12.01.2013 Views

Presentation - Modeling of a 192-Way Waveguide Power Divider

Presentation - Modeling of a 192-Way Waveguide Power Divider

Presentation - Modeling of a 192-Way Waveguide Power Divider

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Lockheed Martin<br />

E Marx-1<br />

MODELING OF A <strong>192</strong>-WAY<br />

WAVEGUIDE POWER DIVIDER<br />

Eric Marx<br />

Lockheed Martin M&DS<br />

Reconnaissance Systems<br />

Goodyear, AZ, USA<br />

eric.l.marx@lmco.com<br />

Ans<strong>of</strong>t HF Users’ Workshop, Los Angeles, CA, January, 2002<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_2<br />

Abstract<br />

A <strong>192</strong>-way, waveguide power divider is designed, modeled and<br />

validated through prototype dividers. The structure is part <strong>of</strong><br />

the power distribution network that controls the Taylor<br />

amplitude weighting for a Synthetic Aperture Radar antenna.<br />

Ans<strong>of</strong>t High Frequency Structure Simulator with Optimetrics<br />

was used to determine the optimal design for each transition.<br />

The design process relies on heavy use <strong>of</strong> the macro language to<br />

maximize model reuse and minimize design cycle. The described<br />

procedure is suitable to any large power distribution network<br />

with non-uniform amplitude distribution.<br />

Lockheed Martin<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_3<br />

Background<br />

Lockheed Martin M&DS – Reconnaissance Systems division in Goodyear,<br />

AZ develops and produces airborne Synthetic Aperture Radar (SAR)<br />

Systems. The waveguide power distribution network described in this<br />

presentation is part <strong>of</strong> an antenna for a podded SAR system.<br />

Lockheed Martin<br />

Examples <strong>of</strong> SAR Images<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_4<br />

SAR System in a Pod<br />

Lockheed Martin<br />

SAR POD<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_5<br />

Antenna Design<br />

� The SAR Antenna discussed in this presentation has stacked<br />

patch radiators that are fed with both a waveguide power<br />

distribution network and a microstrip distribution network.<br />

� There are a total <strong>of</strong> 1536 radiating elements.<br />

� The antenna weighting requirements are uniform amplitude in<br />

elevation and 20 dB, n_bar=3, Taylor weighting in azimuth.<br />

� The waveguide power distribution network is the means by<br />

which the non-uniform amplitude weighting is achieved. This<br />

requires a 1-to-<strong>192</strong> network and many unequal power splits.<br />

� The system is Ku-Band and both WR-62 and WR-51 waveguide<br />

are used.<br />

� The antenna aperture is 38” x 14.25”.<br />

Lockheed Martin<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_6<br />

<strong>Waveguide</strong> <strong>Power</strong> <strong>Divider</strong><br />

14.25”<br />

Input Ports(2)<br />

Lockheed Martin<br />

38”<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

Output Ports<br />

(<strong>192</strong>)


E Marx_7<br />

Amplitude Weighting<br />

� 16 waveguide power dividers are needed to achieve the 1-to-32<br />

azimuth distribution. The number <strong>of</strong> unequal power divider types was<br />

reduced to 6 for the azimuth power division to simplify the design.<br />

Six was determined to be sufficient (see the following page). The<br />

power split ratio and location were chosen such that the resulting<br />

amplitude weighting was close to the ideal weighting.<br />

� A 2-to-1 power split was used for the elevation power distribution<br />

Lockheed Martin<br />

30/70<br />

40/60 43/57<br />

Magic Tee<br />

47/53 43/57 45/55 49/51<br />

49/51 47/53 47/53 47/53 47/53 47/53 49/51 49/51<br />

Azimuth <strong>Power</strong> Division<br />

Management & Data Systems<br />

Reconnaissance Systems


E Marx_8<br />

Amplitude Weighting<br />

� The following plot shows the ideal azimuth Taylor weighting and the<br />

weighting generated using a reduced number <strong>of</strong> power divider types.<br />

Normalized Magnitude<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Lockheed Martin<br />

Azimuth Amplitude Weighting<br />

1 6 11 16 21 26 31<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

Ideal<br />

Approximate


Lockheed Martin<br />

E Marx_9<br />

Far Field Patterns<br />

� Amplitude approximation due to reduced number <strong>of</strong> power dividers<br />

types has little impact on the far field antenna patterns.<br />

� The first two sidelobes are reduced by ~0.5 dB.<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

-5 -4 -3 -2 -1 0 1 2 3 4 5<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

Taylor<br />

Approx


<strong>Waveguide</strong> <strong>Power</strong> <strong>Divider</strong><br />

Lockheed Martin<br />

E Marx_10<br />

� Determined logical points to break the problem into pieces<br />

that can be modeled using Optimetrics.<br />

• Single power dividers<br />

• <strong>Waveguide</strong> bends: H-plane and E-plane<br />

• WR-62 to WR-51 transformer<br />

� An H-plane waveguide power divider was chosen for its<br />

geometrical advantages.<br />

� The double-iris H-plane T-junction configuration[1] was chosen<br />

because it is relatively easy to manufacture and integrate.<br />

� Prototypes were made and tested to validate the design<br />

concept and the HFSS modeling.<br />

[1] J. Joubert & S.R. Rengarajan, "Design <strong>of</strong> Unequal H-plane <strong>Waveguide</strong> <strong>Power</strong> <strong>Divider</strong>s for Array Applications", Proceedings <strong>of</strong> the IEEE<br />

Antennas and Propagation Society International Symposium 1996, Vol. 3, pp 1636-1639, Baltimore, USA, 21-26 July 1996.<br />

Management & Data Systems<br />

Reconnaissance Systems


Double-Iris H-Plane T-Junction<br />

Lockheed Martin<br />

E Marx_11<br />

Port<br />

#2<br />

Design Variables<br />

dy = power split <strong>of</strong>fset<br />

ir1L = power split iris length<br />

ir1W = power split iris width<br />

ir2L = matching iris length<br />

ir2W = matching iris width<br />

dpath = delta path length<br />

a<br />

<strong>Power</strong> Split Iris<br />

dpath<br />

Matching Iris<br />

ir1L<br />

ir2W<br />

a<br />

Port<br />

#1<br />

dy<br />

ir1W<br />

ir2L<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

Port<br />

#3


HFSS Models<br />

Lockheed Martin<br />

E Marx_12<br />

� The T-Junction model was<br />

used to determine the iris<br />

geometry, <strong>of</strong>fset, and phase<br />

differential.<br />

� This was completed for each<br />

power divider type.<br />

� A macro was built for this<br />

model and Optimetrics was<br />

used to iterate to the<br />

optimum geometry.<br />

Machining Radius<br />

� The inside corners that are left by the milling process have a<br />

measurable impact on the electrical performance and were included in<br />

the model.<br />

� Prototypes <strong>of</strong> this type <strong>of</strong> power divider were manufactured and the<br />

RF performance matched the simulated data very well.<br />

Management & Data Systems<br />

Reconnaissance Systems


HFSS Models<br />

Lockheed Martin<br />

E Marx_13<br />

� The next step is to take<br />

the individual 3-port<br />

power dividers and create<br />

the next higher level<br />

model.<br />

� Using the baseline model,<br />

more complex models<br />

were built to capture the<br />

effects <strong>of</strong> nearby<br />

transitions.<br />

� <strong>Power</strong> division and phase<br />

were adjusted at this<br />

level.<br />

� The Filter Cost Function is used to achieve a flat amplitude response<br />

across the entire bandwidth (use the Equal To curve) and minimize<br />

the return loss (use the Below curve). These filter cost functions<br />

were combined into a single cost function to optimize to the required<br />

performance.<br />

Management & Data Systems<br />

Reconnaissance Systems


<strong>Waveguide</strong> <strong>Power</strong> <strong>Divider</strong><br />

14.25”<br />

Lockheed Martin<br />

E Marx_14<br />

38”<br />

Management & Data Systems<br />

Reconnaissance Systems


HFSS Models / Results<br />

Lockheed Martin<br />

E Marx_15<br />

HFSS Model “pd4_4”<br />

E-Field Plot<br />

Management & Data Systems<br />

Reconnaissance Systems


Magnitude (dB) HFSS Model “pd4_4”<br />

Return Loss<br />

Lockheed Martin<br />

E Marx_16<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

-45<br />

-50<br />

Return Loss<br />

16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 17.1 17.2 17.3 17.4 17.5<br />

Frequency (GHz)<br />

Management & Data Systems<br />

Reconnaissance Systems


<strong>Power</strong> Split<br />

HFSS Model “pd4_4”<br />

Lockheed Martin<br />

E Marx_17<br />

Magnitude (dB)<br />

-5.5<br />

-5.6<br />

-5.7<br />

-5.8<br />

-5.9<br />

-6.0<br />

-6.1<br />

-6.2<br />

-6.3<br />

-6.4<br />

Output Magnitude<br />

-6.5<br />

16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 17.1 17.2 17.3 17.4 17.5<br />

Desired Amplitude<br />

Frequency (GHz)<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

S12<br />

S13<br />

S14<br />

S15


Phase Matching<br />

HFSS Model “pd4_4”<br />

Phase (Degrees)<br />

Lockheed Martin<br />

E Marx_18<br />

180<br />

150<br />

120<br />

90<br />

60<br />

30<br />

0<br />

-30<br />

-60<br />

-90<br />

-120<br />

-150<br />

-180<br />

S12<br />

S13<br />

S14<br />

S15<br />

Phase Match<br />

Frequency Phase (Degrees)<br />

(GHz)<br />

S12 S13 S14 S15<br />

16.86 -147.94 -147.78 -148.10 -147.96<br />

16.88 -152.51 -152.35 -152.68 -152.53<br />

16.90 -157.07 -156.92 -157.25 -157.11<br />

16.92 -161.63 -161.48 -161.81 -161.68<br />

16.94 -166.19 -166.04 -166.37 -166.24<br />

16.96 -170.75 -170.59 -170.93 -170.81<br />

16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0 17.1 17.2 17.3 17.4 17.5<br />

Frequency (GHz)<br />

Management & Data Systems<br />

Reconnaissance Systems


Top Layer <strong>Power</strong> <strong>Divider</strong>s<br />

Lockheed Martin<br />

E Marx_19<br />

� The amplitude and phase optimization <strong>of</strong> the 4-way power dividers<br />

determined the location <strong>of</strong> the 180 degrees E-plane bends that<br />

transition to the top layer <strong>of</strong> waveguide power dividers.<br />

� Two 5-port models and the 7-port model shown here complete the<br />

waveguide hogout power divider modeling.<br />

PHASE (DEG)<br />

PHASE BALANCE<br />

180<br />

150<br />

120<br />

90<br />

60<br />

30<br />

0<br />

-30<br />

-60<br />

-90<br />

-120<br />

-150<br />

-180<br />

16.3 16.8 17.3<br />

FREQUENCY (GHz)<br />

Management & Data Systems<br />

Reconnaissance Systems


Top Layer <strong>Power</strong> <strong>Divider</strong>s<br />

� Results are from the 7-port model pictured on the previous slide.<br />

� The desired amplitudes are –10 dB and –6.32 dB.<br />

� This model includes the two greatest unequal power splits.<br />

� Also included is the transformer from WR-62 to WR-51.<br />

� This was the largest waveguide power divider modeled.<br />

AMPLITUDE (dB)<br />

Lockheed Martin<br />

E Marx_20<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

-50<br />

INPUT POWER DIVIDER STRUCTURE<br />

-60<br />

16.3 16.5 16.7 16.9 17.1 17.3 17.5<br />

FREQUENCY (GHz)<br />

AMPLITUDE (dB)<br />

-4<br />

-5<br />

-6<br />

-7<br />

-8<br />

-9<br />

-10<br />

AMPLITUDE BALANCE<br />

-11<br />

16.3 16.8 17.3<br />

Desired Amplitude<br />

FREQUENCY (GHz)<br />

Management & Data Systems<br />

Reconnaissance Systems


Photos <strong>of</strong> the <strong>Waveguide</strong> <strong>Power</strong> <strong>Divider</strong><br />

Lockheed Martin<br />

E Marx_21<br />

Layer 1<br />

Management & Data Systems<br />

Reconnaissance Systems<br />

Layer 2


Summary<br />

Lockheed Martin<br />

E Marx_22<br />

� Large power divider networks with non-uniform amplitude<br />

distributions require many different power splits.<br />

� Depending on the performance requirements, some<br />

simplifications may be made by simply reducing the number <strong>of</strong><br />

power split types.<br />

� Design a generic power divider design and identify the<br />

parameters that can be varied to meet all the requirements.<br />

� Generating a baseline model using the macro language with<br />

variable parameters minimizes model development time by<br />

maximizing model reuse. This has positive impacts on cost,<br />

schedule, and repeatability<br />

� Using Optimetrics allows the user to reach the best design in<br />

the least amount <strong>of</strong> time.<br />

Management & Data Systems<br />

Reconnaissance Systems

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!