14.01.2013 Views

Helmholtz Russian-German Workshop on Systems Biology Moscow ...

Helmholtz Russian-German Workshop on Systems Biology Moscow ...

Helmholtz Russian-German Workshop on Systems Biology Moscow ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Russian</str<strong>on</strong>g>-<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong><br />

<strong>Systems</strong> <strong>Biology</strong><br />

February, 27-29, 2008, <strong>Moscow</strong>


C<strong>on</strong>tents:<br />

WELCOME ADDRESS ........................................................................................................................................ 1<br />

HELMHOLTZ OFFICE MOSCOW .................................................................................................................... 2<br />

HELMHOLTZ­RUSSIA JOINT RESEARCH GROUPS .................................................................................. 3<br />

THE HELMHOLTZ ALLIANCE ON SYSTEMS BIOLOGY ........................................................................... 4<br />

THE GERMAN CANCER RESEARCH CENTER HEIDELBERG ................................................................. 6<br />

PROGRAM ............................................................................................................................................................ 8<br />

COMMITTEES .................................................................................................................................................. 10<br />

PARTICIPANTS ............................................................................................................................................... 11<br />

PARTICIPANT’S CVS AND ABSTRACTS ................................................................................................... 13<br />

VENUE DETAILS ............................................................................................................................................. 77<br />

Funding:<br />

The <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> is generously supported by:


Welcome Address<br />

Dear Colleagues,<br />

As an exciting new field in biomedical research, systems biology has recently gained a lot of attenti<strong>on</strong><br />

in <str<strong>on</strong>g>German</str<strong>on</strong>g>y. In 2007 the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> of <str<strong>on</strong>g>German</str<strong>on</strong>g> Research Centres has launched the<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong>, a large network comprising <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Centres, universities<br />

and other external partners. The l<strong>on</strong>g‐term goal of the initiative is to shed light <strong>on</strong> the causes of<br />

complex disorders and diseases and develop new approaches for treating them.<br />

Due to its enormous potential in the field of mathematics and informatics, Russia has been chosen as<br />

<strong>on</strong>e of the key partners for the development of internati<strong>on</strong>al relati<strong>on</strong>s with the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance <strong>on</strong><br />

<strong>Systems</strong> <strong>Biology</strong>.<br />

We are happy to welcome you to the workshop <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong>, to be held in <strong>Moscow</strong> <strong>on</strong><br />

February 27‐29 2008 in <strong>Moscow</strong> and are looking forward to an exciting meeting. It should help to<br />

open the field for scientific interacti<strong>on</strong>s in the field of systems biology between scientists from Russia<br />

and the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> as well as other instituti<strong>on</strong>s in <str<strong>on</strong>g>German</str<strong>on</strong>g>y.<br />

Prof. Otmar D. Wiestler<br />

Research Field Coordinator Health, <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g><br />

Associati<strong>on</strong><br />

Chairman and Scientific Director, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer<br />

Research Center (DKFZ) Heidelberg<br />

Dear Friends and Colleagues,<br />

Prof. Roland Eils<br />

Coordinator <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance<br />

<strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Department Head, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research<br />

Center (DKFZ) Heidelberg<br />

In the name of the president of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> the <strong>Moscow</strong> Office welcomes you as<br />

participants of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong>. I know, some of you<br />

have travelled far in order to join this workshop and others may even visit Russia the first time in<br />

their life. May your efforts not be in vain, but rewarded by meeting new partners for cooperati<strong>on</strong> in<br />

this quickly emerging research field. We are certain that especially in the field of <strong>Systems</strong> <strong>Biology</strong><br />

mutual interest and complementing scientific ideas lie immediately ahead of us.<br />

In order to pick up <strong>on</strong> these opportunities the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Office <strong>Moscow</strong> supports the workshop with<br />

means from the Initiative and Networking Fund of the president of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> and<br />

offers those of you who develop a mutual interest for co‐operati<strong>on</strong> our full support for the<br />

completi<strong>on</strong> of joint proposals within the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Russia Joint Research Group program. With the<br />

formati<strong>on</strong> of the <strong>Systems</strong> <strong>Biology</strong> Network am<strong>on</strong>g six <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Centres and numerous universities<br />

in <str<strong>on</strong>g>German</str<strong>on</strong>g>y the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> provides a unique spectrum of research and infrastructure in<br />

this field. We wish our colleagues and partners from Russia and the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Centres a successful<br />

c<strong>on</strong>ference that will result into new exciting co‐operati<strong>on</strong>s in <strong>Systems</strong> <strong>Biology</strong>.<br />

Dr. Bertram Heinze<br />

Head <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Office <strong>Moscow</strong><br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 1


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Office <strong>Moscow</strong><br />

To help initiate and establish new strategic networks of scientific<br />

excellence between Russia and <str<strong>on</strong>g>German</str<strong>on</strong>g>y, the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> runs<br />

an office in <strong>Moscow</strong>. The <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> chose Russia to be <strong>on</strong>e of<br />

its key strategic partners to jointly face the challenges of the future<br />

through scientific cooperati<strong>on</strong>. Partners in <str<strong>on</strong>g>German</str<strong>on</strong>g>y looking for specific<br />

informati<strong>on</strong> about Russia and <str<strong>on</strong>g>Russian</str<strong>on</strong>g>s seeking c<strong>on</strong>tacts in <str<strong>on</strong>g>German</str<strong>on</strong>g>y have<br />

an excellent starting point to find the right people for their special<br />

interests.<br />

Russia is going through significant socioec<strong>on</strong>omic changes with<br />

tremendous potential for creativity and technological development. The<br />

research area Russia with its well‐trained scientists and its comprehensive<br />

infrastructure offers numerous opportunities for a successful cooperati<strong>on</strong><br />

and to achieve scientific goals together.<br />

The transfer of new technologies and the exchange of promising young<br />

research talent hold great potential for the future development of both<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g>y and Russia. Identifying the people and programs that will carry<br />

this project forward is the goal of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Office <strong>Moscow</strong>.<br />

Service provided by the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Office <strong>Moscow</strong> (HOM):<br />

The <strong>Moscow</strong> Office represents the interests of <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> as a whole in Russia. It serves<br />

both <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> scientists and <str<strong>on</strong>g>Russian</str<strong>on</strong>g> researchers interested in mutual cooperati<strong>on</strong>. Its main tasks<br />

are to provide help for scientific partners to establish c<strong>on</strong>tacts, to promote joint projects and to<br />

foster the exchange of scientists.<br />

For further informati<strong>on</strong> please visit:<br />

http://www.helmholtz.de/en/about_us/organisati<strong>on</strong>/internati<strong>on</strong>al_offices/moscow_office/<br />

and http://www.helmholtz.ru/ .<br />

C<strong>on</strong>tact:<br />

Dr. Bertram Heinze<br />

Head <strong>Moscow</strong> Office<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Associati<strong>on</strong><br />

<str<strong>on</strong>g>German</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g> House <strong>Moscow</strong><br />

Malaya Pirogovskaya 5<br />

119435 <strong>Moscow</strong><br />

<str<strong>on</strong>g>Russian</str<strong>on</strong>g> Federati<strong>on</strong><br />

Tel.: +7 495 981 17 63<br />

Fax: +7 495 981 17 65<br />

bertram.heinze@helmholtz.de<br />

Postal Address from/via <str<strong>on</strong>g>German</str<strong>on</strong>g>y:<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Office <strong>Moscow</strong> | c/o Spring<br />

MOW/MOW/15130<br />

Postfach 920109 | D‐51151 Köln<br />

2 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong>


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>­Russia Joint Research Groups<br />

In September 2006 the <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Foundati<strong>on</strong> for Basic Research (RFBR) and the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong><br />

of <str<strong>on</strong>g>German</str<strong>on</strong>g> Research Centres signed an agreement over the joint funding of <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Russia Joint<br />

Research Groups. In spring 2007, the first call was launched and proved to raise str<strong>on</strong>g interest from<br />

all <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Research Centres and <str<strong>on</strong>g>Russian</str<strong>on</strong>g> partners. In September 2007, eight groups were selected<br />

for funding from am<strong>on</strong>g 25 applicati<strong>on</strong>s which the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> and the <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Foundati<strong>on</strong><br />

for Basic Research submitted to an internati<strong>on</strong>al review panel. Based <strong>on</strong> the c<strong>on</strong>clusi<strong>on</strong>s of the first<br />

call the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> and the <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Foundati<strong>on</strong> for Basic Research will invest over 3.5 Mio<br />

EUR into the <str<strong>on</strong>g>German</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g> co‐operati<strong>on</strong> during the comimg 3 years.<br />

Based <strong>on</strong> the successful launch of this funding instrument the presidents of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g><br />

Associati<strong>on</strong> and the <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Foundati<strong>on</strong> for Basic Research decided to c<strong>on</strong>tinue this acti<strong>on</strong> with a<br />

sec<strong>on</strong>d call this year. From February, 15 to May, 15, 2008 the sec<strong>on</strong>d call for the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Russia<br />

Joint Research Groups will be open.<br />

The <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Russia Joint Research Groups are designed to intensify scientific cooperati<strong>on</strong> between<br />

the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Research Centres and <str<strong>on</strong>g>Russian</str<strong>on</strong>g> scientific instituti<strong>on</strong>s and universities in order to set<br />

new impulses in existing and upcoming research programs of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong>. A special<br />

focus lies in the promoti<strong>on</strong> of excellent young <str<strong>on</strong>g>Russian</str<strong>on</strong>g> scientists, post‐docs and PhD students, and<br />

their involvement in the multinati<strong>on</strong>al research projects and infrastructure directed by the research<br />

centers of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong>.<br />

The <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Russia Joint Research Groups are funded by the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> for a durati<strong>on</strong><br />

of three years with 130,000 Euros per year. The RFBR co‐funds the <str<strong>on</strong>g>Russian</str<strong>on</strong>g> partner institute and/or<br />

university with 1,000,000 RUB (approx. 28,000 Euros) per year.<br />

Deadline: May, 15, 2008<br />

For more informati<strong>on</strong> visit:<br />

http://www.helmholtz.de/en/research/promoting_research/helmholtz_calls_for_applicati<strong>on</strong>s/artikel<br />

/detail/helmholtz_russia_joint_research_groups‐1/<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 3


The <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance <strong>on</strong><br />

<strong>Systems</strong> <strong>Biology</strong><br />

Introducti<strong>on</strong><br />

The <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> is a centrally funded, joint initiative of several <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g><br />

centers and external partners. The aim of the alliance is to exploit the outstanding expertise of the<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> in basic, high‐throughput and bioinformatics research and to transfer it to<br />

innovative “<strong>Systems</strong> <strong>Biology</strong>” type of approaches. Scientific focuses of the Alliance are various<br />

complex diseases with the overall goal to widen the understanding of the causes of these diseases<br />

and the development of new strategies for treating them.<br />

The Alliance c<strong>on</strong>sists of six interc<strong>on</strong>nected networks, each led by a specific <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> centre.<br />

In order to promote the emerging discipline of <strong>Systems</strong> <strong>Biology</strong>, the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance will establish<br />

an educati<strong>on</strong>al program (workshops, Summer Schools, PhD programs) to transfer its knowledge and<br />

experience.<br />

Participating Networks and Centers<br />

<strong>Systems</strong> <strong>Biology</strong> of Signaling in Cancer (SBCancer)<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Institute (DKFZ), Heidelberg<br />

The network <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> of Signalling in Cancer (SBCancer) c<strong>on</strong>centrates <strong>on</strong> signalling<br />

pathways that play a pivotal role in the cellular decisi<strong>on</strong>s between proliferati<strong>on</strong>, differentiati<strong>on</strong> and<br />

death. Alterati<strong>on</strong>s in these signalling pathways and c<strong>on</strong>nected gene regulatory networks can change<br />

cellular decisi<strong>on</strong>s and thereby trigger the <strong>on</strong>set of tumour formati<strong>on</strong>.<br />

The MDC <strong>Systems</strong> <strong>Biology</strong> Network – MSBN<br />

Max‐Delbrück Centre for Molecular Medicine (MDC), Berlin‐Buch<br />

MSBN focuses <strong>on</strong> the regulati<strong>on</strong> of disease phenotypes of progressive cardiovascular and<br />

neurodegenerative disorders. Both are characterized by l<strong>on</strong>g asymptomatic phases before they<br />

become manifest. The regulatory mechanisms that effect first compensati<strong>on</strong> and later pathology are<br />

being investigated and compared, employing a well designed, comprehensive systems biology<br />

strategy.<br />

From c<strong>on</strong>taminant molecules to cellular resp<strong>on</strong>se: system quantificati<strong>on</strong><br />

and predictive model development<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Centre for Envir<strong>on</strong>mental Research (UFZ), Leipzig<br />

The systems biology network of the Centre for Envir<strong>on</strong>mental Research aims at understanding<br />

cellular resp<strong>on</strong>ses to chemical stressors with a systems perspective. This involves analysis of intra‐<br />

cellular transport of the chemicals, reacti<strong>on</strong> with sub‐cellular target sites and the resp<strong>on</strong>se of the cell<br />

at the transcripti<strong>on</strong>al and post‐transcripti<strong>on</strong>al level. Research is initiated focussing <strong>on</strong> the cellular<br />

resp<strong>on</strong>se to polycyclic aromatic hydrocarb<strong>on</strong>s, which are known to exert a wide range of toxic<br />

effects.<br />

CoReNe: C<strong>on</strong>trol of Regulatory Networks with focus <strong>on</strong> n<strong>on</strong>­coding RNA<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Zentrum München ‐ <str<strong>on</strong>g>German</str<strong>on</strong>g> Research Center for Envir<strong>on</strong>mental Health<br />

The interdisciplinary network entitled CoReNe focuses <strong>on</strong> the integrative interpretati<strong>on</strong> of regulatory<br />

networks involved in cell differentiati<strong>on</strong> with focus <strong>on</strong> the interacti<strong>on</strong> of n<strong>on</strong>‐coding RNAs (ncRNAs).<br />

Focus is put <strong>on</strong> the influence of ncRNAs <strong>on</strong> gene expressi<strong>on</strong> and thereby <strong>on</strong> the regulatory networks<br />

4 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong>


of the cell. The aim is to extend existing models of regulatory networks by integrating the influence<br />

of ncRNAs.<br />

The Human Brain Model: C<strong>on</strong>necting neur<strong>on</strong>al structure and functi<strong>on</strong><br />

across temporal and spatial scales<br />

Research Centre Jülich (FZJ)<br />

The network entitled "The Human Brain Model" investigates structure functi<strong>on</strong> relati<strong>on</strong>ships in the<br />

human brain as a multi‐scale complex system. In particular, the structural, spatial and temporal<br />

interacti<strong>on</strong>s of different units of the nervous system are analysed <strong>on</strong> different scales.<br />

<strong>Systems</strong> <strong>Biology</strong> at the HZI<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Centre for Infecti<strong>on</strong> Research (HZI), Braunschweig<br />

Various projects at the HZI work <strong>on</strong> scientific problems using methodologies from systems biology.<br />

These projects include medical as well as biotechnological topics.<br />

Protein Networks in Microorganisms<br />

Forschungszentrum Karlsruhe (FZK)<br />

<strong>Systems</strong> biology activities at the FZK focus <strong>on</strong> protein interacti<strong>on</strong> networks in various organisms in<br />

order to improve the overall understanding of the biological systems. Both the networks within cells<br />

as well as the host‐pathogen interacti<strong>on</strong>s, e.g. the interacti<strong>on</strong> between herpes viruses and humans or<br />

bacteria and their phages, are being analysed.<br />

Next scheduled events:<br />

• First <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> Spring School<br />

April 23‐26, 2008 ‐ Kloster See<strong>on</strong>, Bavaria<br />

• Training <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> "Mathematical modeling and high‐throughput screening“<br />

May 13‐15, 2008 ‐ Heidelberg<br />

• First Status Seminar of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

June 22‐24, 2008 ‐ Potsdam<br />

Overview of partners from the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g><br />

Associa�<strong>on</strong> and from other ins�tu�<strong>on</strong>s<br />

Universität<br />

Düsseldorf<br />

Universität<br />

Aachen<br />

Forschungszentrum Jülich<br />

Universität<br />

Köln<br />

Deutsches<br />

Krebsforschungszentrum<br />

Universität<br />

Heidelberg,<br />

EMBL<br />

Forschungszentrum Karlsruhe<br />

Universität<br />

Freiburg<br />

B<strong>on</strong>n<br />

Berlin<br />

Universität<br />

Rostock<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>-Zentrum für<br />

Infekti<strong>on</strong>sforschung<br />

Max-Delbrück-Centrum für<br />

Molekulare Medizin Berlin-Buch<br />

Humboldt<br />

Universität<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>-Zentrum für<br />

Umweltforschung - UFZ<br />

TU + LMU<br />

München<br />

TU Dresden<br />

GSF-Forschungszentrum für<br />

Umwelt und Gesundheit<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 5


The <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center<br />

Heidelberg<br />

Our Goals ­ Our Tasks<br />

In order to develop new strategies in the battle against cancer, we<br />

first need to understand the complex biological mechanisms<br />

underlying this disease. What induces cells to grow in an<br />

unc<strong>on</strong>trolled manner? What biochemical processes are occurring<br />

when this happens? How can we influence these processes?<br />

At the <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (Deutsches Krebs‐<br />

forschungszentrum, DKFZ), a globally reknown research instituti<strong>on</strong>,<br />

our missi<strong>on</strong> is to systematically investigate the mechanisms of cancer<br />

development and to identify cancer risk factors. Based <strong>on</strong> the results<br />

of this basic research new approaches are developed for preventi<strong>on</strong>,<br />

diagnosis, and treatment of cancer.<br />

Brief History<br />

1964 The <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center was set up. The establishment of a nati<strong>on</strong>al cancer<br />

research center was initiated by Heidelberg surge<strong>on</strong> Professor Karl Heinrich Bauer.<br />

1977 The Center joined the Deutsche Forschungsgemeinschaft (DFG).<br />

2001 The Center joined the newly structured associati<strong>on</strong> "Hermann v<strong>on</strong> <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> of<br />

Nati<strong>on</strong>al Research Centers". With its 15 member research centers, an annual budget of<br />

approximately 2.2 billi<strong>on</strong> Euros and 24,000 staff, the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> is <str<strong>on</strong>g>German</str<strong>on</strong>g>y's<br />

largest research organizati<strong>on</strong>.<br />

2004 The <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center, Heidelberg University Hospitals and the <str<strong>on</strong>g>German</str<strong>on</strong>g><br />

Cancer Aid jointly set up the Nati<strong>on</strong>al Center for Tumor Diseases (NCT) Heidelberg.<br />

2007 Alliance with Center for Molecular <strong>Biology</strong> of the University of Heidelberg (ZMBH)<br />

Management Board<br />

Prof. Dr. Otmar D. Wiestler Chairman of the Management Board and Scientific Director<br />

Dr. Josef Puchta Administrative‐commercial Director<br />

Staff (as of Dec. 31, 2007)<br />

Total staff 2,128<br />

Staff scientists without doctoral students 619 Doctoral students 351<br />

Scientific infrastructure 660 Management support 161<br />

Technical and central services 104 Apprentices 116<br />

Diploma students 117<br />

In 2007, there were 154 visiting scientists from over 40 nati<strong>on</strong>s working at the DKFZ.<br />

Funding 2005<br />

Program‐based funding (90%/10% Federal vs. State Funding) 110.8 milli<strong>on</strong> EUR<br />

Project funding (External funds: DFG, DKH, EU, NIH, etc) 29 milli<strong>on</strong> EUR<br />

Own revenues (License revenues, patient care, d<strong>on</strong>ati<strong>on</strong>s and bequests) 18.7 milli<strong>on</strong> EUR<br />

6 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

DKFZ Main Building


The Range of Our Research<br />

The 47 scientific divisi<strong>on</strong>s, 14 junior research groups as well as 9 Clinical Cooperati<strong>on</strong> Units of the<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center are assigned to seven Research Programs, which are assessed by<br />

internati<strong>on</strong>al experts every five years:<br />

• Cell <strong>Biology</strong> and Tumor <strong>Biology</strong><br />

• Functi<strong>on</strong>al and Structural Genomics<br />

• Cancer Risk Factors and Preventi<strong>on</strong><br />

• Tumor Immunology<br />

• Innovative Cancer Diagnostics and Therapy<br />

• Infecti<strong>on</strong> and Cancer<br />

• Translati<strong>on</strong>al Cancer Research<br />

The Nati<strong>on</strong>al Center for Tumor Diseases Heidelberg<br />

The foundati<strong>on</strong> of the Nati<strong>on</strong>al Center for Tumor Diseases (NCT) modeled after U.S. Comprehensive<br />

Cancer Centers marked the start of a cooperati<strong>on</strong> between the <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center,<br />

Heidelberg University Hospitals, the Heidelberg Thorax Clinic and the Deutsche Krebshilfe (<str<strong>on</strong>g>German</str<strong>on</strong>g><br />

Cancer Aid). This cooperati<strong>on</strong> is unique in <str<strong>on</strong>g>German</str<strong>on</strong>g>y. Through multidisciplinary interc<strong>on</strong>necti<strong>on</strong> of<br />

research and patient care, the NCT is designed to c<strong>on</strong>tribute to more efficient and swifter transfer of<br />

innovative approaches from basic research to clinical applicati<strong>on</strong>.<br />

In summer 2009 the inaugurati<strong>on</strong> of the new NCT building in Neuenheimer Feld is expected.<br />

Cooperati<strong>on</strong>s: Together We Are Str<strong>on</strong>ger<br />

Top‐class research relies <strong>on</strong> communicati<strong>on</strong> and is unimaginable today without internati<strong>on</strong>al<br />

exchange. DKFZ attaches great importance to this area. This is documented ‐ al<strong>on</strong>gside a large<br />

number of foreign staff scientists ‐ by over 650 grant‐holders from over 50 countries who have spent<br />

research stays at the Center over the past few years.<br />

At the internati<strong>on</strong>al level, the Center collaborates with numerous institutes and organizati<strong>on</strong>s. The<br />

collaborati<strong>on</strong>s with Israeli partners and with the French Institut Nati<strong>on</strong>al de la Santé et de la<br />

Recherche Médical (Inserm) deserve special menti<strong>on</strong>.<br />

Support of Young Scientists<br />

The <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center attaches great importance to the support of young scientists.<br />

Young scientists' groups have proven as a particularly successful approach. By providing sufficient<br />

equipment and independence for young scientists, these groups offer an opportunity for young<br />

researchers to distinguish themselves for their scientific career.<br />

Technology Transfer ­ A Bridge to Industry<br />

Since 1997, the Office of Technology Transfer of the DKFZ has been making sure that the Center's<br />

intellectual property is protected by the patenting of inventi<strong>on</strong>s. Thus, industrial applicati<strong>on</strong>s become<br />

possible.<br />

The Cancer Informati<strong>on</strong> Service KID<br />

Readily comprehensible, scientifically well‐founded and up‐to‐date informati<strong>on</strong> is provided by the<br />

cancer informati<strong>on</strong> service KID ('Krebsinformati<strong>on</strong>sdienst') free of charge, by teleph<strong>on</strong>e and email, to<br />

cancer sufferers, their families, and interested citizens nati<strong>on</strong>wide.<br />

KID additi<strong>on</strong>ally offers these services within the framework of c<strong>on</strong>sulting hours for patients of the<br />

NCT Heidelberg.<br />

How to reach KID and its modules:<br />

M<strong>on</strong> through Fri, 8 am to 8 pm, Ph<strong>on</strong>e ++49‐(0)6221‐410121<br />

Email‐Service: krebsinformati<strong>on</strong>@dkfz.de Internet: www.krebsinformati<strong>on</strong>.de<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 7


Program<br />

Wednesday, Feb 27, 2008<br />

17.00‐18.00 Registrati<strong>on</strong><br />

18.00‐18.45 Welcome by Betram Heinze, <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Office <strong>Moscow</strong><br />

Speakers:<br />

Sebastian Schmidt, <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong><br />

Valery Chereshnev, Institute of Immunology and Physiology / Member of <str<strong>on</strong>g>Russian</str<strong>on</strong>g><br />

Parlament (Duma), <strong>Moscow</strong>/Ekaterinburg<br />

Aleksander Makarov, Engelhardt Institute of Molecular <strong>Biology</strong>, <strong>Moscow</strong><br />

Sergei Nedospasov, Engelhardt Institute of Molecular <strong>Biology</strong> and Belozersky Institute of<br />

Physico‐Chemical <strong>Biology</strong>, <strong>Moscow</strong><br />

18.45‐19.30 Roland Eils, Heidelberg. Keynote Lecture : From models to experiments and back:<br />

challenges and promises of systems biology<br />

19.45 Welcome Dinner<br />

Thursday, Feb 28, 2008<br />

08.30‐09.00 Registrati<strong>on</strong><br />

09.00‐10.40 Sessi<strong>on</strong> 1 ‐ Chairs: U. Klingmüller and V. G. Tumanyan<br />

10.40‐10.55 Coffee Break<br />

Mikhail Gelfand, <strong>Moscow</strong>. Regulatory systems in bacteria: from comparative genomics<br />

to rec<strong>on</strong>structi<strong>on</strong> of evoluti<strong>on</strong>ary history<br />

Vitor dos Santos, Braunschweig. Navigating the microbial metabolic landscape through<br />

c<strong>on</strong>straint‐based modeling<br />

Vadim Govorun, <strong>Moscow</strong>. <strong>Systems</strong> biology studies of prokaryotes<br />

K<strong>on</strong>stantin Severinov, <strong>Moscow</strong>. The use of kinetic modeling to study the process of<br />

bacteriophage infecti<strong>on</strong><br />

10.55‐12.50 Thomas Höfer, Heidelberg. From molecular machines to gene‐regulatory networks in<br />

mammalian cells<br />

12.50‐13.50 Lunch<br />

Alexander Apt, <strong>Moscow</strong>. Immunity to and pathogenesis of M. tuberculosis and M. avium<br />

infecti<strong>on</strong>s: mirror‐type genetics of similar diseases in mice<br />

Klaus Schughart, Braunschweig. <strong>Systems</strong> genetics for infecti<strong>on</strong> and immunity<br />

Gennady Bocharov, <strong>Moscow</strong>. Modeling and identificati<strong>on</strong> of distributed parameter<br />

systems in immunology<br />

Inna Lavrik, Heidelberg. Life and death decisi<strong>on</strong>s <strong>on</strong> CD95 by systems biology approaches<br />

13.50‐15.30 Sessi<strong>on</strong> 2 ‐ Chairs: I. Lavrik and M. Gelfand<br />

Maria Sams<strong>on</strong>ova, St.Petersburg. Variati<strong>on</strong> and canalizati<strong>on</strong> of gene expressi<strong>on</strong> in the<br />

Drosophila blastoderm<br />

Ursula Klingmüller, Heidelberg. Linking the extent of signaling pathway activati<strong>on</strong> with<br />

cellular decisi<strong>on</strong>s<br />

Nikolay Kolchanov, Novosibirsk. Computer proteomics – functi<strong>on</strong>al sites analysis and<br />

recogniti<strong>on</strong> in 3‐D protein structure<br />

Jana Wolf, Berlin. Modeling of signaling networks for the analysis of <strong>on</strong>cogenic mutati<strong>on</strong>s<br />

8 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong>


15.30‐16.40 Poster Sessi<strong>on</strong> and Coffee Break<br />

16.40‐18.20 Vsevolod Makeev, <strong>Moscow</strong>. Deciphering complex regulatory regi<strong>on</strong>s in eukaryotic<br />

genomes<br />

18.20 – 19.30 Poster Sessi<strong>on</strong><br />

19.45 Speakers Dinner<br />

Friday, Feb 29, 2008<br />

Nikolaus Rajewsky, Berlin. Small RNAs and deep sequencing<br />

Andrey Mir<strong>on</strong>ov, <strong>Moscow</strong>. Alternative splicing and sec<strong>on</strong>dary structure of RNA ‐<br />

Systematic computati<strong>on</strong>al study and experimental verificati<strong>on</strong> of predicti<strong>on</strong>s<br />

Fabian Theis, Muenchen. Exploratory data analysis of biological systems<br />

8.45‐10.00 Sessi<strong>on</strong> 3 ‐ Chairs: N.A. Kolchanov and R. Eils<br />

10.00‐10.15 Coffee Break<br />

Martin v<strong>on</strong> Bergen, Leipzig. From c<strong>on</strong>taminant molecules to cellular resp<strong>on</strong>ses<br />

Dmitry Chudakov, <strong>Moscow</strong>. Fluorescent proteins and instruments <strong>on</strong> their basis<br />

Markus Diesmann, Wako City. Large‐scale simulati<strong>on</strong>s of plastic neural systems<br />

10.15‐11.30 Ralf Hofestaedt, Bielefeld. RAMEDIS : m<strong>on</strong>itoring of inborn errors based <strong>on</strong> clinical<br />

and molecular data<br />

Oleg Demin, <strong>Moscow</strong>. Modeling in systems biology: applicati<strong>on</strong>s to biomedicine and<br />

biotechnology<br />

Vladimir Poroikov, <strong>Moscow</strong>. Bio‐ and chemoinformatics of multitargeted anticancer<br />

drugs<br />

11.30‐12.00 Funding: IB‐BMBF, DAAD, DFG and HGF present their programs<br />

12.00‐13.45 Panel Discussi<strong>on</strong>: Defining Opti<strong>on</strong>s for <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> Cooperati<strong>on</strong>s<br />

13.45‐14.00 Closing Remarks: Roland Eils<br />

15.00‐18.00 Visit to Lom<strong>on</strong>sov <strong>Moscow</strong> State University<br />

Saturday, March 1, 2008<br />

9.00‐14.00 Site‐visits and sightseeing in <strong>Moscow</strong> with <str<strong>on</strong>g>Russian</str<strong>on</strong>g> partners<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 9


Committees<br />

Advisory Committee<br />

Valery Alexandrovich Chereshnev<br />

Institute of Immunology and Physiology, Ural Branch of the <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences, Member of<br />

<str<strong>on</strong>g>Russian</str<strong>on</strong>g> Parlament (Duma), Ekaterinburg/<strong>Moscow</strong><br />

Nikolay Aleksandrovich Kolchanov<br />

Institute of Cytology and Genetics,<br />

Siberian Branch of the <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences, Novosibirsk<br />

Aleksander Aleksandrovich Makarov<br />

Engelhardt Institute of Molecular <strong>Biology</strong><br />

<str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences, <strong>Moscow</strong><br />

Vladimir Petrovich Skulachev<br />

Belozersky Institute of Physico‐Chemical <strong>Biology</strong>,<br />

Lom<strong>on</strong>osov <strong>Moscow</strong> State University, <strong>Moscow</strong><br />

Vladimir Guevich Tumanyan<br />

Engelhardt Institute of Molecular <strong>Biology</strong><br />

<str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences, <strong>Moscow</strong><br />

Sebastian M. Schmidt<br />

Forschungszentrum Jülich, Jülich<br />

Otmar D. Wiestler (Chair)<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ), Heidelberg<br />

Scientific Committee<br />

Roland Eils (Chair)<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ), Heidelberg<br />

Mikhail Gelfand<br />

Institute for Informati<strong>on</strong> Transmissi<strong>on</strong> Problems, <strong>Moscow</strong><br />

Ursula Klingmüller<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ), Heidelberg<br />

Inna Lavrik<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ), Heidelberg<br />

Organizati<strong>on</strong>al Committee<br />

Natalja Dobrowolskaja<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Office <strong>Moscow</strong><br />

Jan Eufinger<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ), Heidelberg<br />

Bertram Heinze<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Office <strong>Moscow</strong><br />

Ursula Schöttler<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ), Heidelberg<br />

10 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong>


Participants<br />

Name Instituti<strong>on</strong> and City<br />

CV <strong>on</strong><br />

page<br />

Andrei Alexeevski Belozersky Institite, <strong>Moscow</strong> State University, <strong>Moscow</strong> 13<br />

Miguel Andrade Max‐Delbrück‐Centrum für Molekulare Medizin (MDC), Berlin<br />

Alexander Apt Central Research Institute of Tuberculosis, <strong>Moscow</strong><br />

Irena Artam<strong>on</strong>ova Vavilov Institute of General Genetics , <strong>Moscow</strong> 14<br />

Verena Becker Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 15<br />

Gennady Bocharov Institute of Numerical Mathematics, <strong>Moscow</strong> 16<br />

Sebastian Bohl Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 17<br />

Hauke Busch Deutsches Krebsforschungszentrum (DKFZ) , Heidelberg 18<br />

Valery Chereshnev Institute of Immunology and Physiology, <strong>Moscow</strong>/Ekaterinburg<br />

Dmitriy Chudakov Institite of Bioorganic Chemistry , <strong>Moscow</strong> 19<br />

Oleg Demin <strong>Moscow</strong> State University, <strong>Moscow</strong> 20<br />

Sofia Depner Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 21<br />

Markus Diesmann Riken Brain Science Institut (RIKEN BSI), Wako, Japan 22<br />

Natalja Dobrowolskaja <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Office <strong>Moscow</strong>, <strong>Moscow</strong><br />

Vítor dos Santos <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Zentrum für Infekti<strong>on</strong>sforschung (HZI), Braunschweig 23<br />

Roland Eils Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 24<br />

Jan Eufinger Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 25<br />

Mikhail Gelfand Institute for Informati<strong>on</strong> Transmissi<strong>on</strong> Problems, <strong>Moscow</strong> 26<br />

Nail Gizzatkulov (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong> State University 27<br />

Evgeny Gladilin Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 28<br />

Giovani Gomez Estrada <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Zentrum München, München 29<br />

Ekaterina Goryacheva Institute for <strong>Systems</strong> <strong>Biology</strong> SPb, <strong>Moscow</strong> 30<br />

Vadim Govorun Research Institute for Physical–Chemical Medicine, <strong>Moscow</strong><br />

Georgy Gulbekyan <strong>Moscow</strong> State University, <strong>Moscow</strong> 31<br />

Vitaly Gursky St.Petersburg Technical University ‐ Ioffe Physico‐Technical Institute 32<br />

Bertram Heinze <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Office <strong>Moscow</strong>, <strong>Moscow</strong><br />

Thomas Höfer Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 33<br />

Ralf Hofestädt Universität Bielefeld ‐ Bioinformatik, Bielefeld 34<br />

Anna Ignatovich Institute of Numerical Mathematics, <strong>Moscow</strong> 35<br />

John I<strong>on</strong>ides St Petersburg State Polytech. Uni, St. Petersburg 36<br />

Pavel Ivanov <strong>Moscow</strong> State University, <strong>Moscow</strong> 37<br />

Lars Kaderali Universität Heidelberg ‐ BIOQUANT , Heidelberg 38<br />

Alexey Kazakov Institute for Informati<strong>on</strong> Transmissi<strong>on</strong> Problems , <strong>Moscow</strong> 39<br />

Ursula Klingmüller Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 40<br />

Olga Koborova <strong>Moscow</strong> State University, <strong>Moscow</strong> 41<br />

Nikolai Kolchanov Novosibirsk Institute of Cytology and Genetics, Novosibirsk<br />

Rainer König Deutsches Krebsforschungszentrum (DKFZ) / Universität Heidelberg,<br />

Heidelberg<br />

42<br />

Yuri Kosinsky (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong> State University, 43<br />

<strong>Moscow</strong><br />

K<strong>on</strong>stantin Kozlov St.Petersburg Technical University, St. Petersburg 44<br />

Ivan Kulakovsky Engelhardt Institute of Molecular <strong>Biology</strong> , <strong>Moscow</strong> 45<br />

Alexey Lagunin Institute of Biomedical Chemistry RAMS, <strong>Moscow</strong> 46<br />

Inna Lavrik Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 47<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 11


Name Instituti<strong>on</strong> and City<br />

CV <strong>on</strong><br />

page<br />

Aleksander Makarov Engelhardt Institute of Molecular <strong>Biology</strong>, <strong>Moscow</strong><br />

Vsevolod Makeev GosNIIgenetika, <strong>Moscow</strong> 48<br />

Anna Matveeva St.Petersburg Technical University, St. Petersburg 49<br />

Julia Medvedeva GosNIIgenetika, <strong>Moscow</strong> 50<br />

Natalya Medvedeva Institute of Numerical Mathematics, <strong>Moscow</strong> 51<br />

Eugeniy Metelkin (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong> State University, 52<br />

<strong>Moscow</strong><br />

Andrey Mir<strong>on</strong>ov <strong>Moscow</strong> State University, <strong>Moscow</strong> 53<br />

Ekaterina Mogilevskaya (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong> State University 54<br />

Mario Mommer Universität Heidelberg ‐ IWR, Heidelberg 55<br />

Margareta Müller Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 56<br />

Sergei Nedospasov Engelhardt Institute of Molecular <strong>Biology</strong> and Belozersky Institute of<br />

Physico‐Chemical <strong>Biology</strong>, <strong>Moscow</strong><br />

Angela Oberthür Universität Heidelberg ‐ BIOQUANT, Heidelberg 57<br />

Kirill Peskov (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong> State University, 58<br />

<strong>Moscow</strong><br />

Vladimir Poroikov Institute of Biomedical Chemistry RAMS, <strong>Moscow</strong> 59<br />

Ksenia Pougach Institute of Molecular Genetics , <strong>Moscow</strong> 60<br />

Nikolaus Rajewsky Max‐Delbrück‐Centrum für Molekulare Medizin (MDC), Berlin<br />

S. Rakhmanov GosNIIgenetika, <strong>Moscow</strong><br />

Vasily Ramensky Engelhardt Institute of Molecular <strong>Biology</strong>, <strong>Moscow</strong> 61<br />

Babette Regierer Universität Potsdam ‐ FORSYS, Potsdam 62<br />

Se<strong>on</strong>g‐Hwan Rho Universität Freiburg ‐ Physics Institute, Freiburg 63<br />

Carlos Salazar Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 64<br />

Maria Sams<strong>on</strong>ova St. Petersburg State Polytechnical University, St. Petersburg 65<br />

Johannes Schlöder Universität Heidelberg ‐ IWR, Heidelberg 66<br />

Sebastian M. Schmidt Forschungszentrum Jülich, Jülich 67<br />

Ursula Schöttler Deutsches Krebsforschungszentrum (DKFZ), Heidelberg 68<br />

Klaus Schughart <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Zentrum für Infekti<strong>on</strong>sforschung (HZI), Braunschweig 69<br />

K<strong>on</strong>stantin Severinov Institute of Gene <strong>Biology</strong> and Institute of Molecular Genetics, <strong>Moscow</strong><br />

Vladimir Skulachev Belozersky Institute, <strong>Moscow</strong> State University , <strong>Moscow</strong><br />

Sergey Smirnov Institute for <strong>Systems</strong> <strong>Biology</strong> SPb, <strong>Moscow</strong> 70<br />

Sergej Spirin Belozersky Institute, <strong>Moscow</strong> State University , <strong>Moscow</strong> 71<br />

Fabian Theis <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Zentrum München, München 72<br />

Vladimir Tumanyan Engelhardt Institute of Molecular <strong>Biology</strong>, <strong>Moscow</strong><br />

Alexey Vitreschak Institute for Informati<strong>on</strong> Transmissi<strong>on</strong> Problems, <strong>Moscow</strong> 73<br />

Martin v<strong>on</strong> Bergen <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Zentrum für Umweltforschung (UFZ), Leipzig 74<br />

Jana Wolf Humboldt‐Universität Berlin, Berlin 75<br />

Alexey Zakharov Institute of Biomedical Chemistry RAMS, <strong>Moscow</strong> 76<br />

12 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong>


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 13<br />

Dr. Andrei Alexeevski<br />

Instituti<strong>on</strong> Belozersky Inst. <strong>Moscow</strong> State University<br />

C<strong>on</strong>tact Address<br />

Street Address Leninskij prospekt<br />

Zip /Postal Code 119313<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 (495) 939 5414<br />

Fax +7 (495) 939 3181<br />

E‐Mail aba@belozersky.msu.ru<br />

Short CV<br />

1989 ‐ present Senior/Leading Scientist, A.N.Belozersky Institute, <strong>Moscow</strong> State University, Russia<br />

2002 ‐ present Co‐creator of the program in Bioinformatics, Lecturer at Faculty of Bioengineering and<br />

Bioinformatics, <strong>Moscow</strong> State University<br />

1981 ‐ 1989 Senior Engineer, Cardiological Scientific Center of USSR<br />

1983 Ph.D. in Mathematics from <strong>Moscow</strong> State University<br />

1973 ‐ 1981 Senior Researcher, INFORMELECTRO (research Institute in Electrical Engineering),<br />

<strong>Moscow</strong>, Russia<br />

1970‐1973 Graduate student ("aspirant"), Mechanico‐Mathematical Department, <strong>Moscow</strong> State<br />

University<br />

1970 M.S., Mathematics, <strong>Moscow</strong> State University, <strong>Moscow</strong>, Russia<br />

Research Interests<br />

Bioinformatics of 3D structures of biological macromolecules.<br />

Protein‐DNA interacti<strong>on</strong>s.<br />

Bacterial restricti<strong>on</strong>‐modificati<strong>on</strong> systems.<br />

Theoretical mathematics.<br />

Five most important publicati<strong>on</strong>s<br />

1. T.M.Dmitrieva, A.V.Alexeevski, G.S.Shatskaya, E.A.Tolskaya, A.P. Gmyl, E.V. Khitrina, V.I. Agol.<br />

Significance of the C‐terminal amino acid residue in mengovirus RNA‐dependent RNA polymerase. Virology<br />

365 (2007) 79‐91<br />

2. Sergei Spirin, Mikhail Titov, Anna Karyagina and Andrei Alexeevski. NPIDB, A Database of Nucleic Acids –<br />

Protein Interacti<strong>on</strong>s. Bioinformatics. 2007. 23(23):3247‐3248.<br />

3. Karyagina A., Ershova A., Titov M., Olovnikov I., Aksianov E., Ryazanova A., Kubareva E., Spirin S.,<br />

Alexeevski A. Analysis of c<strong>on</strong>served hydrophobic cores in proteins and supramolecular complexes. J. of<br />

Bioinformatics and Computati<strong>on</strong>al <strong>Biology</strong>. 2006. Vol. 4, No 2, p. 357‐372.<br />

4. Ledneva RK, Alekseevskii AV, Vasil'ev SA, Spirin SA, Kariagina AS. (2001). Structural aspects of interacti<strong>on</strong><br />

of homeodomains with DNA. Molecular <strong>Biology</strong> (<strong>Moscow</strong>) 35, 647–659.<br />

5. Alexeevski, A. V., Natanz<strong>on</strong>, S. M., N<strong>on</strong>commutative two‐dimensi<strong>on</strong>al topological field theories and<br />

Hurwitz numbers for real algebraic curves, Selecta Mathematica, New Series, 2006, 12 (3), 307‐377<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X ) a poster<br />

( ) a talk<br />

Poster<br />

number<br />

Title of poster / talk<br />

Occurence of recogniti<strong>on</strong> sites of restricti<strong>on</strong>‐modificati<strong>on</strong> systems in bacteriophage genomes.<br />

Abstract<br />

Many bacteria hold restricti<strong>on</strong>‐modificati<strong>on</strong> (RM) systems preventing host cells from invasi<strong>on</strong>s of<br />

foreign DNA by cleavage the latter at specific sites. Typically, type II RM‐system includes two proteins:<br />

the restricti<strong>on</strong> end<strong>on</strong>uclease cleaves DNA at specific sites, the methyltransferase methylate the same<br />

sites preventing the cleavage of the host DNA. Bacteriophages posses several strategies to prevent<br />

DNA cleavage. One of them is the avoidance in genome sites with sequences that are recognized by<br />

the host RM‐systems. To reveal the spread of that strategy, we have computed the occurrences of<br />

259 sequences of known type II RM‐sites in 366 bacteriophage genomes.<br />

All 2545 pairs (phage genome, RM‐system recogniti<strong>on</strong> sequence), such that the number of sites with<br />

that sequence is highly underrepresented according to appropriate Markov model estimati<strong>on</strong>, we<br />

divided in two groups. First group c<strong>on</strong>tains pairs with zero or very few sites per genome. Simple<br />

mathematical model and a number of published experimental data show that in this case phage<br />

infecti<strong>on</strong> has reas<strong>on</strong>able chances to survive against the RM‐system. Sec<strong>on</strong>d group c<strong>on</strong>tains pairs with<br />

highly statistically underrepresented number of sites, but the number of sites is rather large, up to<br />

several hundred per genome. The mathematical model predicts exp<strong>on</strong>ential fall of chances to survive<br />

depending <strong>on</strong> the absolute number of sites in a genome. Thus, <strong>on</strong> <strong>on</strong>e hand, due to<br />

underrepresentati<strong>on</strong> of sites we believe that bacteriophages of the sec<strong>on</strong>d group were under the<br />

pressure of RM‐system. On the other hand, these bacteriophages are not believed to survive against<br />

RM‐system due to exclusively site avoidance.<br />

First group allows us to predict tight interacti<strong>on</strong> in nature of certain bacteriophages with certain<br />

bacterial RM‐systems. We hypothised that phages of the sec<strong>on</strong>d group either lost the interacti<strong>on</strong>s<br />

with the corresp<strong>on</strong>ding RM‐system recently in the evoluti<strong>on</strong>ary scale, or should posses additi<strong>on</strong><br />

strategies against RM‐systems.<br />

The work was supported by grants RFBR 07‐04‐91560‐NNIO, 06‐04‐49558‐а, 06‐07‐89143‐а, INTAS 05‐<br />

1000008‐8028<br />

Poster number: 1<br />

1<br />

Participant’s CVs and Abstracts


14 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Irena I. Artam<strong>on</strong>ova<br />

Instituti<strong>on</strong> Vavilov Institute of General Genetics RAS<br />

C<strong>on</strong>tact Adress<br />

Street Address Gubkina 3<br />

Zip /Postal Code 119991<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 916 9155809<br />

E‐Mail irenart@gmail.com<br />

Short CV<br />

1995 MSc, <strong>Moscow</strong> State University, pure mathematics, magna cum laude<br />

1998 MSc, <strong>Moscow</strong> Institute of Physics and Technology, physical and chemical biology and<br />

biotechnology, magna cum laude<br />

2002 PhD, molecular biology<br />

1999‐2001 Laboratory of Distant Educati<strong>on</strong>, Center of New Informati<strong>on</strong> Technologies, <strong>Moscow</strong><br />

State University, research scientist<br />

2002‐2004 Laboratory of Structure and Functi<strong>on</strong> of Human Genes, Shemyakin‐Ovchinnikov<br />

Institute of Bioorganic Chemistry RAS, junior research scientist<br />

2004‐2007 Munich Unformati<strong>on</strong> Center for Protein Science, Institute for Bioinformatics, GSF‐<br />

Nati<strong>on</strong>al Research Center for Envir<strong>on</strong>ment and Heath, Neuherberg, <str<strong>on</strong>g>German</str<strong>on</strong>g>y, postdoc<br />

fellow<br />

Since 2007 Group of Bioinformatics, Vavilov Institute of General Genetics RAS, group leader<br />

Awards<br />

1997, 1999 Internati<strong>on</strong>al Soros Science Foundati<strong>on</strong>. Special Ph.D Student award<br />

1998 Annual competiti<strong>on</strong> of student projects of the <strong>Moscow</strong> Institute of Physics and<br />

Technology, main prize<br />

1997‐1998 Yu. Ovchinnikov student award<br />

2006 Best poster prize, C<strong>on</strong>ference ECCB’06, Israel<br />

Research Interests<br />

Computati<strong>on</strong>al biology: evoluti<strong>on</strong> of alternative splicing and gene/genome structure of higher eukaryotes;<br />

prokaryotic immunity; gene regulati<strong>on</strong>; improvement of gene/protein annotati<strong>on</strong><br />

Five most important publicati<strong>on</strong>s<br />

I.I. Artam<strong>on</strong>ova, M.S. Gelfand (2007) Comparative genomics and evoluti<strong>on</strong> of alternative splicing: The<br />

pessimists’s science. Review. Chemical Reviews. V. 107, P. 3407‐3430<br />

Riley, L., Schmidt, T., Artam<strong>on</strong>ova, I., Wagner, C., Volz, A., Heumann, K., Mewes, H.‐W., Frishman, D.<br />

(2007) PEDANT genome database: ten years <strong>on</strong>line. Nucleic Acids Res.<br />

V. 35, D354‐7<br />

Artam<strong>on</strong>ova II, Frishman G, Gelfand MS, Frishman D. (2005) Mining sequence annotati<strong>on</strong> databanks<br />

for associati<strong>on</strong> patterns. Bioinformatics. V. 21 (Suppl_3), P. iii49‐iii57<br />

A.D. Neverov, I.I. Artam<strong>on</strong>ova, R.N. Nurtdinov, D. Frishman, M. Gelfand, A. Mir<strong>on</strong>ov (2005) Alternative<br />

splicing and protein functi<strong>on</strong>. BMC Bioinformatics. V. 6, P. 266<br />

R.N. Nurtdinov, I.I. Artam<strong>on</strong>ova, A.A. Mir<strong>on</strong>ov, M.S. Gelfand (2003) Low c<strong>on</strong>servati<strong>on</strong> of alternative<br />

splicing patterns in the human and mouse genomes. Human Molecular Genetics, v. 12, P. 1313‐1320.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

A recently discovered type of the prokaryotic immunity, the CRISPR system, in metagenomes<br />

Abstract<br />

We developed a methodology to search for CRISPR cassettes in metagenomes. It is based <strong>on</strong> a<br />

combinati<strong>on</strong> of three publicly available programs that, if applied separately, produce heavy false<br />

positive noise.<br />

The applicati<strong>on</strong> of this schema to the Sargasso Sea metagenome data showed that the frequency of<br />

CRISPR cassettes in this metagenome is almost ten‐fold lower than in completely sequenced<br />

prokaryotic genomes <strong>on</strong> average.<br />

The identified CRISPR cassettes were collected in a special database. Families of related cassettes were<br />

formed by analysis of similarity between repeat units. Additi<strong>on</strong>al analysis of flanking regi<strong>on</strong>s allows<br />

<strong>on</strong>e to distinguish between the lateral transfer and the parallel evoluti<strong>on</strong> of the cassettes in related<br />

strains. In many cases the similarity between cassettes is c<strong>on</strong>fined to single spacers, and some spacers<br />

are similar to known phage sequences. These observati<strong>on</strong>s support the hypothesis that this system<br />

defends organisms c<strong>on</strong>stituting the metagenome against invasi<strong>on</strong> of foreign DNA.<br />

Poster number: 2


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 15<br />

Verena Becker, PhD<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ)<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 280, A150<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐6221‐424482<br />

Fax +49‐6221‐424488<br />

E‐Mail v.becker@dkfz‐heidelberg.de<br />

Website http://www.dkfz.de/en/systembiologie/<br />

Short CV<br />

1997 High school diploma<br />

1997‐2002 Studies in biology at the University of Freiburg<br />

2001 Diploma exminati<strong>on</strong>s in molecular immunology, developmental biology,<br />

biochemistry, and neuropathology<br />

2001‐2002 Diploma thesis in the laboratory of PD Dr. U. Klingmüller, Max‐Planck‐Institute of<br />

Immunobiology, Freiburg<br />

2003‐2007 Graduate studies at the University of Heidelberg<br />

Thesis in the laboratory of PD Dr. U. Klingmüller, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center<br />

(DKFZ), Heidelberg<br />

since 2007 Postdoctoral research fellow in the laboratory of PD Dr. U. Klingmüller, <str<strong>on</strong>g>German</str<strong>on</strong>g><br />

Cancer Research Center (DKFZ), Heidelberg<br />

Research Interests<br />

Using the erythropoietin receptor (EpoR) as a model system, we are interested in the early c<strong>on</strong>trol<br />

mechanisms of cytokine receptor activati<strong>on</strong>. By combining signaling studies and biological assays with<br />

molecular modeling of receptor transmembrane domain dimers, we could show that modulating the<br />

EpoR dimer packing density allows for selective amplificati<strong>on</strong> of downstream signaling cascades and<br />

thus biological decisi<strong>on</strong>s. In a systems biology approach, we are analyzing the mechanisms by which<br />

ligand‐induced EpoR internalizati<strong>on</strong> c<strong>on</strong>trols short and l<strong>on</strong>g‐term signal activati<strong>on</strong>.<br />

Five most important publicati<strong>on</strong>s<br />

R. Ketteler, A.C. Heinrich, J.K. Offe, V. Becker, J. Cohen, D. Neumann, and U. Klingmüller. (2002) A<br />

functi<strong>on</strong>al green fluorescent protein‐tagged erythropoietin receptor despite physical separati<strong>on</strong> of<br />

JAK2 binding site and tyrosine residues. J Biol Chem. 277:26547‐26552.<br />

W. Ruan, V. Becker, U. Klingmüller, and D. Langosch. (2004) The interface between self‐assembling<br />

erythropoietin receptor transmembrane segments corresp<strong>on</strong>ds to a membrane‐spanning leucine<br />

zipper. J Biol Chem. 279:3273‐3279.<br />

F. Grebien, M.A. Kerenyi, B. Kovacic, T. Kolbe, V. Becker, H. Dolznig, K. Pfeffer, U. Klingmüller, M.<br />

Müller, H. Beug, E.W. Müllner, and R. Moriggl. Stat5 activati<strong>on</strong> enables erythropoiesis in the absence<br />

of EpoR and Jak2. Blood, in press.<br />

V. Becker, D. Sengupta, S. Heinzer, R. Ketteler, G.M. Ullmann, J.C. Smith, M. Weiss, and U. Klingmüller.<br />

Packing density of EpoR transmembrane domain correlates with amplificati<strong>on</strong> of biological resp<strong>on</strong>ses.<br />

Submitted.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Erythropoietin receptor internalizati<strong>on</strong> in c<strong>on</strong>trol of short and l<strong>on</strong>g‐term signaling<br />

Abstract<br />

The fine‐tuned balance of self‐renewal and rapid adaptati<strong>on</strong> in the hematopoietic system is regulated<br />

by cytokines. To ensure the integrity of blood cells within the body, cytokine receptors display several<br />

mechanisms to efficiently activate as well as terminate signal transducti<strong>on</strong>. The c<strong>on</strong>tributi<strong>on</strong> of<br />

receptor endocytosis and downregulati<strong>on</strong> for signal attenuati<strong>on</strong> of cytokine receptors is still unclear<br />

since in c<strong>on</strong>trast to receptor tyrosine kinases <strong>on</strong>ly a minor fracti<strong>on</strong> of receptor proteins is expressed at<br />

the plasma membrane whereas the majority is retained in the endoplasmic reticulum. Applying a<br />

systems biology approach, we investigated the dynamics of receptor turnover and internalizati<strong>on</strong> of<br />

the erythropoietin receptor (EpoR), the key factor for definitive erythropoiesis. Receptor endocytosis<br />

was measured with radiolabeled compounds in a time‐resolved manner. Data fitting of ordinary<br />

differential equati<strong>on</strong>‐based mathematical models describing both c<strong>on</strong>stitutive and stimulated EpoR<br />

internalizati<strong>on</strong> revealed identifiable parameters. Thus, these models allow for predicting the<br />

mechanisms by which EpoR internalizati<strong>on</strong> determines the kinetics of short as well as l<strong>on</strong>g‐term<br />

receptor signaling.<br />

Poster number: 3


16 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Prof. Dr. Gennady Bocharov<br />

Instituti<strong>on</strong><br />

C<strong>on</strong>tact Address<br />

Institute of Numerical Mathematics<br />

Street Address Gubkina Street 8<br />

Zip /Postal Code 119333<br />

City <strong>Moscow</strong><br />

Country <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Federati<strong>on</strong><br />

Ph<strong>on</strong>e +7‐495‐9383766<br />

Fax +7‐495‐9381821<br />

E‐Mail<br />

Short CV<br />

bocharov@inm.ras.ru<br />

1974 ‐ 1980 <strong>Moscow</strong> Institute for Physics and Technology<br />

1980 ‐ present Institute of Numerical Mathematics, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences, Leading<br />

Researcher<br />

1996 Institute of Experimental Immunology, University of Zurich<br />

May – Nov 2000 The Wellcome Trust Centre for the Epidemiology of Infectious Disease, Oxford<br />

University<br />

Nov 2000 – Aug<br />

2001<br />

Department of Infectious Disease Epidemiology, Imperial College L<strong>on</strong>d<strong>on</strong><br />

2003 – 2004 Leverhulme Internati<strong>on</strong>al Professor Chester University<br />

2006 ‐ present<br />

Awards<br />

Department of Computati<strong>on</strong>al Technologies and Modelling, <strong>Moscow</strong> State<br />

University<br />

1997‐1999 Fellow of Alexander v<strong>on</strong> Humboldt Foundati<strong>on</strong>, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

2007‐2009 Visiting Professor, Mathematics Department, Chester University<br />

Research Interests<br />

General:<br />

Applicati<strong>on</strong> of mathematics to immunology and virology; Mathematical systems theory;<br />

System identificati<strong>on</strong>; Computati<strong>on</strong>al modelling<br />

Specific:<br />

Quantitative modeling of virus infecti<strong>on</strong>s and immune resp<strong>on</strong>ses in humans (HBV, HCV, HIV, influenza)<br />

and experimental animals (LCMV, SIV, MHV);<br />

Genetic evoluti<strong>on</strong> of HIV within a single host under treatment;<br />

Dynamics of labeled (CFSE, BrdU, Ki‐67) T‐lymphocytes in vitro and in vivo<br />

Five most important publicati<strong>on</strong>s<br />

1. Tatyana Luzyanina, S<strong>on</strong>ya Mrusek, John T. Edwards, Dirk Roose, Stephan Ehl and Gennady Bocharov<br />

(2007): Computati<strong>on</strong>al analysis of CFSE proliferati<strong>on</strong> Journal of Mathematical <strong>Biology</strong>. 54: 57‐89.<br />

2. Burkhard Ludewig and Gennady Bocharov (2006): A systems biologist’s view <strong>on</strong> dendritic cell‐<br />

cytotoxic T lymphocyte interacti<strong>on</strong>. In: Handbook of Dendritic Cells. <strong>Biology</strong>, Diseases and Therapie,<br />

Eds. M. Lutz, N. Romani and A. Steinkasserer. Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, Ch. 23:<br />

455‐479.<br />

3. Gennady Bocharov (2005): Understanding complex regulatory systems: Integrating molecular<br />

biology and systems analysis. Transfusi<strong>on</strong> Medicine and Hemotherapy 32 (6): 304‐321<br />

4. Gennady Bocharov, Burkhard Ludewig, Ant<strong>on</strong>io Bertoletti, Paul Klenerman, Tobias Junt, Philippe<br />

Krebs, Tatyana Luzyanina, Cristophe Fraser, and Roy M. Anders<strong>on</strong> (2004): Underwhelming the Immune<br />

Resp<strong>on</strong>se: Effect of Slow Virus Growth <strong>on</strong> CD8 + ‐T‐Lymphocyte Resp<strong>on</strong>ses J. Virology 78: 2247‐2254<br />

5. Stephan Ehl, Paul Klenerman, Rolf M. Zinkernagel, Gennadii Bocharov(1998): The impact of Variati<strong>on</strong><br />

in the Number of CD8 T‐Cell Precursors <strong>on</strong> the Outcome of Virus Infecti<strong>on</strong>. Cellular Immunology, 189,<br />

67‐73<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(+) a talk<br />

Title of poster / talk<br />

Modelling and identificati<strong>on</strong> of distributed parameter systems in immunology<br />

Abstract<br />

The problem of how to develop, in a systematic manner, c<strong>on</strong>sistent mathematical models that provide<br />

a basis for rigorous analysis and quantitative predicti<strong>on</strong> in every day immunology research is explored.<br />

We present a quantitative approach towards an integrative modelling of distributed parameter<br />

systems in immunology. Two case studies are presented in detail:<br />

The type I interfer<strong>on</strong> (IFN) resp<strong>on</strong>se to cor<strong>on</strong>avirus infecti<strong>on</strong> in mice The model of IFN resp<strong>on</strong>se<br />

c<strong>on</strong>siders the populati<strong>on</strong> dynamics of plasmacytoid dendritic cells and macrophages. It is set up to<br />

quantify some fundamental parameters of IFN producti<strong>on</strong> and protecti<strong>on</strong> and predict the sensitivity of<br />

the resp<strong>on</strong>se dynamics.<br />

Turnover of labeled (e.g. with fluorescent markers CFSE, BrdU) T lymphocytes in vitro and in vivo. We<br />

identified a set of mathematical models of differing complexity (formulated with ODEs or hyperbolic<br />

PDEs) to quantify the divisi<strong>on</strong>‐, differentiati<strong>on</strong> and death rate parameters of turning over T cells using<br />

flow cytometry data <strong>on</strong> the evoluti<strong>on</strong> of cell distributi<strong>on</strong> with respect to the fluorescent markers.


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 17<br />

Sebastian Bohl<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ)<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 280<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐6221‐424483<br />

Fax +49‐6221‐424488<br />

E‐Mail S.Bohl@dkfz.de<br />

Website www.dkfz.de/de/systembiologie/<br />

Short CV<br />

1997 High school diploma<br />

1998‐2003 Studies in biology at the university of Freiburg, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

2000‐2001 ERASMUS year at the university of Lund, Sweden<br />

2003 Diploma examinati<strong>on</strong> in molecular immunology, cell biology, biochemistry, and<br />

computer sciences<br />

2003‐2004 Diploma Thesis in the laboratory of PD Dr. U. Klingmüller, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer<br />

Research Center (DKFZ), Heidelberg<br />

since 2004 Graduate studies at the University of Heidelberg<br />

Thesis in the laboratory of PD Dr. U. Klingmüller, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center<br />

(DKFZ), Heidelberg<br />

Research Interests<br />

Signal transducti<strong>on</strong> in intracellular networks comprises the transmissi<strong>on</strong> of informati<strong>on</strong> from cell<br />

surface receptors to the nucleus where the activity of genes is regulated, alterati<strong>on</strong>s in these c<strong>on</strong>trol<br />

mechanisms can cause cancer and other diseases. To elucidate key regulatory mechanisms it is not<br />

sufficient to identify the network comp<strong>on</strong>ents but rather essential to understand the dynamic<br />

behavior. In close collaborati<strong>on</strong> with modeling partners we are following a systems biology approach<br />

and combine quantitative data with mathematical models to investigate alterati<strong>on</strong>s in signaling<br />

networks that promote the <strong>on</strong>set of cancer. The data‐based mathematical models enable rapid testing<br />

of hypotheses, the targeted design of experiments and the predicti<strong>on</strong> of steps most suitable for<br />

interventi<strong>on</strong>.<br />

Five most important publicati<strong>on</strong>s<br />

Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, Klingmüller U. Computati<strong>on</strong>al<br />

processing and error reducti<strong>on</strong> strategies for standardized quantitative data in biological networks.<br />

FEBS J. 2005 Dec;272(24):6400‐11<br />

Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, Klingmüller U. Quantitative data<br />

generati<strong>on</strong> for systems biology: the impact of randomisati<strong>on</strong>, calibrators and normalisers. Syst Biol<br />

(Stevenage). 2005 Dec;152(4):193‐200.<br />

Klingmüller U, Bauer A, Bohl S, Nickel PJ, Breitkopf K, Dooley S, Zellmer S, Kern C, Merfort I, Sparna T,<br />

D<strong>on</strong>auer J, Walz G, Geyer M, Kreutz C, Hermes M, Götschel F, Hecht A, Walter D, Egger L, Neubert K,<br />

Borner C, Brulport M, Schormann W, Sauer C, Baumann F, Preiss R, MacNelly S, Godoy P, Wiercinska E,<br />

Ciuclan L, Edelmann J, Zeilinger K, Heinrich M, Zanger UM, Gebhardt R, Maiwald T, Heinrich R, Timmer<br />

J, v<strong>on</strong> Weizsäcker F, Hengstler JG. Primary mouse hepatocytes for systems biology approaches: a<br />

standardized in vitro system for modelling of signal transducti<strong>on</strong> pathways. Syst Biol (Stevenage). 2006<br />

Nov;153(6):433‐47.<br />

Klingmüller U, Schilling M, Bohl S, Pfeifer AC The need for standardisati<strong>on</strong> in <strong>Systems</strong> Biolog. ESF<br />

Forward Look (<strong>Systems</strong> <strong>Biology</strong>). 2007 Sep; 23‐27<br />

Maiwald T, Kreutz C, Pfeifer AC, Bohl S, Klingmüller U, Timmer J. Dynamic pathway modeling:<br />

feasibility analysis and optimal experimental design. Ann N Y Acad Sci. 2007 Dec;1115:212‐20.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Dynamic Modeling of IL‐6 Induced Signaling in Primary Hepatocytes<br />

Abstract<br />

Hepatocyte regenerati<strong>on</strong> is a tightly coordinated process, which is regulated by multiple signal<br />

transducti<strong>on</strong> pathways. This process can be divided into three c<strong>on</strong>secutive phases: priming, cell cycle<br />

progressi<strong>on</strong> and terminati<strong>on</strong>. During the priming phase, interleukin (IL)‐6 rapidly activates the gp130‐<br />

JAK1‐STAT3 signaling pathway, enabling the previously quiescent hepatocytes to enter cell cycle<br />

progressi<strong>on</strong>. To examine the dynamic behavior of the JAK1‐STAT3 signaling cascade, we are employing<br />

a systems biology approach. We stimulated primary hepatocytes with different stimuli. The activati<strong>on</strong><br />

of the signaling comp<strong>on</strong>ents was quantified and the parameters of an ODE model of the pathway were<br />

fitted to the generated data. The model will be used to study the effects of the induced negative<br />

regulator SOCS3 <strong>on</strong> the dynamic behavior of the signaling cascade. Particular focus will be placed <strong>on</strong><br />

the effect of the SOCS3 half‐life <strong>on</strong> signal durati<strong>on</strong> and amplitude.<br />

Poster number: 4


18 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Hauke Busch<br />

Instituti<strong>on</strong> Theoretical Bioinformatics, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research<br />

Center (DKFZ)<br />

C<strong>on</strong>tact Address<br />

Street Address Bioquant, Im Neuenheimer Feld 267<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐6221‐54‐51309<br />

Fax +49‐6221‐54‐51488<br />

E‐Mail h.busch@dkfz.de<br />

Website http://www.dkfz.de/ibios/<br />

Short CV<br />

1992‐1998 Study in Physics at the Darmstadt University of Technology<br />

1999‐2004 PhD at the Darmstadt University of Technology<br />

”Influence of Spatiotemporal Noise <strong>on</strong> Pattern Formati<strong>on</strong><br />

in Excitable Media“.<br />

1999‐2002 Member of the Graduate College 340<br />

„Comminicati<strong>on</strong> in Biological <strong>Systems</strong>“<br />

2004‐now Postdoc at DKFZ, Group of Prof. R. Eils,<br />

Divisi<strong>on</strong> of Theoretical Bioinformatics<br />

Head of Applied <strong>Systems</strong> <strong>Biology</strong> Modeling Group<br />

2004‐2007 Postdoc Fellow of the <strong>Systems</strong> <strong>Biology</strong> BioMS Initiative<br />

Research Interests<br />

Main research interests:<br />

‐ the influence of noise in biological systems<br />

‐ development of methods for the efficient simulati<strong>on</strong> of stochastic chemical systems in space and<br />

time.<br />

‐ reverse engineering of dynamic gene regulatory networks from high throughput data<br />

‐ optimal experiment design strategies for biologcial systems.<br />

Five most important publicati<strong>on</strong>s<br />

H. Busch, D. Camacho‐Trullio, K. Breuhahn, P. Angel, R.Eils and A. Szabowski, Gene Network Dynamics<br />

c<strong>on</strong>trolling Keratinocyte Migrati<strong>on</strong>, submitted.<br />

H. Busch, W. Sandmann and V. Wolf, A numerical aggregati<strong>on</strong> algorithm for the enzymecatalyzed<br />

substrate c<strong>on</strong>versi<strong>on</strong>, in Proceedings of the Int. C<strong>on</strong>ference <strong>on</strong> Computati<strong>on</strong>al Methods in <strong>Systems</strong><br />

<strong>Biology</strong>, Trento, 2006.<br />

H. Busch and R. Eils, <strong>Systems</strong> <strong>Biology</strong>, in Encyclopedia of Molecular Cell <strong>Biology</strong> and<br />

Molecular Medicine, 14, 123, (2005).<br />

H. Busch and M.‐Th. Hütt, Scale‐dependence of spatiotemporal filters inspired by cellular<br />

automata, Int. J. Bifurcati<strong>on</strong> Chaos, 14, 1957, (2004).<br />

H. Busch, J. Garcia‐Ojalvo, and F. Kaiser, Influence of spatiotemporal 1/f_‐noise <strong>on</strong> structure formati<strong>on</strong><br />

in excitable media, Proc. SPIE, 5114, 468, (2003).<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( x) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Gene Network Dynamics C<strong>on</strong>trolling Keratinocyte Migrati<strong>on</strong><br />

Abstract<br />

So far it is not known how to translate large‐scale omic data into a coherent model of cellular<br />

regulati<strong>on</strong> allowing to simulate, predict and c<strong>on</strong>trol cellular behavior. However, assuming that<br />

informati<strong>on</strong> <strong>on</strong> cell wide behavior is reflected in the gene expressi<strong>on</strong> kinetics, we infer a dynamic gene<br />

regulatory network from time series measurements of DNA micro‐array data for well studied<br />

Hepatocyte Growth Factor‐induced migrati<strong>on</strong> of primary human keratinocytes. Transforming the<br />

obtained interacti<strong>on</strong>s to the level of signaling pathways, we predict in silico and verify in vitro the<br />

necessary and sufficient time‐ordered events that initiate, maintain and stop migrati<strong>on</strong>. We show that<br />

pulse‐like activati<strong>on</strong> of the proto<strong>on</strong>cogene receptor Met triggers a resp<strong>on</strong>sive state, while time<br />

sequential activati<strong>on</strong> of EGF‐R is required to initiate and maintain migrati<strong>on</strong>. C<strong>on</strong>text informati<strong>on</strong> for<br />

enhancing, delaying or stopping migrati<strong>on</strong> is provided via the activity of the PKA‐signaling pathway.<br />

Our results shed a new light <strong>on</strong> a c<strong>on</strong>tinued kinetic interplay of multiple signaling pathways mediating<br />

the transiti<strong>on</strong> to a migratory system state over a time course of several hours.<br />

Poster number: 5


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 19<br />

Dmitriy M. Chudakov, PhD<br />

Instituti<strong>on</strong> IBCH, <strong>Moscow</strong>, RAS<br />

C<strong>on</strong>tact Address<br />

Street Address Miklukho‐Maklaya, 16/10<br />

Zip /Postal Code 117997<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e 7‐495‐429‐80‐20<br />

Fax 7‐495‐330‐70‐56<br />

E‐Mail ChudakovDM@mail.ru<br />

Website http://www.ibch.ru/lgr/<br />

Short CV<br />

Fluorescent proteins<br />

Photoactivatable fluorescent proteins<br />

Fluorescent sensors<br />

Awards<br />

2005 Young Scientists Award of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences<br />

2006 European Academy Award<br />

Research Interests<br />

Doctor Dmitriy Chudakov is a Research Scientist in the Institute of Bioorganic Chemistry of <str<strong>on</strong>g>Russian</str<strong>on</strong>g><br />

Academy of Sciences, <strong>Moscow</strong>. He received his PhD degree in 2003 at the same institute, working <strong>on</strong><br />

the development and studies of the photoactivatable fluorescent proteins with Doctor K<strong>on</strong>stantin<br />

Lukyanov. His current interests involve the studies and development of fluorescent proteins,<br />

photoactivatable proteins, genetically encoded sensors, genetically encoded photosensitizers.<br />

Five most important publicati<strong>on</strong>s<br />

1 Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S,<br />

Lukyanov KA. Kindling fluorescent proteins for precise in vivo photolabeling. Nat Biotechnol. 2003<br />

Feb;21(2):191‐4.<br />

2. Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA.<br />

Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol. 2004 Nov;22(11):1435‐<br />

9.<br />

3. Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, Solovieva EA, Lukyanov KA,<br />

Bogdanova EA, Zaraisky AG, Lukyanov S, Chudakov DM. Bright far‐red fluorescent protein for whole‐<br />

body imaging. Nat Methods. 2007 Sep;4(9):741‐6.<br />

4. Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov<br />

KA, Lukyanov S, Gadella TW, Chudakov DM. Bright m<strong>on</strong>omeric red fluorescent protein with an<br />

extended fluorescence lifetime. Nat Methods. 2007 Jul;4(7):555‐7.<br />

5. Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV. Innovati<strong>on</strong>: Photoactivatable fluorescent<br />

proteins. Nat Rev Mol Cell Biol. 2005 Nov;6(11):885‐91. Review.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(x) a talk<br />

Title of poster / talk<br />

Fluorescent proteins and instruments <strong>on</strong> their basis<br />

Abstract<br />

A number of wild type fluorescent proteins, homologues of Aeqourea victoria green fluorescent<br />

protein (GFP), and their innumerable mutant variants, form a whole palette of markers for in vivo<br />

labeling. Besides, a great number of various instruments were developed <strong>on</strong> their basis, including<br />

photoactivatable proteins, genetically encoded sensors, photosensitizer, etc. Here I’ll describe the<br />

most recent GFP‐based instruments generated in our laboratory.


20 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Oleg Demin<br />

Instituti<strong>on</strong> (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong><br />

State University<br />

C<strong>on</strong>tact Address<br />

Street Address Leninskie Gory, 1/73, AN Belozerski IPCB <strong>Moscow</strong><br />

State UniversityPCB<br />

Zip /Postal Code 119992<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 783 8718<br />

Fax +7 495 783 87 18<br />

E‐Mail demin@genebee.msu.su<br />

Website www.insysbio.ru<br />

Short CV<br />

2004‐present CSO Institute for <strong>Systems</strong> <strong>Biology</strong> SPb<br />

2002–present Principal Research Scientist, Department of Bioenergetics of A.N.Belozersky<br />

Institute of Physico‐Chemical <strong>Biology</strong>, <strong>Moscow</strong> State University<br />

1995‐2002 Visiting Research Scientist, Department of Microbial Physiology, Free University<br />

of Amsterdam, Amsterdam, The Netherlands<br />

1995‐2002 Research Scientist, Department of Bioenergetics of A.N.Belozersky Institute of<br />

Physico‐Chemical <strong>Biology</strong>, <strong>Moscow</strong> State University<br />

1992‐1995 Post‐graduate of Biophysical Department, <strong>Moscow</strong> State University<br />

1995 Ph.D., Biophysical Department, Faculty of <strong>Biology</strong>, <strong>Moscow</strong> State University,<br />

<strong>Moscow</strong>. Title: Structural organizati<strong>on</strong> of multi‐enzyme metabolic systems and<br />

regulati<strong>on</strong> of their fluxes and c<strong>on</strong>centrati<strong>on</strong>s: theoretical approach<br />

1992 M.Sc., Faculty of Applied Mathematics and Cybernetics, <strong>Moscow</strong> State University,<br />

<strong>Moscow</strong>. Title: Optimal c<strong>on</strong>trol and stability of steady states of metabolic<br />

pathways with different feedbacks<br />

1986‐1992 Biophysical Department, Faculty of <strong>Biology</strong>, <strong>Moscow</strong> State University<br />

1989‐1992 Faculty of Applied Mathematics and Cybernetics, <strong>Moscow</strong> State University<br />

Awards<br />

Participati<strong>on</strong> in EU programmes:<br />

2006 ‐ 2008 <strong>Systems</strong> <strong>Biology</strong> of RNA metabolism in yeast; Acr<strong>on</strong>ym: RiboSys; FP6 Specific<br />

Targeted Project<br />

1999 ‐ 2001 European Uni<strong>on</strong> INTAS grant<br />

1998 ‐ 2000 European Uni<strong>on</strong> COPERNICUS grant<br />

Research Interests<br />

Research Interests of Dr Demin are focused in areas of <strong>Systems</strong> <strong>Biology</strong> and Bioinformatics and<br />

scientific programming with especial focus <strong>on</strong> quantitative descripti<strong>on</strong> of biological processes and their<br />

applicati<strong>on</strong> to biotechnology and biomedicine.<br />

Areas of expertise:<br />

Modeling of cellular metabolism<br />

Modeling of cell signaling<br />

Modeling of gene regulatory networks<br />

Pathway rec<strong>on</strong>structi<strong>on</strong><br />

Methods and software for c<strong>on</strong>trol of industrial biotechnology processes<br />

Methods and software for drug safety assessment<br />

Methods and software for kinetic modeling<br />

Five most important publicati<strong>on</strong>s<br />

Metelkin E., Goryanin I., Demin O. Mathematical modeling of mitoch<strong>on</strong>drial adenine nucleotide<br />

translocase. Biophys. J (2006) v.90 p.423‐432<br />

Goryanin II, Lebedeva GV, Mogilevskaya EA, Metelkin EA, Demin OV. Cellular kinetic modeling of the<br />

microbial metabolism. Methods Biochem Anal (2006) 49, 437‐488<br />

Demin O.V., Plyusnina T.Y., Lebedeva G.V., Zobova E.A., Metelkin E.A., Kolupaev A.G., Goryanin I.I.,<br />

Tobin F. Kinetic modelling of the E. coli metabolism. IN: Topics in Current Genetics (2005) 31‐67, Eds.<br />

Alberghina L., Westerhoff H.V. , Springer<br />

Demin, O.V.,Goryanin, I.I., Kholodenko, B.N., Westerhoff, H.V. Kinetic modeling of energy metabolism<br />

and superoxide generati<strong>on</strong> in hepatocyte mitoch<strong>on</strong>dria. Molecular <strong>Biology</strong> (<strong>Moscow</strong>) (2001) 35(6), 1‐<br />

11<br />

Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B. Quantificati<strong>on</strong> of short term signaling by the<br />

epidermal growth factor receptor. J Biol Chem (1999) 274, 30169‐30181<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare a talk<br />

Title of poster / talk<br />

Modeling in <strong>Systems</strong> <strong>Biology</strong>: Applicati<strong>on</strong>s to Biomedicine and Biotechnology<br />

Abstract<br />

Two approaches of computati<strong>on</strong>al systems biology are presented: pathway rec<strong>on</strong>structi<strong>on</strong> and kinetic<br />

modeling. Pathway rec<strong>on</strong>structi<strong>on</strong> collects all informati<strong>on</strong> about players of interest, processes<br />

interc<strong>on</strong>necting them and their stoichiometry and can be c<strong>on</strong>sidered as a powerful tool to search for<br />

drug targets, discover possible biomarkers and attribute them to particular cell state or phenomen<strong>on</strong>.<br />

In framework of kinetic modeling approach we mine, collect and integrate quantitative in vitro and in<br />

vivo experimental data produced by classical biochemistry, genomics, proteomics and metabolomics<br />

and use them to build and verify kinetic models [1,2]. These kinetic models when c<strong>on</strong>sidered as a<br />

repository of all informati<strong>on</strong> about the system of interest can be applied to different problems of drug<br />

discovery and producti<strong>on</strong> such as screening optimizati<strong>on</strong> [3], investigati<strong>on</strong>/predicti<strong>on</strong> of drug safety [4]<br />

and optimizati<strong>on</strong>/maximizati<strong>on</strong> of yield of drug precursors. Several examples illustrating these<br />

approaches have been presented.<br />

1. E. Metelkin, I. Goryanin, O. Demin (2006) Biophys. J, 90: 423‐432; 2. I. Goryanin, G. Lebedeva, E.<br />

Mogilevskaya, E. Metelkin, O. Demin (2006) Methods Biochem Anal, 49: 437‐488 ; 3. M. Noble, Y.<br />

Sinha, A. Kolupaev, O. Demin, D. Earnshaw, F. Tobin, J. West, J. Martin, C. Qiu, W. Liu, W. DeWolf Jr., D.<br />

Tew, I.Goryanin (2006) Biotechnology and Bioengineering, 95: 560‐571. ;4. E. Mogilevskaya, O. Demin,<br />

I. Goryanin (2006) Journal of Biological Physics, 32: 245‐271.


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 21<br />

Dr. Sofia Depner<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ)<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 280<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e 06221/424534<br />

Fax 06621/424551<br />

E‐Mail s.depner@dkfz.de<br />

Short CV<br />

born: 13.09.1968, Moskau<br />

1975‐1985 comm<strong>on</strong> sec<strong>on</strong>dary school Nr. 61, Moskau<br />

1985‐1990 Technical institute for forestry, Moskau. Degree: diplom engineer (FH)<br />

1994‐2002 Johannes Gutenberg University Mainz, <str<strong>on</strong>g>German</str<strong>on</strong>g>y. Degree: diplom biologist.<br />

2002‐2006 PhD Thesis at <str<strong>on</strong>g>German</str<strong>on</strong>g> cancer research center (DKFZ)<br />

2006‐dato Postdoc positi<strong>on</strong> at DKFZ, group Tumor and Microenvir<strong>on</strong>ment<br />

Research Interests<br />

Regulati<strong>on</strong> of signal transducti<strong>on</strong> in tumor and stromal cells; The role of cytokines by the interacti<strong>on</strong>s<br />

between tumor and stromal cells.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( + ) a poster<br />

Title of poster / talk<br />

Differential regulati<strong>on</strong> of IL‐6 signaling pathway in HaCaT A5 benigne tumor keratinocytes and<br />

fibroblasts<br />

Abstract<br />

The activated progressi<strong>on</strong> promoting tumor microenvir<strong>on</strong>ment is initially induced by a network of<br />

tumor derived growth factors/cytokines that induce cellular resp<strong>on</strong>ses in tumor and stromal cells. In a<br />

tumor transplantati<strong>on</strong> model of HaCaT skin squamous cell carcinomas we could dem<strong>on</strong>strate the<br />

functi<strong>on</strong>al c<strong>on</strong>tributi<strong>on</strong> of an IL‐6 regulated growth factor network to tumor progressi<strong>on</strong>. The network<br />

induces tumor cells proliferati<strong>on</strong> and migrati<strong>on</strong> as well as persistent angiogenesis, recruitment and<br />

activati<strong>on</strong> of stromal cells. In resp<strong>on</strong>se to ligand binding the IL‐6R activates the JAK/STAT signalling<br />

pathway in stromal fibroblasts and tumor cells but pathway activati<strong>on</strong> results in the inducti<strong>on</strong> of<br />

different target genes and triggers different cellular resp<strong>on</strong>ses in both cell types. This differential<br />

target gene resp<strong>on</strong>se is most likely mediated by a differential kinetics of expressi<strong>on</strong>, phosphorylati<strong>on</strong><br />

and nuclear localizati<strong>on</strong> of STAT proteins (STAT1 and 3) in both cell types. Additi<strong>on</strong>ally tumor<br />

keratinocytes and stromal fibroblasts resp<strong>on</strong>d with a different pattern of activati<strong>on</strong> for MAP kinases<br />

such as Erk1/2.<br />

Poster number: 6


22 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Markus Diesmann<br />

Instituti<strong>on</strong> RIKEN Brain Science Institute<br />

C<strong>on</strong>tact Address<br />

Street Address 2‐1 Hirosawa<br />

Zip /Postal Code 351‐0198<br />

City Wako‐shi, Saitama<br />

Country Japan<br />

Ph<strong>on</strong>e +81‐48‐467‐9644<br />

Fax +81‐48‐467‐9644<br />

E‐Mail diesmann@brain.riken.jp<br />

Website http://www.cnpsn.brain.riken.jp<br />

Short CV<br />

2006 Unit Leader, RIKEN Brain Science Institute<br />

2004 Juniorprofessor, Freiburg<br />

2003 Assistant Professor (C1), Freiburg<br />

1999 Senior staff , MPI for Dynamics and SelfOrganizati<strong>on</strong>, Goettingen<br />

1997 PhD studies University of Freiburg<br />

1994 PhD studies Weizmann Institute of Science, Rehovot<br />

1993 Diploma in Physics (Bochum)<br />

Research Interests<br />

The cortical neur<strong>on</strong>al network is am<strong>on</strong>g the most complex structures found in nature. The functi<strong>on</strong>al<br />

role of its dynamics exhibited <strong>on</strong> many spatio‐temporal scales is presently not understood.<br />

Furthermore, in c<strong>on</strong>trast to other systems, the structure of the cortex is in fact not static but<br />

undergoes a c<strong>on</strong>tinuous activity dependent reorganizati<strong>on</strong>. The Diesmann Research Unit studies the<br />

mechanisms and functi<strong>on</strong>al c<strong>on</strong>sequences of spike synchr<strong>on</strong>izati<strong>on</strong> and plasticity in biologically<br />

realistic models of the cortical network. However, this bottom‐up approach al<strong>on</strong>e may not lead to an<br />

understanding of brain functi<strong>on</strong>. For this reas<strong>on</strong> we also incorporate top‐down approaches in our<br />

research. At the interface of top‐down and bottom up approaches, our strategy is to implement<br />

established formal theories of system functi<strong>on</strong> like temporal‐difference learning in biologically<br />

c<strong>on</strong>strained network models. These investigati<strong>on</strong>s depend <strong>on</strong> large‐scale simulati<strong>on</strong>s requiring n<strong>on</strong>‐<br />

standard algorithms and high‐performance parallel computing. Therefore, the unit is also c<strong>on</strong>cerned<br />

with the creati<strong>on</strong> of appropriate simulati<strong>on</strong> technology.<br />

Five most important publicati<strong>on</strong>s<br />

Morris<strong>on</strong> A, Aertsen A, Diesmann M. (2007) Spike‐time dependent plasticity in balanced recurrent<br />

networks. Neural Computati<strong>on</strong> 19: 1437–1467.<br />

Morris<strong>on</strong> A, Straube S, Plesser H E, Diesmann M. (2007) Exact subthreshold integrati<strong>on</strong> with<br />

c<strong>on</strong>tinuous spike times in discrete time neural network simulati<strong>on</strong>s. Neural Computati<strong>on</strong> 19: 47—79.<br />

Morris<strong>on</strong> A, Mehring C, Geisel T, Aertsen A, Diesmann M . (2005) Advancing the boundaries of high<br />

c<strong>on</strong>nectivity network simulati<strong>on</strong> with distributed computing. Neural Computati<strong>on</strong> 17(8):1776—1801.<br />

Mehring C, Hehl U, Kubo M, Diesmann M , Aertsen A. (2003) Activity Dynamics and Propagati<strong>on</strong> of<br />

Synchr<strong>on</strong>ous Spiking in Locally C<strong>on</strong>nected Random Networks. Biological Cybernetics 88(5):395—408.<br />

Diesmann M , Gewaltig M‐O, Aertsen A. (1999) C<strong>on</strong>diti<strong>on</strong>s for Stable Propagati<strong>on</strong> of Synchr<strong>on</strong>ous<br />

Spiking in Cortical Neural Networks. Nature 402:529—533.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(X) a talk<br />

Title of poster / talk<br />

Large‐scale simulati<strong>on</strong>s of plastic neural systems<br />

Abstract<br />

Higher brain functi<strong>on</strong>s emerge from large and complex cortical networks and their interacti<strong>on</strong>s.<br />

However, the large number of neur<strong>on</strong>s combined with the high c<strong>on</strong>nectivity of the biological network<br />

and the heterogeneity in neur<strong>on</strong> and synapse types impose severe c<strong>on</strong>straints <strong>on</strong> the explorable<br />

system size which have previously been hard to overcome. Furthermore, the c<strong>on</strong>tinuous<br />

reorganizati<strong>on</strong> processes in the brain by different types of plasticity require simulati<strong>on</strong>s <strong>on</strong> the<br />

biological time‐scale of minutes but with a temporal resoluti<strong>on</strong> of fracti<strong>on</strong>s of a millisec<strong>on</strong>d. In this<br />

c<strong>on</strong>tributi<strong>on</strong> we review three recent advances that enable us to investigate large‐scale networks<br />

exploiting modern hybrid multi‐node/multi‐core computer architectures: (1) efficient communicati<strong>on</strong><br />

in distributed simulati<strong>on</strong>, (2) use of c<strong>on</strong>tinuous spike times in a time‐driven simulati<strong>on</strong> scheme, and (3)<br />

a multi‐threaded message‐passing simulati<strong>on</strong> kernel. The technical advances are illustrated by a study<br />

of spike timing dependent plasticity (STDP) in a model of a cubic millimeter of cortical tissue c<strong>on</strong>taining<br />

some 1,000,000,000 synapses. www.nest‐initiative.org


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 23<br />

Dr‐ Dipl‐Ing Martins dos Santos<br />

Instituti<strong>on</strong><br />

C<strong>on</strong>tact Address<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Centre for Infecti<strong>on</strong> Research<br />

Street Address Inhoffenstrasse 7<br />

Zip /Postal Code 38124<br />

City Braunschweig<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +4953161814008<br />

Fax +4953161815002<br />

E‐Mail vds@helmholtz‐hzi.de<br />

Website<br />

Short CV<br />

www.helmholtz‐hzi.de/en/research_groups/molecular_biotechnology/synthetic_and_systems_biology/<br />

1986‐1991 MEng., Food Engineering, College of Biotechnology, Porto Portugal<br />

1992‐1996 PhD Envir<strong>on</strong>mental Bioprocess Engineering. Wagenbing University, The<br />

Netherlands<br />

1997‐2001 Research Associate Dept. Molecular <strong>Biology</strong>, Council for Scientific Research,<br />

Granada Spain<br />

2000‐2005 Senior Scientist <str<strong>on</strong>g>German</str<strong>on</strong>g> Centre for Biotechnology Research, Braunschweig,<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

2005‐<br />

Awards<br />

Head <strong>Systems</strong> and Synthetic <strong>Biology</strong> Group, <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Centre for Infecti<strong>on</strong><br />

Research, Braunschweig, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

1992‐1996 Portuguese Council for Scientific and Technological Research (JNICT), Portugal<br />

1997 European Envir<strong>on</strong>mental Research Organizati<strong>on</strong> (EERO) l<strong>on</strong>g‐term fellowship, The<br />

Netherlands<br />

1998‐199 Training and Mobility of Researchers, European Uni<strong>on</strong>, Brussels, Belgium<br />

2004 Runner‐up in “Biofuture”, the most important research prize in Biotechnology<br />

and Biological Sciences in <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

2005 Runner‐up (finalist) Marie Curie Excellent Grants, EU<br />

Research Interests<br />

The research goals of my group are to c<strong>on</strong>tribute to the elucidati<strong>on</strong> of mechanisms underlying basic<br />

cellular processes, evoluti<strong>on</strong> and ecological interacti<strong>on</strong>s of microbes, and to translate this knowledge<br />

into applicati<strong>on</strong>s of biomedical, biotechnological and envir<strong>on</strong>mental interest. The strategic c<strong>on</strong>cept is<br />

to develop and apply theoretical frameworks supporting (and relying <strong>on</strong>) experimental research<br />

towards the understanding, from a <strong>Systems</strong> <strong>Biology</strong> perspective of the various processes and<br />

hierarchies of cellular networks as well as interrelati<strong>on</strong>ships am<strong>on</strong>g prokaryotes and of prokaryotes<br />

with their envir<strong>on</strong>ments. Ultimately, we aim at using these frameworks for directed cellular re‐<br />

programming, by means of a forward‐design of experiments inspired in sound engineering c<strong>on</strong>cepts<br />

and the functi<strong>on</strong>al genomics of the organisms we sequence, combining mathematical modelling with<br />

experiments at all stages. Cellular re‐programming, under the broader umbrella of Synthetic <strong>Biology</strong>,<br />

plays an increasingly important role in my research.<br />

Five recent publicati<strong>on</strong>s<br />

Oberhardt MA, Puchalka J., Fryer K, Martins dos Santos VAP * , Papin J. 2008vGenome‐scale Metabolic<br />

Rec<strong>on</strong>structi<strong>on</strong> of the opportunistic pathogen Pseudom<strong>on</strong>as aeruginosa PA01. J. Bacteriol. Jan 11;<br />

[Epub ahead of print]<br />

Kachane AN, Timmis KN; Martins dos Santos VAP. 2006. Dynamics of reductive genome evoluti<strong>on</strong> in<br />

mitoch<strong>on</strong>dria and obligate intracellular microbe. Mol. Biol. Evoluti<strong>on</strong>. 24(2):449‐56<br />

Schneiker S * ., Martins dos Santos VA * Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN,<br />

Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B,<br />

McHardy AC, Meyer F, Nechitaylo T, Puhler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W,<br />

Yakimov MM, Timmis KN, Vorholter FJ, Weidner S, Kaiser O, Golyshin PN. (2006) Genome sequence of<br />

the ubiquitous hydrocarb<strong>on</strong>‐degrading marine bacterium Alcanivorax borkumensis. Nature<br />

Biotechnol. 24(8):997‐1004. *joint first‐authorship, corresp<strong>on</strong>ding author<br />

Kachane AN, Timmis KN; Martins dos Santos VAP. 2005. Uracil c<strong>on</strong>tent of 16S rRNA of thermophilic<br />

and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures. Nucl. Acid<br />

Res. 33:4016‐4022<br />

Martins dos Santos, V.A.P., Heim S, Nels<strong>on</strong> KE, Timmis KN. 2004 Insights into the genomic basis of<br />

niche specificity of Pseudom<strong>on</strong>as putida strain KT2440. Envir<strong>on</strong>m. Microbiol. 6:1264‐1286<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare (x ) a talk<br />

Title of poster / talk<br />

Navigating the microbial metabolic landscape through c<strong>on</strong>straint‐based modeling<br />

Abstract<br />

The relati<strong>on</strong>ship between the genotype and the phenotype is complex, highly n<strong>on</strong>‐linear and cannot be predicted from simply<br />

cataloguing and assigning gene functi<strong>on</strong>s to genes found in a genome. Thus, if we are to understand how cellular functi<strong>on</strong>s<br />

operate, the functi<strong>on</strong> of every gene must be placed in the c<strong>on</strong>text of its role in attaining the set goals of a cellular functi<strong>on</strong>.<br />

This requires the integrated c<strong>on</strong>siderati<strong>on</strong> of many interacting comp<strong>on</strong>ents. Clearly, however, the capabilities needed for a<br />

coherent and internally c<strong>on</strong>sistent analysis of the wealth of informati<strong>on</strong> available are far bey<strong>on</strong>d the capacity of human mind.<br />

Mathematical modeling provides us a powerful way of handling such informati<strong>on</strong> and allows us to effectively develop<br />

appropriate frameworks that account for these complexities. We report here <strong>on</strong> the genome‐wide c<strong>on</strong>straint‐based modelling<br />

of Pseudom<strong>on</strong>as putida (a versatile soil bacterium of biotechnological importance) and Pseudom<strong>on</strong>as aeruginosa (a<br />

threatening pathogen), an in silico representati<strong>on</strong> that describes their metabolic capacities within the scope of their<br />

envir<strong>on</strong>mental c<strong>on</strong>straints. Using annotated genome<br />

sequence data, biochemical informati<strong>on</strong> and strain‐specific knowledge, we analysed the cellular behaviour of these micro‐<br />

organisms under a range of c<strong>on</strong>diti<strong>on</strong>s relevant for both human health and envir<strong>on</strong>mental applicati<strong>on</strong>s. This has been d<strong>on</strong>e<br />

using flux balance analysis for the entire metabolic networks of these bacteria. This has been d<strong>on</strong>e using flux<br />

balance analysis for the entire metabolic networks of these bacteria, as well as by determining the extreme pathways for<br />

relevant subsets of the networks. The networks comprise between 600 and 900 reacti<strong>on</strong>s representing between 650 and 750<br />

genes, which is about 10 to 12% of the genome of these bacteria. Preliminary results show that the number of extreme<br />

pathways that represent the metabolic potential of P. aeruginosa is 2 to 6 times higher than those for P. putida, although the<br />

former has <strong>on</strong>ly two more reacti<strong>on</strong>s than the latter. This may reflect a higher flexibility of the central metabolism of P.<br />

aeruginosa as compared to P. putida. This is clearly a emergent property of the system that could not be predicted solely <strong>on</strong><br />

basis of the linear comparis<strong>on</strong> of gene lists. The c<strong>on</strong>structi<strong>on</strong> of comprehensive metabolic maps<br />

provides a framework to study the c<strong>on</strong>sequences of alterati<strong>on</strong>s in the genotype and to gain insight into the phenotype‐<br />

genotype relati<strong>on</strong>. Ultimately, this analysis defines the entire metabolic space of the possible flux distributi<strong>on</strong>s and metabolic<br />

interacti<strong>on</strong>s within the network. A direct comparis<strong>on</strong> of this „phenotypic space" for both bacteria will possibly help in<br />

identifying „orphan genes", evoluti<strong>on</strong>ary features and genetic plasticity. The use of such models to choose the most<br />

informative knockouts and ultimately, to rati<strong>on</strong>ally design experiments relevant for the<br />

elucidati<strong>on</strong> of the behavior of these bacteria in polluted envir<strong>on</strong>ments or within the scope of their relati<strong>on</strong>ships with an<br />

infected host will be discussed.


24 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Prof. Dr. Roland Eils<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ) and<br />

University of Heidelberg (BIOQUANT)<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 580, B080<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐6221‐42‐3600<br />

Fax +49‐6221‐42‐3610<br />

E‐Mail r.eils@dkfz‐heidelberg.de<br />

Website http://www.dkfz.de/tbi/<br />

Short CV<br />

1992 ‐ 1995 Ph.D. study at University of Heidelberg (Ruprecht‐Karl‐Universität Heidelberg);<br />

1995 ‐ 1996 Postdoctoral student at the IWR.<br />

1996 – 1996 Guest researcher at the Institut Albert B<strong>on</strong>niot, Université Grenoble<br />

1996 ‐ 1999 Head of the biocomputing group „Structure and functi<strong>on</strong> in cellbiology“, IWR,<br />

University of Heidelberg, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

January 2000 head of the bioinformatics group „Intelligent bioinformatics systems“ at the<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (dkfz)<br />

Since 2002 head of divisi<strong>on</strong> „Theoretical Bioinformatics“ at the <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research<br />

Center (dkfz), Heidelberg, presently with 25 researchers<br />

November 2002 appointed director of department “Bioinformatics and Functi<strong>on</strong>al Genomics” and<br />

full professor (C4) at University of Heidelberg<br />

2006 Appointed founding director of BIOQUANT, Heidelberg Universities New Center<br />

for <strong>Systems</strong> <strong>Biology</strong><br />

Awards<br />

June 1999 BioFuture prize from the <str<strong>on</strong>g>German</str<strong>on</strong>g> Ministery for Educati<strong>on</strong> and Research (approx.<br />

1.2 Milli<strong>on</strong>en €)<br />

2002/2003 Nominated for full professor positi<strong>on</strong>s (C4) at University of Giessen, University of<br />

B<strong>on</strong>n and University of Heidelberg<br />

2005 Microsoft Research award “Computati<strong>on</strong>al tools for advancing science”<br />

2005 Award for new innovative research by <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Society: “<strong>Systems</strong> <strong>Biology</strong> of<br />

Complex Diseases”<br />

Research Interests<br />

Analysis and mathematical modelling of complex processes in molecular and cell biology<br />

Five most important publicati<strong>on</strong>s<br />

Bacher CP, Guggiari M, Brors B, Augui S, Clerc P, Avner P, Eils R*, Heard E* (2006) Transient<br />

colocalizati<strong>on</strong> of X‐inactivati<strong>on</strong> centres accompanies the initiati<strong>on</strong> of X inactivati<strong>on</strong>. Nat. Cell Biol. 2006<br />

Jan 24; [Epub ahead of print] *corresp. author and equal c<strong>on</strong>tributi<strong>on</strong>.<br />

Bulashevska S, Eils R (2005) Inferring regulatory logic from gene expressi<strong>on</strong> data. Bioinformatics 21:<br />

2706‐2713.<br />

R. König and R. Eils (2004) Gene expressi<strong>on</strong> analysis <strong>on</strong> biochemical networks using the potts spin<br />

model. Bioinformatics 20: 1500‐1505.<br />

Bentele M, Lavrik I, Ulrich M, Stosser S, Heermann DW, Kalthoff H, Krammer PH, Eils R. (2004)<br />

Mathematical modeling reveals threshold mechanism in CD95‐induced apoptosis. J. Cell Biol. 166: 839‐<br />

51.<br />

Gerlich, D., Kalbfuss, B., Beaudouin, J., Daigle, N., Eils, R.*, Ellenberg, J. (2003) Inheritance of<br />

chromosome topology throughout mitosis. Cell 112: 751‐764. *corresp<strong>on</strong>ding author<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare (x) a talk<br />

Title of poster / talk<br />

From models to experiments and back: challenges and promises of systems biology


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 25<br />

Dr. Jan Eufinger<br />

Instituti<strong>on</strong><br />

C<strong>on</strong>tact Address<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ)<br />

Street Address Im Neuenheimer Feld 580<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐6221‐42‐3623<br />

Fax +49‐6221‐42‐3620<br />

E‐Mail j.eufinger@dkfz‐heidelberg.de<br />

Website<br />

Short CV<br />

www.dkfz.de/en/sbcancer<br />

www.helmholtz.de/systemsbiology<br />

1996 – 2001 Studies in <strong>Biology</strong> (Diploma), University of Heidelberg<br />

2001 4 m<strong>on</strong>ths internship at BASF, Ludwigshafen<br />

2002‐2006 PhD Studies in Molecular Plant Sciences,<br />

Heidelberg Institute of Plant Sciences, University of Heidelberg<br />

2006/2007 Facility Management at BIOQUANT‐Institute, University of Heidelberg<br />

Since<br />

June 2007<br />

Scientific Project Management for the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> and<br />

SBCancer, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Institute (DKFZ) Heidelberg<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

The research networks of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Abstract<br />

The <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> is a centrally funded, joint initiative of several <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g><br />

centers and external partners. The aim of the Alliance is to exploit the outstanding expertise of the<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong> in basic, high‐through put and bioinformatics research and to transfer it to<br />

innovative "<strong>Systems</strong> <strong>Biology</strong>" type of approaches. Scientific focuses of the Alliance are various complex<br />

diseases with the overall goal to widen the understanding of the causes of these diseases and the<br />

development of new strategies for treating them.<br />

The Alliance c<strong>on</strong>sists of six interc<strong>on</strong>nected networks, each led by a specific <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> centre. The<br />

DKFZ's network "<strong>Systems</strong> <strong>Biology</strong> of Signalling in Cancer (SBCancer)", the largest network of the<br />

Alliance, c<strong>on</strong>centrates <strong>on</strong> signalling pathways that play a pivotal role in the cellular decisi<strong>on</strong>s between<br />

proliferati<strong>on</strong>, differentiati<strong>on</strong> and death.<br />

For quantitative modeling approaches, the producti<strong>on</strong> and integrati<strong>on</strong> of standardized informati<strong>on</strong> is<br />

inevitable. Therefore the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance will c<strong>on</strong>certedly expand existing experimental, IT and<br />

modeling techniques to provide an integrated efficient structure for all members of the Alliance.<br />

In order to promote the emerging discipline of <strong>Systems</strong> <strong>Biology</strong>, the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Alliance will transfer its<br />

knowledge and experience into educati<strong>on</strong>al programs (workshops, Summer Schools, PhD programs).<br />

Poster number: 7


26 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Prof. Mikhail Gelfand<br />

Instituti<strong>on</strong> Institute for Informati<strong>on</strong> Transmissi<strong>on</strong> Problems<br />

C<strong>on</strong>tact Address<br />

Street Address Bolshoi Karetny per. 19<br />

Zip /Postal Code 127994<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7‐495‐6504225<br />

Fax +7‐495‐6500579<br />

E‐Mail gelfand@iitp.ru<br />

Website http://www.rtcb.iitp.ru/mg_e.htm<br />

Short CV<br />

comparative genomics<br />

metagenomics<br />

functi<strong>on</strong>al annotati<strong>on</strong> of genes and proteins and metabolic rec<strong>on</strong>structi<strong>on</strong> from<br />

genomic data<br />

evoluti<strong>on</strong> of metabolic pathways and regulatory systems<br />

alternative splicing<br />

statistics of DNA sequences<br />

Awards<br />

2007 A.A.Baev Prize in Genomics and Genoinformatics ‐ <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences<br />

2006 Best publicati<strong>on</strong> in a <str<strong>on</strong>g>Russian</str<strong>on</strong>g> scientific journal award ‐ Nauka Publishers<br />

2004 Best Scientist of the <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences (doctors of science, biology) ‐<br />

Fund for Support fo the <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Science<br />

2001‐2005 and Howard Hughes Internati<strong>on</strong>al Research Scholar<br />

2006‐2010<br />

2000 The President of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Federati<strong>on</strong>'s Award for Young Doctors of Science<br />

Research Interests<br />

comparative genomics;<br />

metagenomics;<br />

functi<strong>on</strong>al annotati<strong>on</strong> of genes and proteins and metabolic rec<strong>on</strong>structi<strong>on</strong> from genomic data;<br />

evoluti<strong>on</strong> of metabolic pathways and regulatory systems;<br />

alternative splicing.<br />

Five most important publicati<strong>on</strong>s<br />

Rodi<strong>on</strong>ov DA, Gelfand MS, Todd JD, Curs<strong>on</strong> A.R.J, Johnst<strong>on</strong> A.W.B. Computati<strong>on</strong>al rec<strong>on</strong>structi<strong>on</strong> of<br />

ir<strong>on</strong>‐ and manganese‐resp<strong>on</strong>sive transcripti<strong>on</strong>al networks in alfa‐proteobacteria. PLoS Comput Biol.<br />

2006, 444: 240.<br />

Spirin V, Gelfand MS, Mir<strong>on</strong>ov AA, Mirny LA. A metabolic network in the evoluti<strong>on</strong>ary c<strong>on</strong>text:<br />

Multiscale structure and modularity. Proc Natl Acad Sci U S A., 2006, 103: 8774‐8779.<br />

Vitreschak AG, Rodi<strong>on</strong>ov DA, Mir<strong>on</strong>ov AA, Gelfand MS. Riboswitches: the oldest mechanism for the<br />

regulati<strong>on</strong> of gene expressi<strong>on</strong>? Trends Genet. 2004, 20: 44‐50.<br />

Panina EM, Mir<strong>on</strong>ov AA, Gelfand MS. Comparative genomics of bacterial zinc regul<strong>on</strong>s: enhanced i<strong>on</strong><br />

transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci U S A. 2003,<br />

100: 9912‐9917.<br />

Nurtdinov RN, Artam<strong>on</strong>ova II, Mir<strong>on</strong>ov AA, Gelfand MS. Low c<strong>on</strong>servati<strong>on</strong> of alternative splicing<br />

patterns in the human and mouse genomes. Hum Mol Genet. 2003, 12:1313‐1320.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(X) a talk<br />

Title of poster / talk<br />

Regulatory systems in bacteria: from comparative genomics to rec<strong>on</strong>structi<strong>on</strong> of evoluti<strong>on</strong>ary history<br />

Abstract<br />

Comparative analysis of bacterial genomes allows not <strong>on</strong>ly for identificati<strong>on</strong> of new regulatory systems<br />

and functi<strong>on</strong>al annotati<strong>on</strong> of hypothetical genes, but also for characterizati<strong>on</strong> of changes in regulatory<br />

patterns. Although it is premature to speak about a theory of regulatory evoluti<strong>on</strong>, some patterns start<br />

to emerge. I will present results of genomic analysis of several systems of varying complexity,<br />

providing examples of regul<strong>on</strong> expansi<strong>on</strong>, c<strong>on</strong>tracti<strong>on</strong>, changes in regulatory systems, co‐evoluti<strong>on</strong> of<br />

transcripti<strong>on</strong> factors and their DNA motifs, etc. In particular, I plan to describe the rec<strong>on</strong>structi<strong>on</strong> of<br />

the evoluti<strong>on</strong> of ir<strong>on</strong> homeostasis regulati<strong>on</strong> in alpha‐proteobacteria.


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 27<br />

Dr Nail Gizzatkulov<br />

Instituti<strong>on</strong> (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong> State University<br />

C<strong>on</strong>tact Address<br />

Street Address Leninskie Gory, 1/73, AN Belozerski IPCB <strong>Moscow</strong> State UniversityPCB<br />

Zip /Postal Code 119992<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 783 8718<br />

Fax +7 495 783 87 18<br />

E‐Mail gizzatkulov@gmail.com<br />

Website www.insysbio.ru<br />

Short CV (keywords)<br />

2004‐present Institute for <strong>Systems</strong> <strong>Biology</strong> SPb<br />

2005‐2006 Research Scientist Keldysh Istitute of Apply Mathematics of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of<br />

Science, <strong>Moscow</strong>.<br />

2005 Ph.D., Keldysh Istitute of Apply Mathematics of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Science,<br />

<strong>Moscow</strong>.<br />

2002‐2005 PhD Student of Keldysh Istitute of Apply Mathematics of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of<br />

Science<br />

1996‐2002 Faculty of Applied Mathematics, Ufa Aircraft State Technical University<br />

Research Interests (3‐5 sentences)<br />

Research Interests of Dr Gizzatkulov are focused in areas of <strong>Systems</strong> <strong>Biology</strong> and Bioinformatics and<br />

scientific programming with especial focus <strong>on</strong> scientific programming of software modeling of<br />

biological processes and their applicati<strong>on</strong> to biotechnology and biomedicine. Areas of expertise:<br />

Methods and software for c<strong>on</strong>trol of industrial biotechnology processes<br />

Methods and software for drug safety assessment<br />

Methods and software for kinetic modeling<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

(please indicate)<br />

() a talk<br />

Title of poster / talk<br />

Software for modeling complex biological systems<br />

Abstract<br />

Poster presents software developed for modeling complex biological systems:<br />

Model Creator – create kinetic model from scratch, annotate model, save model to various format<br />

such as SBML ( System <strong>Biology</strong> Markup Language );<br />

DBSolve7 – software to create, solve, analyze and visualize kinetic model corresp<strong>on</strong>ding to complex<br />

biological systems;<br />

One more topic of my poster is software which could be created using engine of DBSolve7 and Model<br />

Creator. This software has been applied to resolve different problems arising in area of biomedicine<br />

and biotechnology.<br />

Poster number: 8


28 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Evgeny Gladilin<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ)<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 267<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐6221‐5451299<br />

E‐Mail e.gladilin@dkfz‐heidelberg.de<br />

Short CV<br />

Postdoctoral Scientist, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center, Theoretical<br />

Bioinformatics, Heidelberg<br />

PhD in Mathematics, Free University Berlin<br />

MS in Physics, University Hamburg<br />

BS in Biophysics, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> State Medical University, <strong>Moscow</strong><br />

Research Interests<br />

cell mechanics, mechanotransducti<strong>on</strong>, image analysis, numerical modeling<br />

Five most important publicati<strong>on</strong>s<br />

1. E. Gladilin, A. Micoulet, B. Hosseini, J. Spatz, K. Rohr, R. Eils. "Finite element analysis of<br />

uniaxial cell stretching: from image to insight". IOP Phys. Biol., Volume 4, Issue 2, p. 104‐<br />

113, 2007<br />

2. E. Gladilin, S. Goetze, J. Mateos‐Langerak, R. van Driel, K. Rohr, R. Eils. "Geometrical<br />

probability approach for analysis of 3D chromatin structure in interphase cell nuclei".<br />

Proc. of IEEE CIBCB Symposium, p. 124‐134, 2007<br />

3. E. Gladilin, S. Goetze, J. Mateos‐Langerak, R. van Driel, R. Eils, K. Rohr.<br />

"Topological analysis of 3D cell nuclei using finite element template‐based spherical<br />

mapping". Proc. of SPIE MI, vol. 6144, p. 1557‐1566, 2006<br />

4. E. Gladilin, V. Pekar, K. Rohr, H.S. Stiehl. "A comparis<strong>on</strong> between BEM and FEM for elastic<br />

registrati<strong>on</strong> of medical images". Image and Visi<strong>on</strong> Computing, 24(4):375‐379, 2006<br />

5. E. Gladilin, A. Ivanov, V. Roginsky. "Generic Approach for Biomechanical Simulati<strong>on</strong><br />

of Typical Boundary Value Problems in Cranio‐Maxillofacial Surgery Planning". Proc. of<br />

MICCAI, p. 380‐388, 2004<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Computati<strong>on</strong>al analysis of uniaxial cell stretching using time series of microscopic images and<br />

predictive numerical model of cell mechanics<br />

Abstract<br />

Mechanical forces play an important role in many microbiological phenomena such as embryogenesis,<br />

regenerati<strong>on</strong>, cell proliferati<strong>on</strong> and differentiati<strong>on</strong>. Micromanipulati<strong>on</strong> of cells in a c<strong>on</strong>trolled<br />

envir<strong>on</strong>ment is a widely used approach for understanding cellular resp<strong>on</strong>ses with respect to external<br />

mechanical forces. While modern micromanipulati<strong>on</strong> and imaging techniques provide useful optical<br />

informati<strong>on</strong> about the change of overall cell c<strong>on</strong>tours under the impact of external loads, the intrinsic<br />

mechanisms of energy and signal propagati<strong>on</strong> throughout the cell structure are usually not accessible<br />

by direct observati<strong>on</strong>. This work deals<br />

with the computati<strong>on</strong>al modeling and simulati<strong>on</strong> of intracellular strain state of uniaxially stretched<br />

cells captured in a series of images. A n<strong>on</strong>linear elastic finite element method was applied for<br />

numerical analysis of inhomogeneous stretching of a rat embry<strong>on</strong>ic fibroblast 52 (REF 52) using a<br />

simplified two‐comp<strong>on</strong>ent model of a eukaryotic cell c<strong>on</strong>sisting of a stiffer nucleus surrounded by a<br />

softer cytoplasm. The difference between simulated and experimentally observed cell c<strong>on</strong>tours is used<br />

as a feedback criteri<strong>on</strong> for iterative estimati<strong>on</strong> of can<strong>on</strong>ical material parameters of the two‐<br />

comp<strong>on</strong>ent model such as stiffness and compressibility. Analysis of comparative simulati<strong>on</strong>s with<br />

varying material parameters shows that (i) the ratio between the stiffness of cell nucleus and<br />

cytoplasm determines intracellular strain distributi<strong>on</strong> and (ii) large deformati<strong>on</strong>s result in increased<br />

stiffness and decreased compressibility of the cell cytoplasm. The proposed model is able to reproduce<br />

the evoluti<strong>on</strong> of the cellular shape over a sequence of observed deformati<strong>on</strong>s and provides<br />

complementary informati<strong>on</strong> for a better understanding of mechanical cell resp<strong>on</strong>se.<br />

Poster number: 9


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 29<br />

Dr. rer. nat. Giovani Gomez Estrada<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Zentrum Muenchen<br />

C<strong>on</strong>tact Address<br />

Street Address Ingolstaedter Landstrasse 1<br />

Zip /Postal Code 85794<br />

City Neuherberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e 089 3187‐3683<br />

Fax 089 3187‐3585<br />

E‐Mail giovani.estrada@helmholtz‐muenchen.de<br />

Short CV<br />

Bsc in Comp. Eng., 1996, M<strong>on</strong>terrey Tech, Mexico<br />

Msc in Comp. Sci., 1999, M<strong>on</strong>terrey Tech, Mexico<br />

Dr. rer. nat., 2007, University of Stuttgart, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Research positi<strong>on</strong>s: Swiss Federal Institute of Technology (ETH, 2000‐2001),<br />

M<strong>on</strong>terrey Tech (2001‐2002), Max Planck Institute (MPI‐MF, 2002‐2006) and<br />

Royal College of Surge<strong>on</strong>s in Ireland (RCSI, 2006‐2007).<br />

Currently a post‐doc in the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Zentrum Muenchen, Institute<br />

of Bioinformatics and <strong>Systems</strong> <strong>Biology</strong><br />

Research Interests<br />

Biomedical data analysis and biostatistics (e.g. nanotoxicity, prognosis of breast and gastric cancer),<br />

mathematical modelling of multi‐stable dynamic systems with biochemical reacti<strong>on</strong> networks<br />

(apoptosis, stability) and discrete structures (cellular tensegrity).<br />

Five most important publicati<strong>on</strong>s<br />

Quantitative analysis of cell adhesi<strong>on</strong> <strong>on</strong> aligned micro‐ and nanofibers; Journal of Biomedical<br />

Materials Research Part A, 84A(2):291‐299, Feb. 2008<br />

Cytotoxicity of Single Wall Carb<strong>on</strong> Nanotubes <strong>on</strong> Human Fibroblasts; Toxicology in Vitro, 20(7):1202‐<br />

1212, Oct. 2006<br />

Numerical form‐finding of tensegrity structures; Int. J. of Solids and Structures, 43(22‐23):6855‐6868,<br />

Nov. 2006<br />

A microarray‐based gastric carcinoma prewarning system; World Journal of Gastroenterology,<br />

11(9):1273‐1282, Mar. 2005<br />

Characterizati<strong>on</strong> of BRCAA1 and its novel antigen epitope identificati<strong>on</strong>; Cancer Epidemiology,<br />

Biomarker & Preventi<strong>on</strong>, 13(7):1136‐1145, Jul. 2004


30 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr Ekaterina Goryacheva<br />

Instituti<strong>on</strong> Institute for <strong>Systems</strong> <strong>Biology</strong> SPb<br />

C<strong>on</strong>tact Address<br />

Street Address Leninskie Gory, 1/73, AN Belozerski IPCB <strong>Moscow</strong><br />

State UniversityPCB<br />

Zip /Postal Code 119992<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 783 8718<br />

Fax +7 495 783 87 18<br />

E‐Mail kate@biophys.msu.ru<br />

Website www.insysbio.ru<br />

Short CV<br />

2004‐present CSO Institute for <strong>Systems</strong> <strong>Biology</strong> SPb<br />

2001–present Institute of Bioorganic Chemistry, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences<br />

2001 Ph.D., Biophysical Department, Faculty of <strong>Biology</strong>, <strong>Moscow</strong> State University,<br />

<strong>Moscow</strong>. Title: The influence of modificati<strong>on</strong> of Reacti<strong>on</strong> Centres from purple<br />

bacterium Rhodobacter sphaeroides <strong>on</strong> the electr<strong>on</strong> transfer in the picosec<strong>on</strong>d<br />

time scale.<br />

1996‐1999 Post‐graduate of Biophysical Department, Faculty of <strong>Biology</strong>, <strong>Moscow</strong> State<br />

University<br />

1991‐1996 Biophysical Department, Faculty of <strong>Biology</strong>, <strong>Moscow</strong> State University<br />

May 1996: M.Sc., Biophysical Department, Faculty of <strong>Biology</strong>, <strong>Moscow</strong> State<br />

University, <strong>Moscow</strong>. Title: The influence of intramolecular dynamics <strong>on</strong> kinetics<br />

of picosec<strong>on</strong>d stages in Reacti<strong>on</strong> Centres from purple bacterium Rb. sphaeroides.<br />

Research Interests<br />

Research Interests of Dr Goryacheva are focused in areas of <strong>Systems</strong> <strong>Biology</strong> and Bioinformatics,<br />

databases analysis, kinetic modeling and their applicati<strong>on</strong> to biotechnology and biomedicine. Areas of<br />

expertise:<br />

Modeling of cellular metabolism<br />

Modeling of cell signaling<br />

Modeling of gene regulatory networks<br />

Pathway rec<strong>on</strong>structi<strong>on</strong><br />

Analysis of proteins and peptides structure<br />

Analysis of enzyme‐substrate interacti<strong>on</strong>s, search of inhibitors<br />

Five most important publicati<strong>on</strong>s<br />

Demin O.V., Lebedeva G.V., Kolupaev A.G., Zobova E.A., Plyusnina T.Yu., Lavrova A.I., Dubinsky A.,<br />

Goryacheva E.A., Tobin F., Goryanin I.I. Kinetic Modelling as a Modern Technology to Explore and<br />

Modify Living Cells. IN: G. Ciobanu, G. Rozenberg (Eds.): Modelling in Molecular <strong>Biology</strong> (2004),<br />

Natural Computing Series, Springer p.59‐103<br />

Pletnev VZ, Goryacheva EA, Tsygannik IN, Nesmeianov VA, Pletnev SV, Pangborn W, Daux W. A new<br />

crystal form of the Fab fragment of a m<strong>on</strong>ocl<strong>on</strong>al antibody to human interleukin‐2: the three‐<br />

dimensi<strong>on</strong>al structure at 2.7 A resoluti<strong>on</strong> Bioorg Khim, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> (2004) v30(5) p.466‐469.<br />

Krasilnikov PM., Gorokhov VV., Goryacheva EA., Knox PP., Pashchenko VZ., Rubin AB. Investigati<strong>on</strong> of<br />

the electr<strong>on</strong> transfer reacti<strong>on</strong>s and redox characteristics of photoactive bacteriochlorophyll in<br />

Rhodobacter sphaeroides reacti<strong>on</strong> centers modified by D2O and cryoprotectants. Membr Cell Biol.<br />

(2000) v.14(3), p.343‐356.<br />

Paschenko VZ., Gorokhov VV., Grishanova NP., Goryacheva EA, Korvatovsky BN., Knox PP., Zakharova<br />

NI., Rubin AB. The influence of structural‐dynamic organizati<strong>on</strong> of the RC from purple bacterium<br />

Rhodobacter sphaeroides <strong>on</strong> picosec<strong>on</strong>d stages of photoinduced reacti<strong>on</strong>s. // Biochim. Biophys. Acta<br />

(1998), v.1364, p.361‐372.<br />

Paschenko VZ., Knox PP., Gorokhov VV., Korvatovsky BN., Zakharova NI., Goryacheva EA, Rubin AB.<br />

Temperature dependence of first stages of photosynthesis in native and modified RC from bacterium<br />

Rhodobacter sphaeroides. Doklady Akademii Nauk (1997) v.357, N6, p.835‐838.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Pathway rec<strong>on</strong>structi<strong>on</strong> and target identificati<strong>on</strong> in breast cancer<br />

Abstract<br />

Breast cancer is <strong>on</strong>e of the most serious problems of <strong>on</strong>cology. In the past 20 years, there has been a<br />

tremendous increase in our knowledge of the molecular mechanisms and pathophysiology of human<br />

cancer. However insufficient clinical effectiveness and toxicity to the patient of used antitumor<br />

treatments stimulate further investigati<strong>on</strong>s of tumor cells features. Effective analysis and fusi<strong>on</strong> of<br />

available experimental data is possible using system biology methods, <strong>on</strong>e of them is pathway<br />

rec<strong>on</strong>structi<strong>on</strong>. Pathway rec<strong>on</strong>structi<strong>on</strong> of breast cancer cells accumulates all informati<strong>on</strong> about<br />

metabolic processes, signal transducti<strong>on</strong>, gene regulati<strong>on</strong> playing important role in tumor growth. This<br />

informati<strong>on</strong> is necessary for deeper understanding of molecular mechanisms of tumor cells<br />

metabolism regulati<strong>on</strong> and searching for drug targets and drug combinati<strong>on</strong>s for breast cancer<br />

treatments.<br />

Poster number: 10


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 31<br />

Georgy G. Gulbekyan<br />

Instituti<strong>on</strong> M.V.Lom<strong>on</strong>osov <strong>Moscow</strong> State University<br />

C<strong>on</strong>tact Address<br />

Street Address Vorobievy Gory<br />

Zip /Postal Code 119991<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7(495)1372384<br />

E‐Mail gulbekyan@gmail.com<br />

Short CV<br />

Educati<strong>on</strong> B.S., M.S., in Biophysics from School of Physics, M.V.Lom<strong>on</strong>osov <strong>Moscow</strong> State<br />

University<br />

Keywords Gene expressi<strong>on</strong>, microarrays, gene markers, evoluti<strong>on</strong>ary algorithms, data<br />

mining, acute lymphoblastic leukemia<br />

Research interests<br />

New approaches to c<strong>on</strong>structi<strong>on</strong> of a compact set of tumor marker genes and its applicati<strong>on</strong> in<br />

differential diagnosis of various subtypes of acute lymphoblastic leukemia. Tumor marker genes and<br />

underlying biology. Data mining.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

A combined algorithm of tumor marker genes determinati<strong>on</strong> and its applicati<strong>on</strong> to microarray ALL data<br />

Gulbekyan, G.G., Valyaev, V.Yu, Ivanov P.S.<br />

Abstract<br />

We present a novel algorithm for detecting marker genes in multiclass microarray data that combines<br />

two well‐proved approaches, namely, supervised classificati<strong>on</strong> and evoluti<strong>on</strong> simulati<strong>on</strong>. We selected<br />

Support Vector Machine (SVM) to classify microarray samples. First, we use a LKOCV scheme to<br />

partiti<strong>on</strong> initial data into training and test datasets and to fit the parameters of classificati<strong>on</strong> algorithm.<br />

Sec<strong>on</strong>d, we estimate the classificati<strong>on</strong> error for a large number of training/test partiti<strong>on</strong>s by<br />

randomizing initial data. Third, we simulate mutati<strong>on</strong>s in a randomly chosen set of potential marker<br />

genes (predictor) and simultaneous evoluti<strong>on</strong> of several such predictors combined in a predictor pool.<br />

At each evoluti<strong>on</strong>ary epoch, we retain a predictor in or exclude it from the predictor pool based <strong>on</strong> its<br />

classificati<strong>on</strong> power (quality measure). Fourth, we stop the evoluti<strong>on</strong>ary process when changes in<br />

classificati<strong>on</strong> quality measure appear to be less than a chosen threshold or after a predefined number<br />

of iterati<strong>on</strong>s. Results of applying this algorithm to a model dataset as well as to pediatric acute<br />

lymphoblastic leukemia (ALL) microarray data (Ross M. et al. (2003) Blood 102: 2951‐2959) will be<br />

presented.<br />

Poster number: 11


32 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Vitaly V. Gursky, PhD student<br />

Instituti<strong>on</strong> Ioffe Physico‐Technical Institute<br />

C<strong>on</strong>tact Address<br />

Street Address 26, Politekhnicheskaya Street<br />

Zip /Postal Code 194021<br />

City St. Petersburg<br />

Country Russia<br />

Ph<strong>on</strong>e +7 812 2927352<br />

Fax +7 812 2971017<br />

E‐Mail gursky@math.ioffe.ru<br />

Short CV<br />

1991‐1999 Magister in Physics, Physics Faculty of the St. Petersburg State University<br />

2002‐now Junior Research Fellow at the Ioffe Physico‐Technical Institute of the <str<strong>on</strong>g>Russian</str<strong>on</strong>g><br />

Academy of Sciences<br />

Research Interests<br />

<strong>Systems</strong> biology, mathematical modeling in biology, mathematical modeling of gene regulati<strong>on</strong>, gene<br />

networks, mechanisms of development, mechanisms of robustness, development of multi‐cellular<br />

organisms, segmentati<strong>on</strong> of Drosophila, dynamical system applicati<strong>on</strong>s in modeling segmentati<strong>on</strong> gene<br />

expressi<strong>on</strong> in Drosophila, reacti<strong>on</strong>‐diffusi<strong>on</strong> systems in n<strong>on</strong>linear science<br />

Five most important publicati<strong>on</strong>s<br />

V. V. Gursky, K. N. Kozlov, A. M. Sams<strong>on</strong>ov, J. Reinitz, Cell divisi<strong>on</strong>s as a mechanism for selecti<strong>on</strong> in<br />

stable steady states of multi‐stati<strong>on</strong>ary gene circuits, Physica D 218(1): 70‐76, 2006<br />

M. G. Sams<strong>on</strong>ova, A. M. Sams<strong>on</strong>ov, V. V. Gursky, C. E. Vanario‐Al<strong>on</strong>so, A survey of gene circuit<br />

approach applied to modelling of segment determinati<strong>on</strong> in fruit fly. In: Multiple aspects of DNA and<br />

RNA: from Biophysics to Bioinformatics, Sessi<strong>on</strong> LXXXII (Eds. D. Chatenay et al.), Elsevier, 2005<br />

V. V. Gursky, J. Jaeger, K. N. Kozlov, J. Reinitz, A. M. Sams<strong>on</strong>ov, Pattern formati<strong>on</strong> and nuclear divisi<strong>on</strong>s<br />

are uncoupled in Drosophila segmentati<strong>on</strong>: Comparis<strong>on</strong> of spatially discrete and c<strong>on</strong>tinuous models,<br />

Physica D 197: 286‐302, 2004<br />

V. V. Gursky, J. Reinitz, A. M. Sams<strong>on</strong>ov, How gap genes make their domains: An analytical study based<br />

<strong>on</strong> data driven approximati<strong>on</strong>s, Chaos 11(1): 132‐141, 2001<br />

A. M. Sams<strong>on</strong>ov, V. V. Gursky, Exact soluti<strong>on</strong>s to a n<strong>on</strong>linear reacti<strong>on</strong>‐diffusi<strong>on</strong> equati<strong>on</strong> and<br />

hyperelliptic integrals inversi<strong>on</strong>, J. Phys. A: Math. Gen. 32: 6573‐6588, 1999<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Stable hb expressi<strong>on</strong> under variable Bcd morphogen in Drosophila: Asymptotic approach in model of<br />

gap gene expressi<strong>on</strong><br />

Abstract<br />

It is well known that the Bcd morphogen is <strong>on</strong>e of the key regulators of gap gene hb in the early<br />

Drosophila embryo. In the classical model, the posterior border of the Hb anterior domain gets formed<br />

as a threshold dependent resp<strong>on</strong>se to the Bcd gradient at that positi<strong>on</strong> in the A‐P axis of the embryo. A<br />

serious problem in this c<strong>on</strong>cept arises from the fact that Bcd c<strong>on</strong>centrati<strong>on</strong> exhibits high embryo to<br />

embryo variability, which essentially exceeds that of the Hb domain border [1]. A candidate for<br />

mechanisms stabilizing the expressi<strong>on</strong> of gap genes under variable Bcd is the cross regulati<strong>on</strong> between<br />

gap genes. We explore this hypothesis by studying a mathematical model of gap gene expressi<strong>on</strong><br />

formulated in [2]. Under simplifying assumpti<strong>on</strong>s of stati<strong>on</strong>arity and sharp sigmoid regulati<strong>on</strong> functi<strong>on</strong><br />

in model equati<strong>on</strong>s, the expressi<strong>on</strong> patterns in the model can be analytically derived as superpositi<strong>on</strong>s<br />

of local interfaces. We obtain analytical formulas for variati<strong>on</strong>s of these interfaces as functi<strong>on</strong>s of Bcd<br />

variati<strong>on</strong>. By using this approach, we dem<strong>on</strong>strate that the mechanism of mutual regulati<strong>on</strong> in the gap<br />

gene network is able to provide the experimentally observed stability rate of gap gene expressi<strong>on</strong>.<br />

[1] B. Houchmandzadeh, E. Wieschaus, S. Leibler (2002). Establishment of developmental precisi<strong>on</strong> and<br />

proporti<strong>on</strong>s in the early Drosophila embryo, Nature 415, 798–802.<br />

[2] J. Jaeger, S. Surkova, M. Blagov, H. Janssens, D. Kosman, K. N. Kozlov, Manu, E. Myasnikova, C. E.<br />

Vanario‐Al<strong>on</strong>so, M. Sams<strong>on</strong>ova, D. H. Sharp, J. Reinitz (2004). Dynamic c<strong>on</strong>trol of positi<strong>on</strong>al<br />

informati<strong>on</strong> in the early Drosophila embryo, Nature 430, 368–371.<br />

Poster number: 12


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 33<br />

Prof. Dr. Thomas Höfer<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ)<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 280<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49 6221 54 51 380<br />

Fax +49 6221 54 51 487<br />

E‐Mail t.hoefer@dkfz‐heidelberg.de<br />

Website www.dkfz.de<br />

Short CV<br />

2006 – present Group leader, Modeling of Biological <strong>Systems</strong>, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer<br />

Research Center, Heidelberg<br />

2002 – 2006 Junior professor in theoretical biophysics, Humboldt Univ. Berlin<br />

1997 – 2002 Lecturer in biophysics, Humboldt Univ. Berlin<br />

Extended research visits to Collège de France (2000/01) and New Jersey Medical<br />

School (2001/02)<br />

1996 ‐ 1997 Postdoc, Max‐Planck Institute for Physics of Complex <strong>Systems</strong>, Dresden<br />

1996 PhD, mathematical biology, University of Oxford<br />

1993 Diplom‐Biophysiker, Humboldt University Berlin<br />

Awards<br />

1994 ‐ 1996 Jowett Senior Scholar, Balliol College Oxford<br />

1993 ‐ 1996 PhD scholarship, Boehringer Ingelheim F<strong>on</strong>ds<br />

1991 ‐ 1993 Fellow, Studienstiftung des deutschen Volkes<br />

Research Interests<br />

Mathematical modeling of complex cellular processes:<br />

Gene‐regulatory networks, especially in T lymphocyte differentiati<strong>on</strong><br />

Signal transducti<strong>on</strong> pathways (horm<strong>on</strong>e/calcium and cytokine/Stat pathways, T‐cell receptor signaling)<br />

Molecular machines of DNA repair, replicati<strong>on</strong>, and chromatin regulati<strong>on</strong><br />

Five most important publicati<strong>on</strong>s<br />

Scheffold, A., Murphy, K.M., and Höfer T.. (2007) Competiti<strong>on</strong> for cytokines: Treg cells take all. Nat.<br />

Immunol. 8, 1285‐1287<br />

Höfer, T., Mühlinghaus, G., Moser, K., Yoshida, T.E., Mei, H., Hebel, K., Hauser, A., Hoyer, B., Luger E.,<br />

Dörner, T., Manz, R.A. Hiepe, F., and Radbruch A. (2006) Adaptati<strong>on</strong> of humoral memory. Immunol.<br />

Rev. 211, 295‐30<br />

Salazar, C. and Höfer, T. (2003) Allosteric regulati<strong>on</strong> of the transcripti<strong>on</strong> factor NFAT1 by multiple<br />

phosphorylati<strong>on</strong> sites: a mathematical analysis. J. Mol. Biol. 327, 31‐45<br />

Höfer, T., Nathans<strong>on</strong>, H., Löhning, M., Radbruch, A., and Heinrich, R. (2002) GATA‐3 transcripti<strong>on</strong>al<br />

imprinting in Th2 lymphocytes: a mathematical model. Proc. Natl. Acad. Sci. USA 99, 9364‐9368<br />

Höfer, T., Venance, L., and Giaume, C. (2002) C<strong>on</strong>trol and plasticity of intercellular calcium waves in<br />

astrocytes: a modeling approach. J. Neurosci. 22, 4850‐4859<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(x ) a talk<br />

Title of poster / talk<br />

From molecular machines to gene‐regulatory networks in mammalian cells<br />

Abstract<br />

The complexity of regulatory networks in mammalian cells – exemplified by the vast number of<br />

comp<strong>on</strong>ents and their dynamic interacti<strong>on</strong>s <strong>on</strong> a wide range of time and space scales – requires<br />

mathematical models at different levels of organizati<strong>on</strong>. I will discuss experimentally‐based models of<br />

(i) the protein machinery that recognizes and repairs UV‐damaged DNA, and (ii) a gene‐regulatory<br />

network governing T lymphocyte differentiati<strong>on</strong>. Iterative theoretical and experimental analyses of<br />

network dynamics have allowed us to uncover novel regulatory interacti<strong>on</strong>s and identify critical<br />

molecular steps for c<strong>on</strong>trolling the biological functi<strong>on</strong>s of the respective networks.


34 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Prof. Dr. Ralf Hofestädt<br />

Instituti<strong>on</strong> Bielefeld University<br />

C<strong>on</strong>tact Address<br />

Street Address PF 100131<br />

Zip /Postal Code 33501<br />

City Bielefeld<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e 0521 106 5283<br />

Fax<br />

E‐Mail hofestae@uni‐bielefeld.de<br />

Website www.uni‐bielefeld.de<br />

Short CV<br />

1985‐1990 Assistant researcher, Theoretical Computer Science, University B<strong>on</strong>n<br />

1990‐1994 Assistant Professor, Institute Applied Computer Science, University Koblenz‐<br />

Landau;<br />

1995‐1996 Assistant Professor, Institute of Medical Informatics, University Leipzig;<br />

1996‐2001 Professor, Institute of Applied Computer Science, University Magdeburg;<br />

Science 2001 Professor, Institute of Bioinformatics and Medical Informatics, University<br />

Bielefeld;<br />

2004 University Heidelberg (Rejected 2004), Professor positi<strong>on</strong> for Medical Informatics<br />

and Bioinformatics;<br />

Since 2004 Member of the Fachkollegium of the <str<strong>on</strong>g>German</str<strong>on</strong>g> Foundati<strong>on</strong> of Science for<br />

Bioinformatics – since 2004.<br />

Scince 2007 Speaker of the “FB Computer Science for Life Science” of the <str<strong>on</strong>g>German</str<strong>on</strong>g> Society of<br />

Computer<br />

Research Interests<br />

Databases and database integrati<strong>on</strong>; Modeling and dimulati<strong>on</strong> of metabolic processes; Drug pointing;<br />

Knowledge Representati<strong>on</strong>; Medical Diagnosis <strong>Systems</strong>, Parallel Computing, GRID Computing,<br />

Detecti<strong>on</strong> of Metabolic Diseases.<br />

Five most important publicati<strong>on</strong>s<br />

Hofestädt R., Krückeberg F. und Lengauer T. (eds): Informatik in den Biowissenschaften. Informatik<br />

Aktuell, Springer‐Verlag, Heidelberg 1993.<br />

Hofestädt R., Lengauer T., Löffler M. and Schomburg D. (eds): Bioinformatics. LNCS, 1278, Springer‐<br />

Verlag 1997.<br />

Hofestädt R. and Schnee R.: Studien und Forschungsführer Bioinformatik. Spektrum Akademischer<br />

Verlag, Heidelberg, 2002.<br />

Collado‐Vides J. and Hofestädt R. (eds): Gene Regulati<strong>on</strong> and Metabolism ‐ Post‐Genomic<br />

Computati<strong>on</strong>al Approaches. Cambridge, MA: MIT Press, 2002.<br />

Kolchanov N. and Hofestädt R. (eds.): Bioinformatics of Genome Regulati<strong>on</strong> and Structure. Kluewer<br />

Academic Publishers 2004.<br />

Kolchanov N, Milanesi L. and R. Hofestädt (eds): Binformatics of Genome Regulati<strong>on</strong> and Structure II.<br />

Kluewer Academic Publishers 2005.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(please indicate)<br />

( x) a talk<br />

Title of poster / talk<br />

RAMEDIS: m<strong>on</strong>itoring of inborn errors based <strong>on</strong> clinical and molecular data<br />

Abstract<br />

The RAMEDIS system is a platform independent, web‐based informati<strong>on</strong> system for rare diseases <strong>on</strong><br />

the basis of individual case reports. It was developed in close cooperati<strong>on</strong> with clinical partners and<br />

collects informati<strong>on</strong> <strong>on</strong> rare metabolic diseases with extensive details, e.g. about occurring symptoms,<br />

laboratory findings, therapy and genetic data. This combinati<strong>on</strong> of clinical and genetic facts enables<br />

the analysis of genotype‐phenotype correlati<strong>on</strong>s. RAMEDIS supports an extendable number of<br />

different genetic diseases and enables co‐operative studies. Furthermore, use of our system should<br />

lead to advances in epidemiology, combinati<strong>on</strong> of molecular and clinical facts, and generati<strong>on</strong> of rules<br />

for therapeutic interventi<strong>on</strong> and identificati<strong>on</strong> of new diseases.<br />

Availability: http://www.ramedis.de


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 35<br />

Anna Ignatovich, student<br />

Instituti<strong>on</strong> VMiK MSU, INM RAS<br />

C<strong>on</strong>tact Address<br />

Street Address Orechovij bulvar, 59 ‐ 20<br />

Zip /Postal Code 115 682<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e 8‐495‐344‐20‐27, 8‐916‐596‐88‐39<br />

E‐Mail anja_ignatovich@mail.ru<br />

Short CV<br />

2003‐2008 <strong>Moscow</strong> State University, Faculty of Computati<strong>on</strong>al Mathematics and Cybernetics<br />

Research Interests<br />

mathematical modeling in immunology<br />

modelling the dynamics of HIV infecti<strong>on</strong> (virus quasispieces, recombinati<strong>on</strong> and mutati<strong>on</strong>)<br />

emergence of drug resistance<br />

epistasis<br />

genetic algorithms<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(+) a poster<br />

( ‐) a talk<br />

Title of poster / talk<br />

Modelling the dynamics of AZT‐resistant mutants in HIV infecti<strong>on</strong><br />

Abstract<br />

Treatment of HIV‐1 infecti<strong>on</strong> with drugs (AZT) reduces the HIV‐1 load, but after some time the virus<br />

evolves drug resistant mutati<strong>on</strong>s. In oder to investigate the evoluti<strong>on</strong>ary order in which the mutants<br />

arise and to describe their dynamics, we develop a mathematical model for this situati<strong>on</strong>. The model<br />

c<strong>on</strong>siders the generati<strong>on</strong> of new mutants, their fitness values and the nucleotide misincorporati<strong>on</strong><br />

rates. The computati<strong>on</strong>al results of modelling the AZT‐driven intra‐patient HIV evoluti<strong>on</strong> are discussed.<br />

Poster number: 13


36 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr John I<strong>on</strong>ides<br />

Instituti<strong>on</strong> St Petersburg State Polytech. Uni<br />

C<strong>on</strong>tact Address<br />

Street Address Polytehnicheskaya 29<br />

Zip /Postal Code 195251<br />

City St Petersburg<br />

Country Russia<br />

Ph<strong>on</strong>e +7 9213152449<br />

E‐Mail john.i<strong>on</strong>ides@gmail.com<br />

Short CV<br />

1993‐1998 Ph.D NMR methods (Laboratory of Molecular biology, Cambridge, UK)<br />

1998‐2007 work European Bioinformatics Insitiute; structural bioinformatics<br />

2007‐ work St Petersburg State Polytech. Uni.; drosophila development<br />

Research Interests<br />

My interestes revolve around the applicati<strong>on</strong> of computing techniques to the biological sciences. I<br />

divide my time between gene expressi<strong>on</strong> models (modelling gene expressi<strong>on</strong> in Drosophila embryo<br />

development) and developing architectures for handling large biological datasets, in particular the<br />

Protein Data Bank (PDB) and the Collaborative Computing Project for NMR (CCPN).<br />

Five most important publicati<strong>on</strong>s<br />

• Henrick K, Feng Z, Bluhm WF, Dimitropoulos D, Doreleijers JF, Dutta S, Flippen‐Anders<strong>on</strong> JL,<br />

I<strong>on</strong>ides J, Kamada C, Krissinel E, Laws<strong>on</strong> CL, Markley JL, Nakamura H, Newman R, Shimizu Y,<br />

Swaminathan J, Velankar S, Ory J, Ulrich EL, Vranken W, Westbrook J, Yamashita R, Yang H,<br />

Young J, Yousufuddin M, Berman HM. Remediati<strong>on</strong> of the protein data bank archive.<br />

Nucleic Acids Research. 36(Database issue):D426‐33 (2008).<br />

• Fogh RH, Boucher W, Vranken WF, Paj<strong>on</strong> A, Stevens TJ, Bhat TN, Westbrook J, I<strong>on</strong>ides JM,<br />

Laue ED. A framework for scientific data modeling and automated software development.<br />

Bioinformatics 21(8): 1678‐84 (2005)<br />

• Vranken WF, Boucher W, Stevens TJ, Fogh RH, Paj<strong>on</strong> A, Llinas M, Ulrich EL, Markley JL,<br />

I<strong>on</strong>ides J, Laue ED. The CCPN data model for NMR spectroscopy: development of a software<br />

pipeline. Proteins. 2005 Jun 1;59(4):687‐96.<br />

• Paj<strong>on</strong>, A., I<strong>on</strong>ides, J., Diprose, J., Fill<strong>on</strong>, J., Fogh, R., Asht<strong>on</strong>, A.W., Berman, H., Boucher, W.,<br />

Cygler, M., Deleury, E., Esnouf, R., Janin, J., Kim, R., Krimm, I., Laws<strong>on</strong>, K.L., Oeuillet, E.,<br />

Poup<strong>on</strong>, A., Raym<strong>on</strong>d, S., Stevens, T., van Tilbeurgh, H., Westbrook, J., Wood, P., Ulrich, E.,<br />

Vranken W., Xueli, L., Laue, E., Stuart, D.I. and Henrick, K. Design of a Data Model for<br />

Developing Laboratory Informati<strong>on</strong> Management and Analysis <strong>Systems</strong> for Protein<br />

Producti<strong>on</strong>. PROTEINS: Structure, Functi<strong>on</strong>, and Bioinformatics 58(2): 278‐84 (2005)<br />

• Golovin, T. J. Oldfield, J. G. Tate, S. Velankar, G. J. Bart<strong>on</strong>, H. Boutselakis, D. Dimitropoulos,<br />

J. Fill<strong>on</strong>, A. Hussain, J. M. C. I<strong>on</strong>ides, M. John, P. A. Keller, E. Krissinel, P. McNeil, A. Naim, R.<br />

Newman, A. Paj<strong>on</strong>, J. Pineda, A. Rachedi, J. Copeland, A. Sitnov, S. Sobhany, A. Suarez‐<br />

Uruena, J. Swaminathan, M. Tagari, S. Tromm, W. Vranken and K. Henrick E‐MSD: an<br />

integrated data resource for bioinformatics Nucleic Acids Research, 32 (Database issue),<br />

D211‐D216 (2004)<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( x) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Incorporating interacti<strong>on</strong>s between transcripti<strong>on</strong> factors into the quantitative predicti<strong>on</strong> of expressi<strong>on</strong><br />

from regulatory sequences in Drosophila segmentati<strong>on</strong><br />

Abstract<br />

Taking as our starting point the model for transcripti<strong>on</strong> decribed by Janssens et al. (Nature Genetics,<br />

38:1159‐65, 2006) we have incorporated terms for cooperativity and coactivati<strong>on</strong>. The result is a<br />

c<strong>on</strong>siderably more general framework that allows us to take into account specific interacti<strong>on</strong>s<br />

between transcripti<strong>on</strong> factors, and c<strong>on</strong>sequently to probe for such interacti<strong>on</strong>s in silico.<br />

Poster number: 14


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 37<br />

Dr. Pavel S. Ivanov<br />

Instituti<strong>on</strong><br />

C<strong>on</strong>tact Address<br />

M.V.Lom<strong>on</strong>osov <strong>Moscow</strong> State University<br />

Street Address Vorobievy Gory<br />

Zip /Postal Code 119991<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7(495)939‐3025<br />

Fax +7(495)932‐8820<br />

E‐Mail psmart@rambler.ru<br />

Website<br />

Short CV<br />

www.psys.msu.ru<br />

Educati<strong>on</strong> B.S., M.S., and Ph.D in Biophjysics from School of Physics, M.V.Lom<strong>on</strong>osov<br />

<strong>Moscow</strong> State University<br />

Research<br />

Experience<br />

2003‐ Senior Research Scientist. Dept. Biophysics, School of Physics,<br />

M.V.Lom<strong>on</strong>osov <strong>Moscow</strong> State University, <strong>Moscow</strong>, Russia<br />

2002‐ Visiting Professor. Dept. Molelcular <strong>Biology</strong>, University of Wyoming,<br />

Laramie, WY, USA<br />

Funding INTAS 93‐1877, RFBR 95‐05‐14688, DOE OBER DE‐FG02‐01ER63232<br />

Keywords Gene expressi<strong>on</strong>, microarrays, clustering of expressi<strong>on</strong> profiles, regulatory<br />

networks, oper<strong>on</strong> predicti<strong>on</strong>, gene markers, evoluti<strong>on</strong>ary algorithms,<br />

Rhodobacter sphaeroides, Mus musculus, acute lymphoblastic leukemia<br />

Research interests<br />

Resampling approaches for validati<strong>on</strong> of microarray data clustering<br />

Mechanisms of arginine and polyamines related gene expressi<strong>on</strong> and metabolism regulati<strong>on</strong> in<br />

cardiomyocytes under acute myocardial infarcti<strong>on</strong><br />

New approaches to c<strong>on</strong>structi<strong>on</strong> of a compact set of tumor marker genes and its applicati<strong>on</strong> in<br />

differential diagnosis of various subtypes of acute lymphoblastic leukemia<br />

Inference of oper<strong>on</strong> structure in procaryotes with account of transcriptome variability<br />

Five most important publicati<strong>on</strong>s<br />

Sveshnikova A.N., Ivanov P.S. (2007). Gene expressi<strong>on</strong> and microarrays: quantitative analysis issues.<br />

Rus. Chem. J., 51: 127‐135 (in <str<strong>on</strong>g>Russian</str<strong>on</strong>g>).<br />

Harpster M.H., Bandyopadhyay S., Thomas D.P., Ivanov P.S., Keele J.A., Pineguina N., Gao B.,<br />

Amarendran V., Gomelsky M., McCormick R.J., Stayt<strong>on</strong> M.M. (2006). Earliest changes in the left<br />

ventricular transcriptome postmyocardial infarcti<strong>on</strong>. Mamm. Genome, 17: 701‐715.<br />

Pappas C.T., Sram J., Moskvin O.V., Ivanov P.S., Mackenzie R.C., Choudhary M., Land M.L., Larimer<br />

F.W., Kaplan S., Gomelsky M. (2004). C<strong>on</strong>structi<strong>on</strong> and validati<strong>on</strong> of the Rhodobacter sphaeroides 2.4.1<br />

DNA microarray: transcriptome flexibility at diverse growth modes. J. Bacteriol. 186: 4748–4758.<br />

Baryshnikov, B.V., Ivanov, P.S. (2000). Problems in estimating dimensi<strong>on</strong>s of strange attractors in the<br />

analysis of biophysical data. Biophysics, 45, 520‐524 (in <str<strong>on</strong>g>Russian</str<strong>on</strong>g>).<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

A combined algorithm of tumor marker genes determinati<strong>on</strong> and its applicati<strong>on</strong> to microarray ALL data<br />

Gulbekyan, G.G., Valyaev, V.Yu, Ivanov P.S.<br />

Abstract<br />

We present a novel algorithm for detecting marker genes in multiclass microarray data that combines<br />

two well‐proved approaches, namely, supervised classificati<strong>on</strong> and evoluti<strong>on</strong> simulati<strong>on</strong>. We selected<br />

Support Vector Machine (SVM) to classify microarray samples. First, we use a LKOCV scheme to<br />

partiti<strong>on</strong> initial data into training and test datasets and to fit the parameters of classificati<strong>on</strong> algorithm.<br />

Sec<strong>on</strong>d, we estimate the classificati<strong>on</strong> error for a large number of training/test partiti<strong>on</strong>s by<br />

randomizing initial data. Third, we simulate mutati<strong>on</strong>s in a randomly chosen set of potential marker<br />

genes (predictor) and simultaneous evoluti<strong>on</strong> of several such predictors combined in a predictor pool.<br />

At each evoluti<strong>on</strong>ary epoch, we retain a predictor in or exclude it from the predictor pool based <strong>on</strong> its<br />

classificati<strong>on</strong> power (quality measure). Fourth, we stop the evoluti<strong>on</strong>ary process when changes in<br />

classificati<strong>on</strong> quality measure appear to be less than a chosen threshold or after a predefined number<br />

of iterati<strong>on</strong>s. Results of applying this algorithm to a model dataset as well as to pediatric acute<br />

lymphoblastic leukemia (ALL) microarray data (Ross M. et al. (2003) Blood 102: 2951‐2959) will be<br />

presented.<br />

Poster number: 15


38 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Lars Kaderali<br />

Instituti<strong>on</strong> University of Heidelberg, Bioquant BQ26<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 267<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐6221‐54 51 357<br />

Fax +49‐6221‐54 51 486<br />

E‐Mail lars.kaderali@bioquant.uni‐heidelberg.de<br />

Website http://hades1.bioquant.uni‐heidelberg.de<br />

Short CV<br />

1995‐2001 Studies Business and Computer Science, University of Cologne<br />

2001 Research Sabbatical, Los Alamos Nati<strong>on</strong>al Laboratories, USA<br />

2001‐2006 PhD, Computer Science, University of Cologne<br />

2006‐2007 Postdoc, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center, Heidelberg<br />

Since 2007 Independent Junior Group Leader, University of Heidelberg<br />

Research Interests<br />

Mathematical Modeling and analysis of complex processes in molecular and cell biology, with a<br />

particular focus <strong>on</strong> virus‐host interacti<strong>on</strong>s<br />

Method development for the analysis of experimental high‐throughput data, e.g. RNAi data,<br />

Microarray Data, etc.<br />

Machine learning tools and statistical learning algorithms in Bioinformatics and <strong>Systems</strong> <strong>Biology</strong><br />

Five most important publicati<strong>on</strong>s<br />

1. Kaderali, Radde (2007). Inferring Gene Regulatory Networks from Gene Expressi<strong>on</strong> Data. In: A.<br />

Kelemen, A. Abraham, Y. Chen (Editors), Computati<strong>on</strong>al Intelligence in Bioinformatics. Springer‐<br />

Verlag, in press.<br />

2. Radde, Kaderali (2007). Bayesian Inference of Gene Regulatory Networks using Gene Expressi<strong>on</strong><br />

Time Series Data. LNBI Lecture Notes in Bioinformatics, 4414, 1‐15.<br />

3. Schramm, Vandesompele, Schulte, Dreesmann, Kaderali, Brors, Eils, Speleman, Eggert (2007).<br />

Translating Expressi<strong>on</strong> Profiling into a Clinically Feasible Test to Predict Neuroblastoma Outcome.<br />

Clinical Cancer Research 13(5), 1459‐1465.<br />

4. Kaderali, Zander, Faigle, Wolf, Schultze, Schrader (2006). CASPAR: A Hierarchical Bayesian<br />

Approach to predict Survival Times in Cancer from Gene Expressi<strong>on</strong> Data. Bioinformatics 22, 1495‐<br />

1502.<br />

5. Kaderali, Schliep (2001). Selecting signature olig<strong>on</strong>ucleotides to identify organisms using DNA<br />

arrays. Bioinformatics 18, 1340‐1349.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Reverse‐Engineering of Gene Regulatory Networks using Bayes’ regularized Differential Equati<strong>on</strong>s<br />

Abstract<br />

In this work, we present a novel methodological approach to reverse engineer gene regulatory<br />

networks from gene expressi<strong>on</strong> time series data. We combine differential equati<strong>on</strong>s with a dynamic<br />

Bayesian network approach, enabling us not <strong>on</strong>ly to infer a network from given data and make<br />

predicti<strong>on</strong>s of future states of the network, but also allowing it to assign c<strong>on</strong>fidences to network<br />

predicti<strong>on</strong>s, evaluate different likely network topologies, and make predicti<strong>on</strong>s of future states of the<br />

network together with c<strong>on</strong>fidence intervals <strong>on</strong> the predicti<strong>on</strong>s made. Last but not least, this approach<br />

makes it possible to give feedbak to experimental groups <strong>on</strong> which additi<strong>on</strong>al experiments would yield<br />

a maximal reducti<strong>on</strong> in uncertainty about an underlying network topology.<br />

We show an evaluati<strong>on</strong> of our approach <strong>on</strong> simulated data, as well as results <strong>on</strong> the gene regulatory<br />

network underlying the yeast cell cycle, by analyzing publicly available microarray time series data. In<br />

additi<strong>on</strong>, we point to applicati<strong>on</strong>s of our approach in the field of medical systems biology.<br />

Poster number: 16


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 39<br />

Dr. Alexey Kazakov<br />

Instituti<strong>on</strong><br />

C<strong>on</strong>tact Address<br />

Institute for Informati<strong>on</strong> Transmissi<strong>on</strong> Problems RAS<br />

Street Address Bolshoy Karetny per. 19<br />

Zip /Postal Code 127994<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7<br />

Fax +7 495 650 0579<br />

E‐Mail kazakov@iitp.ru<br />

Website<br />

Short CV<br />

http://www.rtcb.iitp.ru/<br />

Current degree Ph. D. in genetics (2000)<br />

Educati<strong>on</strong> 1996 ‐ 1999: PhD Student, Nati<strong>on</strong>al Research Center of Mental Health RAMS<br />

1990 ‐ 1996: Student, Department of Biochemistry, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> State Medical<br />

University<br />

Professi<strong>on</strong>al<br />

employment<br />

2004 ‐ present: Senior Scientist Researcher, Institute for Informati<strong>on</strong><br />

Transmissi<strong>on</strong> Problems RAS<br />

2000 ‐ 2003: Scientist Researcher, Branch of corporati<strong>on</strong> “Integrated Genomics,<br />

Inc.”<br />

1999 ‐ 2000: Junior Scientist Researcher Nati<strong>on</strong>al Research Center for Mental<br />

Health RAMS<br />

Research Interests<br />

I am interested in transcripti<strong>on</strong>al regulati<strong>on</strong> of bacterial genes and organizati<strong>on</strong> of antimicrobial<br />

peptides biosynthetic systems. I use comparative genomics and bioinformatics to investigate different<br />

aspects of evoluti<strong>on</strong> of coding and regulatory sequences <strong>on</strong> a genome level. I also participate in<br />

development of database of bacterial regulatory motifs.<br />

Five most important publicati<strong>on</strong>s<br />

1. Novikova M, Metlitskaya A, Datsenko K, Kazakov T, Kazakov A, Wanner B, Severinov K. The<br />

Escherichia coli Yej Transporter Is Required for the Uptake of Translati<strong>on</strong> Inhibitor Microcin C. J<br />

Bacteriol, 2007 Nov;189(22):8361‐8365.<br />

2. Severinov K, Semenova E, Kazakov A, Kazakov T, Gelfand MS. Low‐molecular‐weight post‐<br />

translati<strong>on</strong>ally modified microcins. Mol Microbiol. 2007 Sep;65(6):1380‐94.<br />

3. Kazakov AE, Cipriano MJ, Novichkov PS, Minovitsky S, Vinogradov DV, Arkin A, Mir<strong>on</strong>ov AA, Gelfand<br />

MS, Dubchak I. RegTransBase – a database of regulatory sequences and interacti<strong>on</strong>s in a wide range of<br />

prokaryotic genomes. Nucleic Acids Res. 2007 Jan;35(Database issue):D407‐12.<br />

4. Permina EA, Kazakov AE, Kalinina OV, Gelfand MS. Comparative genomics of regulati<strong>on</strong> of heavy<br />

metal resistance in Eubacteria. BMC Microbiol. 2006 Jun 5;6:49.<br />

5. Kazakov AE, Shepelev VA, Tumeneva IG, Alexandrov AA, Yurov YB, Alexandrov IA. Interspersed<br />

repeats are found predominantly in the “old” alpha satellite families. Genomics. 2003 Dec;82(6):619‐<br />

27<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Identificati<strong>on</strong> of microcin C‐like antibiotic systems<br />

Abstract<br />

Microcins are a class of small peptide antibiotics secreted by enterobacteria. Genes of microcins<br />

biosynthesis, maturati<strong>on</strong> and secreti<strong>on</strong> are often organized in oper<strong>on</strong>s. Taking into account the<br />

arrangement of genes encoding microcin precursor and microcin maturati<strong>on</strong> enzymes, we were able<br />

to identify 17 microcin C‐like antibiotic systems in 13 bacterial species bel<strong>on</strong>ging to beta‐, gamma‐ and<br />

epsil<strong>on</strong>‐Proteobacteria, Firmicutes and Cyanobacteria. Heptapeptides structurally similar to microcin<br />

C51 precursor were found in all gene clusters identified, except those from Bart<strong>on</strong>ella henselae and<br />

two Synechococcus strains. In Synechococcus, two (strain CC9605) or three (strain RS9916) direct<br />

repeats each encoding 56 or 57 aminoacid polypeptides, respectively, were observed. The ORFs are<br />

sufficiently similar between the two Synechococcus strains and the C‐terminal amino acids of all the<br />

ORFs are asparagines, that is typical for microcin C51‐like precursors. So, the cyanobacterial microcin<br />

precursors may c<strong>on</strong>stitute a novel subtype of C51‐related microcins, with potentially different<br />

properties. Our analysis dem<strong>on</strong>strates that peptides structurally similar to microcin C51 from E. coli<br />

may be produced by a variety of bacterial groups.<br />

Poster number: 17


40 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Ursula Klingmüller<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ), A150<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 280<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e ++49‐6221‐42‐4481<br />

Fax ++49‐6221‐42‐4488<br />

E‐Mail u.klingmueller@dkfz.de<br />

Website www.dkfz.de<br />

Short CV<br />

1992 PhD University of Heidelberg, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

1992‐1993 Postdoctoral Fellow, Harvard Medical School, Bost<strong>on</strong>, USA<br />

1993‐1996 Postdoctoral Fellow, Whitehead Institute for Biomedical Research, Cambridge,<br />

USA<br />

1996‐2003 Independent Group, Leader Max‐Planck‐Institute for Immunology Freiburg,<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

2003‐2007 Independent Group Leader, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ), Heidelberg,<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Since 2007 Divisi<strong>on</strong> Head, <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ), Heidelberg, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Awards<br />

1997 FEBS Anniversary Prize<br />

2006 R. Eils, U. Klingmüller, O. Wiestler, E. Wanka,. A.‐P. Zeng, R. Balling. “<strong>Systems</strong><br />

<strong>Biology</strong> of Complex Diseases” Ideenwettbewerb <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong><br />

Research Interests<br />

We are combining generati<strong>on</strong> of spatiotemporal data with mathematical modeling to identify general<br />

desing principles in signaling pathways determining cellular decisi<strong>on</strong>s. After having data‐based models<br />

for signaling pathways activated in primary erythroid progenitor cells or hepatocytes our aim is to<br />

quantitatively determine alterati<strong>on</strong>s promoting tumor progressi<strong>on</strong> and predict targets for interventi<strong>on</strong>.<br />

Five most important publicati<strong>on</strong>s<br />

U. Klingmüller, U. Lorenz, L. C. Cantley, B. G. Neel, and H. F. Lodish. Specific recruitment of SH‐PTP1<br />

to the erythropoietin receptor causes inactivati<strong>on</strong> of JAK2 and terminati<strong>on</strong> of proliferative signals. Cell<br />

(1995) 80:729‐738.<br />

H. Wu, U. Klingmüller, and H. F. Lodish. Interacti<strong>on</strong> of the erythropoietin and stem‐cell‐factor<br />

receptors. Nature (1995) 377: 242‐246.<br />

I. Swameye, T. G. Müller, J. Timmer, O. Sandra, and U. Klingmüller. Identificati<strong>on</strong> of nucleocytoplasmic<br />

cycling as a remote sensor in cellular signaling by data‐based dynamic modeling. PNAS (2003)<br />

100:1028‐33.<br />

A. C. Heinrich, R. Pelanda, and U. Klingmüller. A mouse model for visualizati<strong>on</strong> and targeted mutati<strong>on</strong>s<br />

in the erythroid lineage. Blood. (2004) 104(3):659‐66.<br />

M. Schilling, T. Maiwald, S. Bohl, M. Kollmann, C. Kreutz, J. Timmer, and U. Klingmüller. Computati<strong>on</strong>al<br />

processing and error reducti<strong>on</strong> strategies for standardized quantitative data in biological networks.<br />

FEBS Journal (2005) 272:6400‐6411.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare ( ) a poster<br />

(x) a talk<br />

Title of poster / talk<br />

Linking the extent of signaling pathway activati<strong>on</strong> with cellular decisi<strong>on</strong>s<br />

Abstract<br />

Cell growth and differentiati<strong>on</strong> processes are tightly c<strong>on</strong>trolled by the activati<strong>on</strong> of complex<br />

intracellular signaling networks. To identify general design principles and to elucidate molecular<br />

mechanisms underlying cellular decisi<strong>on</strong>s, it is important to combine time‐resolved quantitative data<br />

with mathematical modeling to test hypothesis, predict the behavior of system and design<br />

experiments most informative for model validati<strong>on</strong>. We established a data‐based mathematical model<br />

to examine c<strong>on</strong>trol of transforming growth factor beta mediated signaling in hepatocytes and can<br />

show that negative feed‐back mechansims are imortant regulators.


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 41<br />

Ms. Olga Koborova<br />

Instituti<strong>on</strong> Faculty of Bioengineering and Bioinformatics<br />

C<strong>on</strong>tact Address<br />

Street Address 2nd Mosfilmovkii sidestr., h.10, fl.16<br />

Zip /Postal Code 119285<br />

City <strong>Moscow</strong><br />

Country <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Federati<strong>on</strong><br />

Ph<strong>on</strong>e +79035802008<br />

E‐Mail Okoborova@gmail.com<br />

Short CV<br />

2006‐present Laboratory assistant, Laboratory of Structure‐Functi<strong>on</strong> Based Drug Design,<br />

Institute of Biomedical Chemistry of Rus.Acad.Med.Sci.<br />

2003‐present Faculty of Bioengineering and Bioinformatics, Lom<strong>on</strong>osov <strong>Moscow</strong> State<br />

University, Graduate student<br />

Awards<br />

Certificate and<br />

medal<br />

IV <strong>Moscow</strong> Internati<strong>on</strong>al C<strong>on</strong>gress «Biotechnology: State of the Art and<br />

Prospects of Development»<br />

Research Interests<br />

The area of interests includes bioinformatics and system biology.<br />

Five most important publicati<strong>on</strong>s<br />

1) Koborova O.N., Filim<strong>on</strong>ov D.A., Zakharov A.V., Lagunin A.A., Kel A., Kolpakov F.,<br />

Sharipov R., Poroikov V.V. (2007). Anticander drug targets analysis <strong>on</strong> the basis of bioinformatic<br />

technologies, IV Internati<strong>on</strong>al c<strong>on</strong>ference “Postgenomic technologies for development of antitumor<br />

agents with novel mechanisms of acti<strong>on</strong>”, <strong>Moscow</strong>, December 3, 2007, p.15.<br />

2) Koborova O.N., Zakharov A.V., Lagunin A.A., Filim<strong>on</strong>ov D.А., Kel A., Kolpakov F., Sharipov R.,<br />

Poroikov V.V. Computer‐aided predicti<strong>on</strong> of promising anti‐tumor targets taking into account<br />

informati<strong>on</strong> about probable side effects. (2007). Ibid, p.109.<br />

3) Koborova O.N., Zakharov A.V., Kel A., Kolpakov F., Sharipov R., Poroikov V.V. (2007) Computer‐aided<br />

predicti<strong>on</strong> of promisi<strong>on</strong>g pharmacological targets: breast cancer E2F/pRb pathway as a case study. IV<br />

<strong>Moscow</strong> Internati<strong>on</strong>al C<strong>on</strong>gress «Biotechnology: State of the Art and Prospects of Development»,<br />

March 12‐16, <strong>Moscow</strong>. Russia, 2007, p.405.<br />

4) Poroikov V.V., Koborova O.N., Zakharov A.V., Lagunin A.A., Filim<strong>on</strong>ov D.A., Gloriozova T.A.,<br />

Sharipov R., Kolpakov F., Milanesi L., Kel A. (2006). Targeting cell cycle: old and new stories in<br />

anticancer therapy. Abstr. 4 th Eurasian Meeting <strong>on</strong> Heterocyclic Chemistry. Thessal<strong>on</strong>iki, Greece,<br />

August 27‐31, 2006, p.73‐74.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X ) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Computer‐aided predicti<strong>on</strong> of promising drug targets for breast cancer<br />

Abstract<br />

One of the most important problems in search for new anticancer therapies is identificati<strong>on</strong> of<br />

proteins that are involved in emergence and progressi<strong>on</strong> of malignant diseases, and to find the most<br />

prospective targets am<strong>on</strong>g them.<br />

We propose an algorithm of anticancer drug target identificati<strong>on</strong>. The algorithm models cell cycle<br />

regulati<strong>on</strong> as logic networks using the beginning states of nodes (proteins and/or genes) in a primary<br />

moment and counting a number of node states in different time moments – trajectories.<br />

The method was applied to different types of breast cancer. We used molecular network c<strong>on</strong>sisting of<br />

8829 nodes and 13613 edges from TRANSPATH database (http://www.biobase.de), and expressi<strong>on</strong><br />

data, c<strong>on</strong>sisting of up and down regulated genes list from Cycl<strong>on</strong>et database<br />

(http://cycl<strong>on</strong>et.biouml.org). Promising targets were identified and it’s inhibiti<strong>on</strong> changes trajectory<br />

into apoptosis of breast cancer cells. Preliminary results dem<strong>on</strong>strate the applicability of the method<br />

to find new targets.<br />

The work was supported by FP6 grant LSHB‐CT‐2007‐037590 (Net2Drug).<br />

Poster number: 18


42 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Rainer König<br />

Instituti<strong>on</strong> Pharmacy and Molecular Biotechnology –<br />

University of Heidelberg<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 267<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49 6221 423601<br />

Fax +49 6221 423620<br />

E‐Mail r.koenig@dkfz.de<br />

Website www.dkfz.de/tbi/people/koenig<br />

Short CV (keywords)<br />

2004 ‐ present Group leader of the Network Modelling group in the Department of<br />

Bioinformatics and Functi<strong>on</strong>al Genomics (Director: Prof. Dr. Roland Eils), IPMB,<br />

Univ. Heidelberg<br />

2001 – 2004 Postdoctoral Researcher in the Divisi<strong>on</strong> of Theoretical Bioinformatics (head:<br />

Prof. Dr. Roland Eils), <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center, Heidelberg, <str<strong>on</strong>g>German</str<strong>on</strong>g>y.<br />

2000 – 2001 Postdoctoral Researcher in the Divisi<strong>on</strong> of Theoretical<br />

Bioinformatics (head: Prof. Dr. Martin Vingr<strong>on</strong>), <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research<br />

Center, Heidelberg, <str<strong>on</strong>g>German</str<strong>on</strong>g>y.<br />

1996 ‐ 1999 Phd thesis at the EMBL Heidelberg, Phd in 1999<br />

1989 ‐ 1996 Studies in Physics and Mathematics, Freiburg, Sussex University (England) and<br />

Heidelberg, Physics Diploma in 1996, Mathematics and Physics state exam in<br />

1997<br />

Awards<br />

2004 Teaching degree “Baden‐Württemberg‐Zertifikat für Hochschullehre”<br />

2003 Supervisor for exchange students of the “Deutscher Akademischer<br />

Austauschdienst” (<str<strong>on</strong>g>German</str<strong>on</strong>g> Academic Exchange Service)<br />

Referee for the journals Nucleic Acids Research, BioMedCentral (BMC<br />

Bioinformatics, BMC Genomics) and Journal of Biomedical Informatics<br />

Member of the selecti<strong>on</strong> committee for the MSc studies program of Molecular<br />

Biotechnology at the Life Science faculty, University of Heidelberg<br />

Research Interests (3‐5 sentences)<br />

I'm interested in systematic pattern recogniti<strong>on</strong> <strong>on</strong> networks using machine learning techniques for<br />

defining drug treatments.<br />

Five most important publicati<strong>on</strong>s<br />

1. Segun Fatumo, Kitiporn Plaimas, Jan‐Philipp Mallm, Gunnar Schramm, Ezekiel Adebiyi, Marcus<br />

Oswald, Roland Eils and Rainer König (2008). Estimating novel potential drug targets of Plasmodium<br />

falciparum by analysing the metabolic network of knock‐out strains in silico, Infecti<strong>on</strong>, Genetics and<br />

Evoluti<strong>on</strong> (in press).<br />

2. Gunnar Schramm, Marc Zapatka, Roland Eils and Rainer König (2007). Using gene expressi<strong>on</strong> data<br />

and network topology to detect substantial pathways, clusters and switches during oxygen deprivati<strong>on</strong><br />

of Escherichia coli, BMC Bioinformatics, 8:149<br />

3. Arunachalam Vinayagam, Coral del Val, Falk Schubert, Roland Eils, Karl‐Heinz Glatting, Sandor Suhai<br />

and Rainer König (2006). GOPET: A tool for automated predicti<strong>on</strong>s of Gene Ontology terms, BMC<br />

Bioinformatics, 7:161<br />

4. Rainer König, Gunnar Schramm, Marcus Oswald, Hanna Seitz, Sebastian Sager, Marc Zapatka,<br />

Gerhard Reinelt & Roland Eils (2006). Discovering functi<strong>on</strong>al gene expressi<strong>on</strong> patterns in the metabolic<br />

network of Escherichia coli with wavelets transforms, BMC Bioinformatics, 7:119<br />

5. Rainer König & Roland Eils (2004). Gene expressi<strong>on</strong> analysis <strong>on</strong> biochemical networks using the Potts<br />

spin model, Bioinformatics, 20, 1500‐1505.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x ) a poster<br />

(please indicate)<br />

( ) a talk<br />

Title of poster / talk<br />

n.n.<br />

Abstract<br />

n.n.<br />

Poster number: 19


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 43<br />

Dr Yuri A Kosinsky<br />

Instituti<strong>on</strong> (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong> State University<br />

C<strong>on</strong>tact Address<br />

Street Address Leninskie Gory, 1/73, AN Belozerski IPCB <strong>Moscow</strong> State UniversityPCB<br />

Zip /Postal Code 119992<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 783 8718<br />

Fax +7 495 783 87 18<br />

E‐Mail ykos@nmr.ru<br />

Website www.insysbio.ru<br />

Short CV<br />

2004‐present Research Scientist, Institute for <strong>Systems</strong> <strong>Biology</strong> SPb<br />

2000–present Research Scientist, Department of structural biology of Shemyakin and<br />

Ovchinnikov Institute of Bioorganic Chemestry, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academia of Science<br />

2006 Ph.D., Biophysical Department, Faculty of <strong>Biology</strong>, <strong>Moscow</strong> State University,<br />

<strong>Moscow</strong>. Title: Molecular modeling of structural and functi<strong>on</strong>al aspects of P‐<br />

type ATPases interacti<strong>on</strong>s with ATP<br />

1996‐1999 Post‐graduate of Department of structural biology of Shemyakin and<br />

Ovchinnikov Institute of Bioorganic Chemestry, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academia of Science<br />

1996 M.Sc., Medico‐Biological Faculty of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> state medical university, <strong>Moscow</strong>.<br />

Title: Analysis of cofactors microenvir<strong>on</strong>ment in proteins<br />

1990‐1996 Medico‐Biological Faculty of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> state medical university, <strong>Moscow</strong><br />

Awards<br />

Participati<strong>on</strong> in EU programmes:<br />

Research Interests<br />

Research Interests of Dr Kosinsky are focused in areas of <strong>Systems</strong> <strong>Biology</strong>, Bioinformatics and<br />

molecular modeling. Areas of expertise:<br />

Modeling of cellular metabolism<br />

Modeling of cell signaling<br />

Modeling of gene regulatory networks<br />

Pathway rec<strong>on</strong>structi<strong>on</strong><br />

Molecular modeling in drug‐design<br />

Molecular modeling software development<br />

Five most important publicati<strong>on</strong>s<br />

Pyrkov, T.V., Kosinsky, Yu.A, Arseniev, A.S., Priestle, J.P., Jacoby, E., Efremov, R.G. (2007). Docking of<br />

ATP to Ca‐ATPase: C<strong>on</strong>sidering Protein Domain Moti<strong>on</strong>s. J. Chem. Inf. Model. 47, 1171–1181.<br />

Pyrkov T.V., Kosinsky Yu.A., Arseniev A.S., Priestle J.P., Jacoby E., Efremov R.G. Complementarity of<br />

hydrophobic properties in ATP‐protein binding: a new criteri<strong>on</strong> to rank docking soluti<strong>on</strong>s. (2007)<br />

Proteins: Structure, Functi<strong>on</strong>, and Bioinformatics 66(2), 388–398.<br />

Efremov, R. G., Kosinsky Yu.A., Nolde D.E., Tsivkovskii, R., Arseniev A.S., Lutsenko, S. Molecular<br />

Modeling of the Nucleotide‐Binding Domain of the Wils<strong>on</strong>’s Disease Protein: Locati<strong>on</strong> of the ATP‐<br />

binding Site, Domain Dynamics, and Potential Effects of the Major Disease Mutati<strong>on</strong>s. (2004) Biochem.<br />

J. 382, Part I, 293‐305.<br />

Morgan C.T., Tsivkovskii R., Kosinsky Yu.A., Efremov R.G., Lutsenko S. The Distinct Functi<strong>on</strong>al<br />

Properties of the Nucleotide‐binding Domain of ATP7B, the Human Copper‐transporting ATPase.<br />

Analysis of the Wils<strong>on</strong> disease mutati<strong>on</strong>s E1064A, H1069Q, R1151H, and C1104F. (2004) J. Biol. Chem.<br />

279(35), 36363‐36371.<br />

Kosinsky Yu.A., Volynsky P.E., Lagant P., Vergoten G., Suzuki E., Arseniev A.S., Efremov R.G.<br />

Development of the Force Field Parameters for Phosphoimidazole and Phosphohistidine. (2004) J.<br />

Comput. Chem., 25(11), 1313‐1321.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Dynamics and regulati<strong>on</strong> of signaling and methaboloc networks in mammalian cells: prostanoids<br />

biosynthesis and signaling system kinetic modeling.<br />

Abstract<br />

Kinetic model of prostaglandines byosynthesis, transport and signaling was build and specially<br />

adopted for platelets and endothelium cells (ECs). Prothrombotic thromboxane (TXA2) and<br />

antithrombotic prostacyclin (PGI2) are main prostanoids are produced by platelets and by EC’s,<br />

respectively. So, disbalance in TXA2 and PGI2 synthesis in blood vessels may increase risk of infarcts or<br />

strokes. We have analysed influence of cyclooxygenase‐2 (COX2)‐specific inhibitors (coxibes) <strong>on</strong><br />

prostanoids synthesis using our kinetic model describing platelets and EC’s interacting by signaling<br />

pathways. Our results show that in case of COX2 c<strong>on</strong>taining EC’s (inflammatory ECs) applying of<br />

coxibes may leads to increasing of thrombotic risk, and this effect is more pr<strong>on</strong>ounced for inhibitors<br />

with higher COX2‐selectivety.<br />

Poster number: 20


44 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

K<strong>on</strong>stantin Kozlov<br />

Instituti<strong>on</strong><br />

C<strong>on</strong>tact Address<br />

SPb SPU<br />

Street Address Polytechnicheskaya ul., 29<br />

Zip /Postal Code 195251<br />

City St.Petersburg<br />

Country Russia<br />

Ph<strong>on</strong>e +7 812 596 28 31<br />

Fax +7 812 596 28 31<br />

E‐Mail kozlov@spbcas.ru<br />

Website<br />

Short CV<br />

http://urchin.spbcas.ru/<br />

Date of Birth 02/22/77<br />

Educati<strong>on</strong> Master's Degree in Mathematics, June 2000, Department of applied<br />

Mathematics, St.Petersburg State Polytechnical University<br />

Current Positi<strong>on</strong><br />

Awards<br />

Research Fellow in Department of Computati<strong>on</strong>al <strong>Biology</strong>, SPb SPU<br />

Best Speaker Award, „Polytechnic Symposium “Young Scientists for Industry of<br />

2007<br />

Noth‐West regi<strong>on</strong>““<br />

2007 Award of „Participant of Youth Scientific‐Innovative Competiti<strong>on</strong>“<br />

Research Interests<br />

image analysis, mathematical modelling, software development, systems biology<br />

Five most important publicati<strong>on</strong>s<br />

Kozlov K., Pisarev A., Matveeva A., Kaandorp J. and Sams<strong>on</strong>ova M. (2007): Image Processing Package<br />

ProStack for Quantificati<strong>on</strong> of Biological Images. In: Proc. of the 4th Intl. Symposium <strong>on</strong> Networks in<br />

Bioinformatics (ISNB). Amsterdam, The Netherlands, 204.<br />

J. Jaeger, S. Surkova, M. Blagov, H. Janssens, D. Kosman, K.N. Kozlov, Manu, E.M. Myasnikova, C.E.<br />

Vanario‐Al<strong>on</strong>so, M.G. Sams<strong>on</strong>ova, D.H. Sharp, J. Reinitz. (2004): Dynamic c<strong>on</strong>trol of positi<strong>on</strong>al<br />

informati<strong>on</strong> in the early Drosophila embryo, Nature. Vol. 430. P. 368‐371.<br />

J. Jaeger, M. Blagov, D. Kosman, K.N. Kozlov, Manu, E.M. Myasnikova, S. Surkova, C.E. Vanario‐Al<strong>on</strong>so,<br />

M.G. Sams<strong>on</strong>ova, D.H. Sharp, J. Reinitz. (2004): Dynamical analysis of regulatory interacti<strong>on</strong>s in the gap<br />

gene system of Drosophila melanogaster, Genetics. Vol. 167. P. 1721‐1737.<br />

Kozlov K.N., Sams<strong>on</strong>ov A.M. (2003): New Data Processing Technique Based <strong>on</strong> the Optimal C<strong>on</strong>trol<br />

Theory. Techn. Physics, 48, 11: 6‐14.<br />

K.N. Kozlov, E.M. Myasnikova, M.G. Sams<strong>on</strong>ova, J. Reinitz, D. Kosman. Method for spatial registrati<strong>on</strong><br />

of the expressi<strong>on</strong> patterns of Drosophila segmentati<strong>on</strong> genes using wavelets // Comp. Technol. 2000.<br />

Vol. 5. P. 112‐119.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x) a poster<br />

( ) a talk<br />

Title of poster / talk 1<br />

Comparis<strong>on</strong> of performance of Differential Evoluti<strong>on</strong> and Simulated Annealing<br />

Development of robust and reliable algorithms to reduce the complexity of finding the parameters of<br />

mathematical models by fitting to experimental data has become a foreground job as modern<br />

molecular biology accumulates massive amounts of quantitative data. In this work we compare the<br />

performance of two optimizati<strong>on</strong> techniques, namely Differential Evoluti<strong>on</strong> (DE) and Simulated<br />

Annealing (SA).<br />

Simulated Annealing is a popular method of the functi<strong>on</strong>al minimizati<strong>on</strong> that was successfully applied<br />

to important biological problems. Differential Evoluti<strong>on</strong> is a rather new and promising optimizati<strong>on</strong><br />

technique that was invented at the end of the previous century by Storn and Price (Storn, Price, 1995).<br />

Both methods are stochastic and are able to find the global extremum of the functi<strong>on</strong>al under appropriate<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

We characterized the dependence of the final functi<strong>on</strong>al value and of the iterati<strong>on</strong> number <strong>on</strong><br />

algorithmic parameters by extensive series of numerical runs <strong>on</strong> a test problem The results for both<br />

methods were then independently fitted to a power law. While the fitting curves appeared to be<br />

similar in shape, the performance of Differential Evoluti<strong>on</strong> was superior in all our experiments.<br />

Title of poster / talk 2<br />

ProStack, the image analysis software to process and quantify patterns of gene expressi<strong>on</strong><br />

Informati<strong>on</strong> <strong>on</strong> expressi<strong>on</strong> in time and space is crucial to infer gene functi<strong>on</strong>. Modern sophisticated<br />

microscope techniques allow to m<strong>on</strong>itor gene expressi<strong>on</strong> in real time, with a single cell resoluti<strong>on</strong>, and<br />

can easily produce thousands of images in a single day. However a bottleneck exists at the step of<br />

image analysis. Due to large number and frequent need for extracti<strong>on</strong> of fine details any visual analysis<br />

of images is impractical. Image analysis packages available today are either expensive commercial or<br />

do not support an automatic analysis of images and require str<strong>on</strong>g programming skills to adapt<br />

programs to a new project.<br />

We present a new software package ProStack developed to process and quantify patterns of gene<br />

expressi<strong>on</strong>. ProStack is capable to process 2D and 3D digital images of gene expressi<strong>on</strong> patterns<br />

acquired with c<strong>on</strong>focal microscope. It implements more than 50 operati<strong>on</strong>s. Each image processing<br />

procedure is implemented as a separate module. Several modules can be joined in a complex image<br />

processing scenario, and the intermediate results can be visualized during the workflow enactment.<br />

The processing operati<strong>on</strong>s afford tuning to ensure customizati<strong>on</strong> and flexibility without the loss of<br />

efficiency. The designed workflow can be saved as a complex program module and re‐used in other<br />

workflows.<br />

The Prostack package was successfully applied to automatically process a wide range of experimental<br />

images.<br />

Poster number: 21 & 22


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 45<br />

Ivan Vladimirovich Kulakovskiy<br />

Instituti<strong>on</strong> Engelhardt Institute of Molecular <strong>Biology</strong><br />

C<strong>on</strong>tact Address<br />

Street Address Vavilov str., 32<br />

Zip /Postal Code 119991<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 499 135 6000<br />

Fax +7 499 135 14 05<br />

E‐Mail ikulakovsky@inbox.ru<br />

Website www.eimb.relarn.ru/<br />

Short CV<br />

Born 12 July 1985 in Velikiye Luki, Pskov Regi<strong>on</strong><br />

Mr.Sci in Computer<br />

Science<br />

July 2006, <strong>Moscow</strong> State University of Forest<br />

Positi<strong>on</strong>s,<br />

Central Scientific Research Institute for Machine Building (Korolev),<br />

2005‐2006<br />

Missi<strong>on</strong> C<strong>on</strong>trol Center, Telemetry department, Engineer<br />

2006 Engelhardt Institute of Molecular <strong>Biology</strong> <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences<br />

(<strong>Moscow</strong>), Graduate student<br />

2007 State Research Institute of Genetics and Selecti<strong>on</strong> of Industrial<br />

Microorganisms, Scientific Center GosNIIGenetika, Junior researcher<br />

Language skills <str<strong>on</strong>g>Russian</str<strong>on</strong>g> (native), English (reading)<br />

Keywords Computati<strong>on</strong>al biology, bioinformatics, transcripti<strong>on</strong>, system biology, computer<br />

science, databases<br />

Research Interests<br />

Transcripti<strong>on</strong> factor binding sites: structure, models, effective predicti<strong>on</strong> algorithms, experimental<br />

data processing. Binding site arrangement and clustering in regulatory modules. Storage and<br />

processing large data volumes.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Integrated tool for analysis of DNA‐protein binding data<br />

Abstract<br />

Results of ChIP‐chip tiled arrays and even footprints can bring about rather extended DNA<br />

segments, which make a challenge for protein binding motif identificati<strong>on</strong> with traditi<strong>on</strong>al techniques.<br />

At the same time, now the data of protein binding to DNA is available from many different sources of<br />

experimental informati<strong>on</strong>. Simultaneous analysis of data obtained from such sources as SELEX, ChIP‐<br />

chip, footprints etc can result in a much clearer signal for DNA‐protein binding than when using any of<br />

the data sources al<strong>on</strong>e.<br />

For instance, the oligos yielded by SELEX strictly corresp<strong>on</strong>d to the binding protein, but they<br />

are usually short and the binding motif in practice is often distorted. At the same time ChIP‐chip arrays<br />

give functi<strong>on</strong>al binding motifs, often in vivo, but the resulting sequences are l<strong>on</strong>g and can c<strong>on</strong>tain<br />

binding signals for proteins, different from the test protein.<br />

Our objective was to make an integrated tool for incorporating different types of<br />

experimental data into the single protein binding model. For a binding model we have selected the<br />

Positi<strong>on</strong>al Weight Matrix (PWM), which is traditi<strong>on</strong>al motif model for transcripti<strong>on</strong> factor binding sites<br />

(TFBS) at DNA. We paid a particular attenti<strong>on</strong> to identify the length of a binding signal, the problem,<br />

which is not solved in many signal identificati<strong>on</strong> tools.<br />

The core of the algorithm is SeSiMCMC Gibbs sampler, which is used to c<strong>on</strong>struct the<br />

anchored optimal multiple local alignment (MLA) of the raw sequence data. “The anchored” here<br />

means that the any sequence included into MLA should overlap with the anchor sequence initially<br />

seeded into the data. This layout allowed us to incorporate simultaneously the data of SELEX, which are<br />

used as anchors in ChIP‐chip sequences. The resulting MLA thus corresp<strong>on</strong>ds to the binding signal for<br />

the correct protein.<br />

We have tested our system for several TFBS of Human and Drosophila fly. In result now we<br />

can map specific site occurrences at genome sequences within mapped ChIP‐chip resulting regi<strong>on</strong>s as<br />

well as we can detect genome wide putative TFBS rich regi<strong>on</strong>s, which were not covered by ChIP‐chip<br />

results. This opens a view to compare ChIP‐chip results obtained in different experimental envir<strong>on</strong>ment<br />

and study tissue‐specific gene expressi<strong>on</strong>.<br />

Poster number: 23


46 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Alexey Lagunin, Ph.D.<br />

Instituti<strong>on</strong> Institute of Biomedical Chemistry RAMS<br />

C<strong>on</strong>tact Address<br />

Street Address Pogodinskaya Str., 10<br />

Zip /Postal Code 119121<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 247‐3029<br />

Fax +7 495 245‐0857<br />

E‐Mail alexey.lagunin@ibmc.msk.ru<br />

Website www.ibmc.msk.ru<br />

Short CV<br />

2006‐ Present Leading Scientist of Institute of Biomedical Chemistry of Rus. Acad. Med. Sci.<br />

2004‐2006 Senior Scientist of Institute of Biomedical Chemistry of Rus. Acad. Med. Sci.<br />

2002‐2004 Research Scientist of Institute of Biomedical Chemistry of Rus. Acad. Med. Sci.<br />

2001‐2002 Junior Scientist of Institute of Biomedical Chemistry of Rus. Acad. Med. Sci.<br />

2001 Ph.D. degree in Biochemistry<br />

1998‐2001 PhD Student of Institute of Biomedical Chemistry of Rus. Acad. Med. Sci.<br />

1992‐1998<br />

Awards<br />

Student of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> State Medical University<br />

2007 the Award for young scientists for the best research at V.N. Orekhovich<br />

Institute of Biomedical Chemistry, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Medicinal Science<br />

2001 the Award for young scientists for the best research at V.N. Orekhovich<br />

Institute of Biomedical Chemistry, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Medicinal Science<br />

2004 the Stipend for young scientists of Regi<strong>on</strong>al Social Fund of Native Medicine<br />

Assistance<br />

Research Interests<br />

Bioinformatics, system biology, chemoinformatics, structure‐activity relati<strong>on</strong>ships analysis, medicinal<br />

chemistry.<br />

Five most important publicati<strong>on</strong>s<br />

Poroikov V., Filim<strong>on</strong>ov D., Lagunin A., Gloriozova T., Zakharov A. PASS: identificati<strong>on</strong> of probable<br />

targets and mechanisms of toxicity. SAR QSAR Envir<strong>on</strong> Res. 2007, 18(1‐2):101‐110.<br />

Kolpakov F., Poroikov V., Sharipov R., K<strong>on</strong>drakhin Yu., Zakharov A., Lagunin A., Milanesi L., Kel A.<br />

CYCLONET—an integrated database <strong>on</strong> cell cycle regulati<strong>on</strong> and carcinogenesis. Nucleic Acids<br />

Research, 2007, v. 35, D550–D556<br />

Lagunin A.A., Dearden J.C., Filim<strong>on</strong>ov D.A., Poroikov V.V. Computer‐aided rodent carcinogenicity<br />

predicti<strong>on</strong>. Mutati<strong>on</strong> Research, 2005, v.586, p.138–146.<br />

Poroikov V., Lagunin A., Filim<strong>on</strong>ov D. Pharmaexpert: Diseases, Targets and Ligands – Three in One.<br />

Proceedings of the 15 th European Symposium <strong>on</strong> Structure‐Activity Relati<strong>on</strong>ships (QSAR) and<br />

Molecular Modeling, Ed. by Esin Aki (SENER), Ismail Yalcin, Istanbul, September 05‐10, 2004, p.514‐<br />

515.<br />

Lagunin A.A., Gomazkov O.A., Filim<strong>on</strong>ov D.A., Gureeva T.A., Dilakyan E.A., Kugaevskaya E.V., Elisseeva<br />

Yu.E., Solovyeva N.I., Poroikov V.V. Computer‐Aided Selecti<strong>on</strong> of Potential Antihypertensive<br />

Compounds with Dual Mechanism of Acti<strong>on</strong>. J. Med. Chem., 2003, v.46, p.3326‐3332.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

PharmaExpert: Selecti<strong>on</strong> of potential antineoplastic agents<br />

Abstract<br />

Computer program PASS predicts ~3300 kinds of biological activity including 378 pharmacotherapeutic<br />

effects, 2756 mechanisms of acti<strong>on</strong>, 50 toxic/side effects and 121 metabolic terms <strong>on</strong> the basis of<br />

structural formula of chemical compound with average accuracy ~93%<br />

(http://www.ibmc.msk.ru/PASS). PharmaExpert interprets PASS predicti<strong>on</strong>s taking into c<strong>on</strong>siderati<strong>on</strong><br />

known mechanism‐effect(s) and effect‐mechanism(s) relati<strong>on</strong>ships, and provides a flexible mechanism<br />

for selecti<strong>on</strong> of compounds with desirable kinds of biological activity in libraries of chemical<br />

compounds. Knowledgebase of the current versi<strong>on</strong> of Since PASS predicti<strong>on</strong>s c<strong>on</strong>tain a plethora of<br />

informati<strong>on</strong> about probable biological acti<strong>on</strong>s of chemical compounds, using PharmaExpert it is<br />

possible to select compounds with the required multiple mechanisms of acti<strong>on</strong>. The study is supported<br />

by FP6‐grant LSHB‐CT‐2007‐037590 (Net2Drug).<br />

Poster number: 24


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 47<br />

Dr. Inna Lavrik<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ)<br />

C<strong>on</strong>tact Address<br />

Street Address INF280<br />

Zip /Postal Code D69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e 49‐6221‐423765<br />

Fax 49‐6221‐411715<br />

E‐Mail i.lavrik@dkfz.de<br />

Website http://www.dkfz.de/en/immungenetik/Inna_grou<br />

p/Inna_englisch.html<br />

Short CV<br />

Ph.D. student Department of Chemistry of Natural Compounds, <strong>Moscow</strong> Lom<strong>on</strong>osov State<br />

University, Russia<br />

Research Assitant Research Assitant, Depar Department of Chemistry of Natural Compounds,<br />

<strong>Moscow</strong> State University<br />

Docent Department of chemistry of natural compounds, <strong>Moscow</strong> Lom<strong>on</strong>osov State<br />

University, Russia<br />

Since 2000 Scientist, Divisi<strong>on</strong> of Immunogenetics, Head Prof. Dr P. H. Krammer, DKFZ,<br />

Heidelberg,<br />

2004 Project leader, Divisi<strong>on</strong> of Immunogenetics, Tumorimmunology Programme,<br />

DKFZ, Heidelberg<br />

2007 Project leader, SBCancer, Bioquant, DKFZ, Heidelberg<br />

Awards<br />

1997 <str<strong>on</strong>g>Russian</str<strong>on</strong>g> state prize for young scientists<br />

Research Interests<br />

<strong>Systems</strong> biology of apoptosis<br />

Death receptors<br />

Cancer cells<br />

Caspases<br />

Five most important publicati<strong>on</strong>s<br />

Bentele M*, Lavrik I *, Ulrich M, Stosser S, Heermann DW, Kalthoff H, Krammer PH, Eils R.<br />

Mathematical modeling reveals threshold mechanism in CD95‐induced apoptosis. J Cell Biol<br />

2004;166:839‐851.<br />

Golks A, Brenner D, Krammer PH, Lavrik IN. The c‐ FLIP‐NH2 terminus (p22‐FLIP) induces NF‐kappaB<br />

activati<strong>on</strong>. J Exp Med 2006; 203:1295‐1305.<br />

Krammer PH, Arnold R, Lavrik IN. Life and Death of T cells. Nat Rev Immunol 2007; 7:532‐542.<br />

Lavrik IN, Golks A, Riess D, Bentele M, Eils R, Krammer PH. (2007). Analysis of CD95 threshold<br />

signaling: Triggering of CD95(FAS/APO‐1) at low c<strong>on</strong>centrati<strong>on</strong>s primarily results in survival signaling. J<br />

Biol Chem. 18: 13664‐13671.<br />

Lavrik IN, Golks A, Krammer PH. Caspases: Pharmacological manipulati<strong>on</strong> of cell death. J Clin<br />

Investigati<strong>on</strong>s. 2005; 115(10): 2665‐2672.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(x) a talk<br />

Title of poster / talk<br />

Life/Death decisi<strong>on</strong> <strong>on</strong> CD95 by systems biology approaches<br />

Abstract<br />

CD95 (APO‐1/Fas) is well known as a mediator of apoptosis, however evidence off n<strong>on</strong>‐apoptotic<br />

functi<strong>on</strong>s is accumulating. We investigated NF‐κB activati<strong>on</strong> and apoptosis up<strong>on</strong> CD95 stimulati<strong>on</strong> and<br />

established an integrated kinetic mathematical model of CD95‐mediated life and death signalling.<br />

Systematic model reducti<strong>on</strong> resulted in a surprisingly simple model well approximating experimentally<br />

observed dynamics. The model postulates that the missing link in CD95‐mediated NF‐κB activati<strong>on</strong> is<br />

the binding of p43‐FLIP to the IKK complex. This predicti<strong>on</strong> was validated experimentally. Furthermore,<br />

we dem<strong>on</strong>strated that the CD95 signalling pathways already diverge at the Death‐Inducing Signalling<br />

Complex (DISC). Model and experimental analysis of protein assembly in the DISC showed that a subtle<br />

balance of c‐FLIPL and procaspase‐8 at this multi‐protein complex determines life/death decisi<strong>on</strong>s in a<br />

n<strong>on</strong>‐linear way. This is the first mathematical model explaining the complex dynamics of CD95‐<br />

mediated apoptosis and survival signalling.


48 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Vsevolod Jurievich Makeev, PhD<br />

Instituti<strong>on</strong><br />

C<strong>on</strong>tact Address<br />

GosNIIgenetika<br />

Street Address 1st Dorozhny proezd, 1<br />

Zip /Postal Code 113545<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 315 0156<br />

Fax +7 495 315 0501<br />

E‐Mail Makeev@genetika.ru<br />

Website<br />

Short CV<br />

http://bioinform.genetika.ru<br />

Born 19 August 1967 in Fryazino, <strong>Moscow</strong> Regi<strong>on</strong>, Russia<br />

M.Sci in Physics January 1990, <strong>Moscow</strong> State University<br />

PhD in Physics and<br />

Mathematics<br />

March 1996, <strong>Moscow</strong> State University<br />

Positi<strong>on</strong>s,<br />

1990‐1993<br />

Lebedev Physical Institute, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sceinces. Research Assistant<br />

1993‐2000 Engelhardt Institute of Molecular <strong>Biology</strong>, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences, Fellow<br />

Researcher<br />

2001 State Research Institute of Genetics and Selecti<strong>on</strong> of Industrial<br />

Microorganisms, Scientific Center GosNIIGenetika, Head of the Lab<br />

Reviewer Nucleic Acid Research, Bioinformatics, BMC Genomics, BMC Bioinformatics,<br />

PLOS <strong>Biology</strong>, J. of <strong>Biology</strong>, Molecular <strong>Systems</strong> <strong>Biology</strong>, J. of Bioinformatics and<br />

Computati<strong>on</strong>al <strong>Biology</strong>, J. of Theoretical <strong>Biology</strong>, Biokhimia (russ),<br />

Biotekhnologiya (russ), Biofizika (russ), Molekulyanaja Biologiya (russ)<br />

Grant Reviewer INTAS, ERA‐NET, FP6, FP7<br />

Language skills <str<strong>on</strong>g>Russian</str<strong>on</strong>g> (native), English (fluent), <str<strong>on</strong>g>German</str<strong>on</strong>g> (reading), French (reading)<br />

Keywords Bioinformatics, system biology, genomics, statistical methods, computer<br />

science, biophysics, transcripti<strong>on</strong>, protein‐DNA interacti<strong>on</strong>, protein‐protein<br />

interacti<strong>on</strong><br />

Research Interests<br />

Grammatics of locati<strong>on</strong> of transcripti<strong>on</strong> factor binding sites in regulatory regi<strong>on</strong>s: binding signal<br />

identificati<strong>on</strong>, site clustering, overlapping, periodical patterns. Genome evoluti<strong>on</strong>, role of nucleotide<br />

substituti<strong>on</strong>, repeat expansi<strong>on</strong> and dupicati<strong>on</strong>s. DNA‐protein and protein‐protein interacti<strong>on</strong>, role of<br />

i<strong>on</strong>s and water.<br />

Five most important publicati<strong>on</strong>s<br />

1. Boeva V, Regnier M, Papatsenko D, Makeev V. (2006) Short fuzzy tandem repeats in genomic<br />

sequences, identificati<strong>on</strong>, and possible role in regulati<strong>on</strong> of gene expressi<strong>on</strong>.<br />

Bioinformatics. Mar 15;22(6):676‐84.<br />

2. Favorov AV, Gelfand MS, Gerasimova AV, Ravcheev DA, Mir<strong>on</strong>ov AA, Makeev VJ. (2005) A Gibbs<br />

sampler for identificati<strong>on</strong> of symmetrically structured, spaced DNA motifs with improved estimati<strong>on</strong> of<br />

the signal length. Bioinformatics. May 15;21(10):2240‐5.<br />

3. Kotelnikova EA, Makeev VJ, Gelfand MS. Evoluti<strong>on</strong> of transcripti<strong>on</strong> factor DNA binding sites. Gene.<br />

347, 255‐263, (2005).<br />

4. Lifanov, A.P, Makeev, V.Ju, Nazina, A., Papatsenko, D.A (2003) "Homotypic regulatory clusters in<br />

Drosophila". Genome Research, vol 13(4), pp. 579‐88.<br />

5. Ramensky V.E, V.Ju Makeev, M.A. Roytberg, and V.G. Tumanyan (2000) A Bayesian approach to DNA<br />

segmentati<strong>on</strong>. J Comput Biol. 7(1‐2):215‐31.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(x) a talk<br />

Title of poster / talk<br />

Deciphering complex regulatory regi<strong>on</strong>s in eukaryotic genomes<br />

Abstract<br />

Transcripti<strong>on</strong>al initiati<strong>on</strong> in eukaryotes is c<strong>on</strong>trolled by sophisticated complexes of transcripti<strong>on</strong> factor<br />

proteins bound at DNA. To study regulati<strong>on</strong> of gene expressi<strong>on</strong> in silico <strong>on</strong>e needs to combine<br />

experimental data from different sources (footprint, SELEX, ChIP‐chip, etc) <strong>on</strong> the basis of model<br />

signals recognized by different transcripti<strong>on</strong> factors. We present the system, which gives an<br />

opportunity to c<strong>on</strong>struct and verify the motif models using several combined experimental data<br />

sources, including footprinting, SELEX and ChIP‐chip experiments, map the result to the genome and<br />

study the architecture of regulatory modules.<br />

The integrated system includes the database of genomes and programs for multiple alignment, signal<br />

recognizing (SeSiMCMC Gibbs sampler) and estimati<strong>on</strong> of statistical significance of a motif model<br />

(AhoPro word analyser). Some results <strong>on</strong> genome wide binding signal recogniti<strong>on</strong> is presented,<br />

including signals found in CpG islands, and compared to the experimental data <strong>on</strong> transcripti<strong>on</strong><br />

initiati<strong>on</strong>.


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 49<br />

Anna Matveeva<br />

Instituti<strong>on</strong> SPbSPU<br />

C<strong>on</strong>tact Address<br />

Street Address 3 Shkolnaya Street, Apartment 28<br />

Zip /Postal Code 197183<br />

City Saint‐Petersburg<br />

Country Russia<br />

Ph<strong>on</strong>e +7 812 4962458<br />

Fax +7 812 5962831<br />

E‐Mail anya@odd.bio.sunysb.edu<br />

Short CV<br />

2001 – 2007 Student in Biophysics Department, The Faculty of Physics and Mechanics,<br />

St.Petersburg State Polytechnical University (SPbSPU)<br />

2007 M.Sc. in Physics, awarded with a diploma from SPbSPU<br />

2004 – 2005 SPbSPU The Faculty of Physics and Mechanics, The research laboratory of<br />

Biophysics Department – Research assistant<br />

2005 – present SPbSPU The Department of Computati<strong>on</strong>al <strong>Biology</strong>, Center for Advanced<br />

Studies of SPbSPU– Researcher<br />

Awards<br />

2007 Medal “For devoti<strong>on</strong> to science”<br />

2006 The Best Poster Award at the NanoBio’06 C<strong>on</strong>ference<br />

2005 Medal “For devoti<strong>on</strong> to science”<br />

2004 The Best Report Award at the Polytechnic Symposium “Young Scientists –<br />

Industry of the Northwest Regi<strong>on</strong>”<br />

Research Interests<br />

Image processing, biological analysis of quantitative gene expressi<strong>on</strong> data. Early development of<br />

Drosophila melanogaster, segmentati<strong>on</strong> gene network. Transcripti<strong>on</strong>al regulati<strong>on</strong> of the segmentati<strong>on</strong><br />

genes, mechanisms of gene silencing.<br />

Five most important publicati<strong>on</strong>s<br />

A. Matveeva, K. Kozlov and M. Sams<strong>on</strong>ova (2006). Methodology for Building of Complex Workflows<br />

with PROSTAK package and iSIMBioS. Proceedings of the 5th Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong><br />

Bioinformatics of Genome Regulati<strong>on</strong> and Structure (BGRS'2006), July 16‐22, 2006, Novosibirsk, Russia.<br />

V. 2, 204‐208.<br />

A. Matveeva, K. Kozlov, M.Sams<strong>on</strong>ova (2006). Extracti<strong>on</strong> of quantitative gene expressi<strong>on</strong> data from the<br />

images of gene expressi<strong>on</strong> patterns with ProStack and iSIMBioS. Proc. of the 4rd TICSP <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong><br />

Computati<strong>on</strong>al <strong>Systems</strong> <strong>Biology</strong> (WCSB 2006), Tampere, Finland, 12‐13 June, 2006, 65‐68.<br />

A.D. Matveeva, T.P. Sankova (2004). The frequency of encounter of the different alleles VDR gene in<br />

group of osteoporotic patients and their family members. The All‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g> Interuniversity Scientific and<br />

Technical C<strong>on</strong>ference, Saint‐Petersburg, Russia, December 4, 2004,149.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Modeling the expressi<strong>on</strong> of the Drosophila even‐skipped (eve) gene driven by its proximal 1.7 kb<br />

upstream regi<strong>on</strong>.<br />

Abstract<br />

A central problem in modern molecular genetics is that of understanding how DNA regulatory<br />

sequences c<strong>on</strong>trol gene expressi<strong>on</strong>. Metazoan regulatory regi<strong>on</strong>s are extremely complex and<br />

qualitatively different from those of prokaryotes. For example, the regulatory regi<strong>on</strong>s of genes<br />

c<strong>on</strong>trolling development in Drosophila are large and c<strong>on</strong>sist of groups of binding sites, called as cis‐<br />

regulatory modules (CRMs), each c<strong>on</strong>trolling some aspects of gene expressi<strong>on</strong>.<br />

The goal of our work is to understand the role of proximal 1.7 kb upstream regulatory sequence in the<br />

regulati<strong>on</strong> of the Drosophila even‐skipped (eve) gene in terms of binding sites. To do this we 1)<br />

quantitatively m<strong>on</strong>itor gene expressi<strong>on</strong> at high resoluti<strong>on</strong> in space in time, 2) characterize each<br />

transcripti<strong>on</strong> binding site and 3) c<strong>on</strong>struct a new quantitative and predictive model of transcripti<strong>on</strong>al<br />

readout. We predicted the organizati<strong>on</strong> and functi<strong>on</strong> of the proximal 1.7 kb eve upstream regulatory<br />

sequence. The best model with lowest rms (8.66) was built with in silico additi<strong>on</strong> the Sloppy‐paired<br />

binding site and assigning to Hunchback a role of repressor.<br />

Poster number: 25


50 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Julia Medvedeva<br />

Instituti<strong>on</strong><br />

C<strong>on</strong>tact Address<br />

GosNIIgenetika<br />

Street Address 1, 1st Dorozhnyj pr.<br />

Zip /Postal Code 113545<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e (7495)3150156<br />

Fax (7495)3150105<br />

E‐Mail<br />

Short CV<br />

ju.medvedeva@gmail.com<br />

September 1995 ‐<br />

May 2003<br />

<strong>Moscow</strong> State University, student<br />

August 2003 ‐<br />

October 2005<br />

Enhelgardt Institute of Molecular <strong>Biology</strong>, technician<br />

November 2005 –<br />

till now<br />

GosNIIgenetika, PhD student<br />

April 2007 – till now GosNIIgenetika, researcher<br />

Research Interests<br />

I’m deeply interested in bioinformatics and genome sequence analysis. Now I’m studying CpG islands<br />

in genomes of different vertabrates, their sequence structure and properties. In spite of the fact that<br />

CpG islands in different gene regi<strong>on</strong> dem<strong>on</strong>strate diferent level of methylati<strong>on</strong>, they could play similar<br />

regulatory functi<strong>on</strong>, probably as regi<strong>on</strong>s with clusters of protein binding sites (for ex. Sp1, CTCF) or<br />

structural regi<strong>on</strong>s appropriate for origins of DNA replicati<strong>on</strong>.<br />

Five most important publicati<strong>on</strong>s<br />

Medvedeva Yu., Rychkov A., Oparina N. Imprinted genes in human and mouse genomes: detailed<br />

analysis of CpG islands // <strong>Moscow</strong> C<strong>on</strong>ference <strong>on</strong> Computati<strong>on</strong>al Molecular <strong>Biology</strong> (MCCMB'05), july<br />

2005, <strong>Moscow</strong>, Russia<br />

Medvedeva Yu., Fridman M., Oparina N., Makeev V. CpG islands distributi<strong>on</strong> in the human genome //<br />

Genomics, Proteomics and Bioinformatics, april 2006, Almaty, Khazahstan<br />

Medvedeva Yu., Abnizova I., Naumenko F., Oparina N., Makeev V Identificati<strong>on</strong> of CpG island<br />

boundaries // <strong>Moscow</strong> C<strong>on</strong>ference <strong>on</strong> Computati<strong>on</strong>al Molecular <strong>Biology</strong> (MCCMB’07), july 2007,<br />

<strong>Moscow</strong>, Russia<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Reduced level of syn<strong>on</strong>imous substituti<strong>on</strong> in CpG c<strong>on</strong>taining cod<strong>on</strong>s suggests functi<strong>on</strong>al role of<br />

intragenic and 3’ CpG islands in human genes<br />

Abstract<br />

CpG islands (CGIs) are usually defined as DNA segments that are l<strong>on</strong>ger than 200 bp, have over 50% of<br />

G+C c<strong>on</strong>tent, and have CpG frequency of at least 0.6 of that statistically expected [1]. Most of the<br />

studies focused <strong>on</strong> CpG islands c<strong>on</strong>sidered CGIs associated with 5' gene regi<strong>on</strong>s. Generally, such<br />

islands are more than 1 kb l<strong>on</strong>g, can cover the promoter, TSS, the first coding ex<strong>on</strong> and have str<strong>on</strong>ger<br />

parameters of G+C c<strong>on</strong>tent and Obs/Exp [2]. The methylati<strong>on</strong> status of such CGIs is believed to<br />

influence the transcripti<strong>on</strong> level of a corresp<strong>on</strong>ding gene.<br />

C<strong>on</strong>trary to the widespread opini<strong>on</strong> <strong>on</strong>ly 50% of CGIs are located near TSS. About 20%<br />

gene‐associated CGIs are disposed in internal and 3’ terminal gene regi<strong>on</strong>s. Internal ex<strong>on</strong>s display less<br />

overlapping with CGIs than ex<strong>on</strong>s in 5’ regi<strong>on</strong>s and to some extend ex<strong>on</strong>s in 3’ regi<strong>on</strong>s of the genes.<br />

CGIs associated with 3’ regi<strong>on</strong> of the gene are more often overlapped with coding ex<strong>on</strong>s than with 3'<br />

UTR [1].<br />

Thus, the questi<strong>on</strong> arises if CGIs overlapping with protein‐coding regi<strong>on</strong>s are in fact the<br />

result of selecti<strong>on</strong> at the protein level. In this work we compared selecti<strong>on</strong> at genome and protein<br />

levels by studying substituti<strong>on</strong> rate between human and mouse orthologs in CpG sites bel<strong>on</strong>ging to 5’‐<br />

assosiated, intragenic and 3’‐assosiated CGIs. To this end we compared the substituti<strong>on</strong> rate in ex<strong>on</strong>s<br />

overlapping and not overlapping with CGIs separately for n<strong>on</strong>‐CpG c<strong>on</strong>taining cod<strong>on</strong>s (the background)<br />

and CpG c<strong>on</strong>taining cod<strong>on</strong>s.<br />

Using dn/ds test we came to the following c<strong>on</strong>clusi<strong>on</strong>s:<br />

1. CpG island decrease the substituti<strong>on</strong> rate in СpG pairs at syn<strong>on</strong>ymous sites approximately<br />

two‐fold.<br />

2. Effect of CGI does not depend <strong>on</strong> the ex<strong>on</strong> locati<strong>on</strong> within the gene: 5’‐assosiated,<br />

intragenic and 3’‐assosiated CGIs protect CpG sites from methylati<strong>on</strong> and probably play the same<br />

regulatory role in gene functi<strong>on</strong>ing.<br />

References:<br />

[1] Gardiner‐Garden, M. & Frommer, M. 1987. CpG islands in vertebrate genomes. J. Mol.Biol. 196,<br />

261–282.<br />

[2] P<strong>on</strong>ger L., Duret L., Mouchiroud D. 2001. Determinants of CpG Islands: Expressi<strong>on</strong> in Early Embryo<br />

and Isochore Structure. Genome Research. 11, 1854–1860.<br />

[3] Ina, Y. 1995. New methods for estimating the numbers of syn<strong>on</strong>ymous and n<strong>on</strong>syn<strong>on</strong>ymous<br />

substituti<strong>on</strong>s. J. Mol. Evol. 40, 190–226.<br />

(This work is a joint study with M.Fridman, N.Oparina, D.Malko, E.Ermankova, I.Kulakovsky, V.Makeev)<br />

Poster number: 26


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 51<br />

Natalia Medvedeva<br />

Graduate Student<br />

Instituti<strong>on</strong> MSU CMC<br />

C<strong>on</strong>tact Address<br />

Street Address Marshala Nedelina 40‐13<br />

Zip /Postal Code 121471<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +79163359813<br />

E‐Mail solnush@gmail.com<br />

Short CV<br />

2003 ‐ present <strong>Moscow</strong> State University, Faculty of Computati<strong>on</strong>al Mathematics and<br />

Cybernetics<br />

Research Interests<br />

Applicati<strong>on</strong> of mathematics to biology<br />

Model Identificati<strong>on</strong><br />

Computati<strong>on</strong>al modelling<br />

Five most important publicati<strong>on</strong>s<br />

Bocharov GA, Medvedeva NA. (2008) Model identificati<strong>on</strong> in immunology: computati<strong>on</strong>al approaches<br />

to sensitivity and informati<strong>on</strong>‐theoretic complexity analyses. In: “Numerical methods, parallel<br />

computing and informati<strong>on</strong> technologies” Eds. Vl.V. Voevodin and E.E.Tyrtyushnikov. MSU: <strong>Moscow</strong> (in<br />

<str<strong>on</strong>g>Russian</str<strong>on</strong>g>)<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Sensitivity analysis of the mathematical model of type I interfer<strong>on</strong> resp<strong>on</strong>se to MHV infecti<strong>on</strong> in mice<br />

Abstract<br />

Sensitivity analysis is an important element in the development of a mathematical model. There are<br />

different approaches for solving this problem. One of them, the Latin hypercube sampling was used for<br />

performing sensitivity analysis of the mathematical model of type I interfer<strong>on</strong> resp<strong>on</strong>se to MHV<br />

infecti<strong>on</strong> in mice. It is a type of stratified M<strong>on</strong>te Carlo sampling. This technique with using partial<br />

correlati<strong>on</strong> coefficients allows to rank the model parameters according their influence <strong>on</strong> output<br />

variables of the model.<br />

Poster number: 27


52 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Eugeniy Metelkin<br />

Instituti<strong>on</strong> (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong> State University<br />

C<strong>on</strong>tact Address<br />

Street Address Leninskie Gory, 1/73, AN Belozerski IPCB <strong>Moscow</strong> State UniversityPCB<br />

Zip /Postal Code 119992<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 783 8718<br />

Fax +7 495 783 87 18<br />

E‐Mail metelkin@insysbio.ru<br />

Website www.insysbio.ru<br />

Short CV<br />

1998‐2004 Faculty of Physics, Biophysical Department, <strong>Moscow</strong> State University<br />

2004‐2007 PhD Courses, Faculty of Physics, Biophysical Department, <strong>Moscow</strong> State<br />

University<br />

2004‐present Institute for <strong>Systems</strong> <strong>Biology</strong> SPb<br />

Research Interests<br />

Research Interests of mine are focused in areas of <strong>Systems</strong> <strong>Biology</strong> and Bioinformatics and scientific<br />

programming with especial focus <strong>on</strong> quantitative descripti<strong>on</strong> of biological processes and their<br />

applicati<strong>on</strong> to biotechnology and biomedicine. Areas of expertise:<br />

Modeling of cellular metabolism<br />

Modeling of gene regulatory networks<br />

Methods and software for c<strong>on</strong>trol of industrial biotechnology processes<br />

Methods and software for drug safety assessment<br />

Methods and software for kinetic modeling<br />

Five most important publicati<strong>on</strong>s<br />

Metelkin E., Goryanin I., Demin O. Mathematical modeling of mitoch<strong>on</strong>drial adenine nucleotide<br />

translocase. Biophys. J (2006) v.90 p.423‐432<br />

Goryanin II, Lebedeva GV, Mogilevskaya EA, Metelkin EA, Demin OV. Cellular kinetic modeling of the<br />

microbial metabolism. Methods Biochem Anal (2006) 49, 437‐488<br />

Demin O.V., Plyusnina T.Y., Lebedeva G.V., Zobova E.A., Metelkin E.A., Kolupaev A.G., Goryanin I.I.,<br />

Tobin F. Kinetic modelling of the E. coli metabolism. IN: Topics in Current Genetics (2005) 31‐67, Eds.<br />

Alberghina L., Westerhoff H.V. , Springer<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Encyclopaedia of stem cells: rec<strong>on</strong>structi<strong>on</strong> of transformati<strong>on</strong> pathways, signaling networks and<br />

predicti<strong>on</strong> of biomarkers<br />

Abstract<br />

This informati<strong>on</strong> system can be used for the following purposes:<br />

1) as the tool for research. The potential users are pharmaceutical companies that work at new drugs<br />

of cancer, osteoporosis, blood diseases; biological, medical and pharmaceutical research institutes;<br />

clinics; stem cells banks.<br />

2) as the guide for the stuff of stem cells companies. The potential users are clinics; pharmaceutical<br />

companies; research institutes; centers of science informati<strong>on</strong> and libraries.<br />

3) as the visualizati<strong>on</strong> tool in e‐commerce. The potential users are the companies that specialized in<br />

selling of stem cells signaling proteins, antibodies of these proteins and different reagents allowing to<br />

detect different states of stem cells.<br />

4) as the tool for students training of biological, medical and pharmacological institutes. The potential<br />

users are biological, medical and pharmacological institutes and libraries.<br />

The main characteristics of informati<strong>on</strong>al system “Stem cells” are:<br />

(a) Originality of the data structure that allows being used it for researches; visualizati<strong>on</strong>s of<br />

intercellular mechanisms and as the guide for the stuff of stem cells companies.<br />

(b) Technology of data collecti<strong>on</strong> and analysis of biological informati<strong>on</strong>. Our technique includes the<br />

methods of intracellular signaling pathways rec<strong>on</strong>structi<strong>on</strong> <strong>on</strong> the base of published experimental data<br />

and the software that handles data automatically for visualizati<strong>on</strong> and modeling of signaling<br />

transducti<strong>on</strong>.<br />

(c) Fullness of the data c<strong>on</strong>cerning stem cells functi<strong>on</strong>ing. This informati<strong>on</strong> includes the biological and<br />

medical aspects of stem cells functi<strong>on</strong>ing.<br />

Poster number: 28


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 53<br />

Prof. Andrey Mir<strong>on</strong>ov<br />

Instituti<strong>on</strong> <strong>Moscow</strong> State Univ. Department of Bioengineering<br />

and Bioinformatics<br />

C<strong>on</strong>tact Address<br />

Street Address Lab. Bldg B, Vorobiovy Gory 1‐73,<br />

Zip /Postal Code 119992<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 939 4331<br />

Fax +7 (495) 939 41 95<br />

E‐Mail mir<strong>on</strong>ov@bioinf.fbb.msu.ru<br />

Short CV<br />

2003‐present Professor, Dept. of Bioengineering and Bioinformatics, <strong>Moscow</strong> State<br />

University, <strong>Moscow</strong>, Russia<br />

2001‐2003 Director of technology <strong>Moscow</strong> office Integrated Genomics Inc., <strong>Moscow</strong>,<br />

Russia<br />

1986‐2001 Head of department of Mathematical Modeling, NIIGenetica, <strong>Moscow</strong>, Russia<br />

1978‐1985 Senior Researcher in dept. of Mathematical Modeling, NIIGenetica, <strong>Moscow</strong>,<br />

USSR<br />

1972‐1978 Junior Researcher in lab.of Optimizati<strong>on</strong> in Mechanics in Institute of Mechanics<br />

Academy of Science USSR<br />

Awards<br />

2007 Baev award, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> acedemy of sciense<br />

Research Interests<br />

Bioinformatics, Comparative genomics, RNA structure, Gene regulati<strong>on</strong><br />

Five most important publicati<strong>on</strong>s<br />

Merkeev IV, Novichkov PS, Mir<strong>on</strong>ov AA. PHOG: a database of supergenomes built from proteome<br />

complements. BMC Evol Biol. 2006 Jun 22;6:52.<br />

Danilova LV, Pervouchine DD, Favorov AV, Mir<strong>on</strong>ov AA. RNAKinetics: a web server that models<br />

sec<strong>on</strong>dary structure kinetics of an el<strong>on</strong>gating RNA. J Bioinform Comput Biol. 2006 Apr;4(2):589‐96.<br />

Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev<br />

VJ, Mir<strong>on</strong>ov AA, Noble WS, Pavesi G, Pesole G, Regnier M, Sim<strong>on</strong>is N, Sinha S, Thijs G, van Helden J,<br />

Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z. Assessing computati<strong>on</strong>al tools for the discovery<br />

of transcripti<strong>on</strong> factor binding sites. Nat Biotechnol. 2005 Jan;23(1):137‐44.<br />

Neverov AD, Artam<strong>on</strong>ova II, Nurtdinov RN, Frishman D, Gelfand MS, Mir<strong>on</strong>ov AA. Alternative splicing<br />

and protein functi<strong>on</strong>. BMC Bioinformatics. 2005 Nov 7;6:266.<br />

Novichkov PS, Omelchenko MV, Gelfand MS, Mir<strong>on</strong>ov AA, Wolf YI, Ko<strong>on</strong>in EV. Genome‐wide molecular<br />

clock and horiz<strong>on</strong>tal gene transfer in bacterial evoluti<strong>on</strong>. J Bacteriol. 2004 Oct;186(19):6575‐85.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(X) a talk<br />

Title of poster / talk<br />

Alternative splicing and sec<strong>on</strong>dary structure of RNA ‐ Systematic computati<strong>on</strong>al study and<br />

experimental verificati<strong>on</strong> of predicti<strong>on</strong>s<br />

Abstract<br />

Pre‐mRNA structure has been reported to impact many cellular processes, including splicing in genes<br />

associated with human disease. In this work we examine intr<strong>on</strong>s of twelve Drosophila species for the<br />

presence of c<strong>on</strong>served complementary motifs capable of forming stable RNA structures. Over 200<br />

intr<strong>on</strong>s with such motifs were identified, suggesting a role for sec<strong>on</strong>dary structures in regulati<strong>on</strong> of<br />

splicing. Indeed, mutati<strong>on</strong>s that decrease base pairing affected splicing efficiency or induced<br />

alternative splicing in 4 of 7 cases tested, while compensatory mutati<strong>on</strong>s that restored base pairing<br />

suppressed these effects. Our results represent a proof of principle that naturally occurring sec<strong>on</strong>dary<br />

structures can be relevant to splicing of many more genes than it is believed currently. Moreover,<br />

without the evoluti<strong>on</strong>ary c<strong>on</strong>servati<strong>on</strong> c<strong>on</strong>straint, the predicted number of intr<strong>on</strong>s capable of forming<br />

stable RNA structures increases up to 7000, raising the intriguing hypothesis that these structures<br />

could actually participate in splicing of every sec<strong>on</strong>d gene in fruit flies.


54 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr Ekaterina Mogilevskaya<br />

Instituti<strong>on</strong> (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong><br />

State University<br />

C<strong>on</strong>tact Address<br />

Street Address Leninskie Gory, 1/73, AN Belozerski IPCB <strong>Moscow</strong><br />

State UniversityPCB<br />

Zip /Postal Code 119992<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 783 8718<br />

Fax +7 495 783 87 18<br />

E‐Mail zobova@genebee.msu.su<br />

Website www.insysbio.ru<br />

Short CV (keywords)<br />

2005‐present Researcher, Institute for <strong>Systems</strong> <strong>Biology</strong> SPb<br />

2007 Ph.D., Biophysical Department, Faculty of <strong>Biology</strong>, <strong>Moscow</strong> State University,<br />

<strong>Moscow</strong>. Title: Theoretical investigati<strong>on</strong> of the Krebs cycle functi<strong>on</strong>ing and<br />

regulati<strong>on</strong> in E.coli and mitoch<strong>on</strong>dria.<br />

2002‐2005 Post‐graduate of Biophysical Department, <strong>Moscow</strong> State University<br />

1996‐2002 Medico‐Biological Faculty, <str<strong>on</strong>g>Russian</str<strong>on</strong>g> State Medical University<br />

Awards<br />

Participati<strong>on</strong> in EU programmes:<br />

Research Interests (3‐5 sentences)<br />

Research Interests of Dr Mogilevskaya are focused in areas of <strong>Systems</strong> <strong>Biology</strong> and Bioinformatics with<br />

especial focus <strong>on</strong> quantitative descripti<strong>on</strong> of biological processes and their applicati<strong>on</strong> to<br />

biotechnology and biomedicine. Areas of expertise:<br />

Modeling of cellular metabolism<br />

Modeling of cell signaling<br />

Pathway rec<strong>on</strong>structi<strong>on</strong><br />

Five most important publicati<strong>on</strong>s<br />

• Mogilevskaya E. A., Lebedeva G. V., Goryanin I. I., Demin O. V. Kinetic model of Escherichia coli<br />

isocitrate dehydrogenase functi<strong>on</strong>ing and regulati<strong>on</strong>. // Biophysics, 2007, 52(1), 47‐56.<br />

• Goryanin II, Lebedeva GV, Mogilevskaya EA, Metelkin EA, Demin OV. Cellular kinetic modeling of<br />

the microbial metabolism. Methods Biochem Anal (2006) 49, 437‐488<br />

• Mogilevskaya E.A., Demin O.V., Goryanin I.I. Kinetic Model of Mitoch<strong>on</strong>drial Krebs Cycle:<br />

Unraveling the Mechanism of Salicylate Hepatotoxic Effects // Journal of Biological Physics. –<br />

2006. ‐ V. 32. ‐ P. 245‐271.<br />

• Demin O.V., Plyusnina T.Y., Lebedeva G.V., Mogilevskaya (Zobova) E.A., Metelkin E.A., Kolupaev<br />

A.G., Goryanin I.I., Tobin F. Kinetic modelling of the E. coli metabolism. IN: Topics in Current<br />

Genetics (2005) 31‐67, Eds. Alberghina L., Westerhoff H.V. , Springer.<br />

• Demin O.V., Lebedeva G.V., Kolupaev A.G., Mogilevskaya (Zobova) E.A., Plyusnina T.Yu., Lavrova<br />

A.I., Dubinsky A., Goryacheva E.A., Tobin F., Goryanin I.I. Kinetic Modelling as a Modern<br />

Technology to Explore and Modify Living Cells // Modelling in Molecular <strong>Biology</strong>. Natural<br />

Computing Series. – Springer, 2004. ‐ P. 59‐103.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare (X) a poster<br />

Title of poster / talk<br />

Applicati<strong>on</strong> of kinetic modeling to understand hepatotoxic effects of salicylate.<br />

Abstract<br />

Liver injury is the serious side effect of the salicylate – an active derivative of aspirin [1]. What are the<br />

mechanisms of salicylate induced hepatotoxicity and how it can be prevented? To answer these<br />

questi<strong>on</strong>s the detailed kinetic model of mitoch<strong>on</strong>drial Krebs cycle is c<strong>on</strong>structed. It is known that<br />

salicylate inhibits mitoch<strong>on</strong>drial energy metabolism. It was shown [2] that in stress c<strong>on</strong>diti<strong>on</strong>s of high<br />

energy demand mitoch<strong>on</strong>dria can switch from tricarboxylic acids to alternative substrates oxidati<strong>on</strong> in<br />

the Krebs cycle. The model describes this stress situati<strong>on</strong> when glutamate, malate and alpha‐<br />

ketoglutarate are the substrates of the Krebs cycle. It was shown <strong>on</strong> the model that the inhibiti<strong>on</strong> of<br />

succinate dehydrogenase and alpha‐ketoglutarate dehydrogenase by salicylate c<strong>on</strong>tributes<br />

substantially to the cumulative inhibiti<strong>on</strong> of the Krebs cycle by salicylate. Whereas the uncoupling of<br />

oxidative phosphorylati<strong>on</strong> and coenzyme A c<strong>on</strong>sumpti<strong>on</strong> in salicylate transformati<strong>on</strong> processes has<br />

little effect <strong>on</strong> the rate of substrate oxidati<strong>on</strong> in the Krebs cycle. It was found that the salicylate‐<br />

inhibited Krebs cycle flux can be increased by flux redirecti<strong>on</strong> in the Krebs cycle through increase of<br />

cytosol glutamate and malate c<strong>on</strong>centrati<strong>on</strong>s and depleti<strong>on</strong> in cytosol alpha‐ketoglutarate and<br />

mitoch<strong>on</strong>drial glycine c<strong>on</strong>centrati<strong>on</strong>s [3].<br />

1. Bjorkman D. N<strong>on</strong>steroidal anti‐inflammatory drug‐associated toxicity of the liver, lower gastrointestinal tract, and<br />

esophagus. 1998. American Journal of Medicine, 105(5A), 17S‐21S.<br />

2. K<strong>on</strong>drashova M.N. Structuro‐kinetic organizati<strong>on</strong> of the tricarboxylic acid cycle in the active functi<strong>on</strong>ing of<br />

mitoch<strong>on</strong>dria. 1989. Biophysics, 34, 450‐458.<br />

3. Mogilevskaya E.A., Demin O.V., Goryanin I.I. Kinetic Model of Mitoch<strong>on</strong>drial Krebs Cycle: Unraveling the<br />

Mechanism of Salicylate Hepatotoxic Effects // Journal of Biological Physics. – 2006. ‐ V. 32. ‐ P. 245‐271.<br />

Poster number: 29


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 55<br />

Dr.rer.nat. Mario S. Mommer<br />

Instituti<strong>on</strong> BIOMS / IWR / Heidelberg University<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 368<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49 – 6221 ‐ 54‐8890<br />

E‐Mail mario.mommer@iwr.uni‐heidelberg.de<br />

Short CV<br />

Undergraduate Mathematics. Merida – Tuebingen – Aachen, until 12.1999<br />

PhD 1.2000‐8.2005, Numerical Analysis<br />

Postdoc 9.2005‐4.2006, Univ. of Utrecht<br />

Postdoc 5.2006‐present, BIOMS Postdoc, Univ. of Heidelberg<br />

Research Interests<br />

Spatiotemporal organizati<strong>on</strong> of cells and cellular processes, in particular Ca2+ signalling in neutrophils,<br />

diffusive transport within cells, and organizati<strong>on</strong> of the cytoskelet<strong>on</strong> and ER. Mathematical methods<br />

for capturing the „exotic“ behaviour typical of complex cellular processes.<br />

Five most important publicati<strong>on</strong>s<br />

M. S. Mommer, A Smoothness Preserving Fictitious Domain Method for Elliptic Boundary Value<br />

Problems. IMA J. of Num. Ana., July 2006.<br />

K. Eppler, H. Harbrecht and M. S. Mommer, A new fictitious domain method in shape optimizati<strong>on</strong>,<br />

Comp. Opt. Appl., October 2007.<br />

M. S. Mommer, D. Lebiedz, Modelling Subdiffusi<strong>on</strong> Using Reacti<strong>on</strong> Diffusi<strong>on</strong> <strong>Systems</strong>, IWR Preprint<br />

7168, February 2007.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( X ) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

A model for submembrane Calcium waves in migrating neutrophils<br />

Abstract<br />

We have put together, from data found in the biological and biophysical literature, a mathematical<br />

model that may explain the localized, submembrane Ca2+ waves that have recently been observed in<br />

migrating neutrophils by Kindzelski and Petty (Journal of Immunology, 2003). In the model, the waves<br />

arise from an interacti<strong>on</strong> between the gating dynamics of voltage gated T‐Type Ca2+ channels, who<br />

have a short active phase and a l<strong>on</strong>g refractory <strong>on</strong>e, and the local depolarizati<strong>on</strong> caused by Ca2+ influx.<br />

We find that this model features traveling pulses am<strong>on</strong>g its soluti<strong>on</strong>s, and furthermore, that it<br />

reproduces the reflecti<strong>on</strong> behaviour observed when two pulses collide. All relevant parameters are<br />

within the ranges found in the literature.<br />

Poster number: 30


56 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

PD Dr. Margareta Mueller<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ)<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 280<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐6221‐424533<br />

Fax +49‐6221‐424551<br />

E‐Mail Ma.mueller@dkfz.de<br />

Website<br />

Short CV<br />

1982‐1984 University Saarland, <str<strong>on</strong>g>German</str<strong>on</strong>g>y, Biol. Sciences<br />

1984‐1987 Albert Ludwigs University Freiburg, <str<strong>on</strong>g>German</str<strong>on</strong>g>y, Masters Degree, Biol. Sciences<br />

1988‐ 1992 PhD University of California at Irvine, USA<br />

1992‐1995 Postdoctoral fellow, german Cancer Research Center (DKFZ), Heidelberg,<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

1995‐2004 Research group leader in the divisi<strong>on</strong> of Carcinogennesis and Differentiati<strong>on</strong>,<br />

DKFZ, Heidelbreg <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

1999 Visiting scientist Istituto di Mutagenesi e Differenziamento, Pisa, Italy<br />

2001 Appointment as C3‐Professor, University of applied sciences Hamburg,<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

2004/2005 Habilitati<strong>on</strong>/Venia legendi in tumor biology, Heidelberg, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

since 2004 Leader of the independent research group. Tumor and Microenvir<strong>on</strong>ment,<br />

DKFZ, Heidelberg, <str<strong>on</strong>g>German</str<strong>on</strong>g>y (12 coworkers)<br />

Awards<br />

1988‐1990 PhD scholarship german Academic Exchange Service<br />

1990‐1992 PhD scholarship, State of California<br />

1992‐1993 Research Scholarship European Uni<strong>on</strong><br />

2001 travel award of the EACR<br />

2003 NIH travel award (Gord<strong>on</strong> C<strong>on</strong>ference)<br />

Research Interests<br />

Growth factor networks in tumor stroma interacti<strong>on</strong><br />

Il‐6 signal transducti<strong>on</strong> in tumor and stromal cells<br />

Functi<strong>on</strong>al c<strong>on</strong>necti<strong>on</strong> between Inflammati<strong>on</strong>, angiogenesis and tumor progressi<strong>on</strong><br />

Five most important publicati<strong>on</strong>s<br />

Kiessling F., Greschus S., Lichy M.P., Bock M., Fink C., Vosseler S., Moll J., Mueller M.M., Fusenig N.E.,<br />

Traupe H., Semmler W. Volumetric Computed Tomography (VCT): A Novel Technology for N<strong>on</strong>‐<br />

Invasive High Resoluti<strong>on</strong> M<strong>on</strong>itoring of Tumor Angiogenesis. Nature Med 2004; 10:1133‐1138<br />

Mueller M.M. Fusenig N.E. Friends or foes: Bipolar effects of the tumor stroma in cancer growth and<br />

regressi<strong>on</strong>. Nature Rev Cancer 2004; 4(11):839‐49.<br />

Obermueller E., Vosseler S., Fusenig N.E., Mueller M.M. Co‐operative auto‐ and paracrine functi<strong>on</strong>s of<br />

G‐CSF and GM‐CSF in promoting tumor progressi<strong>on</strong> of skin carcinoma cells. Cancer Res 64(21):7801‐12,<br />

(2004).<br />

Mueller M.M. Inflammati<strong>on</strong> in epithelial skin tumors: Old stories and new ideas. Eur J Cancer<br />

2006;42(6):735‐44<br />

Gutschalk C.M. , Herold‐Mende C., Fusenig N.E., Mueller M.M. G‐CSF and GM‐CSF promote malignant<br />

growth in sqaumous cell carcinomas of the head and neck. Cancer Res 2006; 66: 8026‐36


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 57<br />

Dr. Angela Oberthür<br />

Instituti<strong>on</strong> BIOQUANT –University of Heidelberg<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 267<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐6221‐54‐51204<br />

Fax +49‐6221‐54‐51438<br />

E‐Mail angela.oberthuer@bioquant.uni‐heidelberg.de<br />

Website http://www.bioquant.uni‐heidelberg.de/<br />

Short CV<br />

2002 PhD at Darmstadt University<br />

2002‐2003 Princet<strong>on</strong> University Press, Princet<strong>on</strong> NJ, USA<br />

2003‐2004 <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center, Heidelberg<br />

Scientific Assistant to the Chairman of the Management Board<br />

2004‐2007 <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center , Heidelberg<br />

Head of Divisi<strong>on</strong> Strategy Planning and Program Coordinati<strong>on</strong><br />

Since 04/2007 BIOQUANT, Heidelberg University<br />

Managing Director<br />

Research Interests<br />

BIOQUANT the recently established Center for "Quantitative analysis of molecular and cellular bio<br />

systems" at the University of Heidelberg is the first research center in <str<strong>on</strong>g>German</str<strong>on</strong>g>y solely dedicated to<br />

<strong>Systems</strong> <strong>Biology</strong>.<br />

It is the central building of the interdisciplinary research network BIOQUANT that integrates system<br />

biology research dispersed over the various university and n<strong>on</strong>‐university research centers at<br />

Heidelberg campus. It unites experimental scientists and theoreticians under <strong>on</strong>e roof, and its<br />

objective is to represent a platform for the c<strong>on</strong>stant refinement of models and the swift validati<strong>on</strong> of<br />

scientific hypotheses via experimental data.<br />

Currently, projects of four prestigious research c<strong>on</strong>sortia are accommodated at BIOQUANT, namely<br />

FORSYS‐VIROQUANT funded by BMBF, the public‐ private‐partnership program BioMS, the excellence<br />

cluster CellNetworks funded by the DFG as well as parts of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> program <strong>Systems</strong> <strong>Biology</strong> of<br />

Cancer (SBCancer).<br />

BIOQUANT's research program c<strong>on</strong>sists of four distinct but closely interc<strong>on</strong>nected project areas<br />

dedicated to the investigati<strong>on</strong> of protein machines‐ biogenesis, interacti<strong>on</strong> and regulati<strong>on</strong>; dynamics of<br />

cell architecture; informati<strong>on</strong> processing in complex multi‐cellular networks and alterati<strong>on</strong> of networks<br />

by infectious pathogens.<br />

A central technology platform at BIOQUANT is providing advanced computati<strong>on</strong>al methods and tools<br />

for data analysis, visualizati<strong>on</strong> and modeling as well as cutting edge technologies and equipment for<br />

quantitative analysis.


58 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Kirill Peskov<br />

Instituti<strong>on</strong> (1) Institute for <strong>Systems</strong> <strong>Biology</strong> SPb (2) <strong>Moscow</strong><br />

State University<br />

C<strong>on</strong>tact Address<br />

Street Address Leninskie Gory, 1/73, AN Belozerski IPCB <strong>Moscow</strong><br />

State UniversityPCB<br />

Zip /Postal Code 119992<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 783 8718<br />

Fax +7 495 783 87 18<br />

E‐Mail kirillpeskov@gmail.com<br />

Website www.insysbio.ru<br />

Short CV<br />

2004‐present Research Scientist, Institute for <strong>Systems</strong> <strong>Biology</strong> SPb<br />

2004–2007 Post‐graduated Student, Institute of Theoretical and Experimental Biophysics<br />

<str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Science, Pushchino, <strong>Moscow</strong> Regi<strong>on</strong>, Russia.<br />

1999‐2004 Student, Biophysical Department, Faculty of <strong>Biology</strong>, <strong>Moscow</strong> State University<br />

Awards<br />

Participati<strong>on</strong> in EU programmes:<br />

Research Interests<br />

Research Interests of Mr. Peskov are focused in areas of <strong>Systems</strong> <strong>Biology</strong> and Bioinformatics and<br />

scientific programming with especial focus <strong>on</strong> quantitative descripti<strong>on</strong> of biological processes and their<br />

applicati<strong>on</strong> to biotechnology and biomedicine. Areas of expertise:<br />

Modeling of cellular metabolism<br />

Modeling of cell signaling<br />

Modeling of gene regulatory networks<br />

Pathway rec<strong>on</strong>structi<strong>on</strong><br />

Methods and software for c<strong>on</strong>trol of industrial biotechnology processes<br />

Methods and software for drug safety assessment<br />

Methods and software for kinetic modeling<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare (X ) a poster<br />

Title of poster / talk<br />

Kinetic modeling of Escherichia coli central carb<strong>on</strong> metabolism.<br />

Abstract<br />

The understanding of a complex network of genetic and metabolic regulati<strong>on</strong>s is a great challenge of<br />

system study of Escherichia coli metabolism. Indeed, it is rather difficult to estimate the c<strong>on</strong>tributi<strong>on</strong> of<br />

different types of regulati<strong>on</strong>s to intracellular dynamics <strong>on</strong> the <strong>on</strong>e hand and, <strong>on</strong> the other, to<br />

understand the role of all possible interacti<strong>on</strong>s between metabolic and genetic networks. One of the<br />

ways to cope with the problems is to use the kinetic modeling approach to integrate different types of<br />

experimental data and understand more about regulatory behavior of the intracellular system [1‐3].<br />

Additi<strong>on</strong>ally, kinetic modeling allows us to simulate interacti<strong>on</strong>s between metabolic and genetic<br />

networks and predict complex dynamic behavior, which is typical for central carb<strong>on</strong> Escherichia coli<br />

metabolism. The main idea of our approach is a detailed mechanistic descripti<strong>on</strong> of all elementary<br />

biochemical interacti<strong>on</strong>s, e. g. rate equati<strong>on</strong>s of single enzymes, elements of metabolic and genetic<br />

regulati<strong>on</strong>s [4‐6]. This significantly increases the predictive power of in silico modeling and extends the<br />

possible range of applicati<strong>on</strong>s [4].<br />

The aims of this investigati<strong>on</strong> could be briefly formulated in the following way:<br />

Pathway rec<strong>on</strong>structi<strong>on</strong> of central carb<strong>on</strong> metabolism and its metabolic and genetic regulati<strong>on</strong><br />

networks<br />

Development of kinetic model<br />

Detail mathematical descripti<strong>on</strong> of each elementary step of the model (rates of reacti<strong>on</strong> of the<br />

individual enzymes, elements of metabolic and genetic regulati<strong>on</strong>).<br />

Maximal level of model verificati<strong>on</strong> with different types of experimental data (both in vitro and in<br />

vivo).<br />

Model analysis and predicti<strong>on</strong>s.<br />

During these work we have obtained several interesting predicti<strong>on</strong> about functi<strong>on</strong>ing of central carb<strong>on</strong><br />

Escherichia coli metabolism c<strong>on</strong>cerning metabolic and genetic regulati<strong>on</strong> of this pathway.<br />

References:<br />

1. M. Santillan and M. C. Mackey, "Influence of catabolite repressi<strong>on</strong> and inducer exclusi<strong>on</strong> <strong>on</strong> the<br />

bistable behavior of the lac oper<strong>on</strong>.," Biophys J. 86, 1282‐1292 (2004).<br />

2. C. Chassagnole, N. Noisommit‐Rizzi, J. W. Schmid, K. Mauch and M. Reuss, "Dynamic modeling of<br />

the central carb<strong>on</strong> metabolism of Escherichia coli," Biotechnol Bioenerg. 79, 53‐73 (2002).<br />

3. M. M. Altintas, C. K. Eddy, M. Zhang, J. D. McMillan and D. S. Kompala, "Kinetic modeling to<br />

optimize pentose fermentati<strong>on</strong> in Zymom<strong>on</strong>as mobilis.," Biotechnol Bioenerg 94, 273‐295 (2006).<br />

4. I. I. Goryanin, G. V. Lebedeva, E. A. Mogilevskaya, E. A. Metelkin and O. V. Demin, "Cellular kinetic<br />

modeling of the microbial metabolism. ," Methods Biochem Anal 49, 437‐488 (2006).<br />

5. E. Mogilevskaya, I. I. Goryanin and O. V. Demin, "Kinetic model of mitoch<strong>on</strong>drial Krebs cycle:<br />

unraveling the mechanism of salicylate hepatotoxic effects," J Biol Phys. 32, 245–271 (2006).<br />

6. E. Metelkin, I. Goryanin and O. Demin, "Mathematical Modeling of Mitoch<strong>on</strong>drial Adenine<br />

Nucleotide Translocase," Biophys J. 90, 423‐432 (2006).<br />

Poster number: 32


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 59<br />

Prof. Dr. Vladimir Poroikov<br />

Instituti<strong>on</strong> Institute of Biomedical Chemistry RAMS<br />

C<strong>on</strong>tact Address<br />

Street Address Pogodinskaya Str., 10<br />

Zip /Postal Code 119121<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 245‐2753<br />

Fax +7 495 245‐0857<br />

E‐Mail vladimir.poroikov@ibmc.msk.ru<br />

Website http://ibmc.msk.ru/en/departments/drug_design/<br />

Short CV<br />

2000 Professor (Biochemistry), High Attestati<strong>on</strong> Comissi<strong>on</strong> of Russia<br />

1995 D.Sci. Degree (Pharmacology), NRC BAC<br />

1981 Ph.D. Degree (Biophysics), MSU<br />

1998 ‐ present Vice‐Director (Research), Institute of Biomdical Chemistry of Rus. Acad. Med.<br />

Sci. (IBMC), <strong>Moscow</strong>, Russia<br />

1995 ‐ present Head of Laboratory for Structure‐Functi<strong>on</strong> Based Drug Design, IBMC<br />

1996 ‐ present Professor, Medical & Biological Faculty of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> State Medical University,<br />

<strong>Moscow</strong>, Russia<br />

1974 ‐ 1995 Nati<strong>on</strong>al Recearch Center for Biologically Active Compounds (NRC BAC),<br />

Staraya Kupavna, <strong>Moscow</strong> Regi<strong>on</strong>, Russia (the last positi<strong>on</strong> – Head of<br />

Department for Drug Design and Marketing)<br />

1968 ‐ 1974 Student, Physical Faculty, The M.V. Lom<strong>on</strong>osov <strong>Moscow</strong> State University<br />

(MSU), Russia<br />

Awards<br />

2005 Diploma of Cambridge Biographic Institute (Leading Scientist in Bioinformatics<br />

and Computer‐Aided Drug Discovery)<br />

2004 Diploma of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Medical Sciences<br />

2001‐2003 Special Stipend for Outstanding <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Scientists awarded by the <str<strong>on</strong>g>Russian</str<strong>on</strong>g><br />

Academy of Sciences<br />

2001 Gold Medal “For Scientific Partnerships”<br />

1997 Medal "850 Years of <strong>Moscow</strong>"<br />

1968 Gold Medal <strong>on</strong> School Graduati<strong>on</strong><br />

Research Interests<br />

Bioinformatics, chemoinformatics, molecular modelling, (Q)SAR/(Q)SPR, computer‐aided drug<br />

discovery, systems biology.<br />

Five most important publicati<strong>on</strong>s<br />

Poroikov V., Filim<strong>on</strong>ov D., Lagunin A., Gloriozova T., Zakharov A. (2007). PASS: Identificati<strong>on</strong> of<br />

probable targets and mechanisms of toxicity. SAR & QSAR in Envir<strong>on</strong>mental Research., 18 (1‐2), 101‐<br />

110.<br />

Fomenko A.E., Filim<strong>on</strong>ov D.A., Sobolev B.N., Poroikov V.V. (2006). New approach to predict enzyme<br />

functi<strong>on</strong> without the alignment. OMICS: A Journal of Integrative <strong>Biology</strong>, 10 (1), 56‐65.<br />

Filim<strong>on</strong>ov D.A., Poroikov V.V. (2005). Why relevant chemical informati<strong>on</strong> cannot be exchanged without<br />

disclosing structures. J. Comput.‐Aided Mol. Design, 19 (9‐10), 705‐713.<br />

Ger<strong>on</strong>ikaki A., Dearden J., Filim<strong>on</strong>ov D., Galaeva I., Garibova T., Gloriozova T., Krajneva V., Lagunin A.,<br />

Macaev F., Molodavkin G., Poroikov V., Pogrebnoi S., Shepeli F., Vor<strong>on</strong>ina T., Tsitlakidou M., Vlad L.<br />

(2004). Design of new cogniti<strong>on</strong> enhancers: from computer predicti<strong>on</strong> to synthesis and biological<br />

evaluati<strong>on</strong>. J. Med. Chem., 47 (11), 2870‐2876.<br />

Poroikov V.V., Filim<strong>on</strong>ov D.A., Borodina Yu. V., Lagunin A.A., Kos A. (2000). Robustness of biological<br />

activity spectra predicting by computer program PASS for n<strong>on</strong>‐c<strong>on</strong>generic sets of chemical compounds.<br />

J. Chem. Inform. Comput. Sci., 40 (6), 1349‐1355.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(X) a talk<br />

Title of poster / talk<br />

Bio‐ and chemoinformatics of multitargeted anticancer drugs<br />

Abstract<br />

Due to the progress in postgenomic studies it became obvious that many diseases have a complex<br />

etiology, and the multitargeted drug c<strong>on</strong>cept appears, according which such remedies have some<br />

advantages comparing to the m<strong>on</strong>otargeted medicines. Discovery of new multitargeted drugs can be<br />

made by predicti<strong>on</strong> of biological activity spectra with computer system PASS, which predicts more<br />

than 3,000 biological activity types and molecular mechanisms of acti<strong>on</strong> with average accuracy about<br />

95%. Potential of bioinformatics and computer‐aided drug discovery methods in definiti<strong>on</strong> of<br />

prospective sets of particular molecular targets and identificati<strong>on</strong> of lead substances for future<br />

anticancer multitargeted drugs in the databases of available chemical compound samples will be<br />

discussed.This work is supported by FP6 (LSHB‐CT‐2007‐037590 ‐ Net2Drug, ISTC/BTEP (3197/111),<br />

RFBR (05‐07‐90123, 06‐03‐08077, 06‐03‐39015).


60 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Ksenia Pougach<br />

Undergraduate student<br />

Instituti<strong>on</strong> IMG RAS<br />

C<strong>on</strong>tact Address<br />

Street Address 2 Kurchatov Sq.<br />

Zip /Postal Code 123182<br />

City Moskow<br />

Country Russia<br />

Ph<strong>on</strong>e 8 909 622 78 14<br />

E‐Mail xenik‐alt@mail.ru<br />

Short CV<br />

Pers<strong>on</strong>al Born December 17 th , 1985, Russia, Single<br />

Citizenship Russia<br />

Current positi<strong>on</strong> Student at <strong>Moscow</strong> State University<br />

Address Russia, 119991, <strong>Moscow</strong>, Leninskie gori, MSU, 1 build.12<br />

Ph<strong>on</strong>e (7)(495)196‐02‐15<br />

E‐mail xenik‐alt@mail.ru<br />

Educati<strong>on</strong> M.S., Molecular <strong>Biology</strong>, 2008, <strong>Moscow</strong> State University, Russia<br />

Research Interests<br />

Transcripti<strong>on</strong> regulati<strong>on</strong> in prokariotes<br />

Microarrays<br />

RNAP<br />

Bacteriophages<br />

RNAi<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

a poster<br />

Title of poster / talk<br />

Comparative analysis of gene expressi<strong>on</strong> strategy in T‐even phages<br />

Abstract<br />

Our l<strong>on</strong>g‐term goal is to understand the functi<strong>on</strong> and regulati<strong>on</strong> of cellular DNA‐dependent RNA<br />

polymerase (RNAP) in molecular detail. Bacterial viruses‐‐phages‐‐evolved elaborate mechanisms to<br />

regulate host transcripti<strong>on</strong> to make it serve the needs of the virus. The variety of phages and the<br />

number of regulatory mechanisms that they evolved exceeds the variety of bacterial regulatory<br />

mechanisms by orders of magnitude. Phage regulatory systems are usually compact, robust, and<br />

efficient (i.e., phage‐encoded proteins are small, they interact with host RNAP tightly, and their<br />

regulatory effects are str<strong>on</strong>g). The goal of this research is to uncover phage‐induced modificati<strong>on</strong>s of<br />

bacterial host RNAP, to study them in vitro, and to determine the role of these modificati<strong>on</strong>s in viral<br />

development. In vitro, RNAP sites that are targeted by phage regulators will be identified and the<br />

mechanisms of acti<strong>on</strong> of phage regulators will be determined using discriminatory biochemical assays.<br />

In vivo, genetic and genomic approaches will be used to understand the biological c<strong>on</strong>sequences of<br />

RNAP modificati<strong>on</strong>s by phage‐encoded factors. Comparative analysis of transcripti<strong>on</strong> regulati<strong>on</strong> in<br />

several relatives of T4, a classical phage known to rely <strong>on</strong> extensive modificati<strong>on</strong> of host RNAP by<br />

phage‐encoded proteins for expressi<strong>on</strong> of phage genes, will be performed. The goal is to determine<br />

how T4 relatives that lack transcripti<strong>on</strong> factors that are essential for T4 development express their<br />

genes in a coordinate manner.<br />

Poster number: 33


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 61<br />

Dr. Vasily Ramensky<br />

Instituti<strong>on</strong> Engelhardt Institute of Molecular <strong>Biology</strong> of<br />

<str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of Sciences<br />

C<strong>on</strong>tact Address<br />

Street Address Vavilova, 32<br />

Zip /Postal Code 119991<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7‐499‐135‐6000<br />

Fax +7‐499‐135‐1405<br />

E‐Mail ramensky@imb.ac.ru<br />

Website http://www.imb.ac.ru/~ramensky/<br />

Short CV<br />

Bioinformatics; systems biology; molecular evoluti<strong>on</strong>; drug design; protein<br />

structure and functi<strong>on</strong><br />

Awards<br />

2002‐2003 V.A.Engelhardt award for young scientists; EIMB RAS<br />

2006‐2007 "Human molecular Polymorphism" grant program from <str<strong>on</strong>g>Russian</str<strong>on</strong>g> Academy of<br />

Sciences; principal investigator<br />

Research Interests<br />

Predicti<strong>on</strong> of functi<strong>on</strong>al effect of amino acid variati<strong>on</strong> in proteins: PolyPhen (Polymorphism<br />

Phenotyping)<br />

Computati<strong>on</strong>al drug design<br />

Protein structure and evoluti<strong>on</strong><br />

Compositi<strong>on</strong>al analysis of DNA sequences: BASIO (Bayesian Approach to Sequence segmentatIOn)<br />

Five most important publicati<strong>on</strong>s<br />

1. S.R.Sunyaev, V.E.Ramensky, P.Bork. (2000) Towards a structural basis of human n<strong>on</strong>‐syn<strong>on</strong>ymous<br />

single nucleotide polymorphisms. Trends Genet, Vol.16, No.5, pp. 198‐200.<br />

2. V.E.Ramensky, V.Ju.Makeev, M.A.Roytberg, V.G.Tumanyan (2001) Segmentati<strong>on</strong> of l<strong>on</strong>g genomic<br />

sequences into domains with homogeneous compositi<strong>on</strong> with BASIO software. Bioinformatics, Vol.17,<br />

No.11, pp.1065‐1066.<br />

3 V.Ramensky, P.Bork, S.Sunyaev (2002) Human n<strong>on</strong>‐syn<strong>on</strong>ymous SNPs: server and survey. Nucleic<br />

Acids Res., Vol. 30, pp.3894‐3900.<br />

4.V. Ramensky, A. Sobol, N. Zaitseva, A.Rubinov, V.Zosimov (2007) A novel approach to local similarity<br />

of protein binding sites substantially improves computati<strong>on</strong>al drug design results. Proteins. Vol 69,<br />

pp.349‐357<br />

5. E. Reuveni, V.Ramensky, C.Gross (2007) Mouse SNP Miner: an annotated database of mouse<br />

functi<strong>on</strong>al single nucleotide polymorphisms. BMC Genomics. Vol. 8, pp.24.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Computati<strong>on</strong>al drug design based <strong>on</strong> a novel approach to local similarity of protein binding sites<br />

Abstract<br />

We present a novel noti<strong>on</strong> of binding site local similarity based <strong>on</strong> the analysis of complete protein<br />

envir<strong>on</strong>ments of ligand fragments. Comparis<strong>on</strong> of a query protein binding site (target) against the 3D<br />

structure of another protein (analog) in complex with a ligand enables ligand fragments from the<br />

analog complex to be transferred to positi<strong>on</strong>s in the target site, so that the complete protein<br />

envir<strong>on</strong>ments of the fragment and its image are similar. The revealed envir<strong>on</strong>ments are similarity<br />

regi<strong>on</strong>s and the fragments transferred to the target site are c<strong>on</strong>sidered as binding patterns. The set of<br />

such binding patterns derived from a database of analog complexes forms a cloud‐like structure<br />

(fragment cloud), which is a powerful tool for computati<strong>on</strong>al drug design. It has been shown <strong>on</strong><br />

independent test sets that applicati<strong>on</strong> of fragment clouds to self‐docking and screening dramatically<br />

improves the results and enables reliable reproducti<strong>on</strong> of experimental ligand optimizati<strong>on</strong> results.<br />

Poster number: 34


62 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Babette Regierer<br />

Instituti<strong>on</strong> University of Potsdam<br />

C<strong>on</strong>tact Address<br />

Street Address Karl‐Liebknecht‐Str. 24‐25, House 20<br />

Zip /Postal Code 14476<br />

City Potsdam‐Golm<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49 331 977 2811<br />

Fax +49 331 977 70 2811<br />

E‐Mail regierer@uni‐potsdam.de<br />

Website www.forsys.de<br />

Short CV<br />

1994‐1997 PhD at Max Planck Institute for Molecular Plant Physiology (Potsdam)<br />

1997‐2000 Postdoc in EU‐Project ““Phosphate and Crop Productivity” (Potsdam)<br />

2000‐2001 Coordinator of the “Interdisciplinary Network for Human Genome Research”<br />

(Berlin)<br />

2002‐2003 Scientific Manager at Max Planck Institute for molecular Genetics (Berlin) in<br />

Dep. Vertebrate Genomics of Prof. Hans Lehrach<br />

2003‐2007 Scientific Coordinator of the Interdisciplinary Center “Advanced Protein<br />

Technologies” at University of Potsdam<br />

2008‐ Scientific Manager of the Program “FORSYS – Research Units for <strong>Systems</strong><br />

<strong>Biology</strong>” in <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Research Interests<br />

<strong>Systems</strong> <strong>Biology</strong> in different model systems (human, animals, plants and microorganisms) and<br />

technology development.<br />

Five most important publicati<strong>on</strong>s<br />

Geigenberger P, Regierer B, Nunes‐Nesi A, Leisse A, Urbanczyk‐Wochniak E, Springer F, van D<strong>on</strong>gen JT,<br />

Kossmann J, Fernie AR (2005) Inhibiti<strong>on</strong> of de novo pyrimidine synthesis in growing potato tubers leads<br />

to a compensatory stimulati<strong>on</strong> of the pyrimidine salvage pathway and a subsequent increase in<br />

biosynthetic performance. Plant Cell. 17(7):2077‐88. Epub 2005 Jun 10.<br />

Zimmermann P, Kossmann J, Frossard E, Amrhein N, Bucher M (2004) Differential expressi<strong>on</strong> of three<br />

purple acid phosphatases from potato. Plant Biol (Stuttg) 6(5), 519‐28<br />

Geigenberger P, Regierer B, Lytovchenko A, Leisse A, Schauer N, Springer F, Kossmann J, Fernie AR<br />

(2004) Heterologous expressi<strong>on</strong> of a ketohexokinase in potato plants leads to inhibited rates of<br />

photosynthesis, severe growth retardati<strong>on</strong> and abnormal leaf development. Planta 218(4), 569‐78<br />

Regierer B, Fernie AR, Springer F, Perez‐Melis A, Leisse A, Koehl K, Willmitzer L, Geigenberger P,<br />

Kossmann J (2002) Starch c<strong>on</strong>tent and yield increase as a result of altering adenylate pools in<br />

transgenic plants. Nat Biotechnol Dec, 20(12):1256‐60<br />

van Voorthuysen, T, Regierer, B, Springer, F, Dijkema, C, Vreugdenhil, D, Kossmann, J, (2000)<br />

Introducti<strong>on</strong> of polyphosphate as a novel phosphate pool in the chloroplast of transgenic potato plants<br />

modifies carbohydrate partiti<strong>on</strong>ing. J. Biotech., 77, 65‐80<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

“FORSYS – Research Units for <strong>Systems</strong> <strong>Biology</strong>”<br />

A new research program for <strong>Systems</strong> <strong>Biology</strong> in <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Abstract<br />

The <str<strong>on</strong>g>German</str<strong>on</strong>g> Federal Ministry of Educati<strong>on</strong> and Research (BMBF) has launched a new initiative for<br />

<strong>Systems</strong> <strong>Biology</strong> "FORSYS ‐ Research Units <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong>" to complement the existing research<br />

programs in <str<strong>on</strong>g>German</str<strong>on</strong>g>y. The FORSYS centers enable the networking of relevant scientific areas under<br />

<strong>on</strong>e roof and in close c<strong>on</strong>necti<strong>on</strong> to the regi<strong>on</strong>al cooperating instituti<strong>on</strong>s which together form the<br />

intellectual and technological basis. The centers at the locati<strong>on</strong>s of Freiburg, Heidelberg, Magdeburg<br />

and Potsdam started the work in 2007. One focal point of the FORSYS programme is the promoti<strong>on</strong> of<br />

young talented researchers by establishment of junior research groups as an excellent basis for future<br />

careers in <strong>Systems</strong> <strong>Biology</strong>. For early stage researchers the FORSYS units offer dedicated master<br />

courses and structured doctoral programs in <strong>Systems</strong> <strong>Biology</strong>.<br />

Poster number: 35


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 63<br />

Se<strong>on</strong>g‐Hwan Rho, Ph.D<br />

Instituti<strong>on</strong> Freiburg Center for Data Analysis and Modeling<br />

(FDM)<br />

C<strong>on</strong>tact Address<br />

Street Address Hermann‐Herder‐Str. 3A<br />

Zip /Postal Code 79104<br />

City Freiburg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49 761 203 8539<br />

Fax +49 761 203 8539<br />

E‐Mail shrho@fdm.uni‐freiburg.de<br />

Short CV<br />

2007‐present Postdoc, <strong>Systems</strong> biology, FDM, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

2005‐2007 Postdoc, <strong>Systems</strong> biology, Sytems <strong>Biology</strong> Institute, Korea<br />

1998‐2005 Ph.D., Structural biology, Gwangju Institute of Science and Technology, Korea<br />

1996‐1998 M.S., Electrophysiology. Gwangju Institute of Science and Technology, Korea<br />

1991‐1996 B.S., Electrical engineering, Seoul Nati<strong>on</strong>al University, Korea<br />

Research Interests<br />

<strong>Systems</strong> biology of eukaryotic systems, quantitative modeling of cellular signaling and experimental<br />

design<br />

Bioinformatics and statistical analysis, network inference of transcriptomics and proteomics data<br />

Protein structure modeling and design; i<strong>on</strong> channels, proteases<br />

Five most important publicati<strong>on</strong>s<br />

Rho, S.H., Park, H.H., Kang, G.B., Im, Y.J., Kang, M.S., Lim, B.K., Se<strong>on</strong>g, I.S., Seol, J., Chung, C.H., Wang,<br />

J., et al. (2007). Crystal structure of Bacillus subtilis CodW, a n<strong>on</strong>can<strong>on</strong>ical HslV‐like peptidase with an<br />

impaired catalytic apparatus. Proteins. (in press)<br />

H<strong>on</strong>g, S.E., Rho, S.H., Yeom, Y.I., and Kim do, H. (2006). HCNet: a database of heart and calcium<br />

functi<strong>on</strong>al network. Bioinformatics 22, 2053‐2054. (co‐first author)<br />

Lee, E.H., Rho, S.H., Kw<strong>on</strong>, S.J., Eom, S.H., Allen, P.D., and Kim do, H. (2004). N‐terminal regi<strong>on</strong> of<br />

FKBP12 is essential for binding to the skeletal ryanodine receptor. J Biol Chem 279, 26481‐26488.<br />

Rho, S., Lee, H.M., Lee, K., and Park, C. (2000). Effects of mutati<strong>on</strong> at a c<strong>on</strong>served N‐glycosylati<strong>on</strong> site<br />

in the bovine retinal cyclic nucleotide‐gated i<strong>on</strong> channel. FEBS Lett 478, 246‐252.<br />

Rho, S.H., and Park, C.S. (1998). Extracellular prot<strong>on</strong> alters the divalent cati<strong>on</strong> binding affinity in a cyclic<br />

nucleotide‐gated channel pore. FEBS Lett 440, 199‐202.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Tracing down the EpoR mediated pathway in the hematopoietic system<br />

Abstract<br />

The serine/thre<strong>on</strong>ine protein kinase Akt/PKB downstream of erythropoietin receptor (EpoR) plays an<br />

important role in red blood cell development by c<strong>on</strong>trolling proliferati<strong>on</strong> and differentiati<strong>on</strong> of<br />

erythroid progenitor cells. Previous studies have identified multiple pathways involved in EpoR‐Akt<br />

signaling, being the PI3‐kinase as a major and direct activator of Akt al<strong>on</strong>g with possible or indirect<br />

c<strong>on</strong>tributi<strong>on</strong>s from other proteins, such as Gab2, K‐ras, and IRS‐2, etc. The detailed c<strong>on</strong>tributi<strong>on</strong> by<br />

each signaling molecule, however, is yet to be established.<br />

The goal of our study is to understand the detailed Akt activati<strong>on</strong> mechanism in the hematopoietic<br />

system up<strong>on</strong> EpoR stimulati<strong>on</strong> by utilizing a data‐based quantitative modeling approach. To this end,<br />

the quantitative informati<strong>on</strong> of signaling proteins in the EpoR signal transducti<strong>on</strong> was obtained<br />

experimentally from two distinct cellular systems; BaF3 cell line, a murine pro B cell line lacking EpoR<br />

and dependent <strong>on</strong> Interleukin‐3 (IL‐3) for growth, and CFU‐E cells, murine fetal liver erythroid<br />

progenitors with highly expressed EpoRs that undergo normal terminal proliferati<strong>on</strong> and<br />

differentiati<strong>on</strong>.<br />

Attenuati<strong>on</strong> of the activated Akt was observed <strong>on</strong>ly in BaF3 cells expressing ectopic EpoRs, but not in<br />

CFU‐E cells. BaF3 cells have higher amount of PTEN and SHIP1 proteins that are known as negative<br />

feedback regulators of PI3‐kinase pathway. Our model including PTEN or SHIP1 could successfully<br />

explain the quantitative difference in Akt activati<strong>on</strong> between BaF3 and CFU‐E cells and, thus, supports<br />

the existence of negative feedback regulati<strong>on</strong> of PI3K activity in the hematopoietic system, too.<br />

The traditi<strong>on</strong>al model assuming that PI3K accounts for most of the activati<strong>on</strong> of Akt was failed to fit<br />

the experimental data obtained from BaF‐3 cells with a series of mutant EpoRs. A new model including<br />

a feedforward loop to amplify the signal through PI3K is proposed and it is now under testing by<br />

experiments.<br />

http://web.mit.edu/ccr/faculty/pages/lodish.htm<br />

Poster number: 36


64 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Carlos Salazar<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center (DKFZ)<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 280 (B086)<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49 6221 54 51383<br />

Fax +49 6221 54 51487<br />

E‐Mail c.salazar@dkfz‐heidelberg.de<br />

Short CV<br />

2007‐ Postdoc at the <str<strong>on</strong>g>German</str<strong>on</strong>g> Cancer Research Center, Heidelberg<br />

2005 ‐ 2007 Postdoc at the group of Theoretical Biophysics, Humboldt University and<br />

biochemical research at the Leibniz Institute of Molecular Pharmacology, Berlin<br />

2002 ‐ 2005 PhD studies in Theoretical Biophysics at Humboldt University Berlin<br />

2000 ‐ 2002 Studies of Biophysics at Humboldt University Berlin, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

1997 ‐ 2000 Teaching assistant at the Department of Physical Chemistry, University of<br />

Havana<br />

1992 ‐ 1997 Studies of Chemistry at University of Havana, Cuba<br />

Awards<br />

2000 ‐ 2002 Scholarship from the <str<strong>on</strong>g>German</str<strong>on</strong>g> Academic Exchange Service (DAAD)<br />

1999 Annual award given by the Rector of the University of Havana<br />

1997 Best graduating student of University of Havana in the area of academic results<br />

Research Interests<br />

My research focuses <strong>on</strong> the regulati<strong>on</strong> of signal transducti<strong>on</strong> networks c<strong>on</strong>trolling transcripti<strong>on</strong>al<br />

activity. Current projects include: 1) ligand binding and activati<strong>on</strong> of T cell receptor, 2) activati<strong>on</strong> of<br />

the PI3K/Akt signaling pathway, 3) initiati<strong>on</strong> of DNA replicati<strong>on</strong> in yeast, 4) regulati<strong>on</strong> of protein<br />

activity by multisite phosphorylati<strong>on</strong>, 5) hierarchical organizati<strong>on</strong> of metabolic networks.<br />

Five most important publicati<strong>on</strong>s<br />

Matthaus F.*, Salazar C.* and Ebenhöh O.* (2008) Biosynthetic potentials of metabolites and their<br />

hierarchical organizati<strong>on</strong>. PLoS Comput. Biol. (to appear)<br />

Salazar C.*, Politi A.Z.* and Höfer T. (2008) Decoding of calcium oscillati<strong>on</strong>s by phosphorylati<strong>on</strong> cycles:<br />

analytic results. Biophys J., 94 (doi:10.1529/biophysj.107.113084)<br />

Salazar C. and Höfer T. (2007) Versatile regulati<strong>on</strong> of multisite protein phosphorylati<strong>on</strong> by the order of<br />

phosphate processing and protein‐protein interacti<strong>on</strong>s. FEBS J. 274, 1046‐1061<br />

Salazar C. and Höfer T. (2005) Activati<strong>on</strong> of the transcripti<strong>on</strong> factor NFAT1: C<strong>on</strong>certed or modular<br />

regulati<strong>on</strong>? FEBS Lett. 579, 621‐626<br />

Salazar C. and Höfer T. (2003). Allosteric regulati<strong>on</strong> of the transcripti<strong>on</strong> factor NFAT1 by multiple<br />

phosphorylati<strong>on</strong> sites: A mathematical analysis. J. Mol. Biol. 327, 31‐45<br />

*equal c<strong>on</strong>tributi<strong>on</strong><br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Regulati<strong>on</strong> of the initiati<strong>on</strong> of DNA replicati<strong>on</strong> by multisite protein phosphorylati<strong>on</strong><br />

Abstract<br />

Protein phosphorylati<strong>on</strong> at several sites is a comm<strong>on</strong> regulatory mechanism in cell signaling and cell<br />

cycle regulati<strong>on</strong> that may impose a certain activati<strong>on</strong> threshold or allow the synchr<strong>on</strong>izati<strong>on</strong> of<br />

molecular events. Using experimental data and mathematical modeling, we studied the role of<br />

multisite phosphorylati<strong>on</strong> in regulating the initiati<strong>on</strong> of DNA replicati<strong>on</strong>. DNA replicati<strong>on</strong> is initiated<br />

simultaneously at several origins, whose firing is c<strong>on</strong>trolled by S‐CDK through the multiple<br />

phosphorylati<strong>on</strong> of the substrates Sld2 and Sld3. Our kinetic analysis shows that multiple<br />

phosphorylati<strong>on</strong> serves as a timing device, ensuring c<strong>on</strong>certed firing of replicati<strong>on</strong> origins. Random<br />

phosphorylati<strong>on</strong> is found to be a more robust timer than sequential phosphorylati<strong>on</strong> and, indeed, a<br />

random mechanism has been implicated experimentally in Sld2 phosphorylati<strong>on</strong>. Taken together, our<br />

results show that the order in which several phosphorylati<strong>on</strong> sites are modified by the enzymes is<br />

crucial for an optimal regulati<strong>on</strong> of the cell cycle.<br />

Poster number: 37


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 65<br />

Dr. Maria Sams<strong>on</strong>ova<br />

Instituti<strong>on</strong> St.Petersburg State Polytechnical Uniersity<br />

C<strong>on</strong>tact Address<br />

Street Address Polytekhnichaskaya<br />

Zip /Postal Code 195251<br />

City St.Petersburg<br />

Country Russia<br />

Ph<strong>on</strong>e +7‐812‐596‐2831<br />

Fax +7‐812‐596‐2831<br />

E‐Mail sams<strong>on</strong>@spbcas.ru<br />

Website http://urchin.spbcas.ru/site/index.htm<br />

Short CV<br />

1972 Graduated Dept. of Genetics, Leningrad State University<br />

1979 PhD in <strong>Biology</strong>, Leningrad State University<br />

Awards<br />

1999 SGI Outstanding Speaker Award at the ISMB’99 c<strong>on</strong>ference<br />

Research Interests<br />

systems biology and developmental biology<br />

Five most important publicati<strong>on</strong>s<br />

Surkova, S., Kosman, D., Kozlov, K. N., Manu Manu, Myasnikova, E., Sams<strong>on</strong>ova, A., Spirov, A.,<br />

Vanario‐Al<strong>on</strong>so, C. E., Sams<strong>on</strong>ova, M., Reinitz, J.(2008) Characterizati<strong>on</strong> of the Drosophila segment<br />

determinati<strong>on</strong> morphome. Dev. Biol., 313, 844‐862.<br />

Ekaterina Myasnikova, Maria Sams<strong>on</strong>ova, David Kosman and John Reinitz (2005). Removal of<br />

background signal from in situ data <strong>on</strong> the expressi<strong>on</strong> of segmentati<strong>on</strong> genes in Drosophila.<br />

Development, Genes and Evoluti<strong>on</strong>, 215(6):320‐326.<br />

Johannes Jaeger, Svetlana Surkova, Maxim Blagov, Hilde Janssens, David Kosman, K<strong>on</strong>stantin N.<br />

Kozlov, Manu, Ekaterina Myasnikova, Carlos E. Vanario‐Al<strong>on</strong>so, Maria Sams<strong>on</strong>ova, David H. Sharp, and<br />

John Reinitz (2004). Dynamic c<strong>on</strong>trol of positi<strong>on</strong>al informati<strong>on</strong> in the early Drosophila embryo. Nature,<br />

430:368‐371.<br />

Johannes Jaeger, Maxim Blagov, David Kosman, K<strong>on</strong>stantin N. Kozlov, Manu, Ekaterina Myasnikova,<br />

Svetlana Surkova, Carlos E. Vanario‐Al<strong>on</strong>so, Maria Sams<strong>on</strong>ova, David H. Sharp, and John Reinitz (2004).<br />

Dynamical analysis of regulatory interacti<strong>on</strong>s in the gap gene system of Drosophila melanogaster.<br />

Genetics, 167:1721‐1737.<br />

E. Myasnikova, A. Sams<strong>on</strong>ova, M. Sams<strong>on</strong>ova and J. Reinitz. Support vector regressi<strong>on</strong> applied to the<br />

determinati<strong>on</strong> of the developmental age of a Drosophila embryo from its segmentati<strong>on</strong> gene<br />

expressi<strong>on</strong> patterns (2002). Bioinformatics, 18, S87‐S95.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x) a talk<br />

Title of poster / talk<br />

Variati<strong>on</strong> and canalizati<strong>on</strong> of gene expressi<strong>on</strong> in the Drosophila blastoderm<br />

Abstract:<br />

Here we investigate the mechanisms of canalizati<strong>on</strong> and embry<strong>on</strong>ic regulati<strong>on</strong> in the morphogenetic<br />

field that c<strong>on</strong>trols the segment determinati<strong>on</strong> in {\em Drosophila}. The data used for this<br />

characterizati<strong>on</strong> are quantitative with cellular resoluti<strong>on</strong> in space and about 6.5 minutes resoluti<strong>on</strong> in<br />

time. At cycle 13 and the early time classes of cycle 14A the patterns of zygotic segmentati<strong>on</strong> genes<br />

show c<strong>on</strong>siderable variati<strong>on</strong> in amplitude, the way, time and sequence of domain formati<strong>on</strong>, as well as<br />

significant positi<strong>on</strong>al variability. Nevertheless, this variati<strong>on</strong> is dynamically reduced, or canalized by the<br />

<strong>on</strong>set of gastrulati<strong>on</strong>. We use the dynamical theory framework to understand this behavior.


66 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Johannes P. Schlöder<br />

Instituti<strong>on</strong> Interdisciplinary Center for Scientific Computing<br />

(IWR) ‐ University of Heidelberg<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 368<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49 6221 54 8239<br />

Fax +49 6221 54 5444<br />

E‐Mail schloeder@iwr.uni‐heidelberg.de<br />

Website<br />

http://www.iwr.uni‐heidelberg.de/~Johannes.Schloeder/<br />

Short CV<br />

since 2007 Member of “Heidelberg Graduate School of Mathematical and Computati<strong>on</strong>al<br />

Methods for the Sciences”<br />

since 2007 Academic Director at IWR<br />

since 2001 Participati<strong>on</strong> in Internati<strong>on</strong>al Ph.D. Training Group<br />

“Complex Processes: Modeling, Simulati<strong>on</strong> and Optimizati<strong>on</strong>”,<br />

Heidelberg‐Warsaw<br />

1993‐1995 Member of Research Center<br />

“Reactive Flow, Diffusi<strong>on</strong> and Transport” (SFB359)<br />

University of Heidelberg<br />

since 1992 Senior researcher at the<br />

Interdisciplinary Center for Scientific Computing (IWR)<br />

University of Heidelberg<br />

1989‐1992 Teaching assistant at the Institute for Mathematics,<br />

University of Augsburg<br />

1987‐1989 Research assistant at the Institute for Applied Mathematics,<br />

Department of Applied Analysis, University of B<strong>on</strong>n<br />

1987 Ph.D. in Applied Mathematics, University of B<strong>on</strong>n<br />

1980‐1987 Scientific collaborator at the<br />

Institute for Applied Mathematics and Research Center<br />

“Applied Optimizati<strong>on</strong> and Approximati<strong>on</strong>” (SFB 72)<br />

University of B<strong>on</strong>n<br />

Research Interests<br />

Modeling, simulati<strong>on</strong> and optimizati<strong>on</strong> of dynamic processes; numerical methods for large‐scale<br />

c<strong>on</strong>strained optimisati<strong>on</strong>, optimal c<strong>on</strong>trol, real‐time optimisati<strong>on</strong> and n<strong>on</strong>linear model predictive<br />

c<strong>on</strong>trol; numerical methods for parameter and state estimati<strong>on</strong>, optimum n<strong>on</strong>linear experimental<br />

design and optimizati<strong>on</strong> under uncertainty; applicati<strong>on</strong>s in aerospace, mechanics, biomechanics and<br />

robotics; chemical engineering, reacti<strong>on</strong> kinetics, biophysics, envir<strong>on</strong>mental physics, epidemiology and<br />

systems biology.<br />

Five most important publicati<strong>on</strong>s<br />

1. Bock HG, Kostina E, Schlöder JP (2007):<br />

Numerical Methods for Parameter Estimati<strong>on</strong> in N<strong>on</strong>linear Differential Algebraic Equati<strong>on</strong>s<br />

GAMM Mitt. 30, 2: 376‐408.<br />

2. Diehl M, Bock HG, Schlöder JP (2005):<br />

A real‐time iterati<strong>on</strong> scheme for n<strong>on</strong>linear optimizati<strong>on</strong> in optimal feedback c<strong>on</strong>trol.<br />

SIAM J. <strong>on</strong> C<strong>on</strong>trol and Optimizati<strong>on</strong> 43:1714‐1736.<br />

3. Bock HG, Körkel S, Kostina EA, Schlöder JP (2004):<br />

Numerical Methods for Optimal C<strong>on</strong>trol Problems in Design of Robust Optimal<br />

Experiments for N<strong>on</strong>linear Dynamic Processes.<br />

Optimizati<strong>on</strong> Methods and Software 19:327‐338.<br />

4. Leineweber DB, Bauer I, Bock HG, Schlöder JP (2003):<br />

An Efficient Multiple Shooting Based SQP Strategy for Large‐Scale Dynamic Process<br />

Optimizati<strong>on</strong>. Part I: Theoretical Aspects, Part II: Software Aspects and Applicati<strong>on</strong>s.<br />

Comput. Chem. Engng. 27:137‐174.<br />

5. Dieses A, Schlöder JP, Bock HG, Richter O (2002):<br />

Optimal Experimental Design for Parameter Estimati<strong>on</strong> in Column Outflow Experiments.<br />

Water Resources Research 38:1186ff.


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 67<br />

Dr. Sebastian M. Schmidt<br />

Instituti<strong>on</strong> Forschungszentrum Jülich GmbH<br />

C<strong>on</strong>tact Address<br />

Street Address Wilhelm‐Johnen‐Straße<br />

Zip /Postal Code 52428<br />

City Jülich<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐2461 61‐3901<br />

Fax +49‐2461 61‐2640<br />

E‐Mail s.schmidt@fz‐juelich.de<br />

Website www.fz‐juelich.de<br />

Short CV (keywords)<br />

Since 2007 Member of the Board of Directors representing the areas of „Key Technologies<br />

and Structure of Matter“ at Research Centre Jülich<br />

2006 ‐2007 Managing director and head of the area of “research” in the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g><br />

Associati<strong>on</strong><br />

2002‐2005 Scientific officer at the head office of the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Associati<strong>on</strong><br />

2001 Habilitati<strong>on</strong> at the universities of Tübingen and Rostock, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

2000‐2002 Leader of an Emmy Noether Research Group at the University of Tübingen,<br />

<str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

1999‐2000 Alexander v<strong>on</strong> Humboldt fellow at Arg<strong>on</strong>ne Nati<strong>on</strong>al Laboratory, USA<br />

1997‐1998 University assistant at University of Rostock, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

1995‐1996 Minerva Fellow at the University of Tel Aviv, Israel<br />

1995 PhD with the title of “Dr. rer. nat.” in theoretical physics at the University of<br />

Rostock, <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Awards<br />

1999 Fellowship by the Alexander v<strong>on</strong> Humboldt Foundati<strong>on</strong><br />

1995 Minerva Fellowship<br />

Research Interests<br />

Research Management<br />

Key Technologies<br />

Structure of Matter<br />

Five most important publicati<strong>on</strong>s<br />

Alkofer R, Hecht MB, Roberts CD, Schmidt SM, Vinnik DV. Pair creati<strong>on</strong> and an x‐ray free electr<strong>on</strong> laser.<br />

PHYSICAL REVIEW LETTERS 87:193902 (2001)<br />

Blaschke D, Grigorian H, Poghosyan G, Roberts CD, Schmidt SM. A dynamical, c<strong>on</strong>fining model and hot<br />

quark stars. PHYSICS LETTERS B 450:207‐214 (1999)<br />

Blaschke DB, Prozorkevich AV, Roberts CD, Schmidt SM, Smolyanski SA. Pair producti<strong>on</strong> and optical<br />

lasers. PHYSICAL REVIEW LETTERS 96:140402 (2006)<br />

Blaschke D, Roberts CD, Schmidt S: Thermodynamic properties of a simple, c<strong>on</strong>fining model. PHYSICS<br />

LETTERS B, 425:232‐238 (1998)<br />

Roberts CD, Schmidt SM: Dys<strong>on</strong>‐Schwinger equati<strong>on</strong>s: Density, temperature and c<strong>on</strong>tinuum str<strong>on</strong>g<br />

QCD. PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 45:S1‐S103 (2000)


68 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Ursula Schöttler<br />

Instituti<strong>on</strong> Deutsches Krebsforschungszentrum<br />

C<strong>on</strong>tact Address<br />

Street Address Im Neuenheimer Feld 280<br />

Zip /Postal Code 69120<br />

City Heidelberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49 6221 42‐2651<br />

Fax +49 6221 42‐2840<br />

E‐Mail u.schoettler@dkfz‐heidelberg.de<br />

Website www.dkfz.de<br />

Short CV<br />

<strong>Biology</strong> teacher by training.<br />

1970‐1978 Adult educati<strong>on</strong> in language training, Cairo, Egypt<br />

Project management, Cairo, Egypt<br />

1978‐1987 Teaching, project management, fundraising event management<br />

Accra, Ghana<br />

1988‐1992 Assistant to CEO, ORPEGEN Pharma GmbH Heidelberg,<br />

Office and project management<br />

since 1988 Language trainer, adult educati<strong>on</strong><br />

1992‐2007 Admin. Assistant to Chairman of DKFZ<br />

Management of internati<strong>on</strong>al c<strong>on</strong>ferences<br />

since 2007 Coordinator, Internati<strong>on</strong>al Services DKFZ<br />

Special Interests<br />

Intercultural and interdisciplinary communicati<strong>on</strong> and management<br />

Internati<strong>on</strong>al c<strong>on</strong>ference and project management


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 69<br />

Prof. Dr. Klaus Schughart<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Centre for Infecti<strong>on</strong> Research<br />

C<strong>on</strong>tact Address<br />

Street Address Inhoffenstraße 7<br />

Zip /Postal Code 38124<br />

City Braunschweig<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e 0049 (0) 531 6181 1100<br />

Fax 0049 (0) 531 6181 1199<br />

E‐Mail Klaus.Schughart@helmholtz‐hzi.de<br />

Website www.helmholtz‐hzi.de<br />

Short CV<br />

since 1.8.06 Head of Dept. Experimental Mouse Genetics (<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Center for Infecti<strong>on</strong><br />

Research, Braunschweig) and Professorship at the University of Veterinary<br />

Medicine, Hannover (TiHo)<br />

2002 ‐ 2006 Head of Scientific C<strong>on</strong>trolling and Deputy Scientific Director at the <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g><br />

Center for Infecti<strong>on</strong> Research, Braunschweig<br />

1997 ‐ 2001 Head of Dept of Molecular and Cellular <strong>Biology</strong>, Transgene S.A., Strasbourg<br />

1995 ‐ 1996 Project Leader at Institute of Mammalian Genetics, GSF Munich<br />

1990 ‐ 1995 Group Leader at Max‐Planck‐Institute of Immune <strong>Biology</strong>, Freiburg<br />

1987 ‐ 1989 Postdoc in Dept. of <strong>Biology</strong>, Yale University, New Haven (Dr. F.H. Ruddle)<br />

1986 PhD at the Institute of Genetics, University of Cologne<br />

1983 Diploma in <strong>Biology</strong> at University of Cologne<br />

Awards<br />

1986 Fellowship from the Boehringer Ingelheim F<strong>on</strong>ds<br />

1987‐1988 Postdoctoral Research fellowship of the <str<strong>on</strong>g>German</str<strong>on</strong>g> Research Foundati<strong>on</strong><br />

Research Interests<br />

We are using mouse genetic reference populati<strong>on</strong>s (recombinant inbred lines and various laboratory<br />

strains) to identify gene regulatory networks in immune cells. Whole genome expressi<strong>on</strong> profiling from<br />

different T‐cell populati<strong>on</strong>s is performed and bioinformatics tools are used to identify expressi<strong>on</strong><br />

Quantitative Traits (eQTLs). In additi<strong>on</strong>, our laboratory is studying the host susceptibility to infecti<strong>on</strong>s<br />

with influenza A virus in the mouse model system, using the same genetic reference populati<strong>on</strong>s and<br />

whole genome expressi<strong>on</strong> profiling.<br />

We are looking for collaborati<strong>on</strong>s to further explore our large data sets from T cells and infecti<strong>on</strong><br />

studies to develop in silico models of gene interacti<strong>on</strong> circuits.<br />

Five most important publicati<strong>on</strong>s<br />

(1) Schughart K., and Churchill G. (2007). 6th Annual Meeting of the Complex Trait C<strong>on</strong>sortium.<br />

Mammalian Genome: 18:683‐5.<br />

(2) Streicher J., D<strong>on</strong>at M.A., Strauss B., Sporle R., Schughart K., Mueller G.B. (2000). Computer‐based<br />

three‐dimensi<strong>on</strong>al visualizati<strong>on</strong> of developmental gene expressi<strong>on</strong>. Nature Genetics 25:147‐52.<br />

(3) Hrabé de Angelis M., … Schughart K., Wolf E., and Balling R. (2000) Genome wide large scale<br />

producti<strong>on</strong> of mutant mice by ENU mutagenesis. Nature Genetics 25, 444‐447.<br />

(4) Schughart, R. Bischoff, U.B. Rasmussen, D. Ali Hadji, F. Perraud, N. Accart, O. Boussif, N. Silvestre, Y.<br />

Cordier, A. Pavirani, M. Courtney, H.V.J. Kolbe (1999) Solvoplexes, a new type of n<strong>on</strong>‐viral vectors for<br />

intrapulm<strong>on</strong>ary gene delivery. Human Gene Therapy 10, 2891‐2905.<br />

(5) R. Spoerle and K. Schughart (1998). Paradox segmentati<strong>on</strong> al<strong>on</strong>g inter‐ and intrasomitic borderlines<br />

is followed by dysmorphology of the axial skelet<strong>on</strong> in the open brain (opb) mouse mutant.<br />

Developmental Genetics 22, 359‐373.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(please indicate)<br />

(X) a talk<br />

Title of poster / talk<br />

<strong>Systems</strong> Genetics for Infecti<strong>on</strong> and Immunity<br />

Abstract<br />

Regulatory T cells (T‐reg) play an important role for the proper coordinati<strong>on</strong> of the different<br />

comp<strong>on</strong>ents of the immune resp<strong>on</strong>se. The absence of T‐reg cells results in severe allergies and auto‐<br />

immune diseases. So far, <strong>on</strong>ly a few genes and pathways are known that are involved in T‐reg<br />

differentiati<strong>on</strong> and maintenance. We have collected T‐reg cells from 40 different recombinant inbred<br />

mouse lines and determined their expressi<strong>on</strong> patterns in whole genome arrays. Each of the BXD<br />

mouse strains has a slightly different genetic background and, therefore, the transcripti<strong>on</strong>al expressi<strong>on</strong><br />

profiles of many genes vary from strain to strain. Since the genotypes of all strains are known, it is<br />

possible to identify upstream regulatory loci for all transcripts that differ in expressi<strong>on</strong> levels and<br />

which have a genetic comp<strong>on</strong>ent. In this way, single regulatory interacti<strong>on</strong>s can be described as<br />

expressi<strong>on</strong> Quantitative Traits (eQTLs). Furthermore, differences in expressi<strong>on</strong> profiles of whole sets of<br />

genes that are c<strong>on</strong>trolled by the same genomic locus can be identified as groups of co‐regulated genes.<br />

In the next step, we want to use these data, and additi<strong>on</strong>al data from infecti<strong>on</strong> studies, to build<br />

computer models of gene regulatory pathways in infecti<strong>on</strong> and immunity.


70 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Sergey Smirnov<br />

Instituti<strong>on</strong> Institute for <strong>Systems</strong> <strong>Biology</strong> SPb<br />

C<strong>on</strong>tact Address<br />

Street Address Leninskie Gory, 1/73, AN Belozerski IPCB <strong>Moscow</strong><br />

State UniversityPCB<br />

Zip /Postal Code 119992<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 783 8718<br />

Fax +7 495 783 87 18<br />

E‐Mail smirnov‐ssv@yandex.ru<br />

Website www.insysbio.ru<br />

Short CV<br />

2006‐present Research scientist of Institute for <strong>Systems</strong> <strong>Biology</strong> SPb<br />

2004 ‐ 2006 Researcher in the laboratory of Modeling of Metabolism and Bioinformatics in<br />

the Institute of Theoretical and Experimental Biophysics (Poushchino).<br />

2002 ‐ 2004 Research officer in EMPproject company.<br />

1997 ‐ 2002 System administrator in Lvovsky Clinical and Diagnostic Center (Podolsk<br />

regi<strong>on</strong>).<br />

1984 ‐1997 Researcher in the Poushchino Branch of Institute of bioorganic chemistry.<br />

Research Interests<br />

My research interests are focused in areas of <strong>Systems</strong> <strong>Biology</strong> and Bioinformatics. General field of my<br />

work is mathematic modeling of metabolic processes in big integral systems of organism (e.g.<br />

circulati<strong>on</strong> system). Also, I have an interest in developing of special databases for scientific and applied<br />

purposes.<br />

Five most important publicati<strong>on</strong>s<br />

1. Smirnov S. V., Malygin A. G., [Kinetics of DNA‐dependent RNA synthesis: coupled synthesis of di‐ and<br />

trinucleotides in the presence of a minimum complement of substrate]. Mol Biol (Mosk), 1984,<br />

18(2):436‐46.<br />

2. Smirnov S. V., Malygin A. G., [Kinetics of DNA‐dependent RNA synthesis: couple synthesis of di‐, tri‐<br />

and tetranucleotides in the presence of a limited set of substrates]. Mol Biol (Mosk), 1985, 19(6):1661‐<br />

8.<br />

3. Smirnov S. V., Sukharev S. A., Dmitrieva E. S., Morgunova L. V., Sadovnikov V. B., Inhibiti<strong>on</strong> of<br />

neutrophil‐mediated lysis of syngeneic erythrocytes by comp<strong>on</strong>ents of blood serum and perit<strong>on</strong>eal<br />

fluid. Biomed Sci., 1990, 1(5):481‐6.<br />

4. Sukharev S. A., Smirnov S. V., Pleshakova O. V., Sadovnikov V. B., [Cytotoxic activity of murine<br />

perit<strong>on</strong>eal cavity cells during inflammati<strong>on</strong> in vivo]. Dokl Akad Nauk., 1995, 343(3):403‐5.<br />

5. Sukharev S. A., Smirnov S. V., Sadovnikov V. B., [Neutrophil heat shock at an inflammati<strong>on</strong> focus].<br />

Dokl Akad Nauk., 1994, 335(4):515‐8.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Development of databases for <strong>Systems</strong> <strong>Biology</strong><br />

Abstract<br />

Two databases c<strong>on</strong>cerning enzyme kinetics were developed.<br />

The first <strong>on</strong>e “EnzBase” is the database for storage of data about enzyme kinetic properties and<br />

mechanisms. There are two specific features of this database suitable just for recording of kinetic data:<br />

The list of database fields is open. It allows user to write down in database any kinetic parameters<br />

found in literature, including unique, rare and newly defined.<br />

Structure of database allows to record and store digitizing kinetic curves from referenced articles.<br />

Sec<strong>on</strong>d database was developed for the purpose to estimate to what an extent the knowledge about<br />

kinetic properties of enzymes was comprehensive to date. The analysis was performed using the<br />

informati<strong>on</strong> available in Internet databases. It has been shown that relatively complete informati<strong>on</strong> in<br />

regard to a particular enzyme or a set of the enzymes (for instance, for a specific metabolic pathway)<br />

can be retrieved for very limited amount of organisms. As to the rest organisms, the informati<strong>on</strong> is<br />

available for highly restricted amount of the enzymes.<br />

Poster number: 38


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 71<br />

Dr. Sergej Spirin<br />

Instituti<strong>on</strong> Belozersky Institute of MSU<br />

C<strong>on</strong>tact Address<br />

Street Address 1 Leninskije Gory, building 40<br />

Zip /Postal Code 119991<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7(495)939‐5414<br />

Fax +7(495)939‐3181<br />

E‐Mail sas@belozersky.msu.ru<br />

Website http://m<strong>on</strong>key.belozersky.msu.ru/~sas/<br />

Short CV<br />

Educati<strong>on</strong>: <strong>Moscow</strong> State University, Faculty of Mechanics and Mathematics<br />

Positi<strong>on</strong>: Senior Researcher in Belozersky Institute of Physical and Chemical<br />

<strong>Biology</strong>, <strong>Moscow</strong> State University<br />

Scientific interests: bioinformatics<br />

Research Interests<br />

Structural bioinformatics, DNA‐protein interacti<strong>on</strong>, algorithms in bioinformatics.<br />

Five most important publicati<strong>on</strong>s<br />

Ledneva R.K., Alekseevskii A.V., Vasil'ev S.A., Spirin S.A., Kariagina A.S. [Structural aspects of<br />

homeodomain interacti<strong>on</strong>s with DNA] (in <str<strong>on</strong>g>Russian</str<strong>on</strong>g>, 2001) Mol.Biol. (<strong>Moscow</strong>) 35 (5):764–777<br />

Alexeevski A., Spirin S., Alexeevski D., Klychnikov O., Ershova A., Titov M., Karyagina A. CluD, a Program<br />

for Determinati<strong>on</strong> of Hydrophobic Clusters in 3D Structures of Protein and Protein‐Nucleic Acids<br />

Complexes. Biophysics (<strong>Moscow</strong>), vol. 48, Suppl. 1 (2004), p. 146<br />

Karyagina A., Ershova A., Spirin S., Alexeevski A. The role of water in homeodomain‐DNA interacti<strong>on</strong>.<br />

In: Bioinformatics of Genome Regulati<strong>on</strong> and Structure II. (Eds. N.Kolchanov & R. Hofestaedt). NY:<br />

Springer Sc.+Bus. Media, Inc. 2005, P. 247–257.<br />

Karyagina A., Ershova A., Titov M., Olovnikov I., Aksianov E., Ryazanova A., Kubareva E., Spirin S.,<br />

Alexeevski A. Analysis of c<strong>on</strong>served hydrophobic cores in proteins and supramolecular complexes. J.<br />

Bioinf. and Comp. <strong>Biology</strong> 2006, 4 (2):357–372<br />

Sergei Spirin, Mikhail Titov, Anna Karyagina, Andrei Alexeevski. NPIDB, a Database of Nucleic Acids–<br />

Protein Interacti<strong>on</strong>s. Bioinformatics 2007, 23 (23):3247–3248<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(x) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

NPIDB, a database of structures of nucleic acid – protein complexes<br />

Abstract<br />

The resource NPIDB (Nucleic acids – Protein Interacti<strong>on</strong> DataBase) includes a collecti<strong>on</strong> of files in PDB<br />

format c<strong>on</strong>taining structural informati<strong>on</strong> <strong>on</strong> DNA‐protein and RNA‐protein complexes, and a number<br />

of <strong>on</strong>line tools for analysis of the complexes. Those tools are: an original program CluD for analysis of<br />

hydrophobic clusters <strong>on</strong> interfaces, programs for detecting potential hydrogen b<strong>on</strong>ds and potential<br />

water bridges between protein and nucleic acid, visualizati<strong>on</strong> of structures with Jmol and Chime. Pfam<br />

and SCOP domains presented in protein chains of structures are detected. The informati<strong>on</strong> <strong>on</strong> the<br />

domain types and their representatives in NPIDB is organized as a set of dynamical web pages.<br />

Update of the c<strong>on</strong>tent is d<strong>on</strong>e weekly by a special program module. NPIDB is available via Internet:<br />

The work is supported by RFBR and INTAS.<br />

Poster number: 39


72 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Dr. Fabian Theis<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> Zentrum München<br />

C<strong>on</strong>tact Address<br />

Street Address Ingolstädter Landstraße 1<br />

Zip /Postal Code 85764<br />

City Neuherberg<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49 89 3187 2211<br />

Fax +49 89 3187 3585<br />

E‐Mail fabian.theis@helmholtz‐muenchen.de<br />

Website http://cmb.helmholtz‐muenchen.de<br />

Short CV<br />

‐ Undergraduate and graduate studies of Mathematics and Physics at the Universities of Hagen (1995‐<br />

1996), Brandeis (Bost<strong>on</strong>) and Regensburg (‐2000)<br />

‐ Ph.D. in Biophysics, University of Regensburg (2002)<br />

‐ Ph.D. in Computer Science, University of Granada (2003)<br />

‐ Visiting researcher at BSI, RIKEN, Tokyo, FSU, Tallahassee, HUT, Helsinki and TUAT, Tokyo<br />

‐ Post‐Doc, Institute of Biophysics, University of Regensburg (‐2006)<br />

‐ Junior Research Group leader, MPI for Dynamics and Self‐Organizati<strong>on</strong> (2006‐)<br />

‐ Group leader “Computati<strong>on</strong>al Modeling in <strong>Biology</strong>”, <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Zentrum München (2007‐)<br />

Awards<br />

2003 EON Kulturpreis Ostbayern<br />

2006 Heinz Maier‐Leibnitz Award by the DFG<br />

Research Interests<br />

We are interested in applying methods from biostatistics and statistical machine learning to the<br />

analysis of biological problems, ranging from regulatory networks to neural recordings. More precisely,<br />

we are interested in statistical signal processing using informati<strong>on</strong>‐theoretic methods such as blind<br />

source separati<strong>on</strong> for analyzing large‐scale biomedical data sets. Methods include multivariate<br />

informati<strong>on</strong>‐theoretic data analysis, clustering, independent comp<strong>on</strong>ent analysis and various<br />

computer simulati<strong>on</strong>s. A key applicati<strong>on</strong> area is <strong>Systems</strong> <strong>Biology</strong>, where we are building quantitative<br />

models in order to explain regulatory gene networks.<br />

Five most important publicati<strong>on</strong>s<br />

F.J. Theis. Towards a general independent subspace analysis. In Proc. NIPS 2006<br />

F.J. Theis and G.A. García. On the use of sparse signal decompositi<strong>on</strong> in the analysis of multi‐channel<br />

surface electromyograms. Signal Processing, 86(3):603‐623, 2006<br />

F.J. Theis and P. Gruber. On model identifiability in analytic postn<strong>on</strong>linear ICA. Neurocomputing,<br />

64:223‐234, 2005<br />

P. Georgiev, F.J. Theis, and A. Cichocki. Sparse comp<strong>on</strong>ent analysis and blind source separati<strong>on</strong> of<br />

underdetermined mixtures. IEEE Transacti<strong>on</strong>s <strong>on</strong> Neural Networks, 16(4):992‐996, 2005<br />

F.J. Theis. A new c<strong>on</strong>cept for separability problems in blind source separati<strong>on</strong>. Neural Computati<strong>on</strong>,<br />

16:1827‐1850, 2004<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(x) a talk<br />

Title of poster / talk<br />

Exploratory data analysis of biological systems<br />

Abstract<br />

<strong>Systems</strong> biology seeks to integrate different levels of informati<strong>on</strong> to understand how biological<br />

systems functi<strong>on</strong>. It begins with the study of genes and proteins using high‐throughput techniques<br />

such as microarray measurements or mass spectrometry data. Although the experimental methods for<br />

obtaining such recordings are advanced thus generating large and multivariate data sets, the<br />

underlying employed statistical tools have not reached this level of sophisticati<strong>on</strong>.<br />

In this talk, we propose to use higher‐order statistics and spatiotemporal clustering methods to extract<br />

additi<strong>on</strong>al informati<strong>on</strong> from these large data sets. Extended multi‐dimensi<strong>on</strong>al inverse models are<br />

employed to detect latent variables within the observati<strong>on</strong>s, which may then be analyzed using graph‐<br />

theoretic techniques. The resulting methods have applicati<strong>on</strong>s in a wide field ranging from genomics to<br />

biomedical data analysis in general, telecommunicati<strong>on</strong>s and financial markets, and their implicati<strong>on</strong>s<br />

for genomics, proteomics and metabolomics are yet to be fully understood.


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 73<br />

Dr. Alexey Vitreschak<br />

Instituti<strong>on</strong> IITP RAS<br />

C<strong>on</strong>tact Address<br />

Street Address Bolshoj Karetny pereulok 19 Mosco127994, Russia<br />

Zip /Postal Code 127994<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e 89859688050<br />

E‐Mail l_veter@mail.ru<br />

Short CV<br />

Comparative genomics<br />

Gene regulati<strong>on</strong><br />

Bacteria<br />

Regulatory RNAs<br />

Evoluti<strong>on</strong> of regulatory systems<br />

Riboswitches<br />

Analysis of gene functi<strong>on</strong><br />

T‐boxes<br />

DNA repeats<br />

Research Interests<br />

Predicti<strong>on</strong> of gene regulati<strong>on</strong> in bacteria. Evoluti<strong>on</strong>ary and functi<strong>on</strong>al analysis of gene regulatory<br />

systems (e.g. various riboswitches, T‐boxes and others). Analysis of repeat sequences in genomes.<br />

Five most important publicati<strong>on</strong>s<br />

.G. Vitreschak, A.A Mir<strong>on</strong>ov, V.A. Lyubetsky, M.S. Gelfand. Comparaive genomic analysis of T‐box<br />

regulatory systems in bacteria. RNA, 2008, (accepted, in print).<br />

Vitreschak AG, Rodi<strong>on</strong>ov DA, Mir<strong>on</strong>ov AA, Gelfand MS Riboswitches: the oldest mechanism for the<br />

regulati<strong>on</strong> of gene expressi<strong>on</strong>? Trends in Genetics, 2004 Jan; 20(1):44‐50.<br />

Vitreschak AG, Rodi<strong>on</strong>ov DA, Mir<strong>on</strong>ov AA, Gelfand MS. Regulati<strong>on</strong> of the vitamin B(12) metabolism<br />

and transport in bacteria by a c<strong>on</strong>served RNA structural element. RNA. 2003 Sep; 9(9):1084‐1097.<br />

Vitreschak AG, Rodi<strong>on</strong>ov DA, Mir<strong>on</strong>ov AA, Gelfand MS. Regulati<strong>on</strong> of riboflavin biosynthesis and<br />

transport genes in bacteria by transcripti<strong>on</strong>al and translati<strong>on</strong>al attenuati<strong>on</strong>. Nucleic Acids Research.<br />

2002. V. 30(14) P. 3141‐51.<br />

Rodi<strong>on</strong>ov DA, Vitreschak AG, Mir<strong>on</strong>ov AA, Gelfand MS. Comparative Genomics of Thiamin Biosynthesis<br />

in Procaryotes. New Genes and Regulatory Mechanisms. J. Biol. Chem. 2002 Dec 13;277(50):48949‐59<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X ) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

Comparative Genomic Analysis of T‐Box Regulatory <strong>Systems</strong> in Bacteria<br />

Abstract<br />

The bacteria use a wide range of regulatory mechanisms to c<strong>on</strong>trol gene expressi<strong>on</strong>. While the most comm<strong>on</strong><br />

regulatory mechanism seems to be regulati<strong>on</strong> of transcripti<strong>on</strong> by DNA‐binding proteins, there are other important<br />

mechanisms, in particular, regulati<strong>on</strong> of transcripti<strong>on</strong> (by premature terminati<strong>on</strong>) and translati<strong>on</strong> (by interference<br />

with initiati<strong>on</strong>) via formati<strong>on</strong> of alternative RNA structures in 3’‐untranslated gene regi<strong>on</strong>s. The most frequent<br />

mechanism of RNA‐dependent regulati<strong>on</strong> of amino acid oper<strong>on</strong>s in the Firmicutes seems to be the T‐box regulatory<br />

system. The T‐box is an RNA structure that is capable of binding uncharged tRNA via an interacti<strong>on</strong> between the<br />

highly c<strong>on</strong>served 5'‐UGGN‐3' sequence of the T‐box and the complementary 5'‐NCCA‐3' end of the tRNA. The<br />

specificity of this binding is defined by base‐pairing of the tRNA anticod<strong>on</strong> and the so‐called specifier (anti‐anti)‐<br />

cod<strong>on</strong> in the T‐box structure. The bound uncharged tRNA stabilizes the antiterminator hairpin, which in turn prevents<br />

formati<strong>on</strong> of the terminator and allow the gene to be expressed.<br />

Using a set of known T‐box sites, we c<strong>on</strong>structed the comm<strong>on</strong> pattern and used it to scan available bacterial<br />

genomes. New T‐boxes were found in various Gram‐positive bacteria (mainly Firmicutes, but also Actinobacteria),<br />

some Proteobacteria (delta‐proteobacteria), and some other bacterial groups (Deinococcales/Thermales, Chloroflexi,<br />

Dictyoglomi). The majority of T‐box‐regulated genes encode aminoacyl‐tRNA synthetases. Two other groups of T‐box‐<br />

regulated genes are amino acid biosynthetic genes and transporters, as well as genes with unknown functi<strong>on</strong>.<br />

Analysis of candidate T‐box sites resulted in new functi<strong>on</strong>al annotati<strong>on</strong>s for a large number of putative amino acid<br />

transporters as well as some genes with unknown functi<strong>on</strong>. We predict the specificity of amino acid transporters<br />

analyzing the specifier cod<strong>on</strong>s in T‐boxes that regulate genes encoding these transporters and use other methods of<br />

comparative genomics to obtain additi<strong>on</strong>al, independent evidence.<br />

We then studied the evoluti<strong>on</strong> of the T‐boxes. Analysis of the c<strong>on</strong>structed phylogenetic trees and changes in the<br />

specifier cod<strong>on</strong>s dem<strong>on</strong>strated, that in additi<strong>on</strong> to the normal evoluti<strong>on</strong> c<strong>on</strong>sistent with the evoluti<strong>on</strong> of regulated<br />

genes, T‐boxes may be duplicated, transferred to other genes, and change specificity. We observed several cases of<br />

recent expansi<strong>on</strong> of T‐box regul<strong>on</strong>s likely caused by the loss of a previously existing regulatory system, in particular,<br />

the arginine regul<strong>on</strong> in Clostridium difficile (loss of the transcripti<strong>on</strong>al repressor AhrC) and methi<strong>on</strong>ine regul<strong>on</strong> in the<br />

Lactobacillaceae (loss of the S‐box riboswitches).<br />

In some cases, T‐boxes were arranged in tandem. Predominantly this happened upstream of biosynthetic and<br />

transport genes. The two major types of such tandems are double T‐boxes, that is, repeats of complete T‐box<br />

structures, and unusual “partially‐double” T‐boxes, formed by a single specifier hairpin followed by two repeated<br />

terminator/antiterminator structures closely located to each other.<br />

Finally, we described a new structural class of T‐boxes regulating initiati<strong>on</strong> of translati<strong>on</strong> in the Actinobacteria. They<br />

are much shorter and the specifier cod<strong>on</strong> is located in the loop of the hairpin, and not the bulge like in the classic T‐<br />

box structure. The T‐box‐c<strong>on</strong>taining hairpin may be alternative to a hairpin that masks the Shine‐Dalgarno box and<br />

thus interferes with the initiati<strong>on</strong> of translati<strong>on</strong>. Such T‐boxes were found upstream of the ileS genes in some<br />

Actinobacteria (all Actinomycetales and Bifidobacterium l<strong>on</strong>gum), whereas the translati<strong>on</strong>‐regulating T‐boxes of the<br />

classical type were observed <strong>on</strong>ly in Thermobifida fusca and the Streptomyces spp. In other actinobacterial species, a<br />

new variant of the specifier hairpin was found.<br />

Poster number: 40


74 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Martin v<strong>on</strong> Bergen, PhD<br />

Instituti<strong>on</strong> <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Centre for Envir<strong>on</strong>mental Researcht<br />

C<strong>on</strong>tact Address<br />

Street Address Permoser Str‐ 15<br />

Zip /Postal Code 04318<br />

City Leipzig<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49‐341‐235 1211<br />

Fax +49‐341‐235 451211<br />

E‐Mail Martin.v<strong>on</strong>bergen@ufz.de<br />

Short CV<br />

1989‐1995 Studies of <strong>Biology</strong>, University of Hamburg (D), Dipl. Biol.<br />

1995‐1998 PhD, University of Hamburg, Faculty of <strong>Biology</strong><br />

Max‐Planck Unit for Structural Molecular <strong>Biology</strong>, Hamburg<br />

PhD in Natural Sciences, thesis: "The c<strong>on</strong>formati<strong>on</strong> of the microtubules<br />

associated protein tau in Alzheimer’s disease"<br />

1998‐2001 Postdoc, Max‐Planck Unit for Structural Molecular <strong>Biology</strong>, Hamburg<br />

2001‐2002 Group Leader Proteomics, Mice and More GmbH and Co KG<br />

2002‐2006 Senior Scientist, Max‐Planck Unit for Structural Molecular <strong>Biology</strong>, Hamburg (D)<br />

Since May 2006 Head of Department of Proteomics,<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐Centre for Envir<strong>on</strong>mental Research Leipzig‐Halle (D)<br />

Research Interests<br />

Beside the general interest in the improvement of proteomic technology we are especially interested<br />

in the combinati<strong>on</strong> of proteome, cytome and genome data for obtaining a systemic view of the cellular<br />

resp<strong>on</strong>se to expositi<strong>on</strong> to envir<strong>on</strong>mental stressors. A focus lies <strong>on</strong> the effects of volatile organic<br />

compounds <strong>on</strong> cells of the respiratory tract and the immune system.<br />

Five most important publicati<strong>on</strong>s<br />

• Gündel, U., Benndorf, D., v<strong>on</strong> Bergen, M., Altenburger, R. und Küster, E. Lipovitellins as<br />

potential biomarkers in developing zebrafish embryos: a proteomics approach. Proteomics<br />

(2007), in press<br />

• Bock, K., Benndorf, D., Mueller, A., Herbarth, O.and v<strong>on</strong> Bergen, M.: Allergens from<br />

Aspergillus versicolor and their usage in diagnosis and therapy of indoor relevant mould<br />

spore allergies. Patent applicati<strong>on</strong> to the <str<strong>on</strong>g>German</str<strong>on</strong>g> Patent Agency (2007)<br />

• Santos PM, Roma V, Benndorf D, v<strong>on</strong> Bergen M, Harms H, Sá‐Correia I.: Mechanistic Insights<br />

Into the Global Resp<strong>on</strong>se to Phenol in the Phenol‐biodegrading Strain Pseudom<strong>on</strong>as sp. M1<br />

Revealed by Quantitative Proteomics. OMICS 11(3), 233‐51 (2007)<br />

• v<strong>on</strong> Bergen M, Barghorn S, Muller SA, Pickhardt M, Biernat J, Mandelkow EM, Davies P,<br />

Aebi U, Mandelkow E.: The core of tau‐paired helical filaments studied by scanning trans‐<br />

missi<strong>on</strong> electr<strong>on</strong> microscopy and limited proteolysis. Biochemistry 23;45(20), 6446‐57<br />

(2006)<br />

• v<strong>on</strong> Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E.: Assembly of<br />

tau protein into Alzheimer paired helical filaments depends <strong>on</strong> a local sequence motif<br />

((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci U S A 9;97(10), 5129‐34<br />

(2000)<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(x) a talk<br />

Title of poster / talk<br />

From c<strong>on</strong>taminant molecule to the cellular resp<strong>on</strong>se<br />

Abstract<br />

To measure the effects of envir<strong>on</strong>mental pollutants <strong>on</strong> cells up to now <strong>on</strong>ly a limited number of<br />

endpoints were determined. To overcome these limitati<strong>on</strong>s we started a project in which the<br />

fundamental aspects of entrance, distributi<strong>on</strong> and molecular effects will be analysed and combined in<br />

order to obtain a more complete picture. As a model compound both for envir<strong>on</strong>mental pollutants and<br />

pharmaceutical compounds we chose benzo(a)pyrene. The fluorescence of this compound allows the<br />

measurement of entrance and distributi<strong>on</strong> within the cells. The experimental data will be used for<br />

modelling the different stages of the distributi<strong>on</strong>.<br />

It is further known that benzo(a)pyrene binds to the arylhydrocarb<strong>on</strong> receptor (AhR) and that the<br />

binding event induces the locomoti<strong>on</strong> of the receptor from the cytosol into the nucleus, where it acts<br />

as an transcripti<strong>on</strong> factor for proteins involved in the detoxificati<strong>on</strong> pathway.<br />

By genomic and proteomic techniques we will determine the later effects of benzo(a)pyrene and<br />

combine to obtain a model, that explains the different pathways of the cellular resp<strong>on</strong>se. These data<br />

will enable the identificati<strong>on</strong> of classifiers that allow a predicti<strong>on</strong> of cellular systems <strong>on</strong> the basis of<br />

simplified measurements and this might be applied in the future also to the resp<strong>on</strong>se towards<br />

pharmaceutical compounds.


<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 75<br />

Dr. Jana Wolf<br />

Instituti<strong>on</strong> Humboldt‐University Berlin<br />

C<strong>on</strong>tact Address<br />

Street Address Invalidenstr. 42<br />

Zip /Postal Code 10115<br />

City Berlin<br />

Country <str<strong>on</strong>g>German</str<strong>on</strong>g>y<br />

Ph<strong>on</strong>e +49 30 2093 8382<br />

Fax +49 30 2093 8813<br />

E‐Mail j.wolf@biologie.hu‐berlin.de<br />

Website http://www.biologie.hu‐berlin.de/theorybp/<br />

Short CV<br />

1989‐1994 Study of Biophysics, Humboldt‐University Berlin<br />

1994‐1995 Biochemical Research at Hoechst AG Frankfurt/M.<br />

1995‐2001 Scientist in the theoretical biophysics group of R. Heinrich, HU Berlin,<br />

2000 PhD in Theoretical Biophysics<br />

1997, 1998 Guest scientist at the Free University Amsterdam, Netherlands<br />

Nov. 1998 Guest scientist at the Nati<strong>on</strong>al Institute of Bioscience and Human‐Technology,<br />

Tsukuba, Japan<br />

2001‐2003 Postdoc at Charité and the Institute for Theoretical <strong>Biology</strong>, HU Berlin<br />

2003‐2005 Postdoc at GlaxoSmithKline, Scientific Computing and Mathematical Modelling<br />

group, Medicines Research Centre, Stevenage, UK<br />

since 2006 Postdoc in the Internati<strong>on</strong>al Research Training Group 'Genomics and <strong>Systems</strong><br />

<strong>Biology</strong> of Molecular Networks' Berlin‐Bost<strong>on</strong>‐Kyoto<br />

from March 2008 Mathematical Modelling Group at the Max‐Delbrueck‐Centre, Berlin<br />

Awards<br />

2003 Leopoldina Postdoc Scholarship<br />

Research Interests<br />

Mammalian signal transducti<strong>on</strong> pathways (NF‐κB, Wnt, EGFR)<br />

Metabolic networks (energy metabolism)<br />

Cellular oscillati<strong>on</strong>s (circadian rhythm, metabolic oscillati<strong>on</strong>s) and synchr<strong>on</strong>isati<strong>on</strong> effects<br />

Robustness of cellular rhythms<br />

Five most important publicati<strong>on</strong>s<br />

J. Wolf, S. Dr<strong>on</strong>ov, F. Tobin & I. Goryanin (2007), The impact of the regulatory design <strong>on</strong> the resp<strong>on</strong>se<br />

of EGFR‐mediated signal transducti<strong>on</strong> towards <strong>on</strong>cogenic mutati<strong>on</strong>s. FEBS Journal 274 (21), 5505‐<br />

5517.<br />

J. Wolf, S. Becker‐Weimann & R. Heinrich (2005), Analysing the robustness of cellular rhythms, IEE<br />

Syst. Biol. 2(1), 35‐41.<br />

S. Becker‐Weimann, J. Wolf, H. Herzel & A. Kramer (2004), Modeling feedback loops of the Mammalian<br />

circadian oscillator. Biophysical Journal 87, 3023‐3034.<br />

J. Wolf, J. Passarge, O.J.G. Somsen, J.L. Snoep, R. Heinrich & H.V. Westerhoff (2000), Transducti<strong>on</strong> of<br />

intracellular and intercellular dynamics in yeast glycolytic oscillati<strong>on</strong>s. Biophysical Journal 78, 1145‐<br />

1153.<br />

J. Wolf & R. Heinrich (2000), The effect of cellular interacti<strong>on</strong> <strong>on</strong> glycolytic oscillati<strong>on</strong>s in yeast. A<br />

theoretical investigati<strong>on</strong>. Biochemical Journal 345, 321‐334.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

( ) a poster<br />

(x) a talk<br />

Title of poster / talk<br />

Modelling of signalling networks for the analysis of <strong>on</strong>cogenic mutati<strong>on</strong>s<br />

Abstract<br />

Signal transducti<strong>on</strong> pathways play a crucial role in the regulati<strong>on</strong> of various cellular functi<strong>on</strong>s, such as<br />

proliferati<strong>on</strong>, differentiati<strong>on</strong>, survival or the formati<strong>on</strong> of cell‐cell c<strong>on</strong>tacts. Using mathematical<br />

modelling we here analyse two examples, that is EGF‐mediated and Wnt signalling, in order to<br />

understand the effect of specific <strong>on</strong>cogenic perturbati<strong>on</strong>s.<br />

The EGFR pathway is deregulated in about 30% of all human cancers, such as malignancies of the<br />

col<strong>on</strong>, lung, pancreas, ovary and kidney as well as some leukemias. However, different mutati<strong>on</strong>s in<br />

the EGFR‐mediated pathway are involved in different tumours. We address the questi<strong>on</strong> whether this<br />

may result from the regulati<strong>on</strong> structure which is known to be cell‐type specific. In our attempt we will<br />

use a detailed computati<strong>on</strong>al model of the epidermal growth factor signalling network to investigate<br />

the effect of receptor over‐expressi<strong>on</strong> and Ras mutati<strong>on</strong>s as most prominent examples under two<br />

different feedback regulati<strong>on</strong>s.<br />

As a sec<strong>on</strong>d example we use a mathematical model of the Wnt signalling pathway to analyse the effect<br />

of ß‐catenin mutati<strong>on</strong>s in hepatocellular carcinoma cells. The mutati<strong>on</strong>s, present in 13‐43% of the<br />

tumours, result in mutated β‐catenin protein that can‘t be phosphorylated and degraded by the<br />

axin/APC/GSK3ß‐dependent destructi<strong>on</strong> cycle.


76 <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g>‐<str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong><br />

Alexey Zakharov<br />

Instituti<strong>on</strong> Institute of Biomedical Chemistry RAMS<br />

C<strong>on</strong>tact Address<br />

Street Address Pogodinskaya Str., 10<br />

Zip /Postal Code 119121<br />

City <strong>Moscow</strong><br />

Country Russia<br />

Ph<strong>on</strong>e +7 495 247‐3029<br />

Fax +7 495 245‐0857<br />

E‐Mail alexey.zakharov@ibmc.msk.ru<br />

Website www.ibmc.msk.ru<br />

Short CV<br />

2005‐2008 PhD Student of Institute of Biomedical Chemistry of Rus. Acad. Med. Sci.<br />

1999‐2005 Student of <str<strong>on</strong>g>Russian</str<strong>on</strong>g> State Medical University<br />

Research Interests<br />

My research interests are quantitative structure‐activity relati<strong>on</strong>ships analysis using bio‐ and<br />

chemoinformatics, in applicati<strong>on</strong> to search for new anticancer agents.<br />

Five most important publicati<strong>on</strong>s<br />

CYCLONET—an integrated database <strong>on</strong> cell cycle regulati<strong>on</strong> and carcinogenesis. F. Kolpakov, V.<br />

Poroikov, R. Sharipov, Y. K<strong>on</strong>drakhin, A. Zakharov, A. Lagunin, L. Milanesi and A. Kel. Nucleic Acids<br />

Research, 2007, 35, Database issue, D550–D556.<br />

A new approach to QSAR modelling of acute toxicity. A.A. Lagunin, A.V. Zakharov, D.A. Filim<strong>on</strong>ov and<br />

V.V. Poroikov. SAR and QSAR in Envir<strong>on</strong>mental Research, 2007, 18(3–4), 285–298.<br />

PASS: indentificati<strong>on</strong> of probable targets and mechanisms of toxicity. V.V. Poroikov, D.A. Filim<strong>on</strong>ov,<br />

A.A. Lagunin, T.A. Gloriozova and A.V. Zakharov. SAR and QSAR in Envir<strong>on</strong>mental Research, 2007,<br />

18(1–2), 101‐110.<br />

Computer predicti<strong>on</strong> of human carcinogenicity for chemical compounds according to iarc classificati<strong>on</strong>.<br />

A.V. Zakharov, A.A. Lagunin, D.A. Filim<strong>on</strong>ov, V.V. Poroikov, QSAR and Molecular Modelling in Rati<strong>on</strong>al<br />

Design of Bioactive Molecules (Euro QSAR 2004), Turkey, 211‐212.<br />

Quantitative structure‐activity relati<strong>on</strong>ships of cyclin‐dependent kinase 1 inhibitors. A.V. Zakharov,<br />

A.A. Lagunin, D.A. Filim<strong>on</strong>ov and V.V. Poroikov. Biochemistry (<strong>Moscow</strong>) Supplemental Series B:<br />

Biomedical Chemistry. 2007, 1(1), 17–28.<br />

C<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>­<str<strong>on</strong>g>German</str<strong>on</strong>g> workshop <strong>on</strong> systems biology<br />

I will prepare<br />

(X) a poster<br />

( ) a talk<br />

Title of poster / talk<br />

QSAR modelling of antineoplastic activities using NIH Roadmap Data.<br />

Abstract<br />

A new and extensive database of chemical structures and their biological activities is being developed<br />

by the Nati<strong>on</strong>al Center for Biotechnology Informati<strong>on</strong> at NIH. The database, called PubChem, c<strong>on</strong>tains<br />

both structural informati<strong>on</strong> from the scientific literature as well as screening and probe data from the<br />

Molecular Libraries Screening Center Network. We selected compounds with atineoplastic activities<br />

from PubChem for QSAR modelling of antineoplastic activities by GUSAR program. We obtained QSAR<br />

models for each antineoplastic activities and validated them both by leave‐<strong>on</strong>e‐out cross validati<strong>on</strong><br />

procedure and vs. external test set. The study is supported by FP6‐grant LSHB‐CT‐2007‐037590<br />

(Net2Drug).<br />

Poster number: 41


Venue Details<br />

Holiday Inn<br />

<strong>Moscow</strong>‐Sokolniki<br />

Rusakovskaya Ulitsa 24<br />

<strong>Moscow</strong>, 107014<br />

<str<strong>on</strong>g>Russian</str<strong>on</strong>g> Federati<strong>on</strong><br />

ph<strong>on</strong>e: +7‐495‐7867373<br />

fax: +7‐495‐7867374<br />

http://www.hi‐sokolniki.ru/<br />

Transportati<strong>on</strong> to and from Hotel<br />

From Sheremetyevo (SVO) Airport<br />

Distance: 33 KM South East to Hotel<br />

By car or taxi:<br />

From the airport drive up to the Leningradskoye<br />

shosse and turn to the <strong>Moscow</strong> Centre. Drive up<br />

to the MKAD (<strong>Moscow</strong> Ring Road). Take the exit<br />

to the MKAD East and drive up to the<br />

Shchelkovskoye shosse. Turn to the <strong>Moscow</strong><br />

Centre and drive via Bol. Cherkizovskaya Street<br />

up to Rusakovskaya Street.<br />

By public transport:<br />

By Bus #Ш851c from Sheremetyevo‐I (07:05 ‐<br />

21:05) directi<strong>on</strong> Rechnoy Vokzal metro stati<strong>on</strong>.<br />

Then by underground to the Teatralnaya metro<br />

stati<strong>on</strong> (9 stops), change to the Okhotny Ryad<br />

metro stati<strong>on</strong> and take the train to Sokolniki<br />

metro stati<strong>on</strong> (6 stops). Get off Sokolniki metro<br />

stati<strong>on</strong>. The Hotel is across the street.<br />

By Sheremetyevo Bus:<br />

(06:15 ‐ 21:17) to the train stati<strong>on</strong> Lobnya. Then<br />

by express‐train to Savyolovskaya stati<strong>on</strong>,<br />

change for underground and go to<br />

Mendeleevskaya metro stati<strong>on</strong> (1 stop) change<br />

the line for Novoslobodakay metro stati<strong>on</strong> and<br />

go to Komsomolskaya (2 stops), change for the<br />

red line, get off at Sokolniki metro stati<strong>on</strong> (2<br />

stops). The Hotel is across the road.<br />

From Domodedovo Airport (DME)<br />

• Distance: 54 KM North East to Hotel<br />

• Taxi Charge (<strong>on</strong>e way): 2610.0 (RUR)<br />

• Time by taxi: 1,5 hour<br />

• Train Charge (<strong>on</strong>e way): 300.0 (RUR)<br />

• Time by train: 40 minutes<br />

• From airport drive al<strong>on</strong>d M4 Road via<br />

Kashirskoye shosse up to 3rd Ring. Enter 3rd<br />

Ring and take the right. Drive straight to the<br />

turn to Rusakovskaya st.<br />

Subway:<br />

• Subway Stati<strong>on</strong> Name: Sokolniki<br />

• Distance: 0.1 KM South to Hotel<br />

• The hotel is located at <strong>on</strong>ly 2 minutes by<br />

walk just opposite to Sokolniki metro<br />

stati<strong>on</strong><br />

Distance to Attracti<strong>on</strong>s:<br />

• Red Square (6 KM )<br />

• Bolshoi Theatre (6 KM)<br />

• Pushkin Museum of Arts (7.5 KM)<br />

• Christ the Saviour Cathedral (8 KM)<br />

<str<strong>on</strong>g>Helmholtz</str<strong>on</strong>g> <str<strong>on</strong>g>Russian</str<strong>on</strong>g>‐<str<strong>on</strong>g>German</str<strong>on</strong>g> <str<strong>on</strong>g>Workshop</str<strong>on</strong>g> <strong>on</strong> <strong>Systems</strong> <strong>Biology</strong> 77

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!