05.01.2013 Views

Abel's theorem in problems and solutions - School of Mathematics

Abel's theorem in problems and solutions - School of Mathematics

Abel's theorem in problems and solutions - School of Mathematics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

146 Problems <strong>of</strong> Chapter 1<br />

permutation <strong>and</strong> together with it the permutation<br />

Suppose now that the normal subgroup N conta<strong>in</strong>s a permutation<br />

<strong>of</strong> the type (b) (see 190) <strong>and</strong> that is an arbitrary<br />

permutation. Choose the elements <strong>and</strong> different from <strong>in</strong><br />

the set Either <strong>in</strong> the row or <strong>in</strong> the row<br />

there will be an even number <strong>of</strong> <strong>in</strong>versions. Consequently<br />

one <strong>of</strong> the permutations or<br />

is even. Denot<strong>in</strong>g this permutation by we obta<strong>in</strong> that <strong>in</strong> all the cases<br />

N conta<strong>in</strong>s the permutation<br />

If the normal subgroup conta<strong>in</strong>s a permutation <strong>of</strong> the type (c) (see<br />

190)‚ for example‚ the permutation then it also conta<strong>in</strong>s<br />

all permutations <strong>of</strong> the type (c). Indeed‚ <strong>in</strong> this case one <strong>of</strong><br />

the permutations or is even.<br />

Let this permutation be denoted by Thus N conta<strong>in</strong>s the permutation<br />

192. We will count the number <strong>of</strong> permutations <strong>of</strong> each one <strong>of</strong> types<br />

(a)‚ (b) <strong>and</strong> (c) (see 190).<br />

a) There exist 5 · 4 · 3 · 2 · 1 = 120 sequences <strong>of</strong> 5 numbers 1‚ 2‚ 3‚ 4‚ 5.<br />

S<strong>in</strong>ce every permutation <strong>of</strong> the type (a) can be written <strong>in</strong> five equivalent<br />

ways (depend<strong>in</strong>g upon the choice <strong>of</strong> the first element) the number <strong>of</strong><br />

permutations <strong>of</strong> the type (a) is 120/5 = 24.<br />

b) By the same reason<strong>in</strong>g as <strong>in</strong> the case (a) one obta<strong>in</strong>s that the<br />

number <strong>of</strong> permutations <strong>of</strong> the type (b) is equal to 5 · 4 · 3/3 = 20.<br />

c) A permutation <strong>of</strong> the type (c) can be written <strong>in</strong> 8 different ways<br />

(one can choose <strong>in</strong> 4 ways <strong>and</strong> afterwards <strong>in</strong> two ways). Hence the<br />

number <strong>of</strong> permutations <strong>of</strong> type is equal to 5 · 4 · 3 · 2/8 = 15.<br />

Every normal subgroup N conta<strong>in</strong>s the unit element. Moreover‚ from<br />

the result <strong>of</strong> Problem 191 it follows that a normal subgroup <strong>of</strong> the group<br />

either conta<strong>in</strong>s all the permutations <strong>of</strong> a given type (see 190) or it<br />

conta<strong>in</strong>s none <strong>of</strong> them. The order <strong>of</strong> a normal subgroup must divide the<br />

order <strong>of</strong> the group (60). But add<strong>in</strong>g to the number 1 the numbers<br />

24‚ 20‚ <strong>and</strong> 15 one obta<strong>in</strong>s a divisor <strong>of</strong> 60 only <strong>in</strong> two cases: when one<br />

adds noth<strong>in</strong>g <strong>and</strong> when one adds all the three numbers. The first case<br />

corresponds to the unit subgroup‚ the second one to the whole group<br />

193. Such a subgroup is‚ for example‚ the subgroup conta<strong>in</strong><strong>in</strong>g all

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!