07.01.2013 Views

Responses of estuaries to natural and ... - University of Hull

Responses of estuaries to natural and ... - University of Hull

Responses of estuaries to natural and ... - University of Hull

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Responses</strong> <strong>of</strong> <strong>estuaries</strong> <strong>to</strong> <strong>natural</strong><br />

<strong>and</strong> anthropogenic changes:<br />

perspectives <strong>and</strong> a global view<br />

Mike Elliott (* 1 ) <strong>and</strong> Vic<strong>to</strong>r N. de Jonge (* 1,2 )<br />

* 1 Institute <strong>of</strong> Estuarine & Coastal Studies, <strong>University</strong> <strong>of</strong> <strong>Hull</strong>,<br />

UK<br />

* 2 Dept Marine Biology, <strong>University</strong> <strong>of</strong> Groningen, Netherl<strong>and</strong>s<br />

mike.elliott@hull.ac.uk, v.n.de.jonge@biol.rug.nl<br />

http://www.hull.ac.uk/iecs


Content:<br />

• Framework for assessing change<br />

• Science direction <strong>and</strong> framework<br />

• Threats & challenges<br />

• Data <strong>and</strong> information for management<br />

• Health, resilience, vigour & organisation<br />

• Scale <strong>of</strong> change <strong>and</strong> indica<strong>to</strong>rs<br />

• Carrying capacity, habitat loss & creation<br />

• Biodiversity changes & challenges<br />

• Society, eco-change & management


DPSIR Approach<br />

Driving forces (human activities <strong>and</strong> economic sec<strong>to</strong>rs<br />

responsible for the pressures);<br />

Pressures (particular stressors on the environment in the<br />

form <strong>of</strong> direct pressures such as emissions);<br />

State Changes (environmental variables<br />

(geo/physical/chemical/biological) which describe the<br />

characteristics <strong>and</strong> conditions <strong>of</strong> the coastal zone);<br />

Impact (changes in the ecosystem, resources, human<br />

health);<br />

Response (measurement <strong>of</strong> different policy options as a<br />

response <strong>to</strong> the environmental problems).<br />

(see Elliott, 2002, Mar. Poll. Bull.)


RESPONSES<br />

Measurement <strong>of</strong> Policy Options<br />

- Administration<br />

- Legislation<br />

- EU Urban Waste Water Treatment Dir.<br />

- EU Nitrates Dir.<br />

(4) Socio-<br />

Economics<br />

(3) Admin &<br />

Legislation<br />

IMPACT<br />

Changes <strong>to</strong> the System<br />

- Impact on human health<br />

- Impact on <strong>to</strong>urism/recreation<br />

- Changes <strong>to</strong> ecosystem processes<br />

- Changes <strong>to</strong> ecosystem functions<br />

- Changes <strong>to</strong> ecosystem structure<br />

DRIVING FORCES<br />

Human Activities Responsible<br />

- Agricultural intensification<br />

- Increasing human populations<br />

(3) Admin &<br />

Legislation<br />

(2) Ecological<br />

Modelling<br />

(1) Ecological<br />

Impacts<br />

NATURAL CHANGE<br />

PRESSURES<br />

e.g. Emissions <strong>to</strong> the Environment<br />

- Increased nutrients from agriculture<br />

(diffuse pollution)<br />

- Increased nutrients from UWWT plant<br />

(point source)<br />

(2) Ecological<br />

Modelling<br />

(1) Ecological<br />

Impacts<br />

STATE CHANGES<br />

Environmental Variables<br />

- Changes in nutrient loads<br />

- Increased occurrence <strong>of</strong><br />

eutrophic signs/symp<strong>to</strong>ms<br />

(1) Ecological<br />

Impacts<br />

Application <strong>of</strong> the DPSIR approach e.g. <strong>to</strong> the problem<br />

<strong>of</strong> eutrophication (NB cyclical <strong>to</strong> helical)


The endless loop<br />

Ecology<br />

Fysische<br />

systeem<br />

Fysischchemische<br />

systeem<br />

Biologische systeem<br />

effect on<br />

human<br />

environment<br />

changes<br />

Economische systeem<br />

choices<br />

Ho<strong>of</strong>dfac<strong>to</strong>r 1<br />

Productiemogelijkheden<br />

Ho<strong>of</strong>dfac<strong>to</strong>r 2<br />

Prijsverhoudingen<br />

Economy<br />

appreciation<br />

environment<br />

well-being<br />

perspective <strong>and</strong><br />

potential<br />

Human desires<br />

technical<br />

developments


The endless loop<br />

State change & impact<br />

Ecology<br />

Fysische<br />

systeem<br />

Fysischchemische<br />

systeem<br />

Biologische systeem<br />

effect on<br />

human<br />

environment<br />

changes<br />

Economische systeem<br />

Impact & response<br />

choices<br />

Ho<strong>of</strong>dfac<strong>to</strong>r 1<br />

Productiemogelijkheden<br />

Ho<strong>of</strong>dfac<strong>to</strong>r 2<br />

Prijsverhoudingen<br />

Economy<br />

State change & impact<br />

appreciation<br />

environment<br />

Driver 2<br />

well-being<br />

Driver 2<br />

perspective <strong>and</strong><br />

potential<br />

Driver 1<br />

Human desires<br />

technical<br />

developments


Science, information & data needs<br />

for underst<strong>and</strong>ing <strong>and</strong> management:<br />

• Explicit <strong>and</strong> implicit<br />

• Adequacy <strong>of</strong> underst<strong>and</strong>ing <strong>and</strong> the<br />

available data<br />

• Adequacy <strong>of</strong> generic conceptual models<br />

<strong>and</strong> then <strong>to</strong> quantify the processes<br />

• Ability <strong>to</strong> upscale, hindcast & predict<br />

• Ability <strong>to</strong> translate <strong>to</strong> other systems


An example <strong>of</strong> the adequacy <strong>of</strong> our<br />

scientific underst<strong>and</strong>ing:<br />

• Underlying processes<br />

• Conceptual models<br />

• Predictive (empirical, deterministic,<br />

s<strong>to</strong>chastic models)<br />

• Ecosystem models


atural fac<strong>to</strong>rs<br />

<strong>natural</strong> variation<br />

(noise)<br />

Physical<br />

system<br />

Physicochemical<br />

system<br />

The integral system<br />

Ecological<br />

system<br />

Biological<br />

system<br />

process<br />

structure<br />

Ecological quality:<br />

-absolute species numbers<br />

-diversity<br />

-community structure<br />

-l<strong>and</strong>scape<br />

Judgement <strong>of</strong> the environmental<br />

quality by the social community<br />

Consumer preferences<br />

(DEMAND)<br />

Judgement <strong>of</strong> the<br />

environmental quality by<br />

the social community<br />

Economic<br />

system<br />

(COST)<br />

Production possibilities<br />

Economic quality:<br />

(AVAILABILITY)<br />

Judgement <strong>of</strong> the<br />

economical quality by<br />

the social community<br />

Anthropogeni<br />

plans & activities<br />

de Jonge et al. 2003


Interaction between man <strong>and</strong> nature<br />

Anthropogenic<br />

fac<strong>to</strong>rs =<br />

man induced variation<br />

Physical system<br />

influencing<br />

- morphological change<br />

- turbidity change<br />

- modification <strong>of</strong> area<br />

Chemical fac<strong>to</strong>rs<br />

influencing:<br />

- nutrient loads &<br />

concentrations<br />

Direct ecosystem<br />

influence:<br />

- habitat change<br />

Natural fac<strong>to</strong>rs<br />

<strong>natural</strong> variation<br />

Determining physical<br />

fac<strong>to</strong>rs<br />

Determining chemical<br />

fac<strong>to</strong>rs<br />

Judgement <strong>of</strong> the<br />

<strong>natural</strong> environment<br />

Physical<br />

Physicochemical<br />

Process level<br />

Ecological<br />

system<br />

system<br />

Biological<br />

Ecological quality<br />

at different levels:<br />

de Jonge et al. 2003


Wind & SPM:<br />

‘noise’ <strong>to</strong> the one is ‘signal’ <strong>to</strong> the other<br />

Suspended matter concentrations<br />

de Jonge 1995


Water discharge & SPM:<br />

L. Ametis<strong>to</strong>va & I.S.F. Jones 2004<br />

SPM<br />

(mg l -1 )<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

y = 23.674e 0.0006x<br />

R 2 = 0.6985<br />

Herbert river estuary<br />

0 500 1000 1500 2000 2500 3000<br />

Discharge (m 3 s -1 )<br />

non linear response<br />

local resuspension, density circulation, transport capacity ?


Response area<br />

(> 100 km away)<br />

Marsdiep (1)<br />

oswal Noord-west<br />

ump site<br />

River Scheldt<br />

Vlie (2)<br />

Dantzig Gat (5)<br />

Blauwe Slenk (6)<br />

Doove Balg oost (4)<br />

Doove Balg west (3)<br />

Ems estuary<br />

River Rhine<br />

Other non-linear<br />

response curves<br />

from<br />

The Netherl<strong>and</strong>s<br />

de Jonge & de Jong, 2003


SPM<br />

(g m -3 )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

red: y = 1.11x + 28.49<br />

R 2 = 0.83<br />

de Jonge & de Jong, 2003<br />

black: y = 36.90e 0.02x<br />

R 2 = 0.89<br />

0 10 20 30 40 50 60<br />

km dredging


36.9 e<br />

non-linear<br />

> 2-fold increase<br />

Y= 36.9e 0.016x<br />

R 2 = 0.89<br />

R = 0.94<br />

NIET MEEGENOMEN<br />

Dredging &<br />

SPM:<br />

Non-linear<br />

system response<br />

Possibly due <strong>to</strong><br />

amplified<br />

erosion-sedimentation<br />

cycle<br />

de Jonge 1983


SPM<br />

(g m -3 )<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

0.0<br />

Mean annual suspended matter concentration at station<br />

Marsdiep plotted as function <strong>of</strong> spoil disposal at Loswal N<br />

<strong>and</strong> NW<br />

y = 12.42e 0.0816x<br />

5-fold increase<br />

Non-linear<br />

R 2 = 0.6274<br />

0 5 10 15 20 25 30<br />

disposed dredge spoil<br />

(x 10 6 m 3 a -1 )<br />

isposal <strong>of</strong> dredge spoil & SPM ‘at distance’:


SPM<br />

SPM<br />

(g m -3 g m<br />

100<br />

)<br />

-3 )<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

0.0<br />

80<br />

60<br />

40<br />

20<br />

SPM Mean as annual function suspended <strong>of</strong> dredge matter disposal concentration at station<br />

Marsdiep plotted as function <strong>of</strong> spoil disposal at Loswal N<br />

<strong>and</strong> NW y = 12.841e 0.0787x<br />

5-fold increase<br />

Non-linear<br />

y = 12.42e 0.0816x<br />

R 2 = 0.6274<br />

y = 14.097e 0.0594x<br />

y = 11.711e 0.0542x<br />

0 5 10 15 20 25 30<br />

0<br />

disposed dredge spoil<br />

(x 10 6 m 3 a -1 )<br />

0 5 10 15 20 25 30<br />

Sediment disposed (10 6 m 3 .a -1 )<br />

isposal <strong>of</strong> dredge spoil & SPM ‘at distance’:


SPM<br />

(g m<br />

120.0<br />

100.0<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

0.0<br />

-3 )<br />

Mean annual suspended matter concentration at station<br />

Marsdiep plotted as function <strong>of</strong> spoil disposal at Loswal N<br />

<strong>and</strong> NW<br />

y = 12.42e 0.0816x<br />

R 2 = 0.6274<br />

0 5 10 15 20 25 30<br />

disposed dredge spoil<br />

(x 10 6 m 3 a -1 )<br />

response<br />

weakening<br />

SPM<br />

(g m -3 )<br />

de Jonge & de Jong, 2003<br />

80.0<br />

60.0<br />

40.0<br />

20.0<br />

0.0<br />

Mean annual suspended matter concentration at station Vlie<br />

plotted as function <strong>of</strong> spoil disposal at Loswal N <strong>and</strong> NW<br />

y = 14.752e 0.0579x<br />

R 2 = 0.5092<br />

0 5 10 15 20 25 30<br />

disposed dredge spoil<br />

(x 10 6 m 3 a -1 )<br />

SPM<br />

(g m -3 )<br />

60.0<br />

40.0<br />

20.0<br />

Non-linear response <strong>of</strong> the the Wadden Sea<br />

<strong>to</strong> spoil dump from Rotterdam harbours<br />

possibly due <strong>to</strong> amplified density driven<br />

sediment accumulation in relation <strong>to</strong> river<br />

Mean annual suspended matter concentration at station<br />

Doove Balg West plotted as function <strong>of</strong> spoil disposal at<br />

Loswal N <strong>and</strong> NW<br />

y = 12.33e 0.0525x<br />

R 2 = 0.4692<br />

0.0<br />

0 5 10 15 20 25 30<br />

disposed dredge spoil<br />

(x 10 6 m 3 a -1 )<br />

SPM<br />

(g m -3 )<br />

60.0<br />

40.0<br />

20.0<br />

plume size<br />

Mean annual suspended matter concentration at station<br />

Doove Balg Oost plotted as function <strong>of</strong> spoil disposal at<br />

Loswal N <strong>and</strong> NW<br />

y = 24.979e 0.0224x<br />

R 2 = 0.1723<br />

0.0<br />

0 5 10 15 20 25 30<br />

disposed dredge spoil<br />

(x 10 6 m 3 a -1 )<br />

SPM<br />

(g m -3 )<br />

150.0<br />

120.0<br />

90.0<br />

60.0<br />

Mean annual suspended matter concentration at station<br />

Blauwe Slenk plotted as function <strong>of</strong> spoil disposal at Loswal<br />

N <strong>and</strong> NW<br />

y = 48.321e 0.0128x<br />

R 2 = 0.0363<br />

30.0<br />

0.0<br />

0 5 10 15 20 25 30<br />

disposed dredge spoil<br />

(x 10 6 m 3 a -1 )


North Sea<br />

tidal import & accumulation<br />

residual transport<br />

&<br />

coastal accumulation<br />

stuarine circulation,<br />

iver <strong>and</strong> tidal import<br />

SPM accumulation<br />

ud supply from<br />

trait <strong>of</strong> Dover &<br />

lemish Banks<br />

Wadden Sea<br />

TIDE & DENSITY DOMINATED de Jonge & de Jong, 2003<br />

WIND DOMINATED<br />

river supply


140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

20<br />

18<br />

Seagrass<br />

Critical Loads (mg-N m -2 d -1 )<br />

6<br />

16<br />

40 60 80 100 120 140 160 180 200<br />

8<br />

14<br />

10<br />

14<br />

12


ocess level


oundaries between fresh <strong>and</strong> brackish<br />

rticle 2: definitions: boundaries <strong>of</strong> transitional area<br />

1. Suggested criterion is clear<br />

2. Implications <strong>of</strong> criterion are not clear because <strong>of</strong><br />

sedimen<strong>to</strong>logical impact <strong>to</strong> the tidal fresh water area<br />

‘real’ river<br />

phosphate concentration<br />

river sea<br />

De Jonge & Elliott 2001<br />

salinity<br />

Process level


De Jonge & Elliott 2001


traits <strong>of</strong> Dover<br />

r away from<br />

y backyard’<br />

DIN<br />

Process level<br />

DIP<br />

2-fold<br />

3-fold<br />

winter values<br />

start <strong>of</strong> P-decline<br />

Wadden Sea


ue <strong>to</strong> management<br />

easures in 1990 the<br />

ake IJsselmeer DIP<br />

as lower than that <strong>of</strong><br />

he Straits <strong>of</strong> Dover<br />

his may have<br />

onsequences for<br />

efining ‘targets’


Defining goals:<br />

Natural North background Sea data (before the introduction <strong>of</strong> extra P & N)<br />

Straits <strong>of</strong> Dover<br />

tP 0.45<br />

tN 5.5<br />

North Sea<br />

tP 0.7<br />

tN 10<br />

North Sea coast<br />

tP 0.6 - 0.8<br />

tN 7 - 13<br />

Dutch Wadden Sea<br />

tP 0.7 - 0.9<br />

tN 8 - 15<br />

rivers Rhine & Ems<br />

tP 1.8<br />

tN 45<br />

van Raaphorst et al. 2000<br />

van Raaphorst & de Jonge 2004


Concentration (mg-N m -2 )<br />

Hysteresis in response <strong>to</strong> N loads<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Large Phy<strong>to</strong>plank<strong>to</strong>n<br />

Seagrass<br />

No<br />

denitrification<br />

Rising Load<br />

0 10 20 30 40<br />

Load (mg-N m -2 d -1 )<br />

Yes<br />

Anoxia


Enhanced production in tropical<br />

estuarine systems is usually<br />

controlled by strong<br />

pulse <strong>of</strong> freshwater<br />

Chlorophyll may increase in<br />

coastal/shelf environments with<br />

increased nutrient loading due <strong>to</strong><br />

less light limitation<br />

ut, what about intertidal seagrasses<br />

ke eelgrass?<br />

Twilley 2004<br />

Phy<strong>to</strong>plank<strong>to</strong>n<br />

Seagrasses<br />

Mangroves<br />

Productivity<br />

1.0<br />

0.5<br />

0.0<br />

Light Availability<br />

Residence Time (months)<br />

Nutrient Inputs<br />

Reef Lagoon Estuary Delta<br />

(Low energy Wind/Tides River/Tides Ri<br />

Geomorphological Setting<br />

Terrigenous Sediment Input<br />

Eutrophication


Stable versus unstable conditions<br />

Simple Plank<strong>to</strong>n Model<br />

From Huisman <strong>and</strong><br />

Weissing, 2001


Simple Plank<strong>to</strong>n Model<br />

Findings<br />

Complex behaviour might be possible in plank<strong>to</strong>n<br />

systems<br />

(occurrence sensitive <strong>to</strong> community structure)<br />

Large hydraulic disturbances may suppress complex<br />

behaviour<br />

Complex behaviour, when possible, may be robust<br />

Roelke 2004


oelke et al.<br />

004<br />

Biovolume, µm 3 liter -<br />

Biovolume, µm 3 liter -1<br />

1.40E+11<br />

1.20E+11<br />

1.00E+11<br />

8.00E+10<br />

6.00E+10<br />

4.00E+10<br />

2.00E+10<br />

Others<br />

Francheia Droescheri<br />

Centric sp.<br />

Trebauria sp.<br />

Tetraedron minimum<br />

Ankistrodesmus sp.<br />

Navicula sp.<br />

Nitzschia sp.<br />

0.00E+00<br />

3 6 9 12 15 18 21 24 27 30 33<br />

1.40E+11<br />

1.20E+11<br />

1.00E+11<br />

8.00E+10<br />

6.00E+10<br />

4.00E+10<br />

2.00E+10<br />

0.00E+00<br />

Others<br />

Tetraedron minimum<br />

Chrysidiastrum sp.<br />

Centric sp.<br />

Trebauria sp.<br />

Ankistrodesmus sp.<br />

Navicula sp.<br />

Nitzschia sp.<br />

Days<br />

3 6 9 12 15 18 21 24 27 30 33


One challenge is <strong>to</strong> link knowledge on<br />

ystem ‘structure’ <strong>to</strong> that <strong>of</strong> system ‘functioning’<br />

11184<br />

Energy Flows (kcal m -2 y-1 )<br />

300<br />

Plants<br />

1<br />

2003<br />

8881<br />

635<br />

-fluxes<br />

nformation flows<br />

lows <strong>of</strong> currency<br />

Detritus<br />

2<br />

3109<br />

860 5205<br />

167<br />

1600<br />

Bacteria<br />

3<br />

3275<br />

2309<br />

200<br />

Carnivores<br />

5<br />

203<br />

75<br />

225<br />

Detrivore<br />

4<br />

370<br />

1814<br />

Tilly, 196


Ascendency vs. Overhead<br />

(“Organization” vs. “disorder”)<br />

Ascendency = (developmental capacity – overhead)<br />

Organization = (developmental capacity – disorder)<br />

Organization<br />

– Growth <strong>and</strong> development<br />

“Disorder”<br />

– Redundancy<br />

– Dissipation<br />

– Export<br />

De Jonge 2004


Ascendency<br />

(“organization”)<br />

Measure <strong>of</strong> efficiency <strong>of</strong> energy flow<br />

Low Ascendency High Ascendency<br />

Fig. Ann Krause


Overhead<br />

(“disorder”)<br />

Measure <strong>of</strong> inefficiency <strong>of</strong> energy flow<br />

through the food web<br />

Redundancy<br />

+ Dissipation<br />

Fig. Ann Krause


Simple connections<br />

& efficiency?<br />

Connectivity needs <strong>to</strong> be made operational<br />

1<br />

2 2<br />

3 3 3 3<br />

4 4 4 4 4 4 4 4<br />

Complex connections<br />

& confusion?<br />

mathematically so that we can apply it<br />

1<br />

2 2<br />

3 3 3 3<br />

4 4 4 4 4 4 4 4<br />

Linear model Hypercoherent model<br />

dapted from:<br />

lannery KV, 1972. The Cultural Evolution <strong>of</strong> Civilizations, Annual Review <strong>of</strong> Ecology <strong>and</strong><br />

ystematics, pp. 399-426.<br />

Why is this all so interesting??<br />

P Dale 2004


• High variability intrinsic <strong>to</strong> tidal ecosystems<br />

i.e. no reference ‘state‘, but a reference ‘dynamic‘<br />

- Unpredictability is a key property <strong>of</strong> tidal zones<br />

<strong>and</strong> <strong>estuaries</strong> (Costanza et al. 1993)<br />

- Predictability <strong>of</strong> spatial dynamics (patterns) in tidal<br />

ecosystems (Grimm et al. 1999)<br />

- Underst<strong>and</strong>ing <strong>of</strong> development <strong>of</strong> bio-diversity<br />

(Huisman & Weissing 1999 2000 2001ab 2002,<br />

Roelke et al. 2004)<br />

• Identification <strong>of</strong> stability properties dependant on<br />

spatial <strong>and</strong> temporal scale <strong>of</strong> observation<br />

• Timeframe <strong>of</strong> most projects <strong>to</strong>o short <strong>to</strong> assess<br />

reference dynamic <strong>and</strong> resilience<br />

Changed after<br />

Dittmann 2004


Why is it difficult <strong>to</strong> assess reference states<br />

<strong>and</strong> resilience?<br />

• High variability intrinsic <strong>to</strong> tidal ecosystems<br />

i.e. no reference ‘state‘, but a reference ‘dynamic‘<br />

- Unpredictability is a key property <strong>of</strong> tidal zones<br />

<strong>and</strong> <strong>estuaries</strong> (Costanza et al. 1993)<br />

- Predictability <strong>of</strong> spatial dynamics (patterns) in tidal<br />

ecosystems (Grimm et al. 1999)<br />

- Underst<strong>and</strong>ing <strong>of</strong> development <strong>of</strong> bio-diversity<br />

(Huisman & Weissing 1999 2000 2001ab 2002,<br />

Roelke et al. 2004)<br />

• Identification <strong>of</strong> stability properties dependant on<br />

spatial <strong>and</strong> temporal scale <strong>of</strong> observation<br />

• Timeframe <strong>of</strong> most projects <strong>to</strong>o short <strong>to</strong> assess<br />

reference dynamic <strong>and</strong> resilience<br />

Changed after<br />

Dittmann 2004


undamental & Applied Sciences Policy/Management<br />

EU-WFD<br />

cientific research & theoretical framework Management application<br />

ystem theory<br />

Network Analysis<br />

knowledge graph theory)<br />

e Jonge et al. 2003<br />

Computer simulation model<br />

Cellular au<strong>to</strong>mata<br />

(process oriented)<br />

‘Appealing’ results<br />

(proper scaling in time <strong>and</strong> space)<br />

Ecological network analysis<br />

(process & species oriented)<br />

Decision making<br />

Conceptual<br />

model<br />

Images<br />

‘Valuation<br />

<strong>of</strong> nature’<br />

‘Weighing’<br />

Final choice


de Jonge et al. 2003<br />

Fundamental & Applied Sciences Policy/Management<br />

EU-WFD; EU-MS<br />

Scientific research & theoretical framework Management application<br />

Management Tool Kit<br />

Decision making<br />

Network Analysis<br />

(Knowledge Graph Theory)<br />

Computer Simulation Model<br />

Cellular Au<strong>to</strong>mata<br />

(process oriented)<br />

‘Appealing’ results<br />

(proper scaling in time <strong>and</strong> space)<br />

Ecological Network Analysis<br />

(process & species oriented)<br />

Conceptual<br />

model<br />

Images<br />

‘Valuation<br />

<strong>of</strong> nature’<br />

‘Weighing’<br />

Final choice


ppealing results: Convert in<br />

. indices at different scales<br />

. species indica<strong>to</strong>rs<br />

. l<strong>and</strong>scape/ habitat elements<br />

de Jonge et al. 2003<br />

Fundamental & Applied Sciences Policy/Management<br />

EU-WFD; EU-MS<br />

Scientific research & theoretical framework Management application<br />

Management Tool Kit<br />

Network Analysis<br />

(Knowledge Graph Theory)<br />

Dutch<br />

Rijkswaterstaat<br />

Computer Simulation Model<br />

Cellular Au<strong>to</strong>mata<br />

(process oriented)<br />

‘Appealing’ results<br />

(proper scaling in time <strong>and</strong> space)<br />

Ecological Network Analysis<br />

(process & species oriented)<br />

e.g.<br />

AMOEBA approach<br />

Species as indica<strong>to</strong>rs<br />

Decision making<br />

Conceptual<br />

model<br />

Images<br />

‘Valuation<br />

<strong>of</strong> nature’<br />

‘Weighing’<br />

Final choice<br />

To protect ‘structure’ <strong>and</strong> ‘functioning’ according <strong>to</strong> EU-WFD


ONCLUSIONS<br />

undamental & Applied Sciences Policy/Management<br />

de Jonge 2004<br />

EU-WFD<br />

esponses <strong>of</strong> <strong>estuaries</strong> <strong>to</strong> <strong>natural</strong> <strong>and</strong> anthropogenic changes:<br />

ystem erspectives theory <strong>and</strong> a global view<br />

Decision making<br />

cientific research & theoretical framework Management application<br />

Network Analysis<br />

nowledge Graph Theory)<br />

further develop<br />

CIENCE:<br />

. variations<br />

. threats<br />

. noise-signal<br />

Computer simulation model<br />

Cellular au<strong>to</strong>mata<br />

(process oriented)<br />

maintain<br />

‘Appealing’ results<br />

(proper scaling in time <strong>and</strong> space)<br />

work on<br />

Ecological network analysis<br />

(process & species oriented)<br />

challenge ?<br />

‘flexible functional indica<strong>to</strong>rs’<br />

for variable coastal systems<br />

Conceptual<br />

model<br />

Images<br />

work on<br />

‘Valuation<br />

<strong>of</strong> nature’<br />

‘Weighing’<br />

Final choice


Traditional Threats (a) vs. Emerging<br />

Issues (b)<br />

(a)<br />

• Contaminant levels<br />

• Physical & chemical<br />

Pollutants<br />

• Water quality<br />

• Toxicity<br />

• Fisheries<br />

• L<strong>and</strong> claim<br />

• L<strong>and</strong> use<br />

• Microbial pollutants<br />

(b)<br />

• Irreversible habitat change – loss<br />

• Reduction in productivity <strong>and</strong><br />

biodiversity<br />

• Nutrient cycling modification<br />

• L<strong>and</strong> change <strong>and</strong> use<br />

• Climate variability <strong>and</strong> global<br />

change<br />

• Macro-biological pollution<br />

• Sustainable fishing<br />

• Marine energy<br />

• Trace organics, POPs, EDS,<br />

antibiotics<br />

(modified & exp<strong>and</strong>ed from Boesch & Paul 2001)


Threats & Challenges: what can be<br />

managed <strong>and</strong> what cannot?<br />

focus both on:<br />

• large-scale causes (exogenic unmanaged pressures)<br />

such as global climate change<br />

• localised <strong>and</strong> more manageable change such as<br />

through l<strong>and</strong>-use, resource exploitation <strong>and</strong> pollution<br />

(*).<br />

(* diffuse inputs, such as the production <strong>of</strong><br />

eutrophication signs <strong>and</strong> symp<strong>to</strong>ms, <strong>and</strong> point source<br />

inputs, from industry <strong>and</strong> urban areas.)


Soluble (a) vs Insoluble (b) problems?<br />

(a)<br />

Input <strong>of</strong> discharges:<br />

• reduction/treatment<br />

• waste minimisation<br />

• diffuse/point sources,<br />

• control by national <strong>and</strong><br />

international legislation<br />

(b)<br />

Habitat loss –<br />

• temporary (water quality<br />

barriers/change, dredging,<br />

sea-ice),<br />

• permanent (l<strong>and</strong> claim,<br />

barriers, sea level rise) –<br />

examples <strong>of</strong> loss <strong>and</strong> gain<br />

<strong>of</strong> habitats


Pollutants (old vs. new)<br />

Chemical:<br />

• Heavy metals O<br />

• Organic matter O<br />

• Radioactivity O<br />

• Hydrocarbons O<br />

• Heat O<br />

• Nutrients N<br />

• Persistent organics N<br />

Physical:<br />

Biological:<br />

• Micropathogens O<br />

• Ballast water migrants O<br />

• Invasive macrophytes N<br />

• Introduced parasites N<br />

• GMO’s N<br />

• Inert solids (sediment) O<br />

• Thermal deformations O<br />

• Litter/garbage N<br />

• Large structures N<br />

• Escapees from culture N


Obtaining Data & Information for<br />

Management<br />

• surveillance, compliance, condition <strong>and</strong> diagnostic<br />

moni<strong>to</strong>ring systems <strong>and</strong> their outputs against<br />

indica<strong>to</strong>rs <strong>of</strong> change<br />

• To be interpreted against a background <strong>of</strong> the<br />

resilience <strong>of</strong> highly variable systems (e.g. <strong>estuaries</strong>),<br />

the recovery period from different types <strong>of</strong> stressor<br />

<strong>and</strong> the differences in that variability <strong>and</strong> resilience<br />

with latitude<br />

but …...


H&SD<br />

surveillance<br />

Surveillance & Moni<strong>to</strong>ring Terminology<br />

(= added complication)<br />

UK H&SD<br />

surveillance<br />

condition<br />

moni<strong>to</strong>ring<br />

compliance<br />

moni<strong>to</strong>ring<br />

WFD<br />

surveillance<br />

moni<strong>to</strong>ring<br />

operational<br />

moni<strong>to</strong>ring<br />

investigative<br />

moni<strong>to</strong>ring<br />

ME/VNdeJ et al<br />

surveillance:<br />

assessment <strong>of</strong> status <strong>and</strong><br />

features with a posteriori<br />

detection <strong>of</strong><br />

changes/trends<br />

moni<strong>to</strong>ring:<br />

determination <strong>of</strong> specific<br />

features against a preconceived<br />

end-point<br />

applied research:<br />

diagnostic study,<br />

trigger-exceedance study


Threats & Challenges e.g. #1:<br />

• localised <strong>and</strong> more manageable change e.g.<br />

through l<strong>and</strong>-use, resource exploitation <strong>and</strong><br />

pollution;<br />

• manage the causes <strong>and</strong> consequences on a<br />

local scale.


Organophosphates<br />

(<strong>to</strong>tal)<br />

Atrazine<br />

Simazine<br />

Dieldrin<br />

Aldrin<br />

Endrin<br />

Isodrin<br />

DDE<br />

DDT<br />

Endosulfan<br />

HCB<br />

Alpha-HCH<br />

Beta-HCH<br />

Gamma-HCH<br />

Trifluralin<br />

Seawater ng l -1<br />

(median)<br />

5<br />

10<br />

11<br />

5<br />

5<br />

10*<br />

5*<br />

0.005<br />

5<br />

10*<br />

5<br />

5<br />

5<br />

5<br />

5<br />

Sediment mg kg -1 DW<br />

(75 th %ile)<br />

0.0019*<br />

0.0019<br />

0.0038*<br />

0.0019*<br />

0.0019<br />

Severn<br />

Estuary UK<br />

pesticides in<br />

water <strong>and</strong><br />

sediments<br />

1995099<br />

(Allen et al 2000)<br />

* possible<br />

tentative<br />

exceedences <strong>of</strong><br />

EQS or interim<br />

marine sediment<br />

quality guidelines<br />

(ISQG)<br />

Q. – any biological effects?


Cumulative Species Nos.<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

CUMULATIVE FISH SPECIES RECORDED IN<br />

TIDAL THAMES (FULHAM - TILBURY)<br />

1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002<br />

Year<br />

Example <strong>of</strong> rehabilitated estuary – the Thames,<br />

London – low level data with high public value (source:<br />

Environment Agency)


10000<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

1985 1989 1990 1991 1992 1993 1994 1995 1996 1997<br />

Year<br />

(b) phosphorus<br />

Tons<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Agriculture<br />

Natural loading<br />

Atmospheric deposition<br />

Rural communities<br />

Aquaculture<br />

Industry<br />

Rainwater<br />

Sewage treatment plants<br />

Annual inputs <strong>to</strong> the<br />

R<strong>and</strong>ers Fjord during<br />

1985 <strong>and</strong> 1989-1997<br />

(data taken from Sømod et al.,<br />

1999)<br />

(a) nitrogen<br />

1985 1989 1990 1991 1992 1993 1994 1995 1996 1997<br />

Agriculture<br />

Natural loading<br />

Atmospheric deposi<br />

Rural communities<br />

Aquaculture<br />

Industry<br />

Rainwater<br />

Sewage treatment p


CONDITIONS SYMPTOMS CONSEQUENCES<br />

LIGHT<br />

atural light<br />

onditions<br />

TRIENT INFLUX<br />

vels<br />

d ratios<br />

& P<br />

SIDENCE TIME<br />

Maintaining high<br />

nitrogen levels<br />

Shading<br />

Increased<br />

primary<br />

production<br />

Maintaining high<br />

phosphorus levels<br />

Species shift in<br />

plants<br />

Reduced<br />

denitrification<br />

Increased<br />

turbidity<br />

Growth <strong>of</strong><br />

epiphytes<br />

Species shift <strong>of</strong><br />

phy<strong>to</strong>plank<strong>to</strong>n<br />

Species shift <strong>of</strong><br />

vascular plants<br />

Increased<br />

organic matter<br />

decomposition<br />

Reduced<br />

nitrification<br />

Shading <strong>of</strong><br />

vascular plants<br />

Harmful <strong>and</strong><br />

<strong>to</strong>xic blooms<br />

Changes in<br />

community<br />

structure<br />

Temporal<br />

hypoxia/<br />

anoxia<br />

Internal<br />

phosphorus<br />

flux<br />

Loss <strong>of</strong> habitat<br />

Direct human health<br />

problems by <strong>to</strong>xin<br />

Indirect human health<br />

problems by <strong>to</strong>xin<br />

accumulation<br />

Fish kills<br />

Reduced habitat for<br />

life stages (spawning)<br />

Mephitic waters<br />

‘Black spots’<br />

intertidal flats<br />

Implications <strong>to</strong><br />

fisheries<br />

Implications <strong>to</strong><br />

human health<br />

(PSP, ASP, DSP)<br />

Loss <strong>of</strong> recreational<br />

use<br />

de Jonge & Elliott 2001


uses <strong>of</strong><br />

trophication<br />

mary Effects<br />

Primary Symp<strong>to</strong>ms(**) <strong>of</strong> Eutrophication<br />

Value <strong>of</strong> tick-list<br />

approach<br />

Increased nutrient inputs<br />

High residence time / slow flushing rate /<br />

poor levels <strong>of</strong> dilution<br />

Occurrence <strong>of</strong> blooms <strong>of</strong> <strong>to</strong>xic or tainting<br />

phy<strong>to</strong>plank<strong>to</strong>n forms<br />

Increasing plant/algal biomass production,<br />

both at the micro <strong>and</strong>/or macro level,<br />

leading <strong>to</strong> elevated chlorophyll-a<br />

concentrations<br />

Occurrence <strong>of</strong> blooms <strong>of</strong> micro-algae which<br />

may be a nuisance (<strong>and</strong> cause aesthetic<br />

pollution) through foaming (e.g.<br />

Phaeocystis, Chae<strong>to</strong>ceros socialis)<br />

Decline or disappearance <strong>of</strong> certain<br />

perennial plants, <strong>of</strong>ten replaced by annual,<br />

fast growing opportunistic species such as<br />

foliose or filamen<strong>to</strong>us green algae (e.g.<br />

Ulva, Enteromorpha)<br />

Reduced diversity <strong>of</strong> the flora (<strong>and</strong><br />

associated fauna)<br />

Changes <strong>to</strong> photic regime through shading<br />

Including Hevring Bay.<br />

Unclear from the literature.<br />

No information identified within the literature sourced.<br />

Inner<br />

Fjord<br />

�<br />

�<br />

�<br />

?<br />

�<br />

�<br />

�<br />

R<strong>and</strong>ers<br />

Fjord<br />

Outer<br />

Fjord*<br />

�<br />

Short retention<br />

time 13 days<br />

�<br />

�<br />

?<br />

�<br />

�<br />

?<br />

Estuary<br />

Plume<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

-<br />

Lower<br />

Estuary<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

Scheldt<br />

Upper<br />

Estuary<br />

High residence time <strong>of</strong> the water masses; up<br />

<strong>to</strong> 70 days for water in upstream areas<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

Fluvial<br />

Estuary<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

Bay <strong>of</strong> Palma<br />

Inshore<br />

�<br />

Wind driven, poor<br />

turnover ratio<br />

(** also for secondary symp<strong>to</strong>ms)<br />

�<br />

�<br />

�<br />

�<br />

?<br />

�<br />

Offshore<br />

�<br />

�<br />

?<br />

�<br />

?<br />

?<br />

?


Changes as a response<br />

<strong>to</strong> management actions<br />

EU Nitrates Directive<br />

Re-designation <strong>of</strong> Nitrate<br />

Vulnerable Zones in<br />

response <strong>to</strong> EU<br />

recommendation<br />

Tackling diffuse<br />

pollutants – requires<br />

changes <strong>to</strong> agricultural<br />

systems <strong>and</strong> society


Inputs<br />

Industry<br />

Sewage - STW<br />

Sewage - CSO<br />

Natural vegetation [*]<br />

Diffuse sources via<br />

freshwater (FWsewage)<br />

Total<br />

Humber Estuary (tentative)<br />

organic budget pre- <strong>and</strong><br />

post l<strong>and</strong>-claim<br />

t C yr -1<br />

(


Determining Unhealthy Systems?<br />

Medical (*1) –<br />

• Diagnosis<br />

• Prognosis<br />

• Treatment<br />

• Prevention<br />

(*1 Steevens et al 2001 - Human Ecol. Risk Ass.)<br />

Environmental –<br />

• Assessment (*2)<br />

• Prediction<br />

• Remediation/Creation/<br />

Res<strong>to</strong>ration<br />

• Prevention<br />

(* 2 using extension <strong>of</strong><br />

symp<strong>to</strong>ms for the diagnosis<br />

<strong>of</strong> ecosystem pathology)


Attributes for the diagnosis <strong>of</strong> ecosystem<br />

pathology: ⇒ 7 indica<strong>to</strong>rs for general<br />

application:<br />

• primary production<br />

• nutrients (fate & effects)<br />

• species diversity (abiotic areas)<br />

• community instability (biotic composition)<br />

• size <strong>and</strong> biomass spectrum<br />

• disease/anomaly prevalence<br />

• contaminant uptake <strong>and</strong> response


Ecosystem health – V-O-R Approach, <strong>to</strong><br />

include:<br />

• Vigour – turnover, throughput or productivity<br />

<strong>of</strong> the system<br />

• Organisation – species diversity, degree <strong>of</strong><br />

connectiveness (food webs, trophic<br />

interactions, preda<strong>to</strong>r-prey relationships)<br />

• Resilience – ability <strong>to</strong> maintain structure <strong>and</strong><br />

function despite stress; ability <strong>to</strong> withst<strong>and</strong><br />

sustained or repeated stress<br />

(modified from Boesch & Paul 2001, Human Ecol. Risk Ass)


Conceptual diagram -<br />

ecosystem health<br />

(i.e. vigour x<br />

organisation (=<br />

ascendancy) vs.<br />

resilience<br />

V-O-R properties <strong>of</strong><br />

different <strong>estuaries</strong> with<br />

temporal change (t 1 <strong>to</strong><br />

t 5) (from Costanza &<br />

Mageau 1999)<br />

Challenge – quantifying the<br />

model?


Example hypotheses for future study:<br />

• That larger, stable systems are more predictable, <strong>and</strong><br />

therefore easier for the use <strong>of</strong> indica<strong>to</strong>rs/objectives<br />

setting <strong>and</strong> meeting cf. smaller, more variable<br />

systems.<br />

• That the more variable systems such as <strong>estuaries</strong> are<br />

more resilient <strong>to</strong> change (greater environmental<br />

homeostasis).<br />

• That the adoption <strong>of</strong> a reference condition or<br />

favourable conservation status really does imply a<br />

healthy ecosystem.<br />

• Q. – does resilience = assimilative capacity?


Determine, Quantify <strong>and</strong> Express the<br />

Scale <strong>of</strong> Change:<br />

• Indica<strong>to</strong>rs – pressure/change – morphological,<br />

environmental quality, pressure indica<strong>to</strong>rs;<br />

• Challenge – weighting <strong>of</strong> indica<strong>to</strong>rs;<br />

• List <strong>of</strong> pressures/threats – which involve habitat loss,<br />

species loss;<br />

• Need <strong>to</strong> define, determine <strong>and</strong> quantify carrying<br />

capacity;<br />

• Signal-<strong>to</strong>-noise ratios for given stressors;<br />

• Detection <strong>of</strong> wide <strong>and</strong> narrow spatial change (extent<br />

<strong>of</strong> effect) <strong>and</strong> long <strong>and</strong> short term temporal change<br />

(duration <strong>of</strong> effect).


Define conceptual<br />

models <strong>of</strong> change (I)<br />

Derive common st<strong>and</strong>ards<br />

<strong>and</strong> reference conditions (I)<br />

Definition <strong>of</strong> estuary,<br />

coastal systems <strong>and</strong><br />

features<br />

Determine appropriate<br />

moni<strong>to</strong>ring (condition,<br />

compliance, diagnostic <strong>and</strong><br />

investigative) (I)<br />

Application <strong>and</strong> assessment – identify<br />

actual <strong>and</strong> potential threats<br />

Reporting <strong>and</strong> communication (presentations,<br />

public participation, action plans, awareness) (I)<br />

Define management implications<br />

(infrastructure, socio-economic basis,<br />

navigation, pollution control, etc.)<br />

Define<br />

data needs<br />

Definition <strong>of</strong><br />

geographical<br />

area boundaries<br />

Model development: deterministic<br />

(physico-chemical) <strong>and</strong><br />

empirical/descriptive (biological)<br />

Comparison against<br />

reference conditions (I)<br />

Carry out<br />

management<br />

Data collection for st<strong>and</strong>ard units<br />

(physical, chemical <strong>and</strong> biological)<br />

Agree legal definitions<br />

Derivation <strong>and</strong><br />

production <strong>of</strong> legal <strong>and</strong><br />

administrative<br />

frameworks<br />

Initial estuary<br />

classification (I)<br />

Further categorise<br />

unmodified <strong>and</strong> modified<br />

areas (I)<br />

Further development<br />

(identify priorities, research<br />

<strong>and</strong> development)<br />

Implementation <strong>of</strong> legal<br />

<strong>and</strong> administrative<br />

frameworks<br />

Generic framework for indica<strong>to</strong>r use (I = need for indica<strong>to</strong>rs)


Indica<strong>to</strong>rs <strong>of</strong> change:<br />

• Relate types <strong>and</strong> nature <strong>of</strong> indica<strong>to</strong>rs <strong>of</strong><br />

change <strong>to</strong> the DPSIR philosophy<br />

• Increasing use <strong>of</strong> qualitative <strong>and</strong> quantitative<br />

indica<strong>to</strong>rs<br />

but:<br />

• also consider the use <strong>of</strong> flexible indica<strong>to</strong>rs –<br />

(required in highly dynamic systems such as<br />

<strong>estuaries</strong> cf. less variable terrestrial <strong>and</strong><br />

freshwater systems)


From Indica<strong>to</strong>rs <strong>to</strong> Classification Schemes:<br />

• Use <strong>of</strong> single indica<strong>to</strong>rs for biology, chemistry,<br />

aesthetics (Aust., SA, UK, NL, etc.)<br />

• Combining in<strong>to</strong> EEI (Environmental<br />

Integrative Indica<strong>to</strong>rs – EEI1 Pressures, EEI2<br />

Physical Modification, EEI3 Env. Quality)<br />

• Weighting, mapping, use as performance<br />

indica<strong>to</strong>rs & socio-economic assessment (e.g.<br />

EU WFD)


Carrying Capacity:<br />

• Environmental aim – maintenance;<br />

• Socio-economic aim – exploitation (relate <strong>to</strong><br />

assimilative capacity);<br />

• Big questions – what is lost <strong>and</strong> how <strong>to</strong> regain<br />

it;<br />

• Increase by habitat creation;


Habitat Loss:<br />

• Permanent – removal <strong>of</strong> wetl<strong>and</strong>/<br />

polderisation (Northern problem?) – solved by<br />

creation/res<strong>to</strong>ration<br />

• Temporary – by increase or decrease in<br />

water <strong>and</strong> sediment quality (e.g. salinity,<br />

temperature, DO, turbidity) (Northern<br />

problem?) or by decrease in water quantity<br />

(Southern problem?) – solved by remediation


Sunk Isl<strong>and</strong>, north bank <strong>of</strong> the Humber: piecemeal reclamation


L<strong>and</strong> Claim – still<br />

occurring: Encroachment<br />

Pressures in the Thames<br />

Estuary<br />

Marginal habitats provide:<br />

(a) specialized refuge <strong>and</strong> feeding grounds<br />

for juvenile fish, hence loss <strong>of</strong> these<br />

habitats reduces the carrying capacity <strong>of</strong><br />

the estuary,<br />

(b) migration routes during STST <strong>and</strong> a<br />

continuous foreshore is vital for these<br />

migrations.<br />

(Ackn. Dr S Colclough, Env. Agency)


Examples <strong>of</strong> Temporary Habitat Loss:<br />

• E.g. DO barrier at<br />

estuarine upper<br />

reaches<br />

• Dredging sediment plume<br />

+<br />

• Salinity rise through abstraction<br />

• Sea-ice cover


Threats & Challenges #2:<br />

• large-scale causes (exogenic unmanaged<br />

pressures (EUP)) such as global climate<br />

change, isostatic rebound<br />

• manage the consequences on a local scale


‘Ready for<br />

immigrating <strong>to</strong><br />

Australia’<br />

National level


Priority – ‘dry feet’ first then worry<br />

about the environment?<br />

© Elliott<br />

he s<strong>to</strong>rm-surge Delta works SW Netherl<strong>and</strong>s<br />

© de Jonge<br />

© Rijkswaterstaat


Thames Estuary, UK –<br />

barrier protection<br />

Source: Environment Agency<br />

Humber Estuary, UK<br />

– flood risk (relative<br />

SLR – SLR +<br />

isostatic rebound


coastal<br />

adjustment<br />

set-back/<br />

managed<br />

retreat<br />

wetl<strong>and</strong>/habitat<br />

creation<br />

increase in<br />

refugia<br />

fisheries<br />

support<br />

Climate Change - Effects on Habitats<br />

relative sea level rise<br />

“coastal<br />

squeeze”<br />

tidal area<br />

reduction<br />

loss <strong>of</strong> prey/<br />

feeding area<br />

reduction in<br />

carrying<br />

capacity<br />

fisheries<br />

repercussions<br />

marine<br />

incursion<br />

salinity/depth<br />

alteration<br />

community<br />

displacement<br />

e.g.<br />

movement<br />

<strong>of</strong> brackish<br />

species<br />

erosion<br />

increased<br />

s<strong>to</strong>rminess<br />

loss <strong>of</strong><br />

habitat<br />

substratum<br />

change<br />

change in<br />

prey<br />

availability<br />

increase<br />

need fo<br />

refugia


Combatting sea level rise - Contrasts: Hard defences


‘Win-win-win situation’<br />

Pho<strong>to</strong>s: Environment Agency<br />

Habitat Creation:<br />

Res<strong>to</strong>ration / setback<br />

/ managed<br />

realignment /<br />

depolderisation


Biodiversity changes & challenges:<br />

• Biological pollution – introduced species<br />

• Effects <strong>of</strong> global warming – changing<br />

distributions (e.g. Red Sea migrations)<br />

• Examples <strong>of</strong> habitat modification effects<br />

e.g. Eriocheir, Caulerpa


Future – biodiversity change:<br />

• Determine what’s there <strong>and</strong> what’s been lost<br />

• Quantify niche creation<br />

• Quantify rate & processes <strong>of</strong> filling niches<br />

• Determine sequence depending on time <strong>of</strong> start<br />

• (Fulfil management actions in these)<br />

(Elliott, 2002, Mar. Poll. Bull.;<br />

McLusky & Elliott, 2004, OUP)


Turning pressures in<strong>to</strong><br />

gains?<br />

e.g. artificial structures


Challenge – not just assessing negative<br />

effects?<br />

Aerogenera<strong>to</strong>r monopiles as artificial reefs –<br />

mitigation, compensation or problem source?<br />

• Introduction/creation <strong>of</strong> new<br />

habitat<br />

• Change (increase?) in species<br />

diversity<br />

• Facilitate spread <strong>of</strong> fouling<br />

organisms <strong>and</strong> invasive<br />

species (biological pollution?)<br />

• Recreation or production<br />

possibilities


Challenge – not just assessing negative<br />

effects?<br />

Aerogenera<strong>to</strong>r monopiles as crea<strong>to</strong>rs <strong>of</strong> no-take<br />

zones <strong>and</strong> fish/shellfish refuges – mitigation,<br />

compensation or problem source?<br />

• Prevention <strong>of</strong> a<br />

deleterious activity<br />

• Creation <strong>of</strong> new<br />

habitat<br />

• Knock-on effects in<br />

surrounding area<br />

• Production<br />

possibilities


Challenge - <strong>to</strong> determine relative effects<br />

(footprint) at 5 spatial levels:<br />

• Microscale: on a structure<br />

• Mesoscale: with type <strong>and</strong> alignment <strong>of</strong><br />

material<br />

• Macroscale: heterogenity within the area<br />

• Megascale: between structures<br />

• Metascale: integration <strong>of</strong> data <strong>and</strong> knowledge<br />

[can also give the same for temporal responses]


Society & Eco-change - 6 tenets for<br />

successful, sustainable <strong>and</strong> acceptable<br />

environmental management:<br />

• Environmentally sustainable<br />

• Technologically feasible<br />

• Economically viable<br />

• Socially desirable/<strong>to</strong>lerable<br />

• Legally permissible<br />

• Administratively achievable<br />

(modified from Elliott, 2002, Mar. Poll. Bull.)


Policy strategies, development, merging &<br />

overlap<br />

⇒ addressing concerns by policy action:<br />

• 1960’s - realise there is a problem <strong>of</strong> pollution;<br />

• 1970’s – no problem, dilution as solution;<br />

• 1980’s – not sufficient, end <strong>of</strong> pipe controls;<br />

• 1990’s – realise there is a bigger problem than just<br />

pollution; EMS, holistic, ecosystem approach;<br />

• 2000’s – realise there are problems - diffuse, habitat,<br />

catchment <strong>and</strong> open sea solutions <strong>and</strong> strategies<br />

(e.g. EEA, OSPAR, US NOAA, ANZ EQO).


Direction <strong>of</strong> Estuarine Management:<br />

• Upscaling - larger <strong>and</strong> collective systems<br />

(e.g. the EU Water Framework Directive, the<br />

US NOAA eutrophication assessment, <strong>and</strong><br />

the Australian <strong>and</strong> New Zeal<strong>and</strong> estuarine<br />

management plans <strong>and</strong> quality objectives);<br />

• Multi- & cross disciplinary approach;<br />

• Statu<strong>to</strong>ry remit <strong>to</strong> include cost-benefit<br />

appraisal (eg. CVA, WTP) (e.g. R<strong>and</strong>ers<br />

estuary)


US - Level <strong>of</strong> expression <strong>of</strong> symp<strong>to</strong>ms per category <strong>of</strong><br />

eutrophic condition (NOAA 1999) – value <strong>of</strong> expert view<br />

approach where no hard data


The Framework for Applying the Australian/New Zeal<strong>and</strong><br />

Water Quality Guidelines (from National Water Quality<br />

Management Strategy, 2000)<br />

Define: PRIMARY MANAGEMENT AIMS<br />

(incl. environmental values, management goals <strong>and</strong> level <strong>of</strong> protection)<br />

⇓<br />

Determine appropriate: WATER QUALITY GUIDLEINES<br />

(tailored <strong>to</strong> local environmental conditions)<br />

⇓<br />

Define: WATER QUALITY OBJECTIVES<br />

(specific water quality <strong>to</strong> be achieved)<br />

taking account <strong>of</strong> social, cultural, political <strong>and</strong> economic concerns where<br />

necessary<br />

⇓<br />

Establish: MONITORING AND ASSESSMENT PROGRAMME<br />

(focussed on water quality objectives)<br />

after defining acceptable performance or decision criteria<br />

⇓<br />

Initiate appropriate: MANAGEMENT RESPONSE<br />

(based on attaining or maintaining water quality objectives)


Mitigation (‘<strong>to</strong> make less severe’)<br />

Measures in Management – examples:<br />

• Segregate the wastes<br />

• Provide an area for the degradation <strong>of</strong> wastes<br />

• Re-use the wastes<br />

• Separate the activities/uses in space<br />

• Separate the activities/uses in time<br />

• Reduce the wastes/l<strong>and</strong>-use<br />

(Mitigation/compensation for change but need <strong>to</strong> determine their<br />

success)


Compensation Measures in Management<br />

(where mitigation is not possible/costeffective):<br />

• Economic compensation (e.g. pay the<br />

fishermen)<br />

• Resource compensation (e.g. improve the<br />

fishery)<br />

• Ecological compensation (‘creative<br />

conservation’ – e.g. wetl<strong>and</strong> creation)<br />

(Mitigation/compensation for change but need <strong>to</strong> determine their<br />

success)


The Estuary & Coast - Major Legislative /Administrative/Policy<br />

Drivers – Statu<strong>to</strong>ry Requirements<br />

EU Directives - Sec<strong>to</strong>ral:<br />

• Urban Waste-water<br />

Treatment<br />

• Integrated Pollution<br />

Prevention & Control<br />

• Titanium Dioxide<br />

• Shellfish Growing Waters &<br />

Health<br />

• Shellfish Harvesting<br />

• Bathing Waters<br />

• Dangerous Substances +<br />

Daughters<br />

• Freshwater Fishes<br />

EU Directives –<br />

Ecosystemic/Holistic:<br />

• Environmental Impact<br />

Assessment<br />

• Habitats & Species<br />

• Wild Birds<br />

• Nitrates – level, control, use<br />

• Strategic Environmental<br />

Assessment<br />

• Water Framework<br />

• Freshwater Fishes<br />

• Integrated Coastal Zone<br />

Management?<br />

• Marine Strategy?


Underst<strong>and</strong>ing & Managing Estuarine<br />

Change: the future (1)<br />

♦ Know the problem: widespread surveillance (low<br />

level) <strong>to</strong> identify targeted moni<strong>to</strong>ring;<br />

♦ Greater focussed research: role <strong>of</strong> survey,<br />

experiment, theoretical approaches;<br />

♦ Good science: hypothesis generation & testing;<br />

♦ Lateral thinking: think out <strong>of</strong> the box/silo;<br />

embrace even the socio-economists;<br />

♦ Big questions: ‘how is it’, ‘what if’, ‘so what’;<br />

♦ Catchment & whole enclosed sea approaches &<br />

management: watershed, river basin <strong>to</strong> oceanic<br />

& climatic drivers;


Underst<strong>and</strong>ing & Managing Estuarine<br />

Change: the future (2)<br />

♦Test the rationale: define the characteristics <strong>of</strong> the<br />

ecosystem � define the objectives, st<strong>and</strong>ards,<br />

indica<strong>to</strong>rs � define the moni<strong>to</strong>ring strategy � define<br />

moni<strong>to</strong>ring pro<strong>to</strong>col � determine compliance;<br />

♦ Feedback loops: scientists <strong>and</strong> their information in<strong>to</strong><br />

management decisions (& vice versa);<br />

♦Question the need: for detailed assessment vs.<br />

educated guess (what information is required by<br />

managers);<br />

♦Simplify the debate/approach: harmonise terms <strong>and</strong><br />

approaches across initiatives; beware <strong>of</strong> ‘gold-plating’.


‘Joined-up Environmental Thinking’:<br />

♦Ecological Integration: habitat integrity, fit-forpurpose;<br />

♦User/Use Integration: move from sec<strong>to</strong>ral approach;<br />

♦Management Integration: WFD / HSD / IMO(PSSA) /<br />

OSPAR(Annex V) / BAP / WBD / ICES;<br />

♦Moni<strong>to</strong>ring Integration: joint programmes for costeffectiveness;<br />

♦Environmental Integration: from site-based <strong>to</strong> wider<br />

study (sites influencing <strong>and</strong> being influenced by<br />

events remote from the site);<br />

♦Scientific Integration: responses <strong>to</strong> multiple stressors<br />

at several levels <strong>of</strong> biological organisation.


Ultimate Aim:<br />

“Give us the <strong>to</strong>ols <strong>and</strong><br />

we’ll finish the job”<br />

(Churchill) – not<br />

vice versa!<br />

Optimism<br />

(the SWFC Fac<strong>to</strong>r!)<br />

http://www.hull.ac.uk/iecs


elected references:<br />

llen et al., 2000.<br />

metis<strong>to</strong>va, L. & I.S.F. Jones, 2004. Budget <strong>of</strong> flood sediments<br />

the Herbert river estuary. Presentation ECSA Symp., Ballina, AU<br />

oesch & Paul, 2001.<br />

oyes et al., 2004.<br />

oyes & Elliott, in press. Organic matter <strong>and</strong> the functioning <strong>of</strong> <strong>estuaries</strong>. Marine Pollution<br />

ulletin.<br />

ostanza R <strong>and</strong> Mageau M (1999) What is a healthy ecosystem? Aquatic Ecology 33: 105-115.<br />

ale, P., 2004. Connectivity: opportunity, constraint <strong>and</strong> impact <strong>of</strong> change. Presentation ECSA<br />

ymp., Ballina, AU<br />

ittman, S, V. Grimm & H. Hildenbr<strong>and</strong>t, 2004. Assessing reference states <strong>and</strong> changes in tidal<br />

coystems. Presentation ECSA Symp., Ballina, AU<br />

lliott, M., 2002. Mar. Poll. Bull.<br />

lliott, M & KL Hemingway (Eds.) 2002. Fishes in Estuaries, Blackwells, Publ., Oxford,<br />

p636.<br />

lliott M & DS McLusky, 2002. The need for definitions in underst<strong>and</strong>ing <strong>estuaries</strong>. Estuarine,<br />

oastal & Shelf Science, 55(6) 815-827.


Harris, G., 2004. The challenge <strong>of</strong> uncertainty. Presentation ECSA Symp. Ballina, AU<br />

Huisman, J. & F.J. Weissing, 2001. Biological conditions for oscillations <strong>and</strong> chaos<br />

generated by multispecies competition. Ecology 82, 2682-2695.<br />

Jonge, V.N. de, 1983. Relations between annual dredging activities, suspen-ded matter<br />

concentrations, <strong>and</strong> the development <strong>of</strong> the ti-dal regime in the Ems estu-ary. Can. J. Fish.<br />

Aquat. Sci. 40 (Suppl. 1): 289-300.<br />

Jonge, V.N. de, 1995. Wind driven tidal <strong>and</strong> annual gross transports <strong>of</strong> mud <strong>and</strong><br />

microphy<strong>to</strong>benthos in the Ems estuary, <strong>and</strong> its im-por-tan-ce for the ecosy-stem. In: K.R.<br />

Dyer & C.F. D’Elia, eds.) Changes in fluxes in <strong>estuaries</strong>, 29-40.<br />

Jonge, V.N. de, 1997. High remaining productivity in the Dutch wes-tern Wadden Sea<br />

despite decreasing nutrient inputs from ri-verine sources. Mar. Poll. Bull., 34: 427-436.<br />

Jonge, V.N. de, J.F. Bakker & M.R. van Stralen. 1996. Recent changes in the contribution <strong>of</strong><br />

the river Rhine <strong>and</strong> the North Sea <strong>to</strong> the eutrophication <strong>of</strong> the western Dutch Wadden Sea.<br />

Neth. J. Aquat. Ecol., 30: 27-39.<br />

Jonge V.N. de & M. Elliott, 2001. Eutrophication, p. 852-870 In: J. Steele, S. Thorpe & K.<br />

Turekian (eds.) Encyclopedia <strong>of</strong> Ocean Sciences. Academic Press, London, 3399p.<br />

Jonge, V.N. de & D.J. de Jong, 2002. ‘Global Change’ impact <strong>of</strong> inter-annual variation in<br />

water discharge as a driving fac<strong>to</strong>r <strong>to</strong> dredging <strong>and</strong> spoil disposal in the river Rhine system<br />

<strong>and</strong> <strong>of</strong> turbidity in the Wadden Sea. Estuarine Coastal Shelf Science 55: 969-991.


onge, V.N. de, M.J. Kolkman, E.C.M. Ruijgrok & M.B. de Vries, 2003. The need for new<br />

aradigms in integrated socio-economic <strong>and</strong> ecological coastal policy making. Proceedings <strong>of</strong><br />

0th International Wadden Sea Symposium, 247-270, Ministry <strong>of</strong> Agriculture, Nature<br />

anagement <strong>and</strong> Fisheries, Department North, Groningen 272 pp.<br />

cLusky, DS & M Elliott, 2004. The Estuarine Ecosystem: ecology, threats & management.<br />

xford <strong>University</strong> Press, Oxford.<br />

oelke, D., S. Augustine & Y. Buyukates, 2003. Fundamental predictability in multispecies<br />

ompetition: the influence <strong>of</strong> large disturbance. Am. Nat. 2003. Vol. 162, pp. 615-623.<br />

oelke, D., J. Heilman, Y. Buyukates & E. Fejes, 2004. Chaotic <strong>and</strong> determinable responses<br />

f estuarine plank<strong>to</strong>n <strong>to</strong> pulsed inflows: model <strong>and</strong> microcosm experiments. Presentation<br />

CSA Symp., Ballina, AU<br />

ømod et al., 1999.<br />

willey, R.R., 2004. Tropical <strong>estuaries</strong>: Does latitude make a difference (with particular<br />

eference <strong>to</strong> eutrophication). Presentation ECSA Symp., Ballina, AU

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!