . . . . . . . . . . . . . . . . . . . . . 5<br />

2.1 Equipment level . . . . . . . . . . . . . . . . . . . . . . 5<br />

2.2 Heating water routing . . . . . . . . . . . . . . . . . . 6<br />

2.3 Hot gas routing . . . . . . . . . . . . . . . . . . . . . . . 6<br />

2.4 Dimensions and specification . . . . . . . . . . . 7<br />

2.4.1 <strong>Logano</strong> <strong>SK645</strong> dimensions and<br />

specification . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

2.4.2 <strong>Logano</strong> <strong>SK745</strong> dimensions and<br />

specification . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

2.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

2.5.1 Pressure drop on the water side . . . . . . . . 12<br />

2.5.2 Boiler efficiency . . . . . . . . . . . . . . . . . . . . . 13<br />

2.5.3 Standby loss and flue gas temperature . . 14<br />

3 Burner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

3.1 Burner selection . . . . . . . . . . . . . . . . . . . . . 15<br />

3.2 Burner requirements . . . . . . . . . . . . . . . . . . 15<br />

4 Regulations and operating conditions . . . . . 16<br />

4.1 Extracts from the regulations . . . . . . . . . . . 16<br />

4.2 Pressure Equipment Directive (PED) and<br />

Health & Safety at Work Act . . . . . . . . . . . 16<br />

4.2.1 Application range . . . . . . . . . . . . . . . . . . . . 16<br />

4.2.2 Categories in accordance with the<br />

Pressure Equipment Directive 97/23/EC 16<br />

4.2.3 Health & Safety at Work Act regarding<br />

steam and hot water boilers . . . . . . . . . . . 17<br />

4.2.4 Overview of the Health & Safety at Work<br />

Act [Germany] . . . . . . . . . . . . . . . . . . . . . . 17<br />

4.3 Operating conditions . . . . . . . . . . . . . . . . . 18<br />

4.3.1 Operating requirements . . . . . . . . . . . . . . . 18<br />

4.3.2 Operating conditions . . . . . . . . . . . . . . . . . 18<br />

4.4 Fuel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

4.5 Water treatment . . . . . . . . . . . . . . . . . . . . . 19<br />

4.5.1 Definition of terms . . . . . . . . . . . . . . . . . . . 19<br />

4.5.2 Prevention of corrosion damage . . . . . . . . 19<br />

4.5.3 Prevention of damage through scale<br />

formation . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

4.5.4 Requirements for fill and top-up water . . . 20<br />

4.5.5 Application limits for boilers made from<br />

ferrous materials . . . . . . . . . . . . . . . . . . . . 21<br />

4.5.6 Recording the amounts of fill and top-up<br />

water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

2<br />

4.5.7 Calculation to determine the permissible<br />

amounts of fill and top-up water . . . . . . . . 23<br />

4.5.8 Chemical heating water additives . . . . . . . 23<br />

4.5.9 Combustion air . . . . . . . . . . . . . . . . . . . . . . 23<br />

5 Heating controls . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

5.1 Logamatic 4000 control system . . . . . . . . 24<br />

5.1.1 Logamatic 4212 control unit . . . . . . . . . . . 24<br />

5.1.2 Logamatic 4321 and Logamatic 4322<br />

control units . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

5.1.3 Logamatic4411 control panel system . . . . 24<br />

5.2 Logamatic telecontrol system . . . . . . . . . . 24<br />

6 DHW heating . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

6.1 Systems for DHW heating . . . . . . . . . . . . . 25<br />

6.2 DHW temperature controller . . . . . . . . . . . 25<br />

7 System examples . . . . . . . . . . . . . . . . . . . . . . . 26<br />

7.1 Information regarding all system examples 26<br />

7.1.1 Hydraulic connection . . . . . . . . . . . . . . . . . 26<br />

7.1.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

7.1.3 DHW heating . . . . . . . . . . . . . . . . . . . . . . . 27<br />

7.2 Safety equipment to DIN-EN 12828 and<br />

DIN-EN 12953-6 . . . . . . . . . . . . . . . . . . . . 27<br />

7.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . 27<br />

7.2.2 Arrangement of safety equipment to<br />

DIN-EN 12828; operating temperature<br />

≤ 105 °C; shutdown temperature (high<br />

limit safety cut-out) ≤ 110 °C . . . . . . . . . . 28<br />

7.2.3 Arrangement of safety equipment to<br />

DIN-EN 12953-6; shutdown temperature<br />

(high limit safety cut-out) > 110 °C . . . . . 29<br />

7.3 Sizing and installation information . . . . . . . 30<br />

7.3.1 Boiler circuit pump in the bypass as shunt<br />

pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

7.3.2 Boiler circuit pump as primary circuit<br />

pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

7.3.3 Low loss header . . . . . . . . . . . . . . . . . . . . . 33<br />

7.4 Single boiler system <strong>Logano</strong> <strong>SK645</strong> and<br />

<strong>SK745</strong> with boiler control unit . . . . . . . . . 34<br />

7.5 Single boiler system with <strong>Logano</strong> <strong>SK645</strong><br />

and <strong>SK745</strong> boilers: Logamatic Boiler and<br />

heating circuit control with hydraulic<br />

separation . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

7.6 Single boiler system with <strong>Logano</strong> <strong>SK645</strong><br />

and <strong>SK745</strong> with boiler and heating circuit<br />

control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

7.7 Single boiler system with <strong>Logano</strong> <strong>SK645</strong><br />

and <strong>SK745</strong> with boiler and heating circuit<br />

control as well as hydraulic balancing . . . 40<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


7.8 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and<br />

<strong>SK745</strong> with boiler and heating circuit<br />

control plus hydraulic balancing . . . . . . . . 42<br />

7.9 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and<br />

<strong>SK745</strong> with boiler and heating circuit<br />

control plus hydraulic balancing . . . . . . . . 44<br />

7.10 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and<br />

<strong>SK745</strong> as well as <strong>Logano</strong> plus SB315 and<br />

SB615 gas condensing boilers with boiler<br />

and heating circuit control . . . . . . . . . . . . . 46<br />

8 Delivery and installation information . . . . . 48<br />

8.1 Delivery method . . . . . . . . . . . . . . . . . . . . . . 48<br />

8.2 Installation information . . . . . . . . . . . . . . . . . 48<br />

9 Installation location . . . . . . . . . . . . . . . . . . . . . 49<br />

9.1 General requirements of the installation<br />

room . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

9.1.1 Combustion air supply . . . . . . . . . . . . . . . . . 49<br />

9.1.2 Siting combustion equipment . . . . . . . . . . . 49<br />

9.2 Handling details . . . . . . . . . . . . . . . . . . . . . . 50<br />

9.3 Installed dimensions . . . . . . . . . . . . . . . . . . 51<br />

10 Additional equipment and accessories . . . . 52<br />

10.1 Additional safety equipment to<br />

DIN-EN 12828 . . . . . . . . . . . . . . . . . . . . . . 52<br />

10.1.1Safety equipment . . . . . . . . . . . . . . . . . . . . . 52<br />

10.2 Additional noise attenuating equipment . . . 54<br />

10.2.1Requirements . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

10.2.2Boiler support with structure-borne noise<br />

insulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

10.2.3Flue gas silencer with sealing collar to<br />

insulate against structure-borne noise . . . 56<br />

10.3 Additional accessories . . . . . . . . . . . . . . . . 56<br />

10.3.1Welded flange . . . . . . . . . . . . . . . . . . . . . . . 56<br />

10.3.2Flue sealing collar . . . . . . . . . . . . . . . . . . . . 56<br />

10.3.3Cleaning equipment set . . . . . . . . . . . . . . . 56<br />

11 Flue system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

11.1 General requirements of the flue system . . 57<br />

11.2 Flue gas parameters . . . . . . . . . . . . . . . . . . 58<br />

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />

Table of contents<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 3


4<br />

1 Low temperature boilers<br />

1 Low temperature boilers<br />

1.1 Types and output<br />

With the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> <strong>Buderus</strong> offers low<br />

temperature boilers with outputs ranging from 120 kW to<br />

1850 kW. The <strong>Logano</strong> <strong>SK645</strong> is available with outputs<br />

ranging from 120 kW to 600 kW, the <strong>Logano</strong> <strong>SK745</strong><br />

covers the output range from 730 kW to 1850 kW.<br />

These boilers feature reversing combustion to<br />

DIN-EN 303 for oil or gas. They are suitable for fuel oil EL<br />

to DIN 51603-1, natural gas or LPG to DVGW G 260.<br />

The boilers can, as an option, be operated with matching<br />

oil and gas burners to EN 267 and EN 676.<br />

These boilers are made from steel and are suitable for<br />

design temperatures of up to 120 °C (shutdown<br />

temperature of the high limit safety cut-out).<br />

1.2 Applications<br />

The <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers<br />

are suitable for all heating systems to DIN-EN 12828 and<br />

DIN-EN 12953-6.<br />

They are used for DHW and central heating in apartment<br />

blocks, municipal and commercial buildings, in district<br />

heating centres as well as for indirect heating of<br />

swimming pools.<br />

For DHW heating, these boilers can be combined with<br />

<strong>Buderus</strong> DHW cylinders.<br />

1.3 Characteristics and special features<br />

High standard seasonal efficiency [to DIN] and<br />

economic viability<br />

The large heating surface of the second pass and high<br />

grade thermal insulation result in excellent heat transfer as<br />

well as low flue gas and standby losses. The result is a<br />

standard seasonal efficiency [to DIN] of up to 93 %.<br />

Minimum circulation volumes are not required.<br />

Quiet operation with clean combustion<br />

The reversing combustion chamber with low combustion<br />

chamber volume loads ensures clean combustion and a<br />

high standard seasonal efficiency.<br />

Boiler supports that act to prevent structure-borne noise<br />

transfer and flue gas silencers result in significantly lower<br />

operating noise.<br />

Easy installation<br />

At the factory, these boilers are fitted with all required<br />

connections, enabling an easy integration into the heating<br />

system. Accessories are matched to these boilers,<br />

ensuring an easy and quick installation. For example, a<br />

safety assembly matched to these boilers safeguards<br />

uncomplicated installation.<br />

Predrilled burner plates make fitting third party burners<br />

easy.<br />

Straight-forward system design<br />

All boilers can be connected simply and in a straightforward<br />

manner to the heating system, since there is no<br />

special need for a minimum flow rate. Not only does this<br />

lead to reduced investment outlay and running costs, but<br />

also less engineering effort.<br />

Supplied fully wired ready for connection<br />

Easy connection to the heating system due to fully<br />

assembled delivery ex works.<br />

Easy maintenance and cleaning<br />

The combustion chamber and the heating surfaces of<br />

these boilers are easily accessible through the large door<br />

at the front that can be pivoted to the left or right. The<br />

smooth steel surfaces of these boilers can be easily<br />

cleaned with the cleaning set supplied as standard.<br />

Easy and convenient operation<br />

The control functions that are matched to the respective<br />

system hydraulics facilitate easy operation. These boilers<br />

can be combined with different <strong>Buderus</strong> control units.<br />

The equipment level of all control units can be extended<br />

individually with auxiliary modules. All control unit<br />

functions can be adjusted in only a few steps – through<br />

the push & turn – facility.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


2 Technical description<br />

2.1 Equipment level<br />

6 720 640 417-01.1il<br />

Fig. 1 <strong>Logano</strong> <strong>SK745</strong> with Logamatic 4321<br />

The <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers<br />

are tested to EN 303, type-tested and CE-designated.<br />

Quality assurance measures to DIN-EN ISO 9001<br />

contribute to the high manufacturing quality and reliability<br />

of functions. The materials used in the <strong>Buderus</strong> low<br />

temperature boilers meet the requirements of EN 303 and<br />

EN 14394. As a result, these boilers operate safely and<br />

reliably.<br />

The boilers feature all-round thermal insulation and<br />

painted casing (RAL 5015). The thermal insulation is<br />

60 mm thick. The combustion chamber and the<br />

secondary heating surfaces are easily accessible through<br />

large front doors that can be pivoted to the left or right.<br />

Technical description<br />

Finely stepped output levels<br />

The <strong>Logano</strong> <strong>SK645</strong> boilers are available with the<br />

following output ratings:<br />

• 120 kW<br />

• 190 kW<br />

• 250 kW<br />

• 300 kW<br />

• 360 kW<br />

• 420 kW<br />

• 500 kW<br />

• 600 kW<br />

The <strong>Logano</strong> <strong>SK745</strong> boilers are available with the<br />

following output ratings:<br />

• 730 kW<br />

• 820 kW<br />

• 1040 kW<br />

• 1200 kW<br />

• 1400 kW<br />

• 1850 kW<br />

Available components<br />

• Logamatic 4212, 4321 and 4322 control units in a<br />

modular design<br />

• Drilled burner plate onto which the pressure-jet gas<br />

and oil burner are mounted<br />

• Plenty of matching accessories ( Chapter 10,<br />

page 52 ff.)<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 5<br />

2


6<br />

2 Technical description<br />

2.2 Heating water routing<br />

Calculated flow and temperature processes<br />

A simulation program enabled the calculation of<br />

influencing factors, such as heat supply, amount of water,<br />

circulation etc. Subject to these factors, the flow and<br />

updraught characteristics as well as the temperature<br />

distribution within the boiler could be calculated and, step<br />

by step, optimised. The results of this simulation program<br />

were translated into the design of these low temperature<br />

boilers.<br />

2.3 Hot gas routing<br />

Inside the combustion chamber, the hot gases are<br />

reversed and flow towards the front of the boiler, where<br />

they are reversed again by the front door and guided into<br />

the second pass. They flow through the pipes, where they<br />

transfer their heat to the boiler water.<br />

AA<br />

Fig. 3 Hot gas flow inside the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

AA Flue gas outlet<br />

RK Return<br />

VK Flow<br />

VSL Safety flow<br />

1 Combustion chamber<br />

2 Flue gas collector<br />

3 Pipes of the second pass<br />

1<br />

2<br />

VSL (VK 1) ) VK (VSL 1) )<br />

Fig. 2 Heating water routing through the<br />

<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

RK Return<br />

VK Flow<br />

VSL Safety flow<br />

1 Pipes of the second pass<br />

2 Combustion chamber<br />

The design and geometry of the second pass ensure a<br />

high heat transfer rate from the hot gas to the boiler water.<br />

RK<br />

1)<br />

<strong>SK745</strong> with 1400 kW and 1850 kW output<br />

RK<br />

VK<br />

VSL<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

3<br />

6 720 640 417-38.1il<br />

1<br />

2<br />

6 720 640 417-37.1il


2.4 Dimensions and specification<br />

2.4.1 <strong>Logano</strong> <strong>SK645</strong> dimensions and specification<br />

Fig. 4 Dimensions, <strong>Logano</strong> <strong>SK645</strong> 120 kW to 600 kW<br />

Technical description<br />

Boiler size Unit 120 190 250 300 360 420 500 600<br />

Rated output kW 120 190 250 300 360 420 500 600<br />

Rated heat input kW 132 209 274 329 393 459 546 655<br />

Length L G mm 1345 1540 1670 1830 1803 2003 1933 2183<br />

Flue gas collector length L A mm 230<br />

Width B mm 780 840 870 870 940 940 1030 1030<br />

Height incl. control unit<br />

Height excl. control unit<br />

Width for transport<br />

Length for transport<br />

Boiler base frame<br />

Flue gas outlet<br />

B<br />

Combustion chamber<br />

length<br />

Combustion chamber<br />

diameter<br />

Burner door depth<br />

Burner door height<br />

H<br />

H K<br />

L GR<br />

B GR<br />

D AA<br />

H AA<br />

L FR 1)<br />

D FR 1)<br />

L T 1)<br />

H B<br />

H<br />

H K<br />

H B<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

A 1 A2<br />

1110<br />

880<br />

700<br />

1295<br />

915<br />

700<br />

200<br />

542<br />

865<br />

390<br />

195<br />

427<br />

1170<br />

940<br />

760<br />

1490<br />

1100<br />

760<br />

200<br />

582<br />

1060<br />

420<br />

195<br />

442<br />

Boiler flow 2) VK mm DN65 DN65 DN65 DN65 DN80 DN80 DN100 DN100<br />

Boiler return 2) RK mm DN65 DN65 DN65 DN65 DN80 DN80 DN100 DN100<br />

Flow safety pipe 2) VSL mm DN40 DN40 DN40 DN50 DN50 DN50 DN50 DN50<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 7<br />

1200<br />

970<br />

790<br />

1620<br />

1240<br />

790<br />

250<br />

597<br />

1190<br />

450<br />

1200<br />

970<br />

790<br />

1780<br />

1400<br />

790<br />

250<br />

597<br />

1350<br />

DEL Inches<br />

R1¼<br />

Drain<br />

HEL mm<br />

200<br />

Tab. 1 Specification and dimensions <strong>Logano</strong> <strong>SK645</strong> 120 kW to 600 kW<br />

L G<br />

BGR LA LGR DEL A 3<br />

VSL VK RK<br />

195<br />

457<br />

450<br />

195<br />

457<br />

1270<br />

1040<br />

860<br />

1773<br />

1373<br />

860<br />

250<br />

632<br />

1260<br />

488<br />

195<br />

477<br />

H F<br />

H AA<br />

H EL<br />

1270<br />

1040<br />

860<br />

1973<br />

1573<br />

860<br />

250<br />

632<br />

1460<br />

488<br />

195<br />

477<br />

D AA<br />

6 720 640 417-02.1il<br />

1360<br />

1130<br />

950<br />

1913<br />

1503<br />

950<br />

300<br />

662<br />

1390<br />

548<br />

195<br />

507<br />

2<br />

1360<br />

1130<br />

950<br />

2163<br />

1753<br />

950<br />

300<br />

662<br />

1640<br />

548<br />

195<br />

507


8<br />

2 Technical description<br />

Boiler size Unit 120 190 250 300 360 420 500 600<br />

Flange height<br />

VK/VSL/RK<br />

Flange<br />

VK/VSL/RK<br />

H F mm 1005 1065 1095 1095 1165 1165 1255 1255<br />

A 1<br />

A 2<br />

A 3<br />

mm<br />

mm<br />

mm<br />

290<br />

170<br />

240<br />

320<br />

205<br />

345<br />

Transport weight kg 447 554 642 691 817 899 1063 1158<br />

Water content l 136 203 233 262 323 367 434 502<br />

Gas content l 129 183 238 268 304 350 420 495<br />

Flue gas temperature 3)<br />

Partial load 60 % 4)<br />

Full load<br />

Flue gas mass flow rate,<br />

oil 3)<br />

Partial load 60 %<br />

Full load<br />

Flue gas mass flow rate,<br />

gas 3)<br />

Partial load 60 %<br />

Full load<br />

CO 2 content, oil<br />

CO 2 content, gas<br />

Pressure drop on the<br />

hot gas side<br />

°C<br />

°C<br />

kg/s<br />

kg/s<br />

kg/s<br />

kg/s<br />

%<br />

%<br />

150<br />

210<br />

0.0316<br />

0.0527<br />

0.0314<br />

0.0523<br />

150<br />

205<br />

0.0494<br />

0.0824<br />

0.0488<br />

0.0813<br />

320<br />

185<br />

495<br />

150<br />

202<br />

0.0646<br />

0.1076<br />

0.0650<br />

0.1084<br />

480<br />

200<br />

470<br />

150<br />

200<br />

0.0769<br />

0.1282<br />

0.0778<br />

0.1297<br />

13<br />

10<br />

353<br />

225<br />

540<br />

150<br />

200<br />

0.0934<br />

0.1557<br />

0.0929<br />

0.1548<br />

553<br />

225<br />

540<br />

150<br />

200<br />

0.1085<br />

0.1809<br />

0.1068<br />

0.1780<br />

423<br />

365<br />

450<br />

150<br />

200<br />

0.1277<br />

0.2129<br />

0.1301<br />

0.2168<br />

673<br />

365<br />

450<br />

150<br />

200<br />

0.1538<br />

0.2564<br />

0.1556<br />

0.2593<br />

mbar 0.80 1.60 1.54 2.70 3.30 3.90 4.70 5.59<br />

Draught required Pa 0<br />

Maximum permissible<br />

temperature, high limit<br />

safety cut-out 5)<br />

Max. permiss. operating<br />

pressure (boiler)<br />

CE-designation,<br />

product ID<br />

°C 120<br />

bar 6<br />

Tab. 1 Specification and dimensions <strong>Logano</strong> <strong>SK645</strong> 120 kW to 600 kW<br />

CE 1015–07<br />

1) Fig. 15, page 15<br />

2) To DIN 2633 (PN 16)<br />

3) Relative to VL80/RL60<br />

4) To DIN-EN 303; the minimum flue gas temperature for the chimney calculation acc. to EN 13384-1 is approx. 12 K lower.<br />

5) Safety limit (high limit safety cut-out); maximum possible flow temperature = safety limit (high limit safety cut-out) - 18 K.<br />

Example: Safety limit (high limit safety cut-out) = 100 °C, maximum possible flow temperature = 100 - 18 = 82 °C<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


2.4.2 <strong>Logano</strong> <strong>SK745</strong> dimensions and specification<br />

B<br />

A 1 A2<br />

Fig. 5 Dimensions, <strong>Logano</strong> <strong>SK745</strong> 730 kW to 1200 kW<br />

Fig. 6 Dimensions, <strong>Logano</strong> <strong>SK745</strong> 1400 kW to 1850 kW<br />

L G<br />

Technical description<br />

BGR LA LGR DEL B<br />

B GR<br />

H<br />

H K<br />

H B<br />

H<br />

HK H B<br />

L A<br />

A 1<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 9<br />

A 3<br />

VSL VK RK<br />

LG A2 A3 VK VSL<br />

RK<br />

L GR<br />

H F<br />

H AA<br />

H EL<br />

H F<br />

H AA<br />

H EL<br />

D AA<br />

6 720 640 417-02.1il<br />

D AA<br />

D EL<br />

2<br />

6 720 640 417-03.1il


10<br />

2 Technical description<br />

Boiler size Unit 730 820 1040 1200 1400 1850<br />

Rated output kW 730 820 1040 1200 1400 1850<br />

Rated heat input kW 795 893 1138 1313 1532 2024<br />

Length L G mm 2150 2350 2410 2710 2990 3410<br />

Flue gas collector length L A mm 215 215 215 215 330 330<br />

Max. length, incl. burner L B mm Burner-dependent<br />

Width B mm 1140 1140 1250 1250 1620 1700<br />

Height incl. control unit<br />

Height excl. control unit<br />

Width for transport<br />

Length for transport<br />

Boiler base frame<br />

Flue gas outlet<br />

Combustion chamber<br />

length<br />

Combustion chamber<br />

diameter<br />

Burner door depth<br />

Burner door height<br />

Boiler flow 2)<br />

Boiler return 2)<br />

Flow safety pipe 2)<br />

Drain<br />

Flange height<br />

VK/VSL/RK<br />

Flange<br />

VK/VSL/RK<br />

H<br />

H K<br />

L GR<br />

B GR<br />

D AA<br />

H AA<br />

L FR 1)<br />

D FR 1)<br />

L T 1)<br />

H B<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

mm<br />

1470<br />

1240<br />

1060<br />

2130<br />

1700<br />

1060<br />

360<br />

727<br />

1585<br />

624<br />

195<br />

547<br />

1470<br />

1240<br />

1060<br />

2330<br />

1900<br />

1060<br />

360<br />

727<br />

1785<br />

624<br />

195<br />

547<br />

1580<br />

1350<br />

1170<br />

2390<br />

1960<br />

1170<br />

360<br />

797<br />

1845<br />

710<br />

195<br />

592<br />

VK mm DN125 DN125 DN125 DN125 DN150 DN200<br />

RK mm DN125 DN125 DN125 DN125 DN150 DN200<br />

VSL mm DN65 DN65 DN80 DN80 DN80 DN100<br />

D EL<br />

H EL<br />

Inches<br />

mm<br />

R1¼<br />

200<br />

R1¼<br />

200<br />

R1¼<br />

200<br />

H F mm 1365 1365 1475 1475 1612 1732<br />

A 1<br />

A 2<br />

A 3<br />

mm<br />

mm<br />

mm<br />

448<br />

350<br />

620<br />

648<br />

350<br />

620<br />

Transport weight kg 1401 1504 1852 2024 2690 3540<br />

Water content l 607 675 822 942 1339 1655<br />

Tab. 2 Specification and dimensions <strong>Logano</strong> <strong>SK745</strong> 730 kW to 1850 kW<br />

463<br />

595<br />

620<br />

1580<br />

1350<br />

1170<br />

2690<br />

2260<br />

1170<br />

360<br />

797<br />

2145<br />

710<br />

195<br />

592<br />

R1¼<br />

200<br />

763<br />

595<br />

620<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

–<br />

1481<br />

1320<br />

2990<br />

2316<br />

1320<br />

400<br />

1070<br />

2120<br />

780<br />

255<br />

635<br />

R1½<br />

196<br />

260<br />

725<br />

725<br />

–<br />

1570<br />

1400<br />

3410<br />

2720<br />

1400<br />

400<br />

1145<br />

2520<br />

860<br />

285<br />

685<br />

R1½<br />

206<br />

260<br />

725<br />

925


Technical description<br />

Boiler size Unit 730 820 1040 1200 1400 1850<br />

Gas content l 618 693 934 1071 1275 1710<br />

Flue gas temperature 3)<br />

Partial load 60 % 4)<br />

Full load<br />

Flue gas mass flow rate,<br />

oil 3)<br />

Partial load 60 %<br />

Full load<br />

Flue gas mass flow rate,<br />

gas 3)<br />

Partial load 60 %<br />

Full load<br />

CO 2 content, oil<br />

CO 2 content, gas<br />

Pressure drop on the<br />

hot gas side<br />

°C<br />

°C<br />

kg/s<br />

kg/s<br />

kg/s<br />

kg/s<br />

%<br />

%<br />

150<br />

198<br />

0.1868<br />

0.3113<br />

0.1869<br />

0.3116<br />

150<br />

198<br />

0.2088<br />

0.3480<br />

0.2102<br />

0.3503<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 11<br />

150<br />

198<br />

0.2651<br />

0.4418<br />

0.2671<br />

0.4451<br />

13<br />

10<br />

150<br />

195<br />

0.3049<br />

0.5082<br />

0.3089<br />

0.5148<br />

150<br />

195<br />

0.3571<br />

0.5952<br />

0.3600<br />

0.5999<br />

150<br />

195<br />

0.4725<br />

0.7875<br />

0.4761<br />

0.7935<br />

mbar 6.10 6.47 7.25 7.74 7.13 9.17<br />

Draught required Pa 0<br />

Maximum permissible<br />

temperature, high limit<br />

safety cut-out 5)<br />

Max. permiss. operating<br />

pressure (boiler)<br />

CE-designation, product<br />

ID<br />

°C 120<br />

bar 6<br />

Tab. 2 Specification and dimensions <strong>Logano</strong> <strong>SK745</strong> 730 kW to 1850 kW<br />

CE 1015–07<br />

1) Fig. 15, page 15<br />

2) To DIN 2633 (PN 16)<br />

3) Relative to VL80/RL60<br />

4) To DIN-EN 303; the minimum flue gas temperature for the chimney calculation acc. to EN 13384-1 is approx. 12 K lower.<br />

5) Safety limit (high limit safety cut-out); maximum possible flow temperature = safety limit (high limit safety cut-out) - 18 K.<br />

Example: Safety limit (high limit safety cut-out) = 100 °C, maximum possible flow temperature = 100 - 18 = 82 °C<br />

2


12<br />

2 Technical description<br />

2.5 Parameters<br />

2.5.1 Pressure drop on the water side<br />

The pressure drop on the water side is the pressure<br />

differential between the boiler flow and return<br />

connections. It depends on the VK/RK connector size<br />

and the heating water flow rate.<br />

ΔpH (mbar)<br />

100<br />

10<br />

1<br />

1<br />

Fig. 7 Pressure drop on the water side <strong>Logano</strong> <strong>SK645</strong><br />

ΔpH Pressure drop<br />

VH Heating water flow rate<br />

1 <strong>SK645</strong>: 120 kW<br />

2 <strong>SK645</strong>: 190 kW, 250 kW, 300 kW<br />

3 <strong>SK645</strong>: 360 kW, 420 kW<br />

4 <strong>SK645</strong>: 500 kW, 600 kW<br />

Calculation example for <strong>SK645</strong> 250 kW:<br />

Given<br />

• ΔT = 15 K<br />

• c = 4.19 kJ/kg × K<br />

• DensityWater = approx. 1000 kg/m 3<br />

ΔP H calculated as follows:<br />

Q = m × c × ΔT<br />

m<br />

m<br />

Q<br />

= --------------c<br />

× ΔT<br />

Result<br />

• m = 14320 kg/h<br />

V H<br />

1 2 3 4<br />

Result<br />

• The intersection of the straight line 2 and V H =<br />

14.3 m 3 /h results in ΔP H = 30 mbar<br />

10<br />

250 kW<br />

= ------------------------------------------------- × 3600 s/h<br />

4,19 kJ/kg K × 15 K<br />

14320 kg/h<br />

1000 kg/m 3<br />

------------------------------ 14,3 m 3 = = /h<br />

100<br />

VH (m3 /h)<br />

6 720 640 417-04.1il<br />

ΔpH (mbar)<br />

100<br />

10<br />

1<br />

10<br />

1 2 3<br />

Fig. 8 Pressure drop on the water side <strong>Logano</strong> <strong>SK745</strong><br />

ΔpH Pressure drop<br />

VH Heating water flow rate<br />

1 <strong>SK745</strong>: 730 kW, 820 kW, 1040 kW, 1200 kW<br />

2 <strong>SK745</strong>: 1400 kW<br />

3 <strong>SK745</strong>: 1850 kW<br />

1000<br />

VH (m3 /h)<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

100<br />

6 720 640 417-05.1il


2.5.2 Boiler efficiency<br />

The boiler efficiency h K identifies the ratio between the<br />

rated output and the rated heat input. It is shown subject<br />

to the average boiler water temperature and the boiler<br />

output.<br />

Hi (%)<br />

96<br />

95<br />

94<br />

93<br />

92<br />

91<br />

1<br />

2<br />

90<br />

50 60 70 80<br />

ϑK (°C)<br />

Fig. 9 Boiler efficiency subject to the average boiler<br />

water temperature (average value for the<br />

complete model range) - <strong>Logano</strong> <strong>SK645</strong><br />

Hi Efficiency, net calorific value<br />

ϑK Average boiler temperature<br />

1 Boiler efficiency at stage 1 (partial load 60 %)<br />

2 Boiler efficiency at stage 2 (full load 100 %)<br />

Calculation example for average boiler water temperature:<br />

ϑK Average boiler water temperature<br />

TRK Return temperature<br />

TVK Flow temperature<br />

Hi (%)<br />

96<br />

95<br />

94<br />

93<br />

92<br />

91<br />

1<br />

2<br />

ϑ K<br />

TVK – TRK = ------------------------<br />

2<br />

Fig. 10 Boiler efficiency subject to the average boiler<br />

water temperature (average value for the<br />

complete model range) - <strong>Logano</strong> <strong>SK745</strong><br />

Hi Efficiency, net calorific value<br />

ϑK Average boiler temperature<br />

1 Boiler efficiency at stage 1 (partial load 60 %)<br />

2 Boiler efficiency at stage 2 (full load 100 %)<br />

6 720 640 417-06.1il<br />

90<br />

50 60 70 80<br />

ϑK (°C)<br />

6 720 640 417-08.1il<br />

Technical description<br />

Fig. 11 Boiler efficiency and flue gas temperature<br />

subject to the boiler load at an average boiler<br />

water temperature of 70 °C - <strong>Logano</strong> <strong>SK645</strong><br />

Hi Efficiency, net calorific value<br />

Q/Qmax Relative boiler load<br />

ϑA Flue gas temperature<br />

1 Boiler efficiency<br />

2 Flue gas temperature<br />

Fig. 12 Boiler efficiency and flue gas temperature<br />

subject to the boiler load at an average boiler<br />

water temperature of 70 °C - <strong>Logano</strong> <strong>SK745</strong><br />

Hi Efficiency, net calorific value<br />

Q/Qmax Relative boiler load<br />

ϑA Flue gas temperature<br />

1 Boiler efficiency<br />

2 Flue gas temperature<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 13<br />

H i (%)<br />

98<br />

96<br />

94<br />

92<br />

90<br />

2<br />

1<br />

ϑ A (°C)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

0 10 20 30 40 50 60 70 80 90<br />

100<br />

100<br />

Q/Qmax (%)<br />

H i (%)<br />

98<br />

96<br />

94<br />

92<br />

90<br />

1<br />

2<br />

6 720 640 417-07.1il<br />

ϑ A (°C)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

0 10 20 30 40 50 60 70 80 90<br />

100<br />

100<br />

Q/Qmax (%)<br />

6 720 640 417-33.1il<br />

2


14<br />

2 Technical description<br />

2.5.3 Standby loss and flue gas temperature<br />

The standby loss is part of the rated heat input that is<br />

required to achieve the specified boiler water<br />

temperature. The cause of this loss is the cooling down of<br />

the boiler through radiation and convection during the<br />

standby time (burner idle time).<br />

qB (%)<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

Radiation and convection result in part of the output being<br />

transferred continuously from the boiler surface to the<br />

ambient air. In addition to this surface loss, the boiler can<br />

also cool down to a lesser degree through the chimney<br />

draught. The flue gas temperature depends on the<br />

average boiler water temperature and the boiler load.<br />

Fig. 13 Standby loss and flue gas temperature, subject to the average boiler water temperature - <strong>Logano</strong> <strong>SK645</strong><br />

qB Standby loss<br />

ϑA Flue gas temperature<br />

ϑK Average boiler temperature<br />

1 Flue gas temperature (full load 100 %)<br />

2 Standby loss<br />

3 Flue gas temperature (partial load 60 %)<br />

Fig. 14 Standby loss and flue gas temperature, subject to the average boiler water temperature - <strong>Logano</strong> <strong>SK745</strong><br />

qB Standby loss<br />

ϑA Flue gas temperature<br />

ϑK Average boiler temperature<br />

1 Flue gas temperature (full load 100 %)<br />

2 Standby loss<br />

3 Flue gas temperature (partial load 60 %)<br />

1<br />

3<br />

2<br />

ϑ A (°C)<br />

0<br />

100<br />

50 60 70 80<br />

ϑK (°C)<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

200<br />

180<br />

160<br />

140<br />

120<br />

6 720 640 417-09.1il<br />

q B (%) ϑ A (°C)<br />

0,2<br />

0,1<br />

1<br />

2<br />

3<br />

0<br />

50 60 70<br />

100<br />

80<br />

ϑK (°C)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

6 720 640 417-45.1il


3 Burner<br />

3.1 Burner selection<br />

Either pressure-jet oil or gas burners can be used with the<br />

<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers. The<br />

pressure-jet oil burners must be approved to EN 267, and<br />

the pressure-jet gas burners to EN 676. 2-stage or<br />

modulating burners can be used.<br />

When selecting a burner take into account that the<br />

pressure drop on the hot gas side must be overcome<br />

reliably. When positive pressure at the flue outlet is<br />

required (sizing of the flue system), take this into<br />

consideration in addition to the pressure drop on the hot<br />

gas side.<br />

3.2 Burner requirements<br />

Observe the installation instructions issued by the burner<br />

manufacturer where the burner installation is concerned.<br />

T<br />

1)<br />

D MB<br />

L FR<br />

Fig. 15 Burner installation dimensions<br />

D FR<br />

6 720 640 417-10.1il<br />

DFR Combustion chamber diameter<br />

(dimensions page 7 and page 10)<br />

DMB Maximum diameter<br />

LFR Combustion chamber length<br />

(dimensions page 7 and page 10)<br />

T Burner door depth (dimensions page 7 and<br />

page 10)<br />

1) The blast tube must protrude beyond the lining in the<br />

burner door.<br />

Burner<br />

To make engineering and installation easier, burners and<br />

drilled burner plates are available as accessories for the<br />

<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers. The boilers are<br />

supplied with a dummy plate.<br />

For further details regarding these burners<br />

and associated burner plates, see the current<br />

<strong>Buderus</strong> heating equipment catalogue. The<br />

selection of a suitable burner for the specific<br />

project can be discussed in detail with the<br />

<strong>Buderus</strong> sales office.<br />

<strong>Logano</strong> Boiler<br />

size<br />

<strong>SK645</strong><br />

<strong>SK745</strong><br />

Max. diameter<br />

D MB<br />

[kW] [mm]<br />

120 130<br />

190 240<br />

250 240<br />

300 240<br />

360 290<br />

420 290<br />

500 290<br />

600 290<br />

730 350<br />

820 350<br />

1040 350<br />

1200 350<br />

1400 350<br />

1850 350<br />

Tab. 3 Burner dimensions for <strong>Logano</strong> <strong>SK645</strong> and<br />

<strong>SK745</strong><br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 15<br />

3


16<br />

4 Regulations and operating conditions<br />

4 Regulations and operating conditions<br />

4.1 Extracts from the regulations<br />

The <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers<br />

comply with the requirements to EN 303 and EN 14394,<br />

and they are approved in line with the Pressure<br />

Equipment Directive up to ≤ 120 °C. They are suitable for<br />

heating systems in line with the requirements to<br />

DIN-EN 12828 and the additional requirements to<br />

DIN-EN 12953-6.<br />

Observe the following regarding creation and operation of<br />

the system:<br />

• Standard building regulations<br />

• Statutory regulations<br />

• Country-specific regulations<br />

Installation, oil and gas connection, flue gas connection,<br />

commissioning, power supply, maintenance and repair<br />

work must only be carried out by authorised contractors.<br />

Permits<br />

The local gas supply utility may need to be notified of and<br />

approve the installation of a low temperature boiler with<br />

gas burner. We recommend clarifying the match between<br />

boiler and flue system with the relevant bodies at the<br />

planning stage. Where required, inform your local flue gas<br />

inspector prior to commissioning. It may be necessary to<br />

obtain a permit for the flue system at regional level.<br />

Annual inspection and demand-dependent<br />

maintenance<br />

To ensure the reliability of functions and the energetic<br />

quality, the HEVAC sector recommends at least an annual<br />

inspection. If any condition requiring maintenance work is<br />

identified in the course of an inspection, that maintenance<br />

work must be carried out as required. We recommend to<br />

system users to enter into a maintenance and inspection<br />

contract with a heating contractor or the burner<br />

manufacturer.<br />

4.2 Pressure Equipment Directive (PED) and Health & Safety at Work Act<br />

4.2.1 Application range<br />

The Pressure Equipment Directive applies to safety<br />

temperatures > 110 °C; i.e. a boiler equipped with a high<br />

limit safety cut-out 110 °C is excluded from the provision<br />

of the Pressure Equipment Directive and from the Health<br />

& Safety at Work Act [Germany] where the requirements<br />

for products that must be supervised is concerned.<br />

4.2.2 Categories in accordance with the Pressure Equipment Directive 97/23/EC<br />

The Pressure Equipment Directive identifies four<br />

categories, split according to the respective<br />

pressure:volume product, into which boilers fall.<br />

<strong>Logano</strong> Boiler size Category I Category II Category III Category IV<br />

<strong>SK645</strong><br />

+ Applicable<br />

– N/A<br />

[kW]<br />

p×V≤ 50 p×V≤ 200 p×V≤ 1000 p×V>1000 V > 1000 or p × V > 3000<br />

120 – – + – –<br />

190–500 – – – + –<br />

600 – – – – +<br />

<strong>SK745</strong> 730–1850 – – – – +<br />

Tab. 4 Categories in accordance with the Pressure Equipment Directive 97/23/EC<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


4.2.3 Health & Safety at Work Act regarding steam and hot water boilers<br />

The Health & Safety at Work Act [Germany] enacted on<br />

the 3 October 2002 and applicable to hot water and<br />

steam boiler systems as of 1 January 2003 specifies<br />

demanding requirements, particularly for boilers in<br />

category III and category IV.<br />

Proviso with regard to granting permission<br />

(para. 13 BetrSichV) [Germany]<br />

Assembly, installation and the operation of boilers in<br />

category IV require permission from the relevant authority<br />

[Germany].<br />

Inspection prior to commissioning<br />

(para. 14 BetrSichV)<br />

Boilers category I and II can be checked in situ, i.e. as part<br />

of the system, by an authorised person (master heating<br />

system builder).<br />

4.2.4 Overview of the Health & Safety at Work Act [Germany]<br />

+ Required<br />

– Not required<br />

Proviso with regard<br />

to granting<br />

permission<br />

Regulations and operating conditions<br />

Boilers in categories III and IV must be checked by an<br />

authorised supervisory body in situ, prior to<br />

commissioning.<br />

Repeated inspections (para. 15 BetrSichV)<br />

Boilers in category III with a pressure:volume product<br />

p × V greater than 1000 and boilers in category IV must<br />

be checked regularly by an authorised supervisory body in<br />

situ:<br />

• External inspection no later than after 12 months<br />

• Internal inspection no later than after three years<br />

• Strength test no later than after nine years<br />

The test intervals must be determined by the system user<br />

based on a safety-technical assessment, the result of<br />

which must be checked by an authorised supervisory<br />

body.<br />

Inspection<br />

prior to<br />

commissioning<br />

Repeated<br />

inspections<br />

§13 §14 §15<br />

Boiler category I (up to 50 bar × l) – + 1)<br />

– 1)<br />

Boiler category II (up to 200 bar × l) – + 1)<br />

Boiler category III (up to 1000 bar × l) – + – 1)<br />

Boiler category III (> 1000 bar × l) – + +<br />

Boiler category IV (> 3000 bar × l) + + +<br />

Tab. 5 Overview of the Health & Safety at Work Act [Germany]<br />

1) May be carried out by an authorised person (e.g. master heating system builder)<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 17<br />

– 1)<br />

4


18<br />

4 Regulations and operating conditions<br />

4.3 Operating conditions<br />

4.3.1 Operating requirements<br />

The operating conditions in Tab. 6 are part of the warranty<br />

conditions for the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low<br />

temperature boilers. These operating conditions are<br />

4.3.2 Operating conditions<br />

<strong>Logano</strong> Minimum<br />

flow rate<br />

<strong>SK645</strong><br />

<strong>SK745</strong><br />

<strong>SK645</strong><br />

<strong>SK745</strong><br />

No requirements 1)<br />

No requirements 1)<br />

Boiler operating conditions<br />

assured through a suitable hydraulic circuit and boiler<br />

control (hydraulic connection page 26).<br />

Minimum return temperature in °C With operating<br />

interruptions<br />

With oil combustion With gas combustion<br />

Two-stage<br />

burner<br />

Modulating<br />

burner<br />

Two-stage<br />

burner<br />

Modulating<br />

burner<br />

In conjunction with a Logamatic control unit for modulating low temperature operation<br />

50 50 60 60<br />

In conjunction with a Logamatic control unit for constant boiler water temperatures,<br />

e.g. Logamatic 4212 with ZM427, or with auxiliary external control unit<br />

Tab. 6 Operating conditions for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

1) Ensure that the return temperature sensor FV/FZ is always surrounded by water.<br />

No requirement<br />

The boiler is shut down<br />

automatically by the<br />

Logamatic control unit<br />

50 50 60 60 No requirements<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


4.4 Fuel<br />

Operation with fuel oil<br />

The <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers<br />

can be operated with fuel oil EL to DIN 51603.<br />

All boilers can also be used without restriction with<br />

rapeseed oil. Pressure-jet burners for rapeseed oil can be<br />

obtained from burner manufacturers on request.<br />

Operation with gas<br />

All low temperature boilers are suitable for natural gas E<br />

or LL as well as LPG. Observe the burner manufacturer's<br />

details.<br />

The gas quality must comply with the requirements of the<br />

DVGW Code of Practice G 260 [Germany].<br />

To be able to adjust the gas throughput, install a gas<br />

meter that can be checked, even in the lower load range<br />

of the burner. This also applies to LPG systems.<br />

Biogas (e.g. gas from waste disposal or sewerage works)<br />

can also be used. For this, observe special operating<br />

conditions. Pressure-jet burners for biogas are available<br />

from burner manufacturers on request.<br />

Additional operating conditions for the operation<br />

with biogas<br />

The following operating conditions must be met:<br />

• Operate boiler at constant temperature<br />

• Never permit operating interruptions<br />

• Maintain a minimum return temperature above the dew<br />

point (in this case at least 68 °C), i.e. return<br />

temperature raising measures<br />

• Ensure minimum boiler water temperature of 83 °C<br />

• Clean and maintain the boiler regularly, possibly clean<br />

chemically and then preserve<br />

• Combustion of biogas/waste gas (quality in line with<br />

DVGW G262, Tab. 3):<br />

– Proportion of sulphur and sulphur compounds in the<br />

gas up to a maximum of 1500 mg/m 3 (approx. 0.1 %<br />

by vol.)<br />

– Proportion of chlorine and chlorine compounds in<br />

the gas up to a maximum of 50 mg/m 3<br />

– Proportion of fluoride and fluoride compounds in the<br />

gas up to a maximum of 25 mg/m 3<br />

In view of the high degree of corrosiveness, and in<br />

variance from Fig. 8.5 of our general sales, delivery and<br />

payment terms, the warranty period is limited to 2 years.<br />

Regulations and operating conditions<br />

4.5 Water treatment<br />

As pure water cannot be used for heat transfer, water<br />

quality is important. Poor water quality can lead to<br />

limescale formation and corrosion. Consequently,<br />

particular attention must be paid to water quality, water<br />

treatment and, above all, continuous water monitoring.<br />

Water treatment is an essential factor in ensuring troublefree<br />

operation, availability, a long service life and the<br />

efficiency of the heating system.<br />

4.5.1 Definition of terms<br />

Limescale formation is the formation of hard deposits<br />

on walls inside hot water heating systems. These deposits<br />

are made up of substances contained in the water,<br />

essentially calcium carbonate.<br />

Heating water is any water used for heating purposes in<br />

a hot water heating system.<br />

Fill water is the water used to completely fill the heating<br />

system on the heating water side for the first time and with<br />

which it is then heated up.<br />

Top-up water is any water used to top up the system on<br />

the heating water side after the first time it is heated up.<br />

Operating temperature is the temperature captured at<br />

the flow connector of the heating appliance in a hot water<br />

heating system when operating correctly.<br />

Water volume Vmax is the maximum volume of<br />

untreated fill and top-up water in m 3 that may be<br />

introduced into the system over the entire service life of<br />

the boiler.<br />

Corrosion-inhibiting sealed unvented systems are<br />

heating systems in which no significant amount of oxygen<br />

ingress into the heating water is possible.<br />

4.5.2 Prevention of corrosion damage<br />

In most cases, corrosion plays only a minor role in heating<br />

systems. That is based on the fundamental requirement<br />

that the system is a corrosion-inhibiting sealed unvented<br />

system, i.e. one that prevents a continuous ingress of<br />

oxygen.<br />

Continuous ingress of oxygen leads to corrosion and can<br />

thus cause rusting and the formation of rust sludge.<br />

Sludge formation can not only cause blockages and<br />

therefore a diminished heat supply but also deposits<br />

(similar to limescale deposits) on the hot surfaces of heat<br />

exchangers.<br />

The most important factor with regard to ingress of<br />

oxygen is generally pressure maintenance and, in<br />

particular, the function, correct sizing and adjustment<br />

(pre-charge pressure) of the expansion vessel. Check the<br />

function and pre-charge pressure annually. If continuous<br />

ingress of oxygen cannot be prevented (e.g. due to plastic<br />

pipes that are permeable to oxygen) or if the system<br />

cannot be designed as a sealed unvented system, anticorrosion<br />

measures such as the addition of approved<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 19<br />

4


20<br />

4 Regulations and operating conditions<br />

chemical additives or system separation by means of a<br />

heat exchanger are necessary.<br />

Oxygen binding agents can be used, for example, to bind<br />

the oxygen.<br />

The pH value of untreated heating water should be<br />

between 8.2. and 9.5. Ensure that the pH level changes<br />

after commissioning, especially due to the separation of<br />

oxygen and limescale. It is recommended to check the pH<br />

level after several months of heating system operation.<br />

The water can be alkalised by the addition of trisodium<br />

phosphate, if necessary.<br />

If additives or antifreeze (where approved by<br />

<strong>Buderus</strong>) are used in the heating system,<br />

check the heating water regularly in<br />

accordance with the manufacturer's<br />

instructions. Carry out all necessary<br />

corrections ( Chapter 4.5.8, page 23).<br />

4.5.3 Prevention of damage through scale<br />

formation<br />

VDI 2035-1 “Prevention of damage to hot water central<br />

heating systems through limescale formation”, issue 12/<br />

2005 applies to DHW heating systems to DIN 4753 and<br />

hot water central heating systems to DIN 12828 with a<br />

design operating temperature of up to 100 °C.<br />

One of the aims of the current edition of VDI 2035-1 is<br />

simplification of its application. For that reason, standard<br />

values for the amount of limescale-forming substances<br />

(total alkaline earths) for specified heat output ranges are<br />

recommended. The specifications are based on practical<br />

Total boiler output<br />

[kW]<br />

Q ≤ 50 V max : no requirements<br />

experience that shows that damage due to limescale<br />

formation is dependent on the total heat output, the<br />

system volume, the cumulative volume of fill and top-up<br />

water used over the service life of the system and the<br />

boiler design.<br />

The details given below in respect of <strong>Buderus</strong> boilers are<br />

based on many years of experience and service life tests,<br />

and specify the maximum cumulative amount of fill and<br />

top-up water subject to output, water hardness and boiler<br />

material. This ensures compliance with the aims of<br />

VDI 2035-1 “Prevention of damage through limescale<br />

formation in hot water heating systems”.<br />

Warranty claims in respect of <strong>Buderus</strong> boilers are only<br />

valid in conjunction with the requirements specified herein<br />

and a fully completed system log.<br />

4.5.4 Requirements for fill and top-up water<br />

To protect boilers against limescale damage over their<br />

entire service life and to ensure trouble-free operation, the<br />

total amount of limescale-forming substances in the fill<br />

and top-up water in heating systems must be restricted.<br />

Therefore, the fill and top-up water has to meet certain<br />

requirements that are dependent on the total boiler output<br />

and the resulting total volume of water in the heating<br />

system ( Tab. 7).<br />

The permissible amount of water based on the fill water<br />

quality can be determined simply with the aid of the<br />

diagrams in Fig. 16 and Fig. 17 or a calculation method to<br />

determine the permissible amounts of fill and top-up water<br />

( page 23).<br />

Requirements regarding water hardness and the amount of fill and top-up<br />

water V max<br />

50 ≤ Q ≤ 600 V max: calculate according to diagrams in Fig. 16 and Fig. 17 as well as formula 1<br />

Q > 600 Water treatment is generally required<br />

independent of output For systems with very large water content (> 50 l/kW), water should generally be treated<br />

Tab. 7 Requirements for fill and top-up water for boilers made from ferrous material<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


4.5.5 Application limits for boilers made from ferrous materials<br />

V max (m 3 )<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Fig. 16 Boilers ≥ 50 kW to 150 kW made from ferrous materials<br />

HW Water hardness<br />

V max Maximum fill and top-up water over the entire service life<br />

of the boiler<br />

1 Boilers up to 150 kW<br />

2 Boilers up to 130 kW<br />

3 Boilers up to 110 kW<br />

Example<br />

Given:<br />

• Boiler output Q =105 kW<br />

• System volume VA = approx. 1.1 m 3<br />

Result:<br />

• At a water hardness level of 22 °dH, the maximum<br />

amount of fill and top-up water is approx. 1.8 m 3 .<br />

• This system can be filled with untreated tap water.<br />

Regulations and operating conditions<br />

0<br />

0 5 10 15 20 25 30<br />

HW (°dH)<br />

6 720 640 417-35.1il<br />

1<br />

2<br />

3<br />

Measures are required above these output<br />

curves; fill with untreated tap water below the<br />

curves. In multi-boiler systems (< 600 kW<br />

total boiler output) the output curves for the<br />

smallest single boiler apply.<br />

One suitable measure for boilers made from<br />

ferrous material is, for example, total<br />

softening ( current <strong>Buderus</strong> catalogue,<br />

technical customer service, provision of<br />

mobile water treatment systems).<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 21<br />

4


22<br />

4 Regulations and operating conditions<br />

V max (m 3 )<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30<br />

6 720 640 417-36.1il<br />

Fig. 17 Boilers > 150 kW to 600 kW made from ferrous materials<br />

HW Water hardness<br />

V max Maximum fill and top-up water over the entire service life<br />

of the boiler<br />

1 Boilers up to 600 kW<br />

2 Boilers up to 500 kW<br />

3 Boilers up to 400 kW<br />

4 Boilers up to 300 kW<br />

5 Boilers up to 250 kW<br />

6 Boilers up to 200 kW<br />

Example<br />

Given:<br />

• Boiler output Q =295 kW<br />

• System volume VA = approx. 7.5 m 3<br />

Result:<br />

• At a water hardness level of 18 °dH, the maximum<br />

amount of fill and top-up water is approx. 6.0 m 3 .<br />

• The amount of fill water is already greater than the<br />

permissible amount of fill and top-up water. Fill the<br />

system with treated water.<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Measures are required above these output<br />

curves; fill with untreated tap water below the<br />

curves. In multi-boiler systems (< 600 kW<br />

total boiler output) the output curves for the<br />

smallest single boiler apply.<br />

H W (°dH)<br />

One suitable measure for boilers made from<br />

ferrous material is, for example, total<br />

softening ( current <strong>Buderus</strong> catalogue,<br />

technical customer service, provision of<br />

mobile water treatment systems).<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


4.5.6 Recording the amounts of fill and top-up<br />

water<br />

For heating systems > 50 kW, VDI 2035-1 specifies the<br />

fitting of a water meter and the keeping of a system log.<br />

You will find the log with the technical documents<br />

supplied with <strong>Buderus</strong> boilers. Warranty claims in respect<br />

of <strong>Buderus</strong> boilers are only valid in conjunction with the<br />

requirements specified herein and a fully completed log.<br />

4.5.7 Calculation to determine the permissible<br />

amounts of fill and top-up water<br />

The fill and top-up water has to meet certain requirements<br />

depending on the total boiler output and the resulting<br />

water volume of a heating system.<br />

Use the following formula to calculate the maximum<br />

amount of fill water for heating systems ≤ 600 kW that<br />

may be introduced without treatment:<br />

Form. 1 Calculation of the maximum amount of water<br />

that may be introduced without treatment<br />

Ca(HCO3)2 Calcium hydrogen carbonate concentration<br />

in mol/m 3<br />

Q Boiler output in kW (in case of multi-boiler<br />

V max<br />

V max<br />

systems the output of the smallest boiler)<br />

Maximum volume of untreated fill and top-up<br />

water in m 3 that may be introduced over the entire<br />

service life of the boiler<br />

Example<br />

Calculation of the maximum permissible amount of fill and<br />

top-up water Vmax for a heating system with a total boiler<br />

output of 420 kW. The analysis values for carbonate<br />

hardness and calcium hardness are quoted in the older<br />

unit °dH.<br />

Carbonate hardness: 15.7 °dH<br />

Calcium hardness: 11.9 °dH<br />

From the carbonate hardness, we obtain:<br />

Ca (HCO3 ) 2 = 15.7 °dH × 0.179 = 2.8 mol/m3 From the calcium hardness, we obtain:<br />

Ca (HCO3 ) 2 = 11.9 °dH × 0.179 = 2.13 mol/m3 The lower of the two values calculated from the calcium<br />

and carbonate hardness is the definitive figure for<br />

calculating the maximum permissible water volume Vmax. V max<br />

Q<br />

= 0,0626 × -------------------------------<br />

Ca( HCO3) 2<br />

420 kW<br />

0,0626<br />

2,13 mol/m 3<br />

× ------------------------------- 12,3 m 3<br />

= =<br />

Regulations and operating conditions<br />

4.5.8 Chemical heating water additives<br />

If plastic pipes that are permeable to oxygen are used in<br />

underfloor heating systems, the corrosion process can be<br />

prevented by adding chemicals into the heating water. In<br />

such cases, ask the manufacturer of these chemical<br />

additives for a certificate verifying the compatibility with<br />

different parts of the system and the materials used in the<br />

heating system.<br />

Chemical additives for which no such<br />

certificate of compatibility can be issued by<br />

the manufacturer must not be used.<br />

Use of antifreeze<br />

For decades now, antifreeze based on glycol has been<br />

used in heating systems. For example, Antifrogen N made<br />

by Clariant (sold via the <strong>Buderus</strong> wholesale network).<br />

The use of alternatives is acceptable, subject to such<br />

products being the equivalent of Antifrogen N.<br />

Observe the information supplied by the antifreeze<br />

manufacturer. Follow the manufacturer's details regarding<br />

mixing ratios.<br />

The specific thermal capacity of Antifrogen N antifreeze is<br />

lower than the specific thermal capacity of water. To<br />

enable the transfer of the required heat output, increase<br />

the required flow rate accordingly. This should be taken<br />

into account when sizing system components (e.g.<br />

pumps) and the pipework. In addition, a higher flue gas<br />

temperature results, lowering the boiler efficiency.<br />

As the heat transfer medium has a higher viscosity and<br />

density than water, take the higher pressure drop through<br />

the pipework and other system components into account.<br />

The resistance of all plastic components in the system<br />

must be checked separately.<br />

4.5.9 Combustion air<br />

Where combustion air is concerned, ensure that it is not<br />

heavily contaminated with dust and contains no<br />

halogenated compounds. Otherwise there would be a risk<br />

of damage to the combustion chamber and the secondary<br />

heating surfaces.<br />

Halogenated compounds are highly corrosive. These are<br />

contained, for example, in spray cans, thinners, cleaning &<br />

degreasing agents and in solvents.<br />

Design the combustion air supply so that, for example, no<br />

extract air is drawn in from chemical cleaners or paint<br />

shops. Special requirements apply to the supply of<br />

combustion air in the installation room ( page 49).<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 23<br />

4


24<br />

5 Heating controls<br />

5 Heating controls<br />

5.1 Logamatic 4000 control system<br />

A control unit is required to operate boilers. The <strong>Buderus</strong>-<br />

Logamatic control systems are of modular design. This<br />

enables the system to be matched affordably to the<br />

individual applications and equipment installed in the<br />

intended heating system.<br />

Subject to requirements and the heating system layout,<br />

the following are available for selection as the boiler<br />

control system:<br />

• Logamatic 4212 control unit (ZM427 for boiler<br />

operating conditions)<br />

• Logamatic 4321 and 4322 control units<br />

• Logamatic 4411 control panel system<br />

The power contactors of the burner switched by the<br />

control unit may require a burner control panel. As an<br />

alternative, the power contactors may also be integrated<br />

into the <strong>Buderus</strong> control panel system.<br />

The technical guide “Modular Logamatic<br />

4000 control system” contains more detailed<br />

information on the Logamatic 4212, 4321<br />

and 4322 control units.<br />

5.1.1 Logamatic 4212 control unit<br />

The conventional Logamatic 4212 control unit is suitable<br />

for operation with a constant boiler water temperature.<br />

Where a higher-ranking control is used, e.g. a<br />

Logamatic 4411 (DDC systems and building<br />

management systems), the Logamatic 4212 transfers<br />

the burner switching commands to the burner.<br />

The standard equipment contains the safety equipment<br />

for a 2-stage burner operation. Boiler circuit actuators and<br />

boiler circuit pumps can be switched with the ZM427<br />

auxiliary module, thereby safeguarding the boiler<br />

operating conditions. Furthermore, the ZM427 module<br />

facilitates an enabling of the burner stages with a higherranking<br />

control using floating contacts.<br />

5.1.2 Logamatic 4321 and Logamatic 4322<br />

control units<br />

The Logamatic 4321 control unit enables the low<br />

temperature operation of these boilers and provides the<br />

operating conditions in conjunction with the 2-stage or<br />

modulating burner in a single boiler system.<br />

Up to eight heating circuits with actuator can be<br />

controlled with corresponding function modules. The<br />

range of functions also includes the complete boiler<br />

circuit control with optional switching of a boiler circuit<br />

actuator and one boiler circuit pump.<br />

2 and 3-boiler systems require a Logamatic 4321 control<br />

unit that functions as “Master” for the first boiler and one<br />

Logamatic 4322 control unit each as lag appliance for the<br />

second and third boiler. The combination of devices with<br />

corresponding function modules can control up to 22<br />

heating circuits with actuator.<br />

5.1.3 Logamatic 4411 control panel system<br />

The Logamatic 4411 control panel system from <strong>Buderus</strong><br />

is the comprehensive solution, representing advanced<br />

control technology for complex heating systems that<br />

require a system-specific control.<br />

The local sales office assists with the engineering and<br />

supplies optimum system solutions for each individual<br />

case. This also applies to programmable logic controls<br />

(DDC systems) and building management systems.<br />

5.2 Logamatic telecontrol system<br />

The Logamatic telecontrol system is the ideal addition to<br />

all <strong>Buderus</strong> control systems. It comprises several<br />

software and hardware components and enables heating<br />

contractors to provide even better customer support and<br />

services via a powerful remote control facility. It can be<br />

used in rental apartment buildings, holiday homes as well<br />

as in medium and large heating systems. The Logamatic<br />

telecontrol system is suitable for remote monitoring,<br />

parameter setting and fault diagnosis in heating systems.<br />

It offers ideal conditions for heat supply concepts and<br />

maintenance and inspection contracts.<br />

The technical guide “Logamatic Telecontrol<br />

system” contains more detailed information.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


6 DHW heating<br />

6.1 Systems for DHW heating<br />

The <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature boilers<br />

can also be used to provide DHW heating. The <strong>Buderus</strong><br />

Logalux DHW cylinders that are matched to the boiler<br />

output can be used. These are available as vertical and<br />

horizontal versions in different sizes with 150 l to 6000 l<br />

capacity. Subject to application, they are equipped with<br />

an internal indirect coil or an external heat exchanger<br />

( Fig. 18 and Fig. 19).<br />

Fig. 18 DHW heating according the cylinder principle<br />

with internal indirect coils<br />

VH<br />

RH<br />

VS<br />

RS<br />

Fig. 19 DHW heating according to the primary store<br />

principle with external heat exchangers<br />

Key to Fig. 18 and Fig. 19:<br />

AW DHW outlet<br />

EK Cold water inlet<br />

RH Fuel return (to the boiler)<br />

RS Cylinder return<br />

VH Fuel flow (from the boiler)<br />

VS Cylinder flow<br />

AW<br />

The cylinders can be used singly or in combination with<br />

other cylinders. With the primary store system, different<br />

cylinder sizes and different heat exchanger sets can be<br />

combined. System solutions are therefore available for<br />

any demand and many applications.<br />

EK<br />

6 720 640 417-11.1il<br />

AW<br />

EK<br />

6 720 640 417-12.1il<br />

DHW heating<br />

6.2 DHW temperature controller<br />

The DHW temperature is set and regulated either by<br />

means of a module inside the boiler control unit or via a<br />

separate control unit dedicated to DHW heating. The<br />

control units for DHW heating are specifically matched to<br />

the heating control unit and offer many application<br />

options. For more detailed information in this connection,<br />

see the technical guides “Sizing and selecting DHW<br />

cylinders” and “Modular control system Logamatic 4000”.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 25<br />

6


26<br />

7 System examples<br />

7 System examples<br />

7.1 Information regarding all system examples<br />

The examples in this section show options for<br />

hydraulically connecting the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

low temperature boilers without safety criteria.<br />

For detailed information regarding the number, equipment<br />

level and control of the heating circuits as well as on the<br />

installation of DHW cylinders and other consumers, see<br />

the respective technical guides.<br />

The DHW heating systems shown can be implemented as<br />

DHW cylinder or primary store system.<br />

This particular system example does not represent a<br />

binding recommendation for implementing a specific<br />

heating network. The practical implementation is subject<br />

to currently applicable technical rules.<br />

Information regarding further options for system layout<br />

and engineering aids are available from the staff in<br />

<strong>Buderus</strong> sales offices.<br />

7.1.1 Hydraulic connection<br />

Steps for controlling the return and boiler water<br />

temperature<br />

The <strong>Buderus</strong> Logamatic 4321, 4322 and 4212 control<br />

units with the ZM427 auxiliary module, together with the<br />

corresponding boiler or heating circuit actuators, ensure<br />

the required minimum return temperature.<br />

Alternatively, the Logamatic 4321 and 4322 control units<br />

enable operation with minimum boiler water temperature.<br />

Allow for the temperature sensors required<br />

for raising the return temperature as<br />

immersion sensors.<br />

For demand-dependent system suggestions with<br />

explanations of the respective functions and application<br />

limits, see page 30 to page 46.<br />

Heating circuit pumps<br />

Size pumps in central heating systems in accordance with<br />

current technical rules.<br />

Dirt traps<br />

Deposits in heating systems can lead to local overheating,<br />

noise and corrosion. Any resulting boiler damage falls<br />

outside the warranty obligations.<br />

To remove dirt and sludge deposits, flush the heating<br />

system thoroughly prior to installing and commissioning a<br />

boiler in an existing system. In addition, we recommend<br />

the installation of dirt traps or a blow-down facility.<br />

Dirt traps retain contaminants and thereby prevent<br />

operating faults in control devices, pipework and boilers.<br />

Fit these near the lowest point of the heating system in an<br />

easily accessible position. Clean the dirt traps every time<br />

the heating system is serviced.<br />

Position of strategy flow temperature sensor<br />

In multi-boiler systems with strategy flow temperature<br />

sensor (FVS), the sensor should be located as close to<br />

the boiler system as possible. This rule does not apply if a<br />

low loss header is used to provide hydraulic balance.<br />

Additional time lag due to long distances between the<br />

boiler system and the strategy flow temperature sensor<br />

has a negative effect on the control characteristics,<br />

especially in the case of boilers with modulating-control<br />

burners.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


7.1.2 Control<br />

Operating temperatures should be controlled with the<br />

Logamatic control unit taking account of the outside<br />

temperature. The room temperature dependent control of<br />

individual heating circuits (with room temperature sensor<br />

in a reference room) is an option. For this, actuators and<br />

heating circuit pumps are switched constantly by the<br />

Logamatic control unit. Number and version of the<br />

controllable heating circuits are dependent on the<br />

selection and equipment level of the control unit. The<br />

Logamatic control unit also switches the burner,<br />

independently of whether these are 2-stage or modulating<br />

pressure-jet burners. Different burner types can be<br />

combined in multi-boiler systems. 3-phase burner and<br />

3-phase pumps must be electrically connected on site.<br />

These are switched by the Logamatic control unit (230 V).<br />

The technical documents of the control units<br />

include detailed information.<br />

7.2 Safety equipment to DIN-EN 12828 and DIN-EN 12953-6<br />

7.2.1 Requirements<br />

The diagrams and corresponding technical information in<br />

connection with system examples do not cover all<br />

available options. Each system example does not<br />

represent a binding recommendation for a specific<br />

heating network implementation. The practical<br />

implementation is subject to currently applicable technical<br />

rules. Safety equipment shall be installed in accordance<br />

with local regulations.<br />

DIN-EN 12828 specifies the safety equipment for safety<br />

temperatures up to 110 °C. For safety temperatures in<br />

excess of 110 °C refer to DIN-EN 12953-6.<br />

Furthermore, consider the additional requirements<br />

regarding the system operation as specified in the Health<br />

& Safety at Work Act. The schematic diagrams in Fig. 20<br />

to Fig. 23 can be used as engineering aids.<br />

System examples<br />

7.1.3 DHW heating<br />

Given an appropriate design, the DHW temperature<br />

control by means of a Logamatic control unit offers<br />

special functions, such as the switching of a DHW<br />

circulation pump or thermal disinfection to protect against<br />

the growth of legionella bacteria, for example.<br />

In this connection, the technical guide<br />

“Sizing and selecting DHW cylinders”<br />

provides detailed information.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 27<br />

7


28<br />

7 System examples<br />

7.2.2 Arrangement of safety equipment to DIN-EN 12828; operating temperature ≤ 105 °C;<br />

shutdown temperature (high limit safety cut-out) ≤ 110 °C<br />

Boiler ≤ 300 kW; operating temperature ≤ 105 °C;<br />

shutdown temperature (high limit safety cut-out)<br />

≤ 110 °C – direct heating<br />

6/7<br />

11<br />

3 1)<br />

12 13<br />

1<br />

2<br />

4 1)<br />

≤ 300 kW<br />

Fig. 20 Safety equipment to DIN-EN 12828 for boilers<br />

≤ 300 kW with high limit safety cut-out ≤ 110 °C<br />

The figures show the safety equipment to DIN-EN 12828<br />

schematically for the system version – although other<br />

options are available. The practical implementation is<br />

subject to currently applicable technical rules.<br />

5 1)<br />

15<br />

14 15<br />

2 13<br />

10<br />

16<br />

13<br />

17<br />

VK<br />

RK<br />

6 720 640 417-13.1il<br />

Boiler > 300 kW; operating temperature ≤ 105 °C;<br />

shutdown temperature (high limit safety cut-out)<br />

≤ 110 °C – direct heating<br />

8<br />

0,5 %<br />

6/7<br />

11<br />

3 1)<br />

12 13<br />

Fig. 21 Safety equipment to DIN-EN 12828 for boilers<br />

> 300 kW with high limit safety cut-out<br />

≤ 110 °C<br />

Key to Fig. 20 and Fig. 21:<br />

RK Return<br />

VK Flow<br />

1 Heat source<br />

2 Shut-off valve, flow/return<br />

3 Temperature controller (TR)<br />

4 High limit safety cut-out (STB)<br />

5 Temperature measuring facility<br />

6 Diaphragm safety valve MSV 2.5 bar/3.0 bar or<br />

7 Lift spring, safety valve HFS ≥ 2.5 bar<br />

8 Flash trap (ET); not required in systems > 300 kW if,<br />

instead, a high limit safety cut-out ≤ 110 °C and a<br />

maximum pressure limiter per boiler is additionally<br />

provided<br />

9 Maximum pressure limiter<br />

10 Pressure gauge<br />

11 Low water indicator (not in systems ≤ 300 kW).<br />

Alternatively one minimum pressure limiter or a<br />

replacement measure approved by the manufacturer is<br />

provided for each boiler<br />

12 Non-return valve<br />

13 Boiler drain & fill valve (KFE)<br />

14 Expansion line<br />

15 Shut-off valve with lockout against unintentional closure,<br />

e.g. by sealed cap valve<br />

16 Drain upstream of diaphragm expansion vessel<br />

17 Diaphragm expansion vessel (DIN-EN 13831)<br />

1) The maximum achievable flow temperature in combination<br />

with Logamatic control units is approx. 18 K lower than the<br />

shutdown temperature (high limit safety cut-out).<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

1<br />

2<br />

4 1)<br />

> 300 kW<br />

5 1)<br />

15<br />

14 15<br />

2 13<br />

10 9<br />

P<br />

16<br />

13<br />

17<br />

VK<br />

RK<br />

6 720 640 417-14.1il


7.2.3 Arrangement of safety equipment to DIN-EN 12953-6;<br />

shutdown temperature (high limit safety cut-out) > 110 °C<br />

Shutdown temperature (high limit safety cut-out)<br />

> 110 °C, example 1 - direct heating<br />

6 720 640 417-15.1il<br />

Fig. 22 Safety equipment to DIN-EN 12953-6 for<br />

boilers with high limit safety cut-out > 110 °C;<br />

example: Maintaining pressure via a gas buffer<br />

The figures show the safety equipment to DIN-EN 12953-<br />

6 schematically for the system version – although other<br />

options are available.<br />

These figures only show versions where pressure is<br />

maintained via a gas buffer and a pressure maintaining<br />

pump. Additional versions which maintain pressure by<br />

means of various safety equipment can be identified in<br />

DIN-EN 12953-6.<br />

With high limit safety cut-out > 110 °C, long term<br />

requirements (e.g. regular inspections etc.) in accordance<br />

with the Health & Safety at Work Act must be observed.<br />

The practical implementation is subject to currently<br />

applicable technical rules. Implementing the system<br />

engineering with reference to the responsible supervisory<br />

authority is recommended.<br />

System examples<br />

Shutdown temperature (high limit safety cut-out)<br />

> 110 °C, example 2 - direct heating<br />

Fig. 23 Safety equipment to DIN-EN 12953-6 for<br />

boilers with high limit safety cut-out > 110 °C;<br />

example: Maintaining pressure via a pressure<br />

maintaining pump<br />

Key to Fig. 22 and Fig. 23:<br />

RK Return<br />

VK Flow<br />

1 Hot water boiler<br />

2 Maximum pressure limiter [PSZ+A+]<br />

3 Pressure gauge<br />

4 Water level controller<br />

5 Flash trap<br />

6 Safety valve<br />

7 Minimum water level limiter [LSZ-A]<br />

8 Temperature limiter [TZA+A+]<br />

9 Temperature controller<br />

10 Temperature indicator<br />

11 Fill sample facility for checking the water level<br />

12 Shut-off valve - locked to prevent unintentional closing<br />

13 Sealed unvented expansion vessel<br />

14 Minimum pressure limiter [PSZ-A-]<br />

15 Non-return valve<br />

17 Shut-off valve<br />

18 Pipe to the sealed unvented expansion vessel<br />

19 Feed pump<br />

20 Heating facility<br />

22 Pressure maintaining pump<br />

23 Pressure regulator<br />

24 Automatic shut-off valve (N/C)<br />

25 Water level indicator<br />

26 Open vented expansion vessel<br />

27 Pressure maintaining valve - if N/C or if the actual pressure<br />

is lower than the minimum pressure, then item 24 may be<br />

omitted<br />

28 Shut-off valve with optional connection for test pressure<br />

gauge<br />

30 Minimum temperature controller (if required)<br />

31 Drainage system<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 29<br />

7<br />

6 720 640 417-16.1il


30<br />

7 System examples<br />

7.3 Sizing and installation information<br />

7.3.1 Boiler circuit pump in the bypass as shunt pump<br />

Fig. 24 Sample hydraulic circuit for a single boiler system with boiler circuit pump in the bypass for <strong>Logano</strong> <strong>SK645</strong><br />

and <strong>SK745</strong><br />

FR Return temperature sensor<br />

KR Check valve<br />

PK Boiler circuit pump<br />

RK Return<br />

SR Actuator, return temperature raising facility<br />

SV Safety valve<br />

V HK Heating circuit flow rate<br />

VK Flow<br />

V PK Boiler circuit pump flow rate<br />

VSL Safety flow<br />

PK KR<br />

VK A B RK<br />

Boiler circuit pump flow rate V PK<br />

The boiler circuit pump, also referred to as a shunt pump,<br />

is required to regulate the return temperature (sensor<br />

flow). The boiler circuit pump can also be used to<br />

optimise the control characteristics. This makes it<br />

possible to minimise the switching events during the heatup<br />

process. This results in lower emissions.<br />

V PK<br />

Form. 2 Calculating the flow rate of the boiler circuit<br />

pump<br />

c Specific thermal capacityc = 1.16 × 10-3 kWh/(l × K) =<br />

1/860 kWh/(l × K)<br />

Δϑ K Temperature differential for sizing the boiler circuit pump<br />

30 K to 50 K (30 K for optimised heat-up characteristics)<br />

Q K Rated heat output in kW<br />

V PK Boiler circuit pump flow rate in l/h<br />

VSL<br />

SV<br />

QK = -------------------<br />

ΔϑK × c<br />

SR<br />

E H<br />

C D<br />

V PK<br />

FR<br />

F<br />

G<br />

V HK<br />

90 °C<br />

70 °C<br />

6 720 640 417-17.1il<br />

Heating circuit flow rate V HK<br />

QHK VHK =<br />

---------------------------------<br />

( ϑV – ϑR) × c<br />

Form. 3 Calculating the flow rate of the heating circuits<br />

c Specific thermal capacityc = 1.16 × 10-3 kWh/(l × K) =<br />

1/860 kWh/(l × K)<br />

QHK Heating circuit heat input demand in kW<br />

ϑR Heating circuit return temperature in °C<br />

ϑV Heating circuit flow temperature in °C<br />

VHK Heating circuit flow rate in l/h<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


Total boiler flow rate VKges The boiler circuit pump head results from the following:<br />

• Boiler pressure drop at the selected flow rate VPK • Pipework pressure drop<br />

• Individual pressure drop values in the boiler circuit<br />

(Line: A–C–D–B, Fig. 24)<br />

The total boiler flow rate cannot simply be calculated by<br />

adding up the individual flow rates, because of the pump<br />

and system curves. However, as a first estimate, the<br />

simple addition is suitable to get an approximation of a<br />

solution.<br />

Form. 4 Calculating the total boiler flow rate<br />

VHK VKges V PK<br />

Base the sizing of the pipework in the boiler<br />

circuit on a flow velocity of 1 m/s to 1.5 m/s.<br />

VKges ≤<br />

VPK + VHK Heating circuit flow rate in l/h<br />

Maximum total flow rate through the boiler in l/h<br />

(approximation)<br />

Boiler circuit pump flow rate in l/h<br />

Example<br />

Given:<br />

• Rated output QK = 1200 kW<br />

• Heating circuit flow temperature ϑV = 90 °C<br />

• Heating circuit return temperature ϑR = 70 °C<br />

• Temperature differential (selected) ΔϑK = 30 K<br />

Result:<br />

• VPK = 34400 l/h (Line: C–D, Fig. 24)<br />

• VHK = 51600 l/h<br />

(Lines: C–F, D–G and E–H, Fig. 24)<br />

• VKges ~ 86000 l/h<br />

(Lines: A–C and B–D, Fig. 24)<br />

System examples<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 31<br />

7


32<br />

7 System examples<br />

7.3.2 Boiler circuit pump as primary circuit pump<br />

B G<br />

V PK2<br />

SV<br />

SV<br />

VK A H RK VK A H RK<br />

VSL VSL<br />

Fig. 25 Sample hydraulic circuit for a 2-boiler system with boiler circuit pump as primary circuit pump for<br />

<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

FR Return temperature sensor<br />

FVS Strategy flow temperature sensor<br />

PK Boiler circuit pump<br />

RK Return<br />

SR Actuator, return temperature raising facility<br />

SV Safety valve<br />

V HK Heating circuit flow rate<br />

VK Flow<br />

V PK Boiler circuit pump flow rate<br />

VSL Safety flow<br />

Boiler circuit pump flow rate V PK<br />

For systems with primary circuit pumps (e.g. in the case of<br />

low loss headers or non-pressurised distributors)<br />

installing the boiler circuit pump into the return is<br />

recommended.<br />

Form. 5 Approximation formula with sizing factor for the<br />

flow rate of the boiler circuit pump in a single<br />

boiler system<br />

Form. 6 Approximation formula with sizing factor for the<br />

flow rate of the boiler circuit pump in a 2-boiler<br />

system<br />

Size of calculation for formula 5 and formula 6:<br />

VHK Heating circuit flow rate in l/h<br />

VKges Total flow rate of the boiler circuit in l/h<br />

In 2-boiler systems, split the pump rate of the boiler circuit<br />

pumps according to the respective boiler output. Where<br />

several heating circuits are constantly operated with high<br />

flow temperatures and maximum flow rate, the flow rate of<br />

each boiler circuit pump should correspond to the flow<br />

rate of the heating circuit pumps. For systems with gas<br />

condensing boilers, there are special requirements, e.g.<br />

SR2<br />

PK2<br />

VKges, 1 = VHK × (1,0 ... 1,2)<br />

VKges, 2 =<br />

VHK × (1,2 ... 1,5)<br />

C D<br />

B G<br />

V PK1<br />

F<br />

SR1<br />

PK1<br />

FR2 FR1<br />

E<br />

FVS<br />

90 °C<br />

70 °C<br />

maintenance of as low a return temperature as possible.<br />

The pump rate of the boiler circuit pump may need to be<br />

adjusted to the pump rate of the heating circuits.<br />

Sizing the 3-way valve<br />

Size the 3-way valve for the respectively calculated flow<br />

rate. For this, observe the pressure drop when the valve is<br />

fully open, as the control quality is influenced by the<br />

proportional pressure drop.<br />

Primary circuit pump head<br />

The boiler circuit pump head results from the following:<br />

• Boiler pressure drop at the selected flow rate V PK<br />

• Pipework pressure drop<br />

• Individual pressure drop values in the boiler circuit<br />

(Line: A–D–E–H, Fig. 25)<br />

Example<br />

Given:<br />

• Heating circuit heat input demand SQHK = 4000 kW<br />

• Heating circuit flow temperature ϑV = 90 °C<br />

• Heating circuit return temperature ϑR = 70 °C<br />

• Sizing factor (selected) = 1.3<br />

• Heating circuit flow rate VHK = 172000 l/h<br />

Result:<br />

• VKges = VHK × 1.3 = 172000 l/h × 1.3 = 223600 l/h<br />

(lines: C–D and E–F, Fig. 25)<br />

The total flow rate calculated for the boiler side should be<br />

split according to the rated output (in this case 50/50 %):<br />

• Boiler circuit pump flow rate<br />

VPK = 111800 l/h<br />

(lines: A–C, B–G and F–H, Fig. 25)<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

V HK<br />

6 720 640 417-18.1il


7.3.3 Low loss header<br />

A low loss header (hydraulic balancing line) is designed to<br />

provide hydraulic separation between the boiler circuit<br />

and the heating circuits.<br />

Installing a low loss header brings many benefits:<br />

• Sizing boiler circuit pump and actuators is made easy.<br />

• Mutual influencing between the heating water flow<br />

inside the boiler and in the heat consumer circuits is<br />

prevented.<br />

• Boiler and heat consumers are only supplied with the<br />

assigned water flow.<br />

• May be used in single and multi-boiler systems, subject<br />

to the heating circuit control system.<br />

• Actuators on both sides of the low loss header provide<br />

optimum operation if they are sized correctly.<br />

• The hydraulic balancing line can also be used as a<br />

sludge trap, subject to being sized correctly<br />

( page 26).<br />

• Where there is a major pressure drop on the water side<br />

and with large distances between boiler and heating<br />

circuits, a split into primary and secondary side is<br />

possible.<br />

Sizing the low loss header<br />

Correct sizing is crucial to the function of the low loss<br />

header. To safeguard a good separation with<br />

simultaneous function as a sludge trap, size the pipework<br />

so that there is practically no pressure drop between the<br />

flow and return. At the nominal amount of water, a flow<br />

velocity of 0.1 m/s to 0.2 m/s can be expected. This also<br />

enables the simultaneous use as a sludge trap. To be able<br />

to capture the heating circuit flow temperature, provide a<br />

sensor well of 200 mm to 300 mm length in the upper<br />

area of the hydraulic balancing line on the heating circuit<br />

side.<br />

D<br />

=<br />

VK,ges 1<br />

-------------- × ------------v<br />

2827<br />

Form. 7 Calculating the size of the low loss header<br />

D Diameter of the hydraulic balancing line in m<br />

v Flow velocity in m/s<br />

VKges Total flow rate of the boiler circuit in m3/h<br />

System examples<br />

Example<br />

Given:<br />

• Total flow rate VKges = 223.6 m3 /h<br />

• Flow velocity (assumption) v = 0.2 m/s<br />

Result:<br />

• Diameter of the hydraulic balancing line<br />

D ~ 0.63 m<br />

Fig. 26 Main diagram of a low loss header<br />

RH Heating system return<br />

RK Return<br />

VH Heating system flow<br />

VK Flow<br />

1 Female connection for one air vent valve<br />

2 Female connection for a sensor well ½ "<br />

3 Perforated divider<br />

4 Quick-action shut-off valve<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 33<br />

VK<br />

RK<br />

4<br />

D 1<br />

2<br />

3<br />

VH<br />

5 × D<br />

RH<br />

3–4 × D<br />

D<br />

6 720 640 417-19.1il<br />

7


34<br />

7 System examples<br />

7.4 Single boiler system <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with boiler control unit<br />

Fig. 27 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

FB DHW temperature sensor<br />

FK Boiler water temperature sensor<br />

FV Flow temperature sensor<br />

FZ Auxiliary temperature sensor<br />

HK Heating circuit<br />

KR Check valve<br />

PH Heating circuit pump<br />

PK Boiler circuit pump<br />

PS Cylinder primary pump<br />

PZ DHW circulation pump<br />

RK Return<br />

SH Heating circuit actuator<br />

SK Boiler circuit actuator<br />

VK Flow<br />

1) Number and layout of the heating circuits subject to the<br />

Logamatic control unit<br />

The circuit diagram is only a schematic<br />

illustration.<br />

Information for all system examples page 26.<br />

FB<br />

PZ<br />

KR<br />

PS<br />

KR<br />

FK<br />

SK<br />

PK<br />

VK RK<br />

<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />

FZ<br />

HK1<br />

Application range<br />

• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />

• Boiler control with a conventional Logamatic 4212<br />

control unit and ZM427 auxiliary module<br />

• Boiler circuit control with Logamatic 4321 control unit<br />

in conjunction with a third party heating circuit<br />

controller or with special applications<br />

Function description<br />

The Logamatic control unit safeguards the minimum boiler<br />

return temperature. If the actual return temperature<br />

captured by the FZ temperature sensor falls below the set<br />

value whilst the burner is switched on, the control unit<br />

reduces the system flow rate towards the boiler by<br />

switching the SK boiler circuit actuator. At the same time,<br />

hot water from the flow is mixed into the cold water<br />

returning from the system to achieve the set return<br />

temperature.<br />

The boiler circuit actuator is opened towards the<br />

consumer circuits once the minimum return temperature<br />

has been reached.<br />

Special engineering information<br />

• This arrangement is ideally suited for a modernised<br />

system where the heating circuit control is provided by<br />

the higher ranking control (third party control unit).<br />

• This requires an FZ auxiliary temperature sensor.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

HK2<br />

FV1 FV2<br />

PH1<br />

PH2<br />

SH1<br />

SH2<br />

M M<br />

1)<br />

6 720 640 417-20.1il


Selection of control equipment<br />

Logamatic 4212 control unit<br />

6 720 640 417-41.1il<br />

Logamatic 4212 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 42121) conventional control unit for mounting inside the<br />

boiler for operation with a constant boiler water temperature with<br />

TR (90/105 °C) temperature controller; for switching single and<br />

2-stage burners, with adjustable high limit safety cut-out (100/110/<br />

120 °C). Including burner cable, stage 2.<br />

Standard equipment<br />

Safety equipment<br />

ZM425 – Central module as display, incl. thermometer and burner<br />

fault indicator, with two slots for hours run meter for burner stages 1<br />

and 2<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

ZM427 – Auxiliary module to safeguard the boiler operating<br />

conditions for low temperature boilers with minimum return<br />

temperature, for steel boilers and gas condensing boilers with external<br />

condensing heat exchanger (actual flow temperature control) and to<br />

provide a hydraulic shut-off in multi-boiler systems, incl. flow<br />

temperature sensor<br />

ZB – Hours run meter<br />

Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />

Tab. 8 Optional equipment for the Logamatic 4212<br />

control unit in connection with the system<br />

example in Fig. 27<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

The technical documents of the control units include<br />

detailed information.<br />

System examples<br />

Logamatic 4321 control unit<br />

6 720 640 417-42.1il<br />

Logamatic 4321 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 43211) for a single boiler system or as the master control<br />

unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />

temperature controller and adjustable high limit safety cut-out (100/<br />

110/120 °C), for switching single stage, 2-stage or modulating<br />

burners. Including burner cable, stage 2, boiler water and outside<br />

temperature sensors. Can accommodate up to four function modules.<br />

Standard equipment<br />

Safety equipment<br />

CM431 – Controller module<br />

ZM432 – Central module for switching burners and boiler circuit<br />

functions; with manual operating level<br />

MEC2 – Digital programming unit for setting parameters and<br />

checking the control unit; integral room temperature sensor and radio<br />

clock receiver<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

FM441 – Function module for one heating circuit with mixer and<br />

one DHW circuit with DHW circulation pump; incl. DHW temperature<br />

sensor (up to one module per control unit)<br />

FM442 – Function module for two heating circuits with mixer; incl.<br />

one FV/FZ sensor set (up to four modules per control unit)<br />

Room installation set with wall retainer for MEC2 programming unit<br />

and boiler display<br />

Online set with online cable and wall retainer for MEC2 programming<br />

unit<br />

BFU – Remote control incl. room temperature sensor for controlling<br />

a heating circuit from the living space<br />

BFU/F – Remote control like the BFU, but with an integral radio<br />

clock receiver<br />

Separate room temperature sensor for BFU and BFU/F remote<br />

control units<br />

FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />

with mixers or auxiliary temperature sensors for boiler circuit functions;<br />

incl. connection plug and accessories<br />

FG – Flue gas temperature sensor for a digital display of the flue<br />

gas temperature; in a stainless steel sleeve; version suitable for<br />

positive pressure<br />

Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />

Tab. 9 Optional equipment for the Logamatic 4321<br />

control unit in connection with the system<br />

example in Fig. 27<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 35<br />

7


7 System examples<br />

7.5 Single boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers:<br />

Logamatic Boiler and heating circuit control with hydraulic separation<br />

Fig. 28 System example for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with Logamatic boiler and heating circuit control and hydraulic<br />

separation<br />

FK Boiler water temperature sensor<br />

FV Flow temperature sensor<br />

FZ Auxiliary temperature sensor<br />

HK Heating circuit<br />

KR Check valve<br />

PH Heating circuit pump<br />

PK Boiler circuit pump<br />

RK Return<br />

SH Heating circuit actuator<br />

THV Thermostatic valve<br />

VK Flow<br />

VR Return distributor<br />

VV Flow distributor<br />

WH Low loss header<br />

1) Alternative to low loss header (WH)<br />

36<br />

FK<br />

Application range<br />

• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />

• Logamatic boiler and heating circuit control<br />

• Hydraulic separation<br />

• Systems are laid out this way, if a feed pump is<br />

required, e.g. as a result of the sizing of the heating<br />

circuit pumps or if several distributor stations are<br />

required or if the distributor stations are installed at<br />

greater distances.<br />

Brief description of the system<br />

• Control of the minimum return temperature by xxxx of<br />

the heating circuit actuators<br />

• 2-stage or modulating burner operation<br />

• Simple layout<br />

KR<br />

PK<br />

VK RK<br />

<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />

The circuit diagram is only a schematic<br />

illustration.<br />

Information for all system examples page 26.<br />

FZ<br />

FK<br />

WH<br />

THV<br />

FV<br />

PH<br />

SH<br />

HK<br />

Function description<br />

The heating circuits are controlled via heating circuit<br />

modules. To achieve a raising of the return temperature,<br />

the switching of the heating circuit actuators is given a<br />

higher ranking order. The heating water flow rate to the<br />

boiler remains at a reduced level until the set return<br />

temperature is achieved by the flow water being mixed via<br />

the hydraulic separation. The heating circuit control will<br />

then be enabled again.<br />

Special engineering information<br />

• Size the boiler circuit pump for the maximum calculated<br />

flow rate and the pressure drop in the boiler circuit.<br />

Switch the pump to constant operation or with a run-on<br />

time of 60 minutes.<br />

• Allow for a low loss header or, alternatively, a<br />

distributor with bypass and non-return valve.<br />

• In conjunction with Logamatic control units, the<br />

maximum possible flow temperature for a heating<br />

circuit with mixer is 90 °C.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

VV<br />

VR<br />

1)<br />

KR<br />

6 720 640 417-46.1il


Selection of control equipment<br />

Logamatic 4321 control unit<br />

6 720 640 417-42.1il<br />

Logamatic 4321 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 43211) for a single boiler system or as the master control<br />

unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />

temperature controller and adjustable high limit safety cut-out (100/<br />

110/120 °C), for switching single stage, 2-stage or modulating<br />

burners. Including burner cable, stage 2, boiler water and outside<br />

temperature sensors. Can accommodate up to four function modules.<br />

Standard equipment<br />

Safety equipment<br />

CM431 – Controller module<br />

ZM432 – Central module for switching burners and boiler circuit<br />

functions; with manual operating level<br />

MEC2 – Digital programming unit for setting parameters and<br />

checking the control unit; integral room temperature sensor and radio<br />

clock receiver<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

FM441 – Function module for one heating circuit with mixer and<br />

one DHW circuit with DHW circulation pump; incl. DHW temperature<br />

sensor (up to one module per control unit)<br />

FM442 – Function module for two heating circuits with mixer; incl.<br />

one FV/FZ sensor set (up to four modules per control unit)<br />

Room installation set with wall retainer for MEC2 programming unit<br />

and boiler display<br />

Online set with online cable and wall retainer for MEC2 programming<br />

unit<br />

BFU – Remote control incl. room temperature sensor for controlling<br />

a heating circuit from the living space<br />

BFU/F – Remote control like the BFU, but with an integral radio<br />

clock receiver<br />

Separate room temperature sensor for BFU and BFU/F remote<br />

control units<br />

FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />

with mixers or auxiliary temperature sensors for boiler circuit functions;<br />

incl. connection plug and accessories<br />

FG – Flue gas temperature sensor for a digital display of the flue<br />

gas temperature; in a stainless steel sleeve; version suitable for<br />

positive pressure<br />

Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />

Tab. 10 Optional equipment for the Logamatic 4321<br />

control unit in connection with the system<br />

example in Fig. 29<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

The technical documents of the control units include<br />

detailed information.<br />

System examples<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 37<br />

7


38<br />

7 System examples<br />

7.6 Single boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with boiler and heating circuit<br />

control<br />

Fig. 29 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

FB DHW temperature sensor<br />

FK Boiler water temperature sensor<br />

FV Flow temperature sensor<br />

FZ Auxiliary temperature sensor<br />

HK Heating circuit<br />

KR Check valve<br />

PH Heating circuit pump<br />

PS Cylinder primary pump<br />

PZ DHW circulation pump<br />

RK Return<br />

SH Heating circuit actuator<br />

VK Flow<br />

1)<br />

Number and layout of the heating circuits subject to the<br />

Logamatic control unit<br />

FB<br />

PZ FK VK RK<br />

The circuit diagram is only a schematic<br />

illustration.<br />

Information for all system examples page 26.<br />

KR<br />

PS<br />

KR<br />

<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />

FZ<br />

FV1<br />

PH1<br />

SH1<br />

HK1<br />

FV2<br />

PH2<br />

SH2<br />

M M<br />

Application range<br />

• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />

• Boiler and heating circuit control (heating circuits with<br />

actuator) with Logamatic 4321 control unit<br />

Function description<br />

The Logamatic 4321 control unit safeguards the minimum<br />

boiler return temperature. If the actual return temperature<br />

captured by the FZ temperature sensor falls below the set<br />

value whilst the burner is switched on, the control unit<br />

reduces the system flow rate towards the heating circuit<br />

as a result of the higher ranking switching of the SH boiler<br />

circuit actuators. At the same time, hot water from the flow<br />

is mixed into the cold water returning from the system to<br />

achieve the set return temperature.<br />

When the minimum return temperature has been reached,<br />

the system switches over to heating circuit control.<br />

Special engineering information<br />

• This requires an FZ auxiliary temperature sensor.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

1)<br />

HK2<br />

6 720 64 0 417-21.1il


Selection of control equipment<br />

Logamatic 4321 control unit<br />

6 720 640 417-42.1il<br />

Logamatic 4321 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 43211) for a single boiler system or as the master control<br />

unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />

temperature controller and adjustable high limit safety cut-out (100/<br />

110/120 °C), for switching single stage, 2-stage or modulating<br />

burners. Including burner cable, stage 2, boiler water and outside<br />

temperature sensors. Can accommodate up to four function modules.<br />

Standard equipment<br />

Safety equipment<br />

CM431 – Controller module<br />

ZM432 – Central module for switching burners and boiler circuit<br />

functions; with manual operating level<br />

MEC2 – Digital programming unit for setting parameters and<br />

checking the control unit; integral room temperature sensor and radio<br />

clock receiver<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

FM441 – Function module for one heating circuit with mixer and<br />

one DHW circuit with DHW circulation pump; incl. DHW temperature<br />

sensor (up to one module per control unit)<br />

FM442 – Function module for two heating circuits with mixer; incl.<br />

one FV/FZ sensor set (up to four modules per control unit)<br />

Room installation set with wall retainer for MEC2 programming unit<br />

and boiler display<br />

Online set with online cable and wall retainer for MEC2 programming<br />

unit<br />

BFU – Remote control incl. room temperature sensor for controlling<br />

a heating circuit from the living space<br />

BFU/F – Remote control like the BFU, but with an integral radio<br />

clock receiver<br />

Separate room temperature sensor for BFU and BFU/F remote<br />

control units<br />

FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />

with mixers or auxiliary temperature sensors for boiler circuit functions;<br />

incl. connection plug and accessories<br />

FG – Flue gas temperature sensor for a digital display of the flue<br />

gas temperature; in a stainless steel sleeve; version suitable for<br />

positive pressure<br />

Sensor well R½ ,100 mm long for Logamatic cylindrical sensors<br />

Tab. 11 Optional equipment for the Logamatic 4321<br />

control unit in connection with the system<br />

example in Fig. 29<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

The technical documents of the control units include<br />

detailed information.<br />

System examples<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 39<br />

7


40<br />

7 System examples<br />

7.7 Single boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with boiler and heating circuit<br />

control as well as hydraulic balancing<br />

Fig. 30 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

FB DHW temperature sensor<br />

FK Boiler water temperature sensor<br />

FV Flow temperature sensor<br />

FZ Auxiliary temperature sensor<br />

HK Heating circuit<br />

HW Low loss header<br />

KR Check valve<br />

PH Heating circuit pump<br />

PK Boiler circuit pump<br />

PS Cylinder primary pump<br />

PZ DHW circulation pump<br />

RK Return<br />

SH Heating circuit actuator<br />

SK Boiler circuit actuator<br />

VK Flow<br />

1)<br />

FB<br />

Number and layout of the heating circuits subject to the<br />

Logamatic control unit<br />

PS<br />

The circuit diagram is only a schematic<br />

illustration.<br />

Information for all system examples page 26.<br />

PZ<br />

KR<br />

KR<br />

FK<br />

PK<br />

VK RK<br />

<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />

SK<br />

M<br />

FZ<br />

HW<br />

HK1<br />

Application range<br />

• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />

• Boiler control with a conventional Logamatic 4212<br />

control unit plus ZM427 auxiliary module<br />

• Heating circuit control and DHW heating by means of<br />

the higher ranking control unit or constant temperature<br />

mode<br />

Function description<br />

The Logamatic 4212 control unit safeguards the minimum<br />

boiler return temperature via the ZM427 auxiliary module.<br />

If the actual return temperature captured by the FZ<br />

temperature sensor falls below the set value whilst the<br />

burner is switched on, the control unit reduces the system<br />

flow rate towards the boiler by switching the SK boiler<br />

circuit actuator. At the same time, hot water from the flow<br />

is mixed into the cold water returning from the system to<br />

achieve the set return temperature. Once the minimum<br />

return temperature has been reached, the boiler circuit<br />

actuator opens towards the consumer circuits.<br />

Special engineering information<br />

• This arrangement is ideally suited for a modernised<br />

system where the heating circuit control is provided by<br />

the higher ranking control (third party control unit).<br />

• This requires an FZ auxiliary temperature sensor.<br />

• The boiler circuit flow rate must be greater than the<br />

heating circuit flow rate.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

HK2<br />

FV1 FV2<br />

PH1<br />

PH2<br />

SH1<br />

SH2<br />

M M<br />

1)<br />

6 720 640 417-22.1il


Selection of control equipment<br />

Logamatic 4212 control unit<br />

6 720 640 417-41.1il<br />

Logamatic 4212 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 42121) conventional control unit for mounting inside the<br />

boiler for operation with a constant boiler water temperature with<br />

TR (90/105 °C) temperature controller; for switching single and<br />

2-stage burners, adjustable high limit safety cut-out (95/100/110/<br />

120 °C). Including burner cable, stage 2.<br />

Standard equipment<br />

Safety equipment<br />

ZM425 – Central module as display, incl. thermometer and burner<br />

fault indicator, with two slots for hours run meter for burner stages 1<br />

and 2<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

ZM427 – Auxiliary module to safeguard the boiler operating<br />

conditions for low temperature boilers with minimum return<br />

temperature, for steel boilers and gas condensing boilers with external<br />

condensing heat exchanger (actual flow temperature control) and to<br />

provide a hydraulic shut-off in multi-boiler systems, incl. flow<br />

temperature sensor<br />

ZB – Hours run meter<br />

Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />

Tab. 12 Optional equipment for the Logamatic 4212<br />

control unit in connection with the system<br />

example in Fig. 30<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

The technical documents of the control units include<br />

detailed information.<br />

System examples<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 41<br />

7


42<br />

7 System examples<br />

7.8 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with boiler and heating circuit<br />

control plus hydraulic balancing<br />

FB<br />

KR<br />

Fig. 31 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

FB DHW temperature sensor<br />

FK Boiler water temperature sensor<br />

FV Flow temperature sensor<br />

FVS Strategy flow temperature sensor<br />

FZ Auxiliary temperature sensor<br />

HK Heating circuit<br />

HW Low loss header<br />

KR Check valve<br />

PH Heating circuit pump<br />

PK Boiler circuit pump<br />

PS Cylinder primary pump<br />

PZ DHW circulation pump<br />

RK Return<br />

SH Heating circuit actuator<br />

SK Boiler circuit actuator<br />

VK Flow<br />

1) Number and layout of the heating circuits subject to the<br />

Logamatic control unit<br />

2)<br />

Alternative to low loss header<br />

3) <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with return temperature<br />

raising facility<br />

Application range<br />

• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />

• Boiler circuit control with Logamatic 4321 and 4322<br />

control units and FM458 strategy module in<br />

conjunction with a third party heating circuit controller<br />

or with special applications<br />

FVS<br />

SK2 SK1<br />

M<br />

M<br />

FZ 3)<br />

PK2 PK1<br />

PZ FK2 VK RK<br />

FK1 VK RK<br />

KR<br />

PS<br />

The circuit diagram is only a schematic<br />

illustration.<br />

Information for all system examples page 26.<br />

(2)<br />

<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong> <strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />

(1)<br />

HW<br />

FZ 3)<br />

Function description<br />

Both boilers can be hydraulically isolated via the SK boiler<br />

circuit actuator. The boiler sequence can be switched<br />

according to load or time by means of the strategy<br />

module. Sequence reversal and operation in parallel or<br />

series can be selected by means of settings at the control<br />

unit. The lead boiler (1) starts when the actual<br />

temperature captured by the FVS strategy sensor falls<br />

below the set flow temperature. If the heat demand<br />

increases, the lag boiler (2) is automatically started and<br />

the SK boiler circuit actuator opens. With dropping load,<br />

the switching events are reversed.<br />

If the actual return temperature captured by the FZ<br />

temperature sensor falls below the set value whilst the<br />

burner is switched on, the control unit reduces the system<br />

flow rate towards the boiler by switching the SK boiler<br />

circuit actuator. At the same time, hot water from the flow<br />

is mixed into the cold water returning from the system to<br />

achieve the set return temperature.<br />

The boiler circuit actuator is opened towards the<br />

consumer circuits once the minimum return temperature<br />

has been reached.<br />

Special engineering information<br />

• This arrangement is ideally suited for a modernised<br />

system where the heating circuit control is provided by<br />

the higher ranking control (third party control unit).<br />

• A low loss header can also be used to provide sludge<br />

removal.<br />

• A low-pressure distributor with bypass can be used as<br />

an alternative to the low loss header.<br />

• This requires an FZ auxiliary temperature sensor.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

HK1<br />

HK2<br />

FV1 FV2<br />

PH1<br />

PH2<br />

SH1<br />

SH2<br />

M<br />

M<br />

1) KR<br />

2)<br />

6 720 640 417-25.1il


Selection of control equipment<br />

Logamatic 4321 control unit<br />

6 720 640 417-42.1il<br />

Logamatic 4321 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 43211) for a single boiler system or as the master control<br />

unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />

temperature controller and adjustable high limit safety cut-out (100/<br />

110/120 °C), for switching single stage, 2-stage or modulating<br />

burners. Including burner cable, stage 2, boiler water and outside<br />

temperature sensors. Can accommodate up to four function modules.<br />

Standard equipment<br />

Safety equipment<br />

CM431 – Controller module<br />

ZM432 – Central module for switching burners and boiler circuit<br />

functions; with manual operating level<br />

MEC2 – Digital programming unit for setting parameters and<br />

checking the control unit; integral room temperature sensor and radio<br />

clock receiver<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

FM441 – Function module for one heating circuit with mixer and<br />

one DHW circuit with DHW circulation pump; incl. DHW temperature<br />

sensor (up to one module per control unit)<br />

FM442 – Function module for two heating circuits with mixer; incl.<br />

one FV/FZ sensor set (up to four modules per control unit)<br />

Room installation set with wall retainer for MEC2 programming unit<br />

and boiler display<br />

Online set with online cable and wall retainer for MEC2 programming<br />

unit<br />

BFU – Remote control incl. room temperature sensor for controlling<br />

a heating circuit from the living space<br />

BFU/F – Remote control like the BFU, but with an integral radio<br />

clock receiver<br />

Separate room temperature sensor for BFU and BFU/F remote<br />

control units<br />

FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />

with mixers or auxiliary temperature sensors for boiler circuit functions;<br />

incl. connection plug and accessories<br />

FG – Flue gas temperature sensor for a digital display of the flue<br />

gas temperature; in a stainless steel sleeve; version suitable for<br />

positive pressure<br />

Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />

Tab. 13 Optional equipment for the Logamatic 4321<br />

control unit in connection with the system<br />

example in Fig. 31<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

The technical documents of the control units include<br />

detailed information.<br />

System examples<br />

Logamatic 4322 control unit<br />

6 720 640 417-44.1il<br />

Logamatic 4322 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 43221) as lag control unit for a second and third boiler in a<br />

multi-boiler system, with TR (90/105 °C) temperature controller and<br />

adjustable high limit safety cut-out (100/110/120 °C), for switching<br />

single stage, 2-stage or modulating burners. Including burner cable,<br />

stage 2 and boiler water temperature sensors. Can accommodate up<br />

to four function modules.<br />

Standard equipment<br />

Safety equipment<br />

CM431 – Controller module<br />

ZM432 – Central module for switching burners and boiler circuit<br />

functions; with manual operating level<br />

Boiler display to display the boiler water temperature at the control<br />

unit; may be extended with further modules<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

MEC2 – Digital programming unit in place of the boiler display for<br />

setting parameters and checking the control unit; integral room<br />

temperature sensor and radio clock receiver<br />

FM441 – Function module for one heating circuit with mixer and<br />

one DHW circuit with DHW circulation pump; incl. DHW temperature<br />

sensor (up to one module per control unit)<br />

FM442 – Function module for two heating circuits with mixer; incl.<br />

one FV/FZ sensor set (up to four modules per control unit)<br />

Online set with online cable and wall retainer for MEC2 programming<br />

unit<br />

BFU – Remote control incl. room temperature sensor for controlling<br />

a heating circuit from the living space<br />

BFU/F – Remote control like the BFU, but with an integral radio<br />

clock receiver<br />

Separate room temperature sensor for BFU and BFU/F remote<br />

control units<br />

FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />

with mixers or auxiliary temperature sensors for boiler circuit functions;<br />

incl. connection plug and accessories<br />

FA – Additional outside temperature sensor (up to one per<br />

control unit)<br />

FG – Flue gas temperature sensor for a digital display of the flue<br />

gas temperature; in a stainless steel sleeve; version suitable for<br />

positive pressure<br />

Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />

Tab. 14 Optional equipment for the Logamatic 4322<br />

control unit in connection with the system<br />

example in Fig. 31<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 43<br />

7


44<br />

7 System examples<br />

7.9 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> with boiler and heating circuit<br />

control plus hydraulic balancing<br />

FB<br />

PZ<br />

KR<br />

PS<br />

KR<br />

Fig. 32 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

FB DHW temperature sensor<br />

FK Boiler water temperature sensor<br />

FRS Strategy return temperature sensor<br />

FV Flow temperature sensor<br />

FVS Strategy flow temperature sensor<br />

HK Heating circuit<br />

HW Low loss header<br />

KR Check valve<br />

PH Heating circuit pump<br />

PK Boiler circuit pump<br />

PS Cylinder primary pumps<br />

PZ DHW circulation pump<br />

RK Return<br />

SH Heating circuit actuator<br />

VK Flow<br />

KR<br />

PK2<br />

1) Number and layout of the heating circuits subject to the<br />

Logamatic control unit<br />

2) Alternative to low loss header<br />

Application range<br />

• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />

• Boiler and heating circuit control (heating circuits with<br />

actuator) with Logamatic 4321 or 4322 control unit<br />

and FM458 strategy module<br />

Function description<br />

The boiler sequence can be switched on the basis of load<br />

and time by means of the strategy module. Sequence<br />

reversal and operation in parallel or series can be selected<br />

by means of settings at the control unit. The lead boiler (1)<br />

starts when the actual temperature captured by the FVS<br />

KR<br />

PK1<br />

FK2 VK RK<br />

FK1 VK RK<br />

(2)<br />

<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />

The circuit diagram is only a schematic<br />

illustration.<br />

Information for all system examples page 26.<br />

(1)<br />

<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />

FRS<br />

HW<br />

FVS<br />

strategy sensor falls below the set flow temperature. The<br />

lag boiler is hydraulically isolated by the KR check valve in<br />

the boiler flow. If the heat demand increases, the lag boiler<br />

(2) is automatically started. With dropping load, the<br />

switching events are reversed.<br />

The Logamatic control unit safeguards the actual return<br />

temperature for both boilers. If the actual return<br />

temperature captured by the FRS strategy return<br />

temperature sensor falls below the set value whilst the<br />

burner is switched on, the control unit reduces the heating<br />

circuit flow rate towards the boiler as a result of the higher<br />

ranking switching of the SH boiler circuit actuators until<br />

the operating temperature has been reached.<br />

Special engineering information<br />

• The PK feed pumps, together with hydraulic balancing<br />

are recommended for several distributor stations or<br />

those that are far apart. A low loss header or,<br />

alternatively, a low-pressure distributor with bypass<br />

and check valve can be used to provide hydraulic<br />

balancing.<br />

• A low loss header can also be used to provide sludge<br />

removal.<br />

• Split the total output 50 % over both boilers. Where a<br />

different output distribution applies, safeguard the<br />

respective flow rates by suitable measures (pipe sizing<br />

and/or balancing valves). Pipework according to<br />

Tichelmann is recommended.<br />

• This requires an FZ auxiliary temperature sensor<br />

(as FRS strategy return temperature sensor).<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

HK1<br />

FV1<br />

PH1<br />

SH1<br />

M<br />

FV2<br />

PH2<br />

SH2<br />

HK2<br />

M<br />

1)<br />

KR<br />

2)<br />

6 720 640 417-26.1il


Selection of control equipment<br />

Logamatic 4321 control unit<br />

6 720 640 417-42.1il<br />

Logamatic 4321 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 43211) for a single boiler system or as the master control<br />

unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />

temperature controller and adjustable high limit safety cut-out (100/<br />

110/120 °C), for switching single stage, 2-stage or modulating<br />

burners. Including burner cable, stage 2, boiler water and outside<br />

temperature sensors. Can accommodate up to four function modules.<br />

Standard equipment<br />

Safety equipment<br />

CM431 – Controller module<br />

ZM432 – Central module for switching burners and boiler circuit<br />

functions; with manual operating level<br />

MEC2 – Digital programming unit for setting parameters and<br />

checking the control unit; integral room temperature sensor and radio<br />

clock receiver<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

FM441 – Function module for one heating circuit with mixer and<br />

one DHW circuit with DHW circulation pump; incl. DHW temperature<br />

sensor (up to one module per control unit)<br />

FM442 – Function module for two heating circuits with mixer; incl.<br />

one FV/FZ sensor set (up to four modules per control unit)<br />

Room installation set with wall retainer for MEC2 programming unit<br />

and boiler display<br />

Online set with online cable and wall retainer for MEC2 programming<br />

unit<br />

BFU – Remote control incl. room temperature sensor for controlling<br />

a heating circuit from the living space<br />

BFU/F – Remote control like the BFU, but with an integral radio<br />

clock receiver<br />

Separate room temperature sensor for BFU and BFU/F remote<br />

control units<br />

FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />

with mixers or auxiliary temperature sensors for boiler circuit functions;<br />

incl. connection plug and accessories<br />

FG – Flue gas temperature sensor for a digital display of the flue<br />

gas temperature; in a stainless steel sleeve; version suitable for<br />

positive pressure<br />

Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />

Tab. 15 Optional equipment for the Logamatic 4321<br />

control unit in connection with the system<br />

example in Fig. 32<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

The technical documents of the control units include<br />

detailed information.<br />

System examples<br />

Logamatic 4322 control unit<br />

6 720 640 417-44.1il<br />

Logamatic 4322 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 43221) as lag control unit for a second and third boiler in a<br />

multi-boiler system, with TR (90/105 °C) temperature controller and<br />

adjustable high limit safety cut-out (100/110/120 °C), for switching<br />

single stage, 2-stage or modulating burners. Including burner cable,<br />

stage 2 and boiler water temperature sensors. Can accommodate up<br />

to four function modules.<br />

Standard equipment<br />

Safety equipment<br />

CM431 – Controller module<br />

ZM432 – Central module for switching burners and boiler circuit<br />

functions; with manual operating level<br />

Boiler display to display the boiler water temperature at the control<br />

unit; may be extended with further modules<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

MEC2 – Digital programming unit in place of the boiler display for<br />

setting parameters and checking the control unit; integral room<br />

temperature sensor and radio clock receiver<br />

FM441 – Function module for one heating circuit with mixer and<br />

one DHW circuit with DHW circulation pump; incl. DHW temperature<br />

sensor (up to one module per control unit)<br />

FM442 – Function module for two heating circuits with mixer; incl.<br />

one FV/FZ sensor set (up to four modules per control unit)<br />

Online set with online cable and wall retainer for MEC2 programming<br />

unit<br />

BFU – Remote control incl. room temperature sensor for controlling<br />

a heating circuit from the living space<br />

BFU/F – Remote control like the BFU, but with an integral radio<br />

clock receiver<br />

Separate room temperature sensor for BFU and BFU/F remote<br />

control units<br />

FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />

with mixers or auxiliary temperature sensors for boiler circuit functions;<br />

incl. connection plug and accessories<br />

FA – Additional outside temperature sensor (up to one per<br />

control unit)<br />

FG – Flue gas temperature sensor for a digital display of the flue<br />

gas temperature; in a stainless steel sleeve; version suitable for<br />

positive pressure<br />

Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />

Tab. 16 Optional equipment for the Logamatic 4322<br />

control unit in connection with the system<br />

example in Fig. 32<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 45<br />

7


46<br />

7 System examples<br />

7.10 2-boiler system with <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> as well as <strong>Logano</strong> plus SB315 and<br />

SB615 gas condensing boilers with boiler and heating circuit control<br />

FW2<br />

FW3<br />

PZ<br />

KR<br />

Fig. 33 System example <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> as well as <strong>Logano</strong> plus SB315, SB615 and SB735<br />

EK Cold water inlet<br />

FK Boiler water temperature sensor<br />

FVS Strategy flow temperature sensor<br />

FW DHW temperature sensor<br />

FZ Auxiliary temperature sensor<br />

HK Heating circuit<br />

KR Check valve<br />

PH Heating circuit pump<br />

PK Boiler circuit pump<br />

PS Cylinder primary pump<br />

PW Stratification pump<br />

PZ DHW circulation pump<br />

RK Return<br />

SK Boiler circuit actuator<br />

SH Heating circuit actuator<br />

VK Flow<br />

WT Heat exchanger<br />

M<br />

PS<br />

KR<br />

FW1<br />

1)<br />

Number and layout of the heating circuits subject to the<br />

Logamatic control unit<br />

2) Inspection bypass<br />

Application range<br />

• <strong>Logano</strong> plus SB315, SB615 and SB735 gas<br />

condensing boilers<br />

• <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers<br />

• Boiler circuit control with Logamatic 4321 and 4322<br />

control units and FM447 strategy module, also in<br />

conjunction with a third party heating circuit controller<br />

or with special applications<br />

Function description<br />

The boiler sequence can be switched on the basis of load<br />

and time by means of the FM447 strategy module. The<br />

lead boiler (1) starts when the actual temperature<br />

PW<br />

EK<br />

WT<br />

FK2<br />

FVS<br />

PK<br />

VK RK<br />

(2)<br />

<strong>Logano</strong> <strong>SK645</strong>, <strong>SK745</strong><br />

The circuit diagram is only a schematic<br />

illustration.<br />

Information for all system examples page 26.<br />

M<br />

SK<br />

FZ<br />

2)<br />

VK<br />

RK<br />

(1)<br />

FK1<br />

<strong>Logano</strong> plus<br />

SB315, SB615,<br />

SB735<br />

PH1<br />

SH1<br />

captured by the strategy flow temperature sensor falls<br />

below the set flow temperature. If the heat demand<br />

increases, the lag boiler (2) is automatically started.<br />

If the gas condensing boiler is connected in series to the<br />

low temperature boiler downstream, the required return<br />

temperature raising will be provided mainly by the gas<br />

condensing boiler.<br />

If the actual return temperature captured by the auxiliary<br />

temperature sensor falls below the set value even though<br />

the burner is switched on, the control unit reduces the<br />

system flow rate towards the low temperature boiler by<br />

switching the boiler circuit actuator. At the same time, hot<br />

water from the flow is mixed into the cold water returning<br />

from the system to achieve the set return temperature.<br />

The boiler circuit actuator is opened towards the<br />

consumer circuits once the minimum return temperature<br />

has been reached.<br />

Special engineering information<br />

• The boiler sequence cannot be reversed.<br />

• Size the heating circuit pumps in accordance with the<br />

calculated maximum pressure drop in the heating and<br />

boiler circuit. The boiler circuit pump overcomes the<br />

pressure drop in the lag boiler at the maximum boiler<br />

flow rate.<br />

• It is recommended to split the total output in<br />

proportions of 50 % to 60 % for the gas condensing<br />

boiler and 40 % to 50 % for the low temperature boiler.<br />

• This requires an auxiliary temperature sensor.<br />

• Implement the connections so that the boiler can<br />

operate independently to ensure an emergency<br />

provision during service/maintenance.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

HK1<br />

FV1 FV2<br />

PH2<br />

SH2<br />

M M<br />

HK2<br />

1)<br />

6 720 640 417-39.1il


Selection of control equipment<br />

Logamatic 4321 control unit<br />

6 720 640 417-42.1il<br />

Logamatic 4321 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 43211) for a single boiler system or as the master control<br />

unit for the first boiler in a multi-boiler system, with TR (90/105 °C)<br />

temperature controller and adjustable high limit safety cut-out (100/<br />

110/120 °C), for switching single stage, 2-stage or modulating<br />

burners. Including burner cable, stage 2, boiler water and outside<br />

temperature sensors. Can accommodate up to four function modules.<br />

Standard equipment<br />

Safety equipment<br />

CM431 – Controller module<br />

ZM432 – Central module for switching burners and boiler circuit<br />

functions; with manual operating level<br />

MEC2 – Digital programming unit for setting parameters and<br />

checking the control unit; integral room temperature sensor and radio<br />

clock receiver<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

FM441 – Function module for one heating circuit with mixer and<br />

one DHW circuit with DHW circulation pump; incl. DHW temperature<br />

sensor (up to one module per control unit)<br />

FM442 – Function module for two heating circuits with mixer; incl.<br />

one FV/FZ sensor set (up to four modules per control unit)<br />

Room installation set with wall retainer for MEC2 programming unit<br />

and boiler display<br />

Online set with online cable and wall retainer for MEC2 programming<br />

unit<br />

BFU – Remote control incl. room temperature sensor for controlling<br />

a heating circuit from the living space<br />

BFU/F – Remote control like the BFU, but with an integral radio<br />

clock receiver<br />

Separate room temperature sensor for BFU and BFU/F remote<br />

control units<br />

FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />

with mixers or auxiliary temperature sensors for boiler circuit functions;<br />

incl. connection plug and accessories<br />

FG – Flue gas temperature sensor for a digital display of the flue<br />

gas temperature; in a stainless steel sleeve; version suitable for<br />

positive pressure<br />

Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />

Tab. 17 Optional equipment for the Logamatic 4321<br />

control unit in connection with the system<br />

example in Fig. 33<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

The technical documents of the control units include<br />

detailed information.<br />

System examples<br />

Logamatic 4322 control unit<br />

6 720 640 417-44.1il<br />

Logamatic 4322 (possible full complement)<br />

blue auxiliary equipment<br />

Logamatic 43221) as lag control unit for a second and third boiler in a<br />

multi-boiler system, with TR (90/105 °C) temperature controller and<br />

adjustable high limit safety cut-out (100/110/120 °C), for switching<br />

single stage, 2-stage or modulating burners. Including burner cable,<br />

stage 2 and boiler water temperature sensors. Can accommodate up<br />

to four function modules.<br />

Standard equipment<br />

Safety equipment<br />

CM431 – Controller module<br />

ZM432 – Central module for switching burners and boiler circuit<br />

functions; with manual operating level<br />

Boiler display to display the boiler water temperature at the control<br />

unit; may be extended with further modules<br />

Auxiliary equipment<br />

ZM426 – Auxiliary module for the use of a second high limit safety<br />

cut-out, set to 100 °C without flash trap<br />

MEC2 – Digital programming unit in place of the boiler display for<br />

setting parameters and checking the control unit; integral room<br />

temperature sensor and radio clock receiver<br />

FM441 – Function module for one heating circuit with mixer and<br />

one DHW circuit with DHW circulation pump; incl. DHW temperature<br />

sensor (up to one module per control unit)<br />

FM442 – Function module for two heating circuits with mixer; incl.<br />

one FV/FZ sensor set (up to four modules per control unit)<br />

Online set with online cable and wall retainer for MEC2 programming<br />

unit<br />

BFU – Remote control incl. room temperature sensor for controlling<br />

a heating circuit from the living space<br />

BFU/F – Remote control like the BFU, but with an integral radio<br />

clock receiver<br />

Separate room temperature sensor for BFU and BFU/F remote<br />

control units<br />

FV/FZ – Sensor set with flow temperature sensor for heating circuits<br />

with mixers or auxiliary temperature sensors for boiler circuit functions;<br />

incl. connection plug and accessories<br />

FA – Additional outside temperature sensor (up to one per<br />

control unit)<br />

FG – Flue gas temperature sensor for a digital display of the flue<br />

gas temperature; in a stainless steel sleeve; version suitable for<br />

positive pressure<br />

Sensor well R½ , 100 mm long for Logamatic cylindrical sensors<br />

Tab. 18 Optional equipment for the Logamatic 4322<br />

control unit in connection with the system<br />

example in Fig. 33<br />

1) For boiler water temperatures in excess of 80 °C set the high<br />

limit safety cut-out to 110 °C or 120 °C<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 47<br />

7


48<br />

8 Delivery and installation information<br />

8 Delivery and installation information<br />

8.1 Delivery method<br />

The boiler block can be transported on its base frame, e.g.<br />

using rollers. It is possible to transport the blocks of the<br />

<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers with forklift trucks,<br />

with forks inserted above the base frame. When<br />

transporting the blocks of the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

boilers with a crane, use only the holes in the gusset<br />

plates.<br />

Content of packaging<br />

Boiler block with burner<br />

door<br />

<strong>Logano</strong> <strong>SK645</strong><br />

and <strong>SK745</strong><br />

1 transport unit 1)<br />

Insulated boiler jacket 1 wooden crate<br />

Burner 2)<br />

1 Cardboard box<br />

Control unit2) 1 Cardboard box<br />

Tab. 19 Delivery <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

1) <strong>SK745</strong> with 1400 kW and 1850 kW output are respectively<br />

supplied as two packing units each<br />

2) Not part of the standard boiler delivery<br />

8.2 Installation information<br />

Pipework<br />

• Ensure the boiler can be adequately vented.<br />

• In open vented systems, route pipework with a slope<br />

towards the expansion vessel.<br />

• Never allow for pipe reductions in horizontal pipe runs.<br />

• Lay pipes without stress.<br />

Electrical installation<br />

A permanent connection in line with VDE 0100,<br />

VDE 0116 and VDE 0722 is required [in Germany].<br />

Observe local regulations.<br />

• Take care to ensure correct cable and capillary pipe<br />

routing.<br />

Commissioning<br />

Check the quality of the fill and top-up water.<br />

• Flush the entire heating system before filling with<br />

heating water.<br />

Tightness test<br />

Check the system for leaks in accordance with<br />

DIN 18380. The test pressure is 1.3-times the operating<br />

pressure, but at least 1 bar.<br />

• Separate safety valve from expansion vessel (in sealed<br />

unvented systems) before pressure testing.<br />

Handover<br />

On handover, make operators familiar with the system<br />

functions and its operation; and give them the technical<br />

documentation.<br />

• Draw attention to any special considerations regarding<br />

maintenance; a maintenance and inspection contract is<br />

recommended.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


9 Installation location<br />

9.1 General requirements of the installation room<br />

9.1.1 Combustion air supply<br />

The installation room and the siting of gas appliances<br />

should meet the conditions specified by the respective<br />

national, regional or local bodies appertaining to boiler<br />

rooms and must comply with relevant fire regulations.<br />

For open flue combustion equipment with a total rated<br />

output in excess of 50 kW, the combustion air supply is<br />

deemed to be ensured if a vent to the outside with a clear<br />

opening of at least 150 cm 2 (plus 2 cm 2 for every kilowatt<br />

output above 50 kW rated output) is provided. The<br />

required cross-section may be split over up to two lines<br />

and must be sized to provide the equivalent air flow rate.<br />

General requirements<br />

• Combustion air vents and lines must never be closed<br />

or covered unless there is special safety equipment<br />

that ensures the combustion equipment can only be<br />

operated if the flow cross-section is unobstructed.<br />

• The required cross-section must not be restricted by a<br />

closure or grille.<br />

• An adequate supply of combustion air can also be<br />

verified by other means.<br />

• Observe special requirements appertaining to<br />

combustion equipment operated with LPG.<br />

9.1.2 Siting combustion equipment<br />

Gas combustion equipment with a total rated output in<br />

excess of 50 kW must only be sited in rooms<br />

• that are not used for any alternative purpose<br />

• that have no opening towards other rooms, except<br />

doors<br />

• the doors of which are tight and self-closing<br />

• that can be vented<br />

The burner and flue supply facilities of the combustion<br />

equipment must be able to be switched off at any time by<br />

means of an emergency stop switch located outside the<br />

installation room. Provide a sign adjacent to the<br />

emergency stop switch that reads as follows:<br />

“EMERGENCY STOP SWITCH - COMBUSTION<br />

EQUIPMENT”.<br />

Notwithstanding these rules, combustion equipment<br />

may also be installed in other rooms, provided that:<br />

• the use of these rooms makes this necessary and the<br />

combustion equipment can be operated safely or<br />

• the rooms are in freestanding buildings that only serve<br />

to operate the combustion equipment and fuel storage.<br />

Installation location<br />

Open flue combustion equipment must not be installed:<br />

• in stairwells, except in residential buildings with no<br />

more than two apartments<br />

• in generally accessible hallways that serve as escape<br />

routes<br />

• in garages<br />

In rooms with systems that extract air<br />

Open flue combustion equipment must only be installed in<br />

rooms equipped with systems that extract air subject to<br />

the following conditions:<br />

• simultaneous operation of the combustion equipment<br />

and the air extractor systems will be prevented by<br />

safety interlocks<br />

• flue gas routing is monitored by appropriate safety<br />

equipment<br />

• flue gas will be routed via the air extractor systems or it<br />

will be ensured that such systems cannot create<br />

dangerous negative pressure.<br />

Gas shut-off facility<br />

A thermally-activated shut-off facility (TAE) must be<br />

installed immediately upstream of the gas combustion<br />

equipment.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 49<br />

9


50<br />

9 Installation location<br />

9.2 Handling details<br />

The stated values correspond to the boiler in its delivered<br />

condition. For tight spaces, the front door can be<br />

removed.<br />

<strong>Logano</strong><br />

<strong>SK645</strong><br />

<strong>SK745</strong><br />

Boiler<br />

size<br />

Minimum<br />

length<br />

Minimum<br />

width<br />

Minimum<br />

height<br />

Minimum<br />

weight<br />

1) The weight in operation includes the weight of the boiler, its water content, the control unit, burner, gas ramp and fittings<br />

Weight in<br />

operation 1)<br />

[kW] [mm] [mm] [mm] [kg] [kg]<br />

120 1295 700 1005 447 618<br />

190 1490 760 1065 554 792<br />

250 1620 790 1095 642 912<br />

300 1780 790 1095 691 993<br />

360 1773 860 1165 817 1185<br />

420 1973 860 1165 899 1319<br />

500 1913 950 1255 1063 1552<br />

600 2163 950 1255 1158 1715<br />

730 2130 1060 1365 1401 2068<br />

820 2330 1060 1365 1504 2244<br />

1040 2390 1170 1475 1852 2744<br />

1200 2690 1170 1475 2024 3041<br />

1400 2990 1320 1612 2690 4109<br />

1850 3410 1400 1732 3540 5400<br />

Tab. 20 <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> handling dimensions<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


9.3 Installed dimensions<br />

A S<br />

A V<br />

Fig. 34 Installation room for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

boilers<br />

1) For the <strong>SK745</strong> 1400 kW and 1850 kW, the control unit is<br />

mounted on the l.h. or r.h. side<br />

1)<br />

A H<br />

A S<br />

6 720 640 417-27.1il<br />

<strong>Logano</strong> Boiler size Clearance A H Clearance A V 1)<br />

<strong>SK645</strong><br />

<strong>SK745</strong><br />

1) Observe dimension L BR (burner length) relative to clearances A V and A S (on the closure side of the burner door)<br />

Installation location<br />

When installing your boiler maintain the<br />

recommended minimum dimensions. Select<br />

the recommended wall clearances to enable<br />

easy access for installation, maintenance and<br />

service work.<br />

Site the boiler only in rooms that comply with<br />

the local regulations appertaining to the<br />

siting of boilers. The room must be large<br />

enough to ensure access to the boiler in line<br />

with local regulations.<br />

Clearance A S<br />

[kW] [mm] [mm] [mm]<br />

120–300 1000 2000 250 + L BR<br />

360–600 1000 2100 250 + L BR<br />

730–1200 1000 2200 250 + L BR<br />

1400–1850 2)<br />

Tab. 21 Specified wall clearances<br />

2) Allow for an additional 230 mm on the side where the control unit is mounted.<br />

1000 2500 250 + L BR<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 51<br />

9


52<br />

10 Additional equipment and accessories<br />

10 Additional equipment and accessories<br />

10.1 Additional safety equipment to DIN-EN 12828<br />

DIN-EN 12828 specifies a low water indicator to protect<br />

the boiler against excessive heating.<br />

10.1.1 Safety equipment<br />

In accordance with the currently valid Pressure<br />

Equipment Directive (PED), all facilities and pipework<br />

connected to boilers that are part of heating systems with<br />

safety temperatures in excess of 110 °C are considered<br />

part of the boiler. That means that all components<br />

between the shut off facilities (e.g. slider valves) in the<br />

flow and return as well as the boiler flow and return must<br />

be approved. This also concerns intermediate flow pieces<br />

and valve manifolds to which safety equipment can be<br />

fitted. Subject to the safety level (for this see<br />

DIN-EN 12828 and DIN-EN 12953-6), install different<br />

safety equipment at the various connections.<br />

The boiler safety assemblies are approved to Pressure<br />

Equipment Directive 97/23/EC (TS = 120 °C,<br />

PS = 16 bar). They are suitable in accordance with<br />

DIN-EN 12828 for a maximum operating temperature of<br />

Safety equipment<br />

versions<br />

+ Applicable<br />

– N/A<br />

tR ≤ 105 °C, high limit safety cut-out with<br />

shutdown temperature ≤ 110 °C<br />

to DIN-EN 12828<br />

Low water indicator<br />

For the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> low temperature<br />

boilers install a low water indicator or minimum pressure<br />

limiter in line with DIN-EN 12828.<br />

105 °C. Equipment for higher operating temperatures to<br />

DIN-EN 12953-6 on request.<br />

In systems to DIN-EN 12828, the <strong>Logano</strong> <strong>SK645</strong> and<br />

<strong>SK745</strong> low temperature boilers can be equipped with a<br />

safety assembly (accessory). This comprises an<br />

intermediate flow piece, valve manifold, minimum<br />

pressure limiter (low water indicator to DIN-EN 12828),<br />

manostat pipe with shut-off valve and 0–16 bar pressure<br />

gauge. Furthermore, it features three additional available<br />

connections R½ for the connection of further pressure<br />

limiters as well as two additional available connections<br />

R½ at the intermediate flow piece, e.g. for thermometer<br />

and high limit safety cut-out.<br />

Boiler safety assemblies are available in the following<br />

sizes: DN65, DN80, DN100, DN125, DN150 and<br />

DN200.<br />

High limit safety cut-out1) with shutdown<br />

temperature > 110 °C,<br />

≤ 120 °C to DIN-EN 12953-6<br />

Heat source Heat source<br />

≤ 300 kW > 300 kW ≤ 300 kW > 300 kW<br />

Maximum pressure limiter – + + +<br />

High limit safety cut-out set and<br />

maximum pressure limiter<br />

– + 2)<br />

– –<br />

Minimum pressure limiter + 3)<br />

– – –<br />

Minimum pressure limiter – -4) + +<br />

Low water indicator + + – –<br />

Tab. 22 Safety equipment versions for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

1) It is recommended to implement the system engineering with reference to the responsible supervisory authority. Observe the Pressure<br />

Equipment Directive (PED) and the Health & Safety at Work Act [Germany]<br />

2) Where the flash trap to DIN-EN 12828 is omitted in systems with tR ≤ 105 °C (high limit safety cut-out 110 °C)<br />

3) As manufacturer-tested replacement measure for low water indicator to DIN-EN 12828 in system with tR ≤ 105 °C (high limit safety cut-out<br />

110 °C)<br />

4) Replacement for low water indicator to DIN-EN 12828 in system with t R ≤ 105 °C (high limit safety cut-out 110 °C)<br />

Safety component Make Component ID<br />

Maximum pressure limiter Sauter DSH 143 F 001 SDB.00-331<br />

Minimum pressure limiter Sauter DSL 143 F 001 SDWF00-330<br />

High limit safety cut-out Sauter RAK 13.4040 B STB 10 602 000<br />

Minimum pressure limiter Fatini Cosmi2B01ATF0.8 WB 40 28 65 19<br />

Tab. 23 Approval ID for safety components for the <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


700<br />

H 1<br />

B<br />

Additional equipment and accessories<br />

Fig. 35 Boiler safety assembly with intermediate flow piece <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> (dim. in mm)<br />

1 Pressure gauge 0–16 bar<br />

2 3 available connections R½ for the connecting of<br />

additional pressure limiters<br />

3 Minimum pressure limiter Sauter DSL143-F001<br />

(low water indicator to DIN-EN 12828)<br />

Fig. 36 Intermediate return piece for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> (dim. in mm)<br />

510<br />

1 Flange connection for expansion line<br />

2 R½ connection for thermometer or temperature sensor<br />

A<br />

1 2 3<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 53<br />

4<br />

5<br />

4<br />

H 2<br />

H 3<br />

10<br />

4 Two available connections R½ on the intermediate flow<br />

piece (e.g. for thermometer and high limit safety cut-out<br />

5 Manostat pipe with shut-off valve<br />

160<br />

6 720 640 417-28.1il<br />

<strong>Logano</strong> Boiler size Type A B H1 H2 H3 [kW] [mm] [mm] [mm] [mm]<br />

120–300 VZ65 DN65/PN 16 450 600 330 500<br />

<strong>SK645</strong><br />

360–420 VZ80 DN80/PN 16 450 575 330 500<br />

500–600 VZ100 DN100/PN 16 460 555 330 480<br />

730–1200 VZ125 DN125/PN 16 475 555 330 480<br />

<strong>SK745</strong><br />

1400 VZ150 DN150/PN 16 490 530 330 480<br />

1850 VZ200 DN200/PN 16 515 530 330 480<br />

Tab. 24 Dimensions, boiler safety assembly with intermediate flow piece for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

2<br />

2<br />

A 1<br />

B<br />

1<br />

A 2<br />

H 2<br />

H 1<br />

160<br />

160<br />

6 720 640 417-29.1il<br />

<strong>Logano</strong> Boiler size Type A1 A2 B H1 H2 [kW] [mm] [mm] [mm]<br />

120–300 RZ65 DN65/PN 16 DN32/PN 40 135 350 175<br />

<strong>SK645</strong><br />

360–420 RZ80 DN80/PN 16 DN40/PN 40 145 350 175<br />

500–600 RZ100 DN100/PN 16 DN50/PN 40 160 350 175<br />

730–1200 RZ125 DN125/PN 16 DN65/PN 16 225 350 175<br />

<strong>SK745</strong><br />

1400 RZ150 DN150/PN 16 DN65/PN 16 240 350 175<br />

1850 RZ200 DN200/PN 16 DN80/PN 16 270 400 200<br />

Tab. 25 Dimensions, intermediate return piece for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


10 Additional equipment and accessories<br />

10.2 Additional noise attenuating equipment<br />

10.2.1 Requirements<br />

Necessity and extent of noise attenuating measures are<br />

subject to the noise level and the disturbance created.<br />

<strong>Buderus</strong> offers three facilities to attenuate noise that are<br />

specifically tailored to the low temperature boilers; these<br />

can be supplemented by further on-site noise protection<br />

measures. On-site measures include pipe fixings that are<br />

equipped with structure-borne noise insulators,<br />

compensators in the connection pipes and flexible<br />

connections to the building. Noise attenuating facilities<br />

require additional space that must be taken into account<br />

at the engineering stage.<br />

10.2.2 Boiler support with structure-borne noise<br />

insulation<br />

Boiler supports that insulate structure-borne noise<br />

prevent a transfer of structure-borne noise to the<br />

foundations and the building. They comprise U-profile<br />

rails into which Ω-shaped bent longitudinal insulation<br />

brackets have been set ( Fig. 37 and Fig. 38). The<br />

longitudinal insulation brackets are made from spring<br />

steel and are coated with a silencing compound to<br />

prevent the radiation of air-borne noise. Under load these<br />

flex approx. 5 mm. When engineering boiler supports with<br />

structure-borne noise insulating properties, take into<br />

account that the installed height of the boiler and<br />

consequently the location of connections to the pipework<br />

will alter accordingly ( Tab. 26, page 55). To<br />

compensate for the flexing distance of the longitudinal<br />

insulation brackets, and to further minimise the<br />

transmission of sound via the water connections, the<br />

installation of pipe compensators in the heating water<br />

pipes is also recommended.<br />

54<br />

6 720 640 417-30.1il<br />

Fig. 37 Example of boiler supports that insulate against<br />

structure-borne noise<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


Additional equipment and accessories<br />

Fig. 38 Boiler support that insulates against structure-borne noise for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> (dim. in mm)<br />

1 Side catch<br />

2 Longitudinal insulation bracket<br />

1) Flex under load approx. 5 mm<br />

1<br />

2<br />

<strong>Logano</strong> Boiler<br />

size<br />

<strong>SK645</strong><br />

<strong>SK745</strong><br />

44<br />

1)<br />

Plinth<br />

dimensions /<br />

Foundation<br />

dimensions<br />

Length<br />

L SO<br />

Width<br />

B SO<br />

A B<br />

B SO<br />

B S<br />

B B<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 55<br />

L S<br />

L SO<br />

U-profile rail Dimensions of longitudinal<br />

insulation bracket<br />

Length<br />

L S<br />

Width<br />

B S<br />

Clearance<br />

A B<br />

6 720 640 417-31.1il<br />

10<br />

Lengths Weight<br />

[kW] [mm] [mm] [mm] [mm] [mm] [mm] [kg]<br />

120 915 700 1060 60 700 4 × 250 10.0<br />

190 1110 760 1060 60 760 4 × 250 10.0<br />

250 1240 790 1060 60 790 4 × 250 10.0<br />

300 1400 790 1360 60 790 2 × 250 + 2 × 312.5 15.0<br />

360 1373 860 1385 60 860 4 × 500 20.0<br />

420 1573 860 1385 60 860 4 × 500 20.0<br />

500 1503 950 1480 60 950 2 × 750 + 2 × 500 9.6<br />

600 1753 950 1560 60 950 2 × 1000 + 2 × 500 15.0<br />

730 1700 1060 1560 60 1060 2 × 1000 + 2 × 500 15.0<br />

820 1900 1060 1900 120 1060 4 × 500 15.0<br />

1040 1960 1170 1900 120 1170 4 × 500 15.0<br />

1200 2260 1170 2120 120 1170 4 × 500 21.0<br />

1400 2316 1320 2240 120 1320 4 × 666 23.0<br />

1850 2720 1400 2485 120 1400 4 × 1000 27.1<br />

Tab. 26 Dimensions, boiler support that insulates against structure-borne noise for <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


56<br />

10 Additional equipment and accessories<br />

10.2.3 Flue gas silencer with sealing collar to<br />

insulate against structure-borne noise<br />

A substantial proportion of the combustion noise can<br />

transfer to the building via the flue system. Specially<br />

matched flue gas silencers can significantly reduce the<br />

sound level ( Fig. 39).<br />

The silencer shown, for example ( Fig. 39) achieves an<br />

attenuation level of approx. 10 dB(A) to 15 dB(A) in the<br />

flue. The pressure drop caused by the flue gas silencer<br />

can be disregarded when calculating the flue system.<br />

The flue gas silencer features a support ( Fig. 39,<br />

item 3) and a special sealing collar ( Fig. 40, item 1).<br />

This stepped flue sealing collar and the additional packing<br />

cord achieve a separation of the structure-borne noise<br />

between the boiler and the flue system (connection<br />

piece).<br />

1 2<br />

L 4<br />

D 2<br />

D 3<br />

7<br />

L2 L1 3 4 5 6<br />

Fig. 39 Flue gas silencer with sealing collar to insulate<br />

against structure-borne noise<br />

1 Stepped flue sealing collar<br />

2 Packing cord<br />

3 Flue sealing collar ( Fig. 40)<br />

4 Flue outlet<br />

5 Connector for checking the flue gas temperature<br />

6 Boiler casing<br />

7 Threaded female connection for pipe support<br />

Dimensions<br />

at the flue<br />

gas silencer<br />

Unit Connection diameter<br />

DN200 DN250 DN300 DN360 DN400<br />

D1 mm 200 250 300 360 419<br />

D2 mm 220 270 320 380 425<br />

D3 mm 400 600 600 700 660<br />

L1 mm 1000 650 1090 1240 920<br />

L2 mm 650 550 850 1000 800<br />

L3 mm 300 50 160 160 60<br />

L4 mm 50 50 80 80 60<br />

Tab. 27 Dimensions, flue gas silencer for<br />

<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

D 1<br />

L 3<br />

6 720 640 417-32.1il<br />

10.3 Additional accessories<br />

10.3.1 Welded flange<br />

Welded flanges to DIN 2633, PN 16 can be used to<br />

connect commercially available pipes to the boiler flow<br />

and return.<br />

10.3.2 Flue sealing collar<br />

<strong>Buderus</strong> offers a suitable Flue sealing collar ( Fig. 40)<br />

to provide a safe connection suitable for positive pressure<br />

between the boiler flue outlet and the flue connection<br />

pipe.<br />

The Flue sealing collar is easy to fit and<br />

robust in use. DN200, DN250, DN300,<br />

DN360 and DN400 versions.<br />

6 720 640 417-34.1il 1 2 3<br />

Fig. 40 Flue sealing collar (dim. in mm)<br />

1 Boiler flue outlet<br />

2 Flue sealing collar<br />

3 Flue gas silencer or connection pipe<br />

10.3.3 Cleaning equipment set<br />

The cleaning equipment set comprises a brush with brush<br />

handle. It is used to clean the secondary heating surfaces<br />

and the combustion chamber of the boiler.<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong><br />

60<br />

40


11 Flue system<br />

11.1 General requirements of the flue system<br />

It is essential that the the flue system is sized correctly to<br />

safeguard the correct function and safe boiler operation.<br />

The following recommendations appertaining to the<br />

implementation of flue systems should guarantee troublefree<br />

operation of a combustion system. Non-observation<br />

of these rules can result in substantial operating problems<br />

during combustion and may even result in explosions.<br />

These are frequently acoustic disturbances, impairments<br />

of the combustion stability or excessive vibrations on<br />

assemblies or their components. Low NOx combustion<br />

systems are to be viewed as being more sensitive to<br />

operating faults on account of their combustion control.<br />

Therefore, engineer and implement the flue system with<br />

particular care.<br />

Commonly, the flue system comprises a connection piece<br />

between the heat source and the vertical flue system itself<br />

(chimney).<br />

When sizing and implementing the flue system, comply<br />

with the following requirements:<br />

• Flue systems must be sized in accordance with the<br />

respective national and local regulations and<br />

applicable standards. General requirements relating to<br />

flue systems in and on buildings are specified in the<br />

DIN-EN 1443. The implementation of the flue system<br />

must comply with local building regulations and the<br />

DIN V 18160 [Germany]. Apart from building<br />

regulations, freestanding chimneys are subject to<br />

DIN 1056, DIN 4133 and DIN-EN 13084-1. For flowtechnical<br />

determinations appertaining to size, see the<br />

standards DIN-EN 13384 for flue systems in and on<br />

buildings, and DIN-EN 13084-1 for freestanding<br />

chimneys. Observe country-specific regulations.<br />

• When selecting the material for a flue system, take the<br />

composition and temperatures of the combustion<br />

gases into account to prevent damage and<br />

contamination of the flue parts that are in contact with<br />

flue gas.<br />

• Route flue gases as directly as possible to the chimney<br />

considering the best possible flow characteristics<br />

(e.g. short and with a gradient and the fewest possible<br />

deviations). Provide a separate chimney flue for each<br />

boiler. Take the thermal expansion of the system into<br />

account.<br />

• Implement deviations in the connection pieces as<br />

favourably as possible where flow is concerned by<br />

using bends or deflectors. Connection pieces with<br />

several deviations should be avoided, as they would<br />

have a detrimental effect on air-borne and structureborne<br />

noise as well as the start-up pressure hammer.<br />

Prevent sharp-edged joints between rectangular<br />

connection flanges and the connection pipe. The joint<br />

Flue system<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 57<br />

11<br />

angle should not exceed 30°, the same as for any<br />

reducers/expansions that may be required.<br />

• Where possible, connection pieces should be joined to<br />

the chimney in a flow-optimised way (at an angle less<br />

than 45°). Any terminal pieces at the chimney outlet<br />

must ensure the free exit of flue gas into the open air.<br />

• Any condensate must be able to drain freely over the<br />

entire length, treated in accordance with local<br />

regulations (e.g. ATV Code of Practice 251)<br />

[Germany] and drained off in accordance with local<br />

regulations.<br />

• Provide cleaning apertures in accordance with local<br />

regulations (e.g. DIN 18160-1, DIN 18160-5, IVS<br />

guideline 105), possibly in connection with a local flue<br />

gas inspector or chimney sweep.<br />

• The chimney must be separated from the boiler system<br />

(e.g. with compensators) to break the structure-borne<br />

noise transfer.<br />

• Where the flue damper is set into a flue system, a<br />

safety limit switch “OPEN” must be integrated into the<br />

boiler control. Combustion must only be able to start<br />

when the feedback from the limit switch confirms that<br />

the flue damper is fully open. A temperature drop inside<br />

the boiler is possible on account of the time it takes the<br />

actuator to move the damper into position. Implement<br />

the end position “CLOSED” at the flue damper so that<br />

the flue damper never closes fully. This prevents<br />

damage to the integral burner through heat build up.<br />

As a basis for calculation and for sizing the flue system,<br />

apply the details in Tab. 28 and Tab. 29. The<br />

requirements for the flue system and flue gas routing can<br />

be derived from the results of the calculation and should<br />

be discussed with the local flue gas inspector [where<br />

appropriate] prior to constructing the heating system. The<br />

<strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> boilers offer the possibility of<br />

raising flue temperatures that are too low by approx.<br />

20 °C to 30 °C. For this, some of the turbulators that are<br />

accessible from the front after opening the boiler door,<br />

must be moved.


58<br />

11 Flue system<br />

11.2 Flue gas parameters<br />

<strong>Logano</strong> Boiler Level Output Rated heat Flue Required Flue gas<br />

size<br />

input outlet draught temperature1) Fuel<br />

Oil Gas<br />

CO2 Flue gas CO2 Flue gas<br />

content mass content mass<br />

flow rate<br />

flow rate<br />

[kW] [kW] [kW] [mm] [Pa] [°C] [%] [kg/s] [%] [kg/s]<br />

120<br />

2 120<br />

<strong>SK645</strong><br />

1) Basis for calculation of the flue system to DIN-EN 13384-1 and DIN-EN 13384-2<br />

2)<br />

1 72<br />

132<br />

200 0<br />

198<br />

13<br />

0.0560<br />

10<br />

0.0562<br />

3) 80 138 0.0336 0.0337<br />

190<br />

2 1902) 1 114<br />

209<br />

200 0<br />

193<br />

13<br />

0.0887<br />

10<br />

0.0890<br />

3) 126 138 0.0532 0.0534<br />

250<br />

2 2502) 1 150<br />

274<br />

250 0<br />

190<br />

13<br />

0.1163<br />

10<br />

0.1167<br />

3) 164 138 0.0698 0.0700<br />

300<br />

2 3002) 1 180<br />

329<br />

250 0<br />

188<br />

13<br />

0.1396<br />

10<br />

0.1402<br />

3) 360<br />

2 360<br />

200 138 0.0838 0.0841<br />

2) 1 216<br />

393<br />

250 0<br />

188<br />

13<br />

0.1668<br />

10<br />

0.1674<br />

3) 236 138 0.1001 0.1005<br />

420<br />

2 4202) 1 252<br />

459<br />

250 0<br />

188<br />

13<br />

0.1948<br />

10<br />

0.1955<br />

3) 275 138 0.1169 0.1173<br />

500<br />

2 5002) 1 300<br />

546<br />

300 0<br />

188<br />

13<br />

0.2318<br />

10<br />

0.2326<br />

3) 328 138 0.1391 0.1396<br />

600<br />

2 6002) 1 360<br />

655<br />

300 0<br />

188<br />

13<br />

0.2780<br />

10<br />

0.2790<br />

3) 393 138 0.1668 0.1674<br />

Tab. 28 Flue gas parameters <strong>Logano</strong> <strong>SK645</strong><br />

2) Parameters for the largest value of the rated output range<br />

3) Parameters for a partial load with 60 % of rated output<br />

<strong>Logano</strong> Boiler Level Output Rated heat Flue Required Flue gas<br />

size<br />

input outlet draught temperature 1)<br />

Fuel<br />

Oil Gas<br />

CO2 Flue gas CO2 Flue gas<br />

content mass content mass<br />

flow rate<br />

flow rate<br />

[kW] [kW] [kW] [mm] [Pa] [°C] [%] [kg/s] [%] [kg/s]<br />

730<br />

2 730<br />

<strong>SK745</strong><br />

1) Basis for calculation of the flue system to DIN-EN 13384-1 and DIN-EN 13384-2<br />

2)<br />

1 438<br />

795<br />

360 0<br />

186<br />

13<br />

0.3374<br />

10<br />

0.3387<br />

3)<br />

477 138 0.2025 0.2032<br />

820<br />

2 820 2)<br />

1 492<br />

893<br />

360 0<br />

186<br />

13<br />

0.3790<br />

10<br />

0.3804<br />

3)<br />

536 138 0.2274 0.2283<br />

1040<br />

2 1040 2)<br />

1 624<br />

1138<br />

360 0<br />

186<br />

13<br />

0.4830<br />

10<br />

0.4848<br />

3)<br />

1200<br />

2 1200<br />

684 138 0.2898 0.2909<br />

2)<br />

1 720<br />

1313<br />

360 0<br />

193<br />

13<br />

0.5573<br />

10<br />

0.5593<br />

3)<br />

789 138 0.3344 0.3356<br />

1400<br />

2 1400 2)<br />

1 840<br />

1532<br />

400 0<br />

193<br />

13<br />

0.6503<br />

10<br />

0.6526<br />

3)<br />

920 138 0.3902 0.3916<br />

1850<br />

2 1850 2)<br />

1 1110<br />

2024<br />

400 0<br />

193<br />

13<br />

0.8591<br />

10<br />

0.8622<br />

3)<br />

1218 138 0.5155 0.5173<br />

Tab. 29 Flue gas parameters <strong>Logano</strong> <strong>SK745</strong><br />

2) Parameters for the largest value of the rated output range<br />

3) Parameters for a partial load with 60 % of rated output<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


Index<br />

B<br />

Boiler circuit pump ....................................................... 30–32<br />

Boiler efficiency..................................................................... 13<br />

Burner<br />

Burner requirements ....................................................... 15<br />

Burner selection............................................................... 15<br />

C<br />

Chemical additives ............................................................... 23<br />

Cleaning equipment set ...................................................... 56<br />

Combustion air...................................................................... 23<br />

Combustion air supply......................................................... 49<br />

Control system Logamatic 4000<br />

Control panel system Logamatic 4411 ...................... 24<br />

Logamatic 4212............................................................... 24<br />

Logamatic 4321............................................................... 24<br />

Logamatic 4322............................................................... 24<br />

Corrosion................................................................................ 19<br />

D<br />

Delivery.................................................................................... 48<br />

DHW heating......................................................................... 25<br />

DHW temperature control.................................................. 25<br />

F<br />

Fill and top-up water .................................................... 20–23<br />

Flue gas temperature........................................................... 14<br />

Flue sealing collar................................................................. 56<br />

Flue system .................................................................... 57–58<br />

Fuel .......................................................................................... 19<br />

G<br />

Gas shut-off facility............................................................... 49<br />

H<br />

Health and Safety at Work Act [Germany]..................... 17<br />

Heating water routing ............................................................ 6<br />

Hot gas routing ....................................................................... 6<br />

Hydraulic connection........................................................... 26<br />

Hydraulic separation ............................................................ 36<br />

I<br />

Installation information......................................................... 48<br />

Installation room<br />

Combustion air supply.................................................... 49<br />

Installation of combustion equipment ......................... 49<br />

Installed dimensions............................................................. 51<br />

Index<br />

L<br />

Logamatic-Telecontrol system........................................... 24<br />

<strong>Logano</strong> <strong>SK645</strong><br />

Applications ......................................................................... 4<br />

Burner................................................................................. 15<br />

Delivery .............................................................................. 48<br />

Dimensions .................................................................... 7–8<br />

Equipment level................................................................... 5<br />

Features and key benefits................................................. 4<br />

Flue gas parameters ....................................................... 58<br />

Handling details ............................................................... 50<br />

Installed dimensions........................................................ 51<br />

Operating conditions...................................................... 18<br />

Parameters................................................................ 12–14<br />

Specification.................................................................. 7–8<br />

System examples..................................................... 34–47<br />

Types and output................................................................ 4<br />

<strong>Logano</strong> <strong>SK745</strong><br />

Applications ......................................................................... 4<br />

Burner................................................................................. 15<br />

Delivery .............................................................................. 48<br />

Dimensions .................................................................. 9–11<br />

Equipment level................................................................... 5<br />

Features and key benefits................................................. 4<br />

Flue gas parameters ....................................................... 58<br />

Handling details ............................................................... 50<br />

Installed dimensions........................................................ 51<br />

Operating conditions...................................................... 18<br />

Parameters................................................................ 12–14<br />

Specification................................................................ 9–11<br />

System examples..................................................... 34–47<br />

Types and output................................................................ 4<br />

Low loss header.................................................................... 33<br />

Low water indicator.............................................................. 52<br />

N<br />

Noise attenuation<br />

Boiler supports......................................................... 54–55<br />

Flue gas silencer with sealing collar ........................... 56<br />

Requirements ................................................................... 54<br />

O<br />

Operating conditions........................................................... 18<br />

P<br />

Pressure drop on the water side....................................... 12<br />

Pressure Equipment Directive (PED)............................... 16<br />

R<br />

Regulations ............................................................................ 16<br />

Return temperature raising facility.................................... 36<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 59


Index<br />

S<br />

Safety equipment........................................... 27–29, 52–53<br />

Arrangement of safety equipment........................ 28–29<br />

Boiler safety assembly.................................................... 53<br />

Low water indicator......................................................... 52<br />

Requirements ................................................................... 27<br />

Scale formation ..................................................................... 20<br />

Standby loss .......................................................................... 14<br />

System example<br />

Single boiler system........................................................ 36<br />

System examples.......................................................... 34–47<br />

Boiler circuit pump .................................................. 30–32<br />

Boilers <strong>Logano</strong> S825L ................................................... 36<br />

Control ............................................................................... 27<br />

DHW heating.................................................................... 27<br />

Hydraulic connection...................................................... 26<br />

Information................................................................. 26–27<br />

Low loss header............................................................... 33<br />

W<br />

Water treatment............................................................ 19–23<br />

Welded flange....................................................................... 56<br />

60<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


Notes<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 61


Notes<br />

62<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong>


Notes<br />

6 720 646 816 (10/2010) – Technical guide <strong>Logano</strong> <strong>SK645</strong> and <strong>SK745</strong> 63


Bosch Thermotechnik GmbH<br />

Sophienstrasse 30 - 32<br />

35576 Wetzlar<br />

www.buderus.com<br />

6 720 646 816 (10/2010)<br />

Subject to technical modifications.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!