20.01.2013 Views

CCNA 3 Labs and Study Guide - BINARYBB.INFO – @jagalbraith

CCNA 3 Labs and Study Guide - BINARYBB.INFO – @jagalbraith

CCNA 3 Labs and Study Guide - BINARYBB.INFO – @jagalbraith

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Switching Basics <strong>and</strong> Intermediate Routing<br />

Cisco Press<br />

800 East 96th Street<br />

Indianapolis, Indiana 46240 USA<br />

<strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Instructor Edition<br />

Allan Johnson


ii Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Switching Basics <strong>and</strong> Intermediate Routing<br />

<strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Instructor Edition<br />

Allan Johnson<br />

Copyrigh® 2007 Cisco Systems, Inc.<br />

Published by:<br />

Cisco Press<br />

800 East 96th Street<br />

Indianapolis, IN 46240 USA<br />

All rights reserved. No part of this book may be reproduced or transmitted<br />

in any form or by any means, electronic or mechanical, including photocopying,<br />

recording, or by any information storage <strong>and</strong> retrieval system,<br />

without written permission from the publisher, except for the inclusion of<br />

brief quotations in a review.<br />

Printed in the United States of America 1 2 3 4 5 6 7 8 9 0<br />

First Printing July 2006<br />

Library of Congress Cataloging-in-Publication Number: 2006920177<br />

ISBN: 1-58713-186-2<br />

Warning <strong>and</strong> Disclaimer<br />

This book is designed to provide information about the <strong>CCNA</strong> 3: Switching<br />

Basics <strong>and</strong> Intermediate Routing course of the Cisco Networking Academy<br />

Program <strong>CCNA</strong> curriculum. Every effort has been made to make this book<br />

as complete <strong>and</strong> as accurate as possible, but no warranty or fitness is implied.<br />

The information is provided on an “as is” basis. The authors, Cisco Press, <strong>and</strong><br />

Cisco Systems, Inc., shall have neither liability nor responsibility to any<br />

person or entity with respect to any loss or damages arising from the information<br />

contained in this book or from the use of the discs or programs that<br />

may accompany it.<br />

The opinions expressed in this book belong to the author <strong>and</strong> are not necessarily<br />

those of Cisco Systems, Inc.<br />

Feedback Information<br />

At Cisco Press, our goal is to create in-depth technical books of the highest<br />

quality <strong>and</strong> value. Each book is crafted with care <strong>and</strong> precision, undergoing<br />

rigorous development that involves the unique expertise of members from<br />

the professional technical community.<br />

Readers’ feedback is a natural continuation of this process. If you have any<br />

comments regarding how we could improve the quality of this book, or otherwise<br />

alter it to better suit your needs, you can contact us through e-mail<br />

at feedback@ciscopress.com. Please make sure to include the book title <strong>and</strong><br />

ISBN in your message.<br />

We greatly appreciate your assistance.<br />

Publisher<br />

Paul Boger<br />

Cisco Representative<br />

Anthony Wolfenden<br />

Cisco Press<br />

Program Manager<br />

Jeff Brady<br />

Executive Editor<br />

Mary Beth Ray<br />

Production Manager<br />

Patrick Kanouse<br />

Development Editor<br />

Andrew Cupp<br />

Senior Project Editor<br />

San Dee Phillips<br />

Copy Editor<br />

Bill McManus<br />

Technical Editor<br />

Bernadette O’Brien<br />

Team Coordinator<br />

Vanessa Evans<br />

Book <strong>and</strong> Cover Designer<br />

Louisa Adair<br />

Composition<br />

Mark Shirar


Trademark Acknowledgments<br />

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately<br />

capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information. Use of<br />

a term in this book should not be regarded as affecting the validity of any trademark or service mark.<br />

iii


iv Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

About the Author<br />

Allan Johnson entered the academic world in 1999 after 10 years as a business owner/operator to dedicate<br />

his efforts to his passion for teaching. He has an MBA <strong>and</strong> an M.Ed in occupational training <strong>and</strong> development.<br />

Allan is currently pursuing an MS in information security. He is an information technology instructor<br />

at Mary Carroll High School <strong>and</strong> Del Mar College in Corpus Christi, Texas. Since 2003, Allan has<br />

committed much of his time <strong>and</strong> energy to the <strong>CCNA</strong> Instructional Support Team providing services for<br />

instructors worldwide <strong>and</strong> creating training materials. He is a familiar voice on the Cisco Networking<br />

Academy Community forum, “Ask the Experts” series. He currently holds <strong>CCNA</strong> <strong>and</strong> CCAI certifications.<br />

About the Technical Reviewer<br />

Bernadette O’Brien has been teaching in the Cisco Networking Academy since 1998 in Schenectady,<br />

New York. Schenectady High School is a Regional Academy for <strong>CCNA</strong> <strong>and</strong> a CATC for Sponsored<br />

Curriculum, which Bernadette coordinates.<br />

Bernadette received her BS degree from SUNY College at Buffalo <strong>and</strong> her MS degree in curriculum <strong>and</strong><br />

instruction from SUNY Albany. She is also <strong>CCNA</strong> <strong>and</strong> CCAI certified.<br />

Bernadette, her husb<strong>and</strong>, <strong>and</strong> two children live in a Victorian village very near the Adirondack Mountains<br />

in upstate New York. They enjoy rehabbing their 120-year-old Victorian house, skiing, <strong>and</strong> hiking.


Dedications<br />

To my wife Becky, <strong>and</strong> my daughter Christina. Thank you both for your love <strong>and</strong> patience.<br />

v


vi Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Acknowledgments<br />

As technical editor, Bernadette O’Brien served admirably as my second pair of eyes, finding <strong>and</strong> correcting<br />

technical inaccuracies as well as grammatical errors that helped make this project a first-class production.<br />

Mary Beth Ray, executive editor, did an outst<strong>and</strong>ing job from beginning to end steering this project<br />

through to completion. I can always count on Mary Beth to make the tough decisions.<br />

Andrew Cupp, development editor, has a dedication to perfection that pays dividends in countless, unseen<br />

ways. Thank you for providing me much-needed guidance <strong>and</strong> support. This book could not be a reality<br />

without your persistence.<br />

Lastly, I cannot forget to thank all my students—past <strong>and</strong> present—who have helped me over the years to<br />

create engaging <strong>and</strong> exciting activities <strong>and</strong> labs. There is no better way to test the effectiveness of an activity<br />

than to give it to a team of dedicated students. They excel at finding the obscurest of errors! I could have<br />

never done this without all of your support.


Contents at a Glance<br />

Chapter 1: Introduction to Classless Routing 1<br />

Chapter 2: Single-Area OSPF 99<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 175<br />

Chapter 4: Switching Concepts 219<br />

Chapter 5: LAN Design <strong>and</strong> Switches 233<br />

Chapter 6: Catalyst Switch Configuration 243<br />

Chapter 7: Spanning Tree Protocol 313<br />

Chapter 8: Virtual LANs 341<br />

Chapter 9: VLAN Trunking Protocol 379<br />

Appendix A Router Interface Summary Chart 469<br />

Appendix B Erasing <strong>and</strong> Reloading the Switch 471<br />

Appendix C Erasing <strong>and</strong> Reloading the Router 473<br />

Appendix D <strong>CCNA</strong> 3 Skills-Based Assessment Practice 475<br />

vii


viii Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Contents<br />

Chapter 1: Introduction to Classless Routing 1<br />

<strong>Study</strong> <strong>Guide</strong> 2<br />

VLSM 2<br />

Vocabulary Exercise: Matching 3<br />

Vocabulary Exercise: Completion 4<br />

Subnetting Review Exercises 4<br />

Prefix Length Use Exercises 7<br />

VLSM Subnetting a Subnet Exercises 9<br />

VLSM Addressing Design Exercises 12<br />

VLSM Addressing Design Scenarios 16<br />

Summary Route Exercises 23<br />

Default <strong>and</strong> Static Routing Scenario 30<br />

Concept Questions 31<br />

VLSM Case <strong>Study</strong> 32<br />

RIP Version 2 34<br />

Compare <strong>and</strong> Contrast Exercise 34<br />

Internet Research 34<br />

Lab Exercises 37<br />

Comm<strong>and</strong> Reference 37<br />

Curriculum Lab 1-1: Calculating VLSM Subnets (1.1.4) 37<br />

Task 1: Divide the Allocated Addresses into Four Equal-Sized Address Blocks 38<br />

Task 2: Allocate the Next Level After All the Requirements Are Met for the Higher<br />

Level(s) 39<br />

Task 3: Allocate Address Space for Sydney 39<br />

Task 4: Allocate Address Space for Singapore 40<br />

Task 5: Allocate Address Space for WAN Links 41<br />

Curriculum Lab 1-2: Review of Basic Router Configuration with RIP<br />

(1.2.3) 43<br />

Task 1: Basic Router Configuration 45<br />

Task 2: Start the HyperTerminal Program 45<br />

Task 3: Name the HyperTerminal Session 45<br />

Task 4: Specify the Computer’s Connecting Interface 45<br />

Task 5: Specify the Interface Connection Properties 46<br />

Task 6: Close the Session 48<br />

Task 7: Reopen the HyperTerminal Connection 48<br />

Task 8: Configure Hostname <strong>and</strong> Passwords on Router GAD 49<br />

Task 9: Configure Interface Serial 0 on Router GAD 49<br />

Task 10: Configure the Fast Ethernet 0 Interface on Router GAD 49<br />

Task 11: Configure the IP Host Statements on Router GAD 49<br />

Task 12: Configure RIP Routing on Router GAD 50<br />

Task 13: Save the GAD Router Configuration 50<br />

Task 14: Configure Hostname <strong>and</strong> Passwords on Router BHM 50<br />

Task 15: Configure Interface Serial 0 on Router BHM 50


Task 16: Configure the Fast Ethernet 0 Interface on Router BHM 50<br />

Task 17: Configure the IP Host Statements on Router BHM 51<br />

Task 18: Configure RIP Routing on Router BHM 51<br />

Task 19: Save the BHM Router Configuration 51<br />

Task 20: Configure the Hosts 51<br />

Task 21: Verify the Internetwork Is Functioning by Pinging the Fast Ethernet<br />

Interface of the Other Router 51<br />

Task 22: Show the Routing Tables for Each Router 52<br />

Curriculum Lab 1-3: Converting RIPv1 to RIPv2 (1.2.4) 53<br />

Task 1: Configure the Routers 54<br />

Task 2: Configure the Routing Protocol on Router GAD 55<br />

Task 3: Save the GAD Router Configuration 55<br />

Task 4: Configure the Routing Protocol on Router BHM 55<br />

Task 5: Save the BHM Router Configuration 55<br />

Task 6: Configure the Hosts 56<br />

Task 7: Verify that the Internetwork Is Functioning 56<br />

Task 8: Enable RIPv2 Routing 56<br />

Task 9: Ping All Interfaces on the Network from Each Host 56<br />

Curriculum Lab 1-4: Verifying RIPv2 Configuration (1.2.5) 57<br />

Task 1: Configure the Routers 58<br />

Task 2: Configure the Routing Protocol on Router Gadsden 58<br />

Task 3: Save the Gadsden Router Configuration 58<br />

Task 4: Configure the Routing Protocol on Router BHM 58<br />

Task 5: Save the BHM Router Configuration 58<br />

Task 6: Configure the Hosts 58<br />

Task 7: Verify that the Internetwork Is Functioning 59<br />

Task 8: Show the Routing Tables for Each Router 59<br />

Task 9: Enable RIPv2 Routing 60<br />

Task 10: Show the Routing Tables 60<br />

Task 11: Change the Fast Ethernet IP Subnet Mask on Router GAD 61<br />

Task 12: Show the GAD Routing Table 61<br />

Task 13: Show the BHM Routing Table 61<br />

Task 14: Change the Network Addressing Scheme 62<br />

Task 15: Show the Routing Table for Router GAD 62<br />

Task 16: Show the Routing Table for Router BHM 63<br />

Task 17: Change the Host Configurations 63<br />

Task 18: Ping All Interfaces on the Network from Each Host 64<br />

Task 19: Use show ip route to See Different Routes by Type 64<br />

Task 20: Use the show ip protocol Comm<strong>and</strong> 64<br />

Task 21: Remove the Version 2 Option for RIP 65<br />

Task 22: Show the Routing Table for Router GAD 65<br />

Task 23: Show the Routing Table for Router BHM 66<br />

Curriculum Lab 1-5: Troubleshooting RIPv2 Using debug (1.2.6) 66<br />

Task 1: Configure the Routers 67<br />

Task 2: Configure the Routing Protocol on Router GAD 67<br />

Task 3: Save the GAD Router Configuration 67<br />

ix


x Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 4: Configure the Routing Protocol on Router BHM 67<br />

Task 5: Save the BHM Router Configuration 68<br />

Task 6: Configure the Hosts 68<br />

Task 7: Verify the Internetwork Is Functioning 68<br />

Task 8: Show the debug ip Comm<strong>and</strong> Options 68<br />

Task 9: Show the debug ip rip Comm<strong>and</strong> Options 69<br />

Task 10: Show the RIP Routing Updates 69<br />

Task 11: Enable RIPv2 Routing on Router GAD Only 69<br />

Task 12: Restart the Debug Function on Router GAD 69<br />

Task 13: Clear the Routing Table 70<br />

Task 14: Start the Debug RIP Function 70<br />

Task 15: Clear the Routing Table 70<br />

Task 16: Enable RIPv2 Routing on Router BHM 71<br />

Task 17: Use the Debug Function to See Packet Traffic on a Router 71<br />

Task 18: Start the debug ip rip database Function on Router BHM 71<br />

Task 19: Use the Debug Function to See Routing Updates 71<br />

Comprehensive Lab 1-6: Default Routing <strong>and</strong> RIPv2 72<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configurations 73<br />

Task 2: Configure Interfaces <strong>and</strong> Enable RIPv2 74<br />

Task 3: Verify Connectivity 75<br />

Task 4: Add ISP Router 76<br />

Task 5: Configure Static <strong>and</strong> Default Routing 77<br />

Task 6: Verify Connectivity <strong>and</strong> Capture Scripts 77<br />

Challenge Lab 1-7: VLSM Design, RIPv2, <strong>and</strong> Default Routing 85<br />

Task 1: Design the Addressing Scheme 86<br />

Task 2: Cable the Topology <strong>and</strong> Basic Configurations 87<br />

Task 3: Configure the Interfaces <strong>and</strong> Enable RIPv2 87<br />

Task 4: Configure Static <strong>and</strong> Default Routing 87<br />

Task 5: Verify Connectivity 88<br />

Task 6: Challenge 89<br />

Chapter 2: Single-Area OSPF 99<br />

<strong>Study</strong> <strong>Guide</strong> 100<br />

Link-State Routing Overview 100<br />

Vocabulary Exercise: Matching 100<br />

Vocabulary Exercise: Completion 101<br />

Compare <strong>and</strong> Contrast Exercise 101<br />

Concept Questions 102<br />

Journal Entry 102<br />

Single-Area OSPF Concepts 102<br />

Vocabulary Exercise: Completion 102<br />

Build the SPF Loop-Free Topology 103<br />

Concept Questions 106<br />

Single-Area OSPF Configuration 106<br />

Learn the OSPF Comm<strong>and</strong>s Exercise 107


DR/BDR Election Exercise 114<br />

Journal Entry 115<br />

Lab Exercises 116<br />

Comm<strong>and</strong> Reference 116<br />

Curriculum Lab 2-1: Configuring the OSPF Routing Process (2.3.1)<br />

117<br />

Task 1: Configure the Routers 118<br />

Task 2: Save the Configuration Information from Privileged EXEC Comm<strong>and</strong> Mode<br />

120<br />

Task 3: Configure the Hosts 120<br />

Task 4: View the Router’s Configuration <strong>and</strong> Interface Information 120<br />

Task 5: Configure OSPF Routing on Router BERLIN 121<br />

Task 6: Configure OSPF Routing on Router ROME 121<br />

Task 7: Test Network Connectivity 122<br />

Curriculum Lab 2-2: Configuring OSPF with Loopback Addresses<br />

(2.3.2) 122<br />

Task 1: Configure the Routers 123<br />

Task 2: Save the Configuration Information for All the Routers 125<br />

Task 3: Configure the Hosts 125<br />

Task 4: View the Router’s Configuration <strong>and</strong> Interface Information 126<br />

Task 5: Verify Connectivity of the Routers 126<br />

Task 6: Configure OSPF Routing on Router London 126<br />

Task 7: Configure OSPF Routing on Router Ottawa 127<br />

Task 8: Configure OSPF Routing on Router Brasilia 127<br />

Task 9: Test Network Connectivity 127<br />

Task 10: Show OSPF Adjacencies 127<br />

Task 11: Configure the Loopback Interfaces 128<br />

Task 12: Save the Configuration Information for All the Routers 128<br />

Task 13: Show OSPF Adjacencies 128<br />

Task 14: Verify OSPF Interface Configuration 129<br />

Task 15: Configure London to Always Be the DR 129<br />

Task 16: Watch the Election Process 129<br />

Task 17: Show OSPF Adjacencies 129<br />

Curriculum Lab 2-3: Modifying OSPF Cost Metric (2.3.3) 130<br />

Task 1: Configure the Routers 131<br />

Task 2: Save the Configuration Information from Privileged EXEC Comm<strong>and</strong> Mode<br />

132<br />

Task 3: Configure the Hosts 132<br />

Task 4: View the Router’s Configuration <strong>and</strong> Interface Information 133<br />

Task 5: Configure OSPF Routing on Router Cairo 134<br />

Task 6: Configure OSPF Routing on the Moscow Router 134<br />

Task 7: Show the Routing Table Entries 135<br />

Task 8: Test Network Connectivity 135<br />

Task 9: Look at the OSPF Cost on the Cairo Router Interfaces 135<br />

Task 10: Record the OSPF Cost of the Serial <strong>and</strong> Fast Ethernet Interfaces 136<br />

Task 11: Manually Set the Cost on the Serial Interface 136<br />

xi


xii Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 12: Verify Cost 136<br />

Curriculum Lab 2-4: Configuring OSPF Authentication (2.3.4) 137<br />

Task 1: Configure the Routers 138<br />

Task 2: Save the Configuration Information from Privileged EXEC Comm<strong>and</strong> Mode<br />

140<br />

Task 3: Configure the Hosts 140<br />

Task 4: Verify Connectivity 140<br />

Task 5: Configure OSPF Routing on Both Routers 140<br />

Task 6: Test Network Connectivity 141<br />

Task 7: Set Up OSPF Authentication 141<br />

Task 8: Enable OSPF Authentication in this Area, Area 0 142<br />

Curriculum Lab 2-5: Configuring OSPF Timers (2.3.5) 143<br />

Task 1: Configure the Routers 144<br />

Task 2: Save the Configuration Information from Privileged EXEC Comm<strong>and</strong> Mode<br />

145<br />

Task 3: Configure the Hosts 145<br />

Task 4: Verify Connectivity 146<br />

Task 5: Configure OSPF Routing on both Routers 146<br />

Task 6: Test Network Connectivity 146<br />

Task 7: Observe OSPF Traffic 147<br />

Task 8: Show Interface Timer Information 147<br />

Task 9: Modify the OSPF Timers 147<br />

Task 10: Examine the Routing Table 147<br />

Task 11: Look at the OSPF Data Transmissions 147<br />

Task 12: Check the Rome Router Routing Table Status 148<br />

Task 13: Set the Rome Router Interval Timers 148<br />

Task 14: Reset the Router’s Interval Timers to the Default Values 148<br />

Task 15: Verify that the Interval Timers Are Returned to the Default Values 148<br />

Curriculum Lab 2-6: Propagating Default Routes in an OSPF Domain<br />

(2.3.6) 149<br />

Task 1: Configure the ISP Router 150<br />

Task 2: Configure the Area 0 OSPF Routers 151<br />

Task 3: Save the Configuration Information from Privileged EXEC Comm<strong>and</strong> Mode<br />

152<br />

Task 4: Configure the Hosts 152<br />

Task 5: Verify Connectivity 153<br />

Task 6: Configure OSPF Routing on Both Area 0 Routers 153<br />

Task 7: Test Network Connectivity 154<br />

Task 8: Observe OSPF Traffic 154<br />

Task 9: Create a Default Route to the ISP 154<br />

Task 10: Verify the Default Static Route 154<br />

Task 11: Verify Connectivity from the Madrid Router 155<br />

Task 12: Verify Connectivity from the Tokyo Router 155<br />

Task 13: Redistribute the Static Default Route 155


Comprehensive Lab 2-7: OSPF Configuration 156<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configurations 157<br />

Task 2: Configure Interfaces <strong>and</strong> OSPF Routing 158<br />

Task 3: Verify Connectivity 158<br />

Task 4: Modify OSPF Cost 159<br />

Task 5: Configure MD5 Authentication 160<br />

Task 6: Adjust OSPF Timers 161<br />

Task 7: Configure <strong>and</strong> Propagate a Default Route 162<br />

Challenge Lab 2-8: OSPF Design <strong>and</strong> Configuration 167<br />

Task 1: Design the Addressing Scheme 168<br />

Task 2: Cable the Topology <strong>and</strong> Basic Configuration 169<br />

Task 3: Configure OSPF Routing <strong>and</strong> Default Routing 169<br />

Task 4: Other OSPF Configurations 169<br />

Task 5: Verification <strong>and</strong> Documentation 170<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 175<br />

<strong>Study</strong> <strong>Guide</strong> 176<br />

EIGRP Concepts 176<br />

Vocabulary Exercise: Matching 176<br />

Vocabulary Exercise: Completion 177<br />

EIGRP Packet Type Exercise 177<br />

EIGRP Configuration 178<br />

Learn the EIGRP Comm<strong>and</strong>s Exercise 178<br />

Troubleshooting Routing Protocols 181<br />

Problem-Solving Cycle 181<br />

Troubleshooting RIP 182<br />

Troubleshooting EIGRP 185<br />

Troubleshooting OSPF 187<br />

Internet Research Exercise 191<br />

Lab Exercises 194<br />

Comm<strong>and</strong> Reference 194<br />

Curriculum Lab 3-1: Configuring EIGRP Routing (3.2.1) 195<br />

Task 1: Configure the Routers 196<br />

Task 2: Save the Configuration Information from Privileged EXEC Comm<strong>and</strong> Mode<br />

197<br />

Task 3: Configure the Hosts 197<br />

Task 4: View the Router’s Configuration <strong>and</strong> Interface Information 198<br />

Task 5: Configure EIGRP Routing on Router Paris 198<br />

Task 6: Configure EIGRP Routing on Router Warsaw 199<br />

Task 7: Test Network Connectivity 199<br />

Curriculum Lab 3-2: Verifying Basic EIGRP Configuration (3.2.3)<br />

199<br />

Task 1: Configure the Routers 200<br />

Task 2: Save the Configuration Information from Privileged EXEC Comm<strong>and</strong> Mode<br />

202<br />

xiii


xiv Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 3: Configure the Hosts 202<br />

Task 4: View the Router’s Configuration <strong>and</strong> Interface Information 202<br />

Task 5: Configure EIGRP Routing on Router Paris 203<br />

Task 6: Configure EIGRP Routing on Router Warsaw 203<br />

Task 7: Show EIGRP Neighbors 203<br />

Task 8: Test Network Connectivity 203<br />

Task 9: View the Topology Table 204<br />

Comprehensive Lab 3-3: Comprehensive EIGRP Configuration 204<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configurations 205<br />

Task 2: Configure Interfaces <strong>and</strong> EIGRP Routing 206<br />

Task 3: Configure B<strong>and</strong>width <strong>and</strong> Automatic Summarization 207<br />

Task 4: Configure Manual Summarization 208<br />

Challenge Lab 3-4: EIGRP Design <strong>and</strong> Configuration 209<br />

Task 1: Design the Addressing Scheme 210<br />

Task 2: Cable the Topology <strong>and</strong> Basic Configuration 211<br />

Task 3: Configure EIGRP Routing <strong>and</strong> Default Routing 211<br />

Task 4: Manual Summarization 212<br />

Task 5: Verification <strong>and</strong> Documentation 212<br />

Chapter 4: Switching Concepts 219<br />

<strong>Study</strong> <strong>Guide</strong> 220<br />

Introduction to Ethernet/802.3 LANs 220<br />

Vocabulary Exercise: Matching 221<br />

Vocabulary Exercise: Completion 222<br />

CSMA/CD Process Flow Chart Exercise 223<br />

Concept Questions 224<br />

Journal Entry 224<br />

Introduction to LAN Switching 225<br />

Vocabulary Exercise: Completion 225<br />

Building the MAC Address Table Exercise 225<br />

Concept Questions 227<br />

Journal Entry 227<br />

Switch Operation 228<br />

Vocabulary Exercise: Completion 228<br />

Collision <strong>and</strong> Broadcast Domains Exercises 228<br />

Choose the Correct Cable Exercise 230<br />

Lab Exercises 231<br />

Chapter 5: LAN Design <strong>and</strong> Switches 233<br />

<strong>Study</strong> <strong>Guide</strong> 234<br />

LAN Design 234<br />

Vocabulary Exercise: Matching 234<br />

Vocabulary Exercise: Completion 235<br />

Concept Questions 236


LAN Switches 237<br />

Vocabulary Exercise: Completion 237<br />

Three-Layer Hierarchical Model Exercise 238<br />

Concept Questions 240<br />

Lab Exercises 241<br />

Chapter 6: Catalyst Switch Configuration 243<br />

<strong>Study</strong> <strong>Guide</strong> 244<br />

Starting the Switch 244<br />

Vocabulary Exercise: Completion 244<br />

Switch LED Interpretation Exercise 245<br />

Configuring the Switch 246<br />

Learn Basic Switch Comm<strong>and</strong>s Exercise 246<br />

Lab Exercises 249<br />

Comm<strong>and</strong> Reference 249<br />

Curriculum Lab 6-1: Verifying Default Switch Configuration (6.2.1)<br />

250<br />

Task 1: Enter Privileged Mode 251<br />

Task 2: Examine the Current Switch Configuration 251<br />

Task 3: Get Cisco IOS Software Information 252<br />

Task 4: Examine the Fast Ethernet Interfaces 252<br />

Task 5: Examine VLAN Information 253<br />

Task 6: Examine Flash Memory (1900: Skip to Step 8) 253<br />

Task 7: Examine the Startup Configuration File 254<br />

Task 8: Exit the Switch 254<br />

Curriculum Lab 6-2: Basic Switch Configuration (6.2.2) 255<br />

Task 1: Enter Privileged Mode 256<br />

Task 2: Examine the Current Switch Configuration 256<br />

Task 3: Assign a Name to the Switch 258<br />

Task 4: Examine the Current Running Configuration 259<br />

Task 5: Set the Access Passwords (1900: Skip to Task 6) 261<br />

Task 6: Set the Comm<strong>and</strong> Mode Passwords 261<br />

Task 7: Configure Layer 3 Access to the Switch 261<br />

Task 8: Verify the Management LAN Settings (1900: Skip to Step 9) 262<br />

Task 9: Configure Port Speed <strong>and</strong> Duplex Properties for a Fast Ethernet Interface<br />

262<br />

Task 10: Verify the Settings on a Fast Ethernet Interface 263<br />

Task 11: Save the Configuration 263<br />

Task 12: Examine the Startup Configuration File (1900: Skip to Task 13) 264<br />

Task 13: Remove the Enable <strong>and</strong> Enable Secret Passwords 266<br />

Task 14: Access the Switch Web Interface 266<br />

Task 15: Exit the Switch 267<br />

xv


xvi Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Curriculum Lab 6-3: Managing the MAC Address Table (6.2.3) 267<br />

Task 1: Configure the Switch 268<br />

Task 2: Configure the Hosts that Are Attached to the Switch 268<br />

Task 3: Verify Connectivity 268<br />

Task 4: Record the Host MAC Addresses 268<br />

Task 5: Determine the MAC Addresses that the Switch Has Learned 268<br />

Task 6: Determine the show mac-address-table Options 269<br />

Task 7: Clear the MAC Address Table 269<br />

Task 8: Verify the Results 270<br />

Task 9: Determine the clear mac-address-table Options 270<br />

Task 10: Examine the MAC Table Again 270<br />

Task 11: Exit the Switch 271<br />

Curriculum Lab 6-4: Configuring Static MAC Addresses (6.2.4) 271<br />

Task 1: Configure the Switch 272<br />

Task 2: Configure the Hosts Attached to the Switch 272<br />

Task 3: Verify Connectivity 272<br />

Task 4: Record the Host MAC Addresses 272<br />

Task 5: Determine the MAC Addresses that the Switch Has Learned 273<br />

Task 6: Determine the mac-address-table Options 273<br />

Task 7: Set Up a Static MAC Address 273<br />

Task 8: Verify the Results 274<br />

Task 9: Remove the Static MAC Entry 274<br />

Task 10: Verify the Results 275<br />

Task 11: Exit the Switch 275<br />

Curriculum Lab 6-5: Configuring Port Security (6.2.5) 275<br />

Task 1: Configure the Switch 276<br />

Task 2: Configure the Hosts Attached to the Switch 276<br />

Task 3: Verify Connectivity 276<br />

Task 4: Record the Hosts’ MAC Addresses 276<br />

Task 5: Determine the MAC Addresses that the Switch Has Learned 277<br />

Task 6: Determine the mac-address-table Options 277<br />

Task 7: Set Up a Static MAC Address 277<br />

Task 8: Verify the Results 278<br />

Task 9: List Port Security Options 278<br />

Task 10: Verify the Results 279<br />

Task 11: Show the Running Configuration File 279<br />

Task 12: Limit the Number of Hosts Per Port 280<br />

Task 13: Configure the Port to Shut Down if a Security Violation Occurs 280<br />

Task 14: Show Port 0/4 Configuration Information 280<br />

Task 15: Reactivate the Port 281<br />

Task 16: Exit the Switch 281<br />

Curriculum Lab 6-6: Add, Move, <strong>and</strong> Change MAC Addresses (6.2.6)<br />

282<br />

Task 1: Configure the Switch 283<br />

Task 2: Configure the Hosts Attached to the Switch 283


Task 3: Verify Connectivity 283<br />

Task 4: Record the Hosts’ MAC Addresses 283<br />

Task 5: Determine the MAC Addresses that the Switch Has Learned 283<br />

Task 6: Determine the mac-address-table Options 284<br />

Task 7: Set Up a Static MAC Address 284<br />

Task 8: Verify the Results 284<br />

Task 9: List Port Security Options 285<br />

Task 10: Verify the Results 285<br />

Task 11: Show the Running Configuration File 286<br />

Task 12: Limit the Number of Hosts Per Port 286<br />

Task 13: Move Host 286<br />

Task 14: Clear the MAC Address Table 287<br />

Task 15: Change the Security Settings 287<br />

Task 16: Verify the Results 288<br />

Task 17: Exit the Switch 289<br />

Curriculum Lab 6-7: Managing Switch Operating System Files (6.2.7a)<br />

289<br />

Task 1: Configure the Switch 290<br />

Task 2: Configure the Host that Is Attached to the Switch 290<br />

Task 3: Verify Connectivity 290<br />

Task 4: Start <strong>and</strong> Configure the Cisco TFTP Server 290<br />

Task 5: Copy the IOS Image to the TFTP Server (1900: Skip to Step 9) 291<br />

Task 6: Verify the Transfer to the TFTP Server 291<br />

Task 7: Copy the IOS Image from the TFTP Server 292<br />

Task 8: Test the Restored IOS Image 292<br />

Task 9: Procedure for 1900 Switch Firmware Upgrade Using TFTP 293<br />

Curriculum Lab 6-8: Managing Switch Startup Configuration Files<br />

(6.2.7b) 294<br />

Task 1: Configure the Switch 295<br />

Task 2: Configure the Host that Is Attached to the Switch 295<br />

Task 3: Verify Connectivity 295<br />

Task 4: Start <strong>and</strong> Configure the Cisco TFTP Server 295<br />

Task 5: Copy the Startup Configuration File to the TFTP Server 296<br />

Task 6: Verify the Transfer to the TFTP Server 297<br />

Task 7: Restore the Startup Configuration File from the TFTP Server 297<br />

Task 8: Test the Restored Startup Configuration Image (Not Supported on the 1900)<br />

298<br />

Curriculum Lab 6-9: Password Recovery Procedure on a Catalyst<br />

2900 Series Switch (6.2.8) 300<br />

Task 1: Configure the Switch 301<br />

Task 2: Configure the Host that Is Attached to the Switch 301<br />

Task 3: Verify Connectivity 301<br />

Task 4: Reset the Console Password 301<br />

Task 5: Recover Access to the Switch 301<br />

Task 6: Restart the System 302<br />

Task 7: Procedure for the 1900 <strong>and</strong> 2800 Switches 303<br />

xvii


xviii Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Curriculum Lab 6-10: Firmware Upgrade of a Catalyst 2950 Series<br />

Switch (6.2.9) 305<br />

Task 1: Configure the Switch 306<br />

Task 2: Configure the Host Attached to the Switch 306<br />

Task 3: Verify Connectivity 306<br />

Task 4: Display the Name of the Running Image File 306<br />

Task 5: Prepare for the New Image 307<br />

Task 6: Extract the New IOS Image <strong>and</strong> HTML Files into Flash Memory 307<br />

Task 7: Associate the New Boot File 307<br />

Task 8: Restart the Switch 308<br />

Challenge Lab 6-11: Basic Switch Configuration with Port Security<br />

308<br />

Task 1: Cable the Topology <strong>and</strong> Clear the Configuration 309<br />

Task 2: Configure the Switch 309<br />

Task 3: Configure <strong>and</strong> Test Port Security 310<br />

Chapter 7: Spanning Tree Protocol 313<br />

<strong>Study</strong> <strong>Guide</strong> 314<br />

Redundant Topologies 314<br />

Vocabulary Exercise: Completion 314<br />

Concept Questions 314<br />

Journal Entry 315<br />

Spanning Tree Protocol 315<br />

Vocabulary Exercise: Matching 316<br />

Vocabulary Exercise: Completion 317<br />

Determine the Root Bridge <strong>and</strong> Port Roles Exercise 318<br />

Spanning-Tree Recalculation Exercise 322<br />

Concept Questions 323<br />

Lab Exercises 324<br />

Comm<strong>and</strong> Reference 324<br />

Curriculum Lab 7-1: Selecting the Root Bridge (7.2.4) 324<br />

Task 1: Configure the Switches 325<br />

Task 2: Configure the Hosts that Are Attached to the Switches 325<br />

Task 3: Verify Connectivity 325<br />

Task 4: Look at the show interface vlan Options 326<br />

Task 5: Look at the VLAN Interface Information 327<br />

Task 6: Look at the Switches’ Spanning-Tree Tables 327<br />

Task 7: Reassign the Root Bridge 329<br />

Task 8: Look at the Switch Spanning-Tree Table 330<br />

Task 9: Verify the Running Configuration File on the Root Switch 331<br />

Curriculum Lab 7-2: Spanning-Tree Recalculation (7.2.6) 332<br />

Task 1: Configure the Switches 333<br />

Task 2: Configure the Hosts that Are Attached to the Switches 333<br />

Task 3: Verify Connectivity 333<br />

Task 4: Look at the VLAN Interface Information 333


Task 5: Look at the Switches’ Spanning-Tree Tables 334<br />

Task 6: Remove a Cable on the Switch 336<br />

Task 7: Look at the Spanning-Tree Table for the Switches 337<br />

Task 8: Replace the Cable in the Switch 338<br />

Task 9: Redisplay the Spanning-Tree Table for the Switches 338<br />

Chapter 8: Virtual LANs 341<br />

<strong>Study</strong> <strong>Guide</strong> 342<br />

VLAN Concepts 342<br />

Vocabulary Exercise: Completion 342<br />

VLAN Configuration 342<br />

Learn VLAN Configuration Comm<strong>and</strong>s Exercise 342<br />

Troubleshooting VLANs 345<br />

Identify the Troubleshooting Comm<strong>and</strong> Exercise 345<br />

Lab Exercises 348<br />

Comm<strong>and</strong> Reference 348<br />

Curriculum Lab 8-1: Configuring Static VLANs (8.2.3) 348<br />

Task 1: Configure the Switch 349<br />

Task 2: Configure the Hosts Attached to the Switch 349<br />

Task 3: Verify Connectivity 349<br />

Task 4: Show the Cisco IOS Version 349<br />

Task 5: Display the VLAN Interface Information 350<br />

Task 6: Create <strong>and</strong> Name Two VLANs 351<br />

Task 7: Display the VLAN Interface Information 351<br />

Task 8: Assign a Port to VLAN 2 352<br />

Task 9: Display the VLAN Interface Information 353<br />

Task 10: Assign a Port to VLAN 3 354<br />

Task 11: Display the VLAN Interface Information 354<br />

Task 12: Look Only at VLAN 2 Information 355<br />

Task 13: Look Only at VLAN 2 Information with a Different Comm<strong>and</strong> (1900: Skip<br />

this Task) 355<br />

Curriculum Lab 8-2: Verifying VLAN Configurations (8.2.4) 356<br />

Task 1: Configure the Switch 357<br />

Task 2: Configure the Hosts Attached to the Switch 357<br />

Task 3: Verify Connectivity 357<br />

Task 4: Display the VLAN Interface Information 357<br />

Task 5: Create <strong>and</strong> Name Two VLANs 358<br />

Task 6: Assign Ports to VLAN 2 358<br />

Task 7: Display the VLAN Interface Information 359<br />

Task 8: Assign Ports to VLAN 3 360<br />

Task 9: Display the VLAN Interface Information 360<br />

Task 10: Test the VLANs 361<br />

Task 11: Move a Host 362<br />

Task 12: Test the VLANs 362<br />

Task 13: Move Hosts 362<br />

xix


xx Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 14: Test the VLANs 362<br />

Task 15: Move the Hosts 362<br />

Task 16: Test the VLANs 362<br />

Curriculum Lab 8-3: Deleting VLAN Configurations (8.2.6) 363<br />

Task 1: Configure the Switch 364<br />

Task 2: Configure the Hosts Attached to the Switch 364<br />

Task 3: Verify Connectivity 364<br />

Task 4: Display the VLAN Interface Information 364<br />

Task 5: Create <strong>and</strong> Name Two VLANs 365<br />

Task 6: Assign Ports to VLAN 2 365<br />

Task 7: Display the VLAN Interface Information 366<br />

Task 8: Assign Ports to VLAN 3 366<br />

Task 9: Display the VLAN Interface Information 367<br />

Task 10: Test the VLANs 368<br />

Task 11: Delete a Host from a VLAN 368<br />

Task 12: Display the VLAN Interface Information 368<br />

Task 13: Delete a VLAN 369<br />

Task 14: Display the VLAN Interface Information 370<br />

Task 15: Delete VLAN 1 370<br />

Challenge Lab 8-4: Static VLANs, STP, <strong>and</strong> Port Security 371<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configuration 371<br />

Task 2: Configure VLANs 372<br />

Task 3: Configure the Root Bridge for STP 373<br />

Task 4: Configure Port Security 374<br />

Task 5: Verify VLANs <strong>and</strong> Port Security 375<br />

Chapter 9: VLAN Trunking Protocol 379<br />

<strong>Study</strong> <strong>Guide</strong> 380<br />

Trunking 380<br />

Vocabulary Exercise: Completion 380<br />

Basic Trunk Configuration Exercise 382<br />

VTP 382<br />

Vocabulary Exercise: Completion 383<br />

VTP Basic Configuration Exercise 383<br />

Concept Questions 384<br />

Internet Research: VTP 385<br />

Internet Research: VTP Pruning 387<br />

Inter-VLAN Routing Overview 387<br />

Vocabulary Exercise: Completion 387<br />

Basic Inter-VLAN Configuration Exercise 388<br />

Lab Exercises 389<br />

Comm<strong>and</strong> Reference 389<br />

Curriculum Lab 9-1: Trunking with ISL (9.1.5a) 391<br />

Task 1: Configure the Switch 392


Task 2: Configure the Hosts Attached to the Switch 392<br />

Task 3: Verify Connectivity 392<br />

Task 4: Display the VLAN Interface Information 392<br />

Task 5: Create <strong>and</strong> Name Three VLANs 393<br />

Task 6: Assign Ports to VLAN 10 393<br />

Task 7: Assign Ports to VLAN 20 394<br />

Task 8: Assign Ports to VLAN 30 394<br />

Task 9: Create VLANs on Switch_B 395<br />

Task 10: Display the VLAN Interface Information 395<br />

Task 11: Test the VLANs 396<br />

Task 12: Create the ISL Trunk 396<br />

Task 13: Verify the ISL Trunk 396<br />

Task 14: Test the VLANs <strong>and</strong> the Trunk 397<br />

Task 15: Move the Hosts 397<br />

Task 16: Test the VLANs <strong>and</strong> the Trunk 397<br />

Task 17: Move the Hosts 398<br />

Task 18: Test the VLANs <strong>and</strong> the Trunk 398<br />

Task 19: Move the Hosts 398<br />

Task 20: Test the VLANs <strong>and</strong> the Trunk 398<br />

Task 21: Move the Hosts 398<br />

Task 22: Test the VLANs <strong>and</strong> the Trunk 398<br />

Curriculum Lab 9-2: Trunking with 802.1q (9.1.5b) 402<br />

Task 1: Configure the Switch 403<br />

Task 2: Configure the Hosts Attached to the Switch 403<br />

Task 3: Verify Connectivity 403<br />

Task 4: Display the VLAN Interface Information 403<br />

Task 5: Create <strong>and</strong> Name Three VLANs 404<br />

Task 6: Assign Ports to VLAN 10 404<br />

Task 7: Assign Ports to VLAN 20 405<br />

Task 8: Assign Ports to VLAN 30 405<br />

Task 9: Create VLANs on Switch_B 405<br />

Task 10: Display the VLAN Interface Information 406<br />

Task 11: Test the VLANs 406<br />

Task 12: Create the Trunk 407<br />

Task 13: Verify the Trunk 407<br />

Task 14: Test the VLANs <strong>and</strong> the Trunk 408<br />

Task 15: Move the Hosts 408<br />

Task 16: Test the VLANs <strong>and</strong> the Trunk 409<br />

Task 17: Move the Hosts 409<br />

Task 18: Test the VLANs <strong>and</strong> the Trunk 409<br />

Task 19: Move the Hosts 409<br />

Task 20: Test the VLANs <strong>and</strong> the Trunk 410<br />

Task 21: Move the Hosts 410<br />

Task 22: Test the VLANs <strong>and</strong> the Trunk 410<br />

xxi


xxii Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Curriculum Lab 9-3: VTP Client <strong>and</strong> Server Configurations (9.2.5)<br />

411<br />

Task 1: Configure the Switches 412<br />

Task 2: Configure the Hosts Attached to the Switch 412<br />

Task 3: Verify Connectivity 412<br />

Task 4: Display the VLAN Interface Information 412<br />

Task 5: Configure VTP 413<br />

Task 6: Create <strong>and</strong> Name Three VLANs 413<br />

Task 7: Assign Ports to VLAN 10 414<br />

Task 8: Assign Ports to VLAN 20 414<br />

Task 9: Assign Ports to VLAN 30 414<br />

Task 10: Display the VLAN Interface Information 415<br />

Task 11: Configure the VTP Client 416<br />

Task 12: Create the Trunk 416<br />

Task 13: Verify the Trunk 416<br />

Task 14: Display the VLAN Interface Information 417<br />

Task 15: Assign Ports to VLAN 10 418<br />

Task 16: Assign Ports to VLAN 20 418<br />

Task 17: Assign Ports to VLAN 30 419<br />

Task 18: Display the VLAN Interface Information 419<br />

Task 19: Test the VLANs <strong>and</strong> the Trunk 420<br />

Task 20: Move the Hosts 420<br />

Task 21: Test the VLANs <strong>and</strong> the Trunk 420<br />

Curriculum Lab 9-4: Configuring Inter-VLAN Routing (9.3.6) 421<br />

Task 1: Configure the Switch 422<br />

Task 2: Configure the Hosts Attached to the Switch 422<br />

Task 3: Verify Connectivity 422<br />

Task 4: Create <strong>and</strong> Name Two VLANs 422<br />

Task 5: Assign Ports to VLAN 10 423<br />

Task 6: Assign Ports to VLAN 20 423<br />

Task 7: Display the VLAN Interface Information 424<br />

Task 8: Create the Trunk 425<br />

Task 9: Configure the Router 425<br />

Task 10: Save the Router Configuration 426<br />

Task 11: Display the Router Routing Table 426<br />

Task 12: Test the VLANs <strong>and</strong> the Trunk 427<br />

Task 13: Move the Hosts 427<br />

Comprehensive Lab 9-5: Inter-VLAN <strong>and</strong> VTP Configuration 431<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configuration 432<br />

Task 2: Configure VTP Parameters 432<br />

Task 3: Configure Inter-VLAN Routing 435<br />

Task 4: Adding, Moving, <strong>and</strong> Deleting VLANs 436<br />

Task 5: Documentation 440


Challenge Lab 9-6: Advanced Switching 447<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configuration 448<br />

Task 2: Configure the Root Bridge for STP 448<br />

Task 3: Configure Port Security 449<br />

Task 4: Configure VTP <strong>and</strong> VLANs 450<br />

Task 5: Set Up DHCP on the DIST Router 453<br />

Task 6: Configure Inter-VLAN Routing 453<br />

Task 7: Verify Inter-VLAN Routing 454<br />

Task 8: Documentation 458<br />

Appendix A Router Interface Summary Chart 469<br />

Appendix B Erasing <strong>and</strong> Reloading the Switch 471<br />

Appendix C Erasing <strong>and</strong> Reloading the Router 473<br />

Appendix D <strong>CCNA</strong> 3 Skills-Based Assessment Practice 475<br />

xxiii


xxiv Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Icons Used in This Book<br />

Communication<br />

Server<br />

Token<br />

Ring<br />

Token Ring<br />

PC PC with<br />

Software<br />

Terminal File<br />

Server<br />

Comm<strong>and</strong> Syntax Conventions<br />

The conventions that present comm<strong>and</strong> syntax in this book are the same conventions used in the IOS<br />

Comm<strong>and</strong> Reference. The Comm<strong>and</strong> Reference describes these conventions as follows:<br />

■ Boldface indicates comm<strong>and</strong>s <strong>and</strong> keywords that are entered literally as shown. In actual<br />

configuration examples <strong>and</strong> output (not general comm<strong>and</strong> syntax), boldface indicates comm<strong>and</strong>s<br />

that are manually input by the user (such as a show comm<strong>and</strong>).<br />

■ Italics indicate arguments for which you supply actual values.<br />

■ Vertical bars (|) separate alternative, mutually exclusive elements.<br />

■ Square brackets [ ] indicate optional elements.<br />

■ Braces { } indicate a required choice.<br />

Sun<br />

Workstation<br />

Web<br />

Server<br />

Printer Laptop IBM<br />

Mainframe<br />

Gateway<br />

Network Cloud<br />

Macintosh<br />

Cisco Works<br />

Workstation<br />

Front End<br />

Processor<br />

Access<br />

Server<br />

ATM<br />

Switch<br />

Cluster<br />

Controller<br />

■ Braces within brackets [{ }] indicate a required choice within an optional element.<br />

ISDN/Frame Relay<br />

Switch<br />

Modem<br />

Multilayer<br />

Switch<br />

Router Bridge Hub<br />

DSU/CSU<br />

DSU/CSU FDDI Catalyst<br />

Switch<br />

Line: Ethernet<br />

FDDI<br />

Line: Serial Line: Switched Serial


Introduction<br />

Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong> is a supplement to your classroom<br />

<strong>and</strong> laboratory experience with the Cisco Networking Academy Program. Specifically, this book<br />

covers the third of four courses. To be successful in this course <strong>and</strong> achieve your <strong>CCNA</strong> certification, you<br />

should do everything in your power to arm yourself with a variety of tools <strong>and</strong> training materials to support<br />

your learning efforts. This <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong> is just such a collection of tools. Used to its fullest<br />

extent, it will help you gain the knowledge as well as practice the skills associated with the content area of<br />

the <strong>CCNA</strong> 3 Switching Basics <strong>and</strong> Intermediate Routing course. Specifically, this book will help you to<br />

work on these main areas of <strong>CCNA</strong> 3:<br />

■ Advanced IP addressing techniques (VLSM)<br />

■ Routing protocols: RIPv2, single-area OSPF, <strong>and</strong> EIGRP<br />

■ Switching technologies <strong>and</strong> LAN design<br />

■ Switch configurations: security, STP, VLANs, <strong>and</strong> VTP<br />

Lab <strong>Study</strong> <strong>Guide</strong>s similar to this one are also available for the other three courses: Networking Basics<br />

<strong>CCNA</strong> 1 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong>, Routers <strong>and</strong> Routing Basics <strong>CCNA</strong> 2 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong>, <strong>and</strong> WAN<br />

Technologies <strong>CCNA</strong> 4 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong>.<br />

Goals <strong>and</strong> Methods<br />

One of the most important goals of this book is to help you prepare for either the <strong>CCNA</strong> exam (640-801)<br />

or the ICND exam (640-811). Whether you are studying for the full exam or the second part of your<br />

<strong>CCNA</strong>, passing either of these exams means that you not only have the required knowledge of the technologies<br />

covered by the exam, but also can plan, design, implement, operate, <strong>and</strong> troubleshoot these technologies.<br />

In other words, these exams are rigorously application-based. In fact, if you view the topics for<br />

the <strong>CCNA</strong> exam at http://www.cisco.com/web/learning/le3/current_exams/640-801.html, you will see the<br />

following four categories:<br />

■ Planning & Designing<br />

■ Implementation & Operation<br />

■ Troubleshooting<br />

■ Technology<br />

Although Technology is listed last, a <strong>CCNA</strong> student cannot possibly plan, design, implement, operate, <strong>and</strong><br />

troubleshoot networks without first fully grasping the technology. So, you need to devote a certain amount<br />

of time <strong>and</strong> effort in the <strong>Study</strong> <strong>Guide</strong> section of each chapter learning the concepts <strong>and</strong> theories before<br />

applying them in the Lab Exercises portion.<br />

The <strong>Study</strong> <strong>Guide</strong> section of each chapter offers exercises that help you learn the concepts <strong>and</strong> configurations<br />

crucial to your success as a <strong>CCNA</strong> exam c<strong>and</strong>idate. Each chapter is slightly different <strong>and</strong> includes<br />

some or all of the following types of exercises:<br />

■ Vocabulary matching <strong>and</strong> completion<br />

■ Skill-building activities <strong>and</strong> scenarios<br />

■ Configuration scenarios<br />

■ Concept questions<br />

■ Journal entries<br />

■ Internet research<br />

xxv


xxvi Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

The Lab Exercises sections include a Comm<strong>and</strong> Reference table, all the online Curriculum <strong>Labs</strong>, <strong>and</strong><br />

br<strong>and</strong>-new Comprehensive <strong>Labs</strong> <strong>and</strong> Challenge <strong>Labs</strong>. The Curriculum <strong>Labs</strong> typically walk you through the<br />

configuration tasks step by step. The Comprehensive <strong>Labs</strong> combine many, if not all, of the configuration<br />

tasks of the Curriculum <strong>Labs</strong> without actually providing you with all the comm<strong>and</strong>s. The Challenge <strong>Labs</strong><br />

take this a step further, often giving you only a general requirement that you must implement fully without<br />

the details of each small step. In other words, you must use the knowledge <strong>and</strong> skills you gained in the<br />

Curriculum <strong>Labs</strong> to successfully complete the Comprehensive <strong>and</strong> Challenge <strong>Labs</strong>. In fact, you should not<br />

attempt the Comprehensive or Challenge <strong>Labs</strong> until you have worked through all the <strong>Study</strong> <strong>Guide</strong> activities<br />

<strong>and</strong> the Curriculum <strong>Labs</strong>. When you work through the Comprehensive <strong>and</strong> Challenge <strong>Labs</strong>, avoid the<br />

temptation to flip back through the Curriculum <strong>Labs</strong> when you are not sure of a comm<strong>and</strong>. Do not try to<br />

short-circuit your <strong>CCNA</strong> training. <strong>Study</strong> the chapter’s topics until you can do the Comprehensive <strong>and</strong><br />

Challenge <strong>Labs</strong> without any help. You need a deep underst<strong>and</strong>ing of <strong>CCNA</strong> knowledge <strong>and</strong> skills to ultimately<br />

be successful on the <strong>CCNA</strong> exam.<br />

How This Book Is Organized<br />

Although you could work through the <strong>Study</strong> <strong>Guide</strong>s <strong>and</strong> Lab Exercises in this book in order, the content of<br />

knowledge <strong>and</strong> skills actually flows down three separate paths. The flow chart shown in Figure I-1 graphically<br />

displays these paths.<br />

Figure I-1 Paths for Using This Book<br />

Intermediate<br />

Routing<br />

Chapter 1:<br />

Introduction to<br />

Classless Routing<br />

Chapter 2:<br />

Single-Area<br />

OSPF<br />

Chapter 3:<br />

EIGRP <strong>and</strong><br />

Troubleshooting<br />

Routing Protocols<br />

Intermediate<br />

Routing <strong>and</strong><br />

Switching Basics<br />

<strong>CCNA</strong> 3<br />

Switching <strong>and</strong><br />

Design<br />

Chapter 4:<br />

Switching<br />

Concepts<br />

Chapter 5:<br />

LAN Design<br />

<strong>and</strong> Switches<br />

Appendix D:<br />

<strong>CCNA</strong> 3 Skills-Based<br />

Assessment Practice<br />

Switching<br />

Configuration<br />

Chapter 6:<br />

Catalyst Switch<br />

Configuration<br />

Chapter 7:<br />

Spanning Tree<br />

Protocol<br />

Chapter 8:<br />

Virtual LANs<br />

Chapter 9:<br />

VLAN<br />

Trunking Protocol<br />

Chapters 1, 2, <strong>and</strong> 3 belong to the Intermediate Routing path <strong>and</strong> focus on VLSM <strong>and</strong> routing configuration.<br />

Chapters 4 <strong>and</strong> 5 belong to the Switching <strong>and</strong> Design path <strong>and</strong> focus on switching technologies <strong>and</strong><br />

LAN design. Chapters 6, 7, 8, <strong>and</strong> 9 belong to the Switching Configuration path <strong>and</strong> focus on basic<br />

switching protocols <strong>and</strong> configurations. No path is dependent upon another path. Appendix D provides you<br />

with three different <strong>CCNA</strong> 3 Skills-Based Assessment practice labs.


Work through the <strong>Study</strong> <strong>Guide</strong> <strong>and</strong> Lab Exercises in the sequence in which they are presented. The<br />

sequence is designed to take you from a basic underst<strong>and</strong>ing of the knowledge topics through the full<br />

application <strong>and</strong> implementation of the skills. Individually, the chapters <strong>and</strong> appendixes include exercises<br />

<strong>and</strong> labs covering the following knowledge <strong>and</strong> skills:<br />

■ Chapter 1, “Introduction to Classless Routing”—Variable-Length Subnet Masking (VLSM) is<br />

arguably one of the most challenging skills you must master as a <strong>CCNA</strong> c<strong>and</strong>idate. Therefore, this<br />

chapter spends a great deal of time on this topic. Use the large variety of exercises to solidify your<br />

VLSM skills. In the RIPv2 discussion of the <strong>Study</strong> <strong>Guide</strong> portion, you compare <strong>and</strong> contrast RIPv1<br />

<strong>and</strong> RIPv2 <strong>and</strong> complete an Internet Research exercise. In the Lab Exercises portion is a Comm<strong>and</strong><br />

Reference exercise to help you review all the comm<strong>and</strong>s covered in the chapter. The five Curriculum<br />

<strong>Labs</strong> focus your attention on the configuration tasks covered in the chapter. Two additional labs, a<br />

Comprehensive Lab <strong>and</strong> a Challenge Lab, help you review the comm<strong>and</strong>s <strong>and</strong> skills learned in the<br />

Curriculum <strong>Labs</strong>.<br />

■ Chapter 2, “Single-Area OSPF”—This chapter has plenty of vocabulary exercises to help you get a<br />

firm grasp of OSPF terminology. Additional exercises focus on specific concepts <strong>and</strong> skills. For example,<br />

the DR/BDR Election exercise concentrates on this challenging OSPF topic. Concept questions<br />

round out your study of the operation of OSPF. In the Lab Exercises portion is a Comm<strong>and</strong> Reference<br />

exercise to help you review all the comm<strong>and</strong>s covered in the chapter. The six Curriculum <strong>Labs</strong> focus<br />

your attention on the configuration tasks covered in the chapter. Two additional labs, a Comprehensive<br />

Lab <strong>and</strong> a Challenge Lab, help you review the comm<strong>and</strong>s <strong>and</strong> skills learned in the Curriculum <strong>Labs</strong>.<br />

■ Chapter 3, “EIGRP <strong>and</strong> Troubleshooting Routing Protocols”—This chapter covers the concepts<br />

<strong>and</strong> configurations of the Cisco-proprietary Enhanced Interior Gateway Routing Protocol (EIGRP).<br />

Exercises cover vocabulary <strong>and</strong> the EIGRP packet types. In the “EIGRP Configuration” section, you<br />

work through a comprehensive EIGRP configuration exercise. Finally, you work on your troubleshooting<br />

skills in the “Troubleshooting Routing Protocols” section. The Lab Exercises portion has a<br />

Comm<strong>and</strong> Reference exercise to help you review all the comm<strong>and</strong>s covered in the chapter. The two<br />

Curriculum <strong>Labs</strong> focus your attention on the configuration tasks covered in the chapter. Two additional<br />

labs, a Comprehensive Lab <strong>and</strong> a Challenge Lab, help you review the comm<strong>and</strong>s <strong>and</strong> skills learned<br />

in the Curriculum <strong>Labs</strong>.<br />

■ Chapter 4, “Switching Concepts”—This chapter is in many ways a review of concepts you have<br />

already learned in previous course work. Therefore, in addition to some vocabulary exercises, additional<br />

exercises concentrate on a few of the more difficult concepts, including CSMA/CD, the MAC<br />

address table, collision <strong>and</strong> broadcast domains, <strong>and</strong> cabling. There are no Lab Exercises for this chapter.<br />

■ Chapter 5, “LAN Design <strong>and</strong> Switches”—This chapter is mostly vocabulary <strong>and</strong> concepts. The<br />

exercises in this chapter ensure that you have a firm grasp of the vocabulary <strong>and</strong> concepts pertaining<br />

to LAN design <strong>and</strong> the three-layer hierarchical model. There are no Lab Exercises for this chapter.<br />

xxvii<br />

■ Chapter 6, “Catalyst Switch Configuration”—This chapter includes some vocabulary exercises <strong>and</strong><br />

LED switch identification exercises. Most of the <strong>Study</strong> <strong>Guide</strong> section is devoted to a basic switch configuration<br />

exercise. In the Lab Exercises section of this chapter, you will find a Comm<strong>and</strong> Reference<br />

exercise to help you review all the comm<strong>and</strong>s covered in the chapter. The ten Curriculum <strong>Labs</strong> focus<br />

your attention on the configuration tasks covered in the chapter. A Challenge Lab will help you review<br />

the comm<strong>and</strong>s <strong>and</strong> skills you learned in the Curriculum <strong>Labs</strong>.


xxviii Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

■ Chapter 7, “Spanning Tree Protocol”—This chapter covers the need for redundancy in today’s production<br />

networks <strong>and</strong> explains how the Spanning Tree Protocol (STP) avoids switching loops in a<br />

redundant configuration. <strong>Study</strong> <strong>Guide</strong> exercises include vocabulary, concept questions, determining<br />

the root bridge, <strong>and</strong> spanning-tree recalculation. Because comm<strong>and</strong>s are limited to configuring the<br />

root bridge <strong>and</strong> verifying STP operation, the Lab Exercises are limited to the two online Curriculum<br />

<strong>Labs</strong>. However, STP configuration <strong>and</strong> verification comm<strong>and</strong>s are used in the Comprehensive <strong>and</strong><br />

Challenge <strong>Labs</strong> of both Chapter 8 <strong>and</strong> Chapter 9.<br />

■ Chapter 8, “Virtual LANs”—This chapter begins the study of VLANs, which are increasingly<br />

becoming more prominent in production networks. Exercises focus on vocabulary, concepts, configuration,<br />

<strong>and</strong> troubleshooting. In the Lab Exercises section of this chapter, you will find a Comm<strong>and</strong><br />

Reference exercise to help you review all the comm<strong>and</strong>s covered in the chapter. The three Curriculum<br />

<strong>Labs</strong> focus your attention on the configuration tasks covered in the chapter. An additional Challenge<br />

Lab combines VLAN configuration with port security (Chapter 6) <strong>and</strong> STP (Chapter 7).<br />

■ Chapter 9, “VLAN Trunking Protocol”—This chapter rounds out your <strong>CCNA</strong> study of VLANs<br />

with the VLAN Trunking Protocol. Exercises include vocabulary, concept questions, Internet research,<br />

<strong>and</strong> a journal entry. Also included are configuration exercises covering trunk configuration, VTP configuration,<br />

<strong>and</strong> inter-VLAN configuration. In the Lab Exercises section of this chapter, you will find a<br />

Comm<strong>and</strong> Reference exercise to help you review all the comm<strong>and</strong>s covered in the chapter. The four<br />

Curriculum <strong>Labs</strong> focus your attention on the configuration tasks covered in the chapter. Two additional<br />

labs, a Comprehensive Lab <strong>and</strong> a Challenge Lab, help you review the comm<strong>and</strong>s <strong>and</strong> skills learned<br />

in the Curriculum <strong>Labs</strong> as well as reinforce comm<strong>and</strong>s from Chapters 6, 7, <strong>and</strong> 8.<br />

■ Appendix A, “Router Interface Summary Chart”—This appendix has a table that you can reference<br />

for the appropriate IOS interface names to use on Cisco 800, 1600, 1700, 2500, <strong>and</strong> 2600 series<br />

routers.<br />

■ Appendix B, “Erasing <strong>and</strong> Reloading the Switch”—Because many of the labs require a clean<br />

switch configuration, this appendix includes the procedures you should complete before beginning.<br />

■ Appendix C, “Erasing <strong>and</strong> Reloading the Router”—Because many of the labs require a clean<br />

router configuration, this appendix includes the procedures you should complete before beginning.<br />

■ Appendix D, “<strong>CCNA</strong> 3 Skills-Based Assessment Practice”—This appendix contains three practice<br />

labs for the skills-based assessment. The first lab focuses on routing. The second lab focuses on<br />

switching. The third lab is comprehensive, including most of the comm<strong>and</strong>s <strong>and</strong> configurations you<br />

must master as a <strong>CCNA</strong> 3 student.


CHAPTER 1<br />

Introduction to Classless Routing<br />

The <strong>Study</strong> <strong>Guide</strong> portion of this chapter uses a combination of exercises to test your knowledge on classless<br />

routing.<br />

The Lab Exercises portion of this chapter includes all of the online curriculum labs as well as a<br />

Comprehensive Lab <strong>and</strong> a Challenge Lab to ensure that you have mastered the practical, h<strong>and</strong>s-on skills<br />

needed about classless routing.


2 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

<strong>Study</strong> <strong>Guide</strong><br />

VLSM<br />

Today’s networks must be stable yet scalable. Scalability means the initial design of the network must<br />

allow for change <strong>and</strong> growth without any major modifications to the overall design. A key element of good<br />

network design is an IP addressing plan that optimizes the use of IP addresses <strong>and</strong> minimizes the size of<br />

routing tables. This is achieved through the use of VLSM, CIDR, <strong>and</strong> route summarization. These are fundamental<br />

concepts <strong>and</strong> must be incorporated in your <strong>CCNA</strong> skill set before you move on to the more challenging<br />

topics of OSPF <strong>and</strong> EIGRP, which both incorporate VLSM <strong>and</strong> scalable network design.<br />

The exercises in this section will help you build your skills in implementing VLSM addressing schemes,<br />

determining efficient route summaries, <strong>and</strong> configuring static <strong>and</strong> default routing. The exercises are meant<br />

to progress logically from establishing the use of terminology in the Vocabulary Exercises through applying<br />

your skill in design scenarios <strong>and</strong> application exercises. If you are new to the topic of VLSM, you<br />

should proceed through the exercises in the order presented. However if you are refreshing your skill, try<br />

one of the VLSM Addressing Design Scenarios or even Challenge Lab 1-7 to effectively gauge where you<br />

are weak. Then, choose additional exercises to reinforce your knowledge <strong>and</strong> skill.


Vocabulary Exercise: Matching<br />

Chapter 1: Introduction to Classless Routing 3<br />

Match the definition on the left with a term on the right. This exercise is not necessarily a one-to-one<br />

matching. Some definitions may be used more than once <strong>and</strong> some terms may have multiple definitions.<br />

Definition<br />

a. With classful routing, __________ must be<br />

avoided because they are not visible across<br />

classful network boundaries.<br />

b. does not advertise subnet mask information.<br />

c. describes the combination of multiple contiguous<br />

classful network addresses into one<br />

advertisement.<br />

d. the policy of advertising routes at the classful<br />

boundary.<br />

e. When using a classful routing protocol, it is<br />

important that all subnets have the same as<br />

mask. This is sometimes referred to as<br />

__________.<br />

f. process of combining multiple subnets into<br />

one advertisement with a common prefix<br />

length (not necessarily on a classful boundary).<br />

g. advertises subnet mask information.<br />

h. When a router does not have an interface for<br />

the destination network, it sends traffic to its<br />

_____________.<br />

i. With classless routing protocols, the subnet<br />

mask can be different from subnet to subnet.<br />

This is called __________.<br />

j. also referred to as CIDR notation, bitmask,<br />

<strong>and</strong> network mask, the number of bits that are<br />

shared in common by all addresses in the<br />

address space.<br />

k. specified by RFC 1519 to address the critical<br />

problems of exhaustion of Class B address<br />

space <strong>and</strong> the growth in size of Internet routing<br />

tables.<br />

Term<br />

k classless inter-domain routing<br />

g classless routing protocol<br />

j prefix length<br />

a discontiguous subnets<br />

f route aggregation<br />

e fixed-length subnet masking (FLSM)<br />

h default route<br />

d automatic summarization<br />

i variable-length subnet mask (VLSM)<br />

f route summarization<br />

c supernetting<br />

b classful routing protocol


4 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Instructor Note: Supernetting can be referred to as route summarization or route aggregation, but route summarization<br />

cannot always be referred to as supernetting. They are not technically the same thing. For example,<br />

192.168.1.0/25 can be a summary route of the 192.168.1.0/26 <strong>and</strong> 192.168.1.64/26 subnets, but it is not a supernet of<br />

them. Supernetting is a term used to describe the combination of multiple contiguous classful network addresses into<br />

one advertisement. For example, 192.168.0.0/22 includes Class C networks 192.168.0.0 through 192.168.3.0.<br />

However, the supernet 192.168.0.0/22 is more often referred to as a summary route. In fact, the show ip protocols<br />

comm<strong>and</strong> will list this summary as Address Summarization, not as a supernet.<br />

Classless inter-domain routing (CIDR, pronounced “cider”) is the method specified by RFC 1519 for assigning IP<br />

addresses without using the st<strong>and</strong>ard IP address classes such as Class A, Class B, <strong>and</strong> Class C. Thus, an organization<br />

could be assigned eight addresses such as 209.165.201.8/29. This is not a subnet; rather, it is a block of addresses from<br />

209.165.201.8 through 209.165.201.15. The CIDR notation, which is the prefix length, is /29, meaning that the first<br />

29 bits are assigned by the Internet Assigned Numbers Authority (http://www.iana.org). The remaining 3 bits are<br />

available to the assignee for addressing purposes.<br />

Vocabulary Exercise: Completion<br />

Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

When using classful routing protocols such as RIP <strong>and</strong> IGRP, you must use fixed-length subnet masking<br />

(FLSM), which means that all subnets within the same addressing scheme must share the same subnet<br />

mask. With these routing protocols, it is also very important to avoid discontiguous subnets, because they<br />

perform automatic summarization at classful network boundaries. Subnets must be assigned to networks in<br />

sequential order because they are not advertised across the network boundary.<br />

Classless inter-domain routing is specified in RFC 1519 as a way to assign addresses by delineating the<br />

prefix length of the common bits in the network portion of the address space instead of relying on the<br />

default subnet masks of Classes A, B, <strong>and</strong> C.<br />

The implementation of CIDR allows the use of classless routing protocols such as OSPF, IS-IS, EIGRP,<br />

<strong>and</strong> BGPv4. These protocols effectively preserve address space <strong>and</strong> reduce the size of routing tables<br />

through the use of variable-length subnet masks (or masking) (VLSM). These protocols are capable of<br />

advertising a collection of classful addresses in one big supernet, which is a type of route summarization<br />

(or aggregation) with which multiple address spaces can be combined into one route with a common network<br />

prefix.<br />

The process of using routing protocols such as RIP or OSPF is often referred to as dynamic routing. Two<br />

other types of routing are available to the network administrator: static routing, which is the manual configuration<br />

of a network/subnet mask combination, <strong>and</strong> default routing, which is the manual configuration<br />

of a gateway of last resort.<br />

Subnetting Review Exercises<br />

Three basic subnetting review exercises follow, which will help you refresh your subnetting skills. You<br />

must be able to demonstrate a basic level of competency in subnetting before proceeding into VLSM.<br />

Note: CIDR notation refers to the practice of representing the prefix length of the network portion of an address in<br />

“slash” format. For example, the CIDR notation of the Class C default subnet mask 255.255.255.0 is /24.


Class C Subnetting Scenario<br />

Use the address space 192.168.1.0/24 <strong>and</strong> subnet it to provide enough addresses for 40 hosts.<br />

What are the most bits you can borrow? 2<br />

Assuming subnet 0 <strong>and</strong> the all-1s subnet are both useable, what is the total number of subnets? 4<br />

What is the total number of useable hosts per subnet? 26 <strong>–</strong> 2 = 62<br />

What is the new subnet mask in dotted-decimal notation? 255.255.255.192<br />

What is the new subnet mask in CIDR notation? /26<br />

What is the magic number or subnet multiplier? 64<br />

Fill in the following table for the first ten useable subnets. All rows in the table may not be used.<br />

Subnet No. Subnet Address Host Range Broadcast Address<br />

0 192.168.1.0 192.168.1.1<strong>–</strong>192.168.1.62 192.168.1.63<br />

1 192.168.1.64 192.168.1.65<strong>–</strong>192.168.1.126 192.168.1.127<br />

2 192.168.1.128 192.168.1.129<strong>–</strong>192.168.1.190 192.168.1.191<br />

3 192.168.1.192 192.168.1.193<strong>–</strong>192.168.1.254 192.168.1.255<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Class B Subnetting Scenario<br />

Use the address space 172.16.0.0/16 <strong>and</strong> subnet it to provide 2000 subnets.<br />

How many bits do you need to borrow? 11<br />

Assuming subnet 0 <strong>and</strong> the all-1s subnet are both useable, what is the total number of subnets? 2048<br />

What is the total number of useable hosts per subnet? 25 <strong>–</strong> 2 = 30<br />

What is the new subnet mask in dotted-decimal notation? 255.255.255.224<br />

What is the new subnet mask in CIDR notation? /27<br />

What is the magic number or subnet multiplier? 32<br />

Chapter 1: Introduction to Classless Routing 5<br />

Fill in the following table for the first ten useable subnets. Note: All blanks may not be used.


6 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Subnet No. Subnet Address Host Range Broadcast Address<br />

0 172.16.0.32 172.16.0.33<strong>–</strong>172.16.0.62 172.16.0.63<br />

1 172.16.0.64 172.16.0.65<strong>–</strong>172.16.0.94 172.16.0.95<br />

2 172.16.0.96 172.16.0.97<strong>–</strong>172.16.0.126 172.16.0.127<br />

3 172.16.0.128 172.16.0.129<strong>–</strong>172.16.0.158 172.16.0.159<br />

4 172.16.0.160 172.16.0.161<strong>–</strong>172.16.0.190 172.16.0.191<br />

5 172.16.0.192 172.16.0.193<strong>–</strong>172.16.0.222 172.16.0.223<br />

6 172.16.0.224 172.16.0.225<strong>–</strong>172.16.0.254 172.16.0.255<br />

7 172.16.1.0 172.16.1.1<strong>–</strong>172.16.1.30 172.16.1.31<br />

8 172.16.1.32 172.16.1.33<strong>–</strong>172.16.1.64 172.16.1.63<br />

9 172.16.1.64 172.16.1.65<strong>–</strong>172.16.1.94 172.16.1.95<br />

Class A Subnetting Scenario<br />

Use the address space 10.0.0.0/8 <strong>and</strong> subnet it to provide enough addresses for 30,000 hosts.<br />

What are the most bits you can borrow? 9<br />

Assuming subnet 0 <strong>and</strong> the all-1s subnet are both useable, what is the total number of subnets? 512<br />

What is the total number of useable hosts per subnet? 215 <strong>–</strong> 2 = 32,764<br />

What is the new subnet mask in dotted-decimal notation? 255.255.128.0<br />

What is the new subnet mask in CIDR notation? /17<br />

What is the magic number or subnet multiplier? 128<br />

Fill in the following table for the first ten useable subnets. Note: All blanks may not be used.<br />

Subnet No. Subnet Address Host Range Broadcast Address<br />

0 10.0.0.0 10.0.0.1<strong>–</strong>10.0.127.254 10.0.127.255<br />

1 10.0.128.0 10.0.128.1<strong>–</strong>10.0.255.254 10.0.255.255<br />

2 10.1.0.0 10.1.0.1<strong>–</strong>10.1.127.254 10.1.127.255<br />

3 10.1.128.0 10.1.128.1<strong>–</strong>10.1.255.254 10.1.255.255<br />

4 10.2.0.0 10.2.0.1<strong>–</strong>10.2.127.254 10.2.127.255<br />

5 10.2.128.0 10.2.128.1<strong>–</strong>10.2.255.254 10.2.255.255<br />

6 10.3.0.0 10.3.0.1<strong>–</strong>10.3.127.254 10.3.127.255<br />

7 10.3.128.0 10.3.128.1<strong>–</strong>10.3.255.254 10.3.255.255<br />

8 10.4.0.0 10.4.0.1<strong>–</strong>10.4.127.254 10.4.127.255<br />

9 10.4.128.0 10.4.128.1<strong>–</strong>10.4.255.254 10.4.255.255


Prefix Length Use Exercises<br />

Use the following exercises to practice converting between dotted-decimal <strong>and</strong> prefix length representations<br />

(CIDR notation) of subnet masks.<br />

Dotted-Decimal to Prefix Length Conversion<br />

Convert the following subnets <strong>and</strong> subnet masks shown in dotted-decimal format into the equivalent prefix<br />

length format.<br />

Example:<br />

192.168.1.0 255.255.255.0; Answer: 192.168.1.0/24<br />

192.168.1.0 255.255.255.128; Answer: 192.168.1.0/25<br />

192.168.1.128 255.255.255.192; Answer: 192.168.1.0/26<br />

192.168.1.32 255.255.255.224; Answer: 192.168.1.31/27<br />

192.168.1.96 255.255.255.248; Answer: 192.168.1.96/29<br />

192.168.1.48 255.255.255.252; Answer: 192.168.1.48/30<br />

172.16.128.0 255.255.224.0; Answer: 172.16.128.0/19<br />

172.16.8.0 255.255.255.128; Answer: 172.16.8.0/25<br />

172.16.160.0 255.255.254.0; Answer: 172.16.160.0/23<br />

172.16.80.0 255.255.240.0; Answer: 172.16.80.0/20<br />

172.16.240.0 255.255.248.0; Answer: 172.16.240.0/21<br />

172.16.39.0 255.255.255.0; Answer: 172.16.39.0/24<br />

172.16.224.0 255.255.255.224; Answer: 172.16.224.0/27<br />

172.16.45.24 255.255.255.248; Answer: 172.16.45.24/29<br />

172.16.16.16 255.255.255.240; Answer: 172.16.16.16/28<br />

172.16.200.192 255.255.255.192; Answer: 172.16.200.192/26<br />

10.0.0.0 255.254.0.0; Answer: 10.0.0.0/15<br />

10.5.160.32 255.255.255.224; Answer: 10.0.160.32/27<br />

10.96.128.0 255.255.224.0; Answer: 10.96.128.0/19<br />

10.64.48.0 255.255.255.240; Answer: 10.64.48.0/28<br />

10.52.0.0 255.252.0.0; Answer: 10.52.0.0/14<br />

Prefix Length to Dotted-Decimal Conversion<br />

Convert the following subnets <strong>and</strong> subnet masks shown in prefix length format into the equivalent dotteddecimal<br />

format.<br />

Example:<br />

172.16.0.0/16; Answer: 172.16.0.0 255.255.0.0<br />

192.168.2.240/29; Answer: 192.168.2.240 255.255.255.248<br />

192.168.2.32/28; Answer: 192.168.2.32 255.255.255.240<br />

Chapter 1: Introduction to Classless Routing 7


8 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

192.168.2.0/25; Answer: 192.168.2.0 255.255.255.128<br />

192.168.2.240/30; Answer: 192.168.2.240 255.255.255.252<br />

192.168.2.192/26; Answer: 192.168.2.192 255.255.255.192<br />

172.20.34.0/25; Answer: 172.20.34.0 255.255.255.128<br />

172.20.64.0/18; Answer: 172.20.64.0 255.255.192.0<br />

172.20.224.0/20; Answer: 172.20.224.0 255.255.240.0<br />

172.20.16.0/23; Answer: 172.20.16.0 255.255.254.0<br />

172.20.180.0/28; Answer: 172.20.180.0 255.255.255.240<br />

172.20.36.0/22; Answer: 172.20.36.0 255.255.252.0<br />

172.20.0.0/19; Answer: 172.20.0.0 255.255.224.0<br />

172.20.128.0/17; Answer: 172.20.0.0 255.255.128.0<br />

172.20.144.0/21; Answer: 172.20.144.0 255.255.248.0<br />

172.20.96.96/27; Answer: 172.20.96.96 255.255.255.224<br />

10.0.0.0/17; Answer: 10.0.0.0 255.255.128.0<br />

10.0.154.32/28; Answer: 10.0.154.32 255.255.255.240<br />

10.224.0.0/13; Answer: 10.72.224.0 255.248.0.0<br />

10.32.0.0/22; Answer: 10.32.0.0 255.255.252.0<br />

10.10.0.0/24; Answer: 10.10.0.0 255.255.255.0<br />

Using Binary Math to AND the Subnet Address<br />

Underst<strong>and</strong>ing how a router determines the network or subnet address for a given IP address is a fundamental<br />

skill to implementing VLSM <strong>and</strong> interpreting routing tables.<br />

In the following exercises, use binary math to “AND” the host IP address <strong>and</strong> subnet mask to determine<br />

the subnet address. After completing the binary math, write the subnet address in dotted-decimal format.<br />

In binary math, the AND operation is as follows:<br />

1 AND 1 = 1; all other possibilities equal 0<br />

Example:<br />

192.168.1.67/28<br />

IP address 11000000.10101000.00000001.01000011<br />

Subnet mask 11111111.11111111.11111111.11110000<br />

Subnet address 11000000.10101000.00000001.01000000<br />

Dotted-decimal 192.168.1.64<br />

1. 192.168.18.237/27<br />

IP address 11000000.10101000.00010010.11101101<br />

Subnet mask 11111111.11111111.11111111.11100000<br />

Subnet address 11000000.10101000.00010010.11100000<br />

Dotted-decimal 192.168.18.224


2. 192.168.35.142/29<br />

IP address 11000000.10101000.00100011.10001110<br />

Subnet mask 11111111.11111111.11111111.11111000<br />

Subnet address 11000000.10101000.00100011.10000000<br />

Dotted-decimal 192.168.35.128<br />

3. 172.28.23.54/21<br />

IP address 10101100.00011100.00010111.00110110<br />

Subnet mask 11111111.11111111.11111000.00000000<br />

Subnet address 10101100.00011100.00010000.00000000<br />

Dotted-decimal 172.28.16.0<br />

4. 172.31.32.69/25<br />

IP address 10101100.00011111.00100000.01000101<br />

Subnet mask 11111111.11111111.11111111.10000000<br />

Subnet address 10101100.00011111.00100000.00000000<br />

Dotted-decimal 172.31.32.0<br />

5. 10.64.150.197/18<br />

IP address 00001010.01000000.10010110.11000101<br />

Subnet mask 11111111.11111111.11000000.00000000<br />

Subnet address 00001010.01000000.10000000.00000000<br />

Dotted-decimal 10.64.128.0<br />

VLSM Subnetting a Subnet Exercises<br />

Note: Now is a good time to complete Curriculum Lab 1-1: Calculating VLSM Subnets (1.1.4), which walks you<br />

through a VLSM addressing scenario.<br />

VLSM is simply “subnetting a subnet.” In the following exercises, use your subnetting skills to further<br />

subnet a given subnet. If it helps you, draw a topology that represents the requirement you are given.<br />

Example:<br />

Chapter 1: Introduction to Classless Routing 9<br />

Use the subnet 192.168.1.64/27 <strong>and</strong> further subnet this address to provide four additional subnets with at<br />

least six hosts per subnet. List all four subnets in network address/prefix format.<br />

Step 1. Determine how many host bits you have available in the given subnet. For subnet<br />

192.168.1.64/27, you have a total of 5 host bits.<br />

Step 2. Determine how many host bits you can borrow to make an additional four subnets with at least<br />

six hosts per subnet. Borrowing an additional 2 bits will make four subnets (2 2 = 4). Because<br />

there are 3 host bits left after borrowing, each subnet will have exactly six host addresses<br />

(2 3 <strong>–</strong> 2 = 6).<br />

Step 3. Determine the new prefix <strong>and</strong> list the new subnets. Because you borrowed 2 bits, the new<br />

prefix is /29. You start with the first address 192.168.1.64 <strong>and</strong> list the four subnets.


10 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Subnet No. Network Address/Prefix<br />

0 192.168.1.64/29<br />

1 192.168.1.72/29<br />

2 192.168.1.80/29<br />

3 192.168.1.88/29<br />

1. Use the subnet 192.168.1.128/25 <strong>and</strong> further subnet this address to provide eight additional subnets<br />

with at least ten hosts per subnet. List the first five subnets in network address/prefix format. What<br />

would be the last subnet?<br />

192.168.1.240/28<br />

Subnet No. Network Address/Prefix<br />

0 192.168.1.128/28<br />

1 192.168.1.144/28<br />

2 192.168.1.160/28<br />

3 192.168.1.176/28<br />

4 192.168.1.192/28<br />

2. Use the subnet 172.16.32.0/19 <strong>and</strong> further subnet this address to provide eight additional subnets with<br />

at least 1000 hosts per subnet. List the first five subnets in network address/prefix format. What would<br />

be the last subnet?<br />

172.16.60/22<br />

Subnet No. Network Address/Prefix<br />

0 172.16.32.0/22<br />

1 172.16.36.0/22<br />

2 172.16.40.0/22<br />

3 172.16.44.0/22<br />

4 172.16.48.0/22<br />

3. Use subnet 2 from the last question <strong>and</strong> further subnet this address to provide eight additional subnets<br />

with at least 100 hosts per subnet. List the first five subnets in network address/prefix format. What<br />

would be the last subnet?<br />

172.16.43.128/25<br />

Subnet No. Network Address/Prefix<br />

0 172.16.40.0/25<br />

1 172.16.40.128/25<br />

2 172.16.41.0/25<br />

3 172.16.41.128/25<br />

4 172.16.42.0/25


4. Use subnet 4 from the last question <strong>and</strong> further subnet this address to provide eight additional subnets<br />

with at least ten hosts per subnet. List the first five subnets in network address/prefix format. What<br />

would be the last subnet?<br />

172.16.42.112/28<br />

Subnet No. Network Address/Prefix<br />

0 172.16.42.0/28<br />

1 172.16.42.16/28<br />

2 172.16.42.32/28<br />

3 172.16.42.48/28<br />

4 172.16.42.64/28<br />

5. Use subnet 0 from the last question <strong>and</strong> further subnet this address to provide four additional subnets<br />

to be used for point-to-point links. List all four subnets in network address/prefix format.<br />

Subnet No. Network Address/Prefix<br />

0 172.16.42.0/30<br />

1 172.16.42.4/30<br />

2 172.16.42.8/30<br />

3 172.16.42.12/30<br />

6. Use the subnet 10.1.0.0/16 <strong>and</strong> further subnet this address to provide 30 additional subnets with at<br />

least 2000 hosts per subnet. List the first five subnets in network address/prefix format. What would<br />

be the last subnet?<br />

10.1.248.0/21<br />

Subnet No. Network Address/Prefix<br />

0 10.1.0.0/21<br />

1 10.1.8.0/21<br />

2 10.1.16.0/21<br />

3 10.1.24.0/21<br />

4 10.1.32.0/21<br />

Chapter 1: Introduction to Classless Routing 11


12 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

7. Use subnet 4 from the last question <strong>and</strong> further subnet this address to provide 30 additional subnets<br />

with at least 60 hosts per subnet. List the first five subnets in network address/prefix format. What<br />

would be the last subnet?<br />

10.1.39.192.0/26<br />

Subnet No. Network Address/Prefix<br />

0 10.1.32.0/26<br />

1 10.1.32.64/26<br />

2 10.1.32.128/26<br />

3 10.1.32.192/26<br />

4 10.1.33.0/26<br />

8. Use subnet 1 from the last question <strong>and</strong> further subnet this address to provide 16 additional subnets to<br />

be used for point-to-point links. List the first 5 subnets in network address/prefix format. What would<br />

be the last subnet?<br />

10.1.32.124/30<br />

Subnet No. Network Address/Prefix<br />

0 10.1.32.64/30<br />

1 10.1.32.68/30<br />

2 10.1.32.72/30<br />

3 10.1.32.76/30<br />

4 10.1.32.80/30<br />

VLSM Addressing Design Exercises<br />

In the following VLSM Addressing Design Exercises, you apply your VLSM addressing skills to a three<br />

router topology. Each exercise is progressively more difficult than the last. There may be more than one<br />

correct answer in some situations. However, you should always practice good addressing design by assigning<br />

your subnets contiguously. This allows the summary of a group of subnets into one aggregate route,<br />

thus decreasing the size of routing tables.<br />

VLSM Addressing Design Exercise 1<br />

Assume that 4 bits were borrowed from the host portion of 192.168.1.0/24. You are not using VLSM.<br />

Starting with subnet 0, label Figure 1-1 contiguously with subnets. Start with the LAN on RTA <strong>and</strong> proceed<br />

clockwise.


Figure 1-1 Addressing Design Exercise 1 Topology: Subnets<br />

Address Space<br />

192.168.1.0/24<br />

192.168.1.64/28<br />

192.168.1.80/28<br />

192.168.1.0/28<br />

RTA<br />

RTC RTB<br />

192.168.1.48/28<br />

How many total valid host addresses will be wasted on the WAN links?<br />

You assigned 3 WAN subnets with 14 hosts each. Two hosts are used. Therefore, 12 hosts × 3 WAN subnets<br />

= 36 wasted host addresses.<br />

Now, come up with a better addressing scheme using VLSM. Start with the same 4 bits borrowed from the<br />

host portion of 192.168.1.0/24. Label each of the LANs with a subnet. Then, subnet the next available subnet<br />

to provide WAN subnets without wasting any host addresses. Label Figure 1-2 with the subnets.<br />

Figure 1-2 Addressing Design Exercise 1 Topology: VLSM Subnets<br />

Address Space<br />

192.168.1.0/24<br />

192.168.1.32/28<br />

192.168.1.56/30<br />

192.168.1.0/28<br />

RTA<br />

Chapter 1: Introduction to Classless Routing 13<br />

192.168.1.16/28<br />

192.168.1.48/30<br />

RTC RTB<br />

192.168.1.52/30<br />

192.168.1.32/28<br />

192.168.1.16/28


14 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

List the address space that is still available for future expansion.<br />

For the solution shown in Figure 1-2, address space still available is .60/30; .64/26; .128/25.<br />

The topology shown in Figure 1-3 has LAN subnets already assigned out of the 192.168.1.0/24 address<br />

space. Using VLSM, create <strong>and</strong> label the WANs with subnets from the remaining address space.<br />

Figure 1-3 Addressing Design Exercise 1 Topology: WAN Subnets<br />

Address Space<br />

192.168.1.0/24<br />

192.168.1.128/27<br />

List the address space that is still available for future expansion.<br />

Answers may vary. In the answer shown in Figure 1-3, the available address space is .172/30; .176/28;<br />

.192/26.<br />

VLSM Addressing Design Exercise 2<br />

192.168.1.0/26<br />

RTA<br />

192.168.1.168/30 192.168.1.160/30<br />

RTC RTB<br />

192.168.1.164/30<br />

Your address space is 192.168.1.192/26. Each LAN needs to support ten hosts. Use VLSM to create a contiguous<br />

IP addressing scheme. Label Figure 1-4 with your addressing scheme. Don’t forget the WAN links.<br />

Figure 1-4 Addressing Design Exercise 2 Topology<br />

Address Space<br />

192.168.1.192/26<br />

192.168.1.224/28<br />

192.168.1.248/30<br />

192.168.1.192/28<br />

RTA<br />

192.168.240./30<br />

RTC RTB<br />

192.168.1.244/30<br />

192.168.1.64/26<br />

192.168.1.208/28


List the address space that is still available for future expansion.<br />

There is only one subnet left: .252/30.<br />

VLSM Addressing Design Exercise 3<br />

Your address space is 192.168.6.0/23. The number of hosts needed for each LAN is shown in Figure 1-5.<br />

Use VLSM to create a contiguous IP addressing scheme. Label Figure 1-5 with your addressing scheme.<br />

Don’t forget the WAN links.<br />

Figure 1-5 Addressing Design Exercise 3 Topology<br />

Address Space<br />

192.168.6.0/23<br />

192.168.7.64/27<br />

30 Hosts<br />

192.168.7.104/30<br />

List the address space that is still available for future expansion.<br />

For the solution shown in Figure 1-5, the address space still available is .7.108/30; .7.112/28; .7.128/25.<br />

VLSM Addressing Design Exercise 4<br />

192.168.6.0/24<br />

150 Hosts<br />

RTA<br />

RTC RTB<br />

192.168.7.100/30<br />

Chapter 1: Introduction to Classless Routing 15<br />

192.168.7.96/30<br />

192.168.7.0/26<br />

60 Hosts<br />

Your address space is 10.10.96.0/21. The number of hosts needed for each LAN is shown in Figure 1-6.<br />

Use VLSM to create a contiguous IP addressing scheme. Label Figure 1-6 with your addressing scheme.<br />

Don’t forget the WAN links.


16 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 1-6 Addressing Design Exercise 4 Topology<br />

Address Space<br />

10.10.96.0/21<br />

10.10.102.0/24<br />

250 Hosts<br />

10.10.103.248/30<br />

List the address space that is still available for future expansion.<br />

For the solution shown in Figure 1-6, the address space still available is .103.252/30; .103.224/28;<br />

.103.192/27; .103.128/26; .103.0/25.<br />

VLSM Addressing Design Scenarios<br />

The following VLSM Addressing Design Scenarios will build upon your addressing design skills. In these<br />

scenarios, you will fully document your network design, including IP addresses for interfaces <strong>and</strong> hosts.<br />

Instructor Note: Once students have successfully completed a scenario, have them test it out on real routers or a simulator<br />

such as Packet Tracer.<br />

VLSM Addressing Design Scenario 1<br />

Complete Addressing Design Scenario 1 using the following list of requirements:<br />

■ Address space: 192.168.1.0/25.<br />

10.10.96.0/22<br />

1,000 Hosts<br />

RTA<br />

RTC RTB<br />

10.10.103.244/30<br />

■ RTA LAN, 60 hosts; RTB LAN, 30 hosts; RTC LAN, 10 hosts.<br />

■ Using good VLSM design practices, contiguously assign subnets to the topology shown in Figure 1-7.<br />

■ Fill in the table with all necessary IP address configuration information for all devices. Use dotteddecimal<br />

format for the subnet mask.<br />

■ List the address space that is still available for future expansion.<br />

10.10.103.240/30<br />

10.10.100.0/23<br />

500 Hosts


Figure 1-7 Addressing Design Scenario 1 Topology<br />

For the solution shown in Figure 1-7, the address space still available is .124/30.<br />

Because the given address space is /25, there is no more available space except for the one leftover WAN<br />

subnet.<br />

Device Interface IP Address Subnet Mask Default Gateway<br />

RTA Fa0/0 192.168.1.1 255.255.255.192<br />

S0/1 192.168.1.113 255.255.255.252<br />

S0/0 192.168.1.121 255.255.255.252<br />

RTB Fa0/0 192.168.1.65 255.255.255.224<br />

S0/1 192.168.1.114 255.255.255.252<br />

S0/0 192.168.1.117 255.255.255.252<br />

RTC Fa0/0 192.168.1.97 255.255.255.240<br />

S0/1 192.168.1.118 255.255.255.252<br />

S0/0 192.168.1.122 255.255.255.252<br />

Host A 192.168.1.2 255.255.255.192 192.168.1.1<br />

Host B 192.168.1.66 255.255.255.224 192.168.1.65<br />

Host C 192.168.1.98 255.255.255.240 192.168.1.97<br />

VLSM Addressing Design Scenario 2<br />

Complete Addressing Design Scenario 2 using the following list of requirements:<br />

■ Address space: 192.168.18.0/23.<br />

Fa0/0<br />

RTA<br />

Fa0/0 Fa0/0<br />

RTC<br />

S0/1<br />

S0/0<br />

DCE<br />

RTB<br />

192.168.1.116/30<br />

■ RTA LAN, 250 hosts; RTB LAN, 100 hosts; RTC LAN, 60 hosts.<br />

S0/0<br />

Chapter 1: Introduction to Classless Routing 17<br />

60 Hosts<br />

■ Using good VLSM design practices, contiguously assign subnets to the topology shown in Figure 1-8.<br />

S0/1<br />

DCE<br />

S0/0<br />

C DCE<br />

S0/1<br />

B<br />

10 Hosts<br />

Address Space<br />

192.168.1.0/25<br />

192.168.1.96/28<br />

192.168.1.120/30<br />

192.168.1.0/26<br />

A<br />

192.168.1.112/30<br />

192.168.1.64/27<br />

30 Hosts


18 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

■ Fill in the table with all necessary IP address configuration information for all devices. Use dotteddecimal<br />

format for the subnet mask.<br />

■ List the address space that is still available for future expansion.<br />

Figure 1-8 Addressing Design Scenario 2 Topology<br />

Fa0/0 Fa0/0<br />

RTC<br />

S0/1<br />

S0/0<br />

DCE<br />

RTB<br />

192.168.19.196/30<br />

For the solution shown in Figure 1-8, the address space still available is .19.204/30; .19.208/28;<br />

.19.224/27.<br />

Device Interface IP Address Subnet Mask Default Gateway<br />

RTA Fa0/0 192.168.18.1 255.255.255.0<br />

S0/1 192.168.19.193 255.255.255.252<br />

S0/0 192.168.19.201 255.255.255.252<br />

RTB Fa0/0 192.168.19.1 255.255.255.128<br />

S0/1 192.168.19.194 255.255.255.252<br />

S0/0 192.168.19.197 255.255.255.252<br />

RTC Fa0/0 192.168.19.129 255.255.255.192<br />

S0/0<br />

S0/1 192.168.19.198 255.255.255.252<br />

S0/0 192.168.19.202 255.255.255.252<br />

Host A 192.168.18.2 255.255.255.0 192.168.18.1<br />

Host B 192.168.19.2 255.255.255.128 192.168.19.1<br />

Fa0/0<br />

Host C 192.168.19.130 255.255.255.192 192.168.19.129<br />

RTA<br />

250 Hosts<br />

S0/1<br />

DCE<br />

C<br />

S0/0<br />

DCE<br />

S0/1<br />

B<br />

60 Hosts<br />

Address Space<br />

192.168.18.0/23<br />

192.168.19.128/26<br />

192.168.19.200/30<br />

192.168.18.0/24<br />

A<br />

192.168.19.192/30<br />

192.168.19.0/25<br />

100 Hosts


VLSM Addressing Design Scenario 3<br />

Complete Addressing Design Scenario 3 using the following list of requirements:<br />

■ Address space: 172.16.0.0/22.<br />

■ RTA LAN, 500 hosts; RTB LAN, 250 hosts; RTC LAN, 100 hosts.<br />

■ Using good VLSM design practices, contiguously assign subnets to the topology shown in Figure 1-9.<br />

■ Fill in the table with all necessary IP address configuration information for all devices. Use dotteddecimal<br />

format for the subnet mask.<br />

■ List the address space that is still available for future expansion.<br />

Figure 1-9 Addressing Design Scenario 3 Topology<br />

Fa0/0 Fa0/0<br />

RTC<br />

S0/1<br />

S0/0<br />

DCE<br />

RTB<br />

172.16.3.132/30<br />

For the solution shown in Figure 1-9, the address space still available is .3.140/30; .3.144/28; .3.160/27;<br />

.3.192/27.<br />

Device Interface IP Address Subnet Mask Default Gateway<br />

RTA Fa0/0 172.16.0.1 255.255.254.0<br />

S0/1 172.16.3.129 255.255.255.252<br />

S0/0 172.16.3.137 255.255.255.252<br />

RTB Fa0/0 172.16.2.1 255.255.255.0<br />

S0/1 172.16.3.130 255.255.255.252<br />

S0/0 172.16.3.133 255.255.255.252<br />

RTC Fa0/0 172.16.3.1 255.255.255.128<br />

S0/1 172.16.3.134 255.255.255.252<br />

S0/0 172.16.3.138 255.255.255.252<br />

Chapter 1: Introduction to Classless Routing 19<br />

Host A 172.16.0.2 255.255.254.0 172.16.0.1<br />

Host B 172.16.2.2 255.255.255.0 172.16.2.1<br />

Host C 172.16.3.2 255.255.255.128 172.16.3.1<br />

S0/0<br />

Fa0/0<br />

RTA<br />

500 Hosts<br />

S0/1<br />

DCE<br />

S0/0<br />

C DCE<br />

S0/1<br />

B<br />

100 Hosts<br />

Address Space<br />

172.16.0.0/22<br />

172.16.3.0/25<br />

172.16.3.136/30<br />

172.16.0.0/23<br />

A<br />

172.16.3.128/30<br />

172.16.2.0/24<br />

250 Hosts


20 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

VLSM Addressing Design Scenario 4<br />

Complete Addressing Design Scenario 4 using the following list of requirements:<br />

■ Address space: 172.24.0.0/21.<br />

■ RTA LAN, 1000 hosts; RTB LAN, 500 hosts; RTC LAN, 250 hosts.<br />

■ Using good VLSM design practices, contiguously assign subnets to the topology shown in<br />

Figure 1-10.<br />

■ Fill in the table with all necessary IP address configuration information for all devices. Use dotteddecimal<br />

format for the subnet mask.<br />

■ List the address space that is still available for future expansion.<br />

Figure 1-10 Addressing Design Scenario 4 Topology<br />

Fa0/0 Fa0/0<br />

RTC<br />

S0/1<br />

S0/0<br />

DCE<br />

RTB<br />

172.24.7.4/30<br />

For the solution shown in Figure 1-10, the address space still available is .7.12/30; .7.16/28; .7.32/27;<br />

.7.64/26; .7.128/25.<br />

Device Interface IP Address Subnet Mask Default Gateway<br />

RTA Fa0/0 172.24.0.1 255.255.252.0<br />

S0/1 172.24.7.1 255.255.255.252<br />

S0/0 172.24.7.9 255.255.255.252<br />

RTB Fa0/0 172.24.4.1 255.255.254.0<br />

S0/1 172.24.7.2 255.255.255.252<br />

S0/0 172.24.7.5 255.255.255.252<br />

RTC Fa0/0 172.24.6.1 255.255.255.0<br />

S0/0<br />

S0/1 172.24.7.6 255.255.255.252<br />

S0/0 172.24.7.10 255.255.255.252<br />

Host A 172.24.0.2 255.255.252.0 172.24.0.1<br />

Fa0/0<br />

RTA<br />

1,000 Hosts<br />

S0/1<br />

DCE<br />

S0/0<br />

C DCE<br />

S0/1<br />

B<br />

250 Hosts<br />

Address Space<br />

172.24.0.0/21<br />

172.24.0.0/22<br />

A<br />

172.24.7.8/30 172.24.7.0/30<br />

172.24.6.0/24 172.24.4.0/23<br />

500 Hosts


Device Interface IP Address Subnet Mask Default Gateway<br />

Host B 172.24.4.2 255.255.254.0 172.24.4.1<br />

Host C 172.24.6.2 255.255.255.0 172.24.6.1<br />

VLSM Addressing Design Scenario 5<br />

Complete Addressing Design Scenario 5 using the following list of requirements:<br />

■ Address space: 10.8.64.0/18.<br />

■ RTA LAN, 6000 hosts; RTB LAN, 3000 hosts; RTC LAN, 1000 hosts.<br />

■ Using good VLSM design practices, contiguously assign subnets to the topology shown in Figure 1-11.<br />

■ Fill in the table with all necessary IP address configuration information for all devices. Use dotteddecimal<br />

format for the subnet mask.<br />

■ List the address space that is still available for future expansion.<br />

Figure 1-11 Addressing Design Scenario 5 Topology<br />

Fa0/0<br />

Fa0/0 Fa0/0<br />

RTC<br />

S0/1<br />

S0/0 RTB<br />

10.8.116.4/30<br />

DCE<br />

For the solution shown in Figure 1-11, the address space still available is 116.12/30; .116.16/28;<br />

.116.32/27; .116.64/26; .116.128/25; .117.0/24; .118.0/23; .120.0/21.<br />

RTA<br />

Device Interface IP Address Subnet Mask Default Gateway<br />

RTA Fa0/0 10.8.64.1 255.255.224.0<br />

S0/1 10.8.116.1 255.255.255.252<br />

S0/0 10.8.116.9 255.255.255.252<br />

RTB Fa0/0 10.8.96.1 255.255.240.0<br />

S0/0<br />

S0/1 10.8.116.2 255.255.255.252<br />

S0/0 10.8.116.5 255.255.255.252<br />

Chapter 1: Introduction to Classless Routing 21<br />

6,000 Hosts<br />

S0/1<br />

DCE<br />

S0/0<br />

C DCE<br />

S0/1<br />

B<br />

1,000 Hosts<br />

Address Space<br />

10.8.64.0/18<br />

10.8.116.8/30<br />

10.8.64.0/19<br />

A<br />

10.8.116.0/30<br />

10.8.112.0/22 10.8.96.0/20<br />

3,000 Hosts


22 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Device Interface IP Address Subnet Mask Default Gateway<br />

RTC Fa0/0 10.8.112.1 255.255.252.0<br />

S0/1 10.8.116.6 255.255.255.252<br />

S0/0 10.8.116.10 255.255.255.252<br />

Host A 10.8.64.2 255.255.224.0 10.8.64.1<br />

Host B 10.8.96.2 255.255.240.0 10.8.96.1<br />

Host C 10.8.112.2 255.255.252.0 10.8.112.1<br />

VLSM Addressing Design Scenario 6<br />

Complete Addressing Design Scenario 6 using the following list of requirements:<br />

■ Address space: 10.0.0.0/15.<br />

■ RTA LAN, 65,000 hosts; RTB LAN, 30,000 hosts; RTC LAN, 8000 hosts.<br />

■ Using good VLSM design practices, contiguously assign subnets to the topology shown in Figure 1-12.<br />

■ Fill in the table with all necessary IP address configuration information for all devices. Use dotteddecimal<br />

format for the subnet mask.<br />

■ List the address space that is still available for future expansion.<br />

Figure 1-12 Addressing Design Scenario 6 Topology<br />

S0/0<br />

Fa0/0<br />

RTA<br />

65,000 Hosts<br />

S0/1<br />

DCE<br />

S0/0<br />

C DCE<br />

S0/1<br />

B<br />

8,000 Hosts<br />

Address Space<br />

10.0.0.0/15<br />

10.1.128.0/19<br />

10.1.160.8/30<br />

10.0.0.0/16<br />

A<br />

10.1.160.0/30<br />

Fa0/0 Fa0/0<br />

RTC<br />

S0/1<br />

S0/0<br />

DCE<br />

RTB<br />

10.1.160.4/30<br />

10.1.0.0/17<br />

30,000 Hosts


For the solution shown in Figure 1-12, the address space still available is 10.1.160.12/30; 10.1.160.16/28;<br />

10.1.160.32/27; 10.1.160.64/26; 10.1.160.128/25; 10.1.161.0/24; 10.1.162.0/23; 10.1.164.0/22;<br />

10.1.168.0/21; 10.1.176.0/20; 10.1.192.0/18.<br />

Device Interface IP Address Subnet Mask Default Gateway<br />

RTA Fa0/0 10.0.0.1 255.255.0.0<br />

S0/1 10.1.160.1 255.255.255.252<br />

S0/0 10.1.160.9 255.255.255.252<br />

RTB Fa0/0 10.1.0.1 255.255.128.0<br />

S0/1 10.1.160.2 255.255.255.252<br />

S0/0 10.1.160.5 255.255.255.252<br />

RTC Fa0/0 10.1.128.1 255.255.224.0<br />

S0/1 10.1.160.6 255.255.255.252<br />

S0/0 10.1.160.10 255.255.255.252<br />

Host A 10.0.0.2 255.255.0.0 10.0.0.1<br />

Host B 10.1.0.2 255.255.128.0 10.1.0.1<br />

Host C 10.1.128.2 255.255.224.0 10.1.128.1<br />

Summary Route Exercises<br />

Use the following exercises to practice determining the summary route for a collection of subnets.<br />

The following is an example with the answer:<br />

Referring to Figure 1-13, what summary route would R1 send to BBR (Backbone Router) for the four networks?<br />

Write your answer in the space provided.<br />

Figure 1-13 Summary Route Example<br />

192.168.1.0/27<br />

192.168.1.32/27<br />

192.168.1.64/27<br />

192.168.1.96/27<br />

Chapter 1: Introduction to Classless Routing 23<br />

R1 BBR<br />

Summary Route<br />

192.168.1.0/25


24 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 1. Find the number of highest-order bits that match in all the addresses, convert the addresses to<br />

binary format, <strong>and</strong> align them in a list.<br />

To make sure that you are including the entire address range from the lowest to the highest network<br />

address, find the lowest IP address, which is the network address 192.168.1.0 in the<br />

example. Then, find the highest IP address, which is 192.168.1.127, or the last address in the<br />

highest network, 192.168.1.96.<br />

Write the lowest <strong>and</strong> highest IP addresses in binary:<br />

192.168.1.0: 11000000.10101000.00000001.00000000<br />

192.168.1.127: 11000000.10101000.00000001.01111111<br />

Step 2. Locate where the common pattern of digits ends. The common bits are shaded in the following<br />

example.<br />

First IP 192.168.1.0 11000000.10101000.00000001.00000000<br />

Last IP 192.168.1.127 11000000.10101000.00000001.01111111<br />

Step 3. Count the number of common bits. This number is the prefix length of the summary route. It is<br />

represented at the end of the first IP address in the block <strong>and</strong> preceded by a slash.<br />

In this example, counting from left to right, you have 25 common bits. Your first address in the<br />

address block is 192.168.1.0. Therefore, your summary route is 192.168.1.0/25.<br />

Summary Route Exercise 1<br />

Referring to Figure 1-14, what summary route would R1 send to BBR for the four networks? Write your<br />

answer in the space provided.<br />

Figure 1-14 Summary Route Exercise 1<br />

192.168.1.0/25<br />

192.168.1.128/26<br />

192.168.1.192/27<br />

192.168.1.224/27<br />

R1 BBR<br />

Summary Route<br />

192.168.1.0/24


First IP 192.168.1.0 11000000.10101000.00000001.00000000<br />

Last IP 192.168.1.255 11000000.10101000.00000001.11111111<br />

Summary route 192.168.1.0/24<br />

Summary Route Exercise 2<br />

Referring to Figure 1-15, what summary route would R1 send to BBR for the four networks? Write your<br />

answer in the space provided.<br />

Figure 1-15 Summary Route Exercise 2<br />

192.168.4.0/24<br />

192.168.5.0/24<br />

192.168.6.0/24<br />

192.168.7.0/24<br />

First IP 192.168.4.0 11000000.10101000.00000100.00000000<br />

Last IP 192.168.7.255 11000000.10101000.00000111.11111111<br />

Summary route 192.168.4.0/22<br />

Summary Route Exercise 3<br />

Chapter 1: Introduction to Classless Routing 25<br />

R1 BBR<br />

Summary Route<br />

192.168.4.0/22<br />

Referring to Figure 1-16, what summary route would R1 send to BBR for the four networks? Write your<br />

answer in the space provided.


26 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 1-16 Summary Route Exercise 3<br />

192.168.64.0/21<br />

192.168.72.0/21<br />

192.168.80.0/21<br />

192.168.88.0/21<br />

First IP 192.168.64.0 11000000.10101000.01000000.00000000<br />

Last IP 192.168.95.255 11000000.10101000.01011111.11111111<br />

Summary route 192.168.64.0/19<br />

Summary Route Exercise 4<br />

R1 BBR<br />

Summary Route<br />

192.168.64.0/19<br />

Referring to Figure 1-17, what summary route would R1 send to BBR for the four networks? Write your<br />

answer in the space provided.


Figure 1-17 Summary Route Exercise 4<br />

172.16.0.0/14<br />

172.20.0.0/14<br />

172.24.0.0/14<br />

172.28.0.0/14<br />

First IP 172.16.0.0 10101100.00010000.00000000.00000000<br />

Last IP 172.31.255.255 10101100.00011111.11111111.11111111<br />

Summary route 172.16.0.0/12<br />

Your students may be interested to know that the summary route 172.16.0.0/12 is also the entire range of<br />

Class B private IP addresses as defined by RFC 1918.<br />

Summary Route Exercise 5<br />

Chapter 1: Introduction to Classless Routing 27<br />

R1 BBR<br />

Summary Route<br />

172.16.0.0/12<br />

Referring to Figure 1-18, what summary route would R1 send to BBR for the four networks? Write your<br />

answer in the space provided.


28 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 1-18 Summary Route Exercise 5<br />

172.16.0.0/17<br />

172.16.128.0/17<br />

172.17.0.0/16<br />

172.18.0.0/15<br />

First IP 172.16.0.0 10101100.00010000.00000000.00000000<br />

Last IP 172.19.255.255 10101100.00010011.11111111.11111111<br />

Summary route 172.16.0.0/14<br />

Summary Route Exercise 6<br />

R1 BBR<br />

Summary Route<br />

172.16.0.0/14<br />

Referring to Figure 1-19, what summary route would R1 send to BBR for the four networks? Write your<br />

answer in the space provided.


Figure 1-19 Summary Route Exercise 6<br />

10.10.0.0/21<br />

10.10.8.0/21<br />

10.10.16.0/21<br />

10.10.24.0/21<br />

First IP 10.10.0.0 00001010.00001010.00000000.00000000<br />

Last IP 10.10.31.255 00001010.00001010.00011111.11111111<br />

Summary route 10.10.0.0/19<br />

Summary Route Exercise 7<br />

Referring to Figure 1-20, what summary route would R1 send to BBR for the four networks? Write your<br />

answer in the space provided.<br />

Figure 1-20 Summary Route Exercise 7<br />

10.0.0.0/16<br />

10.1.0.0/16<br />

10.2.0.0/15<br />

10.4.0.0/14<br />

Chapter 1: Introduction to Classless Routing 29<br />

R1 BBR<br />

Summary Route<br />

10.10.0.0/19<br />

R1 BBR<br />

Summary Route<br />

10.0.0.0/13


30 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

First IP 10.0.0.0 00001010.00000000.00000000.00000000<br />

Last IP 10.7.255.255 00001010.00000111.11111111.11111111<br />

Summary route 10.0.0.0/13<br />

Default <strong>and</strong> Static Routing Scenario<br />

In Figure 1-21, both static <strong>and</strong> default routing are used between RTA <strong>and</strong> ISP to route traffic. First, determine<br />

the summary route that would summarize all of the subnets from the 10.0.0.0 address space. Then,<br />

record the comm<strong>and</strong>s that would be configured on RTA <strong>and</strong> ISP to provide full connectivity. (Hint: RTA<br />

will use a default route <strong>and</strong> ISP will use a static route.)<br />

Figure 1-21 Default <strong>and</strong> Static Routing Scenario<br />

10.10.1.224/28<br />

To find the summary route, find the common bits shared by the first <strong>and</strong> last addresses in the address<br />

space.<br />

First IP 10.10.1.128 00001010.00001010.00000001.10000000<br />

Last IP 10.10.1.255 00001010.00001010.00000001.11111111<br />

Summary route 10.10.1.128/25<br />

10.10.1.128/26<br />

RTA<br />

RTC 10.10.1.244/30<br />

RTB<br />

Now configure ISP with a static route pointing to the summary of the address space:<br />

ISP(config)#ip route 10.10.1.128 255.255.255.128 209.165.201.2<br />

S1/0<br />

209.165.201.2/30<br />

10.10.1.248/30 10.10.1.240/30<br />

RTA will use a default route to ISP because ISP provides connectivity to destinations outside the<br />

10.10.1.128/25 address space:<br />

RTA(config)#ip route 0.0.0.0 0.0.0.0 209.165.201.1<br />

209.165.201.1/30<br />

S0/0<br />

DCE<br />

10.10.1.192/27<br />

ISP


Concept Questions<br />

List at least three reasons why you should use VLSM when designing your addressing scheme.<br />

■ More efficient use of IP addresses<br />

■ Greater capability to use route summarization<br />

■ Isolation of topology changes from other routers<br />

Why is VLSM described as “subnetting a subnet”?<br />

From the instructor version of the curriculum:<br />

VLSM is often referred to as “subnetting a subnet” because any network address space—whether a classful<br />

address like 192.168.1.0/24 or a classless address like 192.168.1.32/27—can be further subnetted to<br />

provide another level of logical addressing.<br />

Why was VLSM not used in <strong>CCNA</strong> 1 <strong>and</strong> <strong>CCNA</strong> 2?<br />

From the instructor version of the curriculum:<br />

There are two main reasons why VLSM is not used in <strong>CCNA</strong> 1 <strong>and</strong> <strong>CCNA</strong> 2:<br />

■ Historically, subnetting has proved to be one of the more challenging skills students must master during<br />

the first two <strong>CCNA</strong> courses. Adding the concept of VLSM to this already difficult task is unnecessary,<br />

namely because….<br />

■ <strong>CCNA</strong> 2 only deals with classful routing. Students do not yet implement classless addressing schemes<br />

in their network designs.<br />

What is the difference between CIDR <strong>and</strong> supernetting or router summarization?<br />

From the instructor version of the curriculum:<br />

Classless Interdomain Routing (CIDR) is the mechanism that allows advertising of both supernets <strong>and</strong> subnets<br />

outside of the normal bounds of a classful network number. Supernetting is a representation that<br />

allows masks that are shorter than the natural masks, therefore creating supernets.<br />

From Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 Companion <strong>Guide</strong>, by Wayne Lewis (Cisco<br />

Networking Academy Program):<br />

Although there is no consensus, the term route summarization often applies to summarizing within a classful<br />

boundary; on the other h<strong>and</strong>, CIDR almost always refers to combining several classful networks. With<br />

both CIDR <strong>and</strong> route summarization, the point is to optimize routing. To illustrate the difference between<br />

route summarization <strong>and</strong> CIDR, a network engineer may define a summary route on a Cisco router for a<br />

company’s network, but this has nothing to do with allocating a block of addresses to a customer.<br />

List the two ways a router running a classful routing protocol can calculate the network portion of routes<br />

received in routing updates.<br />

From Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 Companion <strong>Guide</strong>:<br />

■ If the routing update information contains the same major network number as configured on the<br />

receiving interface, the router applies the subnet mask that is configured on the receiving interface.<br />

■ If the routing update information contains a different major network than the one configured on the<br />

receiving interface, the router applies the default classful mask by IP address class.<br />

Explain three ways a router can learn paths to destination networks.<br />

From Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 Companion <strong>Guide</strong>:<br />

Chapter 1: Introduction to Classless Routing 31<br />

■ Static routes are manually defined by the system administrator via an attached interface or the next<br />

hop to a destination. These are useful for security <strong>and</strong> reducing routing traffic.


32 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

■ Default routes are also manually defined by the network engineer as the path to take when no known<br />

route exists to the destination. Default routes are essential to minimizing the size of a routing table.<br />

When an entry for a destination network does not exist in a routing table, the packet is sent via the<br />

route.<br />

■ Dynamic routing is where the router learns of paths to destinations by receiving routing updates from<br />

other routers via a routing protocol such as RIP.<br />

Explain the effect of the comm<strong>and</strong> ip classless on both classful <strong>and</strong> classless routing protocols.<br />

From Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 Companion <strong>Guide</strong>:<br />

The ip classless comm<strong>and</strong> causes a classful routing protocol to evaluate all packets using the longestmatch<br />

criterion. Instead of discarding traffic bound for unknown subnets of a known classful network, a<br />

router tries to match the largest number of bits possible against the route in its routing table.<br />

Note that ip classless has no effect on routers running classless routing protocols, because they already use<br />

the longest-match criterion in making routing decisions.<br />

List the two classful routing protocols <strong>and</strong> explain the most serious limitation of these two protocols.<br />

RIPv1 <strong>and</strong> IGRP are both classful routing protocols. Neither RIPv1 nor IGRP sends subnet mask information<br />

in routing updates. Therefore, subnets must use the same mask <strong>and</strong> must be assigned contiguously.<br />

Not only does this waste address space, but classful routing is not very scalable. Adding a new subnet<br />

between two contiguously addressed subnets will necessitate designing a new addressing scheme.<br />

Which classless routing protocols automatically summarize at the classful boundary? Why do these protocols<br />

operate in a classful manner? What comm<strong>and</strong> will turn off automatic summarization <strong>and</strong> with which<br />

IOS versions must you enter the comm<strong>and</strong>?<br />

By default RIPv2, EIGRP, <strong>and</strong> BGP all summarize at the classful boundary. Automatic summarization<br />

enables RIPv2 <strong>and</strong> EIGRP to be backward compatible with their predecessors, RIPv1 <strong>and</strong> IGRP. In situations<br />

in which you want to manually summarize routes at a different bit boundary or want to be able to<br />

assign subnets discontiguously, turn off automatic summarization with the no auto-summary comm<strong>and</strong>.<br />

With Cisco IOS Release 12.2(8)T, EIGRP <strong>and</strong> BGP have auto-summary disabled by default; prior to<br />

12.2(8)T, EIGRP <strong>and</strong> BGP had auto-summary enabled by default. With RIPv2, auto-summary has<br />

always been <strong>and</strong> remains enabled by default.<br />

VLSM Case <strong>Study</strong><br />

You are the new network administrator for Mom <strong>and</strong> Pop’s Stop & Shop, a multibranch convenience store<br />

corporation. The previous network administrator used the 192.168.1.0/24 private network exclusively to<br />

communicate between branch locations <strong>and</strong> corporate headquarters. The current topology <strong>and</strong> addressing<br />

scheme is shown in Figure 1-22.<br />

Mom <strong>and</strong> Pop’s Stop & Shop plans to add two new locations this year. With the current addressing<br />

scheme, how many subnets are left to provide address space for the new locations? As the new network<br />

administrator, what plan would you have for adding additional address space when needed? What routing<br />

protocol would you use?


Figure 1-22 Mom <strong>and</strong> Pop’s Stop & Shop Network Topology<br />

172.16.7.0/24<br />

192.168.1.192/28<br />

172.16.8.0/24<br />

Store8<br />

Store7 HQ 192.168.1.80/28 Store3<br />

192.168.1.176/28<br />

Store6<br />

172.16.6.0/24<br />

172.16.0.20/30<br />

172.16.0.28/30<br />

172.16.0.24/30<br />

172.16.0.16/30<br />

192.168.1.144/28<br />

172.16.1.0/24<br />

The current addressing scheme only allows for an additional four subnets: 192.168.1.0/28,<br />

192.168.1.208/28, 192.168.1.224/28, <strong>and</strong> 192.168.240/28. This is enough for the current needs. However,<br />

no more subnets will be available for future expansion. In addition, the current design is wasting<br />

12 addresses on each WAN link. A better solution would be to implement VLSM <strong>and</strong> a classless<br />

routing protocol.<br />

Allow students to design their own addressing scheme to reinforce the VLSM concepts learned in this<br />

chapter. This will provide you with several examples to compare <strong>and</strong> contrast. Discuss with the students as<br />

a class the benefits <strong>and</strong> drawbacks of different solutions.<br />

The following is a sample solution using the 172.16.0.0/16 address space:<br />

Chapter 1: Introduction to Classless Routing 33<br />

192.168.1.32/28<br />

Store1<br />

172.16.0.0/30<br />

192.168.1.16/28<br />

192.168.1.112/28<br />

Store5<br />

192.168.1.160/28<br />

172.16.5.0/24<br />

172.16.0.8/30<br />

172.16.0.12/30<br />

172.16.2.0/24<br />

Store2<br />

192.168.1.48/28<br />

172.16.0.4/30<br />

Store4<br />

172.16.4.0/24<br />

192.168.1.64/28<br />

172.16.3.0/24<br />

192.168.1.96/28<br />

192.168.1.128/28<br />

Although the current stores need only a h<strong>and</strong>ful of IP addresses, future needs are always more dem<strong>and</strong>ing.<br />

To provide enough address space for any possible future needs at each store, give each store a /24 subnet.<br />

WAN links will be assigned exclusively from the 172.16.0.0/24 address space. (You just as easily could<br />

have used the last /24 subnet or 172.16.255.0/24.) Store subnets will match the store numbers already used<br />

by Mom <strong>and</strong> Pop’s. The addressing convention will be 172.16.x.0/24, where x is the store number. Using a<br />

numbering scheme that also denotes the location helps tremendously when troubleshooting. For example, a<br />

poorly performing or failing NIC can cause a flood of meaningless traffic. This traffic can be identified by<br />

its IP address using network monitoring software. The IP address alone is enough to tell you which store is<br />

generating the excess traffic.<br />

For routing, you can use any classless routing protocol, including RIPv2, OSPF, <strong>and</strong> EIGRP. However,<br />

although the network is large, it is not overly complex. There is no need to complicate the situation with a<br />

more complex routing protocol. RIPv2 is probably the best choice in this situation.


34 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

RIP Version 2<br />

RIP was designed to work as a simple Interior Gateway Protocol (IGP) within small <strong>and</strong> moderate-sized<br />

autonomous systems. The first version of RIP did not support VLSM, but rather simply advertised the<br />

classful network to RIP neighbors. However, the original RIP specification (RFC 1058) provided several<br />

empty fields in the RIP update that are now used by RIP version 2 (RFC 2453). In the following two exercises,<br />

you will compare <strong>and</strong> contrast RIPv1 <strong>and</strong> RIPv2. Then, you will complete a research exercise to discover<br />

more details about the two versions of RIP.<br />

Compare <strong>and</strong> Contrast Exercise<br />

Compare <strong>and</strong> contrast RIPv1 <strong>and</strong> RIPv2 by listing the features of each protocol in the following table.<br />

RIPv1 Features RIPv2 Features<br />

Hop count is the metric. Hop count is the metric.<br />

Maximum hop count is 15. Maximum hop count is 15.<br />

Uses hold-down timers to prevent routing loops. Uses hold-down timers to prevent routing loops.<br />

Uses split-horizon to prevent routing loops. Uses split-horizon to prevent routing loops.<br />

Failure to receive updates in a timely manner Failure to receive updates in a timely manner results in<br />

results in removal of routes previously learned removal of routes previously learned from a neighbor.<br />

from a neighbor.<br />

The administrative distance is 120. The administrative distance is 120.<br />

Routing updates are broadcast every Routing updates are multicast every 30 seconds by 30<br />

seconds by default. default.<br />

Capable of load balancing over as many as six Capable of load balancing over as many as six<br />

equal-cost paths—four paths by default. equal-cost paths—four paths by default.<br />

Authentication is not supported. Supports clear-text <strong>and</strong> Message Digest 5 (MD5)<br />

authentication.<br />

VLSM is not supported— VLSM is supported—sends mask in the update.<br />

it is a classful routing protocol.<br />

Does not support manual route summarization. Supports manual route summarization.<br />

From your preceding list of features, what are the four improvements added to RIPv2?<br />

■ Multicasting of updates<br />

■ Support for simple <strong>and</strong> MD5 authentication<br />

■ Support for VLS because subnet mask information is sent in updates<br />

■ Support for route summarization<br />

Internet Research<br />

RIP is an open st<strong>and</strong>ard, which means the specifications for the format of RIP messages is not proprietary<br />

<strong>and</strong> can be implemented by any vendor or software developer. When you are not sure about an open st<strong>and</strong>ard<br />

such as RIP or OSPF, you can always refer to the original Request For Comments (RFC) for that<br />

st<strong>and</strong>ard. For this research exercise, use the Internet to find the RFC for RIPv2 <strong>and</strong> answer the following<br />

questions.


Students should be well versed in using search tools. The RFCs for RIPv1 <strong>and</strong> RIPv2 exist is several<br />

places on the Internet. Emphasize that they should look for the most recent version of the RFC. In this<br />

case, RFC 2453 is sufficient to answer all of the following questions. Students should also be encouraged<br />

to find the original source for RFCs—the Internet Engineering Task Force (IETF). According to<br />

http://www.ietf.org, IETF “…is a large open international community of network designers, operators,<br />

vendors, <strong>and</strong> researchers concerned with the evolution of the Internet architecture <strong>and</strong> the smooth operation<br />

of the Internet.” The IETF collection of RFCs can be found at http://www.ietf.org/rfc/rfc#, where # is<br />

the number of the RFC.<br />

What Layer 4 protocol does RIP use <strong>and</strong> what is its port number?<br />

RIP used UDP <strong>and</strong> its port number is 520.<br />

How many routing updates can a RIP update contain?<br />

A RIP update can contain up to 25 routing updates.<br />

RIPv1 <strong>and</strong> RIPv2 both use the same header information. RIPv2 uses empty fields in the 20-byte RIPv1<br />

route entry. Fill in the names of the fields for both the RIPv1 <strong>and</strong> RIPv2 route entries in Figure 1-23 <strong>and</strong><br />

Figure 1-24, respectively. (Hint: Look for phrases “message format” <strong>and</strong> “protocol extensions.”)<br />

Figure 1-23 RIPv1 Header <strong>and</strong> Route Entry<br />

Comm<strong>and</strong> (1)<br />

Address Family Identifier (2)<br />

IPv4 Address (4)<br />

Chapter 1: Introduction to Classless Routing 35<br />

Version (1) Must be Zero (2)<br />

Must be Zero (4)<br />

Must be Zero (4)<br />

Metric (4)<br />

Must be Zero (4)


36 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 1-24 RIPv2 Header <strong>and</strong> Route Entry<br />

Comm<strong>and</strong> (1) Version (1) Must be Zero (2)<br />

Address Family Identifier (2)<br />

IPv4 Address (4)<br />

Subnet Mask (4)<br />

Next Hop (4)<br />

Metric (4)<br />

Notice that authentication is not listed in any of the fields. Briefly explain how RIPv2 allows authentication<br />

of messages.<br />

From RFC 2453:<br />

Since authentication is a per message function, <strong>and</strong> since there is only one 2-octet field available in the<br />

message header, <strong>and</strong> since any reasonable authentication scheme will require more than two octets, the<br />

authentication scheme for RIP version 2 will use the space of an entire RIP entry. If the Address Family<br />

Identifier of the first (<strong>and</strong> only the first) entry in the message is 0xFFFF, then the remainder of the entry<br />

contains the authentication. This means that there can be, at most, 24 RIP entries in the remainder of the<br />

message. If authentication is not in use, then no entries in the message should have an Address Family<br />

Identifier of 0xFFFF.<br />

Briefly explain the use of the fields Route Tag <strong>and</strong> Next Hop.<br />

Route Tag (2)<br />

From RFC 2453:<br />

4.2 Route Tag<br />

The intended use of the Route Tag is to provide a method of separating “internal” RIP routes (routes for<br />

networks within the RIP routing domain) from “external” RIP routes, which may have been imported from<br />

an EGP or another IGP.<br />

4.4 Next Hop<br />

The immediate next hop IP address to which packets to the destination specified by this route entry should<br />

be forwarded. Specifying a value of 0.0.0.0 in this field indicates that routing should be via the originator<br />

of the RIP advertisement.


Lab Exercises<br />

Comm<strong>and</strong> Reference<br />

In the table that follows, record the comm<strong>and</strong>, including the correct router prompt, that fits the description.<br />

Comm<strong>and</strong> Description<br />

Router(conig)#ip classless Causes a classful routing protocol to evaluate all packets<br />

using the longest-match criterion. As a last resort, the<br />

router will use the default route rather than discard<br />

traffic bound for unknown subnets of a known classful<br />

network.<br />

Router(config)#ip subnet-zero Allows the use of the all-0 subnets; on by default in<br />

Cisco IOS Software Release 12.0 <strong>and</strong> later.<br />

Router(config)#router rip Turns off the RIP routing process.<br />

Router(config-router)#version 2 Turns on Version 2 of the routing process.<br />

Router(config-router)#network a.b.c.d Configures the network number of the directly connect<br />

ed classful network you want to advertise.<br />

Router(config-router)#no auto-summary RIPv2 summarizes networks at the classful boundary.<br />

This comm<strong>and</strong> turns off autosummarization.<br />

Router#debug ip rip Displays all RIP activity in real time.<br />

Router#show ip rip database Displays contents of the RIP database.<br />

Curriculum Lab 1-1: Calculating VLSM Subnets (1.1.4)<br />

Figure 1-25 Topology for Lab 1-1<br />

192.168.10.128/30<br />

Address Space<br />

192.168.10.0/24<br />

Perth<br />

KL<br />

Sydney<br />

Chapter 1: Introduction to Classless Routing 37<br />

28 Hosts<br />

192.168.10.64/27<br />

192.168.10.132/30 192.168.10.136/30<br />

Singapore<br />

60 Hosts<br />

12 Hosts<br />

12 Hosts<br />

192.168.10.0/26 192.168.10.96/28 192.168.10.112/28


38 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Objective<br />

Use variable-length subnet masking (VLSM) to support more efficient use of the assigned IP address <strong>and</strong><br />

to reduce the amount of routing information at the top level.<br />

The solution to this VLSM lab is provided in the steps themselves. Students should take the recommended<br />

subnetting in each step <strong>and</strong> build a diagram of the network, showing routers, LANs, <strong>and</strong> WAN links. Each<br />

LAN <strong>and</strong> WAN link should be labeled with the appropriate subnet address <strong>and</strong> slash number. A suggested<br />

diagram can be found at the end of this lab.<br />

Background/Preparation<br />

A Class C address of 192.168.10.0/24 has been allocated.<br />

Perth, Sydney, <strong>and</strong> Singapore have a WAN connection to Kuala Lumpur. The host requirements are<br />

as follows:<br />

■ Perth requires 60 hosts.<br />

■ Kuala Lumpur requires 28 hosts.<br />

■ Sydney <strong>and</strong> Singapore each require 12 hosts.<br />

To calculate VLSM subnets <strong>and</strong> the respective hosts, allocate the largest requirements first from the<br />

address range. Requirements levels should be listed from the largest to the smallest.<br />

In this example, Perth requires 60 hosts. Use 6 bits, because 2 6 <strong>–</strong> 2 = 62 usable host addresses. Thus,<br />

2 bits will be used from the fourth octet to represent the extended network prefix of /26, <strong>and</strong> the remaining<br />

6 bits will be used for host addresses.<br />

Task 1: Divide the Allocated Addresses into Four Equal-Sized<br />

Address Blocks<br />

Step 1. Divide the allocated address of 192.168.10.0/24 into four equal-sized address blocks. Because<br />

4 = 2 2 , 2 bits are required to identify each of the four subnets.<br />

Step 2. Take subnet 0 (192.168.10.0/26) <strong>and</strong> identify each of its hosts. Table 1-1 documents the allocated<br />

addresses, subnetworks, <strong>and</strong> usable hosts.<br />

Table 1-1 Usable Hosts for 192.168.10.0/24<br />

Allocated Address Subnetworks 62 Usable Hosts/Subnetworks (Subnet 0)<br />

192.168.10.0/24 192.168.10.0/26 192.168.10.0/26 (network address)<br />

Table 1-2 lists the range for the /26 mask.<br />

192.168.10.64/26 192.168.10.1/26<br />

192.168.10.128/26 192.168.10.2/26<br />

192.168.10.192/26 192.168.10.3/26<br />

through<br />

192.168.10.61/26<br />

192.168.10.62/26<br />

192.168.10.63/26 (broadcast address)


Table 1-2 IP Address Range for 192.168.10.0/26<br />

Perth Range of Addresses in the Last Octet<br />

192.168.10.0/26 From 0 to 63. Sixty hosts required.<br />

Hosts 0 <strong>and</strong> 63 cannot be used because they are the network <strong>and</strong> broadcast<br />

addresses for their subnet.<br />

Task 2: Allocate the Next Level After All the Requirements Are<br />

Met for the Higher Level(s)<br />

Kuala Lumpur requires 28 hosts. The next available address after 192.168.10.63/26 is 192.168.10.64/26.<br />

Note from Table 1-2 that this is subnet 1. Because 28 hosts are required, 2 5 <strong>–</strong> 2 = 30 usable network<br />

addresses. Thus, 5 bits will be required to represent the hosts, <strong>and</strong> 3 bits will be used to represent the<br />

extended network prefix of /27. Applying VLSM on address 192.168.10.64/27 gives the results in Table 1-3.<br />

Table 1-3 Usable Hosts for 192.168.10.64/26<br />

Subnetwork 1 Sub-Subnetworks 30 Usable Hosts<br />

192.168.10.64/26 192.168.10.64/27 192.168.10.65/27<br />

Table 1-4 lists the range for the /27 mask.<br />

192.168.10.96/27 192.168.10.66/27<br />

192.168.10.128/27 192.168.10.67/26<br />

192.168.10.192/27 through<br />

Table 1-4 IP Address Range for 192.168.10.64/27<br />

Kuala Lumpur Range of Addresses in the Last Octet<br />

192.168.10.64/27 (network address)<br />

192.168.10.93/27<br />

192.168.10.94/27<br />

192.168.10.95/27 (broadcast address)<br />

192.168.10.64/27 From 64 to 95. 28 hosts required.<br />

Hosts 64 <strong>and</strong> 95 cannot be used because they are the network <strong>and</strong> broadcast<br />

addresses for their subnet. Thirty usable addresses are available in this range for<br />

the hosts.<br />

Task 3: Allocate Address Space for Sydney<br />

Chapter 1: Introduction to Classless Routing 39<br />

Sydney <strong>and</strong> Singapore require 12 hosts each. The next available address starts from 192.168.10.96/27.<br />

Note from Table 1-2 that this is the next subnet available. Because 12 hosts are required, 2 4 <strong>–</strong> 2 = 14<br />

usable addresses. Thus, 4 bits are required to represent the hosts, <strong>and</strong> 4 bits are required for the extended<br />

network prefix of /28. Applying VLSM on address 192.168.10.96/27 gives the results in Table 1-5.


40 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Table 1-5 Usable Hosts for 192.168.10.96/27<br />

Subnetwork 2 Sub-Subnetworks 14 Usable Hosts<br />

192.168.10.96/27 192.168.10.96/28 192.168.10.96/28 (network address)<br />

Table 1-6 lists the range for the /28 mask.<br />

192.168.10.112/28 192.168.10.97/28<br />

192.168.10.128/28 192.168.10.98/28<br />

192.168.10.224/28 192.168.10.99/28<br />

192.168.10.240/28 through<br />

Table 1-6 IP Address Range for 192.168.10.96/28<br />

Sydney Range of Addresses in the Last Octet<br />

192.168.10.109/28<br />

192.168.10.110/28<br />

192.168.10.111/28 (broadcast address)<br />

192.168.10.96/28 From 96 to 111. Twelve hosts required.<br />

Hosts 96 <strong>and</strong> 111 cannot be used because they are network <strong>and</strong> broadcast<br />

addresses for their subnet. Fourteen usable addresses are available in this range<br />

for the hosts.<br />

Task 4: Allocate Address Space for Singapore<br />

Because Singapore also requires 12 hosts, the next set of host addresses in Table 1-7 can be derived from<br />

the next available subnet (192.168.10.112/28).<br />

Table 1-7 Singapore Host Addresses<br />

Sub-Subnetworks 14 Usable Hosts<br />

192.168.10.96/28 192.168.10.112/28 (network address)<br />

192.168.10.112/28 192.168.10.113/28<br />

192.168.10.128/28 192.168.10.114/28<br />

192.168.10.224/28 192.168.10.115/28<br />

through<br />

192.168.10.240/28 192.168.10.125/28<br />

Table 1-8 lists the range for the /28 mask.<br />

192.168.10.126/28<br />

192.168.10.127/28 (broadcast address)


Table 1-8 IP Address Range for 192.168.10.112/28<br />

Singapore Range of Addresses in the Last Octet<br />

192.168.10.112/28 From 112 to 127. Twelve hosts required.<br />

Hosts 112 <strong>and</strong> 127 cannot be used because they are network <strong>and</strong> broadcast<br />

addresses for their subnet. Fourteen usable addresses are available in this<br />

range for the hosts.<br />

Task 5: Allocate Address Space for WAN Links<br />

Now allocate addresses for the WAN links. Remember that each WAN link requires two IP addresses. The<br />

next available subnet is 192.168.10.128/28. Because two network addresses are required for each WAN<br />

link, 2 2 <strong>–</strong> 2 = 2 usable addresses. Thus, 2 bits are required to represent the links, <strong>and</strong> 6 bits are required<br />

for the extended network prefix of /30. Applying VLSM on 192.168.10.128/28 gives the results in Table 1-9.<br />

Table 1-9 Usable Hosts After Applying VLSM on 192.168.10.112/28<br />

Sub-Subnetworks 14 Usable Hosts<br />

192.168.10.128/30 192.168.10.128/30 (network address)<br />

192.168.10.129/30<br />

192.168.10.130/30<br />

192.168.10.31/30 (broadcast address)<br />

192.168.10.132/30 192.168.10.132/30 (network address)<br />

192.168.10.133/30<br />

192.168.10.134/30<br />

192.168.10.135/30 (broadcast address)<br />

192.168.10.136/30 192.168.10.136/30 (network address)<br />

192.168.10.137/30<br />

192.168.10.138/30<br />

192.168.10.139/30 (broadcast address)<br />

Chapter 1: Introduction to Classless Routing 41<br />

The available addresses for the WAN links can be taken from the available addresses in each of the /30<br />

subnets.<br />

Sometimes, a visual will help your students see how an address space can be used with VLSM. One visual<br />

I like to use is to represent the address space in a big, square box, as shown in Figure 1-25B.


42 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 1-25B VLSM Design Using a Visual<br />

This diagram illustrates how the<br />

Class C address was subnetted<br />

using VLSM. The network address<br />

<strong>and</strong> broadcast address for<br />

each subnet are shown in the<br />

corners of each box.<br />

0<br />

64<br />

/27<br />

95<br />

/26<br />

96<br />

112<br />

128<br />

/30<br />

131<br />

132<br />

/30<br />

135<br />

144<br />

First, draw a large box on the board. Label the top-left corner with the subnet address <strong>and</strong> the bottom-right<br />

corner with the broadcast address. For our beginning address space in this lab, the corners are .0 <strong>and</strong> .255,<br />

respectively.<br />

For the first VLSM step, we borrowed 2 bits. This can be represented visually by bisecting the box in half<br />

two times (for 2 bits). First, draw a horizontal line cutting the box in half. Then, draw a vertical line cutting<br />

the box into fourths. This visually represents to your students that we created four subnets. Now label<br />

each box’s top-left <strong>and</strong> bottom-right corners with the beginning <strong>and</strong> ending address in each of the subnets.<br />

So, the top-left box already has .0 but needs an address for the bottom left, which is the broadcast address<br />

for that subnet or .63. You can see from Figure 1-25B how the other four boxes are labeled.<br />

In the lab, we assigned the first box to Perth because 192.168.10.0/26 is enough address space for<br />

60 hosts. In our figure, we can label the box with “Perth LAN /26” so that we know that block of<br />

addresses has been assigned.<br />

/28<br />

/28<br />

63<br />

192<br />

Next, we need address space for the 28 hosts attached to Kuala Lumpur. So, we subnet the .64/26 address<br />

space borrowing 1 bit. In our visual, we draw a vertical line bisecting this block of addresses <strong>and</strong> label our<br />

corners. Then, we assign 192.168.10.64/27 to Kuala Lumpur’s LAN.<br />

Sydney <strong>and</strong> Singapore both need address space to support 12 hosts. Continuing contiguously through our<br />

address space, we borrow 1 bit from the 192.168.10.96/27 address space to make two subnets:<br />

192.168.10.96/28 <strong>and</strong> 192.168.10.112/28. In our visual, we draw a horizontal line to represent the borrowing<br />

of 1 bit <strong>and</strong> label each box with the name of the LAN assigned to that block of addresses.<br />

Our last step is to assign WAN links. We have the entire second half of the address space available represented<br />

by 192.168.10.128/25. For WAN links, we need only two hosts. Therefore, we can borrow 5 more<br />

bits from 192.168.10.128/25. In our visual, we represent the 5 bits borrowed by first drawing a horizontal<br />

line to bisect the 192.168.10.128/25 address space. Then, we draw a vertical line in the upper box to bisect<br />

the 192.168.10.128/26 address space. Then, we draw a third line to bisect the 192.168.10.128/27 address<br />

space. Finally, we draw a vertical line <strong>and</strong> a horizontal line to bisect the 192.168.10.128/28 address space<br />

into four subnets perfect for WAN links.<br />

111<br />

127<br />

136<br />

/30<br />

139<br />

140<br />

/30<br />

143<br />

159<br />

160<br />

191<br />

255


To finish our visual, we label all the corners <strong>and</strong> designate what the prefix is for each address space. These<br />

are our leftover, unused subnets.<br />

Remember, not every student will care for the visual way of representing VLSM. Many prefer to simply<br />

do it by h<strong>and</strong>. In addition, this visual method can be difficult with larger address spaces. Imagine trying to<br />

do this same exercise with a 10.0.0.0/8 address space <strong>and</strong> eight levels of subnetting. It would not be<br />

impossible, but it also would not be very effective. However, I have found that, for some students, the<br />

“light comes on” when I use a visual representation for VLSM.<br />

Curriculum Lab 1-2: Review of Basic Router Configuration<br />

with RIP (1.2.3)<br />

Figure 1-26 Topology for Lab 1-2<br />

Straight-Through Cable<br />

Table 1-10 Lab Equipment Configuration<br />

Router Router Name Fast Ethernet 0 Address Interface Type Serial 0 Address<br />

Designation<br />

Router 1 GAD 172.16.0.1 DCE 172.17.0.1<br />

Router 2 BHM 172.18.0.1 DTE 172.17.0.2<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

The subnet mask for both interfaces on both routers is 255.255.0.0.<br />

Chapter 1: Introduction to Classless Routing 43<br />

Router 1 Router 2<br />

Rollover (Console) Cable<br />

Crossover Cable<br />

Serial Cable


44 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Objectives<br />

■ Cable <strong>and</strong> configure workstations <strong>and</strong> routers.<br />

■ Set up an IP addressing scheme by using Class B networks.<br />

■ Configure RIP on routers.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 1-26. You can use any router that meets the interface<br />

requirements in Figure 1-26 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A, “Router Interface Summary Chart,” to correctly specify the interface identifiers<br />

based on the equipment in your lab. The 1721 series routers produced the configuration output in<br />

this lab. Another router might produce slightly different output. You should execute the following steps on<br />

each router unless you are specifically instructed otherwise.<br />

Implement the procedure documented in Appendix C, “Erasing <strong>and</strong> Reloading the Router,” before you<br />

continue with this lab.<br />

General Configuration Tips<br />

■ Use the question mark (?) <strong>and</strong> arrow keys to help to enter comm<strong>and</strong>s.<br />

■ Each comm<strong>and</strong> mode restricts the set of available comm<strong>and</strong>s. If you have difficulty entering a comm<strong>and</strong>,<br />

check the prompt <strong>and</strong> then enter ? for a list of available comm<strong>and</strong>s. The problem might be a<br />

wrong comm<strong>and</strong> mode or wrong syntax.<br />

■ To disable a feature, enter the keyword no before the comm<strong>and</strong>; for example, no ip routing.<br />

■ Save the configuration changes to nonvolatile RAM (NVRAM) so that the changes are not lost if there<br />

is a system reload or power outage.<br />

Table 1-11 lists the router comm<strong>and</strong> modes for this <strong>and</strong> other labs in the chapter.<br />

Table 1-11 Router Comm<strong>and</strong> Modes<br />

Comm<strong>and</strong> Mode Access Method Router Prompt Exit Method<br />

Displayed<br />

User EXEC Log in. Router> Use the logout comm<strong>and</strong>.<br />

Privileged EXEC From user EXEC Router# To exit to user EXEC mode,<br />

mode, enter the use the disable, exit, or<br />

enable comm<strong>and</strong>. logout comm<strong>and</strong>.<br />

Global From privileged EXEC Router(config)# To exit to privileged EXEC<br />

configuration mode, enter the mode, use the exit or end<br />

configure terminal comm<strong>and</strong>, or press Ctrl-Z.<br />

comm<strong>and</strong>.<br />

Interface From global Router(config-if)# To exit to global configuraconfiguration<br />

configuration mode, tion mode, use the exit<br />

enter the interface comm<strong>and</strong>.<br />

type number comm<strong>and</strong>,<br />

such as interface serial 0.


Task 1: Basic Router Configuration<br />

Connect one end of a rollover cable to the console port on the router <strong>and</strong> connect the other end to the PC<br />

with a DB-9 or DB-25 adapter to a COM port. You should do this prior to powering on any devices.<br />

Task 2: Start the HyperTerminal Program<br />

Step 1. Turn on the computer <strong>and</strong> router.<br />

Step 2. From the Windows taskbar, locate the HyperTerminal program by choosing Start > Programs<br />

> Accessories > Communications > HyperTerminal.<br />

Task 3: Name the HyperTerminal Session<br />

In the Connection Description dialog box, enter a name in the Name field <strong>and</strong> click OK (see Figure 1-27).<br />

Figure 1-27 HyperTerminal Connection Description Dialog Box<br />

Chapter 1: Introduction to Classless Routing 45<br />

Task 4: Specify the Computer’s Connecting Interface<br />

In the Connect To dialog box, select COM1 from the Connect Using drop-down list <strong>and</strong> click OK (see<br />

Figure 1-28).


46 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 1-28 HyperTerminal Connect To Dialog Box<br />

Task 5: Specify the Interface Connection Properties<br />

Step 1. In the COM1 Properties dialog box, use the drop-down arrows to select the following (see<br />

Figure 1-29):<br />

Bits per second = 9600<br />

Data bits = 8<br />

Parity = None<br />

Stop bits = 1<br />

Flow control = None<br />

Step 2. Click OK.


Figure 1-29 HyperTerminal Interface Connection Property Settings<br />

Step 3. When the HyperTerminal session window opens (see Figure 1-30), turn on the router. If the<br />

router is already on, press the Enter key. The router should respond.<br />

Figure 1-30 HyperTerminal Session Window<br />

If the router responds, the connection has been successfully completed.<br />

Chapter 1: Introduction to Classless Routing 47


48 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 6: Close the Session<br />

Step 1. To end the console session from a HyperTerminal session, choose File > Exit.<br />

Step 2. When the HyperTerminal disconnect warning dialog box appears, click Yes (see Figure 1-31).<br />

Figure 1-31 Closing a HyperTerminal Session<br />

Step 3. The computer asks if you want to save the session (see Figure 1-32). Click Yes.<br />

Figure 1-32 Saving a HyperTerminal Session<br />

Task 7: Reopen the HyperTerminal Connection<br />

Step 1. In the Connection Description dialog box (refer to Figure 1-27), click Cancel.<br />

Step 2. To open the saved console session from HyperTerminal, choose File > Open. The saved session<br />

will appear. By double-clicking on the name, the connection opens without reconfiguring<br />

it each time.


Task 8: Configure Hostname <strong>and</strong> Passwords on Router GAD<br />

Enter enable at the user mode prompt <strong>and</strong> enter the rest of the comm<strong>and</strong>s in the following code.<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname GAD<br />

GAD(config)#enable password cisco<br />

GAD(config)#enable secret class<br />

GAD(config)#line console 0<br />

GAD(config-line)#password cisco<br />

GAD(config-line)#login<br />

GAD(config-line)#line vty 0 4<br />

GAD(config-line)#password cisco<br />

GAD(config-line)#login<br />

GAD(config-line)#exit<br />

GAD(config)#<br />

Task 9: Configure Interface Serial 0 on Router GAD<br />

From global configuration mode, configure interface serial 0 (refer to Appendix A) on router GAD.<br />

GAD(config)#interface serial 0<br />

GAD(config-if)#ip address 172.17.0.1 255.255.0.0<br />

GAD(config-if)#clock rate 64000<br />

GAD(config-if)#no shutdown<br />

GAD(config-if)#exit<br />

Task 10: Configure the Fast Ethernet 0 Interface on Router GAD<br />

GAD(config)#interface fastethernet 0<br />

GAD(config-if)#ip address 172.16.0.1 255.255.0.0<br />

GAD(config-if)#no shutdown<br />

GAD(config-if)#exit<br />

Task 11: Configure the IP Host Statements on Router GAD<br />

GAD(config)#ip host BMH 172.18.0.1 172.17.0.1<br />

Chapter 1: Introduction to Classless Routing 49


50 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 12: Configure RIP Routing on Router GAD<br />

GAD(config)#router rip<br />

GAD(config-router)#network 172.16.0.0<br />

GAD(config-router)#network 172.17.0.0<br />

GAD(config-router)#exit<br />

GAD(config)#exit<br />

Task 13: Save the GAD Router Configuration<br />

GAD#copy running-config startup-config<br />

Destination filename [startup-config]?[Enter]<br />

Task 14: Configure Hostname <strong>and</strong> Passwords on Router BHM<br />

Enter enable at the user mode prompt <strong>and</strong> enter the rest of the comm<strong>and</strong>s in the following code.<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname BHM<br />

BHM(config)#enable password cisco<br />

BHM(config)#enable secret class<br />

BHM(config)#line console 0<br />

BHM(config-line)#password cisco<br />

BHM(config-line)#login<br />

BHM(config-line)#line vty 0 4<br />

BHM(config-line)#password cisco<br />

BHM(config-line)#login<br />

BHM(config-line)#exit<br />

BHM(config)#<br />

Task 15: Configure Interface Serial 0 on Router BHM<br />

From global configuration mode, configure interface serial 0 (refer to Appendix A) on router BHM.<br />

BHM(config)#interface serial 0<br />

BHM(config-if)#ip address 172.17.0.2 255.255.0.0<br />

BHM(config-if)#no shutdown<br />

BHM(config-if)#exit<br />

Task 16: Configure the Fast Ethernet 0 Interface on Router BHM<br />

BHM(config)#interface fastethernet 0<br />

BHM(config-if)#ip address 172.18.0.1 255.255.0.0<br />

BHM(config-if)#no shutdown<br />

BHM(config-if)#exit


Task 17: Configure the IP Host Statements on Router BHM<br />

BHM(config)#ip host GAD 172.16.0.1 172.17.0.1<br />

Task 18: Configure RIP Routing on Router BHM<br />

BHM(config)#router rip<br />

BHM(config-router)#network 172.18.0.0<br />

BHM(config-router)#network 172.17.0.0<br />

BHM(config-router)#exit<br />

BHM(config)#exit<br />

Task 19: Save the BHM Router Configuration<br />

BHM# copy running-config startup-config<br />

Destination filename [startup-config]?[Enter]<br />

Task 20: Configure the Hosts<br />

Using the following information, configure the hosts with the proper IP address, subnet mask, <strong>and</strong> default<br />

gateway:<br />

Host connected to router GAD<br />

IP address: 172.16.0.2<br />

Subnet mask: 255.255.0.0<br />

Default gateway: 172.16.0.1<br />

Host connected to router BHM<br />

IP address: 172.18.0.2<br />

Subnet mask: 255.255.0.0<br />

Default gateway: 172.18.0.1<br />

Chapter 1: Introduction to Classless Routing 51<br />

Task 21: Verify the Internetwork Is Functioning by Pinging the<br />

Fast Ethernet Interface of the Other Router<br />

Step 1. From the host that is attached to GAD, ping the BHM router Fast Ethernet interface. Was the<br />

ping successful? Yes<br />

Step 2. From the host that is attached to BHM, ping the GAD router Fast Ethernet interface. Was the<br />

ping successful? Yes<br />

Step 3. If the answer is no for either question, troubleshoot the router configurations to find the error.<br />

Then, do the pings again until the answer to both questions is yes. Finally, ping all interfaces in<br />

the network.


52 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 22: Show the Routing Tables for Each Router<br />

Step 1. From enable (privileged EXEC) mode, examine the routing table entries by using the show ip<br />

route comm<strong>and</strong> on each router.<br />

GAD#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - c<strong>and</strong>idate<br />

default<br />

route<br />

U - per-user static route, o - ODR, P - periodic downloaded static<br />

T - traffic engineered route<br />

Gateway of last resort is not set<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

C 172.16.0.0/16 is directly connected, FastEthernet0<br />

R 172.18.0.0/16 [120/1] via 172.17.0.2, Serial0<br />

BHM#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

area * - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

R 172.16.0.0/16 [120/1] via 172.17.0.1, 00:00:27, Serial0<br />

C 172.18.0.0/16 is directly connected, FastEthernet0<br />

What are the entries in the GAD routing table?<br />

Networks 172.17.0.0/16 <strong>and</strong> 172.16.0.0/16 are directly connected <strong>and</strong> network 172.18.0.0/16<br />

was learned through RIP from next hop 172.17.0.2 through local interface serial 0.<br />

What are the entries in the BHM routing table?<br />

Networks 172.17.0.0/16 <strong>and</strong> 172.18.0.0/16 are directly connected <strong>and</strong> network 172.16.0.0/16<br />

was learned through RIP from next hop 172.17.0.1 through local interface serial 0.<br />

Step 2. Upon completion of the previous step, log off (by typing exit) <strong>and</strong> turn the router off. Then,<br />

remove <strong>and</strong> store the cables <strong>and</strong> adapter.


Curriculum Lab 1-3: Converting RIPv1 to RIPv2 (1.2.4)<br />

Figure 1-33 Topology for Lab 1-3<br />

Table 1-12 Lab Equipment Configuration<br />

Router Router Name Fast Ethernet 0 Address Interface Type Serial 0 Address<br />

Designation<br />

Router 1 GAD 172.16.0.1 DCE 172.17.0.1<br />

Router 2 BHM 172.18.0.1 DTE 172.17.0.2<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

The subnet mask for both interfaces on both routers is 255.255.0.0.<br />

Objectives<br />

■ Configure RIP Version 1 on routers.<br />

■ Convert to RIP Version 2 on routers.<br />

Background/Preparation<br />

Straight-Through Cable<br />

Chapter 1: Introduction to Classless Routing 53<br />

Router 1 Router 2<br />

Rollover (Console) Cable<br />

Crossover Cable<br />

Serial Cable<br />

Cable a network similar to the one in Figure 1-33. You can use any router that meets the interface requirements<br />

in Figure 1-33 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to the<br />

information in Appendix A to correctly specify the interface identifiers based on the equipment in your lab.<br />

The 1721 series routers produced the configuration output in this lab. Another router might produce slightly<br />

different output. You should execute the following steps on each router unless you are specifically<br />

instructed otherwise.


54 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix C on all routers before you continue with this lab.<br />

Task 1: Configure the Routers<br />

On the routers, configure the hostnames, console, virtual terminal, <strong>and</strong> enable passwords. Next, configure<br />

the serial (IP address <strong>and</strong> clock rate) <strong>and</strong> Fast Ethernet (IP address) interfaces. Finally, configure IP hostnames.<br />

If you have problems performing the basic configuration, refer to Lab 1-2, “Review of Basic<br />

Router Configuration with RIP.” You can also configure optional interface descriptions <strong>and</strong> message of the<br />

day banners. Be sure to save the configurations you just created.<br />

Router 1<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname GAD<br />

GAD(config)#enable secret class<br />

GAD(config)#line console 0<br />

GAD(config-line)#password cisco<br />

GAD(config-line)#login<br />

GAD(config-line)#line vty 0 4<br />

GAD(config-line)#password cisco<br />

GAD(config-line)#login<br />

GAD(config-line)#exit<br />

GAD(config)#interface serial 0<br />

GAD(config-if)#ip address 172.17.0.1 255.255.0.0<br />

GAD(config-if)#clock rate 64000<br />

GAD(config-if)#no shutdown<br />

GAD(config-if)#exit<br />

GAD(config)#interface Fastethernet 0<br />

GAD(config-if)#ip address 172.16.0.1 255.255.0.0<br />

GAD(config-if)#no shutdown<br />

GAD(config-if)#exit<br />

GAD(config)#ip host BMH 172.18.0.1 172.17.0.2<br />

Router 2<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname BHM<br />

BHM(config)#enable secret class<br />

BHM(config)#line console 0<br />

BHM(config-line)#password cisco<br />

BHM(config-line)#login<br />

BHM(config-line)#line vty 0 4<br />

BHM(config-line)#password cisco<br />

BHM(config-line)#login<br />

BHM(config-line)#exit


BHM(config)#interface serial 0<br />

BHM(config-if)#ip address 172.17.0.2 255.255.0.0<br />

BHM(config-if)#no shutdown<br />

BHM(config-if)#exit<br />

BHM(config)#interface Fastethernet 0<br />

BHM(config-if)#ip address 172.18.0.1 255.255.0.0<br />

BHM(config-if)#no shutdown<br />

BHM(config-if)#exit<br />

BHM(config)#ip host GAD 172.16.0.1 172.17.0.1<br />

Task 2: Configure the Routing Protocol on Router GAD<br />

Go to the proper comm<strong>and</strong> mode <strong>and</strong> configure RIP routing on the GAD router according to Table 1-12.<br />

GAD(config)#router rip<br />

GAD(config-router)#network 172.16.0.0<br />

GAD(config-router)#network 172.17.0.0<br />

GAD(config-router)#exit<br />

GAD(config)#exit<br />

Task 3: Save the GAD Router Configuration<br />

Any time that changes are correctly made to the running configuration, you should save them to the startup<br />

configuration. Otherwise, if the router is reloaded or power cycled, the changes that are not in the startup<br />

configuration are lost.<br />

GAD#copy running-config startup-config<br />

Destination filename [startup-config]?[Enter]<br />

Task 4: Configure the Routing Protocol on Router BHM<br />

Go to the proper comm<strong>and</strong> mode <strong>and</strong> configure RIP routing on the BHM router according to Table 1-12.<br />

BHM(config)#router rip<br />

BHM(config-router)#network 172.18.0.0<br />

BHM(config-router)#network 172.17.0.0<br />

BHM(config-router)#exit<br />

BHM(config)#exit<br />

Task 5: Save the BHM Router Configuration<br />

BHM#copy running-config startup-config<br />

Destination filename [startup-config]?[Enter]<br />

Chapter 1: Introduction to Classless Routing 55


56 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 6: Configure the Hosts<br />

Configure the hosts with proper IP addresses, subnet masks, <strong>and</strong> default gateways. Document your choices<br />

here:<br />

Host connected to router GAD<br />

IP address: 172.16.0.2<br />

Subnet mask: 255.255.0.0<br />

Default gateway: 172.16.0.1<br />

Host connected to router BHM<br />

IP address: 172.18.0.2<br />

Subnet mask: 255.255.0.0<br />

Default gateway: 172.18.0.1<br />

Task 7: Verify that the Internetwork Is Functioning<br />

Step 1. From each router, ping the other router’s Fast Ethernet interface.<br />

Step 2. From the host that is attached to GAD, ping the other host that is attached to the BHM router.<br />

Was the ping successful? Yes<br />

Step 3. From the host that is attached to BHM, ping the other host that is attached to the GAD router.<br />

Was the ping successful? Yes<br />

Step 4. If the answer is no for either question, troubleshoot the router configurations to find the error.<br />

Then, do the pings again until the answer to both questions is yes.<br />

Task 8: Enable RIPv2 Routing<br />

Enable version 2 of the RIP routing protocol on both the GAD <strong>and</strong> BHM routers.<br />

GAD(config)#router rip<br />

GAD(config-router)#version 2<br />

GAD(config-router)#exit<br />

GAD(config)#exit<br />

BHM(config)#router rip<br />

BHM(config-router)#version 2<br />

BHM(config-router)#exit<br />

BHM(config)#exit<br />

Task 9: Ping All Interfaces on the Network from Each Host<br />

Step 1. Could you still ping all of the interfaces on the network from each host? Yes<br />

Step 2. If not, troubleshoot the network <strong>and</strong> ping again.<br />

Step 3. Upon completion of the previous steps, log off (by typing exit) <strong>and</strong> turn the router off. Then,<br />

remove <strong>and</strong> store the cables <strong>and</strong> adapter.


Curriculum Lab 1-4: Verifying RIPv2 Configuration (1.2.5)<br />

Figure 1-34 Topology for Lab 1-4<br />

Table 1-13 Lab Equipment Configuration<br />

Router Router Name Fast Ethernet 0 Address Interface Type Serial 0 Address<br />

Designation<br />

Router 1 GAD 172.16.0.1 DCE 172.17.1.1<br />

Router 2 BHM 172.18.0.1 DTE 172.17.1.2<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

The subnet mask for both interfaces on both routers is 255.255.0.0.<br />

Objectives<br />

Straight-Through Cable<br />

■ Configure RIPv1 <strong>and</strong> RIPv2 on routers.<br />

■ Use show comm<strong>and</strong>s to verify RIPv2 operation.<br />

Chapter 1: Introduction to Classless Routing 57<br />

Router 1 Router 2<br />

Rollover (Console) Cable<br />

Crossover Cable<br />

Serial Cable<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 1-34. You can use any router that meets the interface<br />

requirements in Figure 1-34 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A to correctly specify the interface identifiers based on the equipment in your<br />

lab. The 1721 series routers produced the configuration output in this lab. Another router might produce<br />

slightly different output. You should execute the following steps on each router unless you are specifically<br />

instructed otherwise.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix C on all routers before continuing with this lab.


58 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 1: Configure the Routers<br />

On the routers, configure the hostnames, console, virtual terminal, <strong>and</strong> enable passwords. Next, configure<br />

the serial (IP address <strong>and</strong> clock rate) <strong>and</strong> Fast Ethernet (IP address) interfaces. Finally, configure IP hostnames.<br />

If you have problems performing the basic configuration, refer to Lab 1-2, “Review of Basic<br />

Router Configuration with RIP.” You can also configure optional interface descriptions <strong>and</strong> message of the<br />

day banners. Be sure to save the configurations you just created.<br />

Task 2: Configure the Routing Protocol on Router Gadsden<br />

Go to the correct comm<strong>and</strong> mode <strong>and</strong> configure RIP routing on the GAD router according to Table 1-13.<br />

GAD(config)#router rip<br />

GAD(config-router)#network 172.16.0.0<br />

GAD(config-router)#network 172.17.0.0<br />

GAD(config-router)#exit<br />

GAD(config)#exit<br />

Task 3: Save the Gadsden Router Configuration<br />

Any time that changes are correctly made to the running configuration, you should save them to the startup<br />

configuration. Otherwise, if you reload or power cycle the router, you will lose the changes that are not in<br />

the startup configuration.<br />

Task 4: Configure the Routing Protocol on Router BHM<br />

Go to the correct comm<strong>and</strong> mode <strong>and</strong> configure RIP routing on the BHM router according to Table 1-13.<br />

BHM(config)#router rip<br />

BHM(config-router)#network 172.18.0.0<br />

BHM(config-router)#network 172.17.0.0<br />

BHM(config-router)#exit<br />

BHM(config)#exit<br />

Task 5: Save the BHM Router Configuration<br />

Enter the comm<strong>and</strong> copy run start to save the current running configuration to NVRAM.<br />

Task 6: Configure the Hosts<br />

Configure the hosts with proper IP addresses, subnet masks, <strong>and</strong> default gateways. Document your choices<br />

here:<br />

Host connected to router GAD<br />

IP address: 172.16.0.2<br />

Subnet mask: 255.255.0.0<br />

Default gateway: 172.16.0.1<br />

Host connected to router BHM<br />

IP address: 172.18.0.2<br />

Subnet mask: 255.255.0.0<br />

Default gateway: 172.18.0.1


Task 7: Verify that the Internetwork Is Functioning<br />

Step 1. From each router, ping the other router’s Fast Ethernet interface.<br />

Step 2. From the host that is attached to GAD, ping the other host that is attached to the BHM router.<br />

Was the ping successful? Yes<br />

Step 3. From the host that is attached to BHM, ping the other host that is attached to the GAD router.<br />

Was the ping successful? Yes<br />

Step 4. If the answer is no for either question, troubleshoot the router configurations to find the error.<br />

Then, do the pings again until the answer to both questions is yes.<br />

Task 8: Show the Routing Tables for Each Router<br />

From enable (privileged EXEC) mode, examine the routing table entries by using the show ip route comm<strong>and</strong><br />

on each router.<br />

GAD#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - c<strong>and</strong>idate default<br />

U - per-user static route, o - ODR, P - periodic downloaded static route<br />

T - traffic engineered route<br />

Gateway of last resort is not set<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

C 172.16.0.0/16 is directly connected, FastEthernet0<br />

R 172.18.0.0/16 [120/1] via 172.17.1.2, Serial0<br />

BHM#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

C 172.18.0.0/16 is directly connected, FastEthernet0<br />

R 172.16.0.0/16 [120/1] via 172.17.1.1, 00:00:27, Serial0<br />

What are the entries in the GAD routing table?<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

C 172.16.0.0/16 is directly connected, FastEthernet0<br />

R 172.18.0.0/16 [120/1] via 172.17.1.2, Serial0<br />

Chapter 1: Introduction to Classless Routing 59


60 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

What are the entries in the BHM routing table?<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

C 172.18.0.0/16 is directly connected, FastEthernet0<br />

R 172.16.0.0/16 [120/1] via 172.17.1.1, 00:00:27, Serial0<br />

Task 9: Enable RIPv2 Routing<br />

Enable Version 2 of the RIP routing protocol on the GAD <strong>and</strong> BHM routers.<br />

GAD(config)#router rip<br />

GAD(config-router)#version 2<br />

GAD(config-router)#exit<br />

GAD(config)#exit<br />

BHM(config)#router rip<br />

BHM(config-router)#version 2<br />

BHM(config-router)#exit<br />

BHM(config)#exit<br />

Task 10: Show the Routing Tables<br />

Show the routing tables on both routers again.<br />

GAD#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - c<strong>and</strong>idate default<br />

U - per-user static route, o - ODR, P - periodic downloaded static route<br />

T - traffic engineered route<br />

Gateway of last resort is not set<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

C 172.16.0.0/16 is directly connected, FastEthernet0<br />

R 172.18.0.0/16 [120/1] via 172.17.1.2, Serial0<br />

BHM#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

C 172.18.0.0/16 is directly connected, FastEthernet0<br />

R 172.16.0.0/16 [120/1] via 172.17.1.1, 00:00:45, Serial0


Have they changed now that RIPv2 is being used instead of RIPv1? No<br />

What is the difference between RIPv2 <strong>and</strong> RIPv1?<br />

RIPv2 supports VLSM <strong>and</strong> RIPv1 does not.<br />

What must you do to see a difference between RIPv2 <strong>and</strong> RIPv1?<br />

Change the subnet mask of the interfaces.<br />

Task 11: Change the Fast Ethernet IP Subnet Mask on Router GAD<br />

Change the subnet mask on router GAD from a Class B (255.255.0.0) to a Class C (255.255.255.0). Use<br />

the same IP address.<br />

GAD(config)#interface fastethernet 0<br />

GAD(config-if)#ip address 172.16.0.1 255.255.255.0<br />

GAD(config-if)#exit<br />

How does this change affect the address for the Fast Ethernet interface?<br />

The IP address of the interface remains the same, but it belongs to a smaller subnet.<br />

Task 12: Show the GAD Routing Table<br />

Show the GAD routing table.<br />

GAD#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - c<strong>and</strong>idate default<br />

U - per-user static route, o - ODR, P - periodic downloaded static route<br />

T - traffic engineered route<br />

Gateway of last resort is not set<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

172.16.0.0/24 is subnetted, 1 subnets<br />

C 172.16.0.0 is directly connected, FastEthernet0<br />

R 172.18.0.0/16 [120/1] via 172.17.1.2, Serial0<br />

Has the output changed now that you have added a subnetted IP address? Yes<br />

How has it changed?<br />

There is a new route to the subnet 172.16.0.0/24.<br />

Task 13: Show the BHM Routing Table<br />

Show the BHM routing table.<br />

BHM#show ip route<br />

Chapter 1: Introduction to Classless Routing 61<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP


62 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

R 172.16.0.0/16 [120/1] via 172.17.1.1, 00:00:24, Serial0<br />

172.18.0.0/24 is subnetted, 1 subnets<br />

C 172.18.0.0 is directly connected, FastEthernet0<br />

Has the output changed now that you have added a subnetted IP address? Yes<br />

Task 14: Change the Network Addressing Scheme<br />

Change the addressing scheme of the network to a single Class B network with a Class C subnet (8 bits of<br />

subnetting).<br />

On the BHM router:<br />

BHM(config)#interface serial 0<br />

BHM(config-if)#ip address 172.16.1.2 255.255.255.0<br />

BHM(config-if)#exit<br />

BHM(config)#interface fastethernet 0<br />

BHM(config-if)#ip address 172.16.3.1 255.255.255.0<br />

BHM(config-if)#exit<br />

BHM(config)#exit<br />

BHM(config)#router rip<br />

BHM(config-router)#no network 172.18.0.0<br />

BHM(config-router)#no network 172.17.0.0<br />

BHM(config-router)#network 172.16.1.0<br />

BHM(config-router)#network 172.16.3.0<br />

BHM(config-router)#exit<br />

On the GAD router:<br />

GAD(config)#interface serial 0<br />

GAD(config-if)#ip address 172.16.1.1 255.255.255.0<br />

GAD(config-if)#exit<br />

GAD(config)#router rip<br />

GAD(config-router)#no network 172.17.0.0<br />

GAD(config-router)#network 172.16.1.0<br />

GAD(config-router)#exit<br />

Task 15: Show the Routing Table for Router GAD<br />

Show the GAD routing table.<br />

GAD#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP


i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - c<strong>and</strong>idate default<br />

U - per-user static route, o - ODR, P - periodic downloaded static route<br />

T - traffic engineered route<br />

Gateway of last resort is not set<br />

172.16.0.0/24 is subnetted, 3 subnets<br />

C 172.16.0.0 is directly connected, FastEthernet0<br />

C 172.16.1.0 is directly connected, Serial0<br />

R 172.16.3.0 [120/1] via 172.16.1.2, Serial0<br />

Has the output changed now that you have added a subnetted IP address? Yes<br />

How has it changed?<br />

There are three subnets, two of which are directly connected, <strong>and</strong> the other subnet, 172.16.3.0, is learned<br />

through RIP via interface serial 0.<br />

Task 16: Show the Routing Table for Router BHM<br />

Show the BHM routing table.<br />

BHM#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

172.16.0.0/24 is subnetted, 3 subnets<br />

R 172.16.0.0 [120/1] via 172.16.1.1, 00:00:05, Serial0<br />

C 172.16.1.0 is directly connected, Serial0<br />

C 172.16.3.0 is directly connected, FastEthernet0<br />

Has the output changed now that you have added a subnetted IP address? Yes<br />

Task 17: Change the Host Configurations<br />

Change the host configuration to reflect the new IP addressing scheme of the network.<br />

Host connected to router GAD<br />

IP address: 172.16.0.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 172.16.0.1<br />

Host connected to router BHM<br />

IP address: 172.16.3.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 172.16.3.1<br />

Chapter 1: Introduction to Classless Routing 63


64 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 18: Ping All Interfaces on the Network from Each Host<br />

Step 1. Could you still ping all of the interfaces on the network from each host? Yes<br />

Step 2. If not, troubleshoot the network <strong>and</strong> ping again.<br />

Task 19: Use show ip route to See Different Routes by Type<br />

Step 1. Enter show ip route connected on the GAD router.<br />

What networks are displayed?<br />

172.16.0.0/24 is subnetted, 3 subnets<br />

C 172.16.0.0 is directly connected, FastEthernet0<br />

C 172.16.1.0 is directly connected, Serial0<br />

What interface is directly connected?<br />

C 172.16.0.0 is directly connected, Ethernet0<br />

C 172.16.1.0 is directly connected, Serial0<br />

Step 2. Enter show ip route rip.<br />

172.16.0.0/24 is subnetted, 3 subnets<br />

R 172.16.3.0 [120/1] via 172.16.1.2, Serial0<br />

Step 3. List the routes in the routing table.<br />

R 172.16.3.0 [120/1] via 172.16.1.2, Serial0<br />

What is the administrative distance? 120<br />

Step 4. Enter show ip route connected on the BHM router.<br />

What networks are displayed?<br />

172.16.0.0/24 is subnetted, 3 subnets<br />

C 172.16.1.0 is directly connected, Serial0<br />

C 172.16.3.0 is directly connected, Ethernet0<br />

What interface is directly connected?<br />

C 172.16.1.0 is directly connected, Serial0<br />

C 172.16.3.0 is directly connected, Ethernet0<br />

Step 5. Enter show ip route rip.<br />

Step 6. List the routes in the routing table<br />

172.16.0.0/24 is subnetted, 3 subnets<br />

R 172.16.0.0 [120/1] via 172.16.1.1, 00:00:15, Serial0<br />

Task 20: Use the show ip protocol Comm<strong>and</strong><br />

Enter the show ip protocol comm<strong>and</strong> on the GAD router.<br />

Routing Protocol is “rip”<br />

Sending updates every 30 seconds, next due in 1 seconds<br />

Invalid after 180 seconds, hold down 180, flushed after 240<br />

Outgoing update filter list for all interfaces is<br />

Incoming update filter list for all interfaces is


Redistributing: rip<br />

Default version control: send version 2, receive version 2<br />

Interface Send Recv Triggered RIP Key-chain<br />

FastEthernet0 2 2<br />

Serial0 2 2<br />

Routing for Networks:<br />

172.16.0.0<br />

Routing Information Sources:<br />

Gateway Distance Last Update<br />

172.17.1.2 120 00:13:21<br />

172.16.1.2 120 00:00:24<br />

172.17.0.2 120 00:35:08<br />

Distance: (default is 120)<br />

When will the routes be flushed? 240 seconds<br />

What is the default distance listed for RIP? 120<br />

Task 21: Remove the Version 2 Option for RIP<br />

Remove the version 2 option on the RIP configuration for both routers.<br />

GAD(config)#router rip<br />

GAD(config-router)#no version 2<br />

GAD(config-router)#exit<br />

BHM(config)#router rip<br />

BHM(config-router)#no version 2<br />

BHM(config-router)#exit<br />

Task 22: Show the Routing Table for Router GAD<br />

Show the GAD routing table.<br />

GAD#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - c<strong>and</strong>idate default<br />

U - per-user static route, o - ODR, P - periodic downloaded static route<br />

T - traffic engineered route<br />

Gateway of last resort is not set<br />

172.16.0.0/24 is subnetted, 3 subnets<br />

C 172.16.0.0 is directly connected, FastEthernet0<br />

C 172.16.1.0 is directly connected, Serial0<br />

R 172.16.3.0 [120/1] via 172.16.1.2, Serial0<br />

Has the output changed now that RIPv2 has been removed? No<br />

Chapter 1: Introduction to Classless Routing 65


66 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 23: Show the Routing Table for Router BHM<br />

Step 1. Show the BHM routing table.<br />

BHM#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B <strong>–</strong> BGP<br />

area<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

172.16.0.0/24 is subnetted, 3 subnets<br />

R 172.16.0.0 [120/1] via 172.16.1.1, 00:00:01, Serial0<br />

C 172.16.1.0 is directly connected, Serial0<br />

C 172.16.3.0 is directly connected, Ethernet0<br />

Has the output changed now that RIPv2 has been removed? No<br />

Step 2. Upon completion of the previous step, log off (by typing exit) <strong>and</strong> turn the router off. Then,<br />

remove <strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 1-5: Troubleshooting RIPv2 Using debug<br />

(1.2.6)<br />

Figure 1-35 Topology for Lab 1-5<br />

Straight-Through Cable<br />

Table 1-14 Lab Equipment Configuration<br />

Router Designation Router Name Fast Ethernet 0 Address Interface Type<br />

Serial 0 Address<br />

Router 1 GAD 172.16.0.1 DCE 172.17.1.1<br />

Router 2 BHM 172.18.0.1 DTE 172.17.1.2<br />

The enable secret password for both routers is class.<br />

Router 1 Router 2<br />

Rollover (Console) Cable<br />

Crossover Cable<br />

Serial Cable


The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

The subnet mask for both interfaces on both routers is 255.255.0.0.<br />

Objectives<br />

■ Configure RIP Version 2 on both routers.<br />

■ Use debug comm<strong>and</strong>s to verify proper RIP operation <strong>and</strong> analyze data that is transmitted between<br />

routers.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 1-35. You can use any router that meets the interface<br />

requirements in Figure 1-35 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A to correctly specify the interface identifiers based on the equipment in your<br />

lab. The 1721 series routers produced the configuration output in this lab. Another router might produce<br />

slightly different output. You should execute the following steps on each router unless you are specifically<br />

instructed otherwise.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix C on all routers before you continue with this lab.<br />

Task 1: Configure the Routers<br />

On the routers, configure the hostnames, console, virtual terminal, <strong>and</strong> enable passwords. Next, configure<br />

the serial (IP address <strong>and</strong> clock rate) <strong>and</strong> Fast Ethernet (IP address) interfaces. Finally, configure IP hostnames.<br />

If you have problems performing the basic configuration, refer to Lab 1-2, “Review of Basic<br />

Router Configuration with RIP.” You can also configure optional interface descriptions <strong>and</strong> message of the<br />

day banners. Be sure to save the configurations you just created.<br />

Task 2: Configure the Routing Protocol on Router GAD<br />

Go to the proper comm<strong>and</strong> mode <strong>and</strong> configure RIP routing on the GAD router according to Table 1-14.<br />

Task 3: Save the GAD Router Configuration<br />

Chapter 1: Introduction to Classless Routing 67<br />

Anytime that changes are correctly made to the running configuration, you should save them to the startup<br />

configuration. Otherwise, if you reload or power cycle the router, you will lose the changes that are not in<br />

the startup configuration.<br />

Task 4: Configure the Routing Protocol on Router BHM<br />

Go to the proper comm<strong>and</strong> mode <strong>and</strong> configure RIP routing on the BHM router according to Table 1-14.


68 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 5: Save the BHM Router Configuration<br />

Enter the comm<strong>and</strong> copy run start to save the current running configuration to NVRAM.<br />

Task 6: Configure the Hosts<br />

Configure the hosts with proper IP addresses, subnet masks, <strong>and</strong> default gateways. Document your choices<br />

here:<br />

Host connected to router GAD<br />

IP address: 172.16.0.2<br />

Subnet mask: 255.255.0.0<br />

Default gateway: 172.16.0.1<br />

Host connected to router BHM<br />

IP address: 172.18.0.2<br />

Subnet mask: 255.255.0.0<br />

Default gateway: 172.18.0.1<br />

Task 7: Verify the Internetwork Is Functioning<br />

Step 1. From each router, ping the other router’s Fast Ethernet interface.<br />

Step 2. From the host that is attached to GAD, ping the other host that is attached to the BHM router.<br />

Was the ping successful? Yes<br />

Step 3. From the host that is attached to BHM, ping the other host that is attached to the GAD router.<br />

Was the ping successful? Yes<br />

Step 4. If the answer is no for either question, troubleshoot the router configurations to find the error.<br />

Then, do the pings again until the answer to both questions is yes.<br />

Task 8: Show the debug ip Comm<strong>and</strong> Options<br />

At the privileged EXEC mode prompt, type debug ip ?.<br />

cache IP cache operations<br />

dhcp Dynamic Host Configuration Protocol<br />

eigrp IP-EIGRP information<br />

error IP error debugging<br />

ftp FTP dialogue<br />

html HTML connections<br />

http HTTP connections<br />

icmp ICMP transactions<br />

igrp IGRP information<br />

interface IP interface configuration changes<br />

mpacket IP multicast packet debugging<br />

nat NAT events<br />

ospf OSPF information<br />

packet General IP debugging <strong>and</strong> IPSO security transactions<br />

peer IP peer address activity


policy Policy routing<br />

rip RIP protocol transactions<br />

routing Routing table events<br />

rtp RTP information<br />

security IP security options<br />

socket Socket event<br />

tcp TCP information<br />

tempacl IP temporary ACL<br />

udp UDP based transactions<br />

Which routing protocols have debug comm<strong>and</strong>s?<br />

EIGRP, IGRP, OSPF, <strong>and</strong> RIP have debug comm<strong>and</strong>s.<br />

Task 9: Show the debug ip rip Comm<strong>and</strong> Options<br />

At the privileged EXEC mode prompt, type debug ip rip ?.<br />

database RIP database events<br />

events RIP protocol events<br />

trigger RIP trigger extension<br />

How many options are available for debug ip rip ? 3<br />

Task 10: Show the RIP Routing Updates<br />

Step 1. From enable (privileged EXEC) mode, examine the routing table entries by using the debug ip<br />

rip comm<strong>and</strong> on each router.<br />

What three operations that take place are listed in the RIP debug statements?<br />

Receive routing update, Send an update, <strong>and</strong> Build update entries are listed.<br />

Step 2. Turn off debugging by typing either no debug ip rip or undebug all.<br />

Task 11: Enable RIPv2 Routing on Router GAD Only<br />

Enable version 2 of the RIP routing protocol on the GAD router only.<br />

GAD(config)#router rip<br />

GAD(config-router)#version 2<br />

Task 12: Restart the Debug Function on Router GAD<br />

Does a problem occur now that RIPv2 is configured on the GAD router? Yes<br />

If so, what is the problem?<br />

It does not accept updates from BHM because of the version difference.<br />

RIP: ignored v1 packet from 172.17.1.2 (illegal version)<br />

Chapter 1: Introduction to Classless Routing 69


70 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 13: Clear the Routing Table<br />

Step 1. Instead of waiting for the routes to time out, type clear ip route *. Then type show ip route.<br />

What has happened to the routing table?<br />

The route to 172.18.0.1 is no longer there.<br />

GAD#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

C 172.16.0.0/16 is directly connected, FastEthernet0/0<br />

Will the routing table be updated to include RIP routes if the debug output says the update is<br />

ignored? No<br />

Step 2. Turn off debugging by typing either no debug ip rip or undebug all.<br />

Task 14: Start the Debug RIP Function<br />

Start the debug RIP function on the BHM router again by typing debug ip rip.<br />

Does a problem occur now that the GAD router is configured with RIPv2? No<br />

If so, what is the problem?<br />

There is no problem on BHM because RIPv1 is accepting the RIPv2 updates from GAD.<br />

RIP: received v2 update from 172.17.1.1 on Serial0<br />

172.16.0.0/16 via 0.0.0.0 in 1 hops<br />

Task 15: Clear the Routing Table<br />

Step 1. Instead of waiting for the routes to time out, type clear ip route *. Then type show ip route.<br />

What has happened to the routing table?<br />

Nothing, all routes are still there.<br />

BHM#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

area<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

C 172.17.0.0/16 is directly connected, Serial0<br />

R 172.16.0.0/16 [120/1] via 172.17.1.1, 00:00:20, Serial0<br />

C 172.18.0.0/16 is directly connected, FastEthernet0/0


Will the routing table be updated to include RIP routes if the update is from RIPv2? Yes<br />

Step 2. Turn off debugging by typing either no debug ip rip or undebug all.<br />

Task 16: Enable RIPv2 Routing on Router BHM<br />

Enable RIPv2 on the BHM router.<br />

BHM(config)#router rip<br />

BHM(config-router)#version 2<br />

Task 17: Use the Debug Function to See Packet Traffic on a<br />

Router<br />

Use the debug function to see packet traffic on the BHM router by typing debug ip packet at the privileged<br />

EXEC mode prompt.<br />

When a RIP update is sent, how many source addresses are used? 2<br />

Why are multiple source addresses used?<br />

One is used for each network the router will send <strong>and</strong> receive updates with.<br />

What is the source address that is used?<br />

172.16.0.1 <strong>and</strong> 172.17.1.1<br />

Why is this address used?<br />

It is the originating interface from which the packet is sent.<br />

Task 18: Start the debug ip rip database Function on Router BHM<br />

Step 1. Start the RIP database debugging by typing debug ip rip database. Then, clear the routing<br />

table by typing clear ip route *.<br />

Are the old routes in the table deleted? Yes<br />

Are new routes added back into the table? Yes<br />

What does the last entry in the debug output say?<br />

RIP-DB: adding 172.16.0.0/16 (metric 1) via 172.17.1.1 on Serial0 to RIP database.<br />

Step 2. Turn off debugging by typing either no debug ip rip or undebug all.<br />

Task 19: Use the Debug Function to See Routing Updates<br />

Step 1. Use the debug function to see routing updates by typing debug ip rip events in privileged<br />

EXEC mode on the BHM router.<br />

What interfaces are the routing updates sent on?<br />

Fast Ethernet 0/0 <strong>and</strong> serial 0.<br />

How many routes are in the routing updates that are being sent? 2<br />

Chapter 1: Introduction to Classless Routing 71<br />

Step 2. Upon completion of the previous steps, log off (by typing exit) <strong>and</strong> turn the router off. Then,<br />

remove <strong>and</strong> store the cables <strong>and</strong> adapter.


72 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Comprehensive Lab 1-6: Default Routing <strong>and</strong> RIPv2<br />

Figure 1-36 Default Routing <strong>and</strong> RIPv2 Topology<br />

192.168.1.128/26<br />

Address Space<br />

192.168.1.0/24<br />

S0/0<br />

DCE<br />

Table 1-15 Addressing Scheme<br />

192.168.1.0/26<br />

S0/0<br />

Fa0/0<br />

RTA<br />

RIPv2<br />

Fa0/0 Fa0/0<br />

RTC<br />

S0/1<br />

192.168.1.248/30 S0/0<br />

DCE<br />

RTB<br />

Device Interface IP Address Subnet Mask<br />

S0/1<br />

DCE<br />

192.168.1.252/30 192.168.1.244/30<br />

ISP S0/0 209.165.201.1 255.255.255.252<br />

Lo0/0 209.165.202.129 255.255.255.252<br />

RTA Fa0/0 192.168.1.1 255.255.255.192<br />

S1/0 209.165.201.2 255.255.255.252<br />

S0/1 192.168.1.245 255.255.255.252<br />

S0/0 192.168.1.254 255.255.255.252<br />

RTB S0/1 192.168.1.246 255.255.255.192<br />

Fa0/0 192.168.1.65 255.255.255.192<br />

S0/0 192.168.1.249 255.255.255.252<br />

RTC S0/1 192.168.1.250 255.255.255.252<br />

S1/0<br />

209.165.201.2/30<br />

209.165.201.1/30<br />

S0/0<br />

DCE<br />

Fa0/0 192.168.1.129 255.255.255.192<br />

S0/0 192.168.1.253 255.255.255.252<br />

S0/1<br />

192.168.1.64/26<br />

ISP<br />

Public Web Server<br />

209.165.202.129/32


Objectives<br />

■ Review basic router configurations.<br />

■ Configure RIPv2.<br />

■ Configure static <strong>and</strong> default routing.<br />

■ Verify connectivity <strong>and</strong> troubleshoot problems.<br />

Equipment<br />

The topology shown in Figure 1-36 is using 2600 series routers. This lab can be done with any combination<br />

of 1700, 2500, <strong>and</strong> 2600 series routers. If a router with three serial interfaces is not available, you can<br />

use a router with two Ethernet interfaces <strong>and</strong> attach the ISP router through the Ethernet interfaces. If a<br />

router with four interfaces is not available, you can simulate the LAN off of RTA with a loopback instead<br />

of using the Ethernet interface.<br />

NetLab Compatibility Notes<br />

Most of this lab can be completed on a st<strong>and</strong>ard NetLab three router pod. To simulate the ISP connection,<br />

simply configure a loopback address. However, you will not be able to test connectivity to the Public Web<br />

Server.<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configurations<br />

Step 1. Cable the topology as shown in Figure 1-36. If DCE/DTE connections <strong>and</strong> interfaces are different<br />

from those shown in Figure 1-36 <strong>and</strong> Table 1-15, relabel the figure to match your connections.<br />

Step 2. Configure the routers with basic router configurations, including:<br />

■ Hostnames <strong>and</strong> host tables<br />

■ Enable secret password <strong>and</strong> MOTD banner<br />

■ Line configurations<br />

■ IOS-specific comm<strong>and</strong>s (e.g. ip subnet-zero with IOS versions prior to 12)<br />

Router(config)#hostname RTA<br />

RTA(config)#ip subnet-zero<br />

RTA(config)#no ip domain-lookup<br />

RTA(config)#ip host WEB 209.165.202.129<br />

RTA(config)#ip host ISP 209.165.201.1<br />

RTA(config)#ip host RTC 192.168.1.253 192.168.1.254<br />

RTA(config)#ip host RTB 192.168.1.246 192.168.1.249<br />

RTA(config)#banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

RTA(config)#line con 0<br />

RTA(config-line)#exec-timeout 30 0<br />

RTA(config-line)#password cisco<br />

RTA(config-line)#logging synchronous<br />

RTA(config-line)#login<br />

RTA(config-line)#ine aux 0<br />

RTA(config-line)#exec-timeout 30 0<br />

Chapter 1: Introduction to Classless Routing 73


74 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

RTA(config-line)#password cisco<br />

RTA(config-line)#logging synchronous<br />

RTA(config-line)#login<br />

RTA(config-line)#line vty 0 4<br />

RTA(config-line)#exec-timeout 30 0<br />

RTA(config-line)#password cisco<br />

RTA(config-line)#logging synchronous<br />

RTA(config-line)#login<br />

RTA(config-line)#end<br />

RTA#copy run start<br />

Task 2: Configure Interfaces <strong>and</strong> Enable RIPv2<br />

Step 1. Use Table 1-15 <strong>and</strong> the topology shown in Figure 1-37 to configure each router with the correct<br />

interface addresses.<br />

RTA(config)#interface FastEthernet0/0<br />

RTA(config-if)#description Link to RTA LAN<br />

RTA(config-if)#ip address 192.168.1.1 255.255.255.192<br />

RTA(config-if)#no shutdown<br />

RTA(config-if)#interface Serial0/0<br />

RTA(config-if)#description Link to RTC<br />

RTA(config-if)#ip address 192.168.1.254 255.255.255.252<br />

RTA(config-if)#no shutdown<br />

RTA(config-if)#interface Serial0/1<br />

RTA(config-if)#description Link to RTB<br />

RTA(config-if)#ip address 192.168.1.245 255.255.255.252<br />

RTA(config-if)#clockrate 64000<br />

RTA(config-if)#no shutdown<br />

RTA(config)#interface Serial1/0<br />

RTA(config-if)#description Link to ISP<br />

RTA(config-if)#ip address 209.165.201.2 255.255.255.252<br />

RTA(config-if)#no shutdown<br />

Step 2. If you are not using a router with four interfaces for RTA, you need to simulate ISP. To simulate<br />

an ISP connection, use the following configuration on RTA:<br />

RTA(config)#interface Loopback0<br />

RTA(config-if)#description Simulated Link to ISP<br />

RTA(config-if)#ip address 209.165.201.2 255.255.255.252<br />

Step 3. Configuring RIPv2 requires adding the version 2 comm<strong>and</strong> after entering RIP routing configuration<br />

mode. With RIPv2, auto-summary is enabled by default, so you need to add the no<br />

auto-summary comm<strong>and</strong>. All connected networks participating in RIP are defined with the<br />

network comm<strong>and</strong> in the form of classful networks. In this case, you only need to add the<br />

192.168.1.0 network. Do not configure the ISP link as part of RIP.<br />

RTA(config)#router rip<br />

RTA(config-router)#version 2<br />

RTA(config-router)#network 192.168.1.0<br />

RTA(config-router)#no auto-summary


Task 3: Verify Connectivity<br />

Step 1. You should now have full connectivity between RTA, RTB, <strong>and</strong> RTC. Issue the show ip route<br />

comm<strong>and</strong> to verify full convergence.<br />

Routing table on RTA:<br />

RTA#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

209.165.201.0/30 is subnetted, 1 subnets<br />

C 209.165.201.0 is directly connected, Serial1/0<br />

192.168.1.0/24 is variably subnetted, 6 subnets, 2 masks<br />

R 192.168.1.64/26 [120/1] via 192.168.1.246, 00:00:25, Serial0/1<br />

C 192.168.1.0/26 is directly connected, FastEthernet0/0<br />

R 192.168.1.248/30 [120/1] via 192.168.1.246, 00:00:25, Serial0/1<br />

[120/1] via 192.168.1.253, 00:00:04, Serial0/0<br />

C 192.168.1.252/30 is directly connected, Serial0/0<br />

C 192.168.1.244/30 is directly connected, Serial0/1<br />

R 192.168.1.128/26 [120/1] via 192.168.1.253, 00:00:06, Serial0/0<br />

Step 2. Notice that RTA has four connected routes (including the connected route to ISP) <strong>and</strong> three<br />

RIP routes. RTB <strong>and</strong> RTC should both have three connected routes <strong>and</strong> three RIP routes.<br />

Step 3. Pings sourced from any router to a LAN interface on another router should succeed. Make sure<br />

each router can ping the LAN interfaces of the other two routers. RTA pings to RTB <strong>and</strong> RTC<br />

LAN interfaces are shown here:<br />

RTA#ping 192.168.1.65<br />

Chapter 1: Introduction to Classless Routing 75<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 192.168.1.65, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/32 ms<br />

RTA#ping 192.168.1.129<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 192.168.1.129, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/29/32 ms


76 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 4: Add ISP Router<br />

Step 1. If you are not simulating the ISP router, configure ISP with the following script:<br />

Router(config)#hostname ISP<br />

ISP(config)#enable secret class<br />

ISP(config)#no ip domain-lookup<br />

ISP(config)#ip host RTA 209.165.201.1<br />

ISP(config)#interface Loopback0<br />

ISP(config-if)#description Public Web Server<br />

ISP(config-if)#ip address 209.165.202.129 255.255.255.255<br />

ISP(config-if)#interface Serial0<br />

ISP(config-if)#description Link to RTA<br />

ISP(config-if)#ip address 209.165.201.1 255.255.255.252<br />

ISP(config-if)#clockrate 64000<br />

ISP(config-if)#no shutdown<br />

ISP(config-if)#exit<br />

ISP(config)#banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

ISP(config)#line con 0<br />

ISP(config-line)#exec-timeout 30 0<br />

ISP(config-line)#password cisco<br />

ISP(config-line)#logging synchronous<br />

ISP(config-line)#login<br />

ISP(config-line)#line aux 0<br />

ISP(config-line)#exec-timeout 30 0<br />

ISP(config-line)#password cisco<br />

ISP(config-line)#logging synchronous<br />

ISP(config-line)#login<br />

ISP(config-line)#line vty 0 4<br />

ISP(config-line)#exec-timeout 30 0<br />

ISP(config-line)#password cisco<br />

ISP(config-line)#logging synchronous<br />

ISP(config-line)#login<br />

ISP(config-line)#end<br />

ISP#copy run start<br />

Step 2. Verify that ISP can now ping the 209.165.201.2 interface on RTA.<br />

ISP#ping RTA<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 209.165.201.2, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/29/32 ms<br />

RTA will not be able to ping the Public Web Server <strong>and</strong> ISP will not be able to ping beyond the<br />

209.165.201.2 interface of RTA. Why?<br />

The routing table on ISP shows only two directly connected networks. ISP can ping RTA<br />

directly because ISP has a route to the 209.165.201.0/30 network in its routing table. RTA can<br />

reply for the same reason. But RTA does not have a route to host 209.165.202.129/32, nor does


RTA have a default route. ISP cannot ping any of the addresses inside the 192.168.1.0/24<br />

address space because it does not have a route. RTA needs a default route pointing to ISP, <strong>and</strong><br />

ISP needs a static route pointing to the 192.168.1.0/24 address space.<br />

Task 5: Configure Static <strong>and</strong> Default Routing<br />

Step 1. For ISP to be able to send Echo replies back to hosts belonging to the 192.168.1.0/24 address<br />

space, it must have a route. Use the following comm<strong>and</strong> on ISP to configure a static route<br />

pointing to the 192.168.1.0/24 address space:<br />

ISP(config)#ip route 192.168.1.0 255.255.255.0 209.165.201.2<br />

Step 2. Now ISP can route back to any host belonging to 192.168.1.0/24. However, RTA, RTB, <strong>and</strong><br />

RTC do not yet have a route for any address space other than 192.168.1.0/24. Because ISP represents<br />

the connection to the rest of the world, you need to configure default routing. A router<br />

without a more specific route in the routing table will send traffic to the default route. Use the<br />

following comm<strong>and</strong> on RTA to configure a default route:<br />

RTA(config)#ip route 0.0.0.0 0.0.0.0 209.165.201.1<br />

Step 3. If you are simulating ISP, use the following comm<strong>and</strong> to configure a default route:<br />

RTA(config)#ip route 0.0.0.0 0.0.0.0 Loopback0<br />

Step 4. Now RTA should be able to ping the Public Web Server. However, RTB <strong>and</strong> RTC still cannot<br />

ping outside the 192.168.1.0/24 address space. The reason is that RTA does not advertise the<br />

default route unless specifically configured to do so. Use the following comm<strong>and</strong> with RIP to<br />

propagate a default route to RTB <strong>and</strong> RTC in the RIP updates:<br />

RTA(config)#router rip<br />

RTA(config-router)#default-information originate<br />

Note: With RIP routing, depending on the platform <strong>and</strong> IOS version, you may need to reload the router that is propagating<br />

the default route before the default route will be sent in routing updates.<br />

Task 6: Verify Connectivity <strong>and</strong> Capture Scripts<br />

Chapter 1: Introduction to Classless Routing 77<br />

Step 1. Verify that all routers now have a default route <strong>and</strong> can ping the Public Web Server.<br />

Note: If you are simulating ISP, test by pinging the loopback interface, 209.165.201.2 on RTA.<br />

RTA>show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 209.165.201.1 to network 0.0.0.0<br />

209.165.201.0/30 is subnetted, 1 subnets<br />

C 209.165.201.0 is directly connected, Serial1/0<br />

192.168.1.0/24 is variably subnetted, 6 subnets, 2 masks


78 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

R 192.168.1.64/26 [120/1] via 192.168.1.246, 00:00:15, Serial0/1<br />

C 192.168.1.0/26 is directly connected, FastEthernet0/0<br />

R 192.168.1.248/30 [120/1] via 192.168.1.253, 00:00:15, Serial0/0<br />

[120/1] via 192.168.1.246, 00:00:15, Serial0/1<br />

C 192.168.1.252/30 is directly connected, Serial0/0<br />

C 192.168.1.244/30 is directly connected, Serial0/1<br />

R 192.168.1.128/26 [120/1] via 192.168.1.253, 00:00:16, Serial0/0<br />

S* 0.0.0.0/0 [1/0] via 209.165.201.1<br />

RTA>ping WEB<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 209.165.202.129, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 32/38/56 ms<br />

RTB>show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 192.168.1.245 to network 0.0.0.0<br />

192.168.1.0/24 is variably subnetted, 6 subnets, 2 masks<br />

C 192.168.1.64/26 is directly connected, FastEthernet0/0<br />

R 192.168.1.0/26 [120/1] via 192.168.1.245, 00:00:13, Serial0/1<br />

C 192.168.1.248/30 is directly connected, Serial0/0<br />

R 192.168.1.252/30 [120/1] via 192.168.1.250, 00:00:04, Serial0/0<br />

[120/1] via 192.168.1.245, 00:00:13, Serial0/1<br />

C 192.168.1.244/30 is directly connected, Serial0/1<br />

R 192.168.1.128/26 [120/1] via 192.168.1.250, 00:00:04, Serial0/0<br />

R* 0.0.0.0/0 [120/1] via 192.168.1.245, 00:00:13, Serial0/1<br />

RTB>ping WEB<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 209.165.202.129, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 32/38/56 ms<br />

RTC>show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2


area<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 192.168.1.254 to network 0.0.0.0<br />

192.168.1.0/24 is variably subnetted, 6 subnets, 2 masks<br />

R 192.168.1.64/26 [120/1] via 192.168.1.249, 00:00:24, Serial0/1<br />

R 192.168.1.0/26 [120/1] via 192.168.1.254, 00:00:04, Serial0/0<br />

C 192.168.1.248/30 is directly connected, Serial0/1<br />

C 192.168.1.252/30 is directly connected, Serial0/0<br />

R 192.168.1.244/30 [120/1] via 192.168.1.249, 00:00:24, Serial0/1<br />

[120/1] via 192.168.1.254, 00:00:04, Serial0/0<br />

C 192.168.1.128/26 is directly connected, FastEthernet0/0<br />

R* 0.0.0.0/0 [120/1] via 192.168.1.254, 00:00:04, Serial0/0<br />

RTC>ping WEB<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 209.165.202.129, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 32/38/56 ms<br />

Step 2. Troubleshoot, if necessary, to obtain output similar to the preceding output.<br />

Step 3. When finished, capture your scripts for your records <strong>and</strong> erase/reload the routers.<br />

The following are the ending scripts for this lab tested on NetLab using the 2600 platform with IOS version<br />

12.1(22a):<br />

RTA with connection to ISP router:<br />

hostname RTA<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host RTB 192.168.1.246 192.168.1.249<br />

ip host RTC 192.168.1.253 192.168.1.254<br />

ip host ISP 209.165.201.1<br />

ip host WEB 209.165.202.129<br />

!<br />

interface FastEthernet0/0<br />

!<br />

description Link to RTA LAN<br />

ip address 192.168.1.1 255.255.255.192<br />

no shutdown<br />

Chapter 1: Introduction to Classless Routing 79


80 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

interface Serial0/0<br />

!<br />

description Link to RTC<br />

ip address 192.168.1.254 255.255.255.252<br />

no shutdown<br />

interface Serial0/1<br />

!<br />

description Link to RTB<br />

ip address 192.168.1.245 255.255.255.252<br />

clockrate 64000<br />

no shutdown<br />

interface Serial1/0<br />

!<br />

description Link to ISP<br />

ip address 209.165.201.2 255.255.255.252<br />

no shutdown<br />

router rip<br />

!<br />

version 2<br />

network 192.168.1.0<br />

default-information originate<br />

no auto-summary<br />

ip classless<br />

ip route 0.0.0.0 0.0.0.0 209.165.201.1<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 30 0<br />

password cisco


!<br />

logging synchronous<br />

login<br />

end<br />

RTA with simulated ISP:<br />

hostname RTA<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host RTB 192.168.1.246 192.168.1.249<br />

ip host RTC 192.168.1.253 192.168.1.254<br />

ip host ISP 209.165.201.2<br />

!<br />

interface Loopback0<br />

!<br />

description Simulated Link to ISP<br />

ip address 209.165.201.2 255.255.255.252<br />

interface FastEthernet0/0<br />

!<br />

description Link to RTA LAN<br />

ip address 192.168.1.1 255.255.255.192<br />

no shutdown<br />

interface Serial0/0<br />

!<br />

description Link to RTC<br />

ip address 192.168.1.254 255.255.255.252<br />

clockrate 64000<br />

no shutdown<br />

interface Serial0/1<br />

!<br />

description Link to RTB<br />

ip address 192.168.1.245 255.255.255.252<br />

clockrate 64000<br />

no shutdown<br />

router rip<br />

!<br />

version 2<br />

network 192.168.1.0<br />

default-information originate<br />

no auto-summary<br />

ip classless<br />

ip route 0.0.0.0 0.0.0.0 Loopback0<br />

!<br />

Chapter 1: Introduction to Classless Routing 81


82 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

RTB configuration:<br />

hostname RTB<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host RTA 192.168.1.245 192.168.1.254<br />

ip host RTC 192.168.1.250 192.168.1.253<br />

ip host ISP 209.165.201.1<br />

ip host WEB 209.165.202.129<br />

!——————————————————————<br />

!If using a simulated ISP, use the following<br />

!instead of the above ‘ISP’ <strong>and</strong> ‘WEB’:<br />

!ip host ISP 209.165.201.2<br />

!——————————————————————<br />

!<br />

interface FastEthernet0/0<br />

description Link to RTB LAN<br />

ip address 192.168.1.65 255.255.255.192


!<br />

no shutdown<br />

interface Serial0/0<br />

!<br />

description Link to RTC<br />

ip address 192.168.1.249 255.255.255.252<br />

clockrate 64000<br />

no shutdown<br />

interface Serial0/1<br />

!<br />

description Link to RTA<br />

ip address 192.168.1.246 255.255.255.252<br />

no shutdown<br />

router rip<br />

!<br />

version 2<br />

network 192.168.1.0<br />

no auto-summary<br />

ip classless<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

Chapter 1: Introduction to Classless Routing 83


84 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

RTC configuration:<br />

hostname RTC<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host RTA 192.168.1.254 192.168.1.245<br />

ip host RTB 192.168.1.249 192.168.1.246<br />

ip host ISP 209.165.201.1<br />

ip host WEB 209.165.202.129<br />

!——————————————————————<br />

!If using a simulated ISP, use the following<br />

!instead of the above ‘ISP’ <strong>and</strong> ‘WEB’:<br />

!ip host ISP 209.165.201.2<br />

!——————————————————————<br />

!<br />

interface FastEthernet0/0<br />

!<br />

description Link to RTC LAN<br />

ip address 192.168.1.129 255.255.255.192<br />

no shutdown<br />

interface Serial0/0<br />

!<br />

description Link to RTA<br />

ip address 192.168.1.253 255.255.255.252<br />

no shutdown<br />

interface Serial0/1<br />

!<br />

description Link to RTB<br />

ip address 192.168.1.250 255.255.255.252<br />

no shutdown<br />

router rip<br />

!<br />

version 2<br />

network 192.168.1.0<br />

no auto-summary<br />

ip classless<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&


!<br />

line con 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

Challenge Lab 1-7: VLSM Design, RIPv2, <strong>and</strong> Default<br />

Routing<br />

Figure 1-37 VLSM Design, RIPv2, <strong>and</strong> Default Routing Topology<br />

10.1.8.0/25<br />

10.1.8.128/25<br />

10.1.9.0/25<br />

10.1.9.128/25<br />

Address Space<br />

10.1.0.0/20<br />

Lo1<br />

Lo2<br />

Lo3<br />

Lo4<br />

RTB<br />

S0/1<br />

Chapter 1: Introduction to Classless Routing 85<br />

Public Web Server<br />

209.165.202.129/30<br />

ISP<br />

S0/1<br />

DCE<br />

209.165.201.1/30<br />

209.165.201.2/30<br />

S0/1<br />

172.16.1.0/30 S0/0<br />

DCE<br />

RTA<br />

Lo1<br />

Lo2<br />

Lo3<br />

Lo4<br />

10.1.0.0/25<br />

10.1.0.128/25<br />

10.1.1.0/25<br />

10.1.1.128/25


86 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Table 1-16 Addressing Scheme<br />

Device Interface IP Address Subnet Mask<br />

ISP S0/0 209.165.201.1 255.255.255.252<br />

Lo0/0 209.165.202.129 255.255.255.252<br />

RTA S0/1 209.165.201.2 255.255.255.252<br />

S0/0 172.16.1.1 255.255.255.252<br />

Lo1 10.1.0.1 255.255.255.128<br />

Lo2 10.1.0.129 255.255.255.128<br />

Lo3 10.1.1.1 255.255.255.128<br />

Lo4 10.1.1.129 255.255.255.128<br />

RTB S0/1 172.16.1.2 255.255.255.252<br />

Objectives<br />

■ Design a scalable addressing scheme.<br />

Lo1 10.1.8.1 255.255.255.128<br />

Lo2 10.1.8.129 255.255.255.128<br />

Lo3 10.1.9.1 255.255.255.128<br />

Lo4 10.1.9.129 255.255.255.128<br />

■ Configure routers with basic configurations using your addressing scheme.<br />

■ Configure dynamic, static, <strong>and</strong> default routing.<br />

■ Verify connectivity <strong>and</strong> troubleshoot problems.<br />

Equipment<br />

The topology shown in Figure 1-37 uses 2600 series routers. This lab can be done with any combination of<br />

1700, 2500, <strong>and</strong> 2600 series routers.<br />

NetLab Compatibility Notes<br />

This lab can be completed on a st<strong>and</strong>ard NetLab three router pod.<br />

Task 1: Design the Addressing Scheme<br />

You are given the address space, 10.1.0.0/20. The loopback interfaces on RTA <strong>and</strong> RTB are used to simulate<br />

different areas of the network. Although each loopback interface could be one LAN or a group of<br />

LANs summarized in one routing update, this discussion simply refers to each loopback interface as a simulated<br />

LAN.<br />

Design an addressing scheme by following these requirements:<br />

Step 1. RTA <strong>and</strong> RTB will share the 10.1.0.0/20 address space equally. Split the address space into two<br />

equal subnets. Record your subnets with prefix notation in the space provided.<br />

10.1.8.0/21 10.1.0.0/21<br />

Address space for RTB Address space for RTA


Step 2. Each simulated LAN requires a minimum of 100 host addresses. Subnet the address space for<br />

both RTA <strong>and</strong> RTB, maximizing the total number of subnets while still providing enough host<br />

addresses for each simulated LAN. You will use the first four subnets in each address space.<br />

Record your subnets with prefix notation in the space provided.<br />

Subnets for RTA LANs Subnets for RTB LANs<br />

Lo1 10.1.8.0/25 Lo1 10.1.0.0/25<br />

Lo2 10.1.8.128/25 Lo1 10.1.0.128/25<br />

Lo3 10.1.9.0/25 Lo1 10.1.1.0/25<br />

Lo4 10.1.9.128/25 Lo1 10.1.1.128/25<br />

Step 3. Now label the topology with your subnets <strong>and</strong> finish filling in the addressing table. Make sure<br />

you record the subnet masks in dotted-decimal format.<br />

Step 4. If required, obtain your instructor’s approval before proceeding.<br />

Instructor Initials _______________<br />

Task 2: Cable the Topology <strong>and</strong> Basic Configurations<br />

Step 1. Cable the topology as shown in Figure 1-37.<br />

Step 2. Configure the routers with basic router configurations, including<br />

■ Hostnames <strong>and</strong> host tables<br />

■ Enable secret password <strong>and</strong> MOTD banner<br />

■ Line configurations<br />

■ IOS-specific comm<strong>and</strong>s (that is, ip subnet-zero with IOS versions prior to 12)<br />

See the scripts at the end of this lab for recommended configurations.<br />

Task 3: Configure the Interfaces <strong>and</strong> Enable RIPv2<br />

Step 1. Configure all interfaces, including the loopbacks, according to your addressing scheme.<br />

Step 2. Configure RIPv2 on RTA <strong>and</strong> RTB. Make sure to add the 172.16.0.0 network to RIP configuration<br />

on both RTA <strong>and</strong> RTB. Do not configure RIP on ISP. Do not add the 209.165.201.0/30<br />

network to the RIP configuration on RTA.<br />

See the scripts at the end of the lab for recommended configurations.<br />

Task 4: Configure Static <strong>and</strong> Default Routing<br />

Step 1. ISP needs two static routes: one pointing to the 10.1.0.0/20 address space <strong>and</strong> one pointing to<br />

the 172.16.1.0/30 address space. Configure ISP with these static routes.<br />

ISP(config)#ip route 10.1.0.0 255.255.240.0 209.165.201.2<br />

ISP(config)#ip route 172.16.1.0 255.255.255.252 209.165.201.2<br />

Step 2. RTA needs a default route point to ISP. Configure RTA with a default route.<br />

RTA(config)#ip route 0.0.0.0 0.0.0.0 209.165.201.1<br />

Chapter 1: Introduction to Classless Routing 87


88 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 3. RTA needs to send RTB the default router. Configure RTA to originate default information<br />

within the RIP routing process. Refer to Lab 1-6, if you need help.<br />

RTA(config-router)#default-information originate<br />

Note: With RIP routing, you must reload the router that is propagating the default route before the default route will<br />

be sent in routing updates.<br />

Task 5: Verify Connectivity<br />

Step 1. Verify that all routers now have a default route <strong>and</strong> can ping the Public Web Server. The routing<br />

tables should have all the routes shown in the following output:<br />

Routing Table for ISP:<br />

Gateway of last resort is not set<br />

172.16.0.0/30 is subnetted, 1 subnets<br />

S 172.16.1.0 [1/0] via 209.165.201.2<br />

209.165.201.0/30 is subnetted, 1 subnets<br />

C 209.165.201.0 is directly connected, Serial0/1<br />

209.165.202.0/32 is subnetted, 1 subnets<br />

C 209.165.202.129 is directly connected, Loopback0<br />

10.0.0.0/20 is subnetted, 1 subnets<br />

S 10.1.0.0 [1/0] via 209.165.201.2<br />

Routing Table for RTA:<br />

Gateway of last resort is 209.165.201.1 to network 0.0.0.0<br />

172.16.0.0/30 is subnetted, 1 subnets<br />

C 172.16.1.0 is directly connected, Serial0/0<br />

209.165.201.0/30 is subnetted, 1 subnets<br />

C 209.165.201.0 is directly connected, Serial0/1<br />

10.0.0.0/25 is subnetted, 8 subnets<br />

R 10.1.9.0 [120/1] via 172.16.1.2, 00:00:26, Serial0/0<br />

R 10.1.8.0 [120/1] via 172.16.1.2, 00:00:26, Serial0/0<br />

C 10.1.1.0 is directly connected, Loopback3<br />

C 10.1.0.0 is directly connected, Loopback1<br />

R 10.1.9.128 [120/1] via 172.16.1.2, 00:00:27, Serial0/0<br />

R 10.1.8.128 [120/1] via 172.16.1.2, 00:00:27, Serial0/0<br />

C 10.1.1.128 is directly connected, Loopback4<br />

C 10.1.0.128 is directly connected, Loopback2<br />

S* 0.0.0.0/0 [1/0] via 209.165.201.1<br />

Routing Table for RTB:<br />

Gateway of last resort is 172.16.1.1 to network 0.0.0.0<br />

172.16.0.0/30 is subnetted, 1 subnets<br />

C 172.16.1.0 is directly connected, Serial0/1<br />

10.0.0.0/25 is subnetted, 8 subnets<br />

C 10.1.9.0 is directly connected, Loopback3<br />

C 10.1.8.0 is directly connected, Loopback1<br />

R 10.1.1.0 [120/1] via 172.16.1.1, 00:00:20, Serial0/1<br />

R 10.1.0.0 [120/1] via 172.16.1.1, 00:00:20, Serial0/1<br />

C 10.1.9.128 is directly connected, Loopback4


C 10.1.8.128 is directly connected, Loopback2<br />

R 10.1.1.128 [120/1] via 172.16.1.1, 00:00:21, Serial0/1<br />

R 10.1.0.128 [120/1] via 172.16.1.1, 00:00:21, Serial0/1<br />

R* 0.0.0.0/0 [120/1] via 172.16.1.1, 00:00:21, Serial0/1<br />

Step 2. Troubleshoot, if necessary, to obtain output similar to the preceding output.<br />

Step 3. Once finished, capture your scripts for your records <strong>and</strong> erase/reload the routers.<br />

Task 6: Challenge<br />

Looking forward to your studies of EIGRP, you will learn that it is possible to reduce the size of the routing<br />

tables on RTA <strong>and</strong> RTB by configuring EIGRP to summarize the simulated LANs into one route.<br />

What summary route would you configure on RTB to send to RTA? Record the summary route with the<br />

correct prefix length here:<br />

10.1.8.0/21<br />

What summary route would you configure on RTA to send to RTB? Record the summary route with the<br />

correct prefix length here:<br />

10.1.0.0/21<br />

What interface would send the summary on RTB?<br />

Serial 0/1<br />

What interface would send the summary on RTA?<br />

Serial 0/0<br />

Now use the Cisco IOS help facility to discover a comm<strong>and</strong> you can use to configure a summary route. To<br />

get you started on RTA, enter interface configuration mode for the interface attached to RTB. Then enter<br />

ip ?. Can you find an ip comm<strong>and</strong> that looks like a summary route? Continue to use the help facility to<br />

discover all the parameters <strong>and</strong> configure your summary route.<br />

You may want to help the students through this process of discovering additional features of the IOS by<br />

using the help facility. The following output shows how this discovery process might occur:<br />

RTA(config)#interface s0/0<br />

RTA(config-if)#ip ?<br />

Interface IP configuration subcomm<strong>and</strong>s:<br />

access-group Specify access control for packets<br />

accounting Enable IP accounting on this interface<br />

address Set the IP address of an interface<br />

audit Apply IDS audit name<br />

auth-proxy Apply authenticaton proxy<br />

authentication authentication subcomm<strong>and</strong>s<br />

b<strong>and</strong>width-percent Set EIGRP b<strong>and</strong>width limit<br />

bgp BGP interface comm<strong>and</strong>s<br />

broadcast-address Set the broadcast address of an interface<br />

cef Cisco Express Fowarding interface comm<strong>and</strong>s<br />

cgmp Enable/disable CGMP<br />

directed-broadcast Enable forwarding of directed broadcasts<br />

dvmrp DVMRP interface comm<strong>and</strong>s<br />

hello-interval Configures IP-EIGRP hello interval<br />

Chapter 1: Introduction to Classless Routing 89


90 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

helper-address Specify a destination address for UDP broadcasts<br />

hold-time Configures IP-EIGRP hold time<br />

igmp IGMP interface comm<strong>and</strong>s<br />

inspect Apply inspect name<br />

irdp ICMP Router Discovery Protocol<br />

load-sharing Style of load sharing<br />

mask-reply Enable sending ICMP Mask Reply messages<br />

mobile Mobile IP support<br />

mrm Configure IP Multicast Routing Monitor tester<br />

mroute-cache Enable switching cache for incoming multicast packets<br />

mtu Set IP Maximum Transmission Unit<br />

multicast IP multicast interface comm<strong>and</strong>s<br />

nat NAT interface comm<strong>and</strong>s<br />

nhrp NHRP interface subcomm<strong>and</strong>s<br />

ospf OSPF interface comm<strong>and</strong>s<br />

pgm PGM Reliable Transport Protocol<br />

pim PIM interface comm<strong>and</strong>s<br />

policy Enable policy routing<br />

probe Enable HP Probe support<br />

proxy-arp Enable proxy ARP<br />

rarp-server Enable RARP server for static arp entries<br />

redirects Enable sending ICMP Redirect messages<br />

rip Router Information Protocol<br />

route-cache Enable fast-switching cache for outgoing packets<br />

router IP router interface comm<strong>and</strong>s<br />

rsvp RSVP interface comm<strong>and</strong>s<br />

rtp RTP parameters<br />

sap Session Advertisement Protocol interface comm<strong>and</strong>s<br />

sdr Session Directory Protocol interface comm<strong>and</strong>s<br />

security DDN IP Security Option<br />

split-horizon Perform split horizon<br />

summary-address Perform address summarization<br />

tcp TCP header compression parameters<br />

unnumbered Enable IP processing without an explicit address<br />

unreachables Enable sending ICMP Unreachable messages<br />

verify Enable per packet validation<br />

vrf VPN Routing/Forwarding parameters on the interface<br />

wccp WCCP interface comm<strong>and</strong>s<br />

RTA(config-if)#ip summary-address ?<br />

eigrp Enhanced Interior Gateway Routing Protocol (EIGRP)<br />

rip Routing Information Protocol (RIP)<br />

RTA(config-if)#ip summary-address rip ?<br />

A.B.C.D IP address


RTA(config-if)#ip summary-address rip 10.1.0.0 ?<br />

A.B.C.D IP network mask<br />

RTA(config-if)#ip summary-address rip 10.1.0.0 255.255.248.0 ?<br />

<br />

RTA(config-if)#ip summary-address rip 10.1.0.0 255.255.248.0<br />

RTA(config-if)#end<br />

Notice the subnet mask matches the summary of all the simulated LANs for RTA. This summary should<br />

conform to the subnet the student determined in Task 1, Step 1 above.<br />

Next, encourage the students to use other comm<strong>and</strong>s besides show run <strong>and</strong> show ip route to see the effect<br />

of this configuration. A powerful comm<strong>and</strong> that displays routing configuration information is show ip protocols.<br />

Notice the highlighted portion of the output shows the summary route.<br />

RTA#show ip protocols<br />

Routing Protocol is “rip”<br />

Sending updates every 30 seconds, next due in 23 seconds<br />

Invalid after 180 seconds, hold down 180, flushed after 240<br />

Outgoing update filter list for all interfaces is not set<br />

Incoming update filter list for all interfaces is not set<br />

Redistributing: rip<br />

Default version control: send version 2, receive version 2<br />

Interface Send Recv Triggered RIP Key-chain<br />

Serial0/0 2 2<br />

Loopback1 2 2<br />

Loopback2 2 2<br />

Loopback3 2 2<br />

Loopback4 2 2<br />

Automatic network summarization is not in effect<br />

Address Summarization:<br />

10.1.0.0/21 for Serial0/0<br />

Maximum path: 4<br />

Routing for Networks:<br />

10.0.0.0<br />

172.16.0.0<br />

Routing Information Sources:<br />

Gateway Distance Last Update<br />

172.16.1.2 120 00:00:10<br />

Distance: (default is 120)<br />

Chapter 1: Introduction to Classless Routing 91<br />

Now verify that RTB has received the new summary route as highlighted in the following output. All the<br />

routes may be listed, including the /25 routes, because RIP has not yet timed out these routes. You can<br />

either wait for the /25 routes to be flushed or simply refresh the routing table by using the clear ip route *<br />

comm<strong>and</strong>.<br />

RTB#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area


92 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 172.16.1.1 to network 0.0.0.0<br />

172.16.0.0/30 is subnetted, 1 subnets<br />

C 172.16.1.0 is directly connected, Serial0/1<br />

10.0.0.0/8 is variably subnetted, 9 subnets, 2 masks<br />

C 10.1.9.0/25 is directly connected, Loopback3<br />

C 10.1.8.0/25 is directly connected, Loopback1<br />

R 10.1.1.0/25 [120/1] via 172.16.1.1, 00:00:55, Serial0/1<br />

R 10.1.0.0/21 [120/1] via 172.16.1.1, 00:00:28, Serial0/1<br />

R 10.1.0.0/25 [120/1] via 172.16.1.1, 00:00:55, Serial0/1<br />

C 10.1.9.128/25 is directly connected, Loopback4<br />

C 10.1.8.128/25 is directly connected, Loopback2<br />

R 10.1.1.128/25 [120/1] via 172.16.1.1, 00:00:55, Serial0/1<br />

R 10.1.0.128/25 [120/1] via 172.16.1.1, 00:00:55, Serial0/1<br />

R* 0.0.0.0/0 [120/1] via 172.16.1.1, 00:00:28, Serial0/1<br />

RTB#clear ip route *<br />

RTB#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 172.16.1.1 to network 0.0.0.0<br />

172.16.0.0/30 is subnetted, 1 subnets<br />

C 172.16.1.0 is directly connected, Serial0/1<br />

10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks<br />

C 10.1.9.0/25 is directly connected, Loopback3<br />

C 10.1.8.0/25 is directly connected, Loopback1<br />

R 10.1.0.0/21 [120/1] via 172.16.1.1, 00:00:03, Serial0/1<br />

C 10.1.9.128/25 is directly connected, Loopback4<br />

C 10.1.8.128/25 is directly connected, Loopback2<br />

R* 0.0.0.0/0 [120/1] via 172.16.1.1, 00:00:03, Serial0/1


Now configure RTB to summarize the simulated LANs in RIP routing updates sent to RTA. What is the<br />

comm<strong>and</strong>, including router prompt?<br />

RTB(config-if)#ip summary-address rip 10.1.8.0 255.255.248.0<br />

Clear the routing table on RTA <strong>and</strong> verify that RTA lists only the summary route for RTB. Test the route<br />

by pinging the loopback interfaces on RTB.<br />

RTA#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 209.165.201.1 to network 0.0.0.0<br />

172.16.0.0/30 is subnetted, 1 subnets<br />

C 172.16.1.0 is directly connected, Serial0/0<br />

209.165.201.0/30 is subnetted, 1 subnets<br />

C 209.165.201.0 is directly connected, Serial0/1<br />

10.0.0.0/8 is variably subnetted, 5 subnets, 2 masks<br />

R 10.1.8.0/21 [120/1] via 172.16.1.2, 00:00:05, Serial0/0<br />

C 10.1.1.0/25 is directly connected, Loopback3<br />

C 10.1.0.0/25 is directly connected, Loopback1<br />

C 10.1.1.128/25 is directly connected, Loopback4<br />

C 10.1.0.128/25 is directly connected, Loopback2<br />

S* 0.0.0.0/0 [1/0] via 209.165.201.1<br />

RTA#ping 10.1.8.1<br />

Chapter 1: Introduction to Classless Routing 93<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 10.1.8.1, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms<br />

RTA#ping 10.1.8.129<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 10.1.8.129, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/32 ms<br />

RTA#ping 10.1.9.129<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 10.1.9.129, timeout is 2 seconds:<br />

!!!!!


94 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms<br />

RTA#ping 10.1.9.1<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 10.1.9.1, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/29/32 ms<br />

The following are the ending scripts for this lab tested on NetLab using the 2600 platform with<br />

IOS version 12.1(22a).<br />

ISP configuration:<br />

hostname ISP<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host RTA 209.165.201.2<br />

!<br />

interface Loopback0<br />

!<br />

description Public Web Server<br />

ip address 209.165.202.129 255.255.255.255<br />

interface Serial0/1<br />

!<br />

description Link to RTA<br />

ip address 209.165.201.1 255.255.255.252<br />

clockrate 64000<br />

no shutdown<br />

ip classless<br />

ip route 10.1.0.0 255.255.240.0 209.165.201.2<br />

ip route 172.16.1.0 255.255.255.252 209.165.201.2<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 30 0


password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

RTA configuration:<br />

hostname RTA<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host RTB 172.16.1.2<br />

ip host ISP 209.165.201.1<br />

ip host WEB 209.165.202.129<br />

!<br />

interface Loopback1<br />

!<br />

description RTA Simulated LAN1<br />

ip address 10.1.0.1 255.255.255.128<br />

interface Loopback2<br />

!<br />

description RTA Simulated LAN2<br />

ip address 10.1.0.129 255.255.255.128<br />

interface Loopback3<br />

!<br />

description RTA Simulated LAN3<br />

ip address 10.1.1.1 255.255.255.128<br />

interface Loopback4<br />

!<br />

description RTA Simulated LAN4<br />

ip address 10.1.1.129 255.255.255.128<br />

interface Serial0/0<br />

!<br />

description Link to RTB<br />

ip address 172.16.1.1 255.255.255.252<br />

ip summary-address rip 10.1.0.0 255.255.248.0<br />

clockrate 64000<br />

no shutdown<br />

interface Serial0/1<br />

Chapter 1: Introduction to Classless Routing 95


96 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

!<br />

description Link to ISP<br />

ip address 209.165.201.2 255.255.255.252<br />

no shutdown<br />

router rip<br />

!<br />

version 2<br />

network 10.0.0.0<br />

network 172.16.0.0<br />

default-information originate<br />

no auto-summary<br />

ip classless<br />

ip route 0.0.0.0 0.0.0.0 209.165.201.1<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

RTB configuration:<br />

hostname RTB<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host WEB 209.165.202.129


ip host ISP 209.165.201.1<br />

ip host RTA 172.16.1.1<br />

!<br />

interface Loopback1<br />

!<br />

description Simulated RTB LAN1<br />

ip address 10.1.8.1 255.255.255.128<br />

interface Loopback2<br />

!<br />

description Simulated RTB LAN2<br />

ip address 10.1.8.129 255.255.255.128<br />

interface Loopback3<br />

!<br />

description Simulated RTB LAN3<br />

ip address 10.1.9.1 255.255.255.128<br />

interface Loopback4<br />

!<br />

description Simulated RTB LAN4<br />

ip address 10.1.9.129 255.255.255.128<br />

interface Serial0/1<br />

!<br />

description Link to RTA<br />

ip address 172.16.1.2 255.255.255.252<br />

ip summary-address rip 10.8.0.0 255.255.248.0<br />

no shutdown<br />

router rip<br />

!<br />

version 2<br />

network 10.0.0.0<br />

network 172.16.0.0<br />

no auto-summary<br />

ip classless<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 30 0<br />

Chapter 1: Introduction to Classless Routing 97


98 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 30 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end


CHAPTER 2<br />

Single-Area OSPF<br />

The <strong>Study</strong> <strong>Guide</strong> portion of this chapter uses a combination of matching, fill in the blank, open-ended<br />

questions, <strong>and</strong> unique custom exercises to test your knowledge on the theory of link-state routing protocols,<br />

single-area OSPF concepts, <strong>and</strong> single-area OSPF configuration.<br />

The Lab Exercises portion of this chapter includes all the online curriculum labs as well as a comprehensive<br />

lab <strong>and</strong> a challenge lab to ensure that you have mastered the practical, h<strong>and</strong>s-on skills needed about<br />

single-area OSPF.


100 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

<strong>Study</strong> <strong>Guide</strong><br />

Link-State Routing Overview<br />

In this section of the <strong>Study</strong> <strong>Guide</strong>, you complete exercises that solidify your knowledge of the features,<br />

benefits, <strong>and</strong> limitations of link-state routing protocols. You also work on your OSPF vocabulary. The following<br />

exercises build on each other <strong>and</strong> are best done in sequence.<br />

Vocabulary Exercise: Matching<br />

Match the definition on the left with a term on the right. This exercise is not necessarily a one-to-one<br />

matching. Some definitions may be used more than once <strong>and</strong> some terms may have multiple definitions.<br />

Finally, some terms may not be used at all.<br />

Definition<br />

a. A collection of networks under a common<br />

administration that share a common routing<br />

strategy<br />

b. Link-state routing protocol<br />

c. Attaches to multiple areas, maintains separate<br />

link-state databases for each area it is connected<br />

to, <strong>and</strong> routes traffic destined for or<br />

arriving from other areas<br />

d. Describes the details of OSPF link-state concepts<br />

<strong>and</strong> operations<br />

e. A listing of links used by the SPF algorithm<br />

to calculate the best paths through the network<br />

<strong>and</strong> build the SPF tree<br />

f. A group of contiguous subnets that is a logical<br />

subdivision of an autonomous system<br />

g. Flooded throughout an area when a failure<br />

occurs in the network, such as when a neighbor<br />

becomes unreachable<br />

h. An open-st<strong>and</strong>ard, link-state routing protocol<br />

designed to address the limitations of RIP<br />

i. Calculates <strong>and</strong> maintains a complex database<br />

of topology information<br />

j. Within each autonomous system, a contiguous<br />

transition area through which all other<br />

areas communicate<br />

k. Connects to an external routing domain that<br />

uses a different routing policy<br />

l. The part of the network through which multiple<br />

OSPF areas connect<br />

m. When this is not equal, the router with the highest<br />

will be the DR regardless of router ID values<br />

n. The Router ID for an OSPF router if no loopbacks<br />

are configured<br />

Term<br />

e link-state database<br />

b Intermediate System-to-Intermediate<br />

System (IS-IS)<br />

f area<br />

g link-state advertisements<br />

n highest IP address<br />

b, h Open Shortest Path First (OSPF)<br />

m router priority<br />

l area 0<br />

d RFC 2328<br />

i Shortest Path First algorithm<br />

a autonomous system<br />

c Area Border Router (ABR)<br />

e topological database<br />

l, j the backbone<br />

k Autonomous System Boundary Router<br />

(ASBR)<br />

(not used) lowest IP address<br />

i Dijkstra


Vocabulary Exercise: Completion<br />

Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

Open Shortest Path First (OSPF) <strong>and</strong> Intermediate System-to-Intermediate System (IS-IS) protocols are<br />

classified as link-state routing protocols. RFC 2328 describes OSPF link-state concepts <strong>and</strong> operations.<br />

Link-state routing protocols were designed to overcome the limitations of distance vector routing protocols.<br />

When a failure occurs in the network, such as when a neighbor becomes unreachable, link-state protocols<br />

flood LSAs (acronym) using a special multicast address throughout an area. A link is the same as an interface<br />

on a router. The state of the link is a description of an interface <strong>and</strong> the relationship to its neighboring<br />

routers. The collection of link states forms a link-state database, sometimes called a topological database.<br />

Link-state routers find the best paths to destinations by applying the Dijkstra or Shortest Path First algorithm<br />

against the link-state database to build the shortest-path first (SPF) tree, with the local router as the<br />

root. The best paths are then selected from the SPF tree <strong>and</strong> placed in the forwarding database.<br />

An autonomous system (AS) consists of a collection of networks under a common administration that<br />

share a common routing strategy. The backbone area is the transition point between areas in an AS because<br />

all other areas communicate through it.<br />

Compare <strong>and</strong> Contrast Exercise<br />

In the following table, list the benefits <strong>and</strong> limitations of link-state routing protocols. You should have at<br />

least four entries for each side of the table.<br />

Benefits Limitations<br />

Chapter 2: Single-Area OSPF 101<br />

Link-state protocols use cost metrics to choose Link-state protocols require a topology database, an<br />

paths through the network. The cost metric adjacency database, <strong>and</strong> a forwarding database.<br />

reflects the capacity of the links on those paths. Using all these databases can require a significant<br />

amount of memory in large or complex networks.<br />

Routing updates are more infrequent.<br />

Dijkstra’s algorithm requires CPU cycles to calculate<br />

The network can be segmented into area the best paths through the network. If the network is<br />

hierarchies, limiting the scope of route changes. large or complex, link-state protocols can use a<br />

significant amount of CPU time.<br />

Link-state protocols send only updates of a<br />

topology change. By using triggered, flooded In a multiarea design, an area router must always<br />

updates, link-state protocols can immediately have a path to the backbone or else the router will<br />

report changes in the network topology to all have no connectivity to the rest of the network.<br />

routers in the network. This immediate reporting Additionally, the backbone area must remain<br />

generally leads to fast convergence times. contiguous at all times to avoid some areas becoming<br />

isolated (partitioned).<br />

Because each router has a complete <strong>and</strong><br />

synchronized picture of the network, it is very Configuring a link-state protocol in a large network<br />

difficult for routing loops to occur. can be challenging.<br />

Because LSAs are sequenced <strong>and</strong> aged, routers Interpreting the information that is stored in the<br />

always base their routing decisions on the most topology, neighbor databases, <strong>and</strong> routing table<br />

recent set of information. requires a good underst<strong>and</strong>ing of the concepts of<br />

link-state routing.<br />

With careful network design, the link-state<br />

database sizes can be minimized, leading to During the initial discovery process, link-state routing<br />

smaller Dijkstra calculations <strong>and</strong> faster protocols can flood the network with LSAs <strong>and</strong> thereconvergence.<br />

by significantly decrease the network’s capability to<br />

transport data.<br />

Link-state protocols usually scale to larger<br />

networks than distance vector protocols do,<br />

particularly the traditional distance vector<br />

protocols such as RIPv1 <strong>and</strong> IGRP.


102 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Concept Questions<br />

What two names refer to the same algorithm used by all link-state routing protocols?<br />

Link-state routing protocols were made possible by the algorithm formulated by Edsger Wybe Dijkstra.<br />

Thus, it is called the Dijkstra algorithm. More generically, it is called the Shortest Path First algorithm. For<br />

more on Dijkstra, visit Wikipedia at http://en.wikipedia.org/wiki/Edsger Dijkstra.<br />

What is the difference between the way link-state routing protocols view the network <strong>and</strong> the way distance<br />

vector routing protocols view the network?<br />

Link-state routing protocols build a tree-like structure of the network, with the local router as the root of<br />

the tree. Each link-state router has knowledge of the entire network. Link-state routers do not depend on<br />

other routers to advertise the best route. Link-state routers calculate an algorithm to determine the best<br />

route to the destination. Distance vector routing has also been called “routing by rumor” <strong>and</strong> “gossip routing.”<br />

Distance vector routers depend upon directly connected neighbors to advertise the best route to the<br />

destination.<br />

Journal Entry<br />

Describe a network implementation where a distance vector routing protocol would be preferred over a<br />

link-state routing protocol.<br />

First, the current networking devices may not support link-state routing, <strong>and</strong> the budget for the implementation<br />

may not be sufficient to purchase additional equipment.<br />

Second, the network may be simple enough that the benefits of a link-state routing protocol is overkill. For<br />

example, a network with only a h<strong>and</strong>ful of subnets, a few routers <strong>and</strong> servers, <strong>and</strong> only one gateway would<br />

not normally need the features of a link-state routing protocol. In fact, you may not want to run a routing<br />

protocol at all. Instead, you may want to use static routes.<br />

Finally, the network administration of the network may not have the necessary training <strong>and</strong> skills to implement<br />

<strong>and</strong> monitor a link-state routing protocol, which can be more complex than distance vector routing or<br />

static routing.<br />

Single-Area OSPF Concepts<br />

One of the main limitations of OSPF is its sheer complexity. Although you are only responsible for underst<strong>and</strong>ing<br />

single-area OSPF concepts <strong>and</strong> configurations, it is still the most complex routing protocol you<br />

will use at the <strong>CCNA</strong> level. The exercises in the section focus on the conceptual framework of OSPF. It is<br />

important to have a good grasp of these concepts before proceeding into the configuration of OSPF. The<br />

following exercises build on each other <strong>and</strong> are best done in sequence.<br />

Vocabulary Exercise: Completion<br />

Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

OSPF is a routing protocol developed for IP networks by the OSPF working group of the Internet<br />

Engineering Task Force (IETF). OSPF has two primary characteristics. The first is that the protocol is an<br />

open st<strong>and</strong>ard, which means that its specification is in the public domain, described in RFC 2328. The second<br />

principal characteristic is that OSPF is based on the Dijkstra or SPF algorithm.<br />

OSPF is a link-state routing protocol, whereas RIP <strong>and</strong> IGRP are distance vector routing protocols.<br />

Routers that are running distance vector algorithms send all or a portion of their routing tables in routingupdate<br />

messages to their neighbors.


The term link simply refers to the interface on a router <strong>and</strong> its relationship to its neighboring routers. The<br />

collection all of these states forms the link-state database, which is an overall picture of networks in relation<br />

to routers.<br />

The ability of OSPF to separate a large internetwork into multiple areas is also referred to as hierarchical<br />

routing. Routing still occurs between areas, but recalculating databases can be isolated to the area where<br />

the change occurred.<br />

The SPF algorithm is used to calculate the cost of links. The OSPF cost of an interface is inversely proportional<br />

to the b<strong>and</strong>width of that interface, so a higher b<strong>and</strong>width indicates a lower cost. The default formula<br />

used to calculate OSPF cost is<br />

cost = 100,000,000/b<strong>and</strong>width in bps<br />

The SPF algorithm calculates a loop-free topology using the node (or local router) as the starting point <strong>and</strong><br />

examining, in turn, information it has about adjacent nodes.<br />

Build the SPF Loop-Free Topology<br />

A physical topology is shown in Figure 2-1. All seven routers are running OSPF in the same single area<br />

network. The OSPF cost value has been simplified for this exercise. Each link is labeled with its cost. Each<br />

router will use the SPF algorithm to construct a loop-free topology with the local router as the root. In the<br />

space provided or on a separate sheet of paper, draw the logical spanning-tree topology for each router.<br />

(Hint: Use a pencil. You will make mistakes.)<br />

Figure 2-1 Build the SPF Loop-Free Topology<br />

D<br />

A<br />

B DC<br />

3<br />

1 4<br />

1<br />

4 1<br />

2 1<br />

1<br />

F G<br />

Chapter 2: Single-Area OSPF 103<br />

Example: The following describes how you would draw the spanning-tree topology in Figure 2-1a showing<br />

Router A as the local or root router. Start by drawing router A at the top. Router A can send traffic to<br />

both router B <strong>and</strong> router C. You can see that router A will always send traffic destined for router B directly<br />

to router B, so draw router B <strong>and</strong> connect it to router A. Label the link with the cost, which is 1. But will<br />

router A send traffic destined for router C directly to router C? No. The cost of 4 is too high compared to<br />

the path through router B, which has a cumulative cost of only 2. So, attach router C to router B <strong>and</strong> label<br />

the link with its cost. Now, how would router A send traffic to router D? It would send it to router B,<br />

which would forward the traffic directly to router D because the cumulative cost of 4 is lower than the<br />

cumulative cost to forward the traffic to router C. So, attach router D to router B <strong>and</strong> label the link with its<br />

cost. Now router B has three routers attached to it. Continue adding routers. Router E would receive traffic<br />

from router A via router C. Both router F <strong>and</strong> router G would receive traffic from router A via router E.<br />

E<br />

2


104 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 2-1a Loop-free Topology for Router A<br />

Figure 2-1b Loop-free Topology for Router B<br />

Figure 2-1c Loop-free Topology for Router C<br />

A D<br />

2<br />

1<br />

1<br />

A<br />

B<br />

C D<br />

1<br />

E F<br />

1<br />

1<br />

1<br />

B<br />

3<br />

G<br />

A C<br />

D<br />

2<br />

E<br />

1 1<br />

F G<br />

C<br />

1 2<br />

B DE<br />

1 3 1 1<br />

3<br />

F G


Figure 2-1d Loop-free Topology for Router D<br />

A C<br />

Figure 2-1e Loop-free Topology for Router E<br />

Figure 2-1f Loop-free Topology for Router F<br />

D<br />

3 2<br />

B DF<br />

1 1 1 1<br />

2<br />

E<br />

B D<br />

E G<br />

C F GD<br />

A<br />

1<br />

1 2<br />

1<br />

2<br />

F<br />

D E GD<br />

C<br />

B<br />

1<br />

2<br />

1<br />

1<br />

A<br />

1<br />

1<br />

Chapter 2: Single-Area OSPF 105


106 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 2-1g Loop-free Topology for Router G<br />

Concept Questions<br />

What is the formula Cisco IOS uses to calculate the cost metric for OSPF?<br />

Cost = 10 8 /b<strong>and</strong>width in bps<br />

What is the OSPF cost of a T1 link?<br />

10 8 /1544000 bps = 64.7, which is rounded to a cost of 64 by the IOS<br />

What is the OSPF cost of a Fast Ethernet link?<br />

10 8 /100,000,000 bps = 1<br />

What is the OSPF cost of a 56-kps dialup link?<br />

10 8 /56000 = 1785.71, which is rounded to a cost of 1785 by the IOS<br />

The routers within an OSPF area have converged. What can you safely assume about the link-state databases<br />

of all the routers within the area?<br />

The link-state databases within an OSPF area are identical. That is, each router contains the same list of<br />

links. In fact, this condition must be met before the routers within the area can calculate the SPF algorithm.<br />

Name at least three advantages of OSPF that relate to its hierarchical routing characteristic.<br />

Because OSPF is built on a multiple-area concept within autonomous systems, it has the following benefits:<br />

■ Reduced frequency of SPF calculations<br />

■ Smaller routing tables<br />

■ Reduced link-state update overhead<br />

Single-Area OSPF Configuration<br />

C<br />

G<br />

1 1<br />

E DF<br />

B<br />

2<br />

1<br />

1<br />

A<br />

Now that you have a good underst<strong>and</strong>ing of how OSPF works, it is time to learn the configuration comm<strong>and</strong>s<br />

that you use in a single-area OSPF network. The first exercise in this section takes you step-by-step<br />

through an OSPF configuration. The second exercise focuses on a topic that often causes problems for students:<br />

the DR/BDR election. The final exercise is a journal entry. These exercises build on each other <strong>and</strong><br />

are best done in sequence.<br />

D<br />

2


Learn the OSPF Comm<strong>and</strong>s Exercise<br />

1. Document the comm<strong>and</strong> syntax, including router prompt, to configure the OSPF routing process.<br />

Router(config)#router ospf process-id.<br />

2. The value for process-id can be any number between 1 <strong>and</strong> 65535.<br />

3. True or False: All routers in an area must have the same process-id.<br />

False. The process-id is only significant to the local router <strong>and</strong> has no meaning to other OSPF neighbors.<br />

OSPF neighbors are unaware of what process ID the local router is using.<br />

4. The comm<strong>and</strong> syntax, including router prompt, for adding network statements to the OSPF routing<br />

process is<br />

Router(config-router)#network address wildcard-mask area area-id.<br />

5. For single area OSPF configurations, the area-id should always be 0.<br />

6. The wildcard-mask argument works the same way as wildcard masks in access control list statements.<br />

List the corresponding wildcard mask for each of the following subnet masks:<br />

255.255.255.0 0.0.0.255<br />

255.255.255.128 0.0.0.127<br />

255.255.255.192 0.0.0.63<br />

255.255.255.240 0.0.0.15<br />

255.255.0.0 0.0.255.255<br />

255.255.252.0 0.0.3.255<br />

255.255.240.0 0.0.15.255<br />

255.0.0.0 0.255.255.255<br />

255.224.0.0 0.31.255.255<br />

255.248.0.0 0.7.255.255<br />

7. Refer to Figure 2-2. In the space provided, document the correct comm<strong>and</strong>s, including router prompt,<br />

to configure RTA to advertise all directly connected networks in OSPF.<br />

Figure 2-2 RTA OSPF Configuration<br />

192.168.1.0/26<br />

RTA<br />

192.168.1.252/30 192.168.1.244/30<br />

Chapter 2: Single-Area OSPF 107


108 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

RTA(config)#router ospf 1<br />

RTA(config-router)#network 192.168.1.0 0.0.0.63 area 0<br />

RTA(config-router)#network 192.168.1.244 0.0.0.3 area 0<br />

RTA(config-router)#network 192.168.1.252 0.0.0.3 area 0<br />

8. OSPF routers that share a common link become neighbors on that link. In Figure 2-3, RTB <strong>and</strong> RTC<br />

are neighbors of RTA, but not of each other. These routers send each other OSPF Hello packets to<br />

establish adjacency. These packets also act as keepalives so that each router knows that adjacent<br />

routers are still functional.<br />

Figure 2-3 Establishing OSPF Adjacency<br />

192.168.1.128/26<br />

9. Using Figure 2-3, document the correct comm<strong>and</strong>s, including router prompt, to configure RTB <strong>and</strong><br />

RTC to advertise all directly connected networks in OSPF.<br />

!OSPF Configuration for RTB.<br />

!Note that the process-id does NOT have to match with RTA<br />

RTB(config)#router ospf 2<br />

RTB(config-router)#network 192.168.1.64 0.0.0.63 area 0<br />

RTB(config-router)#network 192.168.1.244 0.0.0.3 area 0<br />

!OSPF Configuration for RTB.<br />

RTC(config)#router ospf 3<br />

192.168.1.0/26<br />

RTC RTB<br />

RTC(config-router)#network 192.168.1.128 0.0.0.63 area 0<br />

RTC(config-router)#network 192.168.1.252 0.0.0.3 area 0<br />

Note: Now is a good time to complete Curriculum Lab 2-1: Configuring the OSPF Routing Process (2.3.1).<br />

RTA<br />

192.168.1.252/30 192.168.1.244/30<br />

OSPF<br />

Area 0<br />

192.168.1.64/26<br />

10. On multiaccess networks (networks supporting more than two routers) such as Ethernet <strong>and</strong> Frame-<br />

Relay networks, the Hello protocol elects a designated router (DR) <strong>and</strong> a backup designated router<br />

(BDR). Among other things, the designated router is responsible for generating LSAs for the entire<br />

multiaccess network, which reduces both routing-update traffic <strong>and</strong> management of link-state synchronization.


11. The DR/BDR election is based on OSPF priority <strong>and</strong> OSPF Router ID. By default, all OSPF routers<br />

have a priority of 1. If all OSPF routers have the same priority, the highest Router ID determines the<br />

DR <strong>and</strong> BDR.<br />

12. Unless a loopback interface is configured, the highest IP address on an active interface at the moment<br />

of OSPF process startup is used as the router ID.<br />

13. In Figure 2-4, label each router with its router ID. Assume that all routers came up simultaneously <strong>and</strong><br />

that all interfaces are active.<br />

Figure 2-4 Determine the Router ID<br />

14. In Figure 2-4, which router would be the DR? RTC BDR? RTB<br />

15. You can override the Router ID that OSPF chooses by configuring an IP address on a loopback interface.<br />

This will provide stability to your OSPF network, because loopback interfaces do not become<br />

inactive.<br />

16. The syntax for configuring a loopback interface with an IP address is<br />

Router(config)#interface loopback number<br />

Router(config-if)#ip address address subnet-mask<br />

17. Assume that network policy has determined that RTA is best suited to be the DR. In addition, the policy<br />

states that all OSPF routers will be configured with a loopback interface, as follows, to provide stability<br />

to OSPF:<br />

■ 10.0.0.3/32 for RTA<br />

■ 10.0.0.2/32 for RTB<br />

■ 10.0.0.1/32 for RTC<br />

Router ID: 192.168.1.65<br />

Fa0/1 192.168.1.65/26<br />

RTA<br />

Fa0/0 192.168.1.3/29<br />

OSPF<br />

Area 0<br />

Chapter 2: Single-Area OSPF 109<br />

Fa0/1 192.168.1.193/26 Fa0/1 192.168.1.129/26<br />

Fa0/0 192.168.1.1/29 Fa0/0 192.168.1.2/29<br />

RTC<br />

RTB<br />

Router ID: 192.168.1.193 Router ID: 192.168.1.129


110 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

18. Document the correct comm<strong>and</strong>s, including router prompt, to configure loopback interfaces on each<br />

router.<br />

RTA(config)#interface loopback 0<br />

RTA(config-if)#ip address 10.0.0.3 255.255.255.255<br />

RTB(config)#interface loopback 0<br />

RTB(config-if)#ip address 10.0.0.2 255.255.255.255<br />

RTC(config)#interface loopback 0<br />

RTC(config-if)#ip address 10.0.0.1 255.255.255.255<br />

19. With loopback interfaces now configured on each router, what must you do to change which router<br />

is DR?<br />

Does the first sentence mean, “Either the routers must be reloaded or the OSPF process must be<br />

removed with the no router ospf process-id comm<strong>and</strong> <strong>and</strong> then completely reconfigured before routers<br />

will use the loopback addresses as the router ID”? However, the first router reconfigured will become<br />

the DR regardless of the value of Router ID unless you reload the routers. So, the best way to ensure<br />

which router is DR is by configuring priority.<br />

Note: Now is a good time to complete Curriculum Lab 2-2: Configuring OSPF with Loopback Addresses (2.3.2).<br />

20. In addition to configuring loopbacks, it would be a good idea to configure RTA with an OSPF priority<br />

that ensures that it always wins the DR/BDR election. The syntax for configuring OSPF priority is<br />

Router(config-if)#ip ospf priority priority<br />

21. Document the comm<strong>and</strong>s you would configure on RTA to make sure its priority always wins the<br />

DR/BDR election.<br />

RTA(config)#interface Fa 0/0<br />

RTA(config-if)#ip ospf priority 2<br />

!Any priority higher than the default of 1 will work.<br />

22. In Figure 2-5, note the differences in b<strong>and</strong>width. If OSPF uses the default b<strong>and</strong>width on the serial<br />

interfaces to calculate the cost, RTB will send traffic destined for the LAN on RTC directly to RTC,<br />

<strong>and</strong> RTC will send traffic destined for the LAN on RTB directly to RTB. However, the path through<br />

RTA is faster. There are two ways to force RTB <strong>and</strong> RTC to send traffic to RTA. Explain the two different<br />

ways to configure the correct cost. In what situations would one be better than the other?<br />

Figure 2-5 Configure OSPF Cost Metric<br />

192.168.1.0/26<br />

Fa0/0<br />

RTA<br />

192.168.1.252/30 192.168.1.244/30<br />

T1<br />

S0/0<br />

OSPF<br />

Area 0<br />

S0/1<br />

DCE<br />

192.168.1.128/26<br />

S0/0<br />

DCE<br />

S0/1 192.168.1.64/26<br />

Fa0/0<br />

RTC<br />

S0/1<br />

192.168.1.248/30<br />

386 kps<br />

S0/0<br />

DCE<br />

RTB<br />

Fa0/0<br />

T1


The Cisco IOS uses the 10 8 /bps formula to assign a value for OSPF cost. However, this formula is<br />

arbitrary <strong>and</strong> is not universal. The OSPF st<strong>and</strong>ard does not specify how cost is to be calculated. In<br />

fact, it states, “This cost is configurable by the system administrator” (see RFC 2328, page 17).<br />

Therefore, if you are configuring OSPF in a multivendor environment, you need to configure the cost<br />

for the interface so that it matches the non-Cisco device. For that situation, it is best to use the ip ospf<br />

cost bps comm<strong>and</strong>.<br />

If, however, you are using all Cisco equipment, it is much more effective <strong>and</strong> simple to configure the<br />

interface with the actual b<strong>and</strong>width by using the b<strong>and</strong>width bps comm<strong>and</strong>.<br />

23. RTB <strong>and</strong> RTC are both Cisco 2600 series routers. The default b<strong>and</strong>width on serial interfaces for 2600<br />

routers is 1544 kbps (T1). What comm<strong>and</strong> would you enter to verify the default or configured b<strong>and</strong>width<br />

on an interface? show interface Referring to Figure 2-5, document the comm<strong>and</strong>s needed to<br />

configure the b<strong>and</strong>width correctly so that OSPF uses an accurate cost metric.<br />

RTB(config)#interface serial 0/0<br />

RTB(config-if)#b<strong>and</strong>width 386<br />

RTC(config)#interface serial 0/1<br />

RTC(config-if)#b<strong>and</strong>width 386<br />

Note: Now is a good time to complete Curriculum Lab 2-3: Modifying OSPF Cost Metric (2.3.3).<br />

24. By default, a router trusts that information arriving from another router is “believable.” However, to<br />

avoid malicious or inadvertent misinformation, you should configure authentication. The Cisco IOS<br />

has two methods for authenticating OSPF routing updates: simple authentication <strong>and</strong> encrypted<br />

authentication. With simple authentication, passwords are sent in clear text, affording no protection<br />

from sniffer programs. Document the comm<strong>and</strong> syntax, including router prompt, to configure simple<br />

authentication (two comm<strong>and</strong>s).<br />

!On the interface that will participate in authentication:<br />

Router(config-if)#ip ospf authentication-key password<br />

!Within the OSPF router process:<br />

Router(config-router)#area area-number authentication<br />

25. You should use encrypted authentication whenever possible. Document the comm<strong>and</strong> syntax, including<br />

router prompt, to configure encrypted authentication (two comm<strong>and</strong>s).<br />

!On the interface that will participate in encryption:<br />

Router(config-if)#ip ospf message-digest-key key-id encryption-type md5 key<br />

!Within the OSPF router process:<br />

Router(config-router)#area area-id authentication message-digest<br />

26. Document the comm<strong>and</strong>s necessary to configure encrypted authentication of OSPF routing updates<br />

for the routers in Figure 2-5. Because the comm<strong>and</strong>s are the same for all three routers, it is only necessary<br />

that you document the comm<strong>and</strong>s for RTA. Use “allrouters” as the key.<br />

RTA(config)#interface serial 0/0<br />

RTA(config-if)#ip ospf message-digest-key 1 md5 7 allrouters<br />

RTA(config)#interface serial 0/1<br />

RTA(config-if)#ip ospf message-digest-key 1 md5 7 allrouters<br />

RTA(config-if)#router ospf 1<br />

RTA(config-router)#area 0 authentication message-digest<br />

Chapter 2: Single-Area OSPF 111<br />

Instructor Note: The preceding configuration also ensures that potentially malicious routing updates received on the<br />

Fast Ethernet interfaces will not be believed. Authentication has been enabled for the entire area.


112 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Note: Now is a good time to complete Curriculum Lab 2-4: Configuring OSPF Authentication (2.3.4).<br />

27. The DR, BDR, <strong>and</strong> every other router in an OSPF network sends out Hellos using 224.0.0.5 as the<br />

destination address. If a DRother (a router that is not the DR) needs to send an LSA, it will send it<br />

using 224.0.0.6 as the destination address. The DR <strong>and</strong> the BDR will receive LSAs at this address.<br />

28. Complete the following table by listing the four types of OSPF networks <strong>and</strong> whether they have a<br />

DR/BDR election.<br />

Network Type Characteristics DR/BDR<br />

Election?<br />

Broadcast multiaccess Ethernet, Token Ring, or FDDI Yes<br />

Non-broadcast multiaccess Frame Relay, X.25, SMDS Yes<br />

Point-to-point PPP, HDLC No<br />

Point-to-multipoint Configured by an administrator No<br />

29. OSPF routers must use matching Hello intervals <strong>and</strong> Dead intervals on the same link. These are used<br />

to time the exchange of link-state information as well as to determine when a link is down.<br />

30. On broadcast OSPF networks, the default Hello interval is 10 seconds <strong>and</strong> the default Dead interval is<br />

40 seconds. On nonbroadcast networks, the default Hello interval is 30 seconds <strong>and</strong> the default Dead<br />

interval is 120 seconds.<br />

31. These default interval values result in efficient OSPF operation <strong>and</strong> seldom need to be modified.<br />

However, you can change them. Document the comm<strong>and</strong> syntax, including router prompt, to change<br />

these values.<br />

Router(config-if)#ip ospf hello-interval seconds<br />

Router(config-if)#ip ospf dead-interval seconds<br />

32. Again, refer to Figure 2-5. Assuming that the current intervals are 10 <strong>and</strong> 40, document the comm<strong>and</strong>s<br />

necessary to change these intervals on the link between RTB <strong>and</strong> RTC to a value four times greater<br />

than the current value.<br />

RTB(config)#interface serial 0/0<br />

RTB(config-if)#ip ospf hello-interval 40<br />

RTB(config-if)#ip ospf dead-interval 160<br />

RTC(config)#interface serial 0/1<br />

RTC(config-if)#ip ospf hello-interval 40<br />

RTC(config-if)#ip ospf dead-interval 160<br />

Instructor Note: It is not necessary to configure the Dead interval as long as the desired interval is four times the<br />

Hello interval. The IOS will automatically increase the Dead interval to four times the configured Hello interval.<br />

Note: Now is a good time to complete Curriculum Lab 2-5: Configuring OSPF Timers (2.3.5).<br />

33. Refer to Figure 2-6 for the remaining questions in this section. RTA is your gateway router because it<br />

provides access outside the area. In OSPF terminology, RTA is called the Autonomous System<br />

Boundary Router (ASBR) because it connects to an external routing domain that uses a different routing<br />

policy.


Figure 2-6 Propagating a Default Route<br />

192.168.1.128/26<br />

Address Space<br />

192.168.1.0/24<br />

Fa0/0<br />

RTA<br />

S0/1<br />

RTC 192.168.1.248/30 S0/0 RTB<br />

DCE<br />

34. Each routing protocol h<strong>and</strong>les the propagation of default routing information a little differently. For<br />

OSPF, the gateway router must be configured with two comm<strong>and</strong>s. First, RTA needs a static default<br />

route (also known as the “quad-zero” route) pointing to ISP. Document the comm<strong>and</strong> syntax to configure<br />

a static default route on RTA.<br />

Router(config)#ip route 0.0.0.0 0.0.0.0 [interface | next-hop-address]<br />

Instructor Note: Students should also know the difference between using the interface argument <strong>and</strong> using the nexthop-address<br />

argument. When you configure the outbound interface, the router does not need to do the extra step of<br />

looking up the next hop’s address in the routing table. Therefore, the interface argument has an administrative distance<br />

of 0. This is also the preferred configuration if the next hop’s address changes often. If you configure the next-hopaddress<br />

argument, the administrative distance is 1 to account for the extra processing time.<br />

35. Using the interface argument, document the comm<strong>and</strong> necessary to configure RTA with a static<br />

default route pointing to ISP.<br />

RTA(config)#ip route 0.0.0.0 0.0.0.0 serial 1/0<br />

36. At this point, RTA can send pings to ISP, <strong>and</strong> ISP will respond as long as the pings are sourced from<br />

the serial 1/0 interface on RTA. However, any ping coming from the 192.168.1.0/24 address space will<br />

be discarded by ISP. Why?<br />

Because ISP does not yet have a route to the 192.168.1.0/24 address space.<br />

37. Document the comm<strong>and</strong> syntax used to configure a static route.<br />

Router(config)#ip route network_address subnet_mask [interface | next-hop-address]<br />

38. Using the next-hop-address argument, document the comm<strong>and</strong> necessary to configure ISP with a static<br />

route pointing to the 192.168.1.0/24 address space.<br />

ISP(config)#ip route 192.168.1.0 255.255.255.0 209.165.201.2<br />

39. At this point, any host on the LAN attached to RTA will be able to access ISP <strong>and</strong> ping the Public<br />

Web Server at 209.165.202.129. However, RTB <strong>and</strong> RTC still cannot ping outside the 192.168.1.0/24<br />

address space. Why?<br />

Because neither router has a default route.<br />

S1/0<br />

209.165.201.2/30<br />

192.168.1.252/30<br />

RTA<br />

Propagates<br />

Default Route to<br />

RTB <strong>and</strong> RTC<br />

192.168.1.244/30<br />

S0/0<br />

DCE<br />

S0/0<br />

192.168.1.0/26<br />

Fa0/0<br />

S0/1<br />

DCE<br />

Default Route<br />

209.165.201.1/30<br />

Static Route<br />

S0/1<br />

Fa0/0<br />

Chapter 2: Single-Area OSPF 113<br />

S0/0<br />

DCE<br />

ISP<br />

OSPF<br />

Area 0 192.168.1.64/26<br />

Public Web Server<br />

209.165.202.129/30


114 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

40. Document the comm<strong>and</strong> that needs to be configured on RTA to fix this problem.<br />

RTA(config-router)#default-information originate<br />

Note: Now is a good time to complete Curriculum Lab 2-6: Propagating Default Routes in an OSPF Domain (2.3.6).<br />

DR/BDR Election Exercise<br />

In the following exercises, assume that all routers are simultaneously booted. Determine the network type,<br />

if applicable, <strong>and</strong> label which router is elected as the DR <strong>and</strong> which router is elected as the BDR.<br />

Hint: Remember, if priority is equal, router ID determines DR <strong>and</strong> BDR.<br />

Refer to Figure 2-7 <strong>and</strong> answer the following questions:<br />

Figure 2-7 DR/BDR Election Exercise 1 Topology<br />

E0 = 172.16.1.1<br />

L0 = 192.168.1.4<br />

RTA<br />

What is the router ID for RTA? 192.168.1.4<br />

What is the router ID for RTB? 192.168.1.3<br />

What is the router ID for RTC? 192.168.1.2<br />

What is the router ID for RTD? 192.168.1.1<br />

Which router will be elected DR? RTA<br />

Which router will be elected BDR? RTB<br />

RTC<br />

E0 = 172.16.1.3<br />

S0 = 192.168.5.1<br />

L0 = 192.168.1.2<br />

Refer to Figure 2-8 <strong>and</strong> determine whether there will be a DR/BDR election. If applicable, designate<br />

which router is DR <strong>and</strong> which router is BDR.<br />

Figure 2-8 DR/BDR Election Exercise 2 Topology<br />

E0 = 172.16.1.2<br />

L0 = 192.168.1.3<br />

RTB<br />

The loopback address is the router ID in every case<br />

172.15.1.2/30<br />

S0<br />

Fa0<br />

172.16.1.2/24<br />

Router ID<br />

172.15.1.1/30<br />

S0<br />

Fa1<br />

172.16.1.1/24<br />

RTA<br />

Router ID<br />

172.18.1.2/30<br />

S1<br />

Fa0<br />

172.17.1.1/24<br />

Router ID<br />

RTD<br />

E0 = 172.16.1.4<br />

S0 = 192.168.5.2<br />

L0 = 192.168.1.1<br />

Router ID<br />

172.18.1.1/30<br />

S0<br />

RTD RTB<br />

RTC<br />

Fa0<br />

172.17.1.2/24


Network DR/BDR Election? Which Router Is the DR? Which Router Is the BDR?<br />

172.15.1.0/30 No — —<br />

172.16.1.0/24 Yes RTC RTD<br />

172.17.1.0/24 Yes RTB RTC<br />

172.18.1.0/30 No — —<br />

Refer to Figure 2-9 <strong>and</strong> answer the following questions:<br />

Figure 2-9 DR/BDR Election Exercise 3 Topology<br />

What is the router ID for RTA? 209.165.201.2<br />

What is the router ID for RTB? 192.168.1.2<br />

What is the router ID for RTC? 10.1.1.1<br />

Which router is DR for the 192.168.0.0/24 network? RTA<br />

Which router is BDR for the 192.168.0.0/24 network? RTB<br />

Assuming a priority of zero on RTA, which router is DR for the 192.168.1.0/24 network? RTB<br />

What will happen if another router, RTD, joins the 192.168.1.0/24 network with a router ID of<br />

209.165.201.9?<br />

Nothing. Both the DR <strong>and</strong> BDR have to go down before RTD can become the DR.<br />

Journal Entry<br />

RTC<br />

RTA<br />

E0<br />

E0 E0<br />

S0<br />

E0 = 192.168.0.3/24<br />

S0 = 192.168.1.3/30<br />

L0 = 10.1.1.1/32<br />

Router ID<br />

Router ID<br />

E0 = 192.168.0.1/24<br />

S0 = 209.165.201.2/30<br />

S0<br />

OSPF<br />

Area 0<br />

Chapter 2: Single-Area OSPF 115<br />

S0 = 209.165.201.1/30<br />

In a simple three-router topology, it may not be necessary to run OSPF as your routing protocol. Under<br />

what circumstances would you choose to use OSPF instead of RIPv2?<br />

Answers will vary. However, you are looking for an answer that takes into consideration the benefits <strong>and</strong><br />

limitations of both routing protocols. For example, RIP cannot make a decision about routing based on a<br />

cost metric. RIP looks at hops <strong>and</strong> only hops to make its decision. In addition, some equipment may not<br />

support RIPv2 but support OSPF.<br />

S0<br />

ISP<br />

RTB<br />

E0 = 192.168.0.2/24<br />

S0 = 192.168.1.2/30<br />

Router ID


116 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Lab Exercises<br />

Comm<strong>and</strong> Reference<br />

In the table that follows, record the comm<strong>and</strong>, including the correct router prompt, that fits the description.<br />

Fill in any blanks with the appropriate missing information.<br />

Comm<strong>and</strong> Description<br />

Router(config)#router ospf 123 Turns on OSPF process number 123. The process ID is any<br />

value between 1 <strong>and</strong> 65535. The process ID does not equal<br />

the OSPF area.<br />

Router(config-router)#network OSPF advertises interfaces, not networks. Uses the<br />

172.16.10.0 0.0.0.255 area 0 wildcard mask to determine which interfaces to advertise.<br />

The comm<strong>and</strong> shown reads: any interface with an address<br />

of 172.16.10.x is to be put into area 0.<br />

Router(config)#interface lo0 Creates the virtual interface loopback 0.<br />

Router(config-if)#ip ospf priority 50 Changes the OSPF priority for an interface to 50.<br />

Router(config-if)#b<strong>and</strong>width 128 Changes the b<strong>and</strong>width of an interface to 128 kbps.<br />

Router(config-if)#ip ospf cost 1564 Changes the cost to a value of 1564.<br />

Router(config-router)#area 0 authentication Turns on simple authentication within the OSPF routing<br />

process.<br />

Router(config-if)#ip ospf Sets the simple authentication key (password) to fred on an<br />

authentication-key fred interface.<br />

Router(config-router)#area 0 authentication Turns on MD5 authentication within the OSPF routing<br />

message-digest process.<br />

Router(config-if)#ip ospf message- Sets 1 as the key-id <strong>and</strong> fred as the key on an interface.<br />

digest-key 1 md5 7 fred<br />

or<br />

Router(config-if)#ip ospf message-digest-key<br />

1 md5 fred<br />

Router(config-if)#ip ospf hello-interval 20 Changes the Hello Interval timer to 20 seconds.<br />

Router(config-if)#ip ospf dead-interval 80 Changes the Dead Interval timer to 80 seconds.<br />

Router(config)#ip route 0.0.0.0 0.0.0.0 s0/0 Creates a static default route pointing out the serial 0/0<br />

interface. This route will have an administrative distance<br />

of 0.<br />

Router(config)#ip route Creates a static default route pointing to the next-hop IP<br />

0.0.0.0 0.0.0.0 192.168.1.1 address of 192.168.1.1. This route will have an<br />

administrative distance of 1.<br />

Router(config-router)#default-information Sets the default route to be propagated to all OSPF routers.<br />

originate<br />

Router#show ip protocol Displays parameters for all routing protocols running on<br />

the router.


Comm<strong>and</strong> Description<br />

Router#show ip route Displays complete IP routing table.<br />

Router#show ip ospf Displays basic OSPF information for all OSPF processes<br />

running on the router.<br />

Router#show ip ospf interface Displays OSPF information as it relates to all interfaces.<br />

Router#show ip ospf neighbor List all the OSPF neighbors <strong>and</strong> their states.<br />

Router#show ip ospf neighbor detail Displays a detailed list of neighbors.<br />

Router#clear ip route * Clears entire routing table, forcing it to rebuild.<br />

Router#clear ip ospf counters Resets OSPF counters.<br />

Router#clear ip ospf process Resets entire OSPF process, forcing OSPF to re-create<br />

neighbors, the database, <strong>and</strong> the routing table.<br />

Router#debug ip ospf events Displays all OSPF events.<br />

Router#debug ip ospf adj Displays the various OSPF states as neighbors form<br />

adjacencies as well as the DR <strong>and</strong> BDR election between<br />

adjacent routers.<br />

Router#debug ip ospf packets Displays OSPF packets as they are sent <strong>and</strong> received.<br />

Curriculum Lab 2-1: Configuring the OSPF Routing<br />

Process (2.3.1)<br />

Figure 2-10 Topology for Lab 2-1<br />

Straight-Through Cable<br />

Area 0<br />

Rollover (Console) Cable<br />

Router 1 Router 2<br />

Crossover Cable<br />

Serial Cable<br />

Chapter 2: Single-Area OSPF 117


118 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Table 2-1 Lab Equipment Configuration<br />

Router Designation Router Name Routing Protocol Network Statements<br />

Router 1 BERLIN OSPF 192.168.1.128<br />

192.168.15.0<br />

Router 2 ROME OSPF 192.168.15.0<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

Table 2-2 Lab Equipment Interface/IP Address Configurations<br />

192.168.0.0<br />

Router IP Host Fast Ethernet 0 Interface Type Serial 0 Address/<br />

Designation Table Entry Address/Subnet Mask Serial 0 Subnet Mask<br />

Router 1 ROME 192.168.1.129/26 DCE 192.168.15.1/30<br />

Router 2 BERLIN 192.168.0.1/24 DTE 192.168.15.2/30<br />

The interface type <strong>and</strong> address/subnet mask for the serial 1 interface on both routers is not applicable for<br />

this lab.<br />

The “IP Host Table Entry” column contents indicate the names of the other routers in the IP host table.<br />

Objectives<br />

■ Set up an IP addressing scheme for OSPF area 0.<br />

■ Configure <strong>and</strong> verify OSPF routing.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 2-10. You can use any router that meets the interface<br />

requirements in Figure 2-10 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A, “Router Interface Summary Chart,” to correctly specify the interface identifiers<br />

based on the equipment in your lab. The 1721 series routers produced the configuration output in<br />

this lab. Another router might produce slightly different output. You should execute the following steps on<br />

each router unless you are specifically instructed otherwise. Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix C, “Erasing <strong>and</strong> Reloading the Router,” before you<br />

continue with this lab.<br />

Task 1: Configure the Routers<br />

On the routers, enter global configuration mode <strong>and</strong> configure the hostname as shown in Table 2-1. Then,<br />

configure the console, virtual terminal, <strong>and</strong> enable passwords. Next, configure the interfaces according to<br />

Table 2-2. Finally, configure the IP hostnames. Do not configure the routing protocol until you are specifically<br />

told to. If you have problems configuring the router basics, refer to Lab 1-2, “Review of Basic Router<br />

Configuring with RIP.”<br />

Note: You may need to add the comm<strong>and</strong> ip subnet-zero because of the use of the ZERO subnet with VLSM on the<br />

192.168.1.0/30 <strong>and</strong> 192.168.1.128/26 networks.


BERLIN<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname BERLIN<br />

BERLIN(config)#enable secret class<br />

BERLIN(config)#line console 0<br />

BERLIN(config-line)#password cisco<br />

BERLIN(config-line)#login<br />

BERLIN(config-line)#line vty 0 4<br />

BERLIN(config-line)#password cisco<br />

BERLIN(config-line)#login<br />

BERLIN(config-line)#exit<br />

BERLIN(config)#interface serial 0<br />

BERLIN(config-if)#ip address 192.168.15.1 255.255.255.252<br />

BERLIN(config-if)#clock rate 64000<br />

BERLIN(config-if)#no shutdown<br />

BERLIN(config-if)#exit<br />

BERLIN(config)#interface FastEthernet 0<br />

BERLIN(config-if)#ip address 192.168.1.129 255.255.255.192<br />

BERLIN(config-if)#no shutdown<br />

BERLIN(config-if)#exit<br />

BERLIN(config)#ip host ROME 192.168.0.1 192.168.15.2<br />

ROME<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname ROME<br />

ROME(config)#enable secret class<br />

ROME(config)#line console 0<br />

ROME(config-line)#password cisco<br />

ROME(config-line)#login<br />

ROME(config-line)#line vty 0 4<br />

ROME(config-line)#password cisco<br />

ROME(config-line)#login<br />

ROME(config-line)#exit<br />

ROME(config)#interface serial 0<br />

ROME(config-if)#ip address 192.168.15.2 255.255.255.252<br />

ROME(config-if)#no shutdown<br />

ROME(config-if)#exit<br />

ROME(config)#interface FastEthernet 0<br />

ROME(config-if)#ip address 192.168.0.1 255.255.255.0<br />

ROME(config-if)#no shutdown<br />

ROME(config-if)#exit<br />

ROME(config)#ip host BERLIN 192.168.1.129 192.168.15.1<br />

Chapter 2: Single-Area OSPF 119


120 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 2: Save the Configuration Information from Privileged EXEC<br />

Comm<strong>and</strong> Mode<br />

BERLIN#copy running-config startup-config<br />

Destination filename [startup-config]? [Enter]<br />

Why save the running configuration to the startup configuration?<br />

So that the router will keep the configuration when it is reset.<br />

Task 3: Configure the Hosts<br />

Step 1. Configure the hosts with the proper IP address, subnet mask, <strong>and</strong> default gateway.<br />

Host connected to router Rome<br />

IP address: 192.168.0.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.0.1<br />

Host connected to router Berlin<br />

IP address: 192.168.1.130<br />

Subnet mask: 255.255.255.128<br />

Default gateway: 192.168.1.129<br />

Step 2. Each workstation should be able to ping the attached router. Troubleshoot as necessary. Hint:<br />

Remember to assign a specific IP address <strong>and</strong> default gateway to the workstation. If you are<br />

running Windows 98, check using Start > Run > winipcfg. If you are running Windows 2000,<br />

check using ipconfig in a DOS window.<br />

Step 3. At this point, the workstations will not be able to communicate with each other. The following<br />

tasks will demonstrate the process that is required to get communication working while using<br />

OSPF as the routing protocol.<br />

Task 4: View the Router’s Configuration <strong>and</strong> Interface Information<br />

Step 1. At the privileged EXEC mode prompt, type the following:<br />

BERLIN#show running-config<br />

Step 2. Using the show ip interface brief comm<strong>and</strong>, check the status of each interface.<br />

What is the state of the interfaces on each router?<br />

BERLIN:<br />

Fast Ethernet 0: Up<br />

Serial 0: Up<br />

Serial 1: Down<br />

ROME:<br />

Fast Ethernet 0: Up<br />

Serial 0: Up<br />

Serial 1: Down


Step 3. Ping from one of the connected serial interfaces to the other.<br />

Was the ping successful? Yes<br />

Step 4. If the ping was not successful, troubleshoot the router configuration until the ping is successful.<br />

Instructor Note: If the ping is not successful, the show ip interface brief comm<strong>and</strong> would have indicated where the<br />

problem was. The configured interfaces should be in the “up” <strong>and</strong> “up” state.<br />

Task 5: Configure OSPF Routing on Router BERLIN<br />

Step 1. Configure an OSPF routing process on router BERLIN. Use OSPF process number 1 <strong>and</strong><br />

ensure that all networks are in area 0.<br />

BERLIN(config)#router ospf 1<br />

BERLIN(config-router)#network 192.168.1.128 0.0.0.63 area 0<br />

BERLIN(config-router)#network 192.168.15.0 0.0.0.3 area 0<br />

BERLIN(config-router)#end<br />

Step 2. Examine the routers that are running configuration files.<br />

Did the IOS version automatically add any lines under router OSPF 1? Yes<br />

If so, what did it add? log-adjacency-changes<br />

Step 3. If there were no changes to the running configuration, type the following comm<strong>and</strong>s:<br />

BERLIN(config)#router ospf 1<br />

BERLIN(config-router)#log-adjacency-changes<br />

BERLIN(config-router)#end<br />

Step 4. Show the routing table for the BERLIN router.<br />

BERLIN#show ip route<br />

Do entries exist in the routing table? No<br />

Why?<br />

OSPF is not configured on ROME yet.<br />

Task 6: Configure OSPF Routing on Router ROME<br />

Step 1. Configure an OSPF routing process on router ROME. Use OSPF process number 1 <strong>and</strong> ensure<br />

that all networks are in area 0.<br />

ROME(config)#router ospf 1<br />

ROME(config-router)#network 192.168.1.0 0.0.0.255 area 0<br />

ROME(config-router)#network 192.168.15.0 0.0.0.3 area 0<br />

ROME(config-router)#end<br />

Step 2. Examine the ROME router running configuration files.<br />

Did the IOS version automatically add lines under router OSPF 1? Yes<br />

If so, what did it add? log-adjacency-changes<br />

Step 3. If there were no changes to the running configuration, type the following comm<strong>and</strong>s:<br />

ROME(config)#router ospf 2<br />

ROME(config-router)#log-adjacency-changes<br />

ROME(config-router)#end<br />

Chapter 2: Single-Area OSPF 121


122 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 4. Show the routing table for the ROME router.<br />

ROME#show ip route<br />

Are there OSPF entries in the routing table now? Yes<br />

What is the metric value of the OSPF route?<br />

It varies; the default with b<strong>and</strong>width on serial set to 128 kbps gives a net cost of 782.<br />

What is the VIA address in the OSPF route? 192.168.15.1<br />

Are routes to all networks shown in the routing table? Yes<br />

What does the O mean in the first column of the routing table?<br />

The route was learned by OSPF.<br />

Task 7: Test Network Connectivity<br />

Ping the BERLIN host from the ROME host. Was it successful? Yes<br />

If not, troubleshoot as necessary.<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn the router off. Then, remove <strong>and</strong><br />

store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 2-2: Configuring OSPF with Loopback<br />

Addresses (2.3.2)<br />

Figure 2-11 Topology for Lab 2-2<br />

Router 1<br />

Router 2<br />

Router 3


Table 2-3 Lab Equipment Configuration: Part I<br />

Router Router Routing OSPF Network<br />

Designation Name Protocol Routing ID Statements<br />

Router 1 London OSPF 1 192.168.1.0<br />

Router 2 Ottawa OSPF 1 192.168.1.0<br />

Router 3 Brasilia OSPF 1 192.168.1.0<br />

The enable secret password for all routers is class.<br />

The enable, VTY, <strong>and</strong> console passwords for each router is cisco.<br />

Table 2-4 Lab Equipment Configuration: Part II<br />

Router IP Host Fast Ethernet 0 Loopback Interface/<br />

Designation Table Entry Address/Subnet Mask Subnet Mask<br />

Router 1 Ottawa Brasilia 192.168.1.1/24 192.168.31.11/32<br />

Router 2 London Brasilia 192.168.1.2/24 192.168.31.22/32<br />

Router 3 London Ottawa 192.168.1.3/24 192.168.31.33/32<br />

The “IP Host Table Entry” column contents indicate the names of the other routers in the IP host table.<br />

Objectives<br />

■ Configure routers with a Class C IP addressing scheme.<br />

■ Observe the election process for designated routers (DR) <strong>and</strong> backup designated routers (BDR) on the<br />

multiaccess network.<br />

■ Configure loopback addresses for OSPF stability.<br />

■ Assign each OSPF interface a priority to force the election of a specific router as DR.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 2-11. You can use any router that meets the interface<br />

requirements in Figure 2-11 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A to correctly specify the interface identifiers based on the equipment in your<br />

lab. The 1721 series routers produced the configuration output in this lab. Another router might produce<br />

slightly different output. You should execute the following steps on each router unless you are specifically<br />

instructed otherwise. Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix C on all routers before continuing with this lab.<br />

Task 1: Configure the Routers<br />

On the routers, enter global configuration mode <strong>and</strong> configure the hostname as shown in Table 2-3. Then,<br />

configure the console, virtual terminal, <strong>and</strong> enable passwords. Next, configure the interfaces <strong>and</strong> the IP<br />

hostnames according to the Lab Equipment Configuration tables, Tables 2-3 <strong>and</strong> 2-4. If you have problems<br />

configuring the router basics, refer to Lab 1-2, “Review of Basic Router Configuring with RIP.”<br />

Note: Do not configure loopback interfaces <strong>and</strong> routing protocols yet.<br />

Chapter 2: Single-Area OSPF 123


124 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

LONDON<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname LONDON<br />

LONDON(config)#enable secret class<br />

LONDON(config)#line console 0<br />

LONDON(config-line)#password cisco<br />

LONDON(config-line)#login<br />

LONDON(config-line)#line vty 0 4<br />

LONDON(config-line)#password cisco<br />

LONDON(config-line)#login<br />

LONDON(config-line)#exit<br />

LONDON(config)#interface fastethernet 0/0<br />

LONDON(config-if)#ip address 192.168.1.1 255.255.255.0<br />

LONDON(config-if)#no shutdown<br />

LONDON(config-if)#exit<br />

LONDON(config)#ip host OTTAWA 192.168.1.2<br />

LONDON(config)#ip host BRASILIA 192.168.1.3<br />

OTTOWA<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname OTTAWA<br />

OTTOWA(config)#enable secret class<br />

OTTOWA(config)#line console 0<br />

OTTOWA(config-line)#password cisco<br />

OTTOWA(config-line)#login<br />

OTTOWA(config-line)#line vty 0 4<br />

OTTOWA(config-line)#password cisco<br />

OTTOWA(config-line)#login<br />

OTTOWA(config-line)#exit<br />

OTTOWA(config)#interface fastethernet 0/0<br />

OTTOWA(config-if)#ip address 192.168.1.2 255.255.255.0<br />

OTTOWA(config-if)#no shutdown<br />

OTTOWA(config-if)#exit<br />

OTTOWA(config)#ip host LONDON 192.168.1.1<br />

OTTOWA(config)#ip host BRASILIA 192.168.1.3<br />

BRASILIA<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname BRASILIA<br />

BRASILIA(config)#enable secret class<br />

BRASILIA(config)#line console 0<br />

BRASILIA(config-line)#password cisco


BRASILIA(config-line)#login<br />

BRASILIA(config-line)#line vty 0 4<br />

BRASILIA(config-line)#password cisco<br />

BRASILIA(config-line)#login<br />

BRASILIA(config-line)#exit<br />

BRASILIA(config)#interface fastethernet 0/0<br />

BRASILIA(config-if)#ip address 192.168.0.1 255.255.255.0<br />

BRASILIA(config-if)#no shutdown<br />

BRASILIA(config-if)#exit<br />

BRASILIA(config)#ip host LONDON 192.168.1.1<br />

BRASILIA(config)#ip host OTTAWA 192.168.1.2<br />

Task 2: Save the Configuration Information for All the Routers<br />

Why should you save the running configuration to the startup configuration?<br />

So that the router will keep the configuration when it is reset.<br />

Task 3: Configure the Hosts<br />

Step 1. Configure the hosts with the proper IP address, subnet mask, <strong>and</strong> default gateway.<br />

Host with gateway London<br />

IP address: 192.168.1.4<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.1.1<br />

Host with gateway Ottawa<br />

IP address: 192.168.1.5<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.1.2<br />

Host with gateway Brasilia<br />

IP address: 192.168.1.6<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.1.3<br />

Chapter 2: Single-Area OSPF 125<br />

Step 2. Each workstation should be able to ping all the attached routers, because they are all part of the<br />

same subnetwork. Troubleshoot as necessary. Hint: Remember to assign a specific IP address<br />

<strong>and</strong> default gateway to the workstation. If you are running Windows 98, check using Start ><br />

Run > winipcfg. If you are running Windows 2000, check using ipconfig in a DOS window.<br />

Step 3. At this point, the workstations will not be able to communicate with each other. The following<br />

tasks demonstrate the process required to get communication working by using OSPF as the<br />

routing protocol.


126 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 4: View the Router’s Configuration <strong>and</strong> Interface Information<br />

Step 1. At the privileged EXEC mode prompt, type show running-config.<br />

Step 2. Using the show ip interface brief comm<strong>and</strong>, check the status of each interface.<br />

What is the state of the interfaces on each router?<br />

London:<br />

■ Fast Ethernet 0: Up<br />

■ Serial 0: Down<br />

■ Serial 1: Down<br />

Ottawa:<br />

■ Fast Ethernet 0: Up<br />

■ Serial 0: Down<br />

■ Serial 1: Down<br />

Brasilia:<br />

■ Fast Ethernet 0: Up<br />

■ Serial 0: Down<br />

■ Serial 1: Down<br />

Task 5: Verify Connectivity of the Routers<br />

Ping all the connected Fast Ethernet interfaces from each other.<br />

Were the pings successful? Yes<br />

If the pings were not successful, troubleshoot the router configuration until the ping is successful.<br />

Task 6: Configure OSPF Routing on Router London<br />

Step 1. Configure an OSPF routing process on router London. Use OSPF process number 1 <strong>and</strong> ensure<br />

that all networks are in area 0.<br />

London(config)#router ospf 1<br />

London(config-router)#network 192.168.1.0 0.0.0.255 area 0<br />

London(config-router)#end<br />

Step 2. Examine the London router running the configuration file.<br />

Did the IOS version automatically add lines under router OSPF 1? Yes/No<br />

Instructor Note: The log-adjacency-changes comm<strong>and</strong> is added automatically with newer versions of the IOS.<br />

Step 3. If there were no changes to the running configuration, type the following comm<strong>and</strong>s:<br />

London(config)#router ospf 1<br />

London(config-router)#log-adjacency-changes<br />

London(config-router)#end<br />

Step 4. Show the routing table for the London router:<br />

London#show ip route


Are entries in the routing table? No<br />

Why?<br />

No other routers have been configured with OSPF.<br />

Task 7: Configure OSPF Routing on Router Ottawa<br />

Step 1. Configure an OSPF routing process on router Ottawa. Use OSPF process number 1 <strong>and</strong> ensure<br />

that all networks are in area 0.<br />

Ottawa(config)#router ospf 1<br />

Ottawa(config-router)#network 192.168.1.0 0.0.0.255 area 0<br />

Ottawa(config-router)#end<br />

Step 2. Examine the Ottawa router running configuration files.<br />

Did the IOS version automatically add lines under router OSPF 1? Yes/No<br />

Step 3. If no changes were made to the running configuration, type the following comm<strong>and</strong>s:<br />

Ottawa(config)#router ospf 1<br />

Ottawa(config-router)#log-adjacency-changes<br />

Ottawa(config-router)#end<br />

Task 8: Configure OSPF Routing on Router Brasilia<br />

Step 1. Configure an OSPF routing process on router Brasilia. Use OSPF process number 1 <strong>and</strong> ensure<br />

that all networks are in area 0.<br />

Brasilia(config)#router ospf 1<br />

Brasilia(config-router)#network 192.168.1.0 0.0.0.255 area 0<br />

Brasilia(config-router)#end<br />

Step 2. Examine the Brasilia router running configuration files.<br />

Did the IOS version automatically add lines under router OSPF 1? Yes<br />

What did it add? log-adjacency-changes<br />

Step 3. If there were no changes to the running configuration, type the following comm<strong>and</strong>s:<br />

Brasilia(config)#router ospf 1<br />

Brasilia(config-router)#log-adjacency-changes<br />

Brasilia(config-router)#end<br />

Task 9: Test Network Connectivity<br />

Ping the Brasilia router from the London router. Was it successful? Yes<br />

If not, troubleshoot as necessary.<br />

Task 10: Show OSPF Adjacencies<br />

Type the comm<strong>and</strong> show ip ospf neighbor on all routers to verify that the OSPF routing has formed adjacencies.<br />

Is there a designated router identified? Yes<br />

Is there a backup designated router? Yes<br />

Chapter 2: Single-Area OSPF 127


128 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Type the comm<strong>and</strong> show ip ospf neighbor detail for more information.<br />

What is the neighbor priority of 192.168.1.1 from router Brasilia? 1<br />

What interface is identified as being part of area 0? FastEthernet 0/0<br />

Task 11: Configure the Loopback Interfaces<br />

Configure the loopback interface on each router to allow for an interface that will not go down due to network<br />

change or failure. You can accomplish this by typing interface loopback # at the global configuration<br />

mode prompt, where the # represents the number of the loopback interface from 0 to 2,147,483,647.<br />

London(config)#interface loopback 0<br />

London(config-if)#ip address 192.168.31.11 255.255.255.255<br />

London(config-router)#end<br />

Ottawa(config)#interface loopback 0<br />

Ottawa(config-if)#ip address 192.168.31.22 255.255.255.255<br />

Ottawa(config-router)#end<br />

Brasilia(config)#interface loopback 0<br />

Brasilia(config-if)#ip address 192.168.31.33 255.255.255.255<br />

Brasilia(config-router)#end<br />

Task 12: Save the Configuration Information for All the Routers<br />

After you save the configurations on all the routers, power them down <strong>and</strong> back up again.<br />

Task 13: Show OSPF Adjacencies<br />

Step 1. Type the comm<strong>and</strong> show ip ospf neighbor on all routers to verify that the OSPF routing has<br />

formed adjacencies.<br />

Is a designated router identified? Yes<br />

What are the Router ID <strong>and</strong> link address of the DR?<br />

192.168.31.33 <strong>and</strong> 192.168.1.3<br />

Is there a backup designated router? Yes<br />

What are the Router ID <strong>and</strong> link address of the BDR?<br />

192.168.31.22 <strong>and</strong> 192.168.1.2<br />

What is the third router referred to as? DROTHER<br />

What is that router’s ID <strong>and</strong> link address?<br />

192.168.31.11 <strong>and</strong> 192.168.1.1<br />

Step 2. Type the comm<strong>and</strong> show ip ospf neighbor detail for more information.<br />

What is the neighbor priority of 192.168.1.1 from router Brasilia? 1<br />

Which interface is identified as being part of area 0? FastEthernet0/0


Task 14: Verify OSPF Interface Configuration<br />

Type show ip ospf interface fastethernet 0 on the London router.<br />

What is the OSPF state of the interface? DROTHER<br />

What is the default priority of the interface? 1<br />

What is the network type of the interface? Broadcast<br />

Task 15: Configure London to Always Be the DR<br />

Step 1. To ensure that the London router always becomes the DR for this multiaccess segment, you<br />

must set the OSPF priority. London is the most powerful router in the network, so it is best<br />

suited to become the DR. Giving London’s loopback a higher IP address is not advised because<br />

the numbering system has advantages for troubleshooting. Also, London is not to act as the DR<br />

for all segments to which it might belong.<br />

Step 2. Set the priority of the interface to 50 on the London router only.<br />

London(config)#interface fastethernet 0/0<br />

London(config-if)#ip ospf priority 50<br />

London(config-router)#end<br />

Step 3. Display the priority for interface FastEthernet 0/0.<br />

London#show ip ospf interface fastethernet 0/0<br />

Task 16: Watch the Election Process<br />

To watch the OSPF election process, restart all the routers. As soon as the router prompt is available, type<br />

the following:<br />

Ottawa>enable<br />

Ottawa#debug ip ospf events<br />

Which router was elected DR? London<br />

Which router was elected BDR? Brasilia<br />

Why?<br />

It has the higher priority.<br />

To turn off all debugging, type undebug all.<br />

Task 17: Show OSPF Adjacencies<br />

Type the comm<strong>and</strong> show ip ospf neighbor on the Ottawa router to verify that the OSPF routing has<br />

formed adjacencies.<br />

What is the priority of the DR? 50<br />

Chapter 2: Single-Area OSPF 129<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn the router off. Then, remove <strong>and</strong><br />

store the cables <strong>and</strong> adapter.


130 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Curriculum Lab 2-3: Modifying OSPF Cost Metric (2.3.3)<br />

Figure 2-12 Topology for Lab 2-3<br />

Straight-Through Cable<br />

Table 2-5 Lab Equipment Configuration: Part I<br />

Router Designation Router Name Routing Protocol Network Statements<br />

Router 1 Cairo OSPF 192.168.1.0<br />

Router 2 Moscow OSPF 192.168.1.0<br />

192.168.0.0<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

Table 2-6 Lab Equipment Configuration: Part II<br />

Area 0<br />

Rollover (Console) Cable<br />

Router 1 Router 2<br />

Crossover Cable<br />

Serial Cable<br />

Router IP Host Fast Ethernet 0 Interface Type Serial 0 Address/<br />

Designation Table Entry Address/Subnet Mask Serial 0 Subnet Mask<br />

Router 1 Moscow 192.168.1.129/26 DCE 192.168.1.1/30<br />

Router 2 Cairo 192.168.0.1/24 DTE 192.168.1.2/30<br />

The interface type <strong>and</strong> address/subnet mask for the serial 1 interface on both routers are not applicable for<br />

this lab.<br />

The “IP Host Table Entry” column contents indicate the names of the other routers in the IP host table.


Objectives<br />

■ Set up an IP addressing scheme for the OSPF area.<br />

■ Configure <strong>and</strong> verify OSPF routing.<br />

■ Modify the OSPF cost metric on an interface.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 2-12. You can use any router that meets the interface<br />

requirements in Figure 2-12 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A to correctly specify the interface identifiers based on the equipment in your<br />

lab. The 1721 series routers produced the configuration output in this lab. Another router might produce<br />

slightly different output. You should execute the following steps on each router unless you are specifically<br />

instructed otherwise.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix C on all routers before you continue with this lab.<br />

Task 1: Configure the Routers<br />

On the routers, enter the global configuration mode <strong>and</strong> configure the hostname, console, virtual terminal,<br />

<strong>and</strong> enable passwords. Next, configure the interfaces <strong>and</strong> IP hostnames according to the Lab Equipment<br />

Configuration tables, Tables 2-5 <strong>and</strong> 2-6. If you have problems configuring the router basics, refer to Lab<br />

1-2, “Review of Basic Router Configuring with RIP.”<br />

Note: You may need to add the comm<strong>and</strong> ip subnet-zero because of the use of the ZERO subnet with VLSM on the<br />

192.168.1.0/30 <strong>and</strong> 192.168.1.128/26 networks.<br />

Note: Do not configure the routing protocol until you are specifically told to.<br />

Cairo<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname Cairo<br />

Cairo(config)#enable secret class<br />

Cairo(config)#line console 0<br />

Cairo(config-line)#password cisco<br />

Cairo(config-line)#login<br />

Cairo(config-line)#line vty 0 4<br />

Cairo(config-line)#password cisco<br />

Cairo(config-line)#login<br />

Cairo(config-line)#exit<br />

Cairo(config)#interface serial 0/0<br />

Cairo(config-if)#ip address 192.168.1.1 255.255.255.252<br />

Cairo(config-if)#clockrate 64000<br />

Cairo(config-if)#no shutdown<br />

Cairo(config-if)#interface fastethernet 0/0<br />

Cairo(config-if)#ip address 192.168.1.129 255.255.255.128<br />

Cairo(config-if)#no shutdown<br />

Cairo(config-if)#exit<br />

Chapter 2: Single-Area OSPF 131


132 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Cairo(config)#ip host Moscow 192.168.0.1 192.168.1.2<br />

Cairo(config)#exit<br />

Moscow<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname Moscow<br />

Moscow(config)#enable password cisco<br />

Moscow(config)#enable secret class<br />

Moscow(config)#line console 0<br />

Moscow(config-line)#password cisco<br />

Moscow(config-line)#login<br />

Moscow(config-line)#line vty 0 4<br />

Moscow(config-line)#password cisco<br />

Moscow(config-line)#login<br />

Moscow(config-line)#exit<br />

Moscow(config)#interface serial 0/0<br />

Moscow(config-if)#ip address 192.168.1.2 255.255.255.252<br />

Moscow(config-if)#no shutdown<br />

Moscow(config-if)#interface fastethernet 0/0<br />

Moscow(config-if)#ip address 192.168.0.1 255.255.255.0<br />

Moscow(config-if)#no shutdown<br />

Moscow(config-if)#exit<br />

Moscow(config)#ip host Cairo 192.168.1.129 192.168.1.1<br />

Moscow(config)#exit<br />

Task 2: Save the Configuration Information from Privileged EXEC<br />

Comm<strong>and</strong> Mode<br />

Cairo#copy running-config startup-config<br />

Destination filename [startup-config]?[Enter]<br />

Moscow#copy running-config startup-config<br />

Destination filename [startup-config]?[Enter]<br />

Why should you save the running configuration to the startup configuration?<br />

Saving the configuration will allow the router to keep the configuration after a reload or power down.<br />

Task 3: Configure the Hosts<br />

Step 1. Configure the hosts with the proper IP address, subnet mask, <strong>and</strong> default gateway.<br />

Host connected to router Cairo<br />

IP address: 192.168.1.130<br />

Subnet mask: 255.255.255.192<br />

Default gateway: 192.168.1.129<br />

Host connected to router Moscow<br />

IP address: 192.168.0.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.0.1


Step 2. Each workstation should be able to ping the attached router. Troubleshoot as necessary. Hint:<br />

Remember to assign a specific IP address <strong>and</strong> default gateway to the workstation. If you are<br />

running Windows 98, check using Start > Run > winipcfg. If you are running Windows 2000,<br />

check using ipconfig in a DOS window.<br />

Step 3. At this point, the workstations will not be able to communicate with each other. The following<br />

tasks demonstrate the process that is required to get communication working while using OSPF<br />

as the routing protocol.<br />

Task 4: View the Router’s Configuration <strong>and</strong> Interface Information<br />

Step 1. At the privileged EXEC mode prompt, type the following:<br />

Cairo#show running-config<br />

[…]<br />

hostname Cairo<br />

!<br />

enable secret 5 $1$hGOQ$I7bGdq5INLFy2ZT4.5CdY/<br />

enable password cisco<br />

!<br />

ip subnet-zero<br />

!<br />

interface FastEthernet0/0<br />

ip address 192.168.1.129 255.255.255.192<br />

speed auto<br />

!<br />

interface Serial0/0<br />

ip address 192.168.1.1 255.255.255.252<br />

clockrate 64000<br />

!<br />

interface Serial1/0<br />

no ip address<br />

shutdown<br />

!<br />

ip classless<br />

no ip http server<br />

!<br />

!<br />

line con 0<br />

password cisco<br />

login<br />

line aux 0<br />

line vty 0 4<br />

password cisco<br />

login<br />

!<br />

no scheduler allocate<br />

end<br />

Step 2. Using the show ip interface brief comm<strong>and</strong>, check the status of each interface.<br />

What is the state of the interfaces on each router?<br />

Chapter 2: Single-Area OSPF 133


134 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Cairo:<br />

■ Fast Ethernet 0: Up<br />

■ Serial 0: Up<br />

Moscow:<br />

■ Fast Ethernet 0: Up<br />

■ Serial 0: Up<br />

Step 3. Ping from one of the connected router serial interfaces to the other.<br />

Was the ping successful? Yes<br />

If the ping was not successful, troubleshoot the router configuration until the ping is successful.<br />

Task 5: Configure OSPF Routing on Router Cairo<br />

Step 1. Configure OSPF routing on each router. Use OSPF process number 1 <strong>and</strong> ensure that all networks<br />

are in area 0.<br />

Cairo(config)#router ospf 1<br />

Cairo(config-router)#network 192.168.1.128 0.0.0.63 area 0<br />

Cairo(config-router)#network 192.168.1.0 0.0.0.3 area 0<br />

Cairo(config-router)#end<br />

Step 2. Examine the running configuration file.<br />

Did the IOS version automatically add lines under router OSPF 1? Yes<br />

What did it add? log-adjacency-changes<br />

Step 3. If there were no changes to the running configuration, type the following comm<strong>and</strong>s:<br />

Cairo(config)#router ospf 1<br />

Cairo(config-router)#log-adjacency-changes<br />

Cairo(config-router)#end<br />

Step 4. Show the routing table for the Cairo router.<br />

Cairo#show ip route<br />

Do entries exist in the routing table? No<br />

Why?<br />

Other routers have not been configured to send out OSPF updates yet.<br />

Task 6: Configure OSPF Routing on the Moscow Router<br />

Step 1. Configure OSPF routing on each router. Use OSPF process number 1 <strong>and</strong> ensure that all networks<br />

are in area 0.<br />

Moscow(config)#router ospf 1<br />

Moscow(config-router)#network 192.168.0 .0 0.0.0.255 area 0<br />

Moscow(config-router)#network 192.168.1.0 0.0.0.3 area 0<br />

Moscow(config-router)#end


Step 2. Examine the running configuration file.<br />

Did the IOS version automatically add lines under router OSPF 1? Yes<br />

Step 3. If there were no changes to the running configuration, type the following comm<strong>and</strong>s:<br />

Moscow(config)#router ospf 1<br />

Moscow(config-router)#log-adjacency-changes<br />

Moscow(config-router)#end<br />

Task 7: Show the Routing Table Entries<br />

Show the routing table entries for the Cairo router.<br />

Cairo#show ip route<br />

Does the routing table have OSPF entries now? Yes<br />

What is the metric value of the OSPF route? 110<br />

What is the VIA address in the OSPF route? 192.168.1.2<br />

Are routes to all networks shown in the routing table? Yes<br />

What does the O mean in the first column of the routing table?<br />

The route was learned by OSPF.<br />

Task 8: Test Network Connectivity<br />

Ping the Cairo host from the Moscow host. Was it successful? Yes<br />

If not, troubleshoot as necessary.<br />

Task 9: Look at the OSPF Cost on the Cairo Router Interfaces<br />

Show the properties of the Cairo router serial <strong>and</strong> Fast Ethernet interfaces by using the show interfaces<br />

comm<strong>and</strong>.<br />

What is the default b<strong>and</strong>width of the interfaces?<br />

■ Serial interface: BW 1544 kbps<br />

■ Fast Ethernet interface: BW 100000 kbps<br />

Calculate the OSPF cost.<br />

■ Serial interface: 64<br />

■ Fast Ethernet interface: 1<br />

Table 2-7 OSPF Cost Calculations for Common Link Types<br />

Link B<strong>and</strong>width Default OSPF Cost<br />

56 kbps 1785<br />

T1 64<br />

10-Mbps Ethernet 10<br />

16-Mbps Token Ring 6<br />

FDDI/Fast Ethernet 1<br />

Chapter 2: Single-Area OSPF 135


136 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 10: Record the OSPF Cost of the Serial <strong>and</strong> Fast Ethernet<br />

Interfaces<br />

Using the show ip ospf interface comm<strong>and</strong>, record the OSPF cost of the serial <strong>and</strong> Fast Ethernet interfaces:<br />

■ OSPF cost of serial interface: 64<br />

■ OSPF cost of Ethernet interface: 1<br />

Do these agree with the calculations? Yes<br />

The clock rate set for the interface should have been 64,000. This is what has been used as a default to this<br />

point <strong>and</strong> specified in Lab 1-2, “Review of Basic Router Configuring with RIP.” Therefore, to calculate the<br />

cost of this b<strong>and</strong>width, you need to divide 10 8 by 64,000.<br />

Task 11: Manually Set the Cost on the Serial Interface<br />

On the serial interface of the Cairo router, set the OSPF cost to 1562 by typing ip ospf cost 1562 at the<br />

serial interface configuration mode prompt.<br />

Cairo(config)#interface serial 0/0<br />

Cairo(config-if)#ip ospf cost 1562<br />

Cairo(config-if)#end<br />

Task 12: Verify Cost<br />

Note that it is essential that all connected links agree about the cost for consistent calculation of the SPF in<br />

an area.<br />

Step 1. Verify that the interface OSPF cost was successfully modified.<br />

Cairo#show ip ospf interface<br />

Serial0/0 is up, line protocol is up<br />

Internet Address 192.168.1.1/30, Area 0<br />

Process ID 1, Router ID 192.168.1.129, Network Type POINT_TO_POINT<br />

Cost: 1562<br />

Transmit Delay is 1 sec, State POINT_TO_POINT,<br />

Step 2. Reverse the effect of this comm<strong>and</strong> by entering the comm<strong>and</strong> no ip ospf cost in interface configuration<br />

mode.<br />

Step 3. Verify that the default cost for the interface has returned.<br />

Serial0/0 is up, line protocol is up<br />

Internet Address 192.168.1.1/30, Area 0<br />

Process ID 1, Router ID 192.168.1.129, Network Type POINT_TO_POINT,<br />

Cost: 64<br />

Transmit Delay is 1 sec, State POINT_TO_POINT,<br />

Step 4. Enter the comm<strong>and</strong> b<strong>and</strong>width 2000 at the serial 0 interface configuration mode prompt.<br />

Record the new OSPF cost of the serial interface. 50<br />

Can the OSPF cost of an Ethernet interface be modified in this way? Yes<br />

You can set the speed on an Ethernet interface. Will this affect the OSPF cost of that interface?<br />

Yes


Step 5. Verify or explain the previous answer.<br />

You cannot change the speed on the Ethernet interfaces of 2500 series routers. You can change<br />

the b<strong>and</strong>width used in calculations with the b<strong>and</strong>width comm<strong>and</strong>. On routers with Fast<br />

Ethernet, you can change the speed on a Fast Ethernet interface with the speed comm<strong>and</strong>.<br />

Once changed, OSPF will use the new speed as the b<strong>and</strong>width variable for the cost calculation.<br />

FastEthernet0/0 is up, line protocol is up<br />

Internet Address 192.168.1.129/25, Area 0<br />

Process ID 1, Router ID 192.168.1.129, Network Type BROADCAST, Cost:<br />

50<br />

Transmit Delay is 1 sec, State DR, Priority 1<br />

Step 6. Reset the b<strong>and</strong>width on the serial interface by using no b<strong>and</strong>width 2000 at the serial 0 interface<br />

configuration mode prompt.<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn the router off. Then, remove <strong>and</strong><br />

store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 2-4: Configuring OSPF Authentication<br />

(2.3.4)<br />

Figure 2-13 Topology for Lab 2-4<br />

Straight-Through Cable<br />

Table 2-8 Lab Equipment Configuration: Part I<br />

Area 0<br />

Rollover (Console) Cable<br />

Router 1 Router 2<br />

Crossover Cable<br />

Serial Cable<br />

Chapter 2: Single-Area OSPF 137<br />

Router Designation Router Name Routing Protocol Network Statements<br />

Router 1 Dublin OSPF 192.168.1.0<br />

Router 2 Washington OSPF 192.168.1.0<br />

192.168.0.0


138 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

Table 2-9 Lab Equipment Configuration: Part II<br />

Router IP Host Fast Ethernet 0 Inter-face Serial 0 Address/ Loopback 0<br />

Designation Table Entry Address/Subnet Type Serial 0 Subnet Mask Address/<br />

Mask Subnet Mask<br />

Router 1 Washington 192.168.1.129/26 DCE 192.168.1.1/30 192.168.31.11/32<br />

Router 2 Dublin 192.168.0.1/24 DTE 192.168.1.2/30 192.168.31.22/32<br />

The interface type <strong>and</strong> address/subnet mask for the serial 1 interface on both routers is not applicable for<br />

this lab.<br />

The “IP Host Table Entry” column contents indicate the names of the other routers in the IP host table.<br />

Objectives<br />

■ Set up an IP addressing scheme for the OSPF area.<br />

■ Configure <strong>and</strong> verify OSPF routing.<br />

■ Introduce OSPF authentication into the area.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 2-13. You can use any router that meets the interface<br />

requirements in Figure 2-13 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A to correctly specify the interface identifiers based on the equipment in your<br />

lab. The 1721 series routers produced the configuration output in this lab. Another router might produce<br />

slightly different output. You should execute the following steps on each router unless you are specifically<br />

instructed otherwise.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix C on all routers before you continue with this lab.<br />

Task 1: Configure the Routers<br />

On the routers, enter global configuration mode <strong>and</strong> configure the hostname, console, virtual terminal, <strong>and</strong><br />

enable passwords. Next, configure the interfaces <strong>and</strong> IP hostnames according to the Lab Equipment<br />

Configuration tables, Tables 2-8 <strong>and</strong> 2-9. If you have problems configuring the router basics, refer to Lab<br />

1-2, “Review of Basic Router Configuring with RIP.”<br />

Note: You may need to add the comm<strong>and</strong> ip subnet-zero because of the use of the ZERO subnet with VLSM on the<br />

192.168.1.0/30 <strong>and</strong> 192.168.1.128/26 networks.<br />

Note: Do not configure the routing protocol until you are specifically told to.<br />

Dublin<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname Dublin<br />

Dublin(config)#enable secret class<br />

Dublin(config)#line console 0


Dublin(config-line)#password cisco<br />

Dublin(config-line)#login<br />

Dublin(config-line)#line vty 0 4<br />

Dublin(config-line)#password cisco<br />

Dublin(config-line)#login<br />

Dublin(config-line)#exit<br />

Dublin(config)#interface loopback 0<br />

Dublin(config-if)#ip address 192.168.31.11 255.255.255.255<br />

Dublin(config-if)#interface serial 0<br />

Dublin(config-if)#ip address 192.168.1.1 255.255.255.252<br />

Dublin(config-if)#clockrate 64000<br />

Dublin(config-if)#no shutdown<br />

Dublin(config-if)#interface fastethernet 0/0<br />

Dublin(config-if)#ip address 192.168.1.129 255.255.255.192<br />

Dublin(config-if)#no shutdown<br />

Dublin(config-if)#exit<br />

Dublin(config)#ip host Washington 192.168.0.1 192.168.1.2<br />

Dublin(config)#exit<br />

Washington<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname Washington<br />

Washington(config)#enable secret class<br />

Washington(config)#line console 0<br />

Washington(config-line)#password cisco<br />

Washington(config-line)#login<br />

Washington(config-line)#line vty 0 4<br />

Washington(config-line)#password cisco<br />

Washington(config-line)#login<br />

Washington(config-line)#exit<br />

Washington(config)#interface loopback 0<br />

Washington(config-if)#ip address 192.168.31.22 255.255.255.255<br />

Washington(config-if)#interface serial 0<br />

Washington(config-if)#ip address 192.168.1.2 255.255.255.252<br />

Washington(config-if)#no shutdown<br />

Washington(config-if)#interface fastethernet 0/0<br />

Washington(config-if)#ip address 192.168.0.1 255.255.255.0<br />

Washington(config-if)#no shutdown<br />

Washington(config-if)#exit<br />

Washington(config)#ip host Dublin 192.168.1.129 192.168.1.1<br />

Washington(config)#exit<br />

Chapter 2: Single-Area OSPF 139


140 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 2: Save the Configuration Information from Privileged EXEC<br />

Comm<strong>and</strong> Mode<br />

Dublin#copy running-config startup-config<br />

Destination filename [startup-config]? [Enter]<br />

Washington#copy running-config startup-config<br />

Destination filename [startup-config]? [Enter]<br />

Why should you save the running configuration to the startup configuration?<br />

Saving the configuration will allow the router to keep the configuration after a reload or power down.<br />

Task 3: Configure the Hosts<br />

Step 1. Configure the hosts with the proper IP address, subnet mask, <strong>and</strong> default gateway.<br />

Host connected to router Dublin<br />

IP address: 192.168.1.130<br />

Subnet mask: 255.255.255.192<br />

Default gateway: 192.168.1.129<br />

Host connected to router Washington<br />

IP address: 192.168.0.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.0.1<br />

Step 2. Each workstation should be able to ping the attached router. Troubleshoot as necessary. Hint:<br />

Remember to assign a specific IP address <strong>and</strong> default gateway to the workstation. If you are<br />

running Windows 98, check using Start > Run > winipcfg. If you are running Windows 2000,<br />

check using ipconfig in a DOS window.<br />

Step 3. At this point, the workstations will not be able to communicate with each other. The following<br />

tasks demonstrate the process required to get communication working by using OSPF as the<br />

routing protocol.<br />

Task 4: Verify Connectivity<br />

Ping from one of the connected router serial interfaces to the other.<br />

Was the ping successful? Yes<br />

If the ping was not successful, troubleshoot the router’s configurations until the ping is successful.<br />

Task 5: Configure OSPF Routing on Both Routers<br />

Step 1. Configure OSPF routing on each router. Use OSPF process number 1 <strong>and</strong> ensure that all networks<br />

are in area 0. Refer to Lab 2-2, “Configuring OSPF with Loopback Addresses,” for a<br />

review on configuring OSPF routing.<br />

Dublin(config)#router ospf 1<br />

Dublin(config-router)#network 192.168.1.128 0.0.0.127 area 0<br />

Dublin(config-router)#network 192.168.1.0 0.0.0.3 area 0<br />

Dublin(config-router)#end


Washington(config)#router ospf 1<br />

Washington(config-router)#network 192.168.0.0 0.0.0.255 area 0<br />

Washington(config-router)#network 192.168.1.0 0.0.0.3 area 0<br />

Washington(config-router)#end<br />

Step 2. Examine the Dublin router running the configuration file. Did the IOS version automatically<br />

add lines under router OSPF 1? Yes<br />

Step 3. Show the routing table for the Dublin router.<br />

Dublin#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B -<br />

BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS<br />

inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

C 192.168.31.11 is directly connected, Loopback0<br />

O 192.168.0.0/24 [110/51] via 192.168.1.2, 00:14:23, Serial0/0<br />

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks<br />

C 192.168.1.0/30 is directly connected, Serial0/0<br />

C 192.168.1.128/26 is directly connected, FastEthernet0/0<br />

Do entries exist in the routing table? Yes<br />

Why?<br />

Because a routing protocol has been configured <strong>and</strong> routing updates are being made.<br />

Task 6: Test Network Connectivity<br />

Ping the Dublin host from the Washington host. Was it successful? Yes<br />

If not, troubleshoot as necessary.<br />

Task 7: Set Up OSPF Authentication<br />

OSPF authentication is being established on the routers in the network. First, introduce authentication only<br />

on the Dublin router.<br />

In interface configuration mode on serial 0, enter the comm<strong>and</strong> ip ospf message-digest-key 1 md5 7<br />

asecret.<br />

Dublin(config)#interface Serial 0<br />

Dublin(config-if)#ip ospf message-digest-key 1 md5 ?<br />

Encryption type (0 for not yet encrypted, 7 for proprietary)<br />

Dublin(config-if)#ip ospf message-digest-key 1 md5 7 ?<br />

LINE The OSPF password (key)<br />

Dublin(config-if)#ip ospf message-digest-key 1 md5 7 asecret<br />

What is the OSPF password that is being used for MD5 authentication? asecret<br />

What encryption type is being used? Type 7<br />

Chapter 2: Single-Area OSPF 141


142 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 8: Enable OSPF Authentication in this Area, Area 0<br />

Dublin(config-if)#router ospf 1<br />

Dublin(config-router)#area 0 authentication<br />

Step 1. Wait for a few seconds. Does the router generate output? Yes<br />

Step 2. Enter the comm<strong>and</strong> show ip ospf neighbor.<br />

Are there OSPF neighbors? No<br />

Step 3. Examine the routing table by entering show ip route.<br />

Are there OSPF routes in the Dublin router routing table? No<br />

Can the Dublin host ping the Washington host? No<br />

Step 4. Enter configuration comm<strong>and</strong>s, one per line. End with Ctrl-Z.<br />

Washington#configure terminal<br />

Washington(config)#interface serial 0<br />

Washington(config-if)#ip ospf message-digest-key 1 md5 7 asecret<br />

Washington(config-if)#router ospf 1<br />

Washington(config-router)#area 0 authentication<br />

Step 5. Verify that there is an OSPF neighbor by entering the show ip ospf neighbor comm<strong>and</strong>.<br />

Neighbor ID Pri State Dead Time Address Interface<br />

192.168.1.129 1 FULL/ - 00:00:38 192.168.1.1 Serial0<br />

Step 6. Show the routing table by typing show ip route.<br />

Washington#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B -<br />

BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS<br />

inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

C 192.168.31.22 is directly connected, Loopback0<br />

C 192.168.0.0/24 is directly connected, FastEthernet0/0<br />

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks<br />

C 192.168.1.0/30 is directly connected, Serial0/0<br />

O 192.168.1.128/26 [110/791] via 192.168.1.1, 00:18:41, Serial0/0<br />

Step 7. Ping the Washington host from Dublin. If it is not successful, troubleshoot as necessary.<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn the router off. Then, remove <strong>and</strong><br />

store the cables <strong>and</strong> adapter.


Curriculum Lab 2-5: Configuring OSPF Timers (2.3.5)<br />

Figure 2-14 Topology for Lab 2-5<br />

Straight-Through Cable<br />

Table 2-10 Lab Equipment Configuration: Part I<br />

Router Designation Router Name Routing Protocol Network Statements<br />

Router 1 Sydney OSPF 192.168.1.0<br />

Router 2 Rome OSPF 192.168.1.0<br />

192.168.0.0<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

Table 2-11 Lab Equipment Configuration: Part II<br />

Area 0<br />

Rollover (Console) Cable<br />

Router 1 Router 2<br />

Crossover Cable<br />

Serial Cable<br />

Chapter 2: Single-Area OSPF 143<br />

Router IP Host Fast Ethernet 0 Inter-face Serial 0 Address/ Loopback 0<br />

Designation Table Entry Address/Subnet Type Serial 0 Subnet Mask Address/<br />

Mask Subnet Mask<br />

Router 1 Rome 192.168.1.129/26 DCE 192.168.1.1/30 192.168.31.11/32<br />

Router 2 Sydney 192.168.0.1/24 DTE 192.168.1.2/30 192.168.31.22/32<br />

The interface type <strong>and</strong> address/subnet mask for the serial 1 interface on both routers is not applicable for<br />

this lab.<br />

The “IP Host Table Entry” column contents indicate the names of the other routers in the IP host table.


144 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Objectives<br />

■ Set up an IP addressing scheme for the OSPF area.<br />

■ Configure <strong>and</strong> verify OSPF routing.<br />

■ Modify OSPF interface timers to adjust efficiency of the network.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 2-14. You can use any router that meets the interface<br />

requirements in Figure 2-14 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A to correctly specify the interface identifiers based on the equipment in your<br />

lab. The 1721 series routers produced the configuration output in this lab. Another router might produce<br />

slightly different output. You should execute the following steps on each router unless you are specifically<br />

instructed otherwise. Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix C on all routers before you continue with this lab.<br />

Task 1: Configure the Routers<br />

On the routers, enter global configuration mode <strong>and</strong> configure the hostname, console, virtual terminal, <strong>and</strong><br />

enable passwords. Next, configure the interfaces <strong>and</strong> IP hostnames according to the Lab Equipment<br />

Configuration tables, Tables 2-10 <strong>and</strong> 2-11. If you have problems configuring the router basics, refer to<br />

Lab 1-2, “Review of Basic Router Configuring with RIP.”<br />

Note: You may need to add the comm<strong>and</strong> ip subnet-zero because of the use of the ZERO subnet with VLSM on the<br />

192.168.1.0/30 <strong>and</strong> 192.168.1.128/26 networks.<br />

Note: Do not configure the routing protocol until you are specifically told to.<br />

Sydney<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname Sydney<br />

Sydney(config)#enable secret class<br />

Sydney(config)#line console 0<br />

Sydney(config-line)#password cisco<br />

Sydney(config-line)#login<br />

Sydney(config-line)#line vty 0 4<br />

Sydney(config-line)#password cisco<br />

Sydney(config-line)#login<br />

Sydney(config-line)#exit<br />

Sydney(config)#interface loopback 0<br />

Sydney(config-if)#ip address 192.168.31.11 255.255.255.255<br />

Sydney(config-if)#interface serial 0<br />

Sydney(config-if)#ip address 192.168.1.1 255.255.255.252<br />

Sydney(config-if)#clockrate 64000<br />

Sydney(config-if)#no shutdown<br />

Sydney(config-if)#interface FastEthernet 0<br />

Sydney(config-if)#ip address 192.168.1.129 255.255.255.192<br />

Sydney(config-if)#no shutdown<br />

Sydney(config-if)#exit


Sydney(config)#ip host Rome 192.168.0.1 192.168.1.2<br />

Sydney(config)#exit<br />

Rome Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname Rome<br />

Rome(config)#enable secret class<br />

Rome(config)#line console 0<br />

Rome(config-line)#password cisco<br />

Rome(config-line)#login<br />

Rome(config-line)#line vty 0 4<br />

Rome(config-line)#password cisco<br />

Rome(config-line)#login<br />

Rome(config-line)#exit<br />

Rome(config)#interface loopback 0<br />

Rome(config-if)#ip address 192.168.31.22 255.255.255.255<br />

Rome(config-if)#interface serial 0<br />

Rome(config-if)#ip address 192.168.1.2 255.255.255.252<br />

Rome(config-if)#no shutdown<br />

Rome(config-if)#interface FastEthernet 0<br />

Rome(config-if)#ip address 192.168.0.1 255.255.255.0<br />

Rome(config-if)#no shutdown<br />

Rome(config-if)#exit<br />

Rome(config)#ip host Sydney 192.168.1.129 192.168.1.1<br />

Rome(config)#exit<br />

Task 2: Save the Configuration Information from Privileged EXEC<br />

Comm<strong>and</strong> Mode<br />

Sydney#copy running-config startup-config<br />

Destination filename [startup-config]? [Enter]<br />

Rome#copy running-config startup-config<br />

Destination filename [startup-config]? [Enter]<br />

Why should you save the running configuration to the startup configuration?<br />

Saving the configuration will allow the router to keep the configuration after a reload or power down.<br />

Task 3: Configure the Hosts<br />

Step 1. Configure the hosts with the proper IP address, subnet mask, <strong>and</strong> default gateway.<br />

Host connected to router Sydney<br />

IP address: 192.168.1.130<br />

Subnet mask: 255.255.255.192<br />

Default gateway: 192.168.1.129<br />

Chapter 2: Single-Area OSPF 145


146 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Host connected to router Rome<br />

IP address: 192.168.0.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.0.1<br />

Step 2. Each workstation should be able to ping the attached router. Troubleshoot as necessary. Hint:<br />

Remember to assign a specific IP address <strong>and</strong> default gateway to the workstation. If you are<br />

running Windows 98, check using Start > Run > winipcfg. If you are running Windows 2000,<br />

check using ipconfig in a DOS window.<br />

Step 3. At this point, the workstations will not be able to communicate with each other. The following<br />

tasks demonstrate the process that is required to get communication working by using OSPF as<br />

the routing protocol.<br />

Task 4: Verify Connectivity<br />

Ping from one of the connected serial interfaces to the other.<br />

Was the ping successful? Yes<br />

If the ping was not successful, troubleshoot the router configurations until the ping is successful.<br />

Task 5: Configure OSPF Routing on both Routers<br />

Step 1. Configure OSPF routing on each router. Use OSPF process number 1 <strong>and</strong> ensure that all networks<br />

are in area 0. Refer to Lab 2-2, “Configuring OSPF with Loopback Interfaces,” for a<br />

review on configuring OSPF routing.<br />

Sydney(config)#router ospf 1<br />

Sydney(config-router)#network 192.168.1.128 0.0.0.127 area 0<br />

Sydney(config-router)#network 192.168.1.0 0.0.0.3 area 0<br />

Sydney(config-router)#end<br />

Rome(config)#router ospf 1<br />

Rome(config-router)#network 192.168.0.0 0.0.0.255 area 0<br />

Rome(config-router)#network 192.168.1.0 0.0.0.3 area 0<br />

Rome(config-router)#end<br />

Did the IOS version automatically add lines under router OSPF 1? Yes<br />

Step 2. Show the routing table for the Sydney router.<br />

Sydney#show ip route<br />

Do entries exist in the routing table? Yes<br />

Task 6: Test Network Connectivity<br />

Ping the Sydney host from the Rome host. Was it successful? Yes<br />

If not, troubleshoot as necessary.


Task 7: Observe OSPF Traffic<br />

Step 1. At privileged EXEC mode, type the comm<strong>and</strong> debug ip ospf events <strong>and</strong> observe the output.<br />

How frequently are Hello messages sent? Every 10 seconds<br />

Where are Hello messages coming from?<br />

Hello messages are coming from 192.168.31.22 area 0 on the local Serial0 interface with the<br />

address 192.168.1.2<br />

Step 2. Turn off debugging by typing no debug ip ospf events or undebug all.<br />

Task 8: Show Interface Timer Information<br />

Show the hello <strong>and</strong> dead interval timers on the Sydney router Ethernet <strong>and</strong> serial interfaces by entering the<br />

comm<strong>and</strong> show ip ospf interface in privileged EXEC mode.<br />

Record the Hello <strong>and</strong> Dead interval timers for these interfaces:<br />

■ Hello interval: 10<br />

■ Dead interval: 40<br />

What is the purpose of the dead interval?<br />

It specifies the amount of time wait while Hellos are not being received before flagging the router as being<br />

down.<br />

Task 9: Modify the OSPF Timers<br />

Step 1. Modify the Hello <strong>and</strong> Dead interval timers to smaller values to try to improve performance. On<br />

the Sydney router only, enter the comm<strong>and</strong>s ip ospf hello-interval 5 <strong>and</strong> ip ospf dead-interval<br />

20 for interface serial 0.<br />

Sydney(config)#interface Serial 0<br />

Sydney(config-if)#ip ospf hello-interval 5<br />

Sydney(config-if)#ip ospf dead-interval 20<br />

Step 2. Wait for a minute <strong>and</strong> then enter the comm<strong>and</strong> show ip ospf neighbor.<br />

Do OSPF neighbors exist? No<br />

Task 10: Examine the Routing Table<br />

Examine the Sydney router routing table by entering show ip route.<br />

Do OSPF routes exist in the table? No<br />

Can the Sydney host ping the Rome host? No<br />

Task 11: Look at the OSPF Data Transmissions<br />

Enter the comm<strong>and</strong> debug ip ospf events in privileged EXEC mode.<br />

Is there an issue that is identified? Yes<br />

If there is, what is the issue?<br />

Hello <strong>and</strong> Dead intervals are mismatched.<br />

Chapter 2: Single-Area OSPF 147


148 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 12: Check the Rome Router Routing Table Status<br />

On the Rome router, check the routing table by typing show ip route.<br />

Do OSPF routes exist in the table? No<br />

Task 13: Set the Rome Router Interval Timers<br />

Step 1. Match the timer values on the Rome serial link with the Sydney router.<br />

Rome(config)#interface serial 0<br />

Rome(config-if)#ip ospf hello-interval 5<br />

Rome(config-if)#ip ospf dead-interval 20<br />

Step 2. Verify the OSPF neighbor by entering the show ip ospf neighbor comm<strong>and</strong>.<br />

Neighbor ID Pri State Dead Time Address Interface<br />

192.168.31.11 1 FULL/ - 00:00:17 192.168.1.1 Serial0<br />

Step 3. Show the routing table by typing show ip route.<br />

Rome#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B -<br />

BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS<br />

inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

192.168.31.0/32 is subnetted, 1 subnets<br />

C 192.168.31.22 is directly connected, Loopback0<br />

C 192.168.0.0/24 is directly connected, Ethernet0<br />

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks<br />

C 192.168.1.0/30 is directly connected, Serial0<br />

O 192.168.1.128/25 [110/782] via 192.168.1.1, 00:00:12, Serial0<br />

Do OSPF routes exist in the table? Yes<br />

Step 4. Ping the Rome host from Sydney. If this is not successful, troubleshoot the configurations.<br />

Task 14: Reset the Router’s Interval Timers to the Default Values<br />

Use the no form of the ip ospf hello-interval <strong>and</strong> the ip ospf dead-interval to reset the OSPF timers back<br />

to their default values.<br />

Task 15: Verify that the Interval Timers Are Returned to the<br />

Default Values<br />

Use the show ip ospf interface comm<strong>and</strong> to verify that the timers are reset to their default values.<br />

Are the values back to the default? Yes<br />

If not, repeat Task 14 <strong>and</strong> verify again.


After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn the router off. Then, remove <strong>and</strong><br />

store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 2-6: Propagating Default Routes in an<br />

OSPF Domain (2.3.6)<br />

Figure 2-15 Topology for Lab 2-6<br />

Router 2<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Table 2-12 Lab Equipment Configuration: Part I<br />

Router Router Routing Network Statements Loopback 0 Address/<br />

Designation Name Protocol Subnet Mask<br />

Router 1 Tokyo OSPF 192.168.1.0 192.168.31.11/32<br />

Router 2 Madrid OSPF 192.168.1.0 192.168.0.0 192.168.31.22/32<br />

The enable secret password for all routers is class.<br />

The enable, VTY, <strong>and</strong> console passwords for each router is cisco.<br />

DTE<br />

DTE<br />

DCE DCE<br />

Router 3 Router 1<br />

Area 0<br />

Crossover Cable<br />

Serial Cable<br />

Chapter 2: Single-Area OSPF 149


150 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Table 2-13 Lab Equipment Configuration: Part II<br />

Router IP Host Fast Ethernet 0 Interface Serial 0 Address/ Inter-face Serial 1<br />

Designation Table Entry Address/Subnet Type Subnet Mask Type Serial 1 Address/<br />

Mask Serial 0 Subnet Mask<br />

Router 1 Madrid 192.168.1.129/26 DCE 192.168.1.1/30 N/A N/A<br />

Router 2 Tokyo 192.168.0.1/24 DTE 192.168.1.2/30 DTE 200.20.20.2/30<br />

The “IP Host Table Entry” column contents indicate the names of the other routers in the IP host table.<br />

Objectives<br />

■ Set up an IP addressing scheme for the OSPF area.<br />

■ Configure <strong>and</strong> verify OSPF routing.<br />

■ Configure the OSPF network so that all hosts in an OSPF area can connect to outside networks.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 2-15. You can use any router that meets the interface<br />

requirements in Figure 2-15 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A to correctly specify the interface identifiers based on the equipment in your<br />

lab. The 1721 series routers produced the configuration output in this lab. Another router might produce<br />

slightly different output. You should execute the following steps on each router unless you are specifically<br />

instructed otherwise. Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix C on all routers before you continue with this lab.<br />

Task 1: Configure the ISP Router<br />

Normally, the ISP would configure the ISP router (Router 3). For the purpose of this lab, after you erase<br />

the old configuration, configure the ISP router (Router 3) by typing the following:<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname ISP<br />

ISP(config)#line vty 0 4<br />

ISP(config-line)#password cisco<br />

ISP(config-line)#login<br />

ISP(config-line)#interface serial 1<br />

ISP(config-if)#ip address 200.20.20.1 255.255.255.252<br />

ISP(config-if)#clock rate 64000<br />

ISP(config-if)#no shutdown<br />

ISP(config-if)#interface loopback 0<br />

ISP(config-if)#ip address 138.25.6.33 255.255.255.255<br />

ISP(config-if)#exit<br />

ISP(config)#ip route 192.168.1.0 255.255.255.0 200.20.20.2<br />

ISP(config)#ip route 192.168.0.0 255.255.255.0 200.20.20.2<br />

ISP(config)#end<br />

ISP#copy running-config startup-config<br />

Destination filename [startup-config]? [Enter]<br />

Building configuration...<br />

[OK]<br />

ISP#


Task 2: Configure the Area 0 OSPF Routers<br />

On the routers, enter global configuration mode <strong>and</strong> configure the hostname, console, virtual terminal, <strong>and</strong><br />

enable passwords. Next, configure the interfaces <strong>and</strong> IP hostnames according to the Lab Equipment<br />

Configuration tables, Tables 2-12 <strong>and</strong> 2-13. If you have problems configuring the router basics, refer to<br />

Lab 1-2, “Review of Basic Router Configuring with RIP.”<br />

Note: Do not configure the routing protocol until you are specifically told to.<br />

Tokyo<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname Tokyo<br />

Tokyo(config)#enable secret class<br />

Tokyo(config)#line console 0<br />

Tokyo(config-line)#password cisco<br />

Tokyo(config-line)#login<br />

Tokyo(config-line)#line vty 0 4<br />

Tokyo(config-line)#password cisco<br />

Tokyo(config-line)#login<br />

Tokyo(config-line)#exit<br />

Tokyo(config)#interface loopback 0<br />

Tokyo(config-if)#ip address 192.168.31.11 255.255.255.255<br />

Tokyo(config-if)#interface serial 0<br />

Tokyo(config-if)#ip address 192.168.1.1 255.255.255.252<br />

Tokyo(config-if)#clockrate 64000<br />

Tokyo(config-if)#no shutdown<br />

Tokyo(config-if)#interface fastethernet 0<br />

Tokyo(config-if)#ip address 192.168.1.129 255.255.255.192<br />

Tokyo(config-if)#no shutdown<br />

Tokyo(config-if)#exit<br />

Tokyo(config)#ip host Madrid 192.168.0.1 192.168.1.2<br />

Tokyo(config)#exit<br />

Madrid<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname Madrid<br />

Madrid(config)#enable secret class<br />

Madrid(config)#line console 0<br />

Madrid(config-line)#password cisco<br />

Madrid(config-line)#login<br />

Madrid(config-line)#line vty 0 4<br />

Madrid(config-line)#password cisco<br />

Madrid(config-line)#login<br />

Madrid(config-line)#exit<br />

Madrid(config)#interface loopback 0<br />

Madrid(config-if)#ip address 192.168.31.22 255.255.255.255<br />

Chapter 2: Single-Area OSPF 151


152 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Madrid(config-if)#interface serial 0<br />

Madrid(config-if)#ip address 192.168.1.2 255.255.255.252<br />

Madrid(config-if)#no shutdown<br />

Madrid(config-if)#interface serial 1<br />

Madrid(config-if)#ip address 200.20.20.2 255.255.255.252<br />

Madrid(config-if)#no shutdown<br />

Madrid(config-if)#interface fastethernet 0<br />

Madrid(config-if)#ip address 192.168.0.1 255.255.255.0<br />

Madrid(config-if)#no shutdown<br />

Madrid(config-if)#exit<br />

Madrid(config)#ip host Tokyo 192.168.1.129 192.168.1.1<br />

Madrid(config)#exit<br />

Task 3: Save the Configuration Information from Privileged EXEC<br />

Comm<strong>and</strong> Mode<br />

Tokyo#copy running-config startup-config<br />

Destination filename [startup-config]? [Enter]<br />

Madrid#copy running-config startup-config<br />

Destination filename [startup-config]? [Enter]<br />

Why should you save the running configuration to the startup configuration?<br />

Saving the configuration will allow the router to keep the configuration after a reload or power down.<br />

Task 4: Configure the Hosts<br />

Step 1. Configure the hosts with the proper IP address, subnet mask, <strong>and</strong> default gateway.<br />

Host connected to router Sydney<br />

IP address: 192.168.1.130<br />

Subnet mask: 255.255.255.192<br />

Default gateway: 192.168.1.129<br />

Host connected to router Rome<br />

IP address: 192.168.0.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.0.1<br />

Step 2. Each workstation should be able to ping the attached router. Troubleshoot as necessary. Hint:<br />

Remember to assign a specific IP address <strong>and</strong> default gateway to the workstation. If you are<br />

running Windows 98, check using Start > Run > winipcfg. If you are running Windows 2000,<br />

check using ipconfig in a DOS window.<br />

Step 3. At this point, the workstations will not be able to communicate with each other. The following<br />

tasks demonstrate the process that is required to get communication working by using OSPF as<br />

the routing protocol.


Task 5: Verify Connectivity<br />

Ping from the Madrid router to both the Tokyo <strong>and</strong> ISP routers.<br />

Madrid#ping 192.168.1.1<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 192.168.1.1, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/32 ms<br />

Madrid#ping 200.20.20.1<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 200.20.20.1, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/32 ms<br />

Were the pings successful? Yes<br />

If the ping was not successful, troubleshoot the router configurations until the ping is successful.<br />

Task 6: Configure OSPF Routing on Both Area 0 Routers<br />

Step 1. Configure OSPF routing on each router. Use OSPF process number 1 <strong>and</strong> ensure that all networks<br />

are in area 0. Refer to Lab 2-2, “Configuring OSPF with Loopback Addresses,” for a<br />

review on configuring OSPF routing.<br />

Tokyo(config)#router ospf 1<br />

Tokyo(config-router)#network 192.168.1.128 0.0.0.127 area 0<br />

Tokyo(config-router)#network 192.168.1.0 0.0.0.3 area 0<br />

Tokyo(config-router)#end<br />

Madrid(config)#router ospf 1<br />

Madrid(config-router)#network 192.168.0.0 0.0.0.255 area 0<br />

Madrid(config-router)#network 192.168.1.0 0.0.0.3 area 0<br />

Madrid(config-router)#end<br />

Did the IOS version automatically add lines under router OSPF 1? Yes<br />

Step 2. Show the routing table for the Tokyo router.<br />

Tokyo#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B -<br />

BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS<br />

inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

192.168.31.0/32 is subnetted, 1 subnets<br />

C 192.168.31.11 is directly connected, Loopback0<br />

O 192.168.0.0/24 [110/65] via 192.168.1.2, 00:00:14, Serial0<br />

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks<br />

C 192.168.1.0/30 is directly connected, Serial0<br />

C 192.168.1.128/24 is directly connected, FastEthernet0<br />

Do entries exist in the routing table? Yes<br />

Chapter 2: Single-Area OSPF 153


154 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 7: Test Network Connectivity<br />

Ping the Tokyo host from the Madrid host. Was it successful? Yes<br />

If not, troubleshoot as necessary.<br />

Task 8: Observe OSPF Traffic<br />

Step 1. At privileged EXEC mode, type the comm<strong>and</strong> debug ip ospf events <strong>and</strong> observe the output.<br />

Is there OSPF traffic? Yes<br />

Step 2. Turn off debugging by typing no debug ip ospf events or undebug all.<br />

Task 9: Create a Default Route to the ISP<br />

On the Madrid router only, type a static default route via the serial 1 interface.<br />

Madrid(config)#ip route 0.0.0.0 0.0.0.0 200.200.200.1<br />

Task 10: Verify the Default Static Route<br />

Verify the default static route by looking at the Madrid routing table.<br />

Madrid#show ip route<br />

01:12:26: %SYS-5-CONFIG_I: Configured from console by consolehow ip<br />

route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B -<br />

BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS<br />

inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 200.20.20.1 to network 0.0.0.0<br />

200.20.20.0/30 is subnetted, 1 subnets<br />

C 200.20.20.0 is directly connected, Serial1<br />

192.168.31.0/32 is subnetted, 1 subnets<br />

C 192.168.31.22 is directly connected, Loopback0<br />

C 192.168.0.0/24 is directly connected, FastEthernet0<br />

192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks<br />

C 192.168.1.0/30 is directly connected, Serial0<br />

O 192.168.1.128/24 [110/782] via 192.168.1.1, 00:01:44, Serial0<br />

S* 0.0.0.0/0 [1/0] via 200.20.20.1<br />

Is the default route in the routing table? Yes


Task 11: Verify Connectivity from the Madrid Router<br />

Step 1. Verify connectivity from the Madrid router by pinging the ISP serial 1 interface from the<br />

Madrid router.<br />

Can the interface be pinged? Yes<br />

Step 2. Ping from a DOS window on the host that is attached to the Madrid router Fast Ethernet interface<br />

to the ISP router serial 1 interface.<br />

Can the interface be pinged? Yes<br />

Step 3. Ping again from the host to the loopback address on the ISP router, which represents the ISP<br />

connection to the Internet.<br />

Can the loopback interface be pinged? Yes<br />

Step 4. All these pings should be successful. If they are not, troubleshoot the configurations on the host<br />

<strong>and</strong> the Madrid <strong>and</strong> ISP routers.<br />

Task 12: Verify Connectivity from the Tokyo Router<br />

Verify connectivity from the Tokyo router by pinging the ISP router serial 1 interface from the Tokyo<br />

router.<br />

Can the interface be pinged? No<br />

If yes, why? If not, why not?<br />

There is no route to the ISP router.<br />

Task 13: Redistribute the Static Default Route<br />

Propagate the gateway of last resort to the other routers in the OSPF domain. At the configure router<br />

prompt on the Madrid router, type default-information originate.<br />

Madrid(config-router)#default-information originate<br />

Does a default route now exist on the Tokyo router? Yes<br />

What is the address of the gateway of last resort? 192.168.1.2<br />

There is an O*E2 entry in the routing table. What type of route is it?<br />

OSPF external route type 2<br />

Can the ISP server address at 138.25.16.33 be pinged from both workstations? Yes<br />

If not, troubleshoot both hosts <strong>and</strong> all three routers.<br />

Chapter 2: Single-Area OSPF 155<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn the router off. Then, remove <strong>and</strong><br />

store the cables <strong>and</strong> adapter.


156 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Comprehensive Lab 2-7: OSPF Configuration<br />

Figure 2-16 OSPF Configuration<br />

Table 2-14 Lab 2-7 Addressing Scheme<br />

Device Interface IP Address Subnet Mask<br />

RTA Fa0/0 192.168.1.1 255.255.255.192<br />

S0/1 192.168.1.245 255.255.255.252<br />

S0/0 192.168.1.254 255.255.255.252<br />

Lo0 209.165.202.129 255.255.255.255<br />

RTB S0/1 192.168.1.246 255.255.255.192<br />

Fa0/0 192.168.1.65 255.255.255.192<br />

S0/0 192.168.1.249 255.255.255.252<br />

RTC S0/1 192.168.1.250 255.255.255.252<br />

Objectives<br />

192.168.1.128/26<br />

■ Configure OSPF routing<br />

■ Modify OSPF cost<br />

Fa0/0 192.168.1.129 255.255.255.192<br />

S0/0 192.168.1.253 255.255.255.252<br />

■ Configure MD5 authentication<br />

■ Adjust OSPF timers<br />

Address Space<br />

192.168.1.0/24<br />

Fa0/0<br />

■ Configure <strong>and</strong> propagate a default route<br />

S0/0<br />

192.168.1.0/26<br />

Fa0/0<br />

RTA<br />

S0/1<br />

DCE<br />

192.168.1.252/30 192.168.1.244/30<br />

OSPF<br />

Area 0<br />

T1 T1<br />

S0/0<br />

DCE<br />

S0/1<br />

RTC<br />

S0/1<br />

386 kps<br />

192.168.1.248/30 S0/0<br />

DCE<br />

RTB<br />

Simulated ISP Link<br />

Lo0 209.165.202.129/32<br />

192.168.1.64/26<br />

Fa0/0


Equipment<br />

The topology shown in Figure 2-16 is using 2600 series routers. This lab can be done with any combination<br />

of 1700, 2500, <strong>and</strong> 2600 series routers. Connectivity to an ISP is simulated with a loopback interface<br />

on RTA.<br />

NetLab Compatibility Notes<br />

This lab is fully compatible with a st<strong>and</strong>ard NetLab three router pod.<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configurations<br />

Step 1. Cable the topology as shown. If DCE/DTE connections <strong>and</strong> interfaces are different from those<br />

shown in Figure 2-16 <strong>and</strong> the table, relabel the figure to match your connections.<br />

Step 2. Configure the routers with basic router configurations, including<br />

■ Hostnames <strong>and</strong> host tables<br />

■ Enable secret password <strong>and</strong> MOTD banner<br />

■ Line configurations<br />

■ IOS-specific comm<strong>and</strong>s (e.g. ip subnet-zero with IOS versions prior to 12)<br />

Step 3. The following is a basic configuration for RTA:<br />

Router(config)#hostname RTA<br />

RTA(config)#ip subnet-zero<br />

RTA(config)#no ip domain-lookup<br />

RTA(config)#ip host RTC 192.168.1.253 192.168.1.254<br />

RTA(config)#ip host RTB 192.168.1.246 192.168.1.249<br />

RTA(config)#banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

RTA(config)#line con 0<br />

RTA(config-line)#exec-timeout 30 0<br />

RTA(config-line)#password cisco<br />

RTA(config-line)#logging synchronous<br />

RTA(config-line)#login<br />

RTA(config-line)#line aux 0<br />

RTA(config-line)#exec-timeout 30 0<br />

RTA(config-line)#password cisco<br />

RTA(config-line)#logging synchronous<br />

RTA(config-line)#login<br />

RTA(config-line)#line vty 0 4<br />

RTA(config-line)#exec-timeout 30 0<br />

RTA(config-line)#password cisco<br />

RTA(config-line)#logging synchronous<br />

RTA(config-line)#login<br />

RTA(config-line)#end<br />

RTA#copy run start<br />

Chapter 2: Single-Area OSPF 157


158 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 2: Configure Interfaces <strong>and</strong> OSPF Routing<br />

Step 1. Use Table 2-14 <strong>and</strong> the topology shown in Figure 2-16 to configure each router with the correct<br />

interface addresses. To simulate an ISP connection, use the following configuration on RTA:<br />

RTA(config)#interface Loopback0<br />

RTA(config-if)#description Simulated Link to ISP<br />

RTA(config-if)#ip address 209.165.202.129 255.255.255.255<br />

Step 2. Configure OSPF routing on RTA, RTB, <strong>and</strong> RTC. Do not configure the simulated ISP loopback<br />

interface as part of OSPF. The configuration for RTA is as follows:<br />

RTA(config)#router ospf 1<br />

RTA(config-router)#network 192.168.1.0 0.0.0.63 area 0<br />

RTA(config-router)#network 192.168.1.244 0.0.0.3 area 0<br />

RTA(config-router)#network 192.168.1.252 0.0.0.3 area 0<br />

Task 3: Verify Connectivity<br />

Step 1. You should now have full connectivity between RTA, RTB, <strong>and</strong> RTC. Issue the show ip route<br />

comm<strong>and</strong> to verify full convergence.<br />

Routing table on RTA:<br />

RTA#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

209.165.202.0/32 is subnetted, 1 subnets<br />

C 209.165.202.129 is directly connected, Loopback0<br />

192.168.1.0/24 is variably subnetted, 6 subnets, 2 masks<br />

O 192.168.1.64/26 [110/65] via 192.168.1.246, 00:00:48, Serial0/1<br />

C 192.168.1.0/26 is directly connected, FastEthernet0/0<br />

O 192.168.1.248/30 [110/128] via 192.168.1.246, 00:00:48, Serial0/1<br />

[110/128] via 192.168.1.253, 00:00:48, Serial0/0<br />

C 192.168.1.252/30 is directly connected, Serial0/0<br />

C 192.168.1.244/30 is directly connected, Serial0/1<br />

O 192.168.1.128/26 [110/65] via 192.168.1.253, 00:00:49, Serial0/0<br />

Step 2. Notice that RTA has four connected routes (including the simulated ISP link) <strong>and</strong> three OSPF<br />

routes. RTB <strong>and</strong> RTC should both have three connected routes <strong>and</strong> three OSPF routes.<br />

Step 3. Pings sourced from any router to a LAN interface on another router should succeed.<br />

RTA#ping 192.168.1.65<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 192.168.1.65, timeout is 2 seconds:<br />

!!!!!


Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/32 ms<br />

RTA#ping 192.168.1.129<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 192.168.1.129, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/29/32 ms<br />

Task 4: Modify OSPF Cost<br />

Step 1. At this point, all routers are using the default b<strong>and</strong>width for serial interfaces: for 2500s <strong>and</strong><br />

2600s, 1544 kbps; for 1700s, 128 kbps. Use the show interface serial comm<strong>and</strong> to view the<br />

b<strong>and</strong>width used to calculate cost.<br />

RTB#show interface s0/0<br />

Serial0/0 is up, line protocol is up<br />

Hardware is PowerQUICC Serial<br />

Description: Link to RTC<br />

Internet address is 192.168.1.249/30<br />

MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,<br />

reliability 255/255, txload 1/255, rxload 1/255<br />

(output omitted)<br />

Step 2. When RTB pings the LAN interface on RTC, it sends it directly to RTC even though the path<br />

through RTA is faster.<br />

RTB#traceroute 192.168.1.129<br />

Type escape sequence to abort.<br />

Tracing the route to 192.168.1.129<br />

1 RTC (192.168.1.250) 16 msec * 12 msec<br />

RTB#<br />

Step 3. Configure both RTB <strong>and</strong> RTC with the correct b<strong>and</strong>width.<br />

RTB(config)#interface s0/0<br />

RTB(config-if)#b<strong>and</strong>width 386<br />

!<br />

RTC(config)#interface s0/1<br />

RTC(config-if)#b<strong>and</strong>width 386<br />

Step 4. Verify that RTB sends pings destined for the LAN on RTC to RTA, which then routes the ping<br />

to RTC.<br />

RTB#traceroute 192.168.1.129<br />

Type escape sequence to abort.<br />

Tracing the route to 192.168.1.129<br />

1 RTA (192.168.1.245) 16 msec 12 msec 16 msec<br />

2 RTC (192.168.1.253) 28 msec * 16 msec<br />

RTB#<br />

Chapter 2: Single-Area OSPF 159


160 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 5: Configure MD5 Authentication<br />

Step 1. To make sure routing updates come from trusted sources, configure each router to use MD5<br />

authentication. The configuration for RTA follows:<br />

RTA(config)#interface serial 0/0<br />

RTA(config-if)#ip ospf message-digest-key 1 md5 7 allrouters<br />

RTA(config)#interface serial 0/1<br />

RTA(config-if)#ip ospf message-digest-key 1 md5 7 allrouters<br />

RTA(config-if)#router ospf 1<br />

RTA(config-router)#area 0 authentication message-digest<br />

Step 2. After configuring authentication on each router, neighbor adjacency will go to the DOWN state<br />

<strong>and</strong> then reinitialize. Make sure that all routing tables have reconverged by issuing the show ip<br />

route comm<strong>and</strong>. The table for RTA follows:<br />

RTA#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

209.165.202.0/32 is subnetted, 1 subnets<br />

C 209.165.202.129 is directly connected, Loopback0<br />

192.168.1.0/24 is variably subnetted, 6 subnets, 2 masks<br />

O 192.168.1.64/26 [110/65] via 192.168.1.246, 00:06:25, Serial0/1<br />

C 192.168.1.0/26 is directly connected, FastEthernet0/0<br />

O 192.168.1.248/30 [110/323] via 192.168.1.246, 00:06:25, Serial0/1<br />

[110/323] via 192.168.1.253, 00:06:25, Serial0/0<br />

C 192.168.1.252/30 is directly connected, Serial0/0<br />

C 192.168.1.244/30 is directly connected, Serial0/1<br />

O 192.168.1.128/26 [110/65] via 192.168.1.253, 00:06:26, Serial0/0<br />

Step 3. You can verify authentication by using the show ip ospf comm<strong>and</strong> or the show ip ospf interface<br />

comm<strong>and</strong>.<br />

RTA#show ip ospf<br />

Routing Process “ospf 1” with ID 209.165.202.129<br />

Supports only single TOS(TOS0) routes<br />

Supports opaque LSA<br />

SPF schedule delay 5 secs, Hold time between two SPFs 10 secs<br />

Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs<br />

Number of external LSA 0. Checksum Sum 0x0<br />

Number of opaque AS LSA 0. Checksum Sum 0x0<br />

Number of DCbitless external <strong>and</strong> opaque AS LSA 0<br />

Number of DoNotAge external <strong>and</strong> opaque AS LSA 0<br />

Number of areas in this router is 1. 1 normal 0 stub 0 nssa<br />

External flood list length 0<br />

Area BACKBONE(0)


Number of interfaces in this area is 3<br />

Area has message digest authentication<br />

SPF algorithm executed 2 times<br />

Area ranges are<br />

Number of LSA 3. Checksum Sum 0x1F45E<br />

Number of opaque link LSA 0. Checksum Sum 0x0<br />

Number of DCbitless LSA 0<br />

Number of indication LSA 0<br />

Number of DoNotAge LSA 0<br />

Flood list length 0<br />

RTA#show ip ospf interface s0/0<br />

Serial0/0 is up, line protocol is up<br />

Internet Address 192.168.1.254/30, Area 0<br />

Process ID 1, Router ID 209.165.202.129, Network Type POINT_TO_POINT, Cost:<br />

64<br />

Transmit Delay is 1 sec, State POINT_TO_POINT,<br />

Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5<br />

Hello due in 00:00:01<br />

Index 3/3, flood queue length 0<br />

Next 0x0(0)/0x0(0)<br />

Last flood scan length is 1, maximum is 1<br />

Last flood scan time is 0 msec, maximum is 0 msec<br />

Neighbor Count is 1, Adjacent neighbor count is 1<br />

Adjacent with neighbor 10.0.0.1<br />

Suppress hello for 0 neighbor(s)<br />

Message digest authentication enabled<br />

Youngest key id is 1<br />

Task 6: Adjust OSPF Timers<br />

Step 1. Notice in the previous output for show ip ospf interface that the Hello <strong>and</strong> dead interval timers<br />

are shown as 10 <strong>and</strong> 40, respectively. Configure these intervals to be 40 <strong>and</strong> 160 on all three<br />

routers.<br />

RTA(config)#interface s0/0<br />

RTA(config-if)#ip ospf hello-interval 40<br />

RTA(config-if)#ip ospf dead-interval 160<br />

RTA(config)#interface s0/1<br />

RTA(config-if)#ip ospf hello-interval 40<br />

RTA(config-if)#ip ospf dead-interval 160<br />

Chapter 2: Single-Area OSPF 161<br />

Step 2. Verify that all routers have full routing tables <strong>and</strong> have re-established neighbor adjacencies. If<br />

adjacency has not been re-established, you can use the debug ip ospf events comm<strong>and</strong> to find<br />

where there might be a timing mismatch.<br />

RTA#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR


162 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

209.165.202.0/32 is subnetted, 1 subnets<br />

C 209.165.202.129 is directly connected, Loopback0<br />

192.168.1.0/24 is variably subnetted, 6 subnets, 2 masks<br />

O 192.168.1.64/26 [110/65] via 192.168.1.246, 00:00:04, Serial0/1<br />

C 192.168.1.0/26 is directly connected, FastEthernet0/0<br />

O 192.168.1.248/30 [110/323] via 192.168.1.246, 00:00:04, Serial0/1<br />

[110/323] via 192.168.1.253, 00:00:04, Serial0/0<br />

C 192.168.1.252/30 is directly connected, Serial0/0<br />

C 192.168.1.244/30 is directly connected, Serial0/1<br />

O 192.168.1.128/26 [110/65] via 192.168.1.253, 00:00:05, Serial0/0<br />

RTA#show ip ospf neighbor<br />

Neighbor ID Pri State Dead Time Address Interface<br />

192.168.1.253 1 FULL/ - 00:02:19 192.168.1.253 Serial0/0<br />

192.168.1.249 1 FULL/ - 00:02:16 192.168.1.246 Serial0/1<br />

Task 7: Configure <strong>and</strong> Propagate a Default Route<br />

Step 1. Because the ISP is only simulated, RTA does not have a real default route. However, you can<br />

simulate a default route by configuring it to forward to a null interface.<br />

RTA(config)#ip route 0.0.0.0 0.0.0.0 null 0<br />

Step 2. Now, you can configure RTA to propagate the default route to RTB <strong>and</strong> RTC.<br />

RTA(config)#router ospf 1<br />

RTA(config-router)#default-information originate<br />

Step 3. RTB <strong>and</strong> RTC should now be able to successfully ping the 209.165.202.129 interface, which<br />

verifies that both routers have a working default route.<br />

RTA hostname RTA<br />

!<br />

RTB#ping 209.165.202.129<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 209.165.202.129, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms<br />

RTC#ping 209.165.202.129<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 209.165.202.129, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 28/33/48 ms<br />

enable secret class<br />

!<br />

ip subnet-zero


no ip domain-lookup<br />

ip host RTB 192.168.1.246 192.168.1.249<br />

ip host RTC 192.168.1.253 192.168.1.250<br />

!<br />

!<br />

interface Loopback0<br />

!<br />

description Simulated Link to ISP<br />

ip address 209.165.202.129 255.255.255.255<br />

interface FastEthernet0/0<br />

!<br />

description RTA LAN<br />

ip address 192.168.1.1 255.255.255.192<br />

interface Serial0/0<br />

!<br />

description Link to RTC<br />

ip address 192.168.1.254 255.255.255.252<br />

ip ospf message-digest-key 1 md5 7 allrouters<br />

ip ospf hello-interval 40<br />

clockrate 64000<br />

no shutdown<br />

interface Serial0/1<br />

!<br />

description Link to RTB<br />

ip address 192.168.1.245 255.255.255.252<br />

ip ospf message-digest-key 1 md5 7 allrouters<br />

ip ospf hello-interval 40<br />

clockrate 64000<br />

no shutdown<br />

router ospf 1<br />

!<br />

log-adjacency-changes<br />

area 0 authentication message-digest<br />

network 192.168.1.0 0.0.0.63 area 0<br />

network 192.168.1.244 0.0.0.3 area 0<br />

network 192.168.1.252 0.0.0.3 area 0<br />

default-information originate<br />

ip classless<br />

ip route 0.0.0.0 0.0.0.0 Null0<br />

no ip http server<br />

!<br />

!<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

Chapter 2: Single-Area OSPF 163


164 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

RTB hostname RTB<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host RTC 192.168.1.250 192.168.1.253<br />

ip host RTA 192.168.1.245 192.168.1.254<br />

!<br />

interface FastEthernet0/0<br />

!<br />

description RTB LAN<br />

ip address 192.168.1.65 255.255.255.192<br />

no shutdown<br />

interface Serial0/0<br />

!<br />

description Link to RTC<br />

b<strong>and</strong>width 386<br />

ip address 192.168.1.249 255.255.255.252<br />

ip ospf message-digest-key 1 md5 7 allrouters<br />

ip ospf hello-interval 40<br />

clockrate 64000<br />

no shutdown<br />

!Adjust clock rate for the correct interface, if needed


!<br />

interface Serial0/1<br />

!<br />

description Link to RTA<br />

ip address 192.168.1.246 255.255.255.252<br />

ip ospf message-digest-key 1 md5 7 allrouters<br />

ip ospf hello-interval 40<br />

no shutdown<br />

router ospf 2<br />

!<br />

log-adjacency-changes<br />

area 0 authentication message-digest<br />

network 192.168.1.64 0.0.0.63 area 0<br />

network 192.168.1.244 0.0.0.3 area 0<br />

network 192.168.1.248 0.0.0.3 area 0<br />

ip classless<br />

no ip http server<br />

!<br />

!<br />

snmp-server manager<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

Chapter 2: Single-Area OSPF 165


166 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

RTC<br />

hostname RTC<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

!<br />

!<br />

interface FastEthernet0/0<br />

!<br />

description RTC LAN<br />

ip address 192.168.1.129 255.255.255.192<br />

no shutdown<br />

interface Serial0/0<br />

!<br />

description Link to RTA<br />

ip address 192.168.1.253 255.255.255.252<br />

ip ospf message-digest-key 1 md5 7 allrouters<br />

ip ospf hello-interval 40<br />

no shutdown<br />

interface Serial0/1<br />

!<br />

description Link to RTB<br />

b<strong>and</strong>width 386<br />

ip address 192.168.1.250 255.255.255.252<br />

ip ospf message-digest-key 1 md5 7 allrouters<br />

ip ospf hello-interval 40<br />

no shutdown<br />

router ospf 3<br />

!<br />

log-adjacency-changes<br />

area 0 authentication message-digest<br />

network 192.168.1.128 0.0.0.63 area 0<br />

network 192.168.1.248 0.0.0.3 area 0<br />

network 192.168.1.252 0.0.0.3 area 0<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0


exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

Challenge Lab 2-8: OSPF Design <strong>and</strong> Configuration<br />

Figure 2-17 OSPF Design <strong>and</strong> Configuration<br />

Public Web Server<br />

209.165.202.129/32<br />

Address Space<br />

172.16.0.0/16<br />

Lo0<br />

209.165.201.0/30<br />

ISP<br />

S0/0<br />

DCE<br />

S0/0<br />

Production LAN Lo0<br />

Warehouse LAN Lo1<br />

Marketing LAN Lo2<br />

Management LAN Lo3<br />

Purchasing LAN Lo4<br />

HQ<br />

S0/1<br />

DCE<br />

1<br />

4<br />

T1<br />

East Region Lo0<br />

North Region Lo1<br />

South Region Lo2<br />

West Region Lo3<br />

International Lo4<br />

WAN<br />

S0/1<br />

Chapter 2: Single-Area OSPF 167<br />

172.16.0.0 / 18<br />

172.16.64.0 / 19<br />

172.16.96.0 / 20<br />

172.16.112.0 / 21<br />

172.16.120.0 / 22<br />

172.16.255.252 / 30<br />

Remote<br />

172.16.128.0 / 20<br />

172.16.144.0 / 20<br />

172.16.160.0 / 20<br />

172.16.176.0 / 20<br />

172.16.192.0 / 20


168 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Table 2-15 Lab 2-8 Addressing Scheme<br />

Device Interface IP Address Subnet Mask<br />

ISP Lo0 209.165.202.129 255.255.255.255<br />

S0/0 209.165.201.1 255.255.255.252<br />

HQ S0/0 209.165.201.2 255.255.255.252<br />

S0/1 172.16.255.253 255.255.255.252<br />

Lo0 172.16.0.1 255.255.192.0<br />

Lo1 172.16.64.1 255.255.224.0<br />

Lo2 172.16.96.1 255.255.240.0<br />

Lo3 172.16.112.1 255.255.248.0<br />

Lo4 172.16.120.1 255.255.252.0<br />

REMOTE S0/1 172.16.255.254 255.255.255.252<br />

Objectives<br />

■ Design a VLSM addressing scheme.<br />

Lo0 172.16.128.1 255.255.240.0<br />

Lo1 172.16.144.1 255.255.240.0<br />

Lo2 172.16.160.1 255.255.240.0<br />

Lo3 172.16.176.1 255.255.240.0<br />

Lo4 172.16.192.1 255.255.240.0<br />

■ Configure routers with basic configurations using your addressing scheme.<br />

■ Configure dynamic, static, <strong>and</strong> default routing.<br />

■ Verify connectivity <strong>and</strong> troubleshoot problems.<br />

Equipment<br />

The topology shown in Figure 2-17 uses 2600 series routers. This lab can be done with any combination of<br />

1700, 2500, <strong>and</strong> 2600 series routers.<br />

NetLab Compatibility Notes<br />

This lab can be completed on a st<strong>and</strong>ard NetLab three router pod.<br />

Task 1: Design the Addressing Scheme<br />

You are given the address space, 172.16.0.0/16. The five loopback interfaces on HQ <strong>and</strong> five loopback<br />

interfaces on REMOTE are used to simulate different parts of a global network. Use the following specifications<br />

to design your addressing scheme.


Table 2-16 LAN Addressing Specifications<br />

HQ Hosts Needed<br />

Production LAN 16,000<br />

Warehousing LAN 8000<br />

Marketing LAN 4000<br />

Management LAN 2000<br />

Purchasing LAN 1000<br />

REMOTE Hosts Needed<br />

Eastern Region 4000<br />

Northern Region 4000<br />

Western Region 4000<br />

Southern Region 4000<br />

International 4000<br />

Label the topology in Figure 2-17 with the networks <strong>and</strong> finish filling in the IP addresses in Table 2-16<br />

with your chosen addressing scheme. Use the first IP address in each subnet for the interface address. For<br />

the WAN link between HQ <strong>and</strong> REMOTE, assign HQ the first address.<br />

Task 2: Cable the Topology <strong>and</strong> Basic Configuration<br />

Step 1. Choose three routers <strong>and</strong> cable them according to the topology. You will not need any LAN<br />

interfaces or switches for this lab. (If using NetLab, choose a three router pod).<br />

Step 2. Configure the routers with basic configurations including interface addresses.<br />

Task 3: Configure OSPF Routing <strong>and</strong> Default Routing<br />

Step 1. Configure both HQ <strong>and</strong> REMOTE to use OSPF as the routing protocol. Enter the simulated<br />

LAN subnets <strong>and</strong> the WAN link between HQ <strong>and</strong> REMOTE. Do not advertise the<br />

209.165.201.0/30 network.<br />

Step 2. Configure ISP with a static route pointing the 172.16.0.0/16 Address Space. Configure HQ<br />

with a default route pointing to ISP. Configure HQ to advertise the default route to REMOTE.<br />

Step 3. Verify HQ <strong>and</strong> REMOTE routing tables.<br />

■ HQ should have seven directly connected routes, five OSPF routes, <strong>and</strong> one static route.<br />

■ REMOTE should have six directly connected routes, five OSPF routes, <strong>and</strong> one OSPF E2 route.<br />

■ Verify that REMOTE can ping the Simulated Web Server at 209.165.202.129.<br />

Task 4: Other OSPF Configurations<br />

Step 1. Change the OSPF hello interval to 20 seconds.<br />

Chapter 2: Single-Area OSPF 169<br />

Step 2. The link between HQ <strong>and</strong> REMOTE is a 1/4 T1. Change the b<strong>and</strong>width on both HQ <strong>and</strong><br />

REMOTE to match the actual link speed.<br />

Step 3. Configure OSPF authentication with MD5 between HQ <strong>and</strong> REMOTE. Use “allrouters” as the key.


170 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 5: Verification <strong>and</strong> Documentation<br />

Step 1. Capture the following verifications to a text file called verify.txt:<br />

■ Ping output from REMOTE pinging the Simulated Web Server.<br />

■ Capture show ip route on all three routers: ISP, HQ, <strong>and</strong> REMOTE.<br />

■ Capture show ip ospf, show ip ospf neighbor, <strong>and</strong> show ip ospf interface on HQ <strong>and</strong> REMOTE.<br />

Step 2. Capture the running configurations on all three routers to separate text files. Use the hostname<br />

of the router to name each text file.<br />

Step 3. Clean up the verify.txt, HQ.txt, REMOTE.txt, <strong>and</strong> ISP.txt files. Add appropriate notes to assist<br />

in your studies.<br />

ISP hostname ISP<br />

!<br />

enable secret class<br />

!<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

!<br />

interface Loopback0<br />

!<br />

description Simulated Public Web Server<br />

ip address 209.165.202.129 255.255.255.255<br />

interface Serial0/0<br />

!<br />

description Link to Customer<br />

ip address 209.165.201.1 255.255.255.252<br />

no shutdown<br />

ip route 172.16.0.0 255.255.0.0 Serial0/0<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous


login<br />

line vty 0 4<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

HQ hostname HQ<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host ISP 209.165.201.1<br />

ip host REMOTE 172.16.255.254<br />

ip host WEB 209.165.202.129<br />

!<br />

interface Loopback0<br />

!<br />

description Production LAN<br />

ip address 172.16.0.1 255.255.192.0<br />

interface Loopback1<br />

!<br />

description Warehouse LAN<br />

ip address 172.16.64.1 255.255.224.0<br />

interface Loopback2<br />

!<br />

description Marketing LAN<br />

ip address 172.16.96.1 255.255.240.0<br />

interface Loopback3<br />

!<br />

description Management LAN<br />

ip address 172.16.112.1 255.255.248.0<br />

interface Loopback4<br />

!<br />

description Purchasing LAN<br />

ip address 172.16.120.1 255.255.252.0<br />

interface Serial0/0<br />

!<br />

description Link to ISP<br />

ip address 209.165.201.2 255.255.255.252<br />

clockrate 64000<br />

no shutdown<br />

Chapter 2: Single-Area OSPF 171


172 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

interface Serial0/1<br />

!<br />

description Link to REMOTE<br />

b<strong>and</strong>width 386<br />

ip address 172.16.255.253 255.255.255.252<br />

ip ospf message-digest-key 1 md5 7 allrouters<br />

ip ospf hello-interval 20<br />

clockrate 64000<br />

no shutdown<br />

router ospf 1<br />

!<br />

area 0 authentication message-digest<br />

network 172.16.0.0 0.0.63.255 area 0<br />

network 172.16.64.0 0.0.31.255 area 0<br />

network 172.16.96.0 0.0.15.255 area 0<br />

network 172.16.112.0 0.0.7.255 area 0<br />

network 172.16.120.0 0.0.3.255 area 0<br />

network 172.16.255.252 0.0.0.3 area 0<br />

default-information originate<br />

ip route 0.0.0.0 0.0.0.0 Serial0/0<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

REMOTE


hostname REMOTE<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host ISP 209.165.201.1<br />

ip host WEB 209.165.202.129<br />

ip host HQ 172.16.255.253<br />

!<br />

interface Loopback0<br />

!<br />

description East Region<br />

ip address 172.16.128.1 255.255.240.0<br />

interface Loopback1<br />

!<br />

description North Region<br />

ip address 172.16.144.1 255.255.240.0<br />

interface Loopback2<br />

!<br />

description South Region<br />

ip address 172.16.160.1 255.255.240.0<br />

interface Loopback3<br />

!<br />

description West Region<br />

ip address 172.16.176.1 255.255.240.0<br />

interface Loopback4<br />

!<br />

description International<br />

ip address 172.16.192.1 255.255.240.0<br />

interface Serial0/1<br />

!<br />

description Link to HQ<br />

b<strong>and</strong>width 386<br />

ip address 172.16.255.254 255.255.255.252<br />

ip ospf message-digest-key 1 md5 7 allrouters<br />

ip ospf hello-interval 20<br />

no shutdown<br />

router ospf 1<br />

area 0 authentication message-digest<br />

network 172.16.128.0 0.0.15.255 area 0<br />

network 172.16.144.0 0.0.15.255 area 0<br />

network 172.16.160.0 0.0.15.255 area 0<br />

network 172.16.176.0 0.0.15.255 area 0<br />

network 172.16.192.0 0.0.15.255 area 0<br />

network 172.16.255.252 0.0.0.3 area 0<br />

Chapter 2: Single-Area OSPF 173


174 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end


CHAPTER 3<br />

EIGRP <strong>and</strong> Troubleshooting Routing Protocols<br />

The <strong>Study</strong> <strong>Guide</strong> portion of this chapter uses a combination of matching, fill in the blank, multiple choice,<br />

open-ended question, <strong>and</strong> unique custom exercises to test your knowledge on the theory of EIGRP concepts,<br />

EIGRP configuration, <strong>and</strong> basic routing protocol troubleshooting.<br />

The Lab Exercises portion of this chapter includes all of the online curriculum labs as well as a comprehensive<br />

lab <strong>and</strong> a challenge lab to ensure that you have mastered the practical, h<strong>and</strong>s-on skills needed<br />

about EIGRP <strong>and</strong> routing troubleshooting.


176 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

<strong>Study</strong> <strong>Guide</strong><br />

EIGRP Concepts<br />

EIGRP is the enhanced version of the Cisco-proprietary Interior Gateway Routing Protocol (IGRP). The<br />

speed of convergence, ease of configuration, <strong>and</strong> blending of the best of both distance vector <strong>and</strong> link-state<br />

routing protocols make EIGRP the most powerful of IGPs. To get the absolute best of both worlds, use<br />

EIGRP if all of your equipment is from Cisco.<br />

The exercises in this section walk you through the terminology <strong>and</strong> concepts of EIGRP. Pay particular<br />

attention to the similarities <strong>and</strong> differences between EIGRP <strong>and</strong> other routing protocols.<br />

Vocabulary Exercise: Matching<br />

Directions: Match the definition on the left with a term on the right. This exercise is not necessarily a oneto-one<br />

matching. Some definitions may be used more than once <strong>and</strong> some terms may have multiple definitions.<br />

However, all terms <strong>and</strong> definitions are used.<br />

Definition<br />

a. table that includes route entries for all destinations<br />

that the router has learned<br />

b. a route selected as the primary route to reach<br />

a destination<br />

c. table that ensures bidirectional communication<br />

between each of the directly connected<br />

neighbors<br />

d. a backup route kept in the topology table in<br />

case the primary route goes down<br />

e. used by EIGRP to discover, verify, <strong>and</strong> rediscover<br />

neighbor routers<br />

f. a route that is in a reachable <strong>and</strong> operational<br />

status<br />

g. guarantees loop-free operation at every<br />

instant throughout a route computation <strong>and</strong><br />

allows all devices involved in a topology<br />

change to synchronize at the same time<br />

h. table in which EIGRP places the routes it<br />

chooses from the topology table as the best<br />

(successor) routes to a destination<br />

i. status of a route that has no feasible successors<br />

yet; router is waiting on replies from<br />

EIGRP routers<br />

j. used by EIGRP to guarantee ordered delivery<br />

of EIGRP packets to all neighbors<br />

k. used when a router discovers a new neighbor<br />

l. used when a router needs specific information<br />

from one or all of its neighbors<br />

Term<br />

d feasible successor<br />

e hello packets<br />

g Diffusing Update Algorithm<br />

j Reliable Transport Protocol<br />

c neighbor table<br />

k update packet<br />

a topology table<br />

l query packet<br />

b successor<br />

h routing table<br />

i active state<br />

f passive state


Vocabulary Exercise: Completion<br />

Directions: Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

IGRP <strong>and</strong> EIGRP are compatible with each other, which provides seamless interoperability between the<br />

two processes. EIGRP uses metric calculations similar to those used by IGRP, <strong>and</strong> EIGRP supports the<br />

same unequal-cost path load balancing as IGRP does.<br />

Although the metric (b<strong>and</strong>width <strong>and</strong> delay by default) is the same for both IGRP <strong>and</strong> EIGRP, the weight<br />

assigned to the metric is 256 times greater for EIGRP. That is because EIGRP uses a metric that is 32 bits<br />

long, <strong>and</strong> IGRP uses a 24-bit metric. By multiplying or dividing by 256, EIGRP can easily exchange information<br />

with IGRP.<br />

IGRP has a maximum hop count of 255. EIGRP has a maximum hop count of 224. By default, the Cisco<br />

IOS limits the hop count for EIGRP limited to 100 as displayed by the show ip protocols comm<strong>and</strong>. This<br />

is more than adequate to support the largest, properly designed internetworks.<br />

EIGRP’s convergence technology employs the Diffusing Update Algorithm (DUAL), which guarantees<br />

loop-free operation at every instant throughout a route. Routers that are not affected by topology changes<br />

are not involved in recomputations.<br />

Redistribution, the sharing of routes, is automatic between IGRP <strong>and</strong> EIGRP as long as both processes use<br />

the same autonomous system number.<br />

Like OSPF, EIGRP maintains three tables for use with its computations. These tables include the neighbor<br />

table (called the adjacency database in OSPF), the topology table (called the link-state database in OSPF),<br />

<strong>and</strong> the routing table (called the forwarding database in OSPF).<br />

The following are some additional features of EIGRP:<br />

■ EIGRP converges rapidly on network topology changes. In some situations, convergence can be<br />

almost instantaneous. EIGRP stores backup routes, called feasible successors, so that it can quickly<br />

adapt to these alternate routes if the primary route, called the successor, becomes unavailable. If no<br />

backup route exists, then EIGRP sends a query packet to its neighbors to discover an alternate route.<br />

■ During normal operations when the network topology is fully converged, only hello packets are sent<br />

to neighbors. These packets are also used to establish neighbor adjacencies.<br />

■ EIGRP supports automatic route summarization at classful network boundaries. But it can be manually<br />

configured to advertise on arbitrary network boundaries to reduce the size of routing tables.<br />

■ EIGRP uses its own Layer 4 protocol called the Reliable Transport Protocol. Because EIGRP provides<br />

support for multiple routed protocols, including AppleTalk (AT) <strong>and</strong> Internetwork Packet Exchange<br />

(IPX), it must be protocol independent. That means it cannot depend on TCP for reliability services.<br />

EIGRP Packet Type Exercise<br />

Like OSPF, EIGRP relies on different types of packets to maintain its tables <strong>and</strong> establish relationships<br />

with neighbor routers. Complete the missing elements that follow by filling in appropriate words or phrases.<br />

When given the choice, circle whether the packet is reliable or unreliable <strong>and</strong> whether it is unicast or<br />

multicast.<br />

Hello packets:<br />

■ (Reliable/Unreliable) (unicast/multicast) sent to the address 224.0.0.10 to discover <strong>and</strong> maintain<br />

neighbors; contains the router’s neighbor table<br />

■ Default hello interval depends on the b<strong>and</strong>width:<br />

— ≤ 1.544 Mbps = 60 sec. hello interval (180 sec. holdtime)<br />

— > 1.544 Mbps = 5 sec. hello interval (15 sec. holdtime)<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 177


178 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Update packets. Sent (reliably/unreliably), there are two types:<br />

■ (Unicast/Multicast) to new neighbor discovered; contains routing table<br />

■ (Unicast/Multicast) to all neighbors when topology changes<br />

Query packets. Queries are (unicast/multicast) (reliably/unreliably) during route recomputation, asking<br />

neighbors for a new successor to a lost route.<br />

Reply packets. Neighbors (unicast/multicast) a reply to a query of whether or not they have a route.<br />

Acknowledgement packets. “Dataless” (unicast/multicast) packet that acknowledges the receipt of a packet<br />

that was sent reliably.<br />

EIGRP Configuration<br />

Now that you have a firm grasp of EIGRP concepts, it is time to learn how to configure EIGRP. The exercise<br />

in this section takes you step-by-step through an EIGRP configuration.<br />

Learn the EIGRP Comm<strong>and</strong>s Exercise<br />

Document the comm<strong>and</strong> syntax, including router prompt, to configure the EIGRP routing process.<br />

Router(config)#router eigrp autonomous-system-number<br />

True or False: All routers in an area must have the same autonomous-system-number.<br />

True. The autonomous system number is used to identify all routers that will be participating in this<br />

EIGRP routing process. It must match for all routers in the system.<br />

Like the process-id in OSPF, the value for autonomous-system-number can be any number between 1 <strong>and</strong><br />

65535 as long as it does not have to be registered with IANA.<br />

Refer to Figure 3-1. In the space provided, document the correct comm<strong>and</strong>s, including router prompt, to<br />

configure RTA to advertise all directly connected networks in EIGRP.<br />

Figure 3-1 RTA EIGRP Configuration<br />

172.16.64.0/20<br />

172.16.80.0/20<br />

172.16.96.0/20<br />

172.16.112.0/20<br />

10.0.0.8/30<br />

RTC<br />

T1<br />

S0/0<br />

DCE<br />

172.16.0.0/18<br />

RTA<br />

EIGRP<br />

100<br />

128kbps<br />

T1<br />

10.0.0.0/30<br />

S0/1<br />

10.0.0.4/30 S0/0<br />

DCE<br />

RTB<br />

172.16.128.0/19<br />

172.16.160.0/19<br />

172.16.192.0/19<br />

172.16.224.0/19


RTA(config)#router eigrp 100<br />

RTA(config-router)#network 10.0.0.0<br />

RTA(config-router)#network 172.16.0.0<br />

In Figure 3-1, RTB <strong>and</strong> RTC are distribution routers for several networks. Each router has six networks<br />

attached: two WANs <strong>and</strong> four simulated LANs. If configuring OSPF, you would have to enter each network<br />

in the routing process. But for EIGRP, the configuration is greatly simplified. You need to enter only<br />

the classful networks. Therefore, the EIGRP configuration for RTB <strong>and</strong> RTC is identical to that of RTA. In<br />

the space provided, document the correct comm<strong>and</strong>s, including router prompt, to configure RTB <strong>and</strong> RTC<br />

to advertise all directly connected networks in EIGRP.<br />

RTB(config)#router eigrp 100<br />

RTB(config-router)#network 10.0.0.0<br />

RTB(config-router)#network 172.16.0.0<br />

!<br />

RTC(config)#router eigrp 100<br />

RTC(config-router)#network 10.0.0.0<br />

RTC(config-router)#network 172.16.0.0<br />

In Figure 3-1, notice that the WAN links are labeled with the contracted b<strong>and</strong>width. Because EIGRP calculates<br />

the metric using b<strong>and</strong>width <strong>and</strong> delay, you need to configure the links for the correct b<strong>and</strong>width.<br />

Assume that the default b<strong>and</strong>width for the three routers is 1544 kbps. Document the comm<strong>and</strong>s, including<br />

router prompt, to configure RTB <strong>and</strong> RTC with the correct b<strong>and</strong>width.<br />

RTB(config)#interface serial 0/0<br />

RTB(config-if)#b<strong>and</strong>width 128<br />

!<br />

RTC(config)#interface serial 0/0<br />

RTC(config-if)#b<strong>and</strong>width 128<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 179<br />

The following output was sent to the console by the IOS when RTA <strong>and</strong> RTB established a new adjacency.<br />

Document the comm<strong>and</strong>, including router prompt, that you need to configure to have this message sent to<br />

the console on RTA.<br />

RTA#<br />

00:24:44: %DUAL-5-NBRCHANGE: IP-EIGRP 100: Neighbor 10.0.0.2 (Serial0/1) is up:<br />

new adjacency<br />

RTA(config-router)#eigrp log-neighbor-changes<br />

Figure 3-1 has discontiguous subnets. Subnets of the 10.0.0.0 classful network separate subnets of the<br />

172.16.0.0 classful network. As the configuration st<strong>and</strong>s now, no router can send traffic to any of the<br />

LANs connected to another router. The routing table for RTA follows. Document the comm<strong>and</strong>, including<br />

router prompt, that must be configured on all three routers before all subnets will be reachable from anywhere<br />

in the network.<br />

RTA#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route


180 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Gateway of last resort is not set<br />

172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks<br />

D 172.16.0.0/16 is a summary, 00:23:16, Null0<br />

C 172.16.0.0/18 is directly connected, FastEthernet0/0<br />

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks<br />

D 10.0.0.0/8 is a summary, 00:23:20, Null0<br />

C 10.0.0.0/30 is directly connected, Serial0/1<br />

RTA(config-router)#no auto-summary<br />

Note: Now is a good time to complete Curriculum Lab 3-1: Configuring EIGRP Routing (3.2.1).<br />

The output that follows shows the current routing table for RTA with automatic summarization disabled,<br />

<strong>and</strong> then shows the same routing table after manual summarization. Even in this simulated network, the<br />

table is rather large. In production networks, this table could be huge. Unlike single-area OSPF configurations,<br />

EIGRP provides a method to manually summarize subnets within the same address space into one<br />

route table entry. Document the comm<strong>and</strong>s necessary to configure RTB <strong>and</strong> RTC to manually summarize<br />

the simulated LANs into one advertisement.<br />

RTA routing table before manual summarization:<br />

RTA#show ip route<br />

(output omitted)<br />

Gateway of last resort is not set<br />

172.16.0.0/16 is variably subnetted, 9 subnets, 3 masks<br />

D 172.16.160.0/19 [90/2297856] via 10.0.0.2, 00:00:16, Serial0/1<br />

D 172.16.128.0/19 [90/2297856] via 10.0.0.2, 00:00:16, Serial0/1<br />

D 172.16.224.0/19 [90/2297856] via 10.0.0.2, 00:00:16, Serial0/1<br />

D 172.16.192.0/19 [90/2297856] via 10.0.0.2, 00:00:16, Serial0/1<br />

C 172.16.0.0/18 is directly connected, FastEthernet0/0<br />

D 172.16.112.0/20 [90/2297856] via 10.0.0.9, 00:00:29, Serial0/0<br />

D 172.16.96.0/20 [90/2297856] via 10.0.0.9, 00:00:30, Serial0/0<br />

D 172.16.80.0/20 [90/2297856] via 10.0.0.9, 00:00:30, Serial0/0<br />

D 172.16.64.0/20 [90/2297856] via 10.0.0.9, 00:00:30, Serial0/0<br />

10.0.0.0/30 is subnetted, 3 subnets<br />

C 10.0.0.8 is directly connected, Serial0/0<br />

C 10.0.0.0 is directly connected, Serial0/1<br />

D 10.0.0.4 [90/21024000] via 10.0.0.9, 00:00:30, Serial0/0<br />

[90/21024000] via 10.0.0.2, 00:00:30, Serial0/1<br />

RTA routing table after manual summarization:<br />

RTA#show ip route<br />

(output omitted)<br />

Gateway of last resort is not set<br />

172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks<br />

D 172.16.128.0/17 [90/2297856] via 10.0.0.2, 00:00:36, Serial0/1


C 172.16.0.0/18 is directly connected, FastEthernet0/0<br />

D 172.16.64.0/18 [90/2297856] via 10.0.0.9, 00:02:43, Serial0/0<br />

10.0.0.0/30 is subnetted, 3 subnets<br />

C 10.0.0.8 is directly connected, Serial0/0<br />

C 10.0.0.0 is directly connected, Serial0/1<br />

D 10.0.0.4 [90/21024000] via 10.0.0.9, 00:00:36, Serial0/0<br />

[90/21024000] via 10.0.0.2, 00:00:36, Serial0/1<br />

RTB(config)#interface s0/0<br />

RTB(config-if)#ip summary-address eigrp 100 172.16.128.0 255.255.128.0<br />

RTB(config-if)#interface s0/1<br />

RTB(config-if)#ip summary-address eigrp 100 172.16.128.0 255.255.128.0<br />

!<br />

RTC(config-if)#interface s0/0<br />

RTC(config-if)#ip summary-address eigrp 100 172.16.64.0 255.255.192.0<br />

RTC(config-if)#interface s0/1<br />

RTC(config-if)#ip summary-address eigrp 100 172.16.64.0 255.255.192.0<br />

Instructor Note: Configuring manual summarization for EIGRP is an opportunity to reinforce the route summarization<br />

skills taught in Chapter 1, “Introduction to Classless Routing.”<br />

Troubleshooting Routing Protocols<br />

Learning how to troubleshoot network problems <strong>and</strong> misconfigurations is paramount to your <strong>CCNA</strong> skill<br />

set. Not only will this skill save you countless hours on the job, your ability to problem solve will be thoroughly<br />

tested on the <strong>CCNA</strong> exam. The only way to develop troubleshooting or problem-solving skills is<br />

by practicing. The more “h<strong>and</strong>s on” experience you gain from cabling <strong>and</strong> configuring networks, the more<br />

problems you will run across <strong>and</strong> solve.<br />

By far, the most common errors occur at Layer 1. Always check your physical layer first when a problem<br />

occurs. Then, work your way up the layers. Too often, students issue the comm<strong>and</strong> show run to find a<br />

problem. Rarely is this the best or most efficient method of troubleshooting your network. In addition, on<br />

production networks the running configuration can span many pages. Learn the show <strong>and</strong> debug comm<strong>and</strong>s.<br />

Develop an underst<strong>and</strong>ing of what the output from these comm<strong>and</strong>s means. Not only will this skill<br />

better assist you in troubleshooting your network configurations, you will be better prepared for the troubleshooting<br />

scenarios you encounter on the <strong>CCNA</strong> exam.<br />

In the following exercises, you will document a problem-solving flow chart <strong>and</strong> then work through show<br />

<strong>and</strong> debug comm<strong>and</strong>s for RIP, EIGRP, <strong>and</strong> OSPF. The Internet Research Exercise asks you to research the<br />

fields of an IP packet header.<br />

Problem-Solving Cycle<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 181<br />

In the space provided, draw a flow chart showing a generic problem-solving cycle that starts with “identify<br />

problem” <strong>and</strong> ends with “document problem <strong>and</strong> solution.” Your flow chart should have no less than six<br />

steps, but it can have more.


182 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 3-2 Problem-Solving Cycle<br />

Identify<br />

Problem<br />

Troubleshooting RIP<br />

The most common problem found in RIP that prevents RIP routes from being advertised is discontiguous<br />

subnets because RIP Version 1 does not support VLSM. First, make sure both Layer 1 <strong>and</strong> Layer 2 are<br />

functioning. Then, use the comm<strong>and</strong>s reviewed in this exercise to verify <strong>and</strong> troubleshoot the network.<br />

What comm<strong>and</strong> generates the following output?<br />

Router#show ip route<br />

Gather/<br />

Analyze<br />

Data<br />

Solution<br />

Resolve<br />

Problem?<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 192.168.1.253 to network 0.0.0.0<br />

192.168.1.0/24 is variably subnetted, 6 subnets, 2 masks<br />

R 192.168.1.64/26 [120/1] via 192.168.1.246, 00:00:03, Serial0/1<br />

C 192.168.1.0/26 is directly connected, FastEthernet0/0<br />

R 192.168.1.248/30 [120/1] via 192.168.1.246, 00:00:03, Serial0/1<br />

[120/1] via 192.168.1.253, 00:00:07, Serial0/0<br />

C 192.168.1.252/30 is directly connected, Serial0/0<br />

C 192.168.1.244/30 is directly connected, Serial0/1<br />

R 192.168.1.128/26 [120/1] via 192.168.1.253, 00:00:08, Serial0/0<br />

R* 0.0.0.0/0 [120/9] via 192.168.1.253, 00:00:02, Serial0/0<br />

Using the preceding output, answer the following questions.<br />

No<br />

Yes<br />

Document<br />

Problem <strong>and</strong><br />

Solution<br />

List Possible<br />

Solutions<br />

Test Most<br />

Likely<br />

Solution


In the shaded entry for 192.168.1.128/26, what does the 120 mean in the [120/1] portion of the entry?<br />

Administrative distance<br />

What does the 1 mean?<br />

The metric; number of hops to the destination<br />

Why are there two entries to the 192.168.1.248/30 network?<br />

RIP will install up to four equal-cost routes to the destination.<br />

How many subnets <strong>and</strong> masks are used in the 192.168.1.0/24 address space?<br />

Six subnets <strong>and</strong> two masks<br />

What comm<strong>and</strong> generates the following output?<br />

Router#show ip protocols<br />

Routing Protocol is “rip”<br />

Sending updates every 30 seconds, next due in 15 seconds<br />

Invalid after 180 seconds, hold down 180, flushed after 240<br />

Outgoing update filter list for all interfaces is not set<br />

Incoming update filter list for all interfaces is not set<br />

Redistributing: rip<br />

Default version control: send version 2, receive version 2<br />

Interface Send Recv Triggered RIP Key-chain<br />

FastEthernet0/0 2 2<br />

Serial0/0 2 2<br />

Serial0/1 2 2<br />

Automatic network summarization is not in effect<br />

Maximum path: 6<br />

Routing for Networks:<br />

192.168.1.0<br />

Routing Information Sources:<br />

Gateway Distance Last Update<br />

192.168.1.253 120 00:00:17<br />

192.168.1.246 120 00:00:12<br />

Distance: (default is 120)<br />

Using the preceding output, answer the following questions.<br />

How many routers are advertising RIP routes to this router?<br />

Two; listed under “Routing Information Sources”<br />

How many equal-cost routes to the same destination can this router use (not the default)?<br />

Six; shown as “Maximum path”<br />

What are the timers for RIP:<br />

■ Update: 30 seconds<br />

■ Holddown: 180 seconds<br />

■ Invalid: 180 seconds<br />

■ Flushed: 240 seconds<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 183


184 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

What comm<strong>and</strong> generates the following output?<br />

Router#debug ip rip<br />

00:29:04: RIP: received v2 update from 192.168.1.253 on Serial0/0<br />

00:29:04: 192.168.1.64/26 via 0.0.0.0 in 2 hops<br />

00:29:04: 192.168.1.128/26 via 0.0.0.0 in 1 hops<br />

00:29:04: 192.168.1.248/30 via 0.0.0.0 in 1 hops<br />

00:29:05: RIP: sending v2 update to 224.0.0.9 via FastEthernet0/0 (192.168.1.1)<br />

00:29:05: RIP: build update entries<br />

00:29:05: 192.168.1.64/26 via 0.0.0.0, metric 2, tag 0<br />

00:29:05: 192.168.1.128/26 via 0.0.0.0, metric 2, tag 0<br />

00:29:05: 192.168.1.244/30 via 0.0.0.0, metric 1, tag 0<br />

00:29:05: 192.168.1.248/30 via 0.0.0.0, metric 2, tag 0<br />

00:29:05: 192.168.1.252/30 via 0.0.0.0, metric 1, tag 0<br />

00:29:05: RIP: sending v2 update to 224.0.0.9 via Serial0/0 (192.168.1.254)<br />

00:29:05: RIP: build update entries<br />

00:29:05: 192.168.1.0/26 via 0.0.0.0, metric 1, tag 0<br />

00:29:05: 192.168.1.64/26 via 0.0.0.0, metric 2, tag 0<br />

00:29:05: 192.168.1.244/30 via 0.0.0.0, metric 1, tag 0<br />

Using the preceding output, answer the following questions.<br />

How many RIP neighbors does this router have?<br />

From the output, only one, at 192.168.1.253<br />

Notice that this router sent two updates. How many routes did RIP advertise out FastEthernet0/0?<br />

Five<br />

How many routes did RIP advertise out Serial0/0?<br />

Three<br />

What routes that were advertised out Fa0/0 were not advertised out S0/0?<br />

192.168.1.252/30 <strong>and</strong> 192.168.1.128/26<br />

Why do you think these routes were not advertised out the S0/0 interface?<br />

Because split-horizon prevents a router from sending out updates about networks to another router if the<br />

router receiving the update is the one that originally advertised the route. In this case, the route heard<br />

about the 192.168.1.128/26 network from the router it is sending the update to. In addition, if two routers<br />

share a network, then neither router needs to advertise the route to the other router. That is the case with<br />

the 192.168.1.252/30 network.<br />

Is it necessary to advertise out the Fast Ethernet interface? If not, what can you do to stop advertisements?<br />

If so, why?<br />

The only reason to advertise out the Fast Ethernet interface is if there is another RIP router that needs<br />

updates out that interface. Otherwise, it is best to turn off updates on Fast Ethernet interfaces by using the<br />

passive-interface comm<strong>and</strong>.


Troubleshooting EIGRP<br />

Normal EIGRP operation is stable, efficient in b<strong>and</strong>width utilization, <strong>and</strong> relatively simple to monitor <strong>and</strong><br />

troubleshoot. Make sure your Layer 1 <strong>and</strong> Layer 2 are functioning. Then use the following comm<strong>and</strong>s to<br />

verify <strong>and</strong> troubleshoot the network.<br />

What comm<strong>and</strong> generates the following output?<br />

Router#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks<br />

D 172.16.128.0/17 [90/2297856] via 10.0.0.2, 00:00:19, Serial0/1<br />

C 172.16.0.0/18 is directly connected, FastEthernet0/0<br />

D 172.16.64.0/18 [90/2297856] via 10.0.0.9, 00:00:19, Serial0/0<br />

10.0.0.0/30 is subnetted, 3 subnets<br />

C 10.0.0.8 is directly connected, Serial0/0<br />

C 10.0.0.0 is directly connected, Serial0/1<br />

D 10.0.0.4 [90/21024000] via 10.0.0.2, 00:00:19, Serial0/1<br />

[90/21024000] via 10.0.0.9, 00:00:19, Serial0/0<br />

Using the preceding output, answer the following questions.<br />

In the shaded entry for 172.16.128.0/17, what does the 90 mean in the [90/2297856] portion of the entry?<br />

Administrative distance<br />

What does the 2297856 mean?<br />

The metric; it is a value calculated by DUAL that takes into consideration b<strong>and</strong>width <strong>and</strong> delay.<br />

Why are there two entries to the 10.0.0.4/30 network?<br />

By default, EIGRP installs up to four equal-cost routes to the destination.<br />

How many subnets <strong>and</strong> masks are used in the 192.168.1.0/24 address space?<br />

Six subnets <strong>and</strong> two masks<br />

What comm<strong>and</strong> generates the following output?<br />

Router#show ip protocols<br />

Routing Protocol is “eigrp 100”<br />

Outgoing update filter list for all interfaces is not set<br />

Incoming update filter list for all interfaces is not set<br />

Default networks flagged in outgoing updates<br />

Default networks accepted from incoming updates<br />

EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0<br />

EIGRP maximum hopcount 100<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 185


186 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

EIGRP maximum metric variance 1<br />

Redistributing: eigrp 100<br />

Automatic network summarization is not in effect<br />

Maximum path: 5<br />

Routing for Networks:<br />

10.0.0.0<br />

172.16.0.0<br />

Routing Information Sources:<br />

Gateway Distance Last Update<br />

10.0.0.9 90 00:00:53<br />

10.0.0.2 90 00:00:53<br />

Distance: internal 90 external 170<br />

Using the preceding output, answer the following questions.<br />

How many routers are advertising EIGRP routes to this router?<br />

Two; listed under “Routing Information Sources”<br />

How many equal-cost routes to the same destination can this router use (not the default)?<br />

Five; shown as “Maximum path”<br />

The K1 <strong>and</strong> K3 values in the metric weight have a value of 1 each. What are these values for?<br />

In the EIGRP metric formula used by DUAL, the value for b<strong>and</strong>width (K1) <strong>and</strong> the value for delay (K3)<br />

are given the same proportional weight.<br />

The K2, K4, <strong>and</strong> K5 values are all 0. What do these values represent <strong>and</strong> why are they 0?<br />

They represent reliability, load, <strong>and</strong> MTU, which can also be configured as part of the EIGRP metric. By<br />

default, these values are set to 0 <strong>and</strong> only b<strong>and</strong>width <strong>and</strong> delay are evaluated.<br />

What comm<strong>and</strong> generates the following output?<br />

Router#show ip eigrp neighbors<br />

H Address Interface Hold Uptime SRTT RTO Q Seq Type<br />

(sec) (ms) Cnt Num<br />

1 10.0.0.9 Se0/0 11 00:23:21 24 200 0 4<br />

0 10.0.0.2 Se0/1 10 00:23:35 32 200 0 8<br />

What comm<strong>and</strong> generates the following output?<br />

Router#show ip eigrp topology<br />

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,<br />

r - reply Status, s - sia Status<br />

P 10.0.0.8/30, 1 successors, FD is 2169856<br />

via Connected, Serial0/0<br />

P 10.0.0.0/30, 1 successors, FD is 2169856<br />

via Connected, Serial0/1<br />

P 10.0.0.4/30, 2 successors, FD is 21024000<br />

via 10.0.0.2 (21024000/20512000), Serial0/1<br />

via 10.0.0.9 (21024000/20512000), Serial0/0<br />

P 172.16.128.0/17, 1 successors, FD is 2297856<br />

via 10.0.0.2 (2297856/128256), Serial0/1


P 172.16.0.0/18, 1 successors, FD is 28160<br />

via Connected, FastEthernet0/0<br />

P 172.16.64.0/18, 1 successors, FD is 2297856<br />

via 10.0.0.9 (2297856/128256), Serial0/0<br />

What comm<strong>and</strong> generates the following output?<br />

Router#show ip eigrp traffic<br />

Hellos sent/received: 1044/696<br />

Updates sent/received: 9/9<br />

Queries sent/received: 0/0<br />

Replies sent/received: 0/0<br />

Acks sent/received: 7/7<br />

Input queue high water mark 1, 0 drops<br />

SIA-Queries sent/received: 0/0<br />

SIA-Replies sent/received: 0/0<br />

What comm<strong>and</strong> generates the following output?<br />

Router#debug ip eigrp<br />

IP-EIGRP: Processing incoming UPDATE packet<br />

IP-EIGRP: Ext 192.168.3.0 255.255.255.0 M 386560 <strong>–</strong> 256000 130560 SM 360960 <strong>–</strong> 256000<br />

104960<br />

IP-EIGRP: Ext 192.168.0.0 255.255.255.0 M 386560 <strong>–</strong> 256000 130560 SM 360960 <strong>–</strong> 256000<br />

104960<br />

IP-EIGRP: Ext 192.168.3.0 255.255.255.0 M 386560 <strong>–</strong> 256000 130560 SM 360960 <strong>–</strong> 256000<br />

104960<br />

IP-EIGRP: 172.69.43.0 255.255.255.0, - do advertise out Ethernet0/1<br />

IP-EIGRP: Ext 172.68.43.0 255.255.255.0 metric 371200 <strong>–</strong> 25600 115200<br />

IP-EIGRP: 192.135.246.0 255.255.255.0, - do advertise out Ethernet0/1<br />

IP-EIGRP: Ext 192.135.246.0 255.255.255.0 metric 46310656 <strong>–</strong> 45714176 596480<br />

IP-EIGRP: 172.69.40.0 255.255.255.0, - do advertise out Ethernet0/1<br />

IP-EIGRP: Ext 172.68.40.0 255.255.255.0 metric 2272256 <strong>–</strong> 1657856 614400<br />

IP-EIGRP: 192.135.245.0 255.255.255.0, - do advertise out Ethernet0/1<br />

IP-EIGRP: Ext 192.135.245.0 255.255.255.0 metric 40622080 <strong>–</strong> 40000000 622080<br />

IP-EIGRP: 192.135.244.0 255.255.255.0, - do advertise out Ethernet0/1<br />

Troubleshooting OSPF<br />

The majority of problems encountered with OSPF relate to the formation of adjacencies <strong>and</strong> the synchronization<br />

of the link-state databases.<br />

Make sure your Layer 1 <strong>and</strong> Layer 2 are functioning. Then use the following comm<strong>and</strong>s to verify <strong>and</strong><br />

troubleshoot the network.<br />

What comm<strong>and</strong> generates the following output?<br />

Router#show ip route<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 187<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route


188 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Gateway of last resort is 192.168.1.245 to network 0.0.0.0<br />

192.168.1.0/24 is variably subnetted, 6 subnets, 2 masks<br />

C 192.168.1.64/26 is directly connected, FastEthernet0/0<br />

O 192.168.1.0/26 [110/65] via 192.168.1.245, 00:00:06, Serial0/1<br />

C 192.168.1.248/30 is directly connected, Serial0/0<br />

O 192.168.1.252/30 [110/128] via 192.168.1.245, 00:00:06, Serial0/1<br />

C 192.168.1.244/30 is directly connected, Serial0/1<br />

O 192.168.1.128/26 [110/129] via 192.168.1.245, 00:00:06, Serial0/1<br />

O*E2 0.0.0.0/0 [110/1] via 192.168.1.245, 00:00:07, Serial0/1<br />

Using the preceding output, answer the following questions.<br />

In the entry for 192.168.1.0/26, what does the 110 mean in the [110/65] portion of the entry?<br />

Administrative distance<br />

What does the 65 mean?<br />

The metric; it is the accumulated cost of the route based on the 108/bps formula.<br />

How many subnets <strong>and</strong> masks are used in the 192.168.1.0/24 address space?<br />

Six subnets <strong>and</strong> two masks<br />

What does O*E2 st<strong>and</strong> for <strong>and</strong> what does it mean?<br />

This is an external type 2 OSPF route. The * means that it is a c<strong>and</strong>idate for default routing. The O <strong>and</strong> E2<br />

identify this as an external type 2 OSPF route, which means that the cost is not accumulated as the route is<br />

propagated throughout the OSPF area.<br />

What comm<strong>and</strong> generates the following output?<br />

Router#show ip protocols<br />

Routing Protocol is “ospf 1”<br />

Outgoing update filter list for all interfaces is not set<br />

Incoming update filter list for all interfaces is not set<br />

Router ID 209.165.202.129<br />

It is an autonomous system boundary router<br />

Redistributing External Routes from,<br />

Number of areas in this router is 1. 1 normal 0 stub 0 nssa<br />

Maximum path: 4<br />

Routing for Networks:<br />

192.168.1.0 0.0.0.63 area 0<br />

192.168.1.244 0.0.0.3 area 0<br />

192.168.1.252 0.0.0.3 area 0<br />

Routing Information Sources:<br />

Gateway Distance Last Update<br />

209.165.202.129 110 00:08:10<br />

192.168.1.249 110 00:08:10<br />

192.168.1.253 110 00:08:10<br />

Distance: (default is 110)<br />

Notice in the preceding output the line that states, “It is an autonomous system boundary router.” What<br />

does this mean?


It means that this router is running at least two different routing processes. One of them is OSPF. In this<br />

case, the other is a static default route. This can be deduced from the “Routing Information Sources” portion<br />

of the output. Notice that the gateway 209.165.202.129 is not listed in the “Routing for Networks”<br />

portion of the output. This means that 209.165.202.129 is not part of OSPF but is being routed inside<br />

OSPF from another source. In this case, the default-information originate comm<strong>and</strong> along with the ip<br />

route comm<strong>and</strong> has made this router an ASBR (autonomous system boundary router).<br />

What comm<strong>and</strong> generates the following output?<br />

Router#debug ip ospf events<br />

00:09:46: OSPF: Rcv hello from 192.168.1.249 area 0 from Serial0/1 192.168.1.246<br />

00:09:46: OSPF: Mismatched hello parameters from 192.168.1.246<br />

00:09:46: OSPF: Dead R 160 C 120, Hello R 40 C 40<br />

00:10:26: OSPF: Rcv hello from 192.168.1.253 area 0 from Serial0/0 192.168.1.253<br />

00:10:26: OSPF: End of hello processing<br />

00:10:26: OSPF: Rcv hello from 192.168.1.249 area 0 from Serial0/1 192.168.1.246<br />

00:10:26: OSPF: Mismatched hello parameters from 192.168.1.246<br />

00:10:26: OSPF: Dead R 160 C 120, Hello R 40 C 40<br />

00:11:06: OSPF: Rcv hello from 192.168.1.253 area 0 from Serial0/0 192.168.1.253<br />

00:11:06: OSPF: End of hello processing<br />

00:11:06: OSPF: Rcv hello from 192.168.1.249 area 0 from Serial0/1 192.168.1.246<br />

00:11:06: OSPF: Mismatched hello parameters from 192.168.1.246<br />

00:11:06: OSPF: Dead R 160 C 120, Hello R 40 C 40<br />

00:11:46: OSPF: Rcv hello from 192.168.1.253 area 0 from Serial0/0 192.168.1.253<br />

00:11:46: OSPF: End of hello processing<br />

00:11:46: OSPF: Rcv hello from 192.168.1.249 area 0 from Serial0/1 192.168.1.246<br />

00:11:46: OSPF: Mismatched hello parameters from 192.168.1.246<br />

00:11:46: OSPF: Dead R 160 C 120, Hello R 40 C 40<br />

00:11:46: OSPF: 192.168.1.249 address 192.168.1.246 on Serial0/1 is dead<br />

00:11:46: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.1.249 on Serial0/1 from FULL to<br />

DOWN, Neighbor Down: Dead timer expired<br />

From the preceding comm<strong>and</strong> output, what is the problem?<br />

In OSPF configurations, hello <strong>and</strong> dead intervals must be the same for all OSPF neighbors. In the output<br />

shown, you interpret the line Dead R 160 C 120, Hello R 40 C 40 as follows: dead received, 160 seconds;<br />

dead configured 120 seconds; hello received, 40 seconds; hello configured, 40 seconds.<br />

In this case, the dead interval has been changed from 160, which was four times the hello, to 120. The reason<br />

why you know that it has just been changed is that the local router had established adjacency with<br />

192.168.1.249. It took the configured 120-second dead interval before the adjacency state with the neighbor<br />

to go from FULL to DOWN.<br />

What comm<strong>and</strong> would fix the “mismatch of hello parameters”?<br />

Router(config-if)#ip ospf dead-interval 160<br />

or<br />

Router(config-if)#no ip ospf dead-interval 120<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 189


190 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Suppose that after you fixed the mismatch problem, you wanted to watch the processing of packets as the<br />

two neighbors re-establish adjacency. What comm<strong>and</strong> generated the following output?<br />

Router#debug ip ospf packets<br />

00:24:26: OSPF: rcv. v:2 t:1 l:44 rid:192.168.1.249<br />

aid:0.0.0.0 chk:0 aut:2 keyid:1 seq:0x2B91532F from Serial0/1<br />

00:24:29: OSPF: rcv. v:2 t:2 l:32 rid:192.168.1.249<br />

aid:0.0.0.0 chk:0 aut:2 keyid:1 seq:0x2B915330 from Serial0/1<br />

00:24:29: OSPF: rcv. v:2 t:2 l:112 rid:192.168.1.249<br />

aid:0.0.0.0 chk:0 aut:2 keyid:1 seq:0x2B915331 from Serial0/1<br />

00:24:29: OSPF: rcv. v:2 t:2 l:32 rid:192.168.1.249<br />

aid:0.0.0.0 chk:0 aut:2 keyid:1 seq:0x2B915332 from Serial0/1<br />

00:24:29: OSPF: rcv. v:2 t:2 l:32 rid:192.168.1.249<br />

aid:0.0.0.0 chk:0 aut:2 keyid:1 seq:0x2B915333 from Serial0/1<br />

00:24:30: OSPF: rcv. v:2 t:4 l:112 rid:192.168.1.249<br />

aid:0.0.0.0 chk:0 aut:2 keyid:1 seq:0x2B915335 from Serial0/1<br />

00:24:32: OSPF: rcv. v:2 t:5 l:44 rid:192.168.1.249<br />

aid:0.0.0.0 chk:0 aut:2 keyid:1 seq:0x2B915337 from Serial0/1<br />

In the following table, fill in the description for each field shown in the preceding output.<br />

Note: You may have to search Cisco.com to find the answers.<br />

Field Description<br />

v: OSPF version<br />

t: OSPF packet type; possible packet types are as follows:<br />

1: Hello<br />

2: Data description<br />

3: Link-state request<br />

4: Link-state update<br />

5: Link-state acknowledgment<br />

l: OSPF packet length in bytes<br />

rid: OSPF router ID<br />

aid: OSPF area ID<br />

chk: OSPF checksum<br />

aut: OSPF authentication type; possible authentication types are as follows:<br />

0: No authentication<br />

1: Simple password<br />

2: MD5<br />

auk: OSPF authentication key<br />

keyid: MD5 key ID<br />

seq: Sequence number


Internet Research Exercise<br />

The <strong>CCNA</strong> objectives cover all of the layers of the OSI model to some extent. Some layers are less important<br />

than others to your studies. For example, the presentation <strong>and</strong> session layers can be thought of as<br />

belonging to the application layer, as shown when comparing the TCP/IP model <strong>and</strong> the OSI model side<br />

by side. The most important layer of the OSI model for <strong>CCNA</strong> c<strong>and</strong>idates is the network layer. And the<br />

most important protocol of the network layer is the Internet Protocol (IP).<br />

Your assignment is to research IP to discover detailed information about the structure of its packet header.<br />

You can use any trusted Internet resource, but the original source is the RFC. Make sure you list your<br />

sources in the place provided at the end of this exercise.<br />

The IP Packet Header<br />

In Figure 3-3, label all the fields of the IP packet header.<br />

Figure 3-3 IP Packet Header<br />

A B C D<br />

E F G<br />

H I J<br />

K<br />

L<br />

Version<br />

Field Descriptions<br />

Describe in as much detail as possible the purpose of each field in the IP packet header.<br />

Field A Version<br />

Time to Live<br />

Header<br />

Length<br />

This field identifies the IP version, which is currently version 4. So, the bit value is 0100 in this field. The<br />

next version is version 6. There are no other versions.<br />

Field B Header Length<br />

Type of Service or<br />

Differentiated<br />

Service<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 191<br />

Total Length<br />

Identifier Flags<br />

Fragment Offset<br />

Protocols<br />

M N<br />

Options<br />

32 Bits<br />

8 8 8 8<br />

Source Address<br />

Destination Address<br />

Header Checksum<br />

Padding<br />

This field specifies in 32-bit words the length of this header, which is five or 0101 when no options are<br />

specified. This field’s value can be as large as 1111 or 15, meaning the header can be a maximum of 15<br />

32-bit words or 60 octets.


192 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Field C Type of Service (TOS) or Differentiated Service<br />

This 8-bit field can be broken down into two parts: Precedence <strong>and</strong> TOS. The first 3 bits specify the<br />

Precedence value (e.g. routine-0, priority-1, immediate-2, etc.); 4th bit specifies minimal delay; 5th bit<br />

specifies maximize throughput; 6th bit specifies maximize reliability; 7th bit specifies minimize monetary<br />

costs; 8th bit is currently unused. Although this field is not commonly used <strong>and</strong> is usually set to all zeros,<br />

the Precedence bits are occasionally used for QoS applications.<br />

Field D Total Length<br />

This field is a 16-bit number specifying the total length of the packet (header + data) in bytes; can be up to<br />

65,535 bytes. By subtracting the header length for this value, you can determine the size of the payload.<br />

Field E Identifier<br />

This field is used to identify the fragments of one datagram from those of another. The originating protocol<br />

module of an Internet datagram sets the Identifier field to a value that must be unique for that sourcedestination<br />

pair <strong>and</strong> protocol for the time the datagram will be active in the Internet system. The originating<br />

protocol module of a complete datagram sets the MF bit to 0 <strong>and</strong> the Fragment Offset field to 0.<br />

Field F Flags<br />

These 3 bits indicate whether the packet can be fragmented <strong>and</strong> whether it has more fragments coming.<br />

The 3 bits are as follows:<br />

■ 1st bit: Reserved (unused)<br />

■ 2nd bit: Fragment? 1=no, 0=yes<br />

■ 3rd bit: More Fragments Coming? 0=no, 1=yes<br />

Field G Fragment Offset<br />

This is a byte count from the beginning of the original packet so that the destination knows where to place<br />

this particular fragment when reconstructing the packet. If a router’s interface is set to a maximum transmission<br />

unit that is smaller than the sent packet, then it will be fragmented by the router. However, if the<br />

Do Not Fragment bit is set in the Flag field, then the packet will be dropped <strong>and</strong> an ICMP message will be<br />

sent to the source.<br />

Field H Time to Live<br />

This 8-bit field helps prevent routing loops. This field is set with a certain number when the packet is first<br />

encapsulated at the source. Each router along the path from the source to the destination decrements this<br />

field. If this field reaches 0 before the packet reaches the destination, then the packet is dropped <strong>and</strong> an<br />

ICMP messages is sent to the source. The trace utility uses this field to trace a route to a specified destination.<br />

Field I Protocols<br />

Also called Service Access Point (SAP), the Protocol field identifies the upper-layer protocol that the data<br />

packet is destined for. A few of the values of this field are shown in the following table:


Protocol Value Network Layer Protocol<br />

1 ICMP<br />

6 TCP<br />

17 UDP<br />

88 IGRP<br />

89 OSPF<br />

Instructor Note: Although ICMP is identified by the number 1, it is not an upper-layer protocol, but operates in the<br />

network layer. An ICMP packet is encapsulated with an IP header.<br />

Field J Header Checksum<br />

This field is used to check the integrity of the bits in the header. Because each router decrements the TTL<br />

field, this checksum must be recalculated at each hop on the way to the destination.<br />

Field K Source Address<br />

This field is the 32-bit IP address for the source of the packet.<br />

Field L Destination Address<br />

This field is the 32-bit IP address for the destination of the packet.<br />

Field M Options<br />

IP options can be a number of things. If the options in this field do not extend the full 32 bits of this sixth<br />

32-bit word, then padding is added. The data must begin on a new 32-bit word boundary.<br />

Field N Padding<br />

If necessary, the source will add zeros to the end of the last 32-bit word in the packet header to ensure that<br />

the header always ends on a 32-bit word.<br />

Sources<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 193<br />

Check student sources to see if they are legitimate. “RFC 791 Internet Protocol” should be listed. For the<br />

sample answers here, the RFC was used as well as the Cisco Press title Routing TCP/IP, Volume 1, Second<br />

Edition, pp. 7-16. The website http://www.networksorcery.com was also consulted.


194 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Lab Exercises<br />

Comm<strong>and</strong> Reference<br />

In the table that follows, record the comm<strong>and</strong>, including the correct router prompt, that fits the description.<br />

Fill in any blanks with the appropriate missing information.<br />

Comm<strong>and</strong> Description<br />

Router(config)#router eigrp 100 Turns on the EIGRP process.<br />

100 is the autonomous system (AS) number,<br />

which can be a number between 1 <strong>and</strong> 65535.<br />

All routers in the same AS must use the same<br />

AS number.<br />

Router(config-router)#eigrp log-neighbor-changes Logs any changes to an EIGRP neighbor<br />

adjacency.<br />

Router(config-router)#no auto-summary Turns off the automatic summarization of<br />

networks at classful boundaries.<br />

Router(config-if)#b<strong>and</strong>width 128 Changes the b<strong>and</strong>width of an interface to<br />

128 kbps.<br />

Router(config-if)#ip summary-address Enables manual summarization on this specific<br />

eigrp 100 10.10.0.0 255.255.0.0 interface for the 10.10.0.0/16 address space.<br />

Router#show ip eigrp neighbors Displays a neighbor table.<br />

Router#show ip eigrp neighbors detail Displays a detailed neighbor table.<br />

Router#show ip eigrp interface Displays EIGRP information for each interface.<br />

Router#show ip eigrp topology Displays the topology table. This comm<strong>and</strong><br />

shows you where your feasible successors are.<br />

Router#show ip eigrp traffic Displays the number <strong>and</strong> type of packets sent<br />

<strong>and</strong> received.<br />

Router#debug eigrp fsm Displays events/actions related to the DUAL<br />

FSM.<br />

Router#debug eigrp packet Displays events/actions related to EIGRP packets.<br />

Router#debug eigrp neighbor Displays events/actions related to EIGRP neighbors.


Curriculum Lab 3-1: Configuring EIGRP Routing (3.2.1)<br />

Figure 3-4 Topology for Lab 3-1<br />

Table 3-1 Lab Equipment Configuration: Part I<br />

Router Designation Router Name Routing Protocol Network Statements<br />

Router 1 Paris EIGRP 192.168.3.0<br />

192.168.2.0<br />

Router 2 Warsaw EIGRP 192.168.1.0<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

Table 3-2 Lab Equipment Configuration: Part II<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 195<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Router 1 Router 2<br />

Crossover Cable<br />

Serial Cable<br />

192.168.2.0<br />

Router IP Host Fast Ethernet 0 Interface Serial 0 Address/ Loopback 0<br />

Designation Table Entry Address/ Type Subnet Mask Subnet Mask<br />

Subnet Mask Serial 0 Address/<br />

Router 1 Warsaw 192.168.3.1/24 DCE 192.168.2.1/30 192.168.0.2/24<br />

Router 2 Paris 192.168.1.1/24 DTE 192.168.2.2/30 No address<br />

The interface type <strong>and</strong> address/subnet mask for the serial 1 interface on both routers is not applicable for<br />

this lab.


196 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

The “IP Host Table Entry” column contents indicate the names of the other routers in the IP host table.<br />

Objectives<br />

■ Set up an IP addressing scheme for the network.<br />

■ Configure <strong>and</strong> verify EIGRP routing.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 3-4. You can use any router that meets the interface<br />

requirements in Figure 3-4 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A, “Router Interface Summary Chart,” to correctly specify the interface identifiers<br />

based on the equipment in your lab. The 1721 series routers produced the configuration output in<br />

this lab. Another router might produce slightly different output. You should execute the following steps on<br />

each router unless you are specifically instructed otherwise. Start a HyperTerminal session.<br />

Implement the procedure that is documented in Appendix C, “Erasing <strong>and</strong> Reloading the Router,” on all<br />

routers before you continue with this lab.<br />

Task 1: Configure the Routers<br />

On the routers, enter global configuration mode <strong>and</strong> configure the hostname as shown in the chart. Then,<br />

configure the console, virtual terminal, <strong>and</strong> enable passwords. Next, configure the interfaces according to<br />

Table 3-2. Finally, configure the IP hostnames. If you have problems configuring the router basics, refer to<br />

Lab 1-2, “Review of Basic Router Configuration with RIP.”<br />

Note: Do not configure the routing protocol until you are specifically told to.<br />

PARIS<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname PARIS<br />

PARIS(config)#enable secret class<br />

PARIS(config)#line console 0<br />

PARIS(config-line)#password cisco<br />

PARIS(config-line)#login<br />

PARIS(config-line)#line vty 0 4<br />

PARIS(config-line)#password cisco<br />

PARIS(config-line)#login<br />

PARIS(config-line)#exit<br />

PARIS(config)#interface serial 0<br />

PARIS(config-if)#ip address 192.168.2.1 255.255.255.252<br />

PARIS(config-if)#clock rate 64000<br />

PARIS(config-if)#no shutdown<br />

PARIS(config-if)#exit<br />

PARIS(config-if)#interface loopback 0<br />

PARIS(config-if)#ip address 192.168.0.2 255.255.255.0<br />

PARIS(config-if)#exit<br />

PARIS(config)#interface fastethernet 0<br />

PARIS(config-if)#ip address 192.168.3.1 255.255.255.0<br />

PARIS(config-if)#no shutdown


PARIS(config-if)#exit<br />

PARIS(config)#ip host WARSAW 192.168.2.2 192.168.1.1<br />

WARSAW<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname WARSAW<br />

WARSAW(config)#enable secret class<br />

WARSAW(config)#line console 0<br />

WARSAW(config-line)#password cisco<br />

WARSAW(config-line)#login<br />

WARSAW(config-line)#line vty 0 4<br />

WARSAW(config-line)#password cisco<br />

WARSAW(config-line)#login<br />

WARSAW(config-line)#exit<br />

WARSAW(config)#interface serial 0<br />

WARSAW(config-if)#ip address 192.168.2.2 255.255.255.252<br />

WARSAW(config-if)#no shutdown<br />

WARSAW(config-if)#exit<br />

WARSAW(config)#interface fastethernet 0<br />

WARSAW(config-if)#ip address 192.168.1.1 255.255.255.0<br />

WARSAW(config-if)#no shutdown<br />

WARSAW(config-if)#exit<br />

WARSAW(config)#ip host WARSAW 192.168.2.1 192.168.3.1<br />

Task 2: Save the Configuration Information from Privileged EXEC<br />

Comm<strong>and</strong> Mode<br />

Paris#copy running-config startup-config<br />

Destination filename [startup-config]? [Enter]<br />

Task 3: Configure the Hosts<br />

Step 1. Configure the hosts with the proper IP address, subnet mask, <strong>and</strong> default gateway.<br />

Host connected to router Paris<br />

IP address: 192.168.3.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.3.1<br />

Host connected to router Warsaw<br />

IP address: 192.168.1.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.1.1<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 197


198 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 2. Each workstation should be able to ping the attached router. Troubleshoot as necessary. Hint:<br />

Remember to assign a specific IP address <strong>and</strong> default gateway to the workstation. If you are<br />

running Windows 98, check using Start > Run > winipcfg. If you are running Windows 2000<br />

or later, check using ipconfig in a DOS window.<br />

Step 3. At this point, the workstations will not be able to communicate with each other. The following<br />

tasks demonstrate the process that is required to get communication working while using<br />

EIGRP as the routing protocol.<br />

Task 4: View the Router’s Configuration <strong>and</strong> Interface Information<br />

Step 1. At the privileged EXEC mode prompt, type the following:<br />

Paris#show running-config<br />

Step 2. Using the show ip interface brief comm<strong>and</strong>, check the status of each interface.<br />

What is the state of the interfaces on each router?<br />

Paris:<br />

Warsaw:<br />

■ Fast Ethernet 0: Up<br />

■ Serial 0: Up<br />

■ Fast Ethernet 0: Up<br />

■ Serial 0: Up<br />

Step 3. Ping from one of the connected serial interfaces to the other.<br />

Was the ping successful? Yes<br />

Step 4. If the ping was not successful, troubleshoot the router’s configuration until the ping is successful.<br />

Task 5: Configure EIGRP Routing on Router Paris<br />

Step 1. Enable the EIGRP routing process on router Paris <strong>and</strong> configure the networks it will advertise.<br />

Use EIGRP autonomous system number 101.<br />

Paris(config)#router eigrp 101<br />

Paris(config-router)#network 192.168.3.0<br />

Paris(config-router)#network 192.168.2.0<br />

Paris(config-router)#network 192.168.0.0<br />

Paris(config-router)#end<br />

Step 2. Show the routing table for the Paris router.<br />

Paris#show ip route<br />

Do entries exist in the routing table? No<br />

Why?<br />

EIGRP is not configured on router Warsaw yet.


Task 6: Configure EIGRP Routing on Router Warsaw<br />

Step 1. Enable the EIGRP routing process on router Warsaw <strong>and</strong> configure the networks it will advertise.<br />

Use EIGRP autonomous system number 101.<br />

Warsaw(config)#router eigrp 101<br />

Warsaw(config-router)#network 192.168.2.0<br />

Warsaw(config-router)#network 192.168.1.0<br />

Warsaw(config-router)#end<br />

Step 2. Show the routing table for the Warsaw router.<br />

Warsaw#show ip route<br />

Task 7: Test Network Connectivity<br />

Ping the Paris host from the Warsaw host. Was it successful? Yes<br />

If not, troubleshoot as necessary.<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn the router off. Then, remove <strong>and</strong><br />

store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 3-2: Verifying Basic EIGRP Configuration<br />

(3.2.3)<br />

Figure 3-5 Topology for Lab 3-2<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 199<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Router 1 Router 2<br />

Crossover Cable<br />

Serial Cable


200 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Table 3-3 Lab Equipment Configuration: Part I<br />

Router Designation Router Name Routing Protocol Network Statements<br />

Router 1 Paris EIGRP 192.168.3.0<br />

192.168.2.0<br />

Router 2 Warsaw EIGRP 192.168.1.0<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

Table 3-4 Lab Equipment Configuration: Part II<br />

192.168.2.0<br />

Router IP Host Fast Ethernet 0 Interface Serial 0 Address/ Loopback 0<br />

Designation Table Entry Address/ Type Subnet Mask Address/<br />

Subnet Mask Serial 0 Subnet Mask<br />

Router 1 Warsaw 192.168.3.1/24 DCE 192.168.2.1/30 192.168.0.2/24<br />

Router 2 Paris 192.168.1.1/24 DTE 192.168.2.2/30 No address<br />

The “IP Host Table Entry” column contents indicate the names of the other routers in the IP host table.<br />

Objectives<br />

■ Set up an IP addressing scheme for the network.<br />

■ Configure <strong>and</strong> verify EIGRP routing.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 3-5. You can use any router that meets the interface<br />

requirements in Figure 3-5 (that is, 800, 1600, 1700, 2500, <strong>and</strong> 2600 routers or a combination). Refer to<br />

the information in Appendix A to correctly specify the interface identifiers based on the equipment in your<br />

lab. The 1721 series routers produced the configuration output in this lab. Another router might produce<br />

slightly different output. You should execute the following steps on each router unless you are specifically<br />

instructed otherwise. Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix C on all routers before you continue with this lab.<br />

Task 1: Configure the Routers<br />

On the routers, enter global configuration mode <strong>and</strong> configure the hostname as shown in Tables 3-3 <strong>and</strong> 3-4.<br />

Then, configure the console, virtual terminal, <strong>and</strong> enable passwords. Next, configure the interfaces according<br />

to Tables 3-3 <strong>and</strong> 3-4. Finally, configure the IP hostnames. If you have problems configuring the router<br />

basics, refer to Lab 1-2, “Review of Basic Router Configuration with RIP.”<br />

Note: Do not configure the routing protocol until you are specifically told to.<br />

PARIS<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname PARIS<br />

PARIS(config)#enable secret class


PARIS(config)#line console 0<br />

PARIS(config-line)#password cisco<br />

PARIS(config-line)#login<br />

PARIS(config-line)#line vty 0 4<br />

PARIS(config-line)#password cisco<br />

PARIS(config-line)#login<br />

PARIS(config-line)#exit<br />

PARIS(config)#interface serial 0<br />

PARIS(config-if)#ip address 192.168.2.1 255.255.255.252<br />

PARIS(config-if)#clock rate 64000<br />

PARIS(config-if)#no shutdown<br />

PARIS(config-if)#exit<br />

PARIS(config-if)#interface loopback 0<br />

PARIS(config-if)#ip address 192.168.0.2 255.255.255.0<br />

PARIS(config-if)#exit<br />

PARIS(config)#interface fastethernet 0<br />

PARIS(config-if)#ip address 192.168.3.1 255.255.255.0<br />

PARIS(config-if)#no shutdown<br />

PARIS(config-if)#exit<br />

PARIS(config)#ip host WARSAW 192.168.2.2 192.168.1.1<br />

WARSAW<br />

Router>enable<br />

Router#configure terminal<br />

Router(config)#hostname WARSAW<br />

WARSAW(config)#enable secret class<br />

WARSAW(config)#line console 0<br />

WARSAW(config-line)#password cisco<br />

WARSAW(config-line)#login<br />

WARSAW(config-line)#line vty 0 4<br />

WARSAW(config-line)#password cisco<br />

WARSAW(config-line)#login<br />

WARSAW(config-line)#exit<br />

WARSAW(config)#interface serial 0<br />

WARSAW(config-if)#ip address 192.168.2.2 255.255.255.252<br />

WARSAW(config-if)#no shutdown<br />

WARSAW(config-if)#exit<br />

WARSAW(config)#interface fastethernet 0<br />

WARSAW(config-if)#ip address 192.168.1.1 255.255.255.0<br />

WARSAW(config-if)#no shutdown<br />

WARSAW(config-if)#exit<br />

WARSAW(config)#ip host PARIS 192.168.2.1 192.168.3.1<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 201


202 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 2: Save the Configuration Information from Privileged EXEC<br />

Comm<strong>and</strong> Mode<br />

PARIS#copy running-config startup-config<br />

Destination filename [startup-config]? [Enter]<br />

Task 3: Configure the Hosts<br />

Step 1. Configure the hosts with the proper IP address, subnet mask, <strong>and</strong> default gateway.<br />

Host connected to router Paris<br />

IP address: 192.168.3.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.3.1<br />

Host connected to router Warsaw<br />

IP address: 192.168.1.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.1.1<br />

Step 2. Each workstation should be able to ping the attached router. Troubleshoot as necessary. Hint:<br />

Remember to assign a specific IP address <strong>and</strong> default gateway to the workstation. If you are<br />

running Windows 98, check using Start > Run > winipcfg. If you are running Windows 2000<br />

or later, check using ipconfig in a DOS window.<br />

Step 3. At this point, the workstations will not be able to communicate with each other. The following<br />

tasks demonstrate the process that is required to get communication working while using<br />

EIGRP as the routing protocol.<br />

Task 4: View the Router’s Configuration <strong>and</strong> Interface Information<br />

Step 1. At the privileged EXEC mode prompt, type show running-config.<br />

Step 2. Using the show ip interface brief comm<strong>and</strong>, check the status of each interface.<br />

Step 3. What is the state of the interfaces on each router?<br />

Paris:<br />

■ Fast Ethernet 0: Up<br />

■ Serial 0: Up<br />

Warsaw:<br />

■ Fast Ethernet 0: Up<br />

■ Serial 0: Up<br />

Step 4. Ping from one of the connected serial interfaces to the other.<br />

Step 5. Was the ping successful? Yes<br />

Step 6. If the ping was not successful, troubleshoot the router’s configuration until the ping is successful.


Task 5: Configure EIGRP Routing on Router Paris<br />

Step 1. Enable the EIGRP routing process on router Paris <strong>and</strong> configure the networks it will advertise.<br />

Use EIGRP autonomous system number 101.<br />

Paris(config)#router eigrp 101<br />

Paris(config-router)#network 192.168.3.0<br />

Paris(config-router)#network 192.168.2.0<br />

Paris(config-router)#network 192.168.0.0<br />

Paris(config-router)#end<br />

Step 2. Show the routing table for the Paris router.<br />

Paris#show ip route<br />

Do entries exist in the routing table? No<br />

Why?<br />

EIGRP is not configured on Warsaw.<br />

Task 6: Configure EIGRP Routing on Router Warsaw<br />

Step 1. Enable the EIGRP routing process on router Warsaw <strong>and</strong> configure the networks it will advertise.<br />

Use EIGRP autonomous system number 101.<br />

Warsaw(config)#router eigrp 101<br />

Warsaw(config-router)#network 192.168.2.0<br />

Warsaw(config-router)#network 192.168.1.0<br />

Warsaw(config-router)#end<br />

Step 2. Show the routing table for the Warsaw router.<br />

Warsaw#show ip route<br />

Do EIGRP entries exist in the routing table now? Yes<br />

What is the address type in the EIGRP 192.168.2.0 route? C <strong>–</strong> Directly Connected<br />

What does the D mean in the first column of the routing table? The route was learned via<br />

EIGRP.<br />

Task 7: Show EIGRP Neighbors<br />

From the Paris router, show any neighbors that are connected by using the show ip eigrp neighbors comm<strong>and</strong><br />

at the privileged EXEC mode prompt.<br />

Are neighbors shown? Yes<br />

Task 8: Test Network Connectivity<br />

Ping the Paris host from the Warsaw host. Was it successful? Yes<br />

If not, troubleshoot as necessary.<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 203


204 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 9: View the Topology Table<br />

Step 1. To view the topology table, issue the show ip eigrp topology all-links comm<strong>and</strong>.<br />

How many routes are in passive mode? 3<br />

Step 2. To view more specific information about a topology table entry, use an IP address with this<br />

comm<strong>and</strong>:<br />

Paris#show ip eigrp topology 192.168.1.0<br />

Based on the output of this comm<strong>and</strong>, does it tell what external protocol originated this route to<br />

192.168.2.0? Yes<br />

Does it tell which router originated the route? Yes<br />

Step 3. Use show comm<strong>and</strong>s to view key EIGRP statistics. On the Paris router, issue the show ip eigrp<br />

traffic comm<strong>and</strong>.<br />

How many hello packets has the Paris router received? Answers will vary.<br />

How many has it sent? Answers will vary.<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn the router off. Then, remove <strong>and</strong><br />

store the cables <strong>and</strong> adapter.<br />

Comprehensive Lab 3-3: Comprehensive EIGRP<br />

Configuration<br />

Figure 3-6 EIGRP Configuration<br />

172.16.64.0/20<br />

172.16.80.0/20<br />

172.16.96.0/20<br />

172.16.112.0/20<br />

Lo1<br />

Lo2<br />

Lo3<br />

Lo4<br />

10.0.0.8/30<br />

RTC<br />

T1<br />

S0/0<br />

172.16.0.0/18<br />

Fa0/0<br />

RTA<br />

EIGRP<br />

100<br />

S0/1<br />

DCE<br />

T1<br />

10.0.0.0/30<br />

S0/0<br />

DCE S0/1<br />

S0/1<br />

128kbps<br />

10.0.0.4/30 S0/0<br />

DCE<br />

RTB<br />

Lo1<br />

Lo2<br />

Lo3<br />

Lo4<br />

172.16.128.0/19<br />

172.16.160.0/19<br />

172.16.192.0/19<br />

172.16.224.0/19


Table 3-5 Addressing Table for Lab 3-3<br />

Device Interface IP Address Subnet Mask<br />

RTA S0/1 10.0.0.1 255.255.255.252<br />

S0/0 10.0.0.10 255.255.255.252<br />

Fa0/0 172.16.0.1 255.255.192.0<br />

RTB S0/1 10.0.0.2 255.255.255.252<br />

S0/0 10.0.0.5 255.255.255.252<br />

Lo1 172.16.128.1 255.255.255.224<br />

Lo2 172.16.160.1 255.255.255.224<br />

Lo3 172.16.192.1 255.255.255.224<br />

Lo4 172.16.224.1 255.255.255.224<br />

RTC S0/1 10.0.0.6 255.255.255.252<br />

Objectives<br />

S0/0 10.0.0.9 255.255.255.252<br />

Lo1 172.16.64.1 255.255.255.240<br />

Lo2 172.16.80.1 255.255.255.240<br />

Lo3 172.16.96.1 255.255.255.240<br />

Lo4 172.16.112.1 255.255.255.240<br />

■ Configure EIGRP routing.<br />

■ Configure b<strong>and</strong>width <strong>and</strong> turn off automatic summarization.<br />

■ Configure manual summarization.<br />

Equipment<br />

The topology shown in Figure 3-6 is using 2600 series routers. This lab can be done with any combination<br />

of 1700, 2500, <strong>and</strong> 2600 series routers. Connectivity to an ISP is simulated with a Loopback interface on<br />

RTA.<br />

NetLab Compatibility Notes<br />

This lab is fully compatible with a st<strong>and</strong>ard NetLab three router pod.<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configurations<br />

Step 1. Cable the topology as shown. If DCE/DTE connections <strong>and</strong> interfaces are different from those<br />

shown in Figure 3-6 <strong>and</strong> the table, then relabel the figure to match your connections.<br />

Step 2. Configure the routers with basic router configurations, including:<br />

■ Hostnames <strong>and</strong> host tables<br />

■ Enable secret password <strong>and</strong> MOTD banner<br />

■ Line configurations<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 205<br />

■ IOS-specific comm<strong>and</strong>s (e.g. ip subnet-zero with IOS versions prior to 12)


206 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 3. The following is a basic configuration for RTA:<br />

Router(config)#hostname RTA<br />

RTA(config)#ip subnet-zero<br />

RTA(config)#no ip domain-lookup<br />

RTA(config)#ip host RTC 10.0.0.9 10.0.0.6<br />

RTA(config)#ip host RTB 10.0.0.2 10.0.0.5<br />

RTA(config)#banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

RTA(config)#line con 0<br />

RTA(config-line)#exec-timeout 30 0<br />

RTA(config-line)#password cisco<br />

RTA(config-line)#logging synchronous<br />

RTA(config-line)#login<br />

RTA(config-line)#ine aux 0<br />

RTA(config-line)#exec-timeout 30 0<br />

RTA(config-line)#password cisco<br />

RTA(config-line)#logging synchronous<br />

RTA(config-line)#login<br />

RTA(config-line)#line vty 0 4<br />

RTA(config-line)#exec-timeout 30 0<br />

RTA(config-line)#password cisco<br />

RTA(config-line)#logging synchronous<br />

RTA(config-line)#login<br />

RTA(config-line)#end<br />

RTA#copy run start<br />

Instructor Note: This basic configuration can be used on all three routers with changes to the hostname <strong>and</strong> the host<br />

table. At this level in their studies, your students should be able to do this with little or no help from you.<br />

Task 2: Configure Interfaces <strong>and</strong> EIGRP Routing<br />

Step 1. Use Table 3-5 <strong>and</strong> the topology shown in Figure 3-6 to configure each router with the correct<br />

interface addresses. The interface configuration for RTA is as follows:<br />

RTA(config)#interface FastEthernet0/0<br />

RTA(config-if)#description Link to RTA LAN<br />

RTA(config-if)#ip address 172.16.0.1 255.255.192.0<br />

RTA(config-if)#no shutdown<br />

RTA(config-if)#interface Serial0/0<br />

RTA(config-if)#description Link to RTC<br />

RTA(config-if)#ip address 10.0.0.10 255.255.255.252<br />

RTA(config-if)#clockrate 64000<br />

RTA(config-if)#no shutdown<br />

RTA(config-if)#interface Serial0/1<br />

RTA(config-if)#description Link to RTB<br />

RTA(config-if)#ip address 10.0.0.1 255.255.255.252<br />

RTA(config-if)#clockrate 64000<br />

RTA(config-if)#no shutdown


RTB<br />

RTC<br />

RTB(config)#interface Loopback1<br />

RTB(config-if)#ip address 172.16.128.1 255.255.224.0<br />

RTB(config-if)#interface Loopback2<br />

RTB(config-if)#ip address 172.16.160.1 255.255.224.0<br />

RTB(config-if)#interface Loopback3<br />

RTB(config-if)#ip address 172.16.192.1 255.255.224.0<br />

RTB(config-if)#interface Loopback4<br />

RTB(config-if)#ip address 172.16.224.1 255.255.224.0<br />

RTB(config-if)#interface Serial0/0<br />

RTB(config-if)#description Link to RTC<br />

RTB(config-if)#ip address 10.0.0.5 255.255.255.252<br />

RTB(config-if)#clockrate 64000<br />

RTB(config-if)#no shutdown<br />

RTB(config-if)#interface Serial0/1<br />

RTB(config-if)#description Link to RTA<br />

RTB(config-if)#ip address 10.0.0.2 255.255.255.252<br />

RTB(config-if)#no shutdown<br />

RTC(config)#interface Loopback1<br />

RTC(config-if)#ip address 172.16.64.1 255.255.240.0<br />

RTC(config-if)#interface Loopback2<br />

RTC(config-if)#ip address 172.16.80.1 255.255.240.0<br />

RTC(config-if)#interface Loopback3<br />

RTC(config-if)#ip address 172.16.96.1 255.255.240.0<br />

RTC(config-if)#interface Loopback4<br />

RTC(config-if)#ip address 172.16.112.1 255.255.240.0<br />

RTC(config-if)#interface Serial0/0<br />

RTC(config-if)#description Link to RTA<br />

RTC(config-if)#ip address 10.0.0.9 255.255.255.252<br />

RTC(config-if)#no shutdown<br />

RTC(config-if)#interface Serial0/1<br />

RTC(config-if)#description Link to RTB<br />

RTC(config-if)#ip address 10.0.0.6 255.255.255.252<br />

RTC(config-if)#no shutdown<br />

Step 2. Configure each router with EIGRP routing. The configuration for RTA follows. All routers<br />

have the same basic EIGRP configuration.<br />

RTA(config)#router eigrp 100<br />

RTA(config-router)#network 10.0.0.0<br />

RTA(config-router)#network 172.16.0.0<br />

Task 3: Configure B<strong>and</strong>width <strong>and</strong> Automatic Summarization<br />

Step 1. According to the topology shown in Figure 3-6, RTB <strong>and</strong> RTC are connected with a 128-kbps<br />

link. Enter the comm<strong>and</strong>s on both routers necessary to adjust the default b<strong>and</strong>width to match<br />

the actual speed.<br />

RTB(config)#interface Serial0/0<br />

RTC(config-if)#b<strong>and</strong>width 128<br />

RTC(config)#interface Serial0/1<br />

RTC(config-if)#b<strong>and</strong>width 128<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 207


208 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 2. Display the routing table on RTA.<br />

RTA#show ip route<br />

(output omitted)<br />

Gateway of last resort is not set<br />

172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks<br />

D 172.16.0.0/16 is a summary, 00:23:16, Null0<br />

C 172.16.0.0/18 is directly connected, FastEthernet0/0<br />

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks<br />

D 10.0.0.0/8 is a summary, 00:23:20, Null0<br />

C 10.0.0.0/30 is directly connected, Serial0/1<br />

Step 3. Notice that RTA does not have routes to the simulated LANs on RTB <strong>and</strong> RTC. Enter the comm<strong>and</strong><br />

to disable automatic summarization on all three routers.<br />

Each router should have the no auto-summary comm<strong>and</strong> configured within the<br />

EIGRP routing process.<br />

Task 4: Configure Manual Summarization<br />

Step 1. Display the routing table on RTA.<br />

RTA#show ip route<br />

(output omitted)<br />

Gateway of last resort is not set<br />

172.16.0.0/16 is variably subnetted, 9 subnets, 3 masks<br />

D 172.16.160.0/19 [90/2297856] via 10.0.0.2, 00:00:16, Serial0/1<br />

D 172.16.128.0/19 [90/2297856] via 10.0.0.2, 00:00:16, Serial0/1<br />

D 172.16.224.0/19 [90/2297856] via 10.0.0.2, 00:00:16, Serial0/1<br />

D 172.16.192.0/19 [90/2297856] via 10.0.0.2, 00:00:16, Serial0/1<br />

C 172.16.0.0/18 is directly connected, FastEthernet0/0<br />

D 172.16.112.0/20 [90/2297856] via 10.0.0.9, 00:00:29, Serial0/0<br />

D 172.16.96.0/20 [90/2297856] via 10.0.0.9, 00:00:30, Serial0/0<br />

D 172.16.80.0/20 [90/2297856] via 10.0.0.9, 00:00:30, Serial0/0<br />

D 172.16.64.0/20 [90/2297856] via 10.0.0.9, 00:00:30, Serial0/0<br />

10.0.0.0/30 is subnetted, 3 subnets<br />

C 10.0.0.8 is directly connected, Serial0/0<br />

C 10.0.0.0 is directly connected, Serial0/1<br />

D 10.0.0.4 [90/21024000] via 10.0.0.9, 00:00:30, Serial0/0<br />

[90/21024000] via 10.0.0.2, 00:00:30, Serial0/1<br />

Step 2. Notice that RTA has 12 routes. Some of these routes can be summarized to reduce the size of<br />

the routing table.<br />

The simulated LANs on RTB share the same bit pattern for the first 21 bits of the network prefix<br />

172.16.128.0.<br />

The simulated LANS on RTC share the same bit pattern for the first 18 bits of the network prefix<br />

172.16.64.0.<br />

What comm<strong>and</strong> would you configure on both serial interfaces for RTB?<br />

RTB(config-if)#ip summary-address eigrp 100 172.16.128.0 255.255.128.0


What comm<strong>and</strong> would you configure on both serial interfaces for RTC?<br />

RTC(config-if)#ip summary-address eigrp 100 172.16.64.0 255.255.192.0<br />

Step 3. Display the routing table for RTA. You should have only six routes.<br />

RTA#show ip route<br />

(output omitted)<br />

Gateway of last resort is not set<br />

172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks<br />

D 172.16.128.0/17 [90/2297856] via 10.0.0.2, 01:36:05, Serial0/1<br />

C 172.16.0.0/18 is directly connected, FastEthernet0/0<br />

D 172.16.64.0/18 [90/2297856] via 10.0.0.9, 01:38:11, Serial0/0<br />

10.0.0.0/30 is subnetted, 3 subnets<br />

C 10.0.0.8 is directly connected, Serial0/0<br />

C 10.0.0.0 is directly connected, Serial0/1<br />

D 10.0.0.4 [90/21024000] via 10.0.0.9, 01:36:05, Serial0/0<br />

[90/21024000] via 10.0.0.2, 01:36:05, Serial0/1<br />

Challenge Lab 3-4: EIGRP Design <strong>and</strong> Configuration<br />

Figure 3-7 EIGRP Design <strong>and</strong> Configuration<br />

Public Web Server<br />

209.165.202.129/32<br />

Address Space<br />

10.0.0.0/17<br />

Lo0<br />

209.165.201.0/30<br />

ISP<br />

S0/0<br />

DCE<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 209<br />

S0/0<br />

Lo0<br />

Lo1<br />

Lo2<br />

Lo3<br />

HQ<br />

S0/1<br />

DCE<br />

10.0.64.0 / 20<br />

10.0.80.0 / 20<br />

10.0.96.0 / 20<br />

10.0.112.0 / 20<br />

Lo0<br />

Lo1<br />

Lo2<br />

Lo3<br />

WAN<br />

S0/1<br />

Remote<br />

10.0.0.4 / 30<br />

10.0.32.0 / 21<br />

10.0.40.0 / 21<br />

10.0.48.0 / 21<br />

10.0.56.0 / 21


210 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Table 3-6 Addressing Table for Lab 3-4<br />

Device Interface IP Address Subnet Mask<br />

ISP Lo0 209.165.202.129 255.255.255.255<br />

S0/0 209.165.201.1 255.255.255.252<br />

HQ S0/0 209.165.201.2 255.255.255.252<br />

S0/1 10.0.0.5 255.255.255.252<br />

Lo0 10.0.64.1 255.255.240.0<br />

Lo1 10.0.80.1 255.255.240.0<br />

Lo2 10.0.96.1 255.255.240.0<br />

Lo3 10.0.112.1 255.255.240.0<br />

REMOTE S0/1 10.0.0.6 255.255.255.252<br />

Objectives<br />

Lo0 10.0.32.1 255.255.248.0<br />

Lo1 10.0.40.1 255.255.248.0<br />

Lo2 10.0.48.1 255.255.248.0<br />

Lo3 10.0.56.1 255.255.248.0<br />

■ Design a VLSM addressing scheme.<br />

■ Configure routers with basic configurations using your addressing scheme.<br />

■ Configure dynamic, static, <strong>and</strong> default routing.<br />

■ Configure manual summarization.<br />

■ Verify connectivity <strong>and</strong> troubleshoot problems.<br />

Equipment<br />

The topology shown in Figure 3-7 uses 2600 series routers. This lab can be done with any combination of<br />

1700, 2500, <strong>and</strong> 2600 series routers.<br />

NetLab Compatibility Notes<br />

This lab can be completed on a st<strong>and</strong>ard NetLab three router pod.<br />

Task 1: Design the Addressing Scheme<br />

You are given the address space, 10.0.0.0/17. The four loopback interfaces on HQ <strong>and</strong> four loopback interfaces<br />

on REMOTE are used to simulate different parts of a global network. Complete the following steps<br />

to design your addressing scheme.<br />

Step 1. For HQ, begin with the 10.0.64.0 address as the subnet for loopback 0. What subnet mask<br />

would you use to provide enough space for 4000 users while maximizing the number of subnets?<br />

255.255.240.0 or /20


Step 2. Starting with 10.0.64.0, contiguously assign the next three subnets, all supporting 4000 hosts.<br />

List all four subnets here:<br />

10.0.64.0/20<br />

10.0.80.0/20<br />

10.0.96.0/20<br />

10.0.112.0/20<br />

Step 3. For REMOTE, begin with the 10.0.32.0 address as the subnet for loopback 0. What subnet<br />

mask would you use to provide enough space for 2000 users while maximizing the number of<br />

subnets?<br />

255.255.248.0 or /21<br />

Step 4. Starting with 10.0.32.0, contiguously assign the next three subnets, all supporting 2000 hosts.<br />

List all four subnets here:<br />

10.0.32.0/21<br />

10.0.40.0/21<br />

10.0.48.0/21<br />

10.0.56.0/21<br />

Step 5. Now pick a WAN subnet for the link shared by HQ <strong>and</strong> REMOTE. List the subnet you<br />

assigned here:<br />

The answer can be any subnet /30 from the 10.0.0.0/21 address space.<br />

Step 6. Label the topology in Figure 3-7 with the networks <strong>and</strong> finish filling in the IP address table<br />

with your chosen addressing scheme. Use the first available IP address in each subnet as the<br />

interface address. For the WAN subnet, assign HQ the first address.<br />

Task 2: Cable the Topology <strong>and</strong> Basic Configuration<br />

Step 1. Choose three routers <strong>and</strong> cable them according to the topology. You do not need any LAN<br />

interfaces or switches for this lab. (If using NetLab, choose a three router pod.)<br />

Step 2. Configure the routers with basic configurations including interface addresses.<br />

Task 3: Configure EIGRP Routing <strong>and</strong> Default Routing<br />

Step 1. Configure both HQ <strong>and</strong> REMOTE to use EIGRP as the routing protocol. Enter the simulated<br />

LAN subnets <strong>and</strong> the WAN link between HQ <strong>and</strong> REMOTE. Do not advertise the<br />

209.165.201.0/30 network. Make sure you disable automatic summarization.<br />

Step 2. Configure ISP with a static route pointing to the 10.0.0.0/17 Address Space.<br />

Step 3. Configure HQ with a default route pointing to ISP.<br />

Step 4. Configure HQ to advertise the default route to REMOTE with the redistribute static comm<strong>and</strong><br />

within the EIGRP routing process.<br />

HQ(config-router)#redistribute static<br />

Step 5. Verify HQ <strong>and</strong> REMOTE routing tables:<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 211<br />

■ HQ should have six directly connected routes, four EIGRP routes, <strong>and</strong> one static route.<br />

■ REMOTE should have five directly connected routes, four EIGRP routes, <strong>and</strong> one EIGRP<br />

external route.


212 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

■ Verify that REMOTE can ping the Simulated Web Server at 209.165.202.129.<br />

REMOTE#ping web<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 209.165.202.129, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 56/56/56 ms<br />

Task 4: Manual Summarization<br />

Because the simulated LANs on both HQ <strong>and</strong> REMOTE were assigned contiguously, you can summarize<br />

the routing updates to reduce the size of the routing tables. What comm<strong>and</strong> will summarize the simulated<br />

LANs on HQ?<br />

HQ(config)#interface serial 0/1<br />

HQ(config-if)#ip summary-address eigrp 100 10.0.64.0 255.255.192.0<br />

What comm<strong>and</strong> will summarize the simulated LANs on REMOTE?<br />

REMOTE(config)#interface serial 0/1<br />

REMOTE(config-if)#ip summary-address eigrp 100 10.0.32.0 255.255.224.0<br />

Task 5: Verification <strong>and</strong> Documentation<br />

Step 1. Capture the following verifications to a text file called verify.txt:<br />

■ Ping output from REMOTE pinging the Simulated Web Server.<br />

■ Capture show ip route on all three routers: ISP, HQ, <strong>and</strong> REMOTE.<br />

■ Capture show ip eigrp neighbor <strong>and</strong> show ip eigrp topology on HQ <strong>and</strong> REMOTE.<br />

Step 2. Capture the running configurations on all three routers to separate text files. Use the hostname<br />

of the router to name each text file.<br />

Step 3. Clean up the verify.txt, HQ.txt, REMOTE.txt, <strong>and</strong> ISP.txt files. Add appropriate notes to assist<br />

in your studies.<br />

Final configurations <strong>and</strong> show comm<strong>and</strong> output:<br />

HQ hostname HQ<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host REMOTE 10.0.0.6<br />

ip host WEB 209.165.202.129<br />

ip host ISP 209.165.201.1<br />

!<br />

interface Loopback0<br />

!<br />

ip address 10.0.64.1 255.255.240.0<br />

interface Loopback1


!<br />

ip address 10.0.80.1 255.255.240.0<br />

interface Loopback2<br />

!<br />

ip address 10.0.96.1 255.255.240.0<br />

interface Loopback3<br />

!<br />

ip address 10.0.112.1 255.255.240.0<br />

interface Serial0/0<br />

!<br />

description Link to ISP<br />

ip address 209.165.201.2 255.255.255.252<br />

clockrate 64000<br />

no shutdown<br />

interface Serial0/1<br />

!<br />

description Link to REMOTE<br />

ip address 10.0.0.5 255.255.255.252<br />

ip summary-address eigrp 100 10.0.64.0 255.255.192.0<br />

clockrate 64000<br />

no shutdown<br />

router eigrp 100<br />

!<br />

redistribute static<br />

network 10.0.0.0<br />

no auto-summary<br />

eigrp log-neighbor-changes<br />

ip classless<br />

ip route 0.0.0.0 0.0.0.0 Serial0/0<br />

!<br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 213


214 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

HQ#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 0.0.0.0 to network 0.0.0.0<br />

209.165.201.0/30 is subnetted, 1 subnets<br />

C 209.165.201.0 is directly connected, Serial0/0<br />

10.0.0.0/8 is variably subnetted, 7 subnets, 4 masks<br />

C 10.0.0.4/30 is directly connected, Serial0/1<br />

D 10.0.32.0/19 [90/2297856] via 10.0.0.6, 00:04:47, Serial0/1<br />

D 10.0.64.0/18 is a summary, 00:05:16, Null0<br />

C 10.0.64.0/20 is directly connected, Loopback0<br />

C 10.0.80.0/20 is directly connected, Loopback1<br />

C 10.0.96.0/20 is directly connected, Loopback2<br />

C 10.0.112.0/20 is directly connected, Loopback3<br />

S* 0.0.0.0/0 is directly connected, Serial0/0<br />

HQ#show ip eigrp neighbors<br />

IP-EIGRP neighbors for process 100<br />

H Address Interface Hold Uptime SRTT RTO Q Seq Type<br />

(sec) (ms) Cnt Num<br />

0 10.0.0.6 Se0/1 12 00:05:42 384 2304 0 9<br />

HQ#show ip eigrp topology<br />

IP-EIGRP Topology Table for AS(100)/ID(10.0.112.1)<br />

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,<br />

r - reply Status, s - sia Status<br />

P 0.0.0.0/0, 1 successors, FD is 2169856<br />

via Rstatic (2169856/0)<br />

P 10.0.0.4/30, 1 successors, FD is 2169856<br />

via Connected, Serial0/1<br />

P 10.0.32.0/19, 1 successors, FD is 2297856


via 10.0.0.6 (2297856/128256), Serial0/1<br />

P 10.0.64.0/18, 1 successors, FD is 128256<br />

via Summary (128256/0), Null0<br />

P 10.0.64.0/20, 1 successors, FD is 128256<br />

via Connected, Loopback0<br />

P 10.0.80.0/20, 1 successors, FD is 128256<br />

via Connected, Loopback1<br />

P 10.0.96.0/20, 1 successors, FD is 128256<br />

via Connected, Loopback2<br />

P 10.0.112.0/20, 1 successors, FD is 128256<br />

REMOTE<br />

hostname REMOTE<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

via Connected, Loopback3<br />

ip host WEB 209.165.202.129<br />

ip host ISP 209.165.201.1<br />

ip host HQ 10.0.0.5<br />

!<br />

interface Loopback0<br />

!<br />

ip address 10.0.32.1 255.255.248.0<br />

interface Loopback1<br />

!<br />

ip address 10.0.40.1 255.255.248.0<br />

interface Loopback2<br />

!<br />

ip address 10.0.48.1 255.255.248.0<br />

interface Loopback3<br />

!<br />

ip address 10.0.56.1 255.255.248.0<br />

interface Serial0/1<br />

!<br />

description Link to HQ<br />

ip address 10.0.0.6 255.255.255.252<br />

ip summary-address eigrp 100 10.0.32.0 255.255.224.0<br />

no shutdown<br />

router eigrp 100<br />

!<br />

network 10.0.0.0<br />

no auto-summary<br />

eigrp log-neighbor-changes<br />

ip classless<br />

!<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 215


216 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZES ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

REMOTE#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 10.0.0.5 to network 0.0.0.0<br />

10.0.0.0/8 is variably subnetted, 7 subnets, 4 masks<br />

C 10.0.0.4/30 is directly connected, Serial0/1<br />

C 10.0.40.0/21 is directly connected, Loopback1<br />

D 10.0.32.0/19 is a summary, 00:05:06, Null0<br />

C 10.0.32.0/21 is directly connected, Loopback0<br />

C 10.0.56.0/21 is directly connected, Loopback3<br />

C 10.0.48.0/21 is directly connected, Loopback2<br />

D 10.0.64.0/18 [90/2297856] via 10.0.0.5, 00:04:58, Serial0/1<br />

D*EX 0.0.0.0/0 [170/2681856] via 10.0.0.5, 00:04:58, Serial0/1<br />

REMOTE#show ip eigrp neighbors<br />

IP-EIGRP neighbors for process 100


H Address Interface Hold Uptime SRTT RTO Q Seq Type<br />

(sec) (ms) Cnt Num<br />

0 10.0.0.5 Se0/1 14 00:05:19 24 200 0 11<br />

REMOTE#show ip eigrp topology<br />

IP-EIGRP Topology Table for AS(100)/ID(10.0.56.1)<br />

Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,<br />

r - reply Status, s - sia Status<br />

P 0.0.0.0/0, 1 successors, FD is 2681856<br />

via 10.0.0.5 (2681856/2169856), Serial0/1<br />

P 10.0.0.4/30, 1 successors, FD is 2169856<br />

via Connected, Serial0/1<br />

P 10.0.40.0/21, 1 successors, FD is 128256<br />

via Connected, Loopback1<br />

P 10.0.32.0/19, 1 successors, FD is 128256<br />

via Summary (128256/0), Null0<br />

P 10.0.32.0/21, 1 successors, FD is 128256<br />

via Connected, Loopback0<br />

P 10.0.56.0/21, 1 successors, FD is 128256<br />

via Connected, Loopback3<br />

P 10.0.48.0/21, 1 successors, FD is 128256<br />

via Connected, Loopback2<br />

P 10.0.64.0/18, 1 successors, FD is 2297856<br />

ISP hostname ISP<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

via 10.0.0.5 (2297856/128256), Serial0/1<br />

ip host HQ 209.165.201.2<br />

!<br />

interface Loopback0<br />

!<br />

description Simulated Public Web Server<br />

ip address 209.165.202.129 255.255.255.255<br />

interface Serial0/0<br />

!<br />

description Link to HQ<br />

ip address 209.165.201.1 255.255.255.252<br />

no shutdown<br />

ip classless<br />

ip route 10.0.0.0 255.255.128.0 Serial0/0<br />

!<br />

Chapter 3: EIGRP <strong>and</strong> Troubleshooting Routing Protocols 217


218 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

banner motd &<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

&<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

ISP#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

209.165.201.0/30 is subnetted, 1 subnets<br />

C 209.165.201.0 is directly connected, Serial0/0<br />

209.165.202.0/32 is subnetted, 1 subnets<br />

C 209.165.202.129 is directly connected, Loopback0<br />

10.0.0.0/17 is subnetted, 1 subnets<br />

S 10.0.0.0 is directly connected, Serial0/0


CHAPTER 4<br />

Switching Concepts<br />

The <strong>Study</strong> <strong>Guide</strong> portion of this chapter uses a combination of matching, fill in the blank, open-ended<br />

question, journal entry, <strong>and</strong> unique custom exercises to test your knowledge on the theory of switching<br />

<strong>and</strong> switch operation.<br />

There are no Lab Exercises for this chapter.


220 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

<strong>Study</strong> <strong>Guide</strong><br />

Introduction to Ethernet/802.3 LANs<br />

LAN design continues to evolve. Network designers until very recently used hubs <strong>and</strong> bridges to build networks.<br />

Now switches <strong>and</strong> routers are the key components in LAN design, <strong>and</strong> the capabilities <strong>and</strong> performance<br />

of these devices continue to improve.<br />

As a <strong>CCNA</strong> c<strong>and</strong>idate, you should have a firm grasp of the concepts involved in the evolution of<br />

Ethernet/802.3, the most commonly deployed LAN architecture. This section offers some exercises to help<br />

you master these concepts.


Vocabulary Exercise: Matching<br />

Definition<br />

a. Ethernet’s collision resolution methodology<br />

b. the fading of a data signal as it travels<br />

through the media<br />

c. reading the entire frame to check for errors<br />

before sending on to the destination<br />

d. filters traffic at Layer 3; segments broadcast<br />

domains<br />

e. Layer 2 device that provides network access<br />

to hosts<br />

f. Layer 2 error-checking mechanism<br />

g. capable of simultaneous transmission <strong>and</strong><br />

reception<br />

h. basic unit of time in which one bit can be<br />

sent<br />

i. multiport repeater or LAN concentrator<br />

j. sending a frame out all ports except for the<br />

port it was received on<br />

k. frames are stored in queues that are linked to<br />

specific incoming ports`<br />

l. temporary, dedicated path between two hosts<br />

created by the switch<br />

m. sending out frames as soon as the destination<br />

MAC address is read<br />

n. deposits all frames into a common memory<br />

buffer<br />

o. address contained within the frame header<br />

for Ethernet encapsulations<br />

p. sending a frame out a port based on the unicast<br />

MAC address<br />

q. filters traffic based on Layer 2 addressing; no<br />

longer used in today’s networks<br />

r. forwarding frames after the first 64 bytes are<br />

read<br />

s. delay inherent in sending data from the<br />

source to the destination<br />

t. area of a LAN where frames from two different<br />

sources can run into each other<br />

u. can either send or receive, but not both at the<br />

same time<br />

v. filters traffic at Layer 2; capable of microsegmentation<br />

Chapter 4: Switching Concepts 221<br />

Match the definition on the left with a term on the right. This exercise is not necessarily a one-to-one<br />

matching. Some definitions may be used more than once <strong>and</strong> some terms may have multiple definitions.<br />

Term<br />

t collision domains<br />

i hub<br />

o MAC<br />

q bridge<br />

v switch<br />

l virtual circuit<br />

d router<br />

a carrier sense multiple access collision detect<br />

(CSMA/CD)<br />

u half duplex<br />

g full duplex<br />

e network interface card (NIC)<br />

s latency<br />

h bit time (slot time)<br />

b attenuation<br />

f cyclic redundancy check (CRC)<br />

c store <strong>and</strong> forward<br />

j flooding<br />

p filtering<br />

k port-based memory buffering<br />

n shared memory buffering<br />

f frame check sequence (FCS)<br />

m cut-through<br />

r fragment-free


222 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Vocabulary Exercise: Completion<br />

Directions: Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

A hub is a Layer 1 device <strong>and</strong> is sometimes referred to as a LAN or Ethernet concentrator or a multiport<br />

repeater.<br />

Ethernet is fundamentally a shared or broadcast technology through which all users on a given LAN segment<br />

compete for the same available b<strong>and</strong>width. If two or more devices try to transmit at the same time, a<br />

collision occurs.<br />

Bridges <strong>and</strong> switches operate at the data link layer of the Open System Interconnection (OSI) model.<br />

These Layer 2 devices make forwarding decisions based on MAC addresses contained within the headers<br />

of transmitted data frames.<br />

Switches create a virtual circuit between two connected devices that want to communicate, which is a dedicated<br />

communication path established between the two devices.<br />

The implementation of a switch on the network is called microsegmentation, which creates a collision-free<br />

environment for each device connected to the switch.<br />

The disadvantage of Layer 2 devices is that they forward broadcast frames to all connected devices on the<br />

network.<br />

Routers operate at the network layer of the OSI model <strong>and</strong> will not forward broadcast frames unless<br />

specifically programmed to do so. Therefore, routers reduce the size of both the collision domains <strong>and</strong> the<br />

broadcast domains in a network.<br />

CSMA/CD is Ethernet’s access control method. Originally Ethernet was a half-duplex technology, which<br />

allows hosts to either transmit or receive at one time, but not both.<br />

Full-duplex Ethernet significantly improves network performance without the expense of installing new<br />

media <strong>and</strong> offers 100 percent of the b<strong>and</strong>width in both directions because it is a collision-free environment.<br />

Frames sent by the two connected end nodes cannot collide, because the end nodes use two separate<br />

circuits in the Category 3, 5, 5e, or 6 cable.<br />

Nodes that are attached to hubs that share their connection to a switch port must operate in half-duplex<br />

mode, because the end stations must be able to detect collisions.<br />

Latency, or delay, is the time a frame or a packet takes to travel from the source station to the final destination.<br />

The networking device that adds the most latency is a router.<br />

A 64-byte frame is the smallest frame that allows CSMA/CD to operate properly, <strong>and</strong> a 1518-byte frame is<br />

the largest.<br />

The distance that a LAN can cover is limited due to attenuation, which means that the signal weakens as it<br />

travels through the network.


CSMA/CD Process Flow Chart Exercise<br />

Draw a flow chart of the CSMA/CD process. Your flow chart should have a minimum of six steps, but can<br />

have more.<br />

Figure 4-1 CSMA/CD Process Flow Chart<br />

Calculate<br />

Back-Off Algorithm<br />

Send Out<br />

Jam Signal<br />

Simple Solution<br />

1. Host wants to transmit<br />

2. Is carrier sensed?<br />

3. Assemble frame<br />

4. Start transmitting<br />

5. Is a collision detected?<br />

6. Keep transmitting<br />

7. Is the transmission done?<br />

8. Transmission completed<br />

9. Broadcast jam signal<br />

10. Attempts = Attempts + 1<br />

11. Attempts > Too many?<br />

12. Too many collisions; abort<br />

transmission<br />

13. Algorithm calculates backoff<br />

14. Wait for t microseconds<br />

Listen to Wire<br />

(Carrier Sense)<br />

Transmit if Free <strong>and</strong><br />

Continue to Listen<br />

Collision<br />

Detected?<br />

Finish<br />

Transmission<br />

Complex Solution<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

No<br />

No<br />

Yes<br />

Yes<br />

Yes<br />

No<br />

Chapter 4: Switching Concepts 223<br />

9<br />

10<br />

11<br />

12<br />

Yes<br />

No<br />

13<br />

14


224 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Concept Questions<br />

In your own words, describe the function of a router.<br />

Routers examine inbound packets for Layer 3 data, choose the best path to the destination network, <strong>and</strong><br />

send the packet out the correct outbound port.<br />

In your own words, explain how CSMA/CD works in half-duplex Ethernet LANs.<br />

Each host checks the network to see whether data is being transmitted before it transmits additional data<br />

(carrier sense). If the network is already in use, the transmission is delayed. Despite transmission deferral,<br />

two or more hosts could transmit at the same time (multiple access). This results in a collision. When a<br />

collision occurs, the host that detects the collision first sends out a jam signal to the other hosts (collision<br />

detection). When a jam signal is received, each host stops data transmission, <strong>and</strong> then waits for a r<strong>and</strong>om<br />

period of time to retransmit the data. The back-off algorithm generates this r<strong>and</strong>om delay. The first host<br />

whose time expires can restart the process to transmit data.<br />

Journal Entry<br />

In your own words, describe the various forms of latency. Draw a topology with several networking<br />

devices between two communicating computers as part of your explanation.<br />

Figure 4-2 Your Topology Illustrating Latency<br />

Switches add<br />

some latency<br />

The forms of latency are as follows:<br />

Latency placing the<br />

frame on the wire<br />

Intermediate device latency with<br />

routers adding the most delay<br />

The cloud will<br />

also add latency<br />

Propagation delay as the<br />

frame travels down the wire<br />

Hubs add very<br />

little latency<br />

■ First, there is the time it takes the source NIC to place voltage pulses on the wire <strong>and</strong> the time it takes<br />

the destination NIC to interpret those pulses. This is sometimes called NIC delay, typically around 1<br />

microsecond for a 10BASE-T NIC.<br />

■ Second, there is the actual propagation delay as the signal takes time to travel through the cable.<br />

Typically, this is about 0.556 microseconds per 100 m for Cat 5 UTP. Longer cable <strong>and</strong> slower nominal<br />

velocity of propagation (NVP) result in more propagation delay.<br />

■ Third, latency is added based on network devices that are in the path between two computers. These<br />

are either Layer 1, Layer 2, or Layer 3 devices. The more layers a device processes, the more latency<br />

it adds.


Introduction to LAN Switching<br />

In the past, repeaters were used in most Ethernet networks. Because Ethernet is a broadcast topology,<br />

adding repeaters enlarged the domain in which collisions can occur causing a reduction in the b<strong>and</strong>width<br />

available for data transfer. Bridges were soon introduced to create multiple collision domains. Bridges<br />

evolved into switches capable of microsegmenting a LAN, effectively creating a collision-free environment.<br />

Many modern switches are capable of performing varied <strong>and</strong> complex tasks in the network. For example,<br />

some switches are capable of performing both Layer 2 <strong>and</strong> Layer 3 functions. The exercises in this section<br />

focus on how a switch or router makes a decision to forward data on its way to the intended destination.<br />

This section provides an introduction to network segmentation <strong>and</strong> describes the basics of switch operation.<br />

Vocabulary Exercise: Completion<br />

Directions: Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

Networks can be divided into smaller units by a bridge or a switch. These smaller units are called segments.<br />

Each unit is its own collision domain.<br />

Bridges <strong>and</strong> switches are Layer 2 devices that forward data frames based on the MAC address. Bridges<br />

read the source MAC address of the data packets to discover the devices that are on each segment. The<br />

source MAC address is used to populate the MAC address table.<br />

Bridges <strong>and</strong> switches provide segmentation within a single network or subnetwork. Routers provide connectivity<br />

between networks <strong>and</strong> subnetworks. Routers do not forward broadcasts, whereas switches <strong>and</strong><br />

bridges do forward broadcast frames.<br />

When a switch or bridge is first initialized, the MAC address table is empty. With an empty MAC address<br />

table, the switch or bridge must forward each frame to all connected ports other than the one on which the<br />

frame arrived. Sending a frame out all connected ports except the incoming port is called flooding the<br />

frame. Once a switch or a bridge has learned the topology, it can stop frames from propagating onto segments<br />

where the destination does not exist. This process is called filtering.<br />

Building the MAC Address Table Exercise<br />

Assume that the bridge in Figure 4-3 was just installed <strong>and</strong> powered on. The MAC address table is empty.<br />

Answer the following questions <strong>and</strong> complete the table as the bridge would build it.<br />

Figure 4-3 Building the MAC Address Table<br />

A<br />

0260.8c01.1111<br />

0260.8c01.2222<br />

E0<br />

E1<br />

Chapter 4: Switching Concepts 225<br />

C<br />

0260.8c01.3333<br />

B D<br />

0260.8c01.4444


226 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Port MAC Address<br />

E0 0260.8c01.1111<br />

E0 0260.8c01.2222<br />

E1 0260.8c01.4444<br />

E1 0260.8c01.3333<br />

1. Host A sends a unicast frame to Host B. What entry, if any, will the bridge enter in its MAC address<br />

table?<br />

The bridge will enter the source MAC address for Host A <strong>and</strong> the interface that Host A is attached to.<br />

What will the bridge do with the frame?<br />

Because the bridge does not know where Host B is, the bridge will forward the frame to the segment<br />

out E1.<br />

2. Host B responds to Host A with a unicast frame. What entry, if any, will the bridge enter in its MAC<br />

address table?<br />

The bridge will enter the source MAC address for Host B <strong>and</strong> the interface that Host B is attached to.<br />

What will the bridge do with the frame?<br />

The bridge will drop the frame because the destination host, Host A, is on the same segment as Host<br />

B. Host A has already received the frame.<br />

3. Host D attempts to log in to Server C. What entry, if any, will the bridge enter in its MAC address<br />

table?<br />

The bridge will enter the source MAC address for Host D <strong>and</strong> the interface that Host D is attached to.<br />

What will the bridge do with the frame?<br />

Because the bridge does not know where Server C is, the bridge will forward the frame to the segment<br />

out E0.<br />

4. Server C responds to the login attempt by Host D. What entry, if any, will the bridge enter in its MAC<br />

address table?<br />

The bridge will enter the source MAC address for Server C <strong>and</strong> the interface that Server C is attached<br />

to.<br />

What will the bridge do with the frame?<br />

The bridge will drop the frame because the destination host, Host D, is on the same segment as Server<br />

C. Server C has already received the frame.<br />

5. Server C sends out a broadcast frame announcing its services to all potential clients. What entry, if<br />

any, will the bridge enter in its MAC address table?<br />

The bridge will refresh the timestamp on the entry for Server C.<br />

What will the bridge do with the frame?<br />

The bridge will forward the frame out E0 because the destination is a broadcast. Bridges must forward<br />

broadcasts.


Concept Questions<br />

Explain the difference between bridges <strong>and</strong> switches.<br />

Bridges are store <strong>and</strong> forward devices <strong>and</strong> make the switching decision in software. Switches can process<br />

frames faster by using some form of cut-through switching <strong>and</strong> make the switching decision in hardware.<br />

Switches have less latency than bridges.<br />

Explain why routers cause more latency than do switches, bridges, or hubs.<br />

Routers are Layer 3 devices. Therefore, routers must process data at Layer 3. First, the router deencapsulates<br />

the frame <strong>and</strong> reads the MAC address. If the MAC address is the router’s MAC or a broadcast, the<br />

router then calculates the CRC to determine if the frame is corrupted. If the frame is not addressed to the<br />

router, is not broadcast, or has errors, it is dropped. Otherwise, the router opens the packet header to examine<br />

the destination IP address, makes a routing decision, <strong>and</strong> forwards the packet to the outbound interface.<br />

This extra layer of processing causes more latency than a switch causes.<br />

Explain the difference between Layer 2 <strong>and</strong> Layer 3 switching.<br />

The difference between Layer 2 <strong>and</strong> Layer 3 switching is the type of information inside the frame that is<br />

used to determine the correct output interface. Layer 2 switching is based on MAC address information.<br />

Layer 3 switching is based on network layer addresses, or IP addresses. The features <strong>and</strong> functionality of<br />

Layer 3 switches <strong>and</strong> routers have numerous similarities. The only major difference between the packet<br />

switching operation of a router <strong>and</strong> a Layer 3 switch is the physical implementation. In general-purpose<br />

routers, packet switching takes place in software, using microprocessor-based engines, whereas a Layer 3<br />

switch performs packet forwarding using application specific integrated circuit (ASIC) hardware.<br />

Journal Entry<br />

Explain how a Layer 2 switch can operate in three different switching modes. Include in your explanation<br />

how much of the frame each method reads, what kind of error checking is performed by the method, <strong>and</strong><br />

what the method’s latency is. Include a diagram of a frame illustrating each method.<br />

Fast forward has the lowest latency with no error checking. It reads the destination MAC address <strong>and</strong><br />

begins forwarding the frame before the entire frame has been received. Fragment-free switching catches<br />

most errors because it checks up to the first 64 bytes in the Data field. Most errors are the result of collisions<br />

<strong>and</strong> have sizes less than the 64 byte minimum. Latency is fixed, but slightly higher than fast forward.<br />

However, the improved error detection is usually worth the minor increase in latency. Store <strong>and</strong> forward<br />

has the highest latency because it stores the entire frame <strong>and</strong> checks its CRC to determine if there is an<br />

error. Latency is also variable on a frame-by-frame basis because frame size varies.<br />

Note: Students may also mention adaptive cut-through, which is a combination of both fast forward <strong>and</strong> store <strong>and</strong> forward.<br />

Initially, the switch operates in fast forward mode. If too many errors are detected beyond a configurable threshold,<br />

then the switch automatically moves to store <strong>and</strong> forward.<br />

Figure 4-4 Solution Diagram<br />

Chapter 4: Switching Concepts 227<br />

7 Bytes 1 Byte 6 Bytes 6 Bytes 2 Bytes Max 1500 Bytes 4 Bytes<br />

Preamble SFD<br />

Dest.<br />

Address<br />

Source<br />

Address<br />

Length Data FCS<br />

Fast Forward<br />

Fragment-Free<br />

Store-<strong>and</strong>-Forward


228 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Switch Operation<br />

The exercises in this section reinforce your knowledge of collision <strong>and</strong> broadcast domains. In addition,<br />

you revisit the concept of picking the correct cable when connecting devices.<br />

Vocabulary Exercise: Completion<br />

Directions: Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

Even though the LAN switch reduces the size of collision domains, all hosts connected to the switch are<br />

still in the same broadcast domain.<br />

Communication in a network occurs in three ways. The most common way of communication is by<br />

unicast transmissions, in which one transmitter tries to reach one receiver.<br />

Another way to communicate is known as a multicast transmission, in which one transmitter tries to reach<br />

only a subset, or a group, of the entire segment.<br />

The final way to communicate is as a broadcast, in which one transmitter tries to reach all the receivers in<br />

the network.<br />

When a device wants to send out a Layer 2 broadcast, the destination MAC address in the frame is set to<br />

all 1s. A broadcast MAC address is FF:FF:FF:FF:FF:FF in hexadecimal. By setting the destination to this<br />

value, all the devices will accept <strong>and</strong> process the broadcasted frame.<br />

Routers are used to segment both collision <strong>and</strong> broadcast domains.<br />

Collision <strong>and</strong> Broadcast Domains Exercises<br />

Using Figure 4-5, circle all the collision domains with a solid line <strong>and</strong> all the broadcast domains with a<br />

dashed line.<br />

Figure 4-5 Collision <strong>and</strong> Broadcast Domains: Topology 1<br />

Broadcast Domain<br />

Collision Domain<br />

Using Figure 4-6, circle all the collision domains with a solid line <strong>and</strong> all the broadcast domains with a<br />

dashed line.


Figure 4-6 Collision <strong>and</strong> Broadcast Domains: Topology 2<br />

Using Figure 4-7, circle all the collision domains with a solid line <strong>and</strong> all the broadcast domains with a<br />

dashed line.<br />

Figure 4-7 Collision <strong>and</strong> Broadcast Domains: Topology 3<br />

Chapter 4: Switching Concepts 229<br />

Broadcast Domain<br />

Collision Domain<br />

Broadcast Domain<br />

Collision Domain


230 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Choose the Correct Cable Exercise<br />

In the blank provided, indicate with an S for straight-through <strong>and</strong> C for cross which type of cable would<br />

be used to connect the two devices.<br />

S Hub to workstation or server<br />

C Switch to switch<br />

C Hub to hub<br />

C Router to PC<br />

S Switch to router<br />

C Workstation to workstation<br />

S Switch to workstation or server<br />

C Switch to hub<br />

C Router to router


Lab Exercises<br />

There are no Lab Exercises for this chapter.<br />

Chapter 4: Switching Concepts 231


This page intentionally left blank


CHAPTER 5<br />

LAN Design <strong>and</strong> Switches<br />

The <strong>Study</strong> <strong>Guide</strong> portion of this chapter uses a combination of matching, fill in the blank, open-ended<br />

question, <strong>and</strong> identification exercises to test your knowledge on the theory of LAN design <strong>and</strong> the threelayer<br />

hierarchical model.<br />

There are no Lab Exercises for this chapter.


234 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

<strong>Study</strong> <strong>Guide</strong><br />

LAN Design<br />

A network design needs to be functional, scalable, adaptable, <strong>and</strong> manageable. Designing a network can be<br />

a challenge because it involves much more than just connecting users. A network requires many features in<br />

order to be reliable <strong>and</strong> available based on the needs of the organization. Underst<strong>and</strong>ing the basic design<br />

process <strong>and</strong> structure of networks will help you to ensure that you are meeting the needs of the network<br />

users.<br />

Vocabulary Exercise: Matching<br />

Match the definition on the left with a term on the right. This exercise is not necessarily a one-to-one<br />

matching. Some definitions may be used more than once <strong>and</strong> some terms may have multiple definitions.<br />

Definition<br />

a. area of a LAN where frames from two different<br />

sources can run into each other<br />

b. switching between ports of different b<strong>and</strong>width<br />

c. local <strong>and</strong> remote user access<br />

d. cabling that runs between wiring closets<br />

e. responsible for fast switching, redundancy,<br />

<strong>and</strong> remote access<br />

f. cabling that runs from workstations to the<br />

wiring closet<br />

g. primary wiring closet where POP is located<br />

h. all ports on the switch have the same b<strong>and</strong>width<br />

i. responsible for policy-based connectivity<br />

j. secondary wiring closet<br />

k. used to connect cable runs from user to the<br />

Layer 2 LAN switch ports<br />

l. used to interconnect the various IDFs to the<br />

central MDF<br />

Term<br />

c access layer<br />

i distribution layer<br />

e core layer<br />

g main distribution facility (MDF)<br />

j intermediate distribution facility (IDF)<br />

a collision domain<br />

k horizontal cross-connect (HCC)<br />

l vertical cross-connect (VCC)<br />

b asymmetric switching<br />

h symmetric switching<br />

d backbone or vertical cabling


Vocabulary Exercise: Completion<br />

Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

Chapter 5: LAN Design <strong>and</strong> Switches 235<br />

The first step in designing a LAN is to establish <strong>and</strong> document the goals of the design.<br />

Most LANs are designed to meet four major requirements:<br />

■ Functionality, which enables users to meet their job requirements with speed <strong>and</strong> reliability<br />

■ Scalability, which means that the network should be designed with future growth in mind<br />

■ Adaptability, which means that the network design will easily incorporate new technologies<br />

■ Manageability, which facilitates network monitoring<br />

Servers can be categorized into two distinct classes:<br />

■ Enterprise servers support all the users on the network by offering services such as e-mail, DNS, <strong>and</strong><br />

corporate intranet access.<br />

■ Workgroup servers support a specific set of users, offering services such as word processing <strong>and</strong> file<br />

sharing specific to that group’s needs.<br />

Enterprise servers should be placed in the MDF, <strong>and</strong> workgroup servers should be placed in the IDF closest<br />

to the users who need it.<br />

One of the most important components to consider when designing a network is the cables/cabling/cable<br />

plant because the physical layer is the cause of most network problems.<br />

Fiber-optic cable should be used in the backbone <strong>and</strong> risers in all cable designs. Category 5e or Category 6<br />

UTP cable should be used in the horizontal runs. The cable upgrade should take priority over any other<br />

necessary changes.<br />

The TIA/EIA-568-A st<strong>and</strong>ard specifies that every device connected to the network should be linked to a<br />

central location with horizontal cabling. In a simple star topology, this central location is the MDF (acronym)<br />

<strong>and</strong> includes one or more HCCs used to connect the Layer 1 horizontal cabling coming into the wiring<br />

closet from work areas to the Layer 2 LAN switch inside the wiring closet.<br />

In larger network environments, multiple wiring closets are often needed. These extra or secondary wiring<br />

closets are referred to as IDFs.<br />

A VCC in each wiring closet is used to interconnect the various IDFs to the central MDF. The type of<br />

backbone or vertical cabling used is usually fiber-optic because the cable lengths are typically longer than<br />

the 100-meter limit for Category 5e UTP cable.<br />

Complete Figure 5-1 by filling in all the missing text labeling the components of this multibuilding<br />

campus LAN.


236 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 5-1 Extended Star Topology in a Multibuilding Campus<br />

Devices at Layer 2 determine the size of the collision domains, which can negatively affect the performance<br />

of a network. Switches are capable of microsegmentation, which effectively eliminates collisions<br />

because only one host is attached to a switch port.<br />

A router is a Layer 3 device <strong>and</strong> is one of the most intelligent devices in the network topology. Layer 3<br />

devices allow communication between segments based on Layer 3 addresses.<br />

A router does not forward broadcasts, such as Address Resolution Protocol (ARP) requests. Therefore,<br />

routers segment broadcast domains.<br />

VLAN implementation combines Layer 2 switching <strong>and</strong> Layer 3 routing technologies to limit both collision<br />

domains <strong>and</strong> broadcast domains. To communicate between two VLANs, you must use a router.<br />

Concept Questions<br />

List at least four issues that should be addressed in LAN design if you are going to maximize b<strong>and</strong>width<br />

<strong>and</strong> performance.<br />

■ The function <strong>and</strong> placement of servers<br />

■ Collision domain issues<br />

■ Segmentation issues<br />

Telecommunications<br />

Outlet/Wall Plate<br />

5 m<br />

Work Area<br />

Station Cable<br />

■ Broadcast domain issues<br />

90 m<br />

Horizontal<br />

Cable Category<br />

5e UTP<br />

■ Port speed on switches <strong>and</strong> NICs<br />

MDF<br />

■ CPU processors on workstations <strong>and</strong> servers<br />

HCC<br />

HCC<br />

IDF<br />

HCC<br />

Instructor Note: Your students may list some additional issues that may affect b<strong>and</strong>width. Evaluate each on its<br />

merit. Does it need to be addressed when designing the LAN? If so, give the student credit. Make sure the students are<br />

focusing on LAN issues. Some issues they list may actually be related to the WAN side. For example, “increasing the<br />

b<strong>and</strong>width with the service provider” would not maximize LAN b<strong>and</strong>width <strong>and</strong> performance.<br />

Uplink<br />

Downlink 100 m<br />

Uplink Port<br />

VCC<br />

Vertical Cable<br />

Multiple Fiber-Optic<br />

Runs for Expansion<br />

VCC<br />

WAN


List <strong>and</strong> briefly explain the four steps of an effective LAN design methodology.<br />

Step 1. Gather requirements <strong>and</strong> expectations. This step involves a process of asking questions of key<br />

people <strong>and</strong> the users within the organization. The goal of this step is to determine what availability<br />

is required.<br />

Step 2. Analyze requirements <strong>and</strong> data. This is the process of determining what is required to satisfy<br />

the needs of the users <strong>and</strong> also keeping an eye toward future needs.<br />

Step 3. Design the Layer 1, 2, <strong>and</strong> 3 LAN structure, or topology. Based on the needs analysis done in<br />

Steps 1 <strong>and</strong> 2, determine how the cable plant needs to change <strong>and</strong> choose or upgrade existing<br />

equipment.<br />

Step 4. Document the logical <strong>and</strong> physical network implementation. This is the most important step.<br />

For troubleshooting purposes as well as future expansion considerations, the importance of<br />

documentation cannot be overstated.<br />

List three purposes of Layer 2 devices.<br />

■ Switch frames based on destination MAC addresses<br />

■ Error detection<br />

■ Reduce congestion<br />

Why do you want vertical cabling to have a greater data capacity than horizontal cabling?<br />

Vertical cabling, or backbone cabling, carries aggregated traffic from multiple users. Therefore, it needs to<br />

be a larger “pipe.” Otherwise, it will be a bottleneck, slowing down data traveling between IDFs.<br />

What factors need to be considered when choosing whether to use a router or switch at a particular point<br />

in the network?<br />

Determine the problem that needs to be solved. If the problem is related to protocol rather than issues of<br />

contention, then routers are the appropriate solution. Routers solve problems with excessive broadcasts,<br />

protocols that do not scale well, security issues, <strong>and</strong> network layer addresses.<br />

LAN Switches<br />

Cisco recommends designing your networks based on the three-layer hierarchical model. Each of the LAN<br />

design layers discussed in this chapter requires switches <strong>and</strong> routers that are best suited for the task at<br />

h<strong>and</strong>. The features, functions, <strong>and</strong> technical specifications for each switch or router vary based on the LAN<br />

design layer for which the device is intended. For the best network performance, it is important to underst<strong>and</strong><br />

the role of each layer <strong>and</strong> then choose the device that best suits the layer requirements.<br />

Vocabulary Exercise: Completion<br />

Directions: Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

The hierarchical design model includes the following three layers:<br />

■ The access layer provides users in workgroups access to the network.<br />

■ The distribution layer provides policy-based connectivity.<br />

■ The core layer provides optimal transport between sites.<br />

Chapter 5: LAN Design <strong>and</strong> Switches 237<br />

The access layer is the entry point for user workstations <strong>and</strong> servers to the network. In a campus LAN, the<br />

device used at this layer is typically a switch.


238 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

This layer’s functions also include MAC layer filtering, which allows switches to direct frames to only the<br />

port the destination is attached to, <strong>and</strong> microsegmentation, which creates collision-free connections.<br />

The purpose of the distribution layer is to provide a boundary definition in which packet manipulation can<br />

take place. Networks are segmented into broadcast domains by this layer. Policies can be applied <strong>and</strong><br />

access control lists can filter packets. This layer isolates network problems to the workgroups in which<br />

they occur <strong>and</strong> prevents these problems from affecting the core layer. Switches in this layer operate at<br />

Layer 2 <strong>and</strong> Layer 3.<br />

The core layer is responsible for fast packet switching across the backbone, whether WANs or LANs, <strong>and</strong><br />

providing redundant paths.<br />

Three-Layer Hierarchical Model Exercise<br />

For each of the following figures, indicate whether the scenario is an access layer function, distribution<br />

layer function, or core layer function.<br />

Figure 5-2 Scenario 1<br />

In Figure 5-2, an access control list (denoted by the firewall) is implemented to prevent unnecessary network<br />

traffic on the backbone network. The distribution layer is responsible for the implementation of<br />

access control lists.<br />

Figure 5-3 Scenario 2<br />

In Figure 5-3, a telecommuter is shown connecting to headquarters through a modem connection. The<br />

access layer is responsible for allowing telecommuters to connect to the network.<br />

Figure 5-4 Scenario 3<br />

Headquarters<br />

Backbone Network<br />

New York San Jose<br />

T1<br />

In Figure 5-4, the core layer is responsible for connecting New York <strong>and</strong> San Jose across a T1 link.


Figure 5-5 Scenario 4<br />

In Figure 5-5, the access layer is using 2900 series switches to connect end users to the network.<br />

Figure 5-6 Scenario 5<br />

In Figure 5-6, the distribution layer is using 6000 series switches for inter-VLAN routing.<br />

Figure 5-7 Scenario 6<br />

In Figure 5-7, the core layer is using multilayer switches for fast switching <strong>and</strong> no packet manipulation.<br />

Figure 5-8 Scenario 7<br />

2900 Switches<br />

6000 Switches<br />

Multilayer Switches<br />

6000 Switches<br />

Chapter 5: LAN Design <strong>and</strong> Switches 239


240 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

In Figure 5-8, the distribution layer is using multilayer switches to summarize OSPF routes.<br />

Concept Questions<br />

List three functions of the access layer.<br />

■ Local <strong>and</strong> remote user access<br />

■ MAC layer filtering<br />

■ Microsegmentation<br />

List five functions of the distribution layer<br />

■ Aggregation of the wiring closet connections<br />

■ Broadcast/multicast domain definition<br />

■ VLAN routing<br />

■ Any media transitions that need to occur<br />

■ Security<br />

List three functions of the core layer<br />

■ Fast switching of packets<br />

■ Redundancy<br />

■ Access to remote sites


Lab Exercises<br />

There are no Lab Exercises for this chapter.<br />

Chapter 5: LAN Design <strong>and</strong> Switches 241


This page intentionally left blank


CHAPTER 6<br />

Catalyst Switch Configuration<br />

The <strong>Study</strong> <strong>Guide</strong> portion of this chapter uses a combination of fill in the blank <strong>and</strong> unique custom exercises<br />

to test your knowledge of switch configuration.<br />

The Lab Exercises portion of this chapter includes all of the online curriculum labs as well as a challenge<br />

lab to ensure that you have mastered the practical, h<strong>and</strong>s-on skills needed about switch configuration.


244 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

<strong>Study</strong> <strong>Guide</strong><br />

Starting the Switch<br />

The exercises in this section focus on knowledge <strong>and</strong> skills you need before you begin to configure switches.<br />

You should know how to connect to a switch to configure it. You should also be able to interpret the LEDs.<br />

Vocabulary Exercise: Completion<br />

Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

Before configuring a switch, make sure it is plugged in <strong>and</strong> that the system LED is green. If the system<br />

LED is amber, the switch failed POST <strong>and</strong> is not operational. To configure a switch, use a rollover cable to<br />

connect the console port on the back of the switch to a COM port on the back of the computer. If using<br />

HyperTerminal as your terminal emulator, you need to configure the port settings in the Properties dialog<br />

box as follows:<br />

Bit per second: 9600<br />

Data bits: 8<br />

Parity: None<br />

Stop bits: 1<br />

Flow control: None<br />

However, simply clicking the Restore Defaults button enters these settings automatically.<br />

After the switch boots, you are asked the following question:<br />

Would you like to enter the initial configuration dialog? [yes/no]:<br />

Just as with a router, answering yes begins Setup mode, in which you are asked a series of basic configuration<br />

questions. If you accidentally answer yes or want to abort Setup mode, use the key combination<br />

Ctrl-C. You can also enter setup mode from the privileged user prompt by entering the comm<strong>and</strong> setup.<br />

Answering no gives you the Switch> prompt, from which you can use the comm<strong>and</strong>-line interface (CLI)<br />

to configure the switch.<br />

You will find that many of the basic configurations of a switch are identical to what you have already<br />

learned for a router. This is because both devices use the Cisco Internetwork Operating System (IOS). For<br />

example, to enter privileged mode, type the enable comm<strong>and</strong>. The prompt changes to Switch#. To enter<br />

global configuration mode, enter configure terminal. The prompt changes to Switch(config)#. At any point<br />

in your configuration, you can enter the ? key to get help.


Switch LED Interpretation Exercise<br />

The LEDs on a switch provide a wealth of information about the switch. Being able to interpret the meanings<br />

of different LED colors <strong>and</strong> statuses is important for troubleshooting problems <strong>and</strong> gives the network<br />

engineer a snapshot of current network performance. Refer to Figure 6-1 <strong>and</strong> answer the following questions<br />

about a switch’s LED.<br />

Figure 6-1 Four Main LEDs on the Catalyst 2950 Switch<br />

System LED<br />

The system LED is off. What does this indicate?<br />

No power to the switch.<br />

What does an amber system LED indicate?<br />

The system failed POST <strong>and</strong> is not operational.<br />

RPS LED<br />

What does the acronym RPS st<strong>and</strong> for?<br />

Redundant power supply.<br />

The RPS LED is off. What does this indicate?<br />

No RPS is attached.<br />

System<br />

LED<br />

Port Mode<br />

LEDs<br />

What does a green RPS LED indicate?<br />

A redundant power supply is attached <strong>and</strong> operational.<br />

What does a flashing green RPS LED indicate?<br />

An RPS is attached but unavailable.<br />

Redundant Power<br />

Supply LED<br />

Mode Button<br />

Chapter 6: Catalyst Switch Configuration 245<br />

Port Status<br />

LEDs<br />

1x 2x 3x 4x 5x


246 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

What does an amber RPS LED indicate?<br />

An RPS is installed but not operational.<br />

What does a flashing amber RPS LED indicate?<br />

The internal power supply failed <strong>and</strong> the RPS is providing power.<br />

Port Mode LEDs<br />

The STAT mode is currently selected. What does each of the following indicate?<br />

The port LED is off.<br />

No device is attached.<br />

The port LED is flashing green.<br />

The port is sending/receiving traffic on an active link.<br />

The port LED is amber (three reasons).<br />

The port has just detected a link <strong>and</strong> is currently running STP, in which case the LED will be amber for<br />

30 seconds, the port has been administratively suspended because of an address violation, or the port has<br />

been suspended by STP because of a loop.<br />

The UTIL mode is currently selected. Briefly explain this mode’s purpose assuming the switch is a 2950-24.<br />

If all the port LEDs are green, the switch is using more than 50 percent of total b<strong>and</strong>width. If the far-right<br />

LED is off, the switch is using more than 25 percent but less than 50 percent of the total b<strong>and</strong>width, <strong>and</strong><br />

so on. If only the far-left LED is green, the switch is using less than 0.0488 percent of the total b<strong>and</strong>width.<br />

For the DUPLEX <strong>and</strong> SPEED modes, what does a green LED indicate?<br />

The port is operating in full duplex <strong>and</strong> at 100 Mbps, respectively.<br />

For the SPEED mode, what does a flashing green LED indicate?<br />

The port is operating at 1000 Mbps.<br />

Configuring the Switch<br />

The exercises in this section focus on switch configuration.<br />

Learn Basic Switch Comm<strong>and</strong>s Exercise<br />

For this exercise, refer to Figure 6-2 to answer the following configuration questions. The router is named<br />

DIST because it is a distribution layer router <strong>and</strong> the switch is named ALSW because it is an access layer<br />

switch.


Figure 6-2 Basic Switch Configuration Exercise<br />

For a Catalyst 2950 switch, the following default configurations are in place:<br />

IP address: 0.0.0.0<br />

CDP: enabled<br />

100BASE-T port: autonegotiate duplex mode<br />

Spanning tree: enabled<br />

Console password: none<br />

The default hostname is Switch. Record the switch prompt <strong>and</strong> comm<strong>and</strong> to change the hostname to<br />

ALSW.<br />

Switch(config)#hostname ALSW<br />

Record the switch prompt <strong>and</strong> comm<strong>and</strong> to configure class as the encrypted enable password.<br />

ALSW(config)#enable secret class<br />

Record the switch prompt <strong>and</strong> comm<strong>and</strong> to enter console line configuration mode.<br />

ALSW(config)#line console 0<br />

Record the switch prompt <strong>and</strong> comm<strong>and</strong> to configure the password cisco on the console line.<br />

ALSW(config-line)#password cisco<br />

Record the switch prompt <strong>and</strong> comm<strong>and</strong> to require users to log in.<br />

ALSW(config-line)#login<br />

DIST<br />

ALSW<br />

VLAN1 192.168.1.2/24<br />

Fa0 192.168.1.1/24<br />

Chapter 6: Catalyst Switch Configuration 247


248 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

The preceding comm<strong>and</strong>s should also be entered on the Telnet lines. A switch has 16 Telnet lines numbered<br />

0 to 15. The comm<strong>and</strong> to enter Telnet line configuration mode is line vty 0 15.<br />

A switch should be assigned an IP address so that it can be accessed remotely using Telnet or other<br />

TCP/IP applications. Referring to Figure 6-2, record the switch prompt <strong>and</strong> comm<strong>and</strong>s to enter interface<br />

configuration mode <strong>and</strong> then to configure ALSW with an IP address. Then record the comm<strong>and</strong> to activate<br />

the interface.<br />

ALSW(config)#interface vlan1<br />

ALSW(config-if)#ip address 192.168.1.2 255.255.255.0<br />

ALSW(config-if)#no shutdown<br />

To receive <strong>and</strong> send IP packets, the management interface needs a default gateway. Record the switch<br />

prompt <strong>and</strong> comm<strong>and</strong> to configure ALSW with a default gateway.<br />

ALSW(config)#ip default-gateway 192.168.1.1<br />

The ports on a switch are defaulted to autonegotiate the speed <strong>and</strong> duplex. However, it is a good idea to set<br />

these to the correct setting for the attached host, because autonegotiation can produce unpredictable results.<br />

Record the switch prompt <strong>and</strong> comm<strong>and</strong>s to configure a port’s interface to 100 Mbps <strong>and</strong> full duplex.<br />

Note: The comm<strong>and</strong>s must be entered in this order. If you try to enter the duplex comm<strong>and</strong> first, you will get the<br />

message: “Duplex can not be set until speed is set to non-auto value.”<br />

ALSW(config-if)#speed 100<br />

ALSW(config-if)#duplex full<br />

To enhance security, you can statically configure a port with the MAC address of the host or hosts attached<br />

to that port. Record the switch prompt <strong>and</strong> comm<strong>and</strong> to statically configure the MAC address<br />

0005.9a3c.7800 on port 6.<br />

ALSW(config)#mac-address-table static 0005.9a3c.7800 vlan 1 interface FastEthernet0/6<br />

Instead of explicitly configuring the MAC address, you can configure a port to dynamically learn MAC<br />

addresses <strong>and</strong> have them “stick” to the current configuration. When in interface configuration mode for<br />

port 5, you need several comm<strong>and</strong>s to enable the following security requirements. Be sure the port is in<br />

access mode <strong>and</strong> do not forget to enable port security. Set the maximum addresses that the port can learn<br />

to 1 <strong>and</strong> set the port to shut down if another MAC address is detected.<br />

ALSW(config)#interface fastEthernet 0/5<br />

ALSW(config-if)#switchport mode access<br />

ALSW(config-if)#switchport port-security<br />

ALSW(config-if)#switchport port-security maximum 1<br />

ALSW(config-if)#switchport port-security mac-address sticky<br />

ALSW(config-if)#switchport port-security violation shutdown<br />

Briefly explain what each of the following port security violation keywords enables on the interface:<br />

■ protect—When the port reaches the maximum number of MAC addresses, frames with unknown<br />

source addresses are dropped until you remove at least one secure MAC address.<br />

■ restrict—The port will still forward traffic from unknown sources above the maximum number, but<br />

the switch will send an SNMP trap notification to the network management workstation.<br />

■ shutdown—The port is shut down in a err-disabled state for all traffic, <strong>and</strong> an SNMP trap notification<br />

is sent to the network management station. You can bring it out of this state by entering the errdisable<br />

recovery cause psecure-violation global configuration comm<strong>and</strong>, or you can manually re-enable it by<br />

entering the shutdown <strong>and</strong> no shutdown interface configuration comm<strong>and</strong>s.


Lab Exercises<br />

Comm<strong>and</strong> Reference<br />

In the following table, record the comm<strong>and</strong>, including the correct switch prompt, that fits the description<br />

for a 2950 Catalyst switch. Fill in any blanks with the appropriate missing information.<br />

Comm<strong>and</strong> Description<br />

Chapter 6: Catalyst Switch Configuration 249<br />

Switch#show vlan Displays the current VLAN configuration<br />

Switch#delete flash:vlan.dat Removes the VLAN database from Flash memory<br />

Switch(config)#interface vlan1 Enables the virtual interface for VLAN1, the default<br />

VLAN on the switch<br />

Switch(config)#ip default-gateway 192.168.1.1 Configures a gateway to allow IP packets an exit<br />

Switch(config-if)#duplex full Forces full-duplex operation on an interface<br />

Switch(config-if)#duplex auto Enables auto-duplex configuration<br />

Switch(config-if)#duplex half Forces half-duplex operation on an interface<br />

Switch(config-if)#speed 10 Forces 10-Mbps operation on an interface<br />

Switch(config-if)#speed 100 Forces 100-Mbps operation on an interface<br />

Switch(config-if)#speed auto Enables autospeed configuration<br />

Switch#show mac-address-table Displays the current MAC address forwarding table<br />

Switch#clear mac-address-table dynamic Deletes all learned entries from the current MAC address<br />

forwarding table<br />

Switch(config)#mac-address-table static Sets a static address of aaaa.aaaa.aaaa in the MAC<br />

aaaa.aaaa.aaaa vlan 1 interface fa0/1 address table for Fa0/1<br />

Switch(config-if)#switchport port-security Enables port security on the interface<br />

Switch(config-if)#switchport port-security Sets the maximum number of MAC addresses<br />

maximum 1 that a port can learn to 1<br />

Switch(config-if)#switchport port-security Configures the port to dynamically learn MAC addresses<br />

mac-address sticky <strong>and</strong> “stick” them to the configuration<br />

Switch(config-if)#switchport port-security Configures the port to be disabled if there is a security<br />

violation shutdown violation<br />

Switch(config-if)#switchport port-security Configures the port to send a SNMP trap if a security<br />

violation restrict violation is detected but does not shut down the port<br />

Switch(config-if)#switchport port-security Configures the port to drop all frames from unknown<br />

violation protect source MAC addresses after the maximum configured<br />

MAC addresses have been learned


250 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Curriculum Lab 6-1: Verifying Default Switch<br />

Configuration (6.2.1)<br />

Figure 6-3 Topology for Lab 6-1<br />

Objective<br />

Investigate the default configuration of a 2900 series switch.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 6-3. The 2950 series switch produced the configuration<br />

output in this lab. Another switch might produce different output. You should execute the following steps<br />

on each switch unless you are specifically instructed otherwise. Instructions are also provide for the 1900<br />

series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from the<br />

menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B, “Erasing <strong>and</strong> Reloading the Switch,” on all switches<br />

before you continue with this lab.<br />

General Configuration Tips<br />

FA0/1 FA0/4<br />

Switch 1<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Crossover Cable<br />

Serial Cable<br />

■ Use the question mark (?) <strong>and</strong> arrow keys to help to enter comm<strong>and</strong>s.<br />

■ Each comm<strong>and</strong> mode restricts the set of available comm<strong>and</strong>s. If you have difficulty entering a comm<strong>and</strong>,<br />

check the prompt <strong>and</strong> then enter ? for a list of available comm<strong>and</strong>s. You might be using the<br />

wrong comm<strong>and</strong> mode or the wrong syntax.<br />

■ To disable a feature, enter the keyword no before the comm<strong>and</strong>, such as no ip address.<br />

■ Save the configuration changes to NVRAM so that you do not lose the changes if there is a system<br />

reload or power outage.


Table 6-1 shows the switch comm<strong>and</strong> modes that you should be familiar with for all labs in this chapter.<br />

Table 6-1 Switch Comm<strong>and</strong> Modes<br />

Comm<strong>and</strong> Access Switch Prompt Exit<br />

Mode Method Displayed Method<br />

User EXEC Log in. Switch> Use the logout comm<strong>and</strong>.<br />

Privileged From user EXEC mode, Switch# To exit to user EXEC mode, use the<br />

EXEC enter the enable comm<strong>and</strong>. disable, exit, or logout comm<strong>and</strong>.<br />

Global From privileged EXEC Switch (config)# To exit to privileged EXEC mode,<br />

configuration mode, enter the configure use the exit or end comm<strong>and</strong>, or<br />

terminal comm<strong>and</strong>. press Ctrl-Z.<br />

Interface From global configuration Switch (config-if)# To exit to global configuration<br />

configuration mode, enter the interface mode, use the exit comm<strong>and</strong>.<br />

type number comm<strong>and</strong>, such<br />

as interface serial 0.<br />

Task 1: Enter Privileged Mode<br />

Step 1. Privileged mode gives access to all the switch comm<strong>and</strong>s. Because many of the privileged<br />

mode comm<strong>and</strong>s configure operating parameters, privileged mode access should be passwordprotected<br />

to prevent unauthorized use. The privileged mode comm<strong>and</strong> set includes those comm<strong>and</strong>s<br />

that are contained in user EXEC mode, as well as the configure comm<strong>and</strong> through<br />

which access to the remaining comm<strong>and</strong> modes is gained.<br />

Switch>enable<br />

Switch#<br />

Step 2. Notice that the prompt changed to reflect privileged EXEC mode.<br />

Task 2: Examine the Current Switch Configuration<br />

Step 1. Examine the current running configuration file:<br />

Switch#show running-config<br />

How many Ethernet <strong>and</strong> Fast Ethernet interfaces does the switch have?<br />

24 Fast Ethernet ports<br />

What is the range of values shown for the VTY lines? 5 to 15<br />

Step 2. Examine the current contents of NVRAM.<br />

Switch#show startup-config<br />

%% Non-volatile configuration memory is not present<br />

Why does the switch give this response?<br />

Nothing is currently stored in NVRAM due to the erase startup.<br />

Chapter 6: Catalyst Switch Configuration 251


252 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 3. Show the current IP address of the switch.<br />

Switch#show interface VLAN 1<br />

Is an IP address set on the switch? No<br />

What is the MAC address of this virtual switch interface?<br />

0004.c075.1500 (answers will vary)<br />

Is this interface up? No<br />

Step 4. You can show the IP properties of the interface by entering the following comm<strong>and</strong>:<br />

Switch#show ip interface VLAN 1<br />

Step 5. The following comm<strong>and</strong> provides the switch IP address information for the 1900:<br />

#show ip<br />

Task 3: Get Cisco IOS Software Information<br />

Examine the version information that the switch reports.<br />

Switch#show version<br />

What is the IOS version that the switch is running?<br />

12.1(9)EA1<br />

What is the system image filename?<br />

c2950-i6q4l2-mz.121-9.EA1.bin<br />

What is the base MAC address of this switch?<br />

00:04:C0:75:15:00 (answers will vary)<br />

Is the switch running Enterprise Edition software?<br />

No, it is running the st<strong>and</strong>ard image.<br />

Is the switch running Enhanced Image software, indicated by the letters EA in the IOS filename (2950<br />

series)? Yes<br />

Task 4: Examine the Fast Ethernet Interfaces<br />

Examine the default properties of the Fast Ethernet interfaces. As an example, examine the properties of<br />

the fourth interface:<br />

Switch#show interface fastethernet 0/4<br />

1900:<br />

#show interface fastethernet 0/26<br />

Note: This is a trunk port.


or<br />

#show interface ethernet 0/4<br />

Note: This is an access port.<br />

2950:<br />

#show interface fastethernet 0/4<br />

Note: This can be a trunk or access port.<br />

or<br />

#show interface gigabitethernet 0/1<br />

Note: This can be a trunk or access port.<br />

Is the interface up or down? Up<br />

What event would make an interface go up?<br />

Attaching a host to the port would make an interface go up.<br />

What is the MAC address of the interface?<br />

0004.c075.1504 (answers will vary)<br />

What is the speed <strong>and</strong> duplex setting of the interface?<br />

Auto-duplex, Auto-speed<br />

Task 5: Examine VLAN Information<br />

Examine the default VLAN settings of the switch.<br />

Switch#show vlan<br />

What is the name of VLAN 1? Default<br />

Which ports are in this VLAN? All, 1[nd]24<br />

Is VLAN 1 active? Yes<br />

What type of VLAN is the default VLAN? Ethernet<br />

Task 6: Examine Flash Memory (1900: Skip to Step 8)<br />

Examine the contents of the Flash directory.<br />

Switch#dir flash:<br />

or<br />

Switch#show flash<br />

Chapter 6: Catalyst Switch Configuration 253


254 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Name the files <strong>and</strong> directories found.<br />

2 -rwx 2490607 Mar 01 1993 00:02:56 c2950-i6q4l2-mz.121-9.EA1.bin<br />

3 -rwx 269 Jan 01 1970 00:01:43 env_vars<br />

6 -rwx 108 Mar 01 1993 00:01:37 info<br />

7 drwx 640 Mar 01 1993 00:03:46 html<br />

18 -rwx 108 Mar 01 1993 00:03:46 info.ver<br />

Task 7: Examine the Startup Configuration File<br />

Step 1. To see the contents of the startup configuration file, enter the show running-config comm<strong>and</strong><br />

in privileged EXEC mode.<br />

Switch#show startup-config<br />

Step 2. The switch responds with the following:<br />

Non-volatile configuration memory is not present<br />

Why does this message appear?<br />

No startup configuration file is present.<br />

Step 3. Copy the current configuration to NVRAM. This step ensures that any changes made will be<br />

available to the switch if there is a reload or if the power goes off.<br />

Switch#copy running-config startup-config<br />

Destination filename [startup-config]?<br />

Building configuration...<br />

[OK]<br />

Switch#<br />

Step 4. Show the contents of NVRAM.<br />

Switch#show startup-config<br />

What is displayed now?<br />

A copy of the running configuration is now saved in NVRAM <strong>and</strong> will be used the next time<br />

the router is rebooted.<br />

Task 8: Exit the Switch<br />

Step 1. Exit to the switch welcome screen.<br />

Switch#exit<br />

Step 2. Remove <strong>and</strong> store the cables <strong>and</strong> adapter.


Curriculum Lab 6-2: Basic Switch Configuration (6.2.2)<br />

Figure 6-4 Topology for Lab 6-2<br />

Table 6-2 Lab Equipment Configuration<br />

Switch Designation Switch Name Enable Secret Password Enable/VTY/Console Password<br />

Switch 1 ALSwitch class cisco<br />

Objectives<br />

■ Configure a switch with a name <strong>and</strong> an IP address.<br />

■ Configure passwords to ensure that access to the CLI is secured.<br />

■ Configure switch port speed <strong>and</strong> duplex properties for an interface.<br />

■ Save the active configuration.<br />

■ View the switch browser interface.<br />

Background/Preparation<br />

FA0/1 FA0/4<br />

Switch 1<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Chapter 6: Catalyst Switch Configuration 255<br />

Crossover Cable<br />

Serial Cable<br />

Cable a network that is similar to the one in Figure 6-4. The 2950 series switch produced the configuration<br />

output used in this lab. Another switch might produce different output. You should execute the following<br />

steps on each switch unless you are specifically instructed otherwise. Instructions are also provided for the<br />

1900 series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from<br />

the menu to perform the steps for this lab.


256 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B before you continue with this lab.<br />

Task 1: Enter Privileged Mode<br />

Step 1. Privileged mode gives access to all the switch comm<strong>and</strong>s. Because many of the privileged<br />

mode comm<strong>and</strong>s configure operating parameters, privileged mode access should be passwordprotected<br />

to prevent unauthorized use. The privileged mode comm<strong>and</strong> set includes those comm<strong>and</strong>s<br />

that are contained in user EXEC mode, as well as the configure comm<strong>and</strong> through<br />

which access to the remaining comm<strong>and</strong> modes is gained.<br />

Switch>enable<br />

Switch#<br />

1900:<br />

>enable<br />

#<br />

Step 2. Notice that the prompt changed to reflect privileged EXEC mode.<br />

Task 2: Examine the Current Switch Configuration<br />

Step 1. Examine the current running configuration file.<br />

Switch#show running-config<br />

How many Ethernet or Fast Ethernet interfaces does the switch have? 24<br />

What is the range of values shown for the VTY lines? 5<strong>–</strong>15<br />

Switch#show running-config<br />

Building configuration...<br />

Current configuration : 1427 bytes<br />

!<br />

version 12.1<br />

no service pad<br />

service timestamps debug uptime<br />

service timestamps log uptime<br />

no service password-encryption<br />

!<br />

hostname Switch<br />

!<br />

!<br />

ip subnet-zero<br />

!<br />

spanning-tree mode pvst<br />

no spanning-tree optimize bpdu transmission<br />

spanning-tree extend system-id<br />

!<br />

!<br />

interface FastEthernet0/1<br />

no ip address<br />

!


interface FastEthernet0/2<br />

no ip address<br />

!<br />

interface FastEthernet0/3<br />

no ip address<br />

!<br />

interface FastEthernet0/4<br />

no ip address<br />

!<br />

interface FastEthernet0/5<br />

no ip address<br />

!<br />

interface FastEthernet0/6<br />

no ip address<br />

!<br />

interface FastEthernet0/7<br />

no ip address<br />

!<br />

interface FastEthernet0/8<br />

no ip address<br />

!<br />

interface FastEthernet0/9<br />

no ip address<br />

!<br />

interface FastEthernet0/10<br />

no ip address<br />

!<br />

interface FastEthernet0/11<br />

no ip address<br />

!<br />

interface FastEthernet0/12<br />

no ip address<br />

!<br />

interface FastEthernet0/13<br />

no ip address<br />

!<br />

interface FastEthernet0/14<br />

no ip address<br />

!<br />

interface FastEthernet0/15<br />

no ip address<br />

!<br />

interface FastEthernet0/16<br />

no ip address<br />

!<br />

interface FastEthernet0/17<br />

no ip address<br />

!<br />

interface FastEthernet0/18<br />

no ip address<br />

!<br />

Chapter 6: Catalyst Switch Configuration 257


258 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

interface FastEthernet0/19<br />

no ip address<br />

!<br />

interface FastEthernet0/20<br />

no ip address<br />

!<br />

interface FastEthernet0/21<br />

no ip address<br />

!<br />

interface FastEthernet0/22<br />

no ip address<br />

!<br />

interface FastEthernet0/23<br />

no ip address<br />

!<br />

interface FastEthernet0/24<br />

no ip address<br />

!<br />

interface Vlan1<br />

no ip address<br />

no ip route-cache<br />

shutdown<br />

!<br />

ip http server<br />

!<br />

!<br />

line con 0<br />

line vty 5 15<br />

!<br />

end<br />

Switch#<br />

Step 2. Examine the current contents of NVRAM.<br />

Switch#show startup-config<br />

startup-config is not present<br />

Why does the switch give this response?<br />

Nothing is saved into NVRAM.<br />

Task 3: Assign a Name to the Switch<br />

Step 1. Enter enable <strong>and</strong> then configuration mode. Configuration mode allows the management of the<br />

switch. Enter the name by which this switch will be referred, ALSwitch.<br />

Switch#configure terminal<br />

Enter configuration comm<strong>and</strong>s, one per line. End with Ctrl+Z.<br />

Switch(config)#hostname ALSwitch<br />

ALSwitch(config)#exit<br />

Step 2. Notice that the prompt changed to reflect its new name. Type exit or press Ctrl-Z to go back<br />

into privileged mode.


Task 4: Examine the Current Running Configuration<br />

Examine the current configuration to verify that there is no configuration except for the hostname.<br />

ALSwitch#show running-config<br />

Are passwords set on lines? No<br />

What does the configuration show as the hostname of this switch? ALSwitch<br />

ALSwitch#show running-config<br />

Building configuration...<br />

Current configuration : 1427 bytes<br />

!<br />

version 12.1<br />

no service pad<br />

service timestamps debug uptime<br />

service timestamps log uptime<br />

no service password-encryption<br />

!<br />

hostname ALSwitch<br />

!<br />

!<br />

ip subnet-zero<br />

!<br />

spanning-tree mode pvst<br />

no spanning-tree optimize bpdu transmission<br />

spanning-tree extend system-id<br />

!<br />

!<br />

interface FastEthernet0/1<br />

!<br />

interface FastEthernet0/2<br />

!<br />

interface FastEthernet0/3<br />

!<br />

interface FastEthernet0/4<br />

!<br />

interface FastEthernet0/5<br />

!<br />

interface FastEthernet0/6<br />

!<br />

interface FastEthernet0/7<br />

!<br />

interface FastEthernet0/8<br />

!<br />

interface FastEthernet0/9<br />

!<br />

interface FastEthernet0/10<br />

Chapter 6: Catalyst Switch Configuration 259


260 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

interface FastEthernet0/11<br />

!<br />

interface FastEthernet0/12<br />

!<br />

interface FastEthernet0/13<br />

!<br />

interface FastEthernet0/14<br />

!<br />

interface FastEthernet0/15<br />

!<br />

interface FastEthernet0/16<br />

!<br />

interface FastEthernet0/17<br />

!<br />

interface FastEthernet0/18<br />

!<br />

interface FastEthernet0/19<br />

!<br />

interface FastEthernet0/20<br />

!<br />

interface FastEthernet0/21<br />

!<br />

interface FastEthernet0/22<br />

!<br />

interface FastEthernet0/23<br />

!<br />

interface FastEthernet0/24<br />

!<br />

interface Vlan1<br />

no ip route-cache<br />

shutdown<br />

!<br />

ip http server<br />

!<br />

!<br />

line con 0<br />

line vty 5 15<br />

!<br />

end<br />

ALSwitch#


Task 5: Set the Access Passwords (1900: Skip to Task 6)<br />

Enter config-line mode for the console. Set the password on this line to cisco for login. Configure the VTY<br />

lines 5 to 15 with the password cisco.<br />

ALSwitch#configure terminal<br />

Enter configuration comm<strong>and</strong>s, one per line. End with Ctrl-Z.<br />

ALSwitch(config)#line con 0<br />

ALSwitch(config-line)#password cisco<br />

ALSwitch(config-line)#login<br />

ALSwitch(config-line)#line vty 0 15<br />

ALSwitch(config-line)#password cisco<br />

ALSwitch(config-line)#login<br />

ALSwitch(config-line)#exit<br />

Task 6: Set the Comm<strong>and</strong> Mode Passwords<br />

Set the enable password to cisco <strong>and</strong> the enable secret password to class.<br />

ALSwitch(config)#enable password cisco<br />

ALSwitch(config)#enable secret class<br />

1900:<br />

ALSwitch(config)#enable password level 15 cisco<br />

ALSwitch(config)#enable secret class<br />

Which password takes precedence: the enable password or the enable secret password? secret<br />

Task 7: Configure Layer 3 Access to the Switch<br />

Step 1. Set the IP address of the switch to 192.168.1.2 with a subnet mask of 255.255.255.0. Note that<br />

this is done on the internal virtual interface VLAN 1.<br />

ALSwitch(config)#interface VLAN 1<br />

ALSwitch(config-if)#ip address 192.168.1.2 255.255.255.0<br />

ALSwitch(config-if)#exit<br />

1900:<br />

ALSwitch(config)#ip address 192.168.1.2 255.255.255.0<br />

ALSwitch(config)#exit<br />

Step 2. Set the default gateway for the switch <strong>and</strong> the default management VLAN as 192.168.1.1.<br />

ALSwitch(config)#ip default-gateway 192.168.1.1<br />

ALSwitch(config)#exit<br />

1900:<br />

ALSwitch(config)#ip default-gateway 192.168.1.1<br />

ALSwitch(config)#exit<br />

Chapter 6: Catalyst Switch Configuration 261


262 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 8: Verify the Management LAN Settings (1900: Skip to Step 9)<br />

Step 1. Verify the interface settings on VLAN 1.<br />

ALSwitch#show interface VLAN 1<br />

What is the b<strong>and</strong>width on this interface?<br />

1000000 Kbit<br />

What are the VLAN states? VLAN1 is down, <strong>and</strong> line protocol is down.<br />

Step 2. Enable the virtual interface using the no shutdown comm<strong>and</strong>.<br />

ALSwitch(config)#interface VLAN 1<br />

ALSwitch(config-if)#no shutdown<br />

ALSwitch(config-if)#exit<br />

What is the queuing strategy? FIFO<br />

ALSwitch#show interface vlan 1<br />

Vlan1 is administratively down, line protocol is down<br />

Hardware is CPU Interface, address is 0009.b7f6.61c0 (bia 0009.b7f6.61c0)<br />

Internet address is 192.168.1.2/24<br />

MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,<br />

reliability 255/255, txload 1/255, rxload 1/255<br />

Encapsulation ARPA, loopback not set<br />

ARP type: ARPA, ARP Timeout 04:00:00<br />

Last input 00:06:12, output never, output hang never<br />

Last clearing of “show interface” counters never<br />

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0<br />

Queueing strategy: fifo<br />

Output queue :0/40 (size/max)<br />

5 minute input rate 0 bits/sec, 0 packets/sec<br />

5 minute output rate 5000 bits/sec, 1 packets/sec<br />

47 packets input, 6606 bytes, 0 no buffer<br />

Received 47 broadcasts, 0 runts, 0 giants, 0 throttles<br />

0 input errors, 0 CRC, 0 frame, 0 overrun, 33 ignored<br />

664 packets output, 372036 bytes, 0 underruns<br />

0 output errors, 3 interface resets<br />

0 output buffer failures, 0 output buffers swapped out<br />

ALSwitch#<br />

Task 9: Configure Port Speed <strong>and</strong> Duplex Properties for a Fast<br />

Ethernet Interface<br />

Note: 1900 switch access ports can operate only at 10 Mbps, but duplex can be set to full. If the switch has<br />

10/100-Mbps trunk ports, the speed <strong>and</strong> duplex can be set for these.<br />

Step 1. Prepare to configure the fastethernet 0/4 interface.<br />

ALSwitch#configure terminal<br />

Step 2. Enter configuration comm<strong>and</strong>s, one per line. End with Ctrl-Z.<br />

ALSwitch(config)#interface fastethernet 0/4


Step 3. Set the port speed of interface fastethernet 0/4 to 100 Mbps <strong>and</strong> to operate in full-duplex mode.<br />

ALSwitch(config-if)#speed 100<br />

ALSwitch(config-if)#duplex full<br />

Step 4. If you know that the devices that are connected to a port must operate at a certain speed <strong>and</strong> in<br />

duplex mode, you should set the interface to that speed <strong>and</strong> mode.<br />

Task 10: Verify the Settings on a Fast Ethernet Interface<br />

ALSwitch#show interface fastethernet 0/4<br />

ALSwitch#show interfaces fastEthernet 0/4<br />

FastEthernet0/4 is down, line protocol is down (notconnect)<br />

Hardware is Fast Ethernet, address is 000b.be7f.ed44 (bia 000b.be7f.ed44)<br />

MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec,<br />

reliability 255/255, txload 1/255, rxload 1/255<br />

Encapsulation ARPA, loopback not set<br />

Keepalive set (10 sec)<br />

Full-duplex, 100Mb/s<br />

input flow-control is unsupported output flow-control is unsupported<br />

ARP type: ARPA, ARP Timeout 04:00:00<br />

Last input never, output 00:05:53, output hang never<br />

Last clearing of “show interface” counters never<br />

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0<br />

Queueing strategy: fifo<br />

Output queue: 0/40 (size/max)<br />

5 minute input rate 0 bits/sec, 0 packets/sec<br />

5 minute output rate 0 bits/sec, 0 packets/sec<br />

1 packets input, 64 bytes, 0 no buffer<br />

Received 0 broadcasts (0 multicast)<br />

0 runts, 0 giants, 0 throttles<br />

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored<br />

0 watchdog, 0 multicast, 0 pause input<br />

0 input packets with dribble condition detected<br />

1 packets output, 64 bytes, 0 underruns<br />

0 output errors, 0 collisions, 2 interface resets<br />

0 babbles, 0 late collision, 0 deferred<br />

0 lost carrier, 0 no carrier, 0 PAUSE output<br />

0 output buffer failures, 0 output buffers swapped out<br />

ALSwitch#<br />

Task 11: Save the Configuration<br />

Step 1. The basic configuration of the switch has just been completed. Back up the running configuration<br />

file to NVRAM. This ensures that the changes made will not be lost if the system is<br />

rebooted or loses power.<br />

ALSwitch#copy running-config startup-config<br />

Destination filename [startup-config]?[Enter]<br />

Chapter 6: Catalyst Switch Configuration 263


264 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Building configuration...<br />

[OK]<br />

ALSwitch#<br />

Step 2. The configuration is automatically saved to NVRAM within approximately 1 minute of entering<br />

a comm<strong>and</strong>. To save the configuration to a TFTP server, enter the following:<br />

ALSwitch#copy nvram tftp://tftp server ip address/destination_filename<br />

Task 12: Examine the Startup Configuration File (1900: Skip to<br />

Task 13)<br />

To see the configuration that is stored in NVRAM, enter show startup-config from privileged EXEC<br />

(enable) mode.<br />

ALSwitch#show startup-config<br />

What is displayed?<br />

Copy of the running-configuration<br />

Are all the changes that were entered recorded in the file? Yes<br />

ALSwitch#show startup-config<br />

Using 1302 out of 32768 bytes<br />

!<br />

version 12.1<br />

no service pad<br />

service timestamps debug uptime<br />

service timestamps log uptime<br />

no service password-encryption<br />

!<br />

hostname ALSwitch<br />

!<br />

enable secret 5 $1$dw/7$XS/PsFsTanHdxanztCdBO0<br />

enable password cisco<br />

!<br />

ip subnet-zero<br />

!<br />

!<br />

spanning-tree mode pvst<br />

no spanning-tree optimize bpdu transmission<br />

spanning-tree extend system-id<br />

!<br />

!<br />

interface FastEthernet0/1<br />

!<br />

interface FastEthernet0/2<br />

!


interface FastEthernet0/3<br />

!<br />

interface FastEthernet0/4<br />

!<br />

speed 100<br />

duplex full<br />

interface FastEthernet0/5<br />

!<br />

interface FastEthernet0/6<br />

!<br />

interface FastEthernet0/7<br />

!<br />

interface FastEthernet0/8<br />

!<br />

interface FastEthernet0/9<br />

!<br />

interface FastEthernet0/10<br />

!<br />

interface FastEthernet0/11<br />

!<br />

interface FastEthernet0/12<br />

!<br />

interface FastEthernet0/13<br />

!<br />

interface FastEthernet0/14<br />

!<br />

interface FastEthernet0/15<br />

!<br />

interface FastEthernet0/16<br />

!<br />

interface FastEthernet0/17<br />

!<br />

interface FastEthernet0/18<br />

!<br />

interface FastEthernet0/19<br />

!<br />

interface FastEthernet0/20<br />

!<br />

interface FastEthernet0/21<br />

!<br />

interface FastEthernet0/22<br />

!<br />

interface FastEthernet0/23<br />

!<br />

Chapter 6: Catalyst Switch Configuration 265


266 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

interface FastEthernet0/24<br />

!<br />

interface Vlan1<br />

!<br />

ip address 192.168.1.2 255.255.255.0<br />

no ip route-cache<br />

shutdown<br />

ip default-gateway 192.168.1.1<br />

ip http server<br />

!<br />

line con 0<br />

password cisco<br />

login<br />

line vty 0 4<br />

password cisco<br />

login<br />

line vty 5 15<br />

!<br />

!<br />

password cisco<br />

login<br />

end<br />

Task 13: Remove the Enable <strong>and</strong> Enable Secret Passwords<br />

ALSwitch#configure terminal<br />

Enter configuration comm<strong>and</strong>s, one per line. End with Ctrl+Z.<br />

ALSwitch(config)#no enable password<br />

ALSwitch(config)#no enable secret<br />

1900:<br />

ALSwitch(config)#no enable password level 15<br />

ALSwitch(config)#no enable secret<br />

Task 14: Access the Switch Web Interface<br />

Step 1. Access to the web interface of the switch may be on by default. If it is not on, issue the following<br />

comm<strong>and</strong>:<br />

ALSwitch(config)#ip http server<br />

Step 2. Start your web browser.


Step 3. Type the switch IP address into the Location field (Netscape) or Address field (Internet<br />

Explorer) <strong>and</strong> press Enter.<br />

Step 4. Because you have not secured access to the switch web interface, you will get a web page from<br />

the switch. You will not be asked to supply a username or password.<br />

Task 15: Exit the Switch<br />

Step 1. Exit to the switch welcome screen.<br />

Switch#exit<br />

Step 2. Remove <strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 6-3: Managing the MAC Address Table<br />

(6.2.3)<br />

Figure 6-5 Topology for Lab 6-3<br />

Table 6-3 Lab Equipment Configuration<br />

Switch Switch Name VLAN 1 IP Default Gateway Subnet Mask<br />

Designation Address IP Address<br />

Switch 1 ALSwitch 192.168.1.2 192.168.1.1 255.255.255.0<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

Objective<br />

FA0/1 FA0/4<br />

Switch 1<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Create a basic switch configuration <strong>and</strong> manage the switch MAC table.<br />

Chapter 6: Catalyst Switch Configuration 267<br />

Crossover Cable<br />

Serial Cable


268 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 6-5. The 2950 switch produced the configuration output<br />

in this lab. Another switch might produce different output. Instructions are also provided for the 1900<br />

series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from the<br />

menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B on all switches before you continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostname <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 6-3. If you have problems while performing this configuration, refer to Curriculum<br />

Lab 6-2, “Basic Switch Configuration (6.2.2).”<br />

Task 2: Configure the Hosts that Are Attached to the Switch<br />

Configure the hosts to use the same IP subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

Task 3: Verify Connectivity<br />

To verify that the hosts <strong>and</strong> switch are correctly configured, ping the switch IP address from the hosts.<br />

Were the pings successful? Yes<br />

If the answer is no, troubleshoot the hosts <strong>and</strong> switch configurations.<br />

Task 4: Record the Host MAC Addresses<br />

Determine <strong>and</strong> record the Layer 2 addresses of the PC network interface cards.<br />

If you are running Windows 98, check using Start > Run > winipcfg. Click More info.<br />

If you are running Windows 2000 or higher, check using Start > Run > cmd > ipconfig /all.<br />

PC1: 00-01-02-76-8E-EC<br />

PC4: 00-01-02-76-90-DD<br />

Task 5: Determine the MAC Addresses that the Switch Has<br />

Learned<br />

Determine the MAC addresses that the switch has learned by using the show mac-address-table comm<strong>and</strong><br />

at the privileged EXEC mode prompt.<br />

ALSwitch#show mac-address-table<br />

How many dynamic addresses exist? 2<br />

How many MAC addresses exist? 6<br />

How many addresses have been user defined? None<br />

Do the MAC addresses match the host MAC addresses? Yes


Task 6: Determine the show mac-address-table Options<br />

Step 1. Determine the options that the show mac-address-table comm<strong>and</strong> has by using the ? option.<br />

ALSwitch#show mac-address-table ?<br />

How many options are available for the show mac-address-table comm<strong>and</strong>? 11<br />

ALSwitch#show mac-address-table ?<br />

address address keyword<br />

aging-time aging-time keyword<br />

count count keyword<br />

dynamic dynamic entry type<br />

interface interface keyword<br />

multicast multicast info for selected wildcard<br />

notification MAC notification parameters <strong>and</strong> history table<br />

static static entry type<br />

vlan VLAN keyword<br />

| Output modifiers<br />

<br />

Step 2. Show the MAC address table for the switch.<br />

How many total MAC addresses exist? 6<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0001.0276.8eec DYNAMIC Fa0/1<br />

1 0001.0276.90dd DYNAMIC Fa0/4<br />

Total Mac Addresses for this criterion: 6<br />

Step 3. Show only the MAC address table addresses that were learned dynamically.<br />

How many exist? 2<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

1 0001.0276.8eec DYNAMIC Fa0/1<br />

1 0001.0276.90dd DYNAMIC Fa0/4<br />

Total Mac Addresses for this criterion: 6<br />

Task 7: Clear the MAC Address Table<br />

Remove the existing MAC addresses by using the clear mac-address-table comm<strong>and</strong> from the privileged<br />

EXEC mode prompt.<br />

ALSwitch#clear mac-address-table dynamic<br />

Chapter 6: Catalyst Switch Configuration 269


270 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 8: Verify the Results<br />

Verify that the mac-address-table was cleared.<br />

ALSwitch#show mac-address-table<br />

How many MAC addresses exist now? 4<br />

How many dynamic addresses exist? 0<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

Total Mac Addresses for this criterion: 6<br />

Task 9: Determine the clear mac-address-table Options<br />

Determine the options that are available with the comm<strong>and</strong> clear mac-address-table ? at the privileged<br />

EXEC mode prompt.<br />

ALSwitch#clear mac-address-table ?<br />

How many options exist? 2<br />

ALSwitch#clear mac-address-table ?<br />

dynamic dynamic entry type<br />

notification Clear MAC notification Global Counters<br />

In what circumstances would these options be used?<br />

They would be used to remove dynamic MAC address entries or clear MAC notification counters.<br />

Task 10: Examine the MAC Table Again<br />

Step 1. Look at the MAC address table again by using the show mac-address-table comm<strong>and</strong> at the<br />

privileged EXEC mode prompt.<br />

ALSwitch#show mac-address-table<br />

How many dynamic addresses exist? 2


Why did this change from the last display?<br />

More than likely, the switch has received some broadcasts since the last time you clear the<br />

table.<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0001.0276.8eec DYNAMIC Fa0/1<br />

1 0001.0276.90dd DYNAMIC Fa0/4<br />

Total Mac Addresses for this criterion: 6<br />

Step 2. If the table has not changed yet, ping the switch IP address from the hosts two times each <strong>and</strong><br />

repeat step 10.<br />

Task 11: Exit the Switch<br />

Step 1. Exit to the switch welcome screen.<br />

Switch#exit<br />

Step 2. Remove <strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 6-4: Configuring Static MAC Addresses<br />

(6.2.4)<br />

Figure 6-6 Topology for Lab 6-4<br />

FA0/1 FA0/4<br />

Switch 1<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Chapter 6: Catalyst Switch Configuration 271<br />

Crossover Cable<br />

Serial Cable


272 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Table 6-4 Lab Equipment Configuration<br />

Switch Switch Name VLAN 1 IP Default Gateway Subnet Mask<br />

Designation Address IP Address<br />

Switch 1 ALSwitch 192.168.1.2 192.168.1.1 255.255.255.0<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

Objectives<br />

■ Create a static address entry in the switch MAC table.<br />

■ Remove the created static MAC address entry.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 6-6. The 2950 switch produced the configuration output<br />

in this lab. Another switch might produce different output. Instructions are also provided for the 1900<br />

series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from the<br />

menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B on all switches before you continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostname <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 6-4. If you have problems while performing this configuration, refer to Curriculum<br />

Lab 6-2, “Basic Switch Configuration (6.2.2).”<br />

Task 2: Configure the Hosts Attached to the Switch<br />

Configure the hosts to use the same IP subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

Task 3: Verify Connectivity<br />

To verify that the hosts <strong>and</strong> switch are correctly configured, ping the switch IP address from the hosts.<br />

Were the pings successful? Yes<br />

If the answer is no, troubleshoot the hosts <strong>and</strong> switch configurations.<br />

Task 4: Record the Host MAC Addresses<br />

Determine <strong>and</strong> record the Layer 2 addresses of the PC network interface cards.<br />

If you are running Windows 98, check using Start > Run > winipcfg. Click More info.<br />

If you are running Windows 2000, check using Start > Run > cmd > ipconfig /all.<br />

PC1: 08-00-46-06-FB-B6 (example; answers will vary)<br />

PC4: 00-08-74-4D-8E-E2 (example; answers will vary)


Task 5: Determine the MAC Addresses that the Switch Has<br />

Learned<br />

Determine the MAC addresses that the switch has learned by using the show mac-address-table comm<strong>and</strong><br />

at the privileged EXEC mode prompt.<br />

ALSwitch#show mac-address-table<br />

How many dynamic addresses exist? 2<br />

How many MAC addresses exist? 6<br />

Do the MAC addresses match the host MAC addresses? They should.<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0008.744d.8ee2 DYNAMIC Fa0/4<br />

1 0800.4606.fbb6 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 6<br />

Task 6: Determine the mac-address-table Options<br />

Determine the options that the mac-address-table comm<strong>and</strong> has by using the ? option.<br />

ALSwitch(config)#mac-address-table ?<br />

How many options are available for the mac-address-table comm<strong>and</strong>? 3<br />

ALSwitch(config)#mac-address-table ?<br />

aging-time Set MAC address table entry maximum age<br />

notification Enable/Disable MAC Notification on the switch<br />

static static keyword<br />

There is an option to set a static MAC address in the table. Under what circumstances would you use this<br />

option? To add security to your switch.<br />

Task 7: Set Up a Static MAC Address<br />

Set up a static MAC address on Fast Ethernet interface 0/4. Use the address that was recorded for PC4 in<br />

Task 4. The MAC address 00e0.2917.1884 is used in the example statement only.<br />

ALSwitch(config)#mac-address-table static 00e0.2917.1884 interface fastethernet 0/4 vlan 1<br />

1900:<br />

Chapter 6: Catalyst Switch Configuration 273<br />

ALSwitch(config)#mac-address-table permanent 00e0.2917.1884 ethernet 0/4


274 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 8: Verify the Results<br />

Verify the MAC address table entries.<br />

ALSwitch#show mac-address-table<br />

How many MAC addresses exist now? 5<br />

How many static addresses exist? 5<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0008.744d.8ee2 STATIC Fa0/4<br />

Total Mac Addresses for this criterion: 5<br />

Under what circumstances can other static or dynamic learning of addresses occur on switch port 4?<br />

Connecting a hub to that port will enable that to occur.<br />

Task 9: Remove the Static MAC Entry<br />

You might need to reverse the static mac-address-table entry. To do this, enter configuration mode <strong>and</strong><br />

reverse the comm<strong>and</strong> by putting no in front of the entire old comm<strong>and</strong> string. The MAC address<br />

00e0.2917.1884 is used in the example statement only. Use the MAC address that was recorded for the<br />

host on port 0/4.<br />

ALSwitch(config)#no mac-address-table static 00e0.2917.1884 interface<br />

fastethernet 0/4 vlan 1<br />

1900:<br />

ALSwitch(config)#no mac-address-table permanent 00e0.2917.1884<br />

ethernet 0/4


Task 10: Verify the Results<br />

Verify that the static MAC address was cleared.<br />

ALSwitch#show mac-address-table static<br />

ALSwitch#show mac-address-table static<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0008.744d.8ee2 DYNAMIC Fa0/4<br />

1 0800.4606.fbb6 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 6<br />

How many static MAC addresses exist now? 4<br />

Task 11: Exit the Switch<br />

Step 1. Exit to the switch welcome screen.<br />

Switch#exit<br />

Step 2. Remove <strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 6-5: Configuring Port Security (6.2.5)<br />

Figure 6-7 Topology for Lab 6-5<br />

FA0/1 FA0/4<br />

Switch 1<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Chapter 6: Catalyst Switch Configuration 275<br />

Crossover Cable<br />

Serial Cable


276 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Table 6-5 Lab Equipment Configuration<br />

Switch Switch Name VLAN 1 Default Gateway Subnet Mask<br />

Designation IP Address IP Address<br />

Switch 1 ALSwitch 192.168.1.2 192.168.1.1 255.255.255.0<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

Objectives<br />

■ Create <strong>and</strong> verify a basic switch configuration.<br />

■ Configure port security on individual Fast Ethernet ports.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 6-7. The 2950 switch produced the configuration output<br />

in this lab. Another switch might produce different output. Instructions are also provided for the 1900<br />

series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from the<br />

menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B on all switches before you continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostname <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 6-5. If you have problems while performing this configuration, refer to Curriculum<br />

Lab 6-2, “Basic Switch Configuration (6.2.2).”<br />

Task 2: Configure the Hosts Attached to the Switch<br />

Step 1. Configure the hosts to use the same IP subnet for addresses, masks, <strong>and</strong> the default gateway as<br />

the switch.<br />

Step 2. You need a third host for this lab. You must configure this host with the address 192.168.1.7.<br />

The subnet mask is 255.255.255.0 <strong>and</strong> the default gateway is 192.168.1.1. Do not connect this<br />

PC to the switch yet.<br />

Task 3: Verify Connectivity<br />

To verify that the hosts <strong>and</strong> switch are configured correctly, ping the switch IP address from the hosts.<br />

Were the pings successful? Yes<br />

If the answer is no, troubleshoot the hosts <strong>and</strong> switch configurations.<br />

Task 4: Record the Hosts’ MAC Addresses<br />

Determine <strong>and</strong> record the Layer 2 addresses of the PC network interface cards.<br />

If you are running Windows 98, check using Start > Run > winipcfg. Click More info.


If you are running Windows 2000, check using Start > Run > cmd > ipconfig /all.<br />

PC1: 08-00-46-06-FB-B6 (example; answers will vary)<br />

PC4: 00-08-74-4D-8E-E2 (example; answers will vary)<br />

Task 5: Determine the MAC Addresses that the Switch Has<br />

Learned<br />

Determine the MAC addresses that the switch has learned by using the show mac-address-table comm<strong>and</strong><br />

at the privileged EXEC mode prompt.<br />

ALSwitch#show mac-address-table<br />

How many dynamic addresses exist? 2<br />

How many MAC addresses exist? 6<br />

Do the MAC addresses match the host MAC addresses? They should.<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0008.744d.8ee2 DYNAMIC Fa0/4<br />

1 0800.4606.fbb6 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 6<br />

Task 6: Determine the mac-address-table Options<br />

Determine the options that the mac-address-table comm<strong>and</strong> has by using the ? option.<br />

ALSwitch(config)#mac-address-table ?<br />

ALSwitch(config)#mac-address-table ?<br />

aging-time Set MAC address table entry maximum age<br />

notification Enable/Disable MAC Notification on the switch<br />

static static keyword<br />

Task 7: Set Up a Static MAC Address<br />

Set up a static MAC address on Fast Ethernet interface 0/4. Use the address that was recorded for PC4 in<br />

Task 4. The MAC address 00e0.2917.1884 is used in the example statement only.<br />

ALSwitch(config)#mac-address-table static 00e0.2917.1884 interface<br />

fastethernet 0/4 vlan 1<br />

1900:<br />

ALSwitch(config)#mac-address-table permanent 00e0.2917.1884 ethernet<br />

0/4<br />

Chapter 6: Catalyst Switch Configuration 277


278 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 8: Verify the Results<br />

Verify the MAC address table entries.<br />

ALSwitch#show mac-address-table<br />

How many static addresses exist? 5<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0008.744d.8ee2 STATIC Fa0/4<br />

1 0800.4606.fbb6 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 6<br />

Task 9: List Port Security Options<br />

Step 1. Determine options for setting port security on interface Fast Ethernet 0/4. Enter switchport<br />

port security ? from the interface configuration prompt for Fast Ethernet port 0/4.<br />

ALSwitch(config)#interface fastethernet 0/4<br />

ALSwitch(config-if)#switchport port-security ?<br />

aging Port-security aging comm<strong>and</strong>s<br />

mac-address Secure mac address<br />

maximum Max secure addresses<br />

violation Security violation mode<br />

<br />

1900:<br />

ALSwitch(config)#interface ethernet 0/4<br />

ALSwitch(config-if)#port secure ?<br />

max-mac-count Maximum number of addresses allowed on the port<br />

<br />

Step 2. Allow the switch port fastethernet 0/4 to accept only one device by using the following comm<strong>and</strong>s:<br />

ALSwitch(config-if)#switchport mode access<br />

ALSwitch(config-if)#switchport port-security<br />

ALSwitch(config-if)#switchport port-security mac-address sticky<br />

1900:<br />

ALSwitch(config-if)#port secure


Task 10: Verify the Results<br />

Step 1. Verify the MAC address table entries.<br />

ALSwitch#show mac-address-table<br />

How are the address types listed for the two MAC addresses?<br />

The entry for Fa0/1 is DYNAMIC but the entry for Fa0/4 is STATIC.<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0008.744d.8ee2 STATIC Fa0/4<br />

1 0800.4606.fbb6 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 6<br />

Step 2. Show port security settings.<br />

ALSwitch#show port-security<br />

ALSwitch#show port-security<br />

Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security Action<br />

(Count) (Count) (Count)<br />

—————————————————————————————————————-<br />

Fa0/4 1 0 0<br />

Shutdown<br />

—————————————————————————————————————-<br />

Total Addresses in System (excluding one mac per port) : 0<br />

Max Addresses limit in System (excluding one mac per port) : 1024<br />

1900:<br />

ALSwitch#show mac-address-table security<br />

Task 11: Show the Running Configuration File<br />

Do some statements directly reflect the security implementation in the listing of the running configuration?<br />

Yes<br />

What do those statements mean?<br />

Port security is enabled.<br />

interface FastEthernet0/4<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

Chapter 6: Catalyst Switch Configuration 279


280 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 12: Limit the Number of Hosts Per Port<br />

Step 1. On interface fastethernet 0/4, set the port security maximum MAC count to 1.<br />

ALSwitch(config)#interface fastethernet 0/4<br />

ALSwitch(config-if)#switchport port-security maximum 1<br />

1900:<br />

ALSwitch(config)#interface Ethernet 0/4<br />

ALSwitch(config-if)#port secure max-mac-count 1<br />

Step 2. Disconnect the PC that is attached to fastethernet 0/4 <strong>and</strong> connect to that port the PC that has<br />

been given the IP address 192.168.1.7. This PC has not been attached to the switch. To generate<br />

some traffic, you might need to ping the switch address 192.168.1.2.<br />

Record your observations.<br />

Task 13: Configure the Port to Shut Down if a Security Violation<br />

Occurs<br />

Step 1. If a security violation occurs, you should shut down the interface. Make the port security action<br />

shutdown.<br />

2950<br />

ALSwitch(config-if)#switchport port-security violation shutdown<br />

1900:<br />

ALSwitch(config-if)#port security action shutdown<br />

In addition to shutdown, what other violation options are available with port security?<br />

protect, restrict<br />

Step 2. If necessary, ping the switch address 192.168.1.2 from the PC 192.168.1.7 that is now connected<br />

to interface fastethernet 0/4. This ensures that there is traffic from the PC to the switch.<br />

Record your observations.<br />

The ping was successful.<br />

Task 14: Show Port 0/4 Configuration Information<br />

To see the configuration information for Fast Ethernet port 0/4, enter show interface fastethernet 0/4 at<br />

the privileged EXEC mode prompt.<br />

ALSwitch#show interface fastethernet 0/4<br />

1900:<br />

ALSwitch#show interface ethernet 0/4<br />

What is the state of this interface?<br />

Fast Ethernet 0/4 is UP, <strong>and</strong> line protocol is UP.<br />

ALSwitch#show interface fastethernet 0/4<br />

FastEthernet0/4 is up, line protocol is up (connected)<br />

Hardware is Fast Ethernet, address is 000a.b772.2b44 (bia


000a.b772.2b44)<br />

MTU 1500 bytes, BW 100000 Kbit, DLY 1000 usec,<br />

reliability 255/255, txload 1/255, rxload 1/255<br />

Encapsulation ARPA, loopback not set<br />

Keepalive set (10 sec)<br />

Full-duplex, 100Mb/s<br />

input flow-control is off, output flow-control is off<br />

ARP type: ARPA, ARP Timeout 04:00:00<br />

Last input 00:00:00, output 00:00:01, output hang never<br />

Last clearing of “show interface” counters never<br />

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0<br />

Queueing strategy: fifo<br />

Output queue :0/40 (size/max)<br />

5 minute input rate 0 bits/sec, 0 packets/sec<br />

5 minute ouxtput rate 0 bits/sec, 0 packets/sec<br />

161 packets input, 19257 bytes, 0 no buffer<br />

Received 137 broadcasts, 0 runts, 0 giants, 0 throttles<br />

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored<br />

0 watchdog, 5 multicast, 0 pause input<br />

0 input packets with dribble condition detected<br />

349 packets output, 29399 bytes, 0 underruns<br />

0 output errors, 0 collisions, 2 interface resets<br />

0 babbles, 0 late collision, 0 deferred<br />

0 lost carrier, 0 no carrier, 0 PAUSE output<br />

0 output buffer failures, 0 output buffers swapped out<br />

Task 15: Reactivate the Port<br />

Step 1. If a security violation occurs <strong>and</strong> the port is shut down, use the no shutdown comm<strong>and</strong> to<br />

reactivate it.<br />

Step 2. Try this a few times, switching between the original port 0/4 host <strong>and</strong> the new one. Plug in the<br />

original host, enter the no shutdown comm<strong>and</strong> on the interface, <strong>and</strong> ping by using the DOS<br />

window. You have to repeat the ping multiple times or use the ping 192.168.1.2 -n 200 comm<strong>and</strong>.<br />

This sets the number of ping packets to 200 instead of 4. Then, switch hosts <strong>and</strong> try<br />

again.<br />

Task 16: Exit the Switch<br />

Step 1. Exit to the switch welcome screen.<br />

Switch#exit<br />

Step 2. Remove <strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Chapter 6: Catalyst Switch Configuration 281


282 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Curriculum Lab 6-6: Add, Move, <strong>and</strong> Change MAC<br />

Addresses (6.2.6)<br />

Figure 6-8 Topology for Lab 6-6<br />

Table 6-6 Lab Equipment Configuration<br />

Switch Switch Name VLAN 1 Default Gateway Subnet Mask<br />

Designation IP Address IP Address<br />

Switch 1 ALSwitch 192.168.1.2 192.168.1.1 255.255.255.0<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

Objectives<br />

■ Create <strong>and</strong> verify a basic switch configuration.<br />

■ Move a PC from one switch port to another <strong>and</strong> add a new PC to the switch.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 6-8. The 2950 switch produced the configuration output<br />

in this lab. Another switch might produce different output. Instructions are also provided for the 1900<br />

series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from the<br />

menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

FA0/1 FA0/4<br />

Switch 1<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Crossover Cable<br />

Serial Cable<br />

Implement the procedure documented in Appendix B before you continue with this lab.


Task 1: Configure the Switch<br />

Configure the hostname <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 6-6. If you have problems while performing this configuration, refer to Curriculum<br />

Lab 6-2, “Basic Switch Configuration (6.2.2).”<br />

Task 2: Configure the Hosts Attached to the Switch<br />

Step 1. Configure the hosts to use the same IP subnet for addresses, masks, <strong>and</strong> the default gateway as<br />

the switch.<br />

Step 2. You need a third host for this lab. You must configure it with the address 192.168.1.7. The subnet<br />

mask is 255.255.255.0 <strong>and</strong> the default gateway is 192.168.1.1. Do not connect this PC to<br />

the switch yet.<br />

Task 3: Verify Connectivity<br />

To verify that the hosts <strong>and</strong> switch are correctly configured, ping the switch IP address from the hosts.<br />

Were the pings successful? Yes<br />

If the answer is no, troubleshoot the hosts <strong>and</strong> switch configurations.<br />

Task 4: Record the Hosts’ MAC Addresses<br />

Determine <strong>and</strong> record the Layer 2 addresses of the PC network interface cards.<br />

If you are running Windows 98, check using Start > Run > winipcfg. Click More info.<br />

If you are running Windows 2000, check using Start > Run > cmd > ipconfig /all.<br />

PC1: 08-00-46-06-FB-B6 (example; answers will vary)<br />

PC4: 00-08-74-4D-8E-E2 (example; answers will vary)<br />

Task 5: Determine the MAC Addresses that the Switch Has<br />

Learned<br />

Determine the MAC addresses that the switch has learned by using the show mac-address-table comm<strong>and</strong><br />

at the privileged EXEC mode prompt.<br />

ALSwitch#show mac-address-table<br />

How many dynamic addresses exist? 2<br />

How many MAC addresses exist? 6<br />

Do the MAC addresses match the host MAC addresses? They should.<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

Chapter 6: Catalyst Switch Configuration 283


284 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0008.744d.8ee2 DYNAMIC Fa0/4<br />

1 0800.4606.fbb6 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 6<br />

Task 6: Determine the mac-address-table Options<br />

Determine the options that the mac-address-table comm<strong>and</strong> has by using the ? option.<br />

ALSwitch(config)#mac-address-table ?<br />

ALSwitch(config)#mac-address-table ?<br />

aging-time Set MAC address table entry maximum age<br />

notification Enable/Disable MAC Notification on the switch<br />

static static keyword<br />

Task 7: Set Up a Static MAC Address<br />

Set up a static MAC address on Fast Ethernet interface 0/4. Use the address that was recorded for PC4 in<br />

Step 4. The MAC address 00e0.2917.1884 is used in the example statement only.<br />

ALSwitch(config)#mac-address-table static 00e0.2917.1884 interface<br />

fastethernet 0/4 vlan 1<br />

1900:<br />

ALSwitch(config)#mac-address-table permanent 00e0.2917.1884 ethernet<br />

0/4<br />

Task 8: Verify the Results<br />

Verify the MAC address table entries.<br />

ALSwitch#show mac-address-table<br />

How many static addresses exist? 5<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU


All 0100.0cdd.dddd STATIC CPU<br />

1 0008.744d.8ee2 STATIC Fa0/4<br />

1 0800.4606.fbb6 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 6<br />

Task 9: List Port Security Options<br />

Step 1. Determine options for setting port security on interface Fast Ethernet 0/4. Enter switchport<br />

port security ? from the interface configuration prompt for Fast Ethernet port 0/4.<br />

ALSwitch(config)#interface fastethernet 0/4<br />

ALSwitch(config-if)#port security ?<br />

aging Port-security aging comm<strong>and</strong>s<br />

mac-address Secure mac address<br />

maximum Max secure addrs<br />

violation Security Violation Mode<br />

<br />

1900:<br />

ALSwitch(config)#interface ethernet 0/4<br />

ALSwitch(config-if)#port secure ?<br />

max-mac-count Maximum number of addresses allowed on the port<br />

<br />

Step 2. Allow the switch port Fast Ethernet 0/4 to accept only one device by using the following comm<strong>and</strong>s:<br />

ALSwitch(config-if)#switchport mode access<br />

ALSwitch(config-if)#switchport port-security<br />

ALSwitch(config-if)#switchport port-security mac-address sticky<br />

1900:<br />

ALSwitch(config-if)#port secure<br />

Task 10: Verify the Results<br />

Verify the MAC address table entries.<br />

ALSwitch#show mac-address-table<br />

How are the address types listed for the two MAC addresses?<br />

1 static <strong>and</strong> 1 dynamic<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

Chapter 6: Catalyst Switch Configuration 285


286 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

1 0008.744d.8ee2 STATIC Fa0/4<br />

1 0800.4606.fbb6 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 6<br />

Task 11: Show the Running Configuration File<br />

In the listing of the running configuration, do some statements directly reflect the security implementation?<br />

Yes<br />

What do those statements mean?<br />

Port security is enabled.<br />

interface FastEthernet0/4<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

Task 12: Limit the Number of Hosts Per Port<br />

Step 1. On interface Fast Ethernet 0/4, set the port security maximum MAC count to 1.<br />

ALSwitch(config)#interface fastethernet 0/4<br />

ALSwitch(config-if)#switchport port-security maximum 1<br />

1900:<br />

ALSwitch(config)#interface ethernet 0/4<br />

ALSwitch(config-if)#port secure max-mac-count 1<br />

Step 2. Disconnect the PC that is attached to Fast Ethernet 0/4 <strong>and</strong> connect to that port the PC that has<br />

been given the IP address 192.168.1.7. This PC has not been attached to the switch. To generate<br />

some traffic, ping the switch address 192.168.1.2 with the -n 50 option. For example, use<br />

ping 192.168.1.2 -n 50, where 50 is the number of pings sent.<br />

Task 13: Move Host<br />

Step 1. Reconnect the PC that had previously been connected to Fast Ethernet 0/4 to Fast Ethernet 0/8.<br />

The PC has been moved to a new location. This could be to another VLAN, but in this<br />

instance, all switch ports are in VLAN 1 <strong>and</strong> network 192.168.1.0.<br />

Step 2. From this PC on Fast Ethernet 0/8, ping 192.168.1.2 -n 50.<br />

Was this successful? Yes<br />

Why or why not?<br />

No port security is enabled.<br />

Step 3. Show the MAC address table.<br />

ALSwitch#show mac-address-table


Step 4. Record the VLAN 1 MAC addresses that are displayed.<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0008.744d.8ee2 STATIC Fa0/4<br />

1 0800.4606.fbb6 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 6<br />

Task 14: Clear the MAC Address Table<br />

Step 1. Clear the MAC address table. Doing so unlocks the MAC addresses from security <strong>and</strong> allows a<br />

new address to be registered.<br />

ALSwitch#clear mac-address-table dynamic<br />

Step 2. From the PC on the Fast Ethernet 0/8, ping 192.168.1.2 -n 50.<br />

Was this successful? Yes<br />

Step 3. If not, troubleshoot as necessary.<br />

Task 15: Change the Security Settings<br />

Step 1. Show the MAC address table.<br />

ALSwitch#show mac-address-table<br />

Step 2. Observe that Fast Ethernet 0/4 is secure but that the security should be applied to the machine<br />

on port 0/8 because that is the machine that was moved form port 0/4. Remove port security<br />

from interface Fast Ethernet 0/4.<br />

ALSwitch(config)#interface fastethernet 0/4<br />

ALSwitch(config-if)#no switchport port-security<br />

ALSwitch(config-if)#no switchport port-security mac-address sticky<br />

ALSwitch(config-if)#no switchport port-security mac-address sticky<br />

0008.744d.8ee2<br />

ALSwitch(config-if)#shutdown<br />

ALSwitch(config-if)#no shutdown<br />

1900:<br />

ALSwitch(config)#interface ethernet 0/4<br />

ALSwitch(config-if)#no port secure<br />

Chapter 6: Catalyst Switch Configuration 287


288 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 3. Apply port security with a max-mac-count of 1 to interface Fast Ethernet 0/8.<br />

ALSwitch(config)#interface fastethernet 0/8<br />

ALSwitch(config-if)#switchport mode access<br />

ALSwitch(config-if)#switchport port-security<br />

ALSwitch(config-if)#switchport port-security mac-address sticky<br />

ALSwitch(config-if)#switchport port-security maximum 1<br />

1900:<br />

ALSwitch(config)#interface ethernet 0/8<br />

ALSwitch(config-if)#port secure max-mac-count 1<br />

Step 4. Clear the MAC address table.<br />

Note: You also could have cleared individual entries.<br />

ALSwitch#clear mac-address-table dynamic<br />

Task 16: Verify the Results<br />

Verify that the MAC address table has been cleared.<br />

ALSwitch#show mac-address-table<br />

Can all PCs still successfully ping each other? Yes<br />

If not, troubleshoot the switch <strong>and</strong> PCs.<br />

ALSwitch#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 0009.b7f6.61c0 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 0008.744d.8ee2 STATIC Fa0/8<br />

1 00b0.d026.6ab5 DYNAMIC Fa0/4<br />

1 0800.4606.fbb6 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 6


Task 17: Exit the Switch<br />

Step 1. Exit to the switch welcome screen.<br />

Switch#exit<br />

Step 2. Remove <strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 6-7: Managing Switch Operating System<br />

Files (6.2.7a)<br />

Figure 6-9 Topology for Lab 6-7<br />

Table 6-7 Lab Equipment Configuration<br />

Switch Designation Switch Name VLAN 1 IP Address Default Gateway IP Address<br />

Switch 1 ALSwitch 192.168.1.2 192.168.1.1<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

The subnet mask is 255.255.255.0.<br />

Objectives<br />

■ Create <strong>and</strong> verify a basic switch configuration.<br />

■ Back up the switch IOS to a TFTP server <strong>and</strong> then restore it.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 6-9. The 2950 switch produced the configuration output<br />

in this lab. Another switch might produce different output. Instructions are also provided for the 1900<br />

series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from the<br />

menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Chapter 6: Catalyst Switch Configuration 289<br />

Implement the procedure documented in Appendix B before you continue with this lab.<br />

FA0/1<br />

Crossover Cable<br />

Serial Cable


290 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 1: Configure the Switch<br />

Configure the hostname <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 6-7. If you have problems while performing this configuration, refer to Curriculum<br />

Lab 6-2, “Basic Switch Configuration (6.2.2).”<br />

Task 2: Configure the Host that Is Attached to the Switch<br />

Configure the host to use the same subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

This host will act as the TFTP server in this lab. Be sure to take note of the IP address that is assigned.<br />

Task 3: Verify Connectivity<br />

To verify that the host <strong>and</strong> switch are configured correctly, ping the switch IP address from the host.<br />

Was the ping successful? Yes<br />

If the answer is no, troubleshoot the host <strong>and</strong> switch configurations.<br />

Task 4: Start <strong>and</strong> Configure the Cisco TFTP Server<br />

Step 1. The TFTP server that is indicated in Figure 6-10 might not be the same one that is used in this<br />

classroom. Please check with the instructor for the operating instructions for the TFTP server<br />

that is used in place of the Cisco TFTP server.<br />

Figure 6-10 TFTP Server Startup


Step 2. After the TFTP server is running <strong>and</strong> shows the proper address configured on the workstation,<br />

proceed to the actual copying of the Cisco IOS Software image file to the switch.<br />

Task 5: Copy the IOS Image to the TFTP Server (1900: Skip to<br />

Step 9)<br />

Step 1. Before you try to copy the files, verify that the TFTP server is running.<br />

What is the IP address of the TFTP server? 192.168.1.10<br />

Step 2. From the console session, enter show flash.<br />

What is the name <strong>and</strong> length of the IOS image that is stored in Flash memory?<br />

c2950-i6q4l2-mz.121-9.EA1.bin, 2,490,607 bytes (answers will vary)<br />

What attributes can you identify from codes in the IOS filename?<br />

Version 12.1(9)EA1 (answers will vary)<br />

ALSwitch#show flash<br />

Directory of flash:/<br />

2 -rwx 2490607 Mar 1 1993 02:23:28 +00:00 c2950-i6q4l2-mz.121-<br />

9.EA1<br />

a.bin<br />

3 -rwx 269 Jan 1 1970 00:01:45 +00:00 env_vars<br />

4 -rwx 1278 Mar 1 1993 00:10:01 +00:00 config.text<br />

5 -rwx 5 Mar 1 1993 00:10:01 +00:00 private-config.text<br />

6 -rwx 17 Mar 1 1993 02:00:21 +00:00 testfile.txt<br />

7 drwx 2688 Mar 1 1993 02:25:45 +00:00 html<br />

19 -rwx 110 Mar 1 1993 02:21:13 +00:00 info<br />

20 -rwx 110 Mar 1 1993 02:25:48 +00:00 info.ver<br />

2494816 bytes total (580096 bytes free)<br />

Step 3. From the console session in privileged EXEC mode, enter the copy flash tftp comm<strong>and</strong>. At the<br />

prompt, enter the IP address of the TFTP server.<br />

ALSwitch#copy flash tftp<br />

Source filename []?c2950-i6q4l2-mz.121-9.EA1.bin<br />

Address or name of remote host []? 192.168.1.10<br />

Destination filename [c2950-i6q4l2-mz.121-9.EA1.bin]?<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

2490607 bytes copied in 19.378 secs (94924 bytes/sec)<br />

ALSwitch#<br />

Task 6: Verify the Transfer to the TFTP Server<br />

Chapter 6: Catalyst Switch Configuration 291<br />

Step 1. Verify the transfer by choosing View > Log File to check the TFTP server log file. The output<br />

should look something like the following:<br />

Mon Sep 19 14:10:08 2005: Receiving ‘c2950-i6q4l2-mz.121-9.EA1.bin’ in binary<br />

mode<br />

Mon Sep 19 14:11:14 2005: Successful.


292 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 2. Verify the Flash image size in the TFTP server directory. To locate it, choose View > Options.<br />

This shows the TFTP server root directory. It should be similar to the following, unless the<br />

default directories were changed:<br />

C:\Program Files\Cisco Systems\Cisco TFTP Server<br />

Step 3. Locate this directory by using File Manager <strong>and</strong> look at the detail listing of the file. The file<br />

length in the show flash comm<strong>and</strong> should be the same file size as the file stored on the TFTP<br />

server. If the file sizes are not identical, check with your instructor.<br />

Task 7: Copy the IOS Image from the TFTP Server<br />

Step 1. Now that the IOS image is backed up, the image must be tested <strong>and</strong> the IOS image must be<br />

restored to the switch. Verify again that the TFTP server is running, is sharing a network with<br />

the switch, <strong>and</strong> can be reached by pinging the TFTP server IP address.<br />

Record the IP address of the TFTP server. 192.168.1.10<br />

Step 2. Start the actual copying, from the privileged EXEC prompt. Do not interrupt the process!<br />

ALSwitch#copy tftp flash<br />

Address or name of remote host []? 192.168.1.10<br />

Source filename []? c2950-i6q4I2-mz.121-9.EA1.bin<br />

Destination filename [c2950-i6q4I2-mz.121-9.EA1.bin]?[Enter]<br />

%Warning:There is a file already existing with this name<br />

Do you want to over write? [confirm][Enter]<br />

Accessing tftp://192.168.1.10/c2950-i6q4I2-mz.121-9.EA1.bin...<br />

Loading c2950-i6q4I2-mz.121-9.EA1.bin from 192.168.1.10 (via VLAN1):<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

[OK - 2490607 bytes]<br />

2490607 bytes copied in 80.986 secs (22544 bytes/sec)<br />

ALSwitch#<br />

The switch might prompt you to overwrite Flash. Will the image fit in available Flash? Yes<br />

What is the size of the file that is being loaded? 2490607<br />

What happened on the switch console screen as the file was being downloaded?<br />

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!<br />

Was the verification successful? Yes<br />

Was the whole operation successful? Yes<br />

Task 8: Test the Restored IOS Image<br />

Step 1. To verify that the switch IOS image is correct, cycle the switch power <strong>and</strong> observe the startup<br />

process to confirm that there were no Flash errors. If there were no errors, then the switch’s<br />

IOS image should have started correctly. Also, to further verify the IOS image in Flash, issue<br />

the show version comm<strong>and</strong>, which shows output similar to the following:<br />

System image file is “flash:/c2950-i6q4I2-mz.121-9.EA1.bin”<br />

ALSwitch#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) C2950 Software (C2950-I6Q4I2), Version 12.1(9)EA1, RELEASE SOFTWARE


(fc1)<br />

Copyright 1986-2004 by cisco Systems, Inc.<br />

Compiled Mon 19-Apr-04 20:58 by yenanh<br />

Image text-base: 0x80010000, data-base: 0x805A8000<br />

ROM: Bootstrap program is C2950 boot loader<br />

ALSwitch uptime is 1 hour, 19 minutes<br />

System returned to ROM by power-on<br />

System image file is “flash:/c2950-i6q4l2.121-9.EA1.bin”<br />

cisco WS-C2950-24 (RC32300) processor (revision G0) with 20713K bytes of memory.<br />

Processor board ID FHK0651Y0KA<br />

Last reset from system-reset<br />

Running St<strong>and</strong>ard Image<br />

24 FastEthernet/IEEE 802.3 interface(s)<br />

32K bytes of flash-simulated non-volatile configuration memory.<br />

Base ethernet MAC Address: 00:0B:BE:7F:ED:40<br />

Motherboard assembly number: 73-5781-11<br />

Power supply part number: 34-0965-01<br />

Motherboard serial number: FOC06500SRB<br />

Power supply serial number: DAB06498VHC<br />

Model revision number: G0<br />

Motherboard revision number: A0<br />

Model number: WS-C2950-24<br />

System serial number: FHK0651Y0KA<br />

Configuration register is 0xF<br />

Step 2. Exit to the switch welcome screen.<br />

Switch#exit<br />

Step 3. Remove <strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Task 9: Procedure for 1900 Switch Firmware Upgrade Using TFTP<br />

Step 1. Select option F to go to the Firmware Configuration menu from the Main Menu. An example<br />

of the Firmware Configuration menu follows:<br />

Catalyst 1900 - Firmware Configuration<br />

Chapter 6: Catalyst Switch Configuration 293<br />

——————————- System Information —————————————<br />

FLASH: 1024K bytes<br />

V8.01.00 : Enterprise Edition<br />

Upgrade status:<br />

No upgrade currently in progress.<br />

——————————- Settings ——————————————————<br />

[S] TFTP Server name or IP address 192.168.1.3<br />

[F] Filename for firmware upgrades cat1900.bin<br />

[A] Accept upgrade transfer from other hosts Enabled


294 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

——————————- Actions ——————————————————-<br />

[U] System XMODEM upgrade [D] Download test subsystem<br />

(XMODEM)<br />

[T] System TFTP upgrade [X] Exit to Main Menu<br />

Step 2. Ensure that the switch firmware upgrade file is available on the TFTP server in the default<br />

directory. The file can be copied from another networking device or computer or it can be<br />

downloaded to the server from an appropriate website.<br />

Step 3. Select option S from the Firmware Configuration menu <strong>and</strong> enter the IP address of the server<br />

where the switch upgrade file is located.<br />

Step 4. Select option F from the Firmware Configuration menu <strong>and</strong> enter the name of the firmwareupgrade<br />

file.<br />

Step 5. Select T from the Firmware Configuration menu to initiate the upgrade.<br />

Step 6. Verify that the upgrade is in progress by checking the Upgrade Status field of the Firmware<br />

Configuration menu. If the upgrade is in progress, the field reads “in-progress.”<br />

Step 7. When the transfer is complete, the switch resets automatically <strong>and</strong> executes the newly downloaded<br />

firmware.<br />

Caution: During the transfer of the upgrade file, the switch might not respond to comm<strong>and</strong>s for as long as 1 minute.<br />

This is normal <strong>and</strong> correct. If you interrupt the transfer by turning the switch off <strong>and</strong> on, the firmware could be corrupted.<br />

Curriculum Lab 6-8: Managing Switch Startup<br />

Configuration Files (6.2.7b)<br />

Figure 6-11 Topology for Lab 6-8<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

FA0/1<br />

Crossover Cable<br />

Serial Cable


Table 6-8 Lab Equipment Configuration<br />

Switch Designation Switch Name VLAN 1 IP Address Default Gateway<br />

IP Address<br />

Switch 1 ALSwitch 192.168.1.2 192.168.1.1<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

The subnet mask is 255.255.255.0.<br />

Objectives<br />

■ Create <strong>and</strong> verify a basic switch configuration.<br />

■ Back up the switch startup configuration file to a TFTP server <strong>and</strong> then restore it.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 6-11. The 2950 switch produced the configuration output<br />

in this lab. Another switch might produce different output. Instructions are also provided for the 1900<br />

series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from the<br />

menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B before you continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostname <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 6-8. If you have problems while performing this configuration, refer to Curriculum<br />

Lab 6-2, “Basic Switch Configuration (6.2.2).”<br />

Task 2: Configure the Host that Is Attached to the Switch<br />

Configure the host to use the same subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

This host will act as the TFTP server in this lab. Be sure to take note of the IP address that is assigned.<br />

Task 3: Verify Connectivity<br />

To verify that the host <strong>and</strong> switch are correctly configured, ping the switch IP address from the host.<br />

Was the ping successful? Yes<br />

If the answer is no, troubleshoot the host <strong>and</strong> switch configurations.<br />

Task 4: Start <strong>and</strong> Configure the Cisco TFTP Server<br />

Chapter 6: Catalyst Switch Configuration 295<br />

Step 1. The TFTP server that is indicated in Figure 6-12 might not be the same one that is used in this<br />

classroom. Please check with the instructor for the operating instructions for the TFTP server<br />

that is used in place of the Cisco TFTP server.


296 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 6-12 TFTP Server Startup<br />

Step 2. After the TFTP server is running <strong>and</strong> shows the proper address configured on the workstation,<br />

proceed to the copying of the configuration file to the switch.<br />

Task 5: Copy the Startup Configuration File to the TFTP Server<br />

Step 1. Before you try to copy the files, verify that the TFTP server is running.<br />

What is the IP address of the TFTP server? 192.168.1.10<br />

Step 2. From the console session, enter show flash.<br />

For a 2900 switch, use the comm<strong>and</strong> dir flash:.<br />

Note: This function is not supported on the 1900 switch.<br />

What is the name <strong>and</strong> length of the startup configuration image that is stored in Flash?<br />

config.text, 1278 bytes<br />

ALSwitch#show flash<br />

Directory of flash:/<br />

2 -rwx 2490607 Mar 1 1993 02:23:28 +00:00 c2950-i6q4l2-mz.121-<br />

9.EA1<br />

a.bin<br />

3 -rwx 269 Jan 1 1970 00:01:45 +00:00 env_vars<br />

4 -rwx 1278 Mar 1 1993 00:10:01 +00:00 config.text<br />

5 -rwx 5 Mar 1 1993 00:10:01 +00:00 private-config.text<br />

6 -rwx 17 Mar 1 1993 02:00:21 +00:00 testfile.txt<br />

7 drwx 2688 Mar 1 1993 02:25:45 +00:00 html<br />

19 -rwx 110 Mar 1 1993 02:21:13 +00:00 info<br />

20 -rwx 110 Mar 1 1993 02:25:48 +00:00 info.ver<br />

2494816 bytes total (580096 bytes free)


Step 3. From the console session in privileged EXEC mode, enter copy running-config startup-config<br />

to make sure that the running configuration file is saved to the startup configuration file.<br />

Then, enter the copy startup-config tftp comm<strong>and</strong>. At the prompt, enter the IP address of the<br />

TFTP server.<br />

ALSwitch#copy running-config startup-config<br />

Destination filename [startup-config]?[Enter]<br />

Building configuration...<br />

[OK]<br />

ALSwitch#copy startup-config tftp<br />

Address or name of remote host []? 192.168.1.10<br />

Destination filename [alswitch-confg]?[Enter]<br />

!!<br />

1278 bytes copied in 1.60 secs (744 bytes/sec)<br />

ALSwitch#<br />

Step 4. For the 1900 switch, use the following to copy the switch configuration file to a TFTP server:<br />

ALSwitch#copy nvram tftp://192.168.1.3/alswitch-config<br />

Configuration upload is successfully completed<br />

Task 6: Verify the Transfer to the TFTP Server<br />

Step 1. Verify the transfer by choosing View > Log File to check the TFTP server log file. The output<br />

should look something like the following:<br />

Mon Sep 19 14:10:08 2005: Receiving ‘alswitch.confg’ file from 192.168.1.2 in<br />

binary mode<br />

Mon Sep 19 14:11:14 2005: Successful.<br />

Step 2. Verify the Flash image size in the TFTP server directory. To locate it, choose View > Options.<br />

This shows the TFTP server root directory. It should be similar to the following, unless the<br />

default directories were changed:<br />

C:\Program Files\Cisco Systems\Cisco TFTP Server<br />

Step 3. Locate this directory by using File Manager <strong>and</strong> look at the detail listing of the file. The file<br />

length in the show flash comm<strong>and</strong> should be the same file size as the file that is stored on the<br />

TFTP server. If the file sizes are not identical, check with your instructor.<br />

Task 7: Restore the Startup Configuration File from the TFTP<br />

Server<br />

Step 1. Erase the switch startup configuration file.<br />

Step 2. Reconfigure the file with just the VLAN 1 IP address of 192.168.1.2 255.255.255.0.<br />

Step 3. Enter the comm<strong>and</strong> copy tftp startup-config at the privileged EXEC mode prompt. Do not<br />

interrupt the process!<br />

Switch#copy tftp startup-config<br />

Address or name of remote host []? 192.168.1.10<br />

Source filename []? alswitch-confg<br />

Destination filename [startup-config]?<br />

Accessing tftp://192.168.1.10/alswitch-confg...<br />

Loading alswitch-confg from 192.168.1.10 (via VLAN1): !<br />

Chapter 6: Catalyst Switch Configuration 297


298 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

[OK - 744 bytes]<br />

[OK]<br />

1278 bytes copied in 0.100 secs<br />

Switch#<br />

Was the operation successful? Yes<br />

Step 4. For the 1900 switch, use the following to copy the switch configuration file to a TFTP server:<br />

ALSwitch#copy tftp://192.168.1.10/alswitch-config nvram<br />

TFTP successfully downloaded configuration file<br />

Task 8: Test the Restored Startup Configuration Image (Not<br />

Supported on the 1900)<br />

Step 1. To verify that the switch image is correct, cycle the switch power <strong>and</strong> observe the switch prompt.<br />

If it has returned to the name that was assigned to it in the original configuration, the restoration<br />

is complete. Enter the comm<strong>and</strong> show startup-config to see the restored configuration.<br />

ALSwitch#show startup-config<br />

Using 1278 out of 32768 bytes<br />

!<br />

version 12.1<br />

no service pad<br />

service timestamps debug uptime<br />

service timestamps log uptime<br />

no service password-encryption<br />

!<br />

hostname ALSwitch<br />

!<br />

enable secret 5 $1$Oi07$I3c8fVXNd3wvifcRVulG2.<br />

enable password cisco<br />

!<br />

ip subnet-zero<br />

!<br />

!<br />

spanning-tree mode pvst<br />

no spanning-tree optimize bpdu transmission<br />

spanning-tree extend system-id<br />

!<br />

!<br />

!<br />

!<br />

interface FastEthernet0/1<br />

!<br />

interface FastEthernet0/2<br />

!<br />

interface FastEthernet0/3<br />

!<br />

interface FastEthernet0/4<br />

!<br />

interface FastEthernet0/5<br />

!<br />

interface FastEthernet0/6


!<br />

interface FastEthernet0/7<br />

!<br />

interface FastEthernet0/8<br />

!<br />

interface FastEthernet0/9<br />

!<br />

interface FastEthernet0/10<br />

!<br />

interface FastEthernet0/11<br />

!<br />

interface FastEthernet0/12<br />

!<br />

interface FastEthernet0/13<br />

!<br />

interface FastEthernet0/14<br />

!<br />

interface FastEthernet0/15<br />

!<br />

interface FastEthernet0/16<br />

!<br />

interface FastEthernet0/17<br />

!<br />

interface FastEthernet0/18<br />

!<br />

interface FastEthernet0/19<br />

!<br />

interface FastEthernet0/20<br />

!<br />

interface FastEthernet0/21<br />

!<br />

interface FastEthernet0/22<br />

!<br />

interface FastEthernet0/23<br />

!<br />

interface FastEthernet0/24<br />

!<br />

interface Vlan1<br />

!<br />

ip address 192.168.1.2 255.255.255.0<br />

no ip route-cache<br />

shutdown<br />

ip default-gateway 192.168.1.1<br />

ip http server<br />

!<br />

line con 0<br />

password cisco<br />

login<br />

line vty 0 4<br />

password cisco<br />

login<br />

line vty 5 15<br />

password cisco<br />

Chapter 6: Catalyst Switch Configuration 299


300 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

!<br />

!<br />

login<br />

end<br />

Step 2. Exit to the switch welcome screen.<br />

Switch#exit<br />

Step 3. Remove <strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 6-9: Password Recovery Procedure on a<br />

Catalyst 2900 Series Switch (6.2.8)<br />

Figure 6-13 Topology for Lab 6-9<br />

Table 6-9 Lab Equipment Configuration<br />

Switch Designation Switch Name VLAN 1 IP Address Default Gateway IP Address<br />

Switch 1 ALSwitch 192.168.1.2 192.168.1.1<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

The subnet mask is 255.255.255.0.<br />

Objectives<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Change passwords so that the password recovery procedure must be performed.<br />

FA0/1<br />

Crossover Cable<br />

Serial Cable


Background/Preparation<br />

Cable a network that is similar to the one in Figure 6-13. The 2950 switch produced the configuration output<br />

in this lab. Another switch might produce different output. Instructions are also provided for the 1900<br />

series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from the<br />

menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B before you continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostname <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 6-9. If you have problems while performing this configuration, refer to Curriculum<br />

Lab 6-2, “Basic Switch Configuration (6.2.2).”<br />

Task 2: Configure the Host that Is Attached to the Switch<br />

Configure the host to use the same subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

Task 3: Verify Connectivity<br />

To verify that the host <strong>and</strong> switch are correctly configured, ping the switch IP address from the host.<br />

Was the ping successful? Yes<br />

If the answer is no, troubleshoot the host <strong>and</strong> switch configurations.<br />

Task 4: Reset the Console Password<br />

Step 1. Have a classmate change the console <strong>and</strong> VTY passwords on the switch, save the changes to<br />

the startup-config file, <strong>and</strong> reload the switch.<br />

Step 2. Without knowing the passwords, try to gain access to the switch.<br />

Task 5: Recover Access to the Switch<br />

Step 1. Make sure that a PC is connected to the console port <strong>and</strong> that a HyperTerminal window is<br />

open.<br />

Step 2. Power off the switch <strong>and</strong> turn it back on by holding down the Mode button on the front of the<br />

switch at the same time that the switch is powered on. Release the Mode button a few seconds<br />

after the STAT LED is no longer lit.<br />

Step 3. The following should be displayed:<br />

Chapter 6: Catalyst Switch Configuration 301<br />

C2950 Boot Loader (C2950-HBOOT-M) Version 12.1(11r)EA1, RELEASE SOFTWARE (fc1)<br />

Compiled Mon 22-Jul-02 18:57 by antonino<br />

WS-C2950-24 starting...<br />

Base ethernet MAC Address: 00:0a:b7:72:2b:40<br />

Xmodem file system is available.


302 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

The system has been interrupted prior to initializing the Flash file system. The following comm<strong>and</strong>s<br />

initialize the Flash file system <strong>and</strong> finish loading the operating system software:<br />

flash_init<br />

load_helper<br />

boot<br />

Step 4. To initialize the file system <strong>and</strong> finish loading the operating system:<br />

Type flash_init.<br />

Type load_helper.<br />

Type dir flash: (do not forget to type the : (colon) after the word flash).<br />

Step 5. Type rename flash:config.text flash:config.old to rename the configuration file.<br />

This file contains the password definition.<br />

Task 6: Restart the System<br />

Step 1. Type boot to boot the system.<br />

Step 2. Enter N at the prompt to start the Setup program.<br />

Continue with the configuration dialog? [yes/no] : N<br />

Step 3. Type rename flash:config.old flash:config.text to rename the configuration file with its original<br />

name at the privileged EXEC mode prompt.<br />

Step 4. Copy the configuration file into memory.<br />

Switch#copy flash:config.text system:running-config<br />

Source filename [config.text]?[Enter]<br />

Destination filename [running-config][Enter]<br />

Step 5. The configuration file is now reloaded, so change the old unknown passwords <strong>and</strong> save the new<br />

configuration.<br />

ALSwitch#configure terminal<br />

ALSwitch(config)#no enable secret<br />

ALSwitch(config)#enable password Cisco<br />

ALSwitch(config)#line console 0<br />

ALSwitch(config-line)#password cisco<br />

ALSwitch(config-line)#exit<br />

ALSwitch(config)#line vty 0 15<br />

ALSwitch(config-line)#password cisco<br />

ALSwitch(config-line)#exit<br />

ALSwitch(config)#exit<br />

ALSwitch#copy running-config startup-config<br />

Destination filename [startup-config]?[Enter]<br />

Building configuration...<br />

[OK]<br />

ALSwitch#<br />

Step 6. Power cycle the switch <strong>and</strong> verify that the passwords are now functional.<br />

If they are not, repeat the procedure.<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn all the devices off. Then, remove<br />

<strong>and</strong> store the cables <strong>and</strong> adapter.


Task 7: Procedure for the 1900 <strong>and</strong> 2800 Switches<br />

Check the boot firmware version number from the Systems Engineering menu. To access the Systems<br />

Engineering menu, follow this procedure:<br />

Step 1. Disconnect the power cord from the rear panel.<br />

Step 2. Press <strong>and</strong> hold the Mode button on the front panel.<br />

Step 3. Power-cycle the switch.<br />

Step 4. Release the Mode button one or two seconds after the LED above port 1x goes off or when the<br />

diagnostic console is displayed.<br />

Cisco Systems Diagnostic Console<br />

Copyright Cisco Systems, Inc. 1999<br />

All rights reserved.<br />

Ethernet Address: 00-E0-1E-7E-B4-40<br />

————————————————————————-<br />

Press Enter to continue.<br />

Step 5. Press Enter to display the Diagnostic Console [nd] Systems Engineering menu:<br />

Diagnostic Console - Systems Engineering<br />

Operation firmware version: 8.00.00 Status: valid<br />

Boot firmware version: 3.02<br />

[C] Continue with st<strong>and</strong>ard system start up<br />

[U] Upgrade operation firmware (XMODEM)<br />

[S] System Debug Interface<br />

Enter Selection:<br />

The bold letters show the Boot firmware version.<br />

Clearing the Password (Firmware Version 1.10 <strong>and</strong> Later)<br />

Step 1. Power-cycle the switch.<br />

After POST completes, the following prompt displays:<br />

Do you wish to clear the passwords? [Y]es or [N]o:<br />

Note: You have 10 seconds to respond. If you do not respond within that time, the Management Console Logon screen<br />

appears. You cannot change this waiting period.<br />

Step 2. Enter Y to delete the existing password from NVRAM.<br />

Note: If you type N, the existing password remains valid.<br />

Chapter 6: Catalyst Switch Configuration 303<br />

Step 3. Assign a password from the switch management interfaces (management console or CLI).


304 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Viewing the Password (Firmware Versions Between 1.10 <strong>and</strong> 3.02)<br />

For firmware versions between 1.10 <strong>and</strong> 3.02, you can view the password you are trying to recover<br />

(instead of clearing it as described in the previous section).<br />

Step 1. Access the diagnostic console:<br />

Press <strong>and</strong> hold the Mode button.<br />

Power-cycle the switch.<br />

Release the Mode button one or two seconds after the LED above port 1x goes off or the diagnostics<br />

console appears.<br />

You will see the following logon screen:<br />

————————————————————————-<br />

Cisco Systems Diagnostic Console<br />

Copyright Cisco Systems, Inc. 1999<br />

All rights reserved.<br />

Ethernet Address: 00-E0-1E-7E-B4-40<br />

————————————————————————-<br />

Press Enter to continue.<br />

Step 2. Press Enter <strong>and</strong> select the [S] option on the Diagnostic Console <strong>–</strong> Systems Engineering menu,<br />

<strong>and</strong> then select the [V] option on the Diagnostic Console <strong>–</strong> System Debug Interface menu to<br />

display the management console password.<br />

Step 3. If you want to change the password, select the [M] option on the Console Settings menu.<br />

Password Recovery for Firmware Version 1.09 <strong>and</strong> Earlier<br />

Note: If the shipping date is before June 1997, gather the information listed in this section <strong>and</strong> contact the Cisco<br />

Technical Assistance Center (TAC) for password recovery.<br />

Note: This section is also applicable for those Catalyst 2800 switches that do not have the Mode button in their front<br />

panel.<br />

To recover your password, follow these steps:<br />

Step 1. Contact the Cisco TAC for the factory-installed password.<br />

Step 2. Provide the serial number or MAC address of the switch.<br />

The serial number is usually located on the back of the unit. To obtain the MAC address,<br />

remove the cover <strong>and</strong> read the Ethernet address of the PROM.


Curriculum Lab 6-10: Firmware Upgrade of a Catalyst<br />

2950 Series Switch (6.2.9)<br />

Figure 6-14 Topology for Lab 6-10<br />

Table 6-10 Lab Equipment Configuration<br />

Switch Designation Switch Name VLAN 1 IP Address Default Gateway IP Address<br />

Switch 1 ALSwitch 192.168.1.2 192.168.1.1<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

The subnet mask is 255.255.255.0.<br />

Objectives<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Upgrade the IOS <strong>and</strong> HTML files from a file that the instructor supplies.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 6-14. The 2950 switch produced the configuration output<br />

in this lab. Another switch might produce different output.<br />

Start a HyperTerminal session.<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Chapter 6: Catalyst Switch Configuration 305<br />

Implement the procedure documented in Appendix B before you continue with this lab.<br />

FA0/1<br />

Crossover Cable<br />

Serial Cable


306 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Important Note: This lab requires that a combined IOS image <strong>and</strong> HTML file c2950-c3h2s-mz.120-5.3.WC.1.tar be<br />

in the default file directory of the TFTP server. The instructor should download this file from the Cisco Connection<br />

online software center. This file is the latest update for the Catalyst 2950. It has the same filename stem as the current<br />

image, but for the purpose of the lab, assume that this is an update. The IOS update release contains new HTML files<br />

to support changes to the web interface.<br />

This lab requires that there be a saved copy of the current configuration file as backup.<br />

Task 1: Configure the Switch<br />

Configure the hostname <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 6-10. If you have problems while performing this configuration, refer to Curriculum<br />

Lab 6-2, “Basic Switch Configuration (6.2.2).”<br />

Task 2: Configure the Host Attached to the Switch<br />

Configure the host to use the same IP subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

Task 3: Verify Connectivity<br />

To verify that the host <strong>and</strong> switch are correctly configured, ping the switch IP address from the host.<br />

Was the ping successful? Yes<br />

If the answer is no, troubleshoot the host <strong>and</strong> switch configurations.<br />

Task 4: Display the Name of the Running Image File<br />

Step 1. Display the name of the running image file by using the show boot comm<strong>and</strong> from the privileged<br />

EXEC mode prompt.<br />

ALSwitch#show boot<br />

BOOT path-list:<br />

Config file: flash:config.text<br />

Enable Break: no<br />

Manual Boot: no<br />

HELPER path-list:<br />

NVRAM/Config file<br />

buffer size: 32768<br />

ALSwitch#<br />

Step 2. If, as shown in the previous step, no software image is defined in the boot path, enter dir flash:<br />

or show flash to display the contents.<br />

ALSwitch#dir flash:<br />

Directory of flash:/<br />

2 -rwx 1674921 Mar 01 1993 01:28:10 c2950-c3h2s-mz.120-5.3.WC.1.bin<br />

3 -rwx 269 Jan 01 1970 00:00:57 env_vars<br />

4 drwx 10240 Mar 01 1993 00:21:13 html<br />

165-rwx 965 Mar 01 1993 00:22:23 config.text<br />

7741440 bytes total (4778496 bytes free)


Task 5: Prepare for the New Image<br />

Step 1. If the switch has enough free memory, as shown in the previous step, rename the existing IOS<br />

image file to the same name with the .old extension. If there is not enough memory, make sure<br />

that a copy of the IOS image exists on the TFTP server.<br />

ALSwitch#rename flash: c2950-c3h2s-mz.120-5.3.WC.1.bin flash:<br />

c2950-c3h2s-mz.120-5.3.WC.1.old<br />

Step 2. Verify that the renaming was successful.<br />

ALSwitch#dir flash:<br />

Directory of flash:/<br />

2 -rwx 1674921 Mar 01 1993 01:28:10 c2950-c3h2s-mz.120-5.3.WC.1.old<br />

3 -rwx 269 Jan 01 1970 00:00:57 env_vars<br />

4 drwx 10240 Mar 01 1993 00:21:13 html<br />

167 -rwx 965 Mar 01 1993 00:22:23 config.text<br />

7741440 bytes total (4778496 bytes free)<br />

ALSwitch#<br />

Step 3. As a precaution, disable access to the switch HTML pages.<br />

ALSwitch(config)#no ip http server<br />

Task 6: Extract the New IOS Image <strong>and</strong> HTML Files into Flash<br />

Memory<br />

Step 1. Use the tar comm<strong>and</strong> as shown:<br />

ALSwitch#tar /x tftp://192.168.1.3//c2950-c3h2s-mz.120-<br />

5.4.WC.1.tar flash:<br />

Note: Depending on the TFTP server that is being used, you might need only one slash (/) after the IP address of the<br />

server.<br />

Step 2. Re-enable access to the switch HTML pages.<br />

ALSwitch(config)#ip http server<br />

Step 3. Remove existing HTML files.<br />

ALSwitch#delete flash:html/*<br />

Task 7: Associate the New Boot File<br />

Enter the boot comm<strong>and</strong> with the name of the new image filename at the configuration mode prompt.<br />

ALSwitch(config)#boot system flash:c2950-c3h2s-mz.120-5.4.WC.1.bin<br />

Chapter 6: Catalyst Switch Configuration 307


308 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 8: Restart the Switch<br />

Step 1. Restart the switch by using the reload comm<strong>and</strong> to see if the new IOS loaded. Use the show<br />

version comm<strong>and</strong> to see the IOS filename.<br />

What is the name of the IOS file that the switch booted from?<br />

flash:c2950-i6q4l2-mz.121-13.EA1.bin<br />

Is this the proper filename? Yes<br />

Step 2. If the IOS filename is now correct remove the backup file from flash memory using the comm<strong>and</strong><br />

delete flash: c2950-c3h2s-mz.120-5.3.WC.1.old from the Privileged EXEC mode<br />

prompt to remove the backup file.<br />

Step 3. Exit to the switch welcome screen.<br />

Switch#exit<br />

Step 4. Remove <strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Challenge Lab 6-11: Basic Switch Configuration with Port<br />

Security<br />

Figure 6-15 Basic Switch Configuration with Port Security<br />

Objectives<br />

■ Prepare the switch for a new configuration.<br />

■ Apply basic configurations.<br />

■ Enable <strong>and</strong> test port security.<br />

Fa0/4 A<br />

ALSW<br />

VLAN1 192.168.1.2/24<br />

B<br />

192.168.1.3/24<br />

192.168.1.4/24


Equipment<br />

The topology shown in Figure 6-15 is using a 2950 Catalyst series switch. You also need two different PCs<br />

to test the port security.<br />

Note: Comm<strong>and</strong> output for this lab is based on a 2950 series switch running Cisco IOS version 12.1(13)EA1. The<br />

comm<strong>and</strong>s you need to use <strong>and</strong> the output may differ. If necessary, consult with your instructor for the correct comm<strong>and</strong>s.<br />

Alternatively, you can research the comm<strong>and</strong>s for your particular switch platform <strong>and</strong> IOS at Cisco.com. This<br />

would be an excellent way to enhance your Cisco device configuration skills <strong>and</strong> to simulate a “real-world” situation,<br />

namely, researching the comm<strong>and</strong> set for a particular device that is a part of your production network.<br />

NetLab Compatibility Notes<br />

Much of this lab can be completed on a NetLab basic switch pod. However, to test port security, your<br />

NetLab setup must support PCs.<br />

Task 1: Cable the Topology <strong>and</strong> Clear the Configuration<br />

Step 1. Choose a 2950 switch <strong>and</strong> attach a workstation to FastEthernet 0/4.<br />

Step 2. Make sure the switch has an empty startup configuration <strong>and</strong> that the VLAN database has been<br />

deleted. Then, reload the switch. What comm<strong>and</strong>s must be used to carry out this instruction?<br />

How do you verify that the VLAN database has been deleted?<br />

Switch#erase startup-config<br />

Switch#delete flash:vlan.dat<br />

Switch#reload<br />

Use the comm<strong>and</strong> show flash to verify that the vlan.dat file has been deleted.<br />

Task 2: Configure the Switch<br />

Step 1. Configure the switch with the following basic requirements:<br />

■ Hostname<br />

■ Enable password<br />

■ Banner MOTD<br />

■ Line configurations<br />

■ Other instructor-required global configurations<br />

Step 2. Check your configurations. What comm<strong>and</strong> did you use?<br />

show running-config<br />

Step 3. Although there is not a router shown in Figure 6-15, one would eventually be attached.<br />

Configure the management interface, activate it, <strong>and</strong> configure 192.168.1.1 as the default gateway.<br />

What comm<strong>and</strong>s did you use?<br />

ALSW(config)#interface vlan1<br />

ALSW(config-if)#ip address 192.168.1.2 255.255.255.0<br />

ALSW(config-if)#no shutdown<br />

ALSW(config)#ip default-gateway 192.168.1.1<br />

Chapter 6: Catalyst Switch Configuration 309


310 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 4. Configure the two hosts. What configurations did you use?<br />

Host A:<br />

■ IP address: 192.168.1.3<br />

■ Subnet Mask: 255.255.255.0<br />

■ Default Gateway: 192.168.1.1<br />

Host B:<br />

■ IP address: 192.168.1.4<br />

■ Subnet Mask: 255.255.255.0<br />

■ Default Gateway: 192.168.1.1<br />

Step 5. Verify that host A can ping ALSW. If it cannot, troubleshoot.<br />

Task 3: Configure <strong>and</strong> Test Port Security<br />

Step 1. For FastEthernet 0/4, implement the following port security requirements:<br />

■ Use port security to dynamically learn only one MAC address.<br />

■ Set the port to be disabled if there is a violation.<br />

What comm<strong>and</strong>s did you use?<br />

ALSW(config)#interface fastEthernet 0/4<br />

ALSW(config-if)#switchport mode access<br />

ALSW(config-if)#switchport port-security<br />

ALSW(config-if)#switchport port-security maximum 1<br />

ALSW(config-if)#switchport port-security mac-address sticky<br />

ALSW(config-if)#switchport port-security violation shutdown<br />

Step 2. Verify that the MAC address for host A is now part of the configuration for ALSW. What comm<strong>and</strong><br />

did you use?<br />

show run or show run interface fa0/4<br />

ALSW#show run<br />

Building configuration...<br />

(output omitted)<br />

!<br />

interface FastEthernet0/4<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security mac-address sticky 00b0.d092.8057<br />

!<br />

(output omitted)<br />

ALSW#show run interface fa0/4<br />

!<br />

interface FastEthernet0/4<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security mac-address sticky 00b0.d092.8057<br />

Is the MAC address for host A “stuck” to the configuration for ALSW? If not, troubleshoot.


Step 3. What comm<strong>and</strong>s can you use to verify port security?<br />

show port-security<br />

show port-security address<br />

show port-security interface fa0/4<br />

ALSW#show port-security<br />

Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security Action<br />

(Count) (Count) (Count)<br />

—————————————————————————————————————-<br />

Fa0/4 1 1 0<br />

Shutdown<br />

—————————————————————————————————————-<br />

Total Addresses in System (excluding one mac per port) : 0<br />

Max Addresses limit in System (excluding one mac per port) : 1024<br />

ALSW#show port-security address<br />

Secure Mac Address Table<br />

—————————————————————————————————-<br />

Vlan Mac Address Type Ports Remaining Age<br />

(mins)<br />

—— —————- —— ——- ——————-<br />

1 00b0.d092.8057 SecureSticky Fa0/4 -<br />

—————————————————————————————————-<br />

Total Addresses in System (excluding one mac per port) : 0<br />

Max Addresses limit in System (excluding one mac per port) : 1024<br />

ALSW#show port-security interface fa0/4<br />

Port Security : Enabled<br />

Port Status : Secure-up<br />

Violation Mode : Shutdown<br />

Aging Time : 0 mins<br />

Aging Type : Absolute<br />

SecureStatic Address Aging : Disabled<br />

Maximum MAC Addresses : 1<br />

Total MAC Addresses : 1<br />

Configured MAC Addresses : 0<br />

Sticky MAC Addresses : 1<br />

Last Source Address : 00b0.d092.8057<br />

Security Violation Count : 0<br />

Chapter 6: Catalyst Switch Configuration 311<br />

Step 4. Test port security by removing host A <strong>and</strong> attaching host B to the FastEthernet 0/4 port. The<br />

port LED should turn from green to OFF. If it does not, send a frame to ALSW by pinging its<br />

VLAN interface from host B. Watch for console messages from the switch. You should see the<br />

following:<br />

00:06:03: %PM-4-ERR_DISABLE: psecure-violation error detected on Fa0/4, putting<br />

Fa0/4 in err-disable state<br />

00:06:03: %PORT_SECURITY-2-PSECURE_VIOLATION: Security violation occurred,<br />

caused by MAC address 00b0.d092.80c3 on port FastEthernet0/4.<br />

00:06:04: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/4,<br />

changed state to down<br />

00:06:05: %LINK-3-UPDOWN: Interface FastEthernet0/4, changed state to down


312 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 5. Assume that host B is the new workstation for FastEthernet 0/4. How would you clear the disabled<br />

status of the port so that the MAC address for host B will be accepted?<br />

ALSW#clear port-security sticky<br />

ALSW(config)#int fa0/4<br />

ALSW(config-if)#shutdown<br />

00:13:14: %LINK-5-CHANGED: Interface FastEthernet0/4, changed state to administratively<br />

down<br />

ALSW(config-if)#no shutdown<br />

00:13:20: %LINK-3-UPDOWN: Interface FastEthernet0/4, changed state to up<br />

00:13:21: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/4,<br />

changed state to up<br />

Step 6. Verify that the MAC address for host B is now part of the configuration for ALSW. What comm<strong>and</strong><br />

did you use?<br />

show run or show run interface fa0/4<br />

ALSW#show run int fa0/4<br />

Building configuration...<br />

Current configuration : 212 bytes<br />

!<br />

interface FastEthernet0/4<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security mac-address sticky 00b0.d092.80c3<br />

spanning-tree portfast


CHAPTER 7<br />

Spanning Tree Protocol<br />

The <strong>Study</strong> <strong>Guide</strong> portion of this chapter uses a combination of matching, fill in the blank, open-ended<br />

question, journal entry, <strong>and</strong> unique custom exercises to test your knowledge on the theory of redundant<br />

topologies <strong>and</strong> Spanning Tree Protocol (STP).<br />

The Lab Exercises portion of this chapter includes all of the online curriculum labs to ensure that you have<br />

mastered the practical, h<strong>and</strong>s-on skills needed about redundant topologies <strong>and</strong> STP.


314 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

<strong>Study</strong> <strong>Guide</strong><br />

Redundant Topologies<br />

Redundancy in a network is required to protect against loss of connectivity due to the failure of an individual<br />

component. However, this provision can result in physical topologies with loops. Physical layer loops<br />

can cause serious problems in switched networks. This section includes exercises to reinforce your underst<strong>and</strong>ing<br />

of redundant networks <strong>and</strong> the unique problem of broadcast storms.<br />

Vocabulary Exercise: Completion<br />

Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

Redundancy allows networks to be fault tolerant, which protects against network downtime. Focusing<br />

specifically on networking, list a few things that can cause network downtime:<br />

Failure of a link<br />

Failure of a port or NIC<br />

Failure of a networking device<br />

Network engineers are often required to balance the cost of redundancy with the need for network availability.<br />

Networks that dem<strong>and</strong> close to 100 percent uptime often strive for “five nines” uptime, a network<br />

that is available 99.999 percent of the time. A goal of redundant topologies is to eliminate network outages<br />

caused by a single point of failure.<br />

However, redundancy in switched topologies introduces a new problem called broadcast storms, which is<br />

when frames loop endlessly through the network, eventually consuming all the available b<strong>and</strong>width.<br />

Concept Questions<br />

List <strong>and</strong> describe three of the problems that can occur with redundant links <strong>and</strong> devices in switched or<br />

bridged networks.<br />

■ Broadcast storms—Endless flooding of frames when no loop-avoidance technique is employed.<br />

■ Multiple frame transmission—Multiple copies of unicast frames may cause unrecoverable errors.<br />

■ MAC database instability—Results from copies of the same frame being received on different ports of<br />

the switch.<br />

What mechanism does the IP have to stop packets from endlessly looping throughout an internetwork?<br />

IP uses an 8-bit field called the Time to Live (TTL) that is decremented by each router as the packet travels<br />

from the source to the destination. If this field’s value reaches zero, the packet is dropped. Layer 2 has<br />

no such mechanism.


Journal Entry<br />

Chapter 7: Spanning Tree Protocol 315<br />

Draw <strong>and</strong> label a topology with two switches. In your own words, explain how a broadcast storm would<br />

occur in this redundantly switched network without some sort of mechanism to stop loops.<br />

Any redundant switched topology is sufficient to illustrate loops. For example, Figure 7-1 is a basic redundant<br />

topology. What you are looking for is a full underst<strong>and</strong>ing of what happens in a redundant switched<br />

topology when no loop-avoidance mechanism is used—not just a reiteration of the steps listed in the<br />

Companion <strong>Guide</strong> or the online curriculum. Have students orally explain how the loops occur.<br />

Figure 7-1 Redundant Topology<br />

Broadcast<br />

Server/Host X<br />

Switch A<br />

Spanning Tree Protocol<br />

Broadcast<br />

Router Y<br />

Segment 1<br />

Switch B<br />

Segment 2<br />

STP is used in redundantly switched networks to create a loop-free logical topology from a physical topology<br />

that has loops. The STP is a powerful tool that gives network administrators the security of a redundant<br />

topology without the risk of problems caused by switching loops. In this section, you work through<br />

exercises that will strengthen your underst<strong>and</strong>ing of what STP is <strong>and</strong> how it operates.


316 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Vocabulary Exercise: Matching<br />

Match the definition on the left with a term on the right. This exercise is not necessarily a one-to-one<br />

matching. Some definitions may be used more than once <strong>and</strong> some terms may have multiple definitions.<br />

Definition<br />

a. calculated based on the speed of the link<br />

b. port is only receiving BPDUs<br />

c. status messages sent between switches every<br />

2 seconds<br />

d. 20 seconds or a cycle of 10 BPDUs<br />

e. the time it takes for a port to transition from<br />

the listening state to the learning state or from<br />

the learning state to the forwarding state<br />

f. actively building a MAC address table but not<br />

forwarding user traffic<br />

g. used in redundantly switched networks to<br />

create a loop-free logical topology<br />

h. can send <strong>and</strong> receive traffic<br />

i. port is sending <strong>and</strong> receiving BPDUs, but not<br />

user traffic<br />

j. without loop avoidance, frames are flooded<br />

endlessly<br />

k. includes the priority <strong>and</strong> MAC address of the<br />

bridge<br />

l. lowest-cost path from the non-root bridge to<br />

the root bridge<br />

m. an improved version of IEEE 802.1d<br />

n. reduces the time of reconvergence when a<br />

topology change occurs in a redundantly<br />

switched network<br />

o. called “blocking” in IEEE 802.1d<br />

p. ports connected to a single end station<br />

q. only one in a given network; all ports are<br />

designated ports<br />

r. operating in full-duplex mode<br />

s. a port that is currently in the discarding state,<br />

but will transition to forwarding if the designated<br />

root port on that segment fails<br />

t. automatically transitions from the blocking<br />

state to the forwarding state<br />

Term<br />

j broadcast storms<br />

g Spanning Tree Protocol (STP)<br />

k bridge ID (BID)<br />

a path cost<br />

q root bridge<br />

h designated ports<br />

l root port<br />

c bridge protocol data unit (BPDU)<br />

g IEEE 802.1d<br />

b blocking<br />

i listening<br />

f learning<br />

e forward delay<br />

d max-age<br />

n, t PortFast<br />

g, m, n Rapid Spanning Tree Protocol (RSTP)<br />

s alternate port<br />

o discarding state<br />

g, m, n IEEE 802.1w<br />

p edge ports<br />

r point-to-point links


Vocabulary Exercise: Completion<br />

Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

The Spanning Tree Protocol, originally developed by Digital Equipment Corporation, is used to maintain a<br />

loop-free topology. STP is also known as IEEE 802.1d. STP builds a loop-free topology using two key<br />

concepts: the bridge ID (BID) <strong>and</strong> path cost, which is based on the speed of the link. STP accumulates<br />

cost based on the b<strong>and</strong>width of all the links in the path.<br />

Originally, the cost of a link was calculated on a linear scale based on a maximum b<strong>and</strong>width of 1000<br />

Mbps. Because LANs now incorporate 10GigE links, the costs have been revised. Complete the following<br />

table showing the difference in IEEE costs for STP links.<br />

Link Speed Cost (Revised IEEE Spec) Cost (Previous IEEE Spec)<br />

10 Gbps 2 1<br />

1 Gbps 4 1<br />

100 Mbps 19 10<br />

10 Mbps 100 100<br />

Root ports <strong>and</strong> designated ports are used for forwarding data traffic. Nondesignated ports discard data traffic.<br />

These ports are called blocking or discarding ports. When using STP, the root bridge is the bridge with<br />

the lowest bridge ID (BID).<br />

The BID is made up of two parts: the Priority field, which is 2 bytes, <strong>and</strong> MAC Address field, which is 6<br />

bytes. The BID is included in messages that are sent every 2 seconds. These messages are called bridge<br />

protocol data units (BPDUs).<br />

Record the comm<strong>and</strong>, including the switch prompt, to change a switch’s priority from the default, which is<br />

32768, to 4096. Assume that you are using IOS version 12.1 or later.<br />

Switch(config)#spanning-tree vlan 1 priority 4096<br />

If you do not configure priority, which switch in a given topology will be elected the root bridge?<br />

The switch with the lowest MAC address will be elected the root bridge.<br />

With STP, ports transition through four states: blocking, listening, learning, <strong>and</strong> forwarding. A fifth state,<br />

disabled, is configured when the administrator manually shuts down the port. A port in the blocking state<br />

listens only to BPDUs. If the port does not receive BPDUs for 20 seconds, which is the max-age timer,<br />

then it transitions to the listening state. During the listening state, the port is sending <strong>and</strong> receiving BPDUs<br />

to determine the active topology. After 15 seconds, which is called the forward delay, the port transitions<br />

to the learning state. During the learning state, the port is actively building a MAC address table in preparation<br />

for the forwarding state. After another forward delay of 20 seconds, the port transitions to the forwarding<br />

state, in which it is either a root port or a designated port <strong>and</strong> is sending <strong>and</strong> receiving user traffic.<br />

The total convergence time to move from a blocking state to a forwarding state is 50 seconds.<br />

If a switch port is connected only to end-user stations, with no chance of ever connecting to another<br />

switch, then it can be configured with the PortFast feature by using the spanning-tree portfast interface<br />

comm<strong>and</strong>.<br />

The Rapid Spanning Tree Protocol (RSTP), or IEEE 802.1w, was developed to reduce the time it takes to<br />

reconverge the active topology when a change occurs. RSTP uses three port states: discarding, learning,<br />

<strong>and</strong> forwarding. In addition, ports can have five different roles.<br />

Note: Port roles are not the same as port states.<br />

Chapter 7: Spanning Tree Protocol 317


318 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Complete the following table.<br />

RSTP Role Definition<br />

Root port A single port on each switch in which the switch hears the best BPDU out of all the<br />

received BPDUs<br />

Designated port Of all switch ports on all switches attached to the same segment/collision domain, the<br />

port that advertises the “best” root BPDU<br />

Alternate port A port on a switch that receives a suboptimal root BPDU<br />

Backup port A nondesignated port on a switch that is attached to the same segment/collision<br />

domain as another port on the same switch<br />

Disabled A port that is administratively disabled<br />

RSTP calls Ethernet connections between switches links <strong>and</strong> calls Ethernet connections to end-user<br />

devices edges. If the link is full duplex, RSTP designates it as a point-to-point link. If the link is half<br />

duplex, RSTP designates it as a shared link. An example of a shared link is a port attached to a hub.<br />

Determine the Root Bridge <strong>and</strong> Port Roles Exercise<br />

Instructor Note: This exercise will prove challenging for many students. However, you can enhance their underst<strong>and</strong>ing<br />

of STP concepts <strong>and</strong> operation by reviewing the online curriculum for CCNP 3, Module 3: Objective 3.1,<br />

“Defining the Spanning Tree Protocol—STP.”<br />

The root bridge is chosen based on the lowest BID. After the root bridge is selected, a non-root bridge<br />

looks at the following components in sequence to determine which ports will process user data <strong>and</strong> which<br />

ports will discard user data:<br />

1. On each non-root bridge, the port with the lowest path cost to root is the root port.<br />

2. If two or more bridges are members of the same segment <strong>and</strong> have the same cost to reach the root<br />

bridge, the bridge with the lowest BID is the designated port for that segment.<br />

3. If a bridge has two or more equal cost paths to root, the port with the lowest ID is designated port.<br />

The other port(s) is blocking.<br />

In the topologies shown in Figures 7-2, 7-3, <strong>and</strong> 7-4, circle the root bridge. On non-root bridges, label root<br />

ports with an R, designated ports with a D, <strong>and</strong> ports that are in the blocking state with a B. Use the<br />

revised IEEE costs to make your determinations. In the space provided after each topology, draw the logical<br />

loop-free spanning-tree topology with the root bridge at the top.


Figure 7-2 Determine the Root Bridge <strong>and</strong> Port Roles: Topology 1<br />

I have the best BPDU.<br />

I am root.<br />

Both Gi0/1 <strong>and</strong> Gi0/2<br />

have the same cost to<br />

root, therefore Gi0/1<br />

has the lower port ID<br />

<strong>and</strong> is my root port.<br />

Priority: Default<br />

000d.ecdb.4be4<br />

SWA<br />

Gi0/1<br />

D<br />

Fa0/1<br />

D<br />

Gi0/2<br />

D<br />

100 Mbps<br />

000e.385d.e380<br />

Priority: Default<br />

Root Bridge <strong>and</strong> Port Roles<br />

1000 Mbps<br />

R<br />

Gi0/1<br />

Gi0/2<br />

1000 Mbps 1000 Mbps<br />

Chapter 7: Spanning Tree Protocol 319<br />

Priority: Default<br />

000e.8362.e383<br />

SWB<br />

D Fa0/1<br />

B<br />

100 Mbps<br />

B<br />

Fa0/1<br />

Gi0/2<br />

B<br />

R 1000 Mbps<br />

Gi0/2<br />

D<br />

R<br />

D<br />

Fa0/1<br />

SWC Gi0/1<br />

Gi0/1 SWD<br />

My path cost to root is lower<br />

than SWC, therefore my<br />

Gi0/1 is the designated port.<br />

000d.edd3.37a3<br />

Priority: Default<br />

Logical, Loop-Free Spanning-Tree Topology<br />

SWA<br />

SWB SWD<br />

SWC<br />

My link cost to root is lower<br />

than SWC, therefore my Gi0/2<br />

is the designated port.<br />

Although we have the same<br />

cost to root, I have a lower<br />

BID than SWB, therefore my<br />

Fa0/1 is the designated port.


320 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure 7-3 Determine the Root Bridge <strong>and</strong> Port Roles: Topology 2<br />

Although we have the same<br />

cost to root, I have a lower<br />

BID than SWC, therefore my<br />

Fa0/1 is the designated port.<br />

My path cost to root is lower<br />

than SWD, therefore my Gi0/2<br />

is the designated port.<br />

Priority: Default<br />

000d.ecdb.4be4<br />

R<br />

Gi0/1<br />

SWA<br />

D<br />

Fa0/1 Gi0/2<br />

D<br />

100 Mbps<br />

000e.385d.e380<br />

Priority: 36,864<br />

Root Bridge <strong>and</strong> Port Roles<br />

1000 Mbps<br />

Gi0/1<br />

D<br />

Gi0/2<br />

1000 Mbps 1000 Mbps<br />

Priority: 4096<br />

000e.8362.e383<br />

SWB<br />

D Fa0/1<br />

D<br />

100 Mbps<br />

B<br />

Fa0/1<br />

R<br />

Gi0/2<br />

D 1000 Mbps<br />

Gi0/2<br />

R<br />

B<br />

B<br />

Fa0/1<br />

SWC Gi0/1<br />

Gi0/1 SWD<br />

My path cost to root is lower<br />

than SWD, therefore my<br />

Gi0/1 is the designated port.<br />

000d.edd3.37a3<br />

Priority: Default<br />

Logical, Loop-Free Spanning-Tree Topology<br />

SWB<br />

SWA SWC<br />

SWD<br />

I have the best BPDU.<br />

I am root.<br />

Both Gi0/1 <strong>and</strong> Gi0/2<br />

have the same cost to<br />

root, therefore Gi0/1<br />

has the lower port ID<br />

<strong>and</strong> is my root port.


Figure 7-4 Determine the Root Bridge <strong>and</strong> Port Roles: Topology 3<br />

Priority: 45,056<br />

My path cost to root is lower 000d.ecdb.4be4<br />

than SWB, therefore my Gi0/1<br />

D<br />

is the designated port.<br />

Gi0/1<br />

SWA<br />

R<br />

Fa0/1 Gi0/2<br />

B<br />

Although we have the same<br />

cost to root, I have a lower<br />

BID than SWA, therefore my<br />

Fa0/1 is the designated port.<br />

100 Mbps<br />

000e.385d.e380<br />

Priority: Default<br />

Root Bridge <strong>and</strong> Port Roles<br />

1000 Mbps<br />

1000 Mbps 1000 Mbps<br />

Chapter 7: Spanning Tree Protocol 321<br />

R<br />

Gi0/1<br />

Gi0/2<br />

Priority: Default<br />

000e.8362.e383<br />

SWB<br />

B Fa0/1<br />

B<br />

100 Mbps<br />

D<br />

Fa0/1<br />

D<br />

Gi0/2<br />

R 1000 Mbps<br />

Gi0/2<br />

D<br />

D<br />

Fa0/1<br />

SWC Gi0/1<br />

Gi0/1<br />

D<br />

SWD<br />

My path cost to root is lower<br />

than SWB, therefore my<br />

Gi0/2 is the designated port.<br />

Logical, Loop-Free Spanning-Tree Topology<br />

SWD<br />

SWC SWA<br />

1-58713-171-4<br />

sl260704aa.eps<br />

05/29/06<br />

ICC<br />

000d.edd3.37a3<br />

Priority: 8192<br />

SWB<br />

Both Gi0/1 <strong>and</strong> Gi0/2<br />

have the same cost to<br />

root, therefore Gi0/1<br />

has the lower port ID<br />

<strong>and</strong> is my root port.<br />

I have the best BPDU.<br />

I am root.


322 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Spanning-Tree Recalculation Exercise<br />

Figure 7-5 is the same as Figure 7-3 in the preceding section. However, now the Gigabit Ethernet link<br />

between SWC <strong>and</strong> SWB has gone down. as indicated by the X. As you did before, circle the root bridge.<br />

On non-root bridges, label root ports with an R, designated ports with a D, <strong>and</strong> ports that are in the blocking<br />

state with a B. Use the revised IEEE costs to make your determinations. In the space provided after the<br />

topology, draw the logical loop-free spanning-tree topology with the root bridge at the top.<br />

Figure 7-5 Spanning-Tree Recalculation Exercise<br />

None of my costs changed.<br />

I am unaffected.<br />

I lost my best path to<br />

root. My next best path<br />

is through SWD.<br />

Priority: Default<br />

000d.ecdb.4be4<br />

R<br />

Gi0/1<br />

SWA<br />

D<br />

Fa0/1 Gi0/2<br />

D<br />

100 Mbps<br />

B<br />

Fa0/1<br />

Gi0/2<br />

R 1000 Mbps<br />

Gi0/2<br />

D<br />

R<br />

B<br />

Fa0/1<br />

SWC Gi0/1<br />

Gi0/1 SWD<br />

000e.385d.e380<br />

Priority: 36,864<br />

1000 Mbps<br />

1000 Mbps<br />

My path cost to root is now<br />

lower than SWC, therefore my<br />

Gi0/1 is the designated port.<br />

1-58713-171-4<br />

SWD<br />

sl260705aa.eps<br />

05/29/06<br />

ICC<br />

SWC<br />

Priority: 4096<br />

000e.8362.e383<br />

Gi0/1<br />

I have the best BPDU.<br />

D SWB<br />

I am root.<br />

Gi0/2<br />

D Fa0/1<br />

D<br />

1000 Mbps<br />

New Loop-Free Spanning-Tree<br />

Topology After Recalculation<br />

SWB<br />

SWA<br />

100 Mbps<br />

000d.edd3.37a3<br />

Priority: Default<br />

My Gi0/2 has the<br />

lowest cost to root,<br />

therefore it is now<br />

the root port.


Concept Questions<br />

What are the basic steps STP performs to converge a loop-free network?<br />

1. The switches select the root bridge.<br />

2. Configurations are made by the other switches <strong>and</strong> bridges, using the root bridge as a reference point.<br />

3. Each bridge or switch determines which of its own ports offers the best path to the root bridge.<br />

4. The logical loop is removed by one of the switches or bridges by blocking the port that creates the<br />

logical loop. Blocking is done by calculating costs for each port in relation to the root bridge. Then<br />

the port with the highest cost is disabled.<br />

Note: Students may list more or fewer steps than shown here. Just make sure that the concepts are delineated.<br />

How is the root bridge selected?<br />

STP devices settle on the root bridge by using an administratively set priority number. The root bridge is<br />

the one with the lowest priority number. The network administrator should always configure priority on<br />

the desired root bridge.<br />

What happens if two devices have the same priority number?<br />

If this happens, the STP devices pick the one with the lowest MAC address.<br />

What are BPDUs?<br />

BPDUs are messages sent between the root bridge <strong>and</strong> the best ports on the other devices, which are called<br />

root ports. The BPDUs transfer status messages about the network.<br />

What happens if BPDUs are not received for a set amount of time?<br />

Chapter 7: Spanning Tree Protocol 323<br />

The non-root bridge devices will assume that the root bridge has failed, <strong>and</strong> a new root bridge will be<br />

selected.


324 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Lab Exercises<br />

Comm<strong>and</strong> Reference<br />

In the table that follows, record the comm<strong>and</strong>, including the correct switch prompt, that fits the description<br />

for a 2950 Catalyst switch. Fill in any blanks with the appropriate missing information.<br />

Comm<strong>and</strong> Description<br />

Switch#show spanning-tree brief Cisco IOS Software Release 12.0<br />

Displays the spanning-tree table of the switch.<br />

Switch#show spanning-tree Cisco IOS Software Release 12.1<br />

Displays the spanning-tree table of the switch.<br />

Switch(config)#spanning-tree priority 1 Cisco IOS Software Release 12.0<br />

Sets the priority for root bridge elections.<br />

Number can be from 1 to 65535. The default is<br />

32768.<br />

Switch(config)#spanning-tree vlan 1 priority 4096 Cisco IOS Software Release 12.1<br />

Sets the priority for root bridge elections.<br />

Number can be from 0 to 65535 <strong>and</strong> must be<br />

configured in increments of 4096. The default<br />

is 32768.<br />

Switch(config-if)#spanning-tree portfast Sets an access port that will never be attached to<br />

another switch to move immediately into the<br />

forwarding state.<br />

Curriculum Lab 7-1: Selecting the Root Bridge (7.2.4)<br />

Figure 7-6 Topology for Lab 7-1<br />

Table 7-1 Lab Equipment Configuration<br />

FA0/1<br />

FA0/1<br />

FA0/7<br />

FA0/4<br />

FA0/4<br />

FA0/8<br />

Switch 1<br />

Switch 2<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Switch Designation Switch Name VLAN 1 IP Address Default Gateway IP<br />

Address<br />

Switch 1 Switch_A 192.168.1.2 192.168.1.1<br />

Switch 2 Switch_B 192.168.1.3 192.168.1.1<br />

The enable secret password for both switches is class.<br />

Crossover Cable<br />

Serial Cable


The enable, VTY, <strong>and</strong> console password for both switches is cisco.<br />

The subnet mask for both switches is 255.255.255.0.<br />

Objectives<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Determine which switch is selected as a root switch with factory default settings.<br />

■ Force the other switch to be selected as a root switch.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 7-6. The 2950 series switch produced the configuration<br />

output in this lab. Another switch might produce different output. You should execute the following steps<br />

on each switch unless you are specifically instructed otherwise:<br />

■ Start a HyperTerminal session.<br />

■ Implement the procedure that is documented in Appendix B, “Erasing <strong>and</strong> Reloading the Switch,” on<br />

all switches before you continue with this lab.<br />

Task 1: Configure the Switches<br />

Configure the hostnames <strong>and</strong> passwords, as well as the management VLAN 1 settings for each switch, as<br />

indicated in Table 7-1. If you have problems while performing this configuration, refer to Lab 6-2, “Basic<br />

Switch Configuration.”<br />

Task 2: Configure the Hosts that Are Attached to the Switches<br />

Configure the hosts as part of the same subnet as the switches. The hosts also share the same subnet mask<br />

<strong>and</strong> the same default gateway.<br />

Task 3: Verify Connectivity<br />

Step 1. To verify that the hosts <strong>and</strong> switches are correctly configured, ping the switches from the hosts.<br />

C:\>ping 192.168.1.2<br />

Pinging 192.168.1.2 with 32 bytes of data:<br />

Reply from 192.168.1.2: bytes=32 time=1ms TTL=255<br />

Reply from 192.168.1.2: bytes=32 time=1ms TTL=255<br />

Reply from 192.168.1.2: bytes=32 time=1ms TTL=255<br />

Reply from 192.168.1.2: bytes=32 time=1ms TTL=255<br />

Ping statistics for 192.168.1.2:<br />

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),<br />

Approximate round trip times in milli-seconds:<br />

Minimum = 1ms, Maximum = 1ms, Average = 1ms<br />

C:\>ping 192.168.1.3<br />

Pinging 192.168.1.3 with 32 bytes of data:<br />

Reply from 192.168.1.3: bytes=32 time=3ms TTL=255<br />

Reply from 192.168.1.3: bytes=32 time=2ms TTL=255<br />

Chapter 7: Spanning Tree Protocol 325


326 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Reply from 192.168.1.3: bytes=32 time=1ms TTL=255<br />

Reply from 192.168.1.3: bytes=32 time=1ms TTL=255<br />

Ping statistics for 192.168.1.3:<br />

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),<br />

Approximate round trip times in milli-seconds:<br />

C:\><br />

Minimum = 1ms, Maximum = 3ms, Average = 1ms<br />

Step 2. Were the pings successful?<br />

Step 3. If the answer is no, troubleshoot the host <strong>and</strong> switch configurations.<br />

Note: If your pings were not successful, remember the troubleshooting methodology you learned in your <strong>CCNA</strong> 2<br />

studies. Start with the physical layer first. Are all the link lights lit that need to be lit? What other Layer 1 issues might<br />

be the problem? If Layer 1 is not the problem, proceed to Layer 2. What Layer 2 issues are likely to be causing a<br />

problem? Layer 3? For a review of the method of testing by the layers, refer to the online curriculum <strong>CCNA</strong> 2 Routers<br />

<strong>and</strong> Routing Basics: Module 9, Objective 9.2, “Network Testing.”<br />

Task 4: Look at the show interface vlan Options<br />

Step 1. Type show interface vlan1 ?.<br />

Switch_A#show interface vlan1 ?<br />

accounting Show interface accounting<br />

capabilities Show interface capabilities information<br />

counters Show interface counters<br />

crb Show interface routing/bridging info<br />

description Show interface description<br />

etherchannel Show interface etherchannel information<br />

fair-queue Show interface Weighted Fair Queueing (WFQ) info<br />

flowcontrol Show interface flowcontrol information<br />

irb Show interface routing/bridging info<br />

mac-accounting Show interface MAC accounting info<br />

precedence Show interface precedence accounting info<br />

private-vlan Show interface private vlan information<br />

pruning Show interface trunk VTP pruning information<br />

r<strong>and</strong>om-detect Show interface Weighted R<strong>and</strong>om Early Detection (WRED) info<br />

rate-limit Show interface rate-limit info<br />

shape Show interface Traffic Shape info<br />

stats Show interface packets & octets, in & out, by switching<br />

path<br />

status Show interface line status<br />

switchport Show interface switchport information<br />

trunk Show interface trunk information<br />

| Output modifiers<br />

<br />

Step 2. List some of the options that are available.<br />

counters, status, trunk


Task 5: Look at the VLAN Interface Information<br />

Step 1. On Switch_A, type the comm<strong>and</strong> show interface vlan 1 at the privileged EXEC mode prompt.<br />

Switch_A#show interface vlan 1<br />

Vlan1 is up, line protocol is up<br />

Hardware is CPU Interface, address is 0009.b7f5.6d80 (bia 0009.b7f5.6d80)<br />

Internet address is 192.168.1.2/24<br />

MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,<br />

reliability 255/255, txload 1/255, rxload 1/255<br />

Encapsulation ARPA, loopback not set<br />

ARP type: ARPA, ARP Timeout 04:00:00<br />

Last input 00:01:00, output never, output hang never<br />

Last clearing of “show interface” counters never<br />

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0<br />

Queueing strategy: fifo<br />

Output queue :0/40 (size/max)<br />

5 minute input rate 0 bits/sec, 0 packets/sec<br />

5 minute output rate 9000 bits/sec, 5 packets/sec<br />

1184 packets input, 104481 bytes, 0 no buffer<br />

Received 137 broadcasts, 0 runts, 0 giants, 0 throttles<br />

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored<br />

3439 packets output, 1160044 bytes, 0 underruns<br />

0 output errors, 4 interface resets<br />

0 output buffer failures, 0 output buffers swapped out<br />

Step 2. What is the MAC address of the switch?<br />

0009.b7f5.5a41<br />

Step 3. On Switch_B, type the comm<strong>and</strong> show interface vlan 1 at the privileged EXEC mode prompt.<br />

Step 4. What is the MAC address of the switch?<br />

0009.b7f5.6d81<br />

Step 5. Which switch should be the root of the spanning tree for VLAN 1?<br />

Switch_A<br />

Step 6. What would you do if you wanted to change which switch is root for VLAN 1?<br />

Change the priority<br />

True or False: After changing which switch is root, you must reload the switches for the change<br />

to take effect.<br />

False<br />

Task 6: Look at the Switches’ Spanning-Tree Tables<br />

Step 1. On Switch_A, type show spanning-tree brief at the privileged EXEC mode prompt if you are<br />

running Cisco IOS Software Release 12.0. If you are running Cisco IOS Software Release<br />

12.1, type show spanning-tree.<br />

Switch_A#show spanning-tree brief<br />

VLAN1<br />

Spanning tree enabled protocol ieee<br />

Root ID Priority 32768<br />

Address 0009.b7f5.5a41<br />

Chapter 7: Spanning Tree Protocol 327


328 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Cost 19<br />

Port 1 (FastEthernet0/1)<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Bridge ID Priority 32768<br />

Address 0009.b7f5.6d81<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Aging Time 300<br />

Interface Designated<br />

Name Port ID Prio Cost Sts Cost Bridge ID Port<br />

ID<br />

—————————— ———- —— —— —- ——- —————————— ———-<br />

FastEthernet0/1 128.1 128 19 FWD 0 32768 0009.b7f5.5a41 128.1<br />

FastEthernet0/4 128.4 128 19 BLK 0 32768 0009.b7f5.5a41 128.4<br />

FastEthernet0/7 128.7 128 19 FWD 19 32768 0009.b7f5.6d81 128.7<br />

Step 2. On Switch_B, type show spanning-tree brief at the privileged EXEC mode prompt.<br />

Switch_B#show spanning-tree brief<br />

VLAN1<br />

Spanning tree enabled protocol ieee<br />

Root ID Priority 32768<br />

Address 0009.b7f5.5a41<br />

This bridge is the root<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Bridge ID Priority 32768<br />

Address 0009.b7f5.5a41<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Aging Time 300<br />

Interface Designated<br />

Name Port ID Prio Cost Sts Cost Bridge ID Port<br />

ID<br />

—————————— ———- —— ——- —- ——- —————————— ———<br />

FastEthernet0/1 128.1 128 19 FWD 0 32768 0009.b7f5.5a41 128.1<br />

FastEthernet0/4 128.4 128 19 FWD 0 32768 0009.b7f5.5a41 128.4<br />

FastEthernet0/8 128.8 128 19 FWD 0 32768 0009.b7f5.5a41 128.8<br />

Step 3. Examine your output <strong>and</strong> answer the following questions.<br />

Which switch is the root switch?<br />

Switch_A<br />

What is the priority of the root switch?<br />

32768<br />

What is the bridge ID of the root switch?<br />

0009.b7f5.5a41<br />

Which ports are forwarding on the root switch?<br />

FastEthernet 0/1, 0/4, 0/7<br />

Which ports are blocking on the root switch?<br />

None


What is the priority of the non-root switch?<br />

32768<br />

What is the bridge ID of the non-root switch?<br />

0009.b7f5.6d81<br />

Which ports are forwarding on the non-root switch?<br />

FastEthernet 0/1 <strong>and</strong> 0/8<br />

Which ports are blocking on the non-root switch?<br />

FastEthernet 0/4<br />

What is the status of the link light on the blocking port?<br />

Amber<br />

Task 7: Reassign the Root Bridge<br />

Step 1. The switch that has been selected as the root bridge, by using default values, is not the best<br />

choice. You must force the other switch to become the root switch.<br />

For the purposes of this step, assume that the root switch by default is Switch_A. Also assume<br />

that Switch_B is preferred as the root switch. If your implementation has Switch_B as the<br />

default root, then you will want to configure Switch_A to be the root. Go to the console <strong>and</strong><br />

enter configuration mode for the switch you want to change to root.<br />

Step 2. Determine the parameters that you can configure for the STP.<br />

Switch_A(config)#spanning-tree ?<br />

backbonefast Enable BackboneFast Feature<br />

etherchannel Spanning tree etherchannel specific configuration<br />

extend Spanning Tree 802.1t extensions<br />

loopguard Spanning tree loopguard options<br />

mode Spanning tree operating mode<br />

mst Multiple spanning tree configuration<br />

pathcost Spanning tree pathcost options<br />

portfast Spanning tree portfast options<br />

uplinkfast Enable UplinkFast Feature<br />

vlan VLAN Switch Spanning Tree<br />

Step 3. List the options.<br />

backbonefast, portfast, uplinkfast, vlan<br />

Step 4. Set the priority of the switch that is not root to 4096.<br />

If you are using Cisco IOS Software Release 12.0:<br />

Switch_B(config)#spanning-tree priority 1<br />

Switch_B(config)#exit<br />

If you are using Cisco IOS Software Release 12.1:<br />

Switch_B(config)#spanning-tree vlan 1 priority 4096<br />

Switch_B(config)#exit<br />

Chapter 7: Spanning Tree Protocol 329


330 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 8: Look at the Switch Spanning-Tree Table<br />

Step 1. On Switch_A, type show spanning-tree brief at the privileged EXEC mode prompt if you are<br />

running Cisco IOS Software Release 12.0. If you are running Cisco IOS Software Release<br />

12.1, type show spanning-tree.<br />

Switch_A#show spanning-tree<br />

VLAN1 is executing the ieee compatible Spanning Tree protocol<br />

Bridge Identifier has priority 4096, address 0009.b7f5.6d81<br />

Configured hello time 2, max age 20, forward delay 15<br />

We are the root of the spanning tree<br />

Topology change flag not set, detected flag not set<br />

Number of topology changes 4 last change occurred 00:01:34 ago<br />

Times: hold 1, topology change 35, notification 2<br />

hello 2, max age 20, forward delay 15<br />

Timers: hello 1, topology change 0, notification 0, aging 300<br />

Port 1 (FastEthernet0/1) of VLAN1 is forwarding<br />

Port path cost 19, Port priority 128, Port Identifier 128.1.<br />

Designated root has priority 4096, address 0009.b7f5.6d81<br />

Designated bridge has priority 4096, address 0009.b7f5.6d81<br />

Designated port id is 128.1, designated path cost 0<br />

Timers: message age 0, forward delay 0, hold 0<br />

Number of transitions to forwarding state: 1<br />

BPDU: sent 101, received 1436<br />

Port 4 (FastEthernet0/4) of VLAN1 is forwarding<br />

Port path cost 19, Port priority 128, Port Identifier 128.4.<br />

Designated root has priority 4096, address 0009.b7f5.6d81<br />

Designated port id is 128.4, designated path cost 0<br />

Timers: message age 0, forward delay 0, hold 0<br />

Number of transitions to forwarding state: 1<br />

BPDU: sent 98, received 1433<br />

Port 7 (FastEthernet0/7) of VLAN1 is forwarding<br />

Port path cost 19, Port priority 128, Port Identifier 128.7.<br />

Designated root has priority 4096, address 0009.b7f5.6d81<br />

Designated bridge has priority 4096, address 0009.b7f5.6d81<br />

Designated port id is 128.7, designated path cost 0<br />

Timers: message age 0, forward delay 0, hold 0<br />

Number of transitions to forwarding state: 1<br />

BPDU: sent 2408, received 0<br />

Step 2. On Switch_B, type show spanning-tree brief at the privileged EXEC mode prompt.<br />

Step 3. Examine your output <strong>and</strong> answer the following questions.<br />

Which switch is the root switch?<br />

Switch_B<br />

What is the priority of the root switch?<br />

4096


Which ports are forwarding on the root switch?<br />

FastEthernet 0/1, 0/4, <strong>and</strong> 0/8<br />

Which ports are blocking on the root switch?<br />

None<br />

What is the priority of the non-root switch?<br />

32768<br />

Which ports are forwarding on the non-root switch?<br />

FastEthernet 0/1 <strong>and</strong> 0/7<br />

Which ports are blocking on the non-root switch?<br />

FastEthernet 0/4<br />

What is the status of the link light on the blocking port?<br />

Amber<br />

Task 9: Verify the Running Configuration File on the Root Switch<br />

Step 1. On the switch that was changed to be the root bridge, type show running-config at the<br />

privileged EXEC mode prompt.<br />

Switch_A#show running-config<br />

Building configuration...<br />

Current configuration : 1233 bytes<br />

!<br />

version 12.1<br />

no service pad<br />

service timestamps debug uptime<br />

service timestamps log uptime<br />

no service password-encryption<br />

!<br />

hostname Switch_A<br />

!<br />

enable secret 5 $1$K0Nw$Vfv.yuMmf20yNpzBO3uOh0<br />

!<br />

ip subnet-zero<br />

no ip finger<br />

!<br />

spanning-tree vlan 1 priority 4096<br />

!<br />

interface FastEthernet0/1<br />

!<br />

<br />

!<br />

interface FastEthernet0/24<br />

!<br />

interface Vlan1<br />

ip address 192.168.1.2 255.255.255.0<br />

no ip route-cache<br />

!<br />

ip default-gateway 192.168.1.1<br />

Chapter 7: Spanning Tree Protocol 331


332 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

ip http server<br />

!<br />

line con 0<br />

password cisco<br />

login<br />

transport input none<br />

line vty 0 4<br />

password cisco<br />

login<br />

line vty 5 15<br />

!<br />

end<br />

password cisco<br />

login<br />

Step 2. Does an entry exist in the running configuration file that specifies the spanning-tree priority for<br />

this switch?<br />

Yes<br />

Step 3. What does that entry say?<br />

spanning-tree vlan 1 priority 4096<br />

Note: The output is different depending on whether the Cisco IOS software is Release 12.0 or Release 12.1.<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn all the devices off. Then remove<br />

<strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 7-2: Spanning-Tree Recalculation (7.2.6)<br />

Figure 7-7 Topology for Lab 7-2<br />

Table 7-2 Lab Equipment Configuration<br />

FA0/1<br />

FA0/7 FA0/4<br />

FA0/4<br />

FA0/8<br />

Switch 1<br />

Switch 2<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Switch Designation Switch Name VLAN 1 IP Address Default Gateway IP Address<br />

Switch 1 Switch_A 192.168.1.2 192.168.1.1<br />

Switch 2 Switch_B 192.168.1.3 192.168.1.1<br />

The enable secret password for both switches is class.<br />

The enable, VTY, <strong>and</strong> console password for both switches is cisco.<br />

The subnet mask for both switches is 255.255.255.0.<br />

FA0/1<br />

Crossover Cable<br />

Serial Cable


Objectives<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Observe the behavior of the spanning-tree algorithm in the presence of switched network topology<br />

changes.<br />

Background/Preparation<br />

Cable a network that is similar to the one in Figure 7-7. The 2950 series switch produced the configuration<br />

output in this lab. Another switch might produce different output. You should execute the following steps<br />

on each switch unless you are specifically instructed otherwise:<br />

■ Start a HyperTerminal session.<br />

■ Implement the procedure documented in Appendix B on all switches before you continue with this lab.<br />

Task 1: Configure the Switches<br />

Configure the hostnames <strong>and</strong> passwords, as well as the management VLAN 1 settings for each switch, as<br />

indicated in Table 7-2. If you have problems while performing this configuration, refer to Lab 6-2, “Basic<br />

Switch Configuration.”<br />

Task 2: Configure the Hosts that Are Attached to the Switches<br />

Configure the hosts as part of the same subnet as the switches. The hosts also share the same subnet mask<br />

<strong>and</strong> the same default gateway.<br />

Task 3: Verify Connectivity<br />

Step 1. To verify that the hosts <strong>and</strong> switches are configured correctly, ping the switches from the hosts.<br />

Step 2. Were the pings successful?<br />

Step 3. If the answer is no, troubleshoot the host <strong>and</strong> switch configurations.<br />

Task 4: Look at the VLAN Interface Information<br />

Step 1. On both switches, type the comm<strong>and</strong> show interface vlan 1 at the privileged EXEC prompt.<br />

Switch_A#show interface vlan 1<br />

Vlan1 is up, line protocol is up<br />

Hardware is CPU Interface, address is 0009.b7f5.6d80 (bia 0009.b7f5.6d80)<br />

Internet address is 192.168.1.2/24<br />

MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,<br />

reliability 255/255, txload 1/255, rxload 1/255<br />

Encapsulation ARPA, loopback not set<br />

ARP type: ARPA, ARP Timeout 04:00:00<br />

Last input 00:02:05, output never, output hang never<br />

Last clearing of “show interface” counters never<br />

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0<br />

Queueing strategy: fifo<br />

Output queue :0/40 (size/max)<br />

5 minute input rate 3000 bits/sec, 5 packets/sec<br />

5 minute output rate 6000 bits/sec, 1 packets/sec<br />

1453 packets input, 104542 bytes, 0 no buffer<br />

Received 10 broadcasts, 0 runts, 0 giants, 0 throttles<br />

Chapter 7: Spanning Tree Protocol 333


334 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored<br />

375 packets output, 189108 bytes, 0 underruns<br />

0 output errors, 4 interface resets<br />

0 output buffer failures, 0 output buffers swapped out<br />

Switch_B#show interface vlan 1<br />

Vlan1 is up, line protocol is up<br />

Hardware is CPU Interface, address is 0009.b7f5.5a40 (bia 0009.b7f5.5a40)<br />

Internet address is 192.168.1.3/24<br />

MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,<br />

reliability 255/255, txload 1/255, rxload 1/255<br />

Encapsulation ARPA, loopback not set<br />

ARP type: ARPA, ARP Timeout 04:00:00<br />

Last input 00:02:27, output never, output hang never<br />

Last clearing of “show interface” counters never<br />

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0<br />

Queueing strategy: fifo<br />

Output queue :0/40 (size/max)<br />

5 minute input rate 0 bits/sec, 1 packets/sec<br />

5 minute output rate 0 bits/sec, 0 packets/sec<br />

9119 packets input, 648668 bytes, 0 no buffer<br />

Received 76 broadcasts, 0 runts, 0 giants, 0 throttles<br />

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored<br />

17084 packets output, 611644 bytes, 0 underruns<br />

0 output errors, 4 interface resets<br />

0 output buffer failures, 0 output buffers swapped out<br />

Step 2. What is the MAC address of Switch_A?<br />

0009.b7f5.6d80<br />

Step 3. What is the MAC address of Switch_B?<br />

0009.b7f5.5a40<br />

Step 4. Which switch should be the root of the spanning tree for VLAN 1?<br />

Switch_B<br />

Task 5: Look at the Switches’ Spanning-Tree Tables<br />

Step 1. On Switch_A, type show spanning-tree brief at the privileged EXEC mode prompt if you<br />

are running Cisco IOS Software Release 12.0. If you are running Cisco IOS Software Release<br />

12.1, type show spanning-tree. Different releases of IOS have different options for this<br />

comm<strong>and</strong>.<br />

Switch_A#show spanning-tree<br />

VLAN1 is executing the ieee compatible Spanning Tree protocol<br />

Bridge Identifier has priority 32768, address 0009.b7f5.6d81<br />

Configured hello time 2, max age 20, forward delay 15<br />

Current root has priority 32768, address 0009.b7f5.5a41<br />

Root port is 1 (FastEthernet0/1), cost of root path is 19<br />

Topology change flag not set, detected flag not set<br />

Number of topology changes 1 last change occurred 00:10:00 ago<br />

from FastEthernet0/1<br />

Times: hold 1, topology change 35, notification 2


hello 2, max age 20, forward delay 15<br />

Timers: hello 0, topology change 0, notification 0, aging 300<br />

Port 1 (FastEthernet0/1) of VLAN1 is forwarding<br />

Port path cost 19, Port priority 128, Port Identifier 128.1.<br />

Designated root has priority 32768, address 0009.b7f5.5a41<br />

Designated bridge has priority 32768, address 0009.b7f5.5a41<br />

Designated port id is 128.1, designated path cost 0<br />

Timers: message age 1, forward delay 0, hold 0<br />

Number of transitions to forwarding state: 1<br />

BPDU: sent 1, received 316<br />

Port 4 (FastEthernet0/4) of VLAN1 is blocking<br />

Port path cost 19, Port priority 128, Port Identifier 128.4.<br />

Designated root has priority 32768, address 0009.b7f5.5a41<br />

Designated bridge has priority 32768, address 0009.b7f5.5a41<br />

Designated port id is 128.4, designated path cost 0<br />

Timers: message age 1, forward delay 0, hold 0<br />

Number of transitions to forwarding state: 0<br />

BPDU: sent 2, received 316<br />

Port 7 (FastEthernet0/7) of VLAN1 is forwarding<br />

Port path cost 19, Port priority 128, Port Identifier 128.7.<br />

Designated root has priority 32768, address 0009.b7f5.5a41<br />

Designated bridge has priority 32768, address 0009.b7f5.6d81<br />

Designated port id is 128.7, designated path cost 19<br />

Timers: message age 0, forward delay 0, hold 0<br />

Number of transitions to forwarding state: 1<br />

BPDU: sent 316, received 0<br />

Step 2. On Switch_B, type show spanning-tree brief at the privileged EXEC mode prompt.<br />

Switch_B#show spanning-tree<br />

VLAN1 is executing the ieee compatible Spanning Tree protocol<br />

Bridge Identifier has priority 32768, address 0009.b7f5.5a41<br />

Configured hello time 2, max age 20, forward delay 15<br />

We are the root of the spanning tree<br />

Topology change flag not set, detected flag not set<br />

Number of topology changes 5 last change occurred 00:10:48 ago<br />

from FastEthernet0/1<br />

Times: hold 1, topology change 35, notification 2<br />

hello 2, max age 20, forward delay 15<br />

Timers: hello 1, topology change 0, notification 0, aging 300<br />

Port 1 (FastEthernet0/1) of VLAN1 is forwarding<br />

Port path cost 19, Port priority 128, Port Identifier 128.1.<br />

Designated root has priority 32768, address 0009.b7f5.5a41<br />

Designated bridge has priority 32768, address 0009.b7f5.5a41<br />

Designated port id is 128.1, designated path cost 0<br />

Timers: message age 0, forward delay 0, hold 0<br />

Number of transitions to forwarding state: 1<br />

BPDU: sent 679, received 1<br />

Port 4 (FastEthernet0/4) of VLAN1 is forwarding<br />

Port path cost 19, Port priority 128, Port Identifier 128.4.<br />

Designated root has priority 32768, address 0009.b7f5.5a41<br />

Designated bridge has priority 32768, address 0009.b7f5.5a41<br />

Designated port id is 128.4, designated path cost 0<br />

Chapter 7: Spanning Tree Protocol 335


336 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Timers: message age 0, forward delay 0, hold 0<br />

Number of transitions to forwarding state: 1<br />

BPDU: sent 679, received 1<br />

Port 8 (FastEthernet0/8) of VLAN1 is forwarding<br />

Port path cost 19, Port priority 128, Port Identifier 128.8.<br />

Designated root has priority 32768, address 0009.b7f5.5a41<br />

Designated bridge has priority 32768, address 0009.b7f5.5a41<br />

Designated port id is 128.8, designated path cost 0<br />

Timers: message age 0, forward delay 0, hold 0<br />

Number of transitions to forwarding state: 1<br />

BPDU: sent 2247, received 0<br />

Step 3. Examine the comm<strong>and</strong> output <strong>and</strong> answer the following questions.<br />

Which switch is the root switch?<br />

Switch_B<br />

Record the states of the first 12 interfaces <strong>and</strong> ports of each switch in the following table.<br />

Switch_A Port No. Switch_B<br />

FWD 1 FWD<br />

Down 2 Down<br />

Down 3 Down<br />

BLK 4 FWD<br />

Down 5 Down<br />

Down 6 Down<br />

FWD 7 Down<br />

Down 8 FWD<br />

Down 9 Down<br />

Down 10 Down<br />

Down 11 Down<br />

Down 12 Down<br />

Task 6: Remove a Cable on the Switch<br />

Step 1. Remove the cable from the forwarding port on the non-root switch. If Switch_A is your root<br />

switch, then remove the cable from the forwarding port on Switch_B. If Switch_B is your root<br />

switch, then remove the cable from the forwarding port on Switch_A.<br />

Step 2. Wait for at least 2 minutes.<br />

Step 3. What has happened to the switch port LEDs?<br />

The port LEDs on both switches for FastEthernet 0/1 turned off.


Task 7: Look at the Spanning-Tree Table for the Switches<br />

Step 1. On Switch_A, type show spanning-tree brief at the privileged EXEC mode prompt if you<br />

are running Cisco IOS Software Release 12.0. If you are running Cisco IOS Software Release<br />

12.1, type show spanning-tree. Different releases of IOS have different options for this<br />

comm<strong>and</strong>.<br />

Switch_A#show spanning-tree<br />

VLAN0001<br />

Spanning tree enabled protocol ieee<br />

Root ID Priority 32769<br />

Address 0009.b7f5.5a40<br />

Cost 19<br />

Port 4 (FastEthernet0/4)<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)<br />

Address 0009.b7f5.6d80<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Aging Time 300<br />

Interface Port ID Designated Port<br />

ID<br />

Name Prio.Nbr Cost Sts Cost Bridge ID<br />

Prio.Nbr<br />

———————— ———— ————- —- ————- —————————— ————<br />

Fa0/4 128.4 19 FWD 0 32769 0009.b7f5.5a40 128.4<br />

Fa0/7 128.7 19 FWD 0 32769 0009.b7f5.5a40 128.7<br />

Step 2. On Switch_B, type show spanning-tree brief at the privileged EXEC mode prompt.<br />

Switch_B#show spanning-tree<br />

VLAN0001<br />

Spanning tree enabled protocol ieee<br />

Root ID Priority 32769<br />

Address 0009.b7f5.5a40<br />

This bridge is the root<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)<br />

Address 0009.b7f5.5a40<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Aging Time 300<br />

Interface Port ID Designated Port<br />

ID<br />

Name Prio.Nbr Cost Sts Cost Bridge ID<br />

Prio.Nbr<br />

———————— ———— ————- —- ————- —————————— ————<br />

Fa0/4 128.4 19 FWD 0 32769 0009.b7f5.5a40 128.4<br />

Fa0/8 128.8 19 FWD 0 32769 0009.b7f5.5a40 128.8<br />

Step 3. What changes have taken place in the comm<strong>and</strong> output?<br />

On Switch_A?<br />

Information <strong>and</strong> statistics for FastEthernet 0/1 are not displayed <strong>and</strong> FastEthernet 0/4 went<br />

from BLK mode into FWD mode.<br />

On Switch_B?<br />

Information <strong>and</strong> statistics for FastEthernet 0/1 are not displayed.<br />

Chapter 7: Spanning Tree Protocol 337


338 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 8: Replace the Cable in the Switch<br />

Step 1. Replace the cable in the port that it was removed from. For the previous example, this is interface<br />

FastEthernet 0/1 on Switch_A.<br />

Step 2. Wait for at least 2 minutes.<br />

Step 3. What has happened to the switch port LEDs?<br />

Both light up green.<br />

Task 9: Redisplay the Spanning-Tree Table for the Switches<br />

Step 1. On Switch_A, type show spanning-tree brief at the privileged EXEC mode prompt if you<br />

are running Cisco IOS Software Release 12.0. If you are running Cisco IOS Software Release<br />

12.1, type show spanning-tree. Different releases of IOS have different options for this<br />

comm<strong>and</strong>.<br />

Switch_A#show spanning-tree<br />

VLAN0001<br />

Spanning tree enabled protocol ieee<br />

Root ID Priority 32769<br />

Address 0009.b7f5.5a40<br />

Cost 19<br />

Port 1 (FastEthernet0/1)<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)<br />

Address 0009.b7f5.6d80<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Aging Time 300<br />

Interface Port ID Designated Port<br />

ID<br />

Name Prio.Nbr Cost Sts Cost Bridge ID<br />

Prio.Nbr<br />

———————— ———— ————- —- ————- —————————— ————<br />

Fa0/1 128.1 19 FWD 0 32769 0009.b7f5.5a40 128.1<br />

Fa0/4 128.4 19 BLK 0 32769 0009.b7f5.5a40 128.4<br />

Fa0/7 128.7 19 FWD 0 32769 0009.b7f5.5a40 128.7<br />

Step 2. On Switch_B, type show spanning-tree brief at the privileged EXEC mode prompt.<br />

Switch_B#show spanning-tree<br />

VLAN0001<br />

Spanning tree enabled protocol ieee<br />

Root ID Priority 32769<br />

Address 0009.b7f5.5a40<br />

This bridge is the root<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)<br />

Address 0009.b7f5.5a40<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Aging Time 300<br />

Interface Port ID Designated Port<br />

ID<br />

Name Prio.Nbr Cost Sts Cost Bridge ID<br />

Prio.Nbr


———————— ———— ————- —- ————- —————————— ————<br />

Fa0/1 128.1 19 FWD 0 32769 0009.b7f5.5a40 128.1<br />

Fa0/4 128.4 19 FWD 0 32769 0009.b7f5.5a40 128.4<br />

Fa0/8 128.8 19 FWD 0 32769 0009.b7f5.5a40 128.8<br />

Step 3. What changes have taken place in the comm<strong>and</strong> output?<br />

On Switch_A?<br />

FastEthernet 0/1 goes back into FWD mode <strong>and</strong> FastEthernet 0/4 went back to BLK mode.<br />

On Switch_B?<br />

FastEthernet 0/1 goes back into FWD mode.<br />

Chapter 7: Spanning Tree Protocol 339<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn all the devices off. Then remove<br />

<strong>and</strong> store the cables <strong>and</strong> adapter.


This page intentionally left blank


CHAPTER 8<br />

Virtual LANs<br />

The <strong>Study</strong> <strong>Guide</strong> portion of this chapter uses a combination of fill in the blank <strong>and</strong> unique custom exercises<br />

to test your knowledge on the theory of VLANs, VLAN configuration, <strong>and</strong> VLAN troubleshooting.<br />

The Lab Exercises portion of this chapter includes all of the online curriculum labs as well as a challenge<br />

lab to ensure that you have mastered the practical, h<strong>and</strong>s-on skills needed about VLANs.


342 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

<strong>Study</strong> <strong>Guide</strong><br />

VLAN Concepts<br />

As a network engineer, it is important that you underst<strong>and</strong> the logical function of a VLAN <strong>and</strong> how<br />

VLANs can improve network performance. The completion exercise in this brief section provides a quick<br />

review of VLAN concepts.<br />

Vocabulary Exercise: Completion<br />

Directions: Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

Up to this point in your studies, you have learned that a LAN includes all devices in the same broadcast<br />

domain <strong>and</strong> that a switch is used to microsegment the collision domain. In this chapter, you learned that<br />

switches can be configured with virtual LANs, or VLANs, to segment the broadcast domain at Layer 2.<br />

Without VLANs, a switch treats all interfaces on the switch as being in the same broadcast domain.<br />

A VLAN is a broadcast domain created by one or more switches. Configuration is as simple as putting<br />

some interfaces in one VLAN <strong>and</strong> other interfaces in another VLAN.<br />

List a few reasons or benefits for using VLANs:<br />

■ Limit the size of broadcast domains<br />

■ Group users by function, department, or some other logic instead of by physical location<br />

■ Increase security by separating logically devices on the same LAN<br />

■ Separate specialized traffic from user traffic (e.g. IP phones)<br />

Layer 2 switches cannot forward traffic between VLANs. In fact, the switch maintains a separate MAC<br />

address table for each VLAN so that broadcasts are contained within each VLAN. To communicate<br />

between users on different VLANs, the traffic must pass through a router or Layer 3 switch. This can be<br />

done by using a different Ethernet interface for each VLAN. Note that each VLAN would be on a different<br />

subnet. It is more common to use one Fast Ethernet interface to trunk multiple VLANs <strong>and</strong> configure logical<br />

subinterfaces.<br />

Two basic VLAN configuration methods are available to the network engineer: static configuration, which<br />

is port based, <strong>and</strong> dynamic configuration, which uses a VLAN Management Policy Server (VMPS). Static<br />

VLAN configuration is by far the most widely implemented of these two methods. Dynamic VLAN configuration<br />

is not currently a <strong>CCNA</strong> objective.<br />

VLAN Configuration<br />

Currently, the Cisco IOS is in a transition phase from configuring VLANs in VLAN database configuration<br />

mode to configuring VLANs in global configuration mode. Because both ways are currently supported,<br />

you need to be familiar with each. The configuration exercise in this section will walk you through<br />

both methods for creating, modifying, applying, <strong>and</strong> deleting VLANs.<br />

Learn VLAN Configuration Comm<strong>and</strong>s Exercise<br />

True or False: You can assign a VLAN to an interface without creating the VLAN first. If true, what confirmation<br />

message does the switch display? If false, what error message does the switch display?


True<br />

SWA(config)#interface fa0/4<br />

SWA(config-if)#switchport access vlan 40<br />

% Access VLAN does not exist. Creating vlan 40<br />

Chapter 8: Virtual LANs 343<br />

VLANs can be created using VLAN database mode or global configuration mode. VLAN global configuration<br />

mode is preferred because the user interface is familiar. In addition, you must use the exit comm<strong>and</strong><br />

in VLAN database mode to have changes applied to the VLAN database. Finally, VLAN database configuration<br />

mode has been deprecated <strong>and</strong> will be removed in some future releases.<br />

For the following exercise, refer to Figure 8-1.<br />

Figure 8-1 VLAN Configuration Comm<strong>and</strong>s<br />

Record the comm<strong>and</strong>s, including the switch prompt, to configure SWA with the VLANs, shown in Figure<br />

8-1. The comm<strong>and</strong>s would be the same on SWB.<br />

VLAN database configuration mode<br />

SWA#vlan database<br />

SWA(vlan)#vlan 10 name Accounting<br />

VLAN 10 added:<br />

Name: Accounting<br />

SWA(vlan)#vlan 20 name Marketing<br />

VLAN 10 added:<br />

Name: Marketing<br />

SWA(vlan)#vlan 30 name Purchasing<br />

VLAN 10 added:<br />

Name: Purchasing<br />

SWA(vlan)#exit<br />

APPLY completed.<br />

Exiting....<br />

SWA#<br />

VLAN 1 10.1.0.0/16<br />

VLAN 10 10.10.0.0/16<br />

VLAN 20 10.20.0.0/16<br />

VLAN 30 10.30.0.0/16<br />

VLAN 10<br />

fa0/4<strong>–</strong>8<br />

VLAN global configuration mode<br />

SWA(config)#vlan 10<br />

SWA(config-vlan)#name Accounting<br />

SWA(config-vlan)#vlan 20<br />

SWA(config-vlan)#name Marketing<br />

SWA(config-vlan)#vlan 30<br />

VLAN 1: 10.1.0.2<br />

DefGate: 10.1.0.1<br />

SWA<br />

VLAN 20<br />

fa0/9<strong>–</strong>16<br />

fa0/2<br />

fa0/3<br />

VLAN 30<br />

fa0/17<strong>–</strong>24<br />

VLAN 10<br />

fa0/4<strong>–</strong>8<br />

VLAN 1: 10.1.0.3<br />

DefGate: 10.1.0.1<br />

fa0/2<br />

SWB<br />

fa0/3<br />

VLAN 20<br />

fa0/9<strong>–</strong>16<br />

VLAN 30<br />

fa0/17<strong>–</strong>24


344 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

SWA(config-vlan)#name Purchasing<br />

SWA(config-vlan)#end<br />

SWA#<br />

From global configuration mode if you type interface ? <strong>and</strong> see range as one of the options, you are in<br />

luck. Your Cisco IOS Software Release supports the range parameter. This argument to the interface comm<strong>and</strong><br />

allows you to configure multiple ports at one time. For example:<br />

Switch(config)#interface range fa0/1 <strong>–</strong> 8<br />

Switch(config-if-range)#<br />

Interestingly, the hyphen is considered a parameter. You must enter a space before <strong>and</strong> after the hyphen.<br />

Note that the range argument can be used to configure any combination of ports. For example, the following<br />

would be a legitimate comm<strong>and</strong>:<br />

Switch(config)#interface range fa 0/4 - 5, fa 0/3 , fa 0/10 - 12 , gi 0/1<br />

Switch(config-if-range)#<br />

Record the comm<strong>and</strong>s, including the switch prompt, to assign interfaces with the VLANs shown in Figure<br />

8-1. You only need to show the comm<strong>and</strong>s for SWA. The comm<strong>and</strong>s are the same for SWB.<br />

SWA(config)#interface range fa 0/4 <strong>–</strong> 8<br />

SWA(config-if-range)#switchport mode access<br />

SWA(config-if-range)#switchport access vlan 10<br />

SWA(config-if-range)#interface range fa 0/9 <strong>–</strong> 16<br />

SWA(config-if-range)#switchport mode access<br />

SWA(config-if-range)#switchport access vlan 20<br />

SWA(config-if-range)#interface range fa 0/17 - 24<br />

SWA(config-if-range)#switchport mode access<br />

SWA(config-if-range)#switchport access vlan 30<br />

SWA(config-if-range)#end<br />

SWA#<br />

You need to move ports Fa0/17 through Fa0/20 to the Marketing VLAN. Record the comm<strong>and</strong> or comm<strong>and</strong>s,<br />

including switch prompt, to make the move.<br />

SWA(config)#interface range fa 0/17 <strong>–</strong> 20<br />

SWA(config-if-range)#switchport access vlan 20<br />

!You do not need to first remove the ports from the other VLAN<br />

The Purchasing department has been eliminated. All Purchasing department functions are now h<strong>and</strong>led by<br />

Accounting. You no longer need the Purchasing VLAN. Record the comm<strong>and</strong> or comm<strong>and</strong>s, including<br />

switch prompt, to delete the Purchasing VLAN.<br />

VLAN database configuration mode<br />

Switch#vlan database<br />

Switch(vlan)#no vlan 10<br />

Deleting VLAN 10...<br />

Switch(vlan)#exit<br />

APPLY completed.<br />

Exiting....<br />

Switch#


VLAN global configuration mode<br />

Switch(config)#no vlan 10<br />

Switch(config)#exit<br />

Switch#<br />

What happens to the ports that were members of a deleted VLAN?<br />

The ports belong to no VLAN <strong>and</strong> will have only limited access.<br />

What must be done to fix this problem?<br />

Either assign the ports to a new VLAN or use the no form of the switchport access vlan comm<strong>and</strong> to reassign<br />

the ports to VLAN 1.<br />

Record the comm<strong>and</strong>s, including switch prompt, to reassign ports Fa0/21 through Fa0/24 to VLAN 1.<br />

SWA(config)#interface range fa 0/21 <strong>–</strong> 24<br />

SWA(config-if-range)#no switchport mode access vlan<br />

!or<br />

SWA(config-if-range)#switchport mode access vlan 1<br />

Troubleshooting VLANs<br />

Now that you are comfortable configuring VLANS, it is time to review the comm<strong>and</strong>s that will help you to<br />

verify <strong>and</strong> troubleshoot your VLAN implementation. This section covers the show comm<strong>and</strong>s most commonly<br />

used with VLANs.<br />

Identify the Troubleshooting Comm<strong>and</strong> Exercise<br />

In this exercise, you are asked to identify what comm<strong>and</strong> was used to display the output. You may need to<br />

use a switch to help research your answers. The following output is from a Cisco 2950 running Cisco IOS<br />

Software Version 12.1(13)EA1.<br />

Switch#show spanning-tree vlan 1<br />

VLAN0001<br />

Spanning tree enabled protocol ieee<br />

Root ID Priority 4097<br />

Address 000e.385d.e380<br />

This bridge is the root<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Bridge ID Priority 4097 (priority 4096 sys-id-ext 1)<br />

Address 000e.385d.e380<br />

Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec<br />

Aging Time 300<br />

Chapter 8: Virtual LANs 345<br />

Interface Role Sts Cost Prio.Nbr Type<br />

———————— —— —- ————- ———— ————————————————<br />

Fa0/1 Desg FWD 19 128.1 P2p<br />

Fa0/2 Desg FWD 19 128.2 P2p


346 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Fa0/3 Desg FWD 19 128.3 P2p<br />

Switch#show vlan name Accounting !or show vlan id 10<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

10 Accounting active Fa0/1, Fa0/2, Fa0/3, Fa0/4<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

10 enet 100010 1500 - - - - - 0 0<br />

Remote SPAN VLAN<br />

————————<br />

Disabled<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Switch#show interface fa0/2 switchport<br />

Name: Fa0/2<br />

Switchport: Enabled<br />

Administrative Mode: trunk<br />

Operational Mode: trunk<br />

Administrative Trunking Encapsulation: dot1q<br />

Operational Trunking Encapsulation: dot1q<br />

Negotiation of Trunking: On<br />

Access Mode VLAN: 1 (default)<br />

Trunking Native Mode VLAN: 1 (default)<br />

Voice VLAN: none<br />

Administrative private-vlan host-association: none<br />

Administrative private-vlan mapping: none<br />

Operational private-vlan: none<br />

Trunking VLANs Enabled: ALL<br />

Pruning VLANs Enabled: 2-1001<br />

Capture Mode Disabled<br />

Capture VLANs Allowed: ALL<br />

Protected: false<br />

Voice VLAN: none (Inactive)<br />

Appliance trust: none


Switch#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Gi0/1, Gi0/2<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

30 Purchasing active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

Switch#show interface trunk<br />

Port Mode Encapsulation Status Native vlan<br />

Fa0/1 on 802.1q trunking 1<br />

Fa0/2 on 802.1q trunking 1<br />

Fa0/3 on 802.1q trunking 1<br />

Port Vlans allowed on trunk<br />

Fa0/1 1-4094<br />

Fa0/2 1-4094<br />

Fa0/3 1-4094<br />

Port Vlans allowed <strong>and</strong> active in management domain<br />

Fa0/1 1,10,20,30<br />

Fa0/2 1,10,20,30<br />

Fa0/3 1,10,20,30<br />

Port Vlans in spanning tree forwarding state <strong>and</strong> not pruned<br />

Fa0/1 1,10,20,30<br />

Fa0/2 1,10,20,30<br />

Fa0/3 1,10,30<br />

Chapter 8: Virtual LANs 347


348 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Lab Exercises<br />

Comm<strong>and</strong> Reference<br />

In the table that follows, record the comm<strong>and</strong>, including the correct switch prompt, that fits the description<br />

for a 2950 Catalyst switch.<br />

Comm<strong>and</strong> Description<br />

Switch#vlan database Enters VLAN database configuration mode<br />

Switch(vlan)#vlan 2 name Engineering Creates VLAN 2 <strong>and</strong> names it Engineering<br />

Switch(vlan)#vlan 3 name Marketing Creates VLAN 2 <strong>and</strong> names it Marketing<br />

Switch(vlan)#exit Applies changes <strong>and</strong> exits VLAN database mode<br />

Switch(config)#vlan 10 Creates VLAN 10 using global configuration mode<br />

Switch(config-vlan)#name Accounting Assigns the name Accounting to VLAN 10<br />

Switch(config)#interface range fa0/2 <strong>–</strong> 8 Enters interface configuration mode for interfaces Fa0/2<br />

through Fa0/8<br />

Switch(config)#switchport mode access Sets these ports to access mode<br />

Switch(config-if)#switchport access vlan 2 Assigns these ports to VLAN 2<br />

Switch(vlan)#no vlan 3 Deletes VLAN 3 in VLAN database configuration mode<br />

Switch(config)#no vlan 3 Deletes VLAN 3 in global configuration mode<br />

Switch(config-if)#no switchport access vlan 10 Removes an interface from VLAN 10<br />

Switch#delete flash:vlan.dat Removes the entire VLAN database from Flash memory<br />

Switch#show vlan Displays the complete VLAN database<br />

Switch#show vlan brief Displays a summary of the VLAN database<br />

Curriculum Lab 8-1: Configuring Static VLANs (8.2.3)<br />

Figure 8-2 Topology for Lab 8-1<br />

Table 8-1 Lab Equipment Configuration<br />

FA0/1 FA0/4<br />

Switch 1<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Crossover Cable<br />

Serial Cable<br />

Switch Switch Name VLAN 1 IP Address Default Gateway Subnet Mask<br />

Designation IP Address<br />

Switch 1 Switch_A 192.168.1.2 192.168.1.1 255.255.255.0


The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

Objectives<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Determine the switch firmware version.<br />

■ Create two VLANs, name them, <strong>and</strong> assign member ports to them.<br />

Background/Preparation<br />

When you are managing a switch, the management domain is always VLAN 1. The network administrator’s<br />

workstation must have access to a port in the VLAN 1 management domain. All ports are assigned to<br />

VLAN 1 by default. This lab will help demonstrate how you can use VLANs to separate traffic <strong>and</strong> reduce<br />

broadcast domains.<br />

Cable a network that is similar to the one in Figure 8-2. The 2950 series switch produced the configuration<br />

output in this lab. Another switch might produce different output. You should execute the following steps<br />

on each switch unless you are specifically instructed otherwise. Instructions are also provided for the 1900<br />

series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from the<br />

menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B, “Erasing <strong>and</strong> Reloading the Switch,” on all switches<br />

before you continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostnames <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 8-1. If you have problems while performing this configuration, refer to Lab 6-2, “Basic<br />

Switch Configuration.”<br />

Task 2: Configure the Hosts Attached to the Switch<br />

Configure the host to use the same subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

Task 3: Verify Connectivity<br />

To verify that the hosts <strong>and</strong> switch are correctly configured, ping the switch from the hosts.<br />

Were the pings successful? Yes<br />

If the answer is no, troubleshoot the hosts <strong>and</strong> switch configurations.<br />

Task 4: Show the Cisco IOS Version<br />

It is important that you know the version of the operating system. Differences between versions might<br />

change how you enter comm<strong>and</strong>s. Enter the show version comm<strong>and</strong> at the user EXEC or privileged<br />

EXEC mode prompt.<br />

Switch_A#show version<br />

What version of the switch IOS is displayed? 12.1(13)EA1<br />

Does this switch have St<strong>and</strong>ard Edition or Enterprise Edition software? St<strong>and</strong>ard<br />

Switch_A#show version<br />

Chapter 8: Virtual LANs 349


350 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Cisco Internetwork Operating System Software<br />

IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(13)EA1, RELEASE<br />

SOFTWARE (fc1)<br />

Copyright 1986-2003 by cisco Systems, Inc.<br />

Compiled Tue 04-Mar-03 02:14 by yenanh<br />

Image text-base: 0x80010000, data-base: 0x805A8000<br />

ROM: Bootstrap program is CALHOUN boot loader<br />

Switch_A uptime is 7 minutes<br />

System returned to ROM by power-on<br />

System image file is “flash:c2950-i6q4l2-mz.121-13.EA1.bin”<br />

cisco WS-C2950-24 (RC32300) processor (revision E0) with 20839K bytes of<br />

memory.<br />

Processor board ID FHK0634Z08M<br />

Last reset from system-reset<br />

Running St<strong>and</strong>ard Image<br />

24 FastEthernet/IEEE 802.3 interface(s)<br />

32K bytes of flash-simulated non-volatile configuration memory.<br />

Base ethernet MAC Address: 00:0A:B7:72:2B:40<br />

Motherboard assembly number: 73-5781-10<br />

Power supply part number: 34-0965-01<br />

Motherboard serial number: FOC06330DJG<br />

Power supply serial number: PHI06290B8Q<br />

Model revision number: E0<br />

Motherboard revision number: B0<br />

Model number: WS-C2950-24<br />

System serial number: FHK0634Z08M<br />

Configuration register is 0xF<br />

Task 5: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Which ports belong to the default VLAN? All<br />

How many VLANs are set up by default on the switch? 5<br />

What does the VLAN 1003 represent?<br />

It represents the default Token Ring VLAN.<br />

How many ports are in the 1003 VLAN? 0<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16


1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 6: Create <strong>and</strong> Name Two VLANs<br />

Enter the following comm<strong>and</strong>s to create two named VLANs:<br />

Switch_A#vlan database<br />

Switch_A(vlan)#vlan 2 name VLAN2<br />

Switch_A(vlan)#vlan 3 name VLAN3<br />

Switch_A(config)#exit<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#vlan 2 name VLAN2<br />

Switch_A(config)#vlan 3 name VLAN3<br />

Task 7: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Are new VLANs in the listing? If so, which ones? Yes, 2 <strong>and</strong> 3<br />

Do these VLANs have ports assigned to them yet? No<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

Chapter 8: Virtual LANs 351<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4


352 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

2 VLAN2 active<br />

3 VLAN3 active<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

2 enet 100002 1500 - - - - - 0 0<br />

3 enet 100003 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 8: Assign a Port to VLAN 2<br />

You must assign ports to VLANs from the interface mode. Enter the following comm<strong>and</strong>s to add port 2 to<br />

VLAN 2:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/2<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 2<br />

Switch_A(config-if)#end<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#interface Ethernet 0/2<br />

Switch_A(config-if)#vlan static 2<br />

Switch_A(config)#end


Task 9: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Is port 2 assigned to VLAN 2? Yes<br />

Is the port still listed in the default VLAN? No<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/3, Fa0/4, Fa0/5<br />

2 VLAN2 active Fa0/2<br />

3 VLAN3 active<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

Fa0/6, Fa0/7, Fa0/8, Fa0/9<br />

Fa0/10, Fa0/11, Fa0/12, Fa0/13<br />

Fa0/14, Fa0/15, Fa0/16, Fa0/17<br />

Fa0/18, Fa0/19, Fa0/20, Fa0/21<br />

Fa0/22, Fa0/23, Fa0/24<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

2 enet 100002 1500 - - - - - 0 0<br />

3 enet 100003 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

Chapter 8: Virtual LANs 353<br />

———- ————- ————————- —————————————————————


354 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 10: Assign a Port to VLAN 3<br />

You must assign ports to VLANs from the interface mode. Enter the following comm<strong>and</strong>s to add port 3 to<br />

VLAN 3:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/3<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 3<br />

Switch_A(config-if)#end<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#interface Ethernet 0/3<br />

Switch_A(config)#vlan static 3<br />

Switch_A(config)#end<br />

Task 11: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Is port 3 assigned to VLAN 3? Yes<br />

Is the port still listed in the default VLAN? No<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/4, Fa0/5, Fa0/6<br />

2 VLAN2 active Fa0/2<br />

3 VLAN3 active Fa0/3<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

Fa0/7, Fa0/8, Fa0/9, Fa0/10<br />

Fa0/11, Fa0/12, Fa0/13, Fa0/14<br />

Fa0/15, Fa0/16, Fa0/17, Fa0/18<br />

Fa0/19, Fa0/20, Fa0/21, Fa0/22<br />

Fa0/23, Fa0/24<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

2 enet 100002 1500 - - - - - 0 0<br />

3 enet 100003 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0


VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 12: Look Only at VLAN 2 Information<br />

Instead of displaying all the VLANs, enter the show vlan id 2 comm<strong>and</strong> at the privileged EXEC mode<br />

prompt.<br />

Switch_A#show vlan id 2<br />

1900:<br />

Switch_A#show vlan 2<br />

Does this comm<strong>and</strong> supply more information than the show vlan comm<strong>and</strong>? Yes<br />

Switch_A#show vlan id 2<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

2 VLAN2 active Fa0/2<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

2 enet 100002 1500 - - - - - 0 0<br />

Remote SPAN VLAN<br />

————————<br />

Disabled<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 13: Look Only at VLAN 2 Information with a Different<br />

Comm<strong>and</strong> (1900: Skip this Task)<br />

Instead of displaying all the VLANs, enter the show vlan name VLAN2 comm<strong>and</strong> at the privileged<br />

EXEC mode prompt.<br />

Switch_A#show vlan name VLAN2<br />

Chapter 8: Virtual LANs 355


356 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Does this comm<strong>and</strong> supply more information than the other show comm<strong>and</strong>s? No<br />

ALSwitch#show vlan name VLAN2<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

2 VLAN2 active Fa0/2<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

2 enet 100002 1500 - - - - - 0 0<br />

Remote SPAN VLAN<br />

————————<br />

Disabled<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

After you complete the previous step, log off (by typing exit) <strong>and</strong> turn all the devices off. Then, remove<br />

<strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 8-2: Verifying VLAN Configurations<br />

(8.2.4)<br />

Figure 8-3 Topology for Lab 8-2<br />

Table 8-2 Lab Equipment Configuration<br />

Switch Switch Name VLAN 1 IP Address Default Gateway Subnet Mask<br />

Designation IP Address<br />

Switch 1 Switch_A 192.168.1.2 192.168.1.2 255.255.255.0<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

Objectives<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Create two VLANs.<br />

FA0/1 FA0/4<br />

Switch 1<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Crossover Cable<br />

Serial Cable


■ Name the VLANs <strong>and</strong> assign multiple member ports to them.<br />

■ Test functionality by moving a workstation from one VLAN to another.<br />

Background/Preparation<br />

When you are managing a switch, the management domain is always VLAN 1. The network administrator’s<br />

workstation must have access to a port in the VLAN 1 management domain. All ports are assigned to<br />

VLAN 1 by default. This lab will also help demonstrate how VLANs can be used to separate traffic <strong>and</strong><br />

reduce broadcast domains.<br />

Cable a network that is similar to the one in Figure 8-3. The 2950 series switch produced the configuration<br />

output in this lab. Another switch might produce different output. You should execute the following steps<br />

on each switch unless you are specifically instructed otherwise. Instructions are also provided for the 1900<br />

series switch, which initially displays a User Interface Menu. Select the Comm<strong>and</strong> Line option from the<br />

menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B on all switches before you continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostnames <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 8-2. If you have problems while performing this configuration, refer to Lab 6-2, “Basic<br />

Switch Configuration.”<br />

Task 2: Configure the Hosts Attached to the Switch<br />

Configure the host to use the same subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

Task 3: Verify Connectivity<br />

To verify that the hosts <strong>and</strong> switch are correctly configured, ping the switch from the hosts.<br />

Were the pings successful? Yes<br />

If the answer is no, troubleshoot the hosts <strong>and</strong> switch configurations.<br />

Task 4: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Which ports belong to the default VLAN? All<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4<br />

1002 fddi-default act/unsup<br />

Chapter 8: Virtual LANs 357<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24


358 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 5: Create <strong>and</strong> Name Two VLANs<br />

Enter the following comm<strong>and</strong>s to create two named VLANs:<br />

Switch_A#vlan database<br />

Switch_A(vlan)#vlan 2 name VLAN2<br />

Switch_A(vlan)#vlan 3 name VLAN3<br />

Switch_A(config)#exit<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#vlan 2 name VLAN2<br />

Switch_A(config)#vlan 3 name VLAN3<br />

Switch_A(config)#exit<br />

Task 6: Assign Ports to VLAN 2<br />

You must assign ports to VLANs from the interface mode. Enter the following comm<strong>and</strong>s to add ports 4,<br />

5, <strong>and</strong> 6 to VLAN 2:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/4<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 2<br />

Switch_A(config)#interface fastethernet 0/5<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 2<br />

Switch_A(config)#interface fastethernet 0/6


Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 2<br />

Switch_A(config-if)#end<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#interface ethernet 0/4<br />

Switch_A(config-if)#vlan static 2<br />

Switch_A(config-if)#interface ethernet 0/5<br />

Switch_A(config-if)#vlan static 2<br />

Switch_A(config-if)#interface ethernet 0/6<br />

Switch_A(config-if)#vlan static 2<br />

Switch_A(config-if)#end<br />

Task 7: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Are ports 4 through 6 assigned to VLAN 2? Yes<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/7<br />

Fa0/8, Fa0/9, Fa0/10, Fa0/11<br />

Fa0/12, Fa0/13, Fa0/14, Fa0/15<br />

Fa0/16, Fa0/17, Fa0/18, Fa0/19<br />

Fa0/20, Fa0/21, Fa0/22, Fa0/23<br />

Fa0/24<br />

2 VLAN2 active Fa0/4, Fa0/5, Fa0/6<br />

3 VLAN3 active<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

Chapter 8: Virtual LANs 359<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

2 enet 100002 1500 - - - - - 0 0<br />

3 enet 100003 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———


360 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- ————————————————————-<br />

Task 8: Assign Ports to VLAN 3<br />

Enter the following comm<strong>and</strong>s to assign ports 7, 8, <strong>and</strong> 9 to VLAN 3:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/7<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 3<br />

Switch_A(config)#interface fastethernet 0/8<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 3<br />

Switch_A(config)#interface fastethernet 0/9<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 3<br />

Switch_A(config-if)#end<br />

Task 9: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Are ports 7 through 9 assigned to VLAN 3? Yes<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/10<br />

Fa0/11, Fa0/12, Fa0/13, Fa0/14<br />

Fa0/15, Fa0/16, Fa0/17, Fa0/18<br />

Fa0/19, Fa0/20, Fa0/21, Fa0/22<br />

Fa0/23, Fa0/24<br />

2 VLAN2 active Fa0/4, Fa0/5, Fa0/6<br />

3 VLAN3 active Fa0/7, Fa0/8, Fa0/9<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup


VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

2 enet 100002 1500 - - - - - 0 0<br />

3 enet 100003 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 10: Test the VLANs<br />

Step 1. Ping from the host in port 0/4 to the host in port 0/1.<br />

Was the ping successful? No<br />

Why?<br />

They have different VLAN membership.<br />

Step 2. Ping from the host in port 0/1 to the host in port 0/4.<br />

Was the ping successful? No<br />

Why?<br />

They have different VLAN membership.<br />

Step 3. Ping from the host in port 0/4 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

They have different VLAN membership.<br />

Step 4. Ping from the host in port 0/1 to the switch IP 192.168.1.2.<br />

Was the ping successful? Yes<br />

Why?<br />

They have the same VLAN membership.<br />

Chapter 8: Virtual LANs 361


362 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 11: Move a Host<br />

Move the host in port 0/4 to port 0/3, wait until the port LED turns green, <strong>and</strong> then go to the next task.<br />

Task 12: Test the VLANs<br />

Step 1. Ping from the host in port 0/3 to the host in port 0/1.<br />

Was the ping successful? Yes<br />

Why?<br />

They have the same VLAN membership.<br />

Step 2. Ping from the host in port 0/1 to the host in port 0/3.<br />

Was the ping successful? Yes<br />

Step 3. Ping from the host in port 0/3 to the switch IP 192.168.1.2.<br />

Was the ping successful? Yes<br />

Task 13: Move Hosts<br />

Move the host in port 0/3 to port 0/4 <strong>and</strong> the host in port 0/1 to port 0/5, wait until the port LED turns<br />

green, <strong>and</strong> then go to the next task.<br />

Task 14: Test the VLANs<br />

Step 1. Ping from the host in port 0/4 to the host in port 0/5.<br />

Was the ping successful? Yes<br />

Why?<br />

They have the same VLAN membership.<br />

Step 2. Ping from the host in port 0/5 to the host in port 0/4.<br />

Was the ping successful? Yes<br />

Step 3. Ping from the host in port 0/4 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Step 4. Ping from the host in port 0/5 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

They have different VLAN membership.<br />

Task 15: Move the Hosts<br />

Move the host in port 0/4 to port 0/8, wait until the port LED turns green, <strong>and</strong> then go to the next task.<br />

Task 16: Test the VLANs<br />

Step 1. Ping from the host in port 0/4 to the host in port 0/8.<br />

Was the ping successful? No


Why?<br />

They have different VLAN membership.<br />

Step 2. Ping from the host in port 0/8 to the host in port 0/4.<br />

Was the ping successful? No<br />

Step 3. Ping from the host in port 0/4 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Step 4. Ping from the host in port 0/8 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn all the devices off. Then, remove<br />

<strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Curriculum Lab 8-3: Deleting VLAN Configurations (8.2.6)<br />

Figure 8-4 Topology for Lab 8-3<br />

Table 8-3 Lab Equipment Configuration<br />

Switch Switch Name VLAN 1 IP Address Default Gateway Subnet Mask<br />

Designation IP Address<br />

Switch 1 Switch_A 192.168.1.2 192.168.1.1 255.255.255.0<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

Objectives<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Create two VLANs.<br />

■ Name the VLANs <strong>and</strong> assign multiple member ports to them.<br />

■ Delete VLANs.<br />

■ Underst<strong>and</strong> why it is not possible to delete VLAN 1.<br />

Background/Preparation<br />

FA0/1 FA0/4<br />

Switch 1<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Crossover Cable<br />

Serial Cable<br />

Chapter 8: Virtual LANs 363<br />

When you are managing a switch, the management domain is always VLAN 1. The network administrator’s<br />

workstation must have access to a port in the VLAN 1 management domain. All ports are assigned to<br />

VLAN 1 by default. This lab will help demonstrate how you can use VLANs to separate traffic <strong>and</strong> reduce<br />

broadcast domains.<br />

Cable a network that is similar to the one in Figure 8-4. The 2950 series switch produced the configuration<br />

output in this lab. Another switch might produce different output. You should execute the following steps<br />

on each switch unless you are specifically instructed otherwise.


364 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Instructions are also provided for the 1900 series switch, which initially displays a User Interface Menu.<br />

Select the Comm<strong>and</strong> Line option from the menu to perform the steps for this lab.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B on all switches before you continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostnames <strong>and</strong> passwords, as well as the management VLAN 1 settings for the switch, as<br />

indicated in Table 8-3. If you have problems while performing this configuration, refer to Lab 6-2, “Basic<br />

Switch Configuration.”<br />

Task 2: Configure the Hosts Attached to the Switch<br />

Configure the host to use the same subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

Task 3: Verify Connectivity<br />

To verify that the hosts <strong>and</strong> switch are correctly configured, ping the switch from the hosts.<br />

Were the pings successful? Yes<br />

If the answer is no, troubleshoot the hosts <strong>and</strong> switch configurations.<br />

Task 4: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Which ports belong to the default VLAN? All<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0


1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 5: Create <strong>and</strong> Name Two VLANs<br />

Enter the following comm<strong>and</strong>s to create two named VLANs:<br />

Switch_A#vlan database<br />

Switch_A(vlan)#vlan 2 name VLAN2<br />

Switch_A(vlan)#vlan 3 name VLAN3<br />

Switch_A(config)#exit<br />

1900:<br />

Switch_A#configure terminal<br />

Switch_A(config)#vlan 2 name VLAN2<br />

Switch_A(config)#vlan 3 name VLAN3<br />

Task 6: Assign Ports to VLAN 2<br />

Assigning ports to VLANs must be done from the interface mode. Enter the following comm<strong>and</strong>s to add<br />

ports 4, 5, <strong>and</strong> 6 to VLAN 2:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/4<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 2<br />

Switch_A(config)#interface fastethernet 0/5<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 2<br />

Switch_A(config)#interface fastethernet 0/6<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 2<br />

Switch_A(config-if)#end<br />

1900:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface Ethernet 0/4<br />

Switch_A(config-if)#vlan static 2<br />

Switch_A(config-if)#interface Ethernet 0/5<br />

Switch_A(config-if)#vlan static 2<br />

Switch_A(config-if)#interface Ethernet 0/6<br />

Switch_A(config-if)#vlan static 2<br />

Switch_A(config)#end<br />

Chapter 8: Virtual LANs 365


366 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 7: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Are ports 4 through 6 assigned to VLAN 2? Yes<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/7<br />

Fa0/8, Fa0/9, Fa0/10, Fa0/11<br />

Fa0/12, Fa0/13, Fa0/14, Fa0/15<br />

Fa0/16, Fa0/17, Fa0/18, Fa0/19<br />

Fa0/20, Fa0/21, Fa0/22, Fa0/23<br />

Fa0/24<br />

2 VLAN2 active Fa0/4, Fa0/5, Fa0/6<br />

3 VLAN3 active<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

2 enet 100002 1500 - - - - - 0 0<br />

3 enet 100003 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- ————————————————————-<br />

Task 8: Assign Ports to VLAN 3<br />

Enter the following comm<strong>and</strong>s to assign ports to VLAN 3:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/7<br />

Switch_A(config-if)#switchport mode access


Switch_A(config-if)#switchport access vlan 3<br />

Switch_A(config)#interface fastethernet 0/8<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 3<br />

Switch_A(config)#interface fastethernet 0/9<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 3<br />

Switch_A(config-if)#end<br />

Task 9: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Are ports 7 through 9 assigned to VLAN 3? Yes<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/10<br />

Fa0/11, Fa0/12, Fa0/13, Fa0/14<br />

Fa0/15, Fa0/16, Fa0/17, Fa0/18<br />

Fa0/19, Fa0/20, Fa0/21, Fa0/22<br />

Fa0/23, Fa0/24<br />

2 VLAN2 active Fa0/4, Fa0/5, Fa0/6<br />

3 VLAN3 active Fa0/7, Fa0/8, Fa0/9<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

2 enet 100002 1500 - - - - - 0 0<br />

3 enet 100003 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

Chapter 8: Virtual LANs 367<br />

———————————————————————————————————————


368 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 10: Test the VLANs<br />

Step 1. Ping from the host in port 0/4 to the host in port 0/1.<br />

Was the ping successful? No<br />

Why?<br />

The ports have different VLAN membership.<br />

Step 2. Ping from the host in port 0/1 to the host in port 0/4.<br />

Was the ping successful? No<br />

Why?<br />

The ports have different VLAN membership.<br />

Step 3. Ping from the host in port 0/4 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

The ports have different VLAN membership.<br />

Step 4. Ping from the host in port 0/1 to the switch IP 192.168.1.2.<br />

Was the ping successful? Yes<br />

Why?<br />

The ports are on the same VLAN.<br />

Task 11: Delete a Host from a VLAN<br />

To remove a host from a VLAN, use the no form of the switchport comm<strong>and</strong>s in port interface configuration<br />

mode.<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/4<br />

Switch_A(config-if)#no switchport mode access<br />

Switch_A(config-if)#no switchport access vlan 2<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#interface Ethernet 0/4<br />

Switch_A(config-if)#no vlan static 2<br />

Switch_A(config-if)#end<br />

Task 12: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Is port 0/4 removed from VLAN 2? Yes


Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/10<br />

Fa0/11, Fa0/12, Fa0/13, Fa0/14<br />

Fa0/15, Fa0/16, Fa0/17, Fa0/18<br />

Fa0/19, Fa0/20, Fa0/21, Fa0/22<br />

Fa0/23, Fa0/24<br />

2 VLAN2 active Fa0/5, Fa0/6<br />

3 VLAN3 active Fa0/7, Fa0/8, Fa0/9<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

2 enet 100002 1500 - - - - - 0 0<br />

3 enet 100003 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 13: Delete a VLAN<br />

To remove an entire VLAN, enter the VLAN database mode <strong>and</strong> use the negative form of the comm<strong>and</strong>.<br />

Switch_A#vlan database<br />

Switch_A(vlan)#no vlan 3<br />

Deleting VLAN 3...<br />

Switch_A(vlan)#exit<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#no vlan 3<br />

Switch_A(config)#exit<br />

Chapter 8: Virtual LANs 369


370 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 14: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Is VLAN 3 removed? Yes<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/10<br />

Fa0/11, Fa0/12, Fa0/13, Fa0/14<br />

Fa0/15, Fa0/16, Fa0/17, Fa0/18<br />

Fa0/19, Fa0/20, Fa0/21, Fa0/22<br />

Fa0/23, Fa0/24<br />

2 VLAN2 active Fa0/5, Fa0/6<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

2 enet 100002 1500 - - - - - 0 0<br />

3 enet 100003 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

What happened to the ports that were released from the VLANs?<br />

They are not assigned to a VLAN.<br />

Task 15: Delete VLAN 1<br />

Try to delete VLAN 1, which is the default VLAN, the same way that you deleted VLAN 3.<br />

Switch_A#vlan database<br />

Switch_A(vlan)#no vlan 1


A default VLAN may not be deleted.<br />

Switch_A(vlan)#exit<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#no vlan 1<br />

Switch_A(config)#no vlan 1<br />

^<br />

% Invalid input detected at ‘^’ marker.<br />

Switch_A(config)#exit<br />

Can the default VLAN be deleted? No<br />

After you complete the previous step, log off (by typing exit) <strong>and</strong> turn all the devices off. Then, remove<br />

<strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Challenge Lab 8-4: Static VLANs, STP, <strong>and</strong> Port Security<br />

Figure 8-5 Static VLANs, STP, <strong>and</strong> Port Security<br />

Objectives<br />

■ Create <strong>and</strong> assign VLANs.<br />

■ Configure root bridges for STP.<br />

■ Configure port security.<br />

Equipment<br />

VLAN 1 10.1.0.0/16<br />

VLAN 10 10.10.0.0/16<br />

VLAN 20 10.20.0.0/16<br />

VLAN 30 10.30.0.0/16<br />

VLAN 10<br />

fa0/4<strong>–</strong>8<br />

The topology shown in Figure 8-5 is using 2950 switches.<br />

NetLab Compatibility Notes<br />

VLAN 1: 10.1.0.2<br />

DefGate: 10.1.0.1<br />

SWA<br />

VLAN 20<br />

fa0/9<strong>–</strong>16<br />

This lab is fully compatible with a st<strong>and</strong>ard NetLab Basic Switch Pod although you will not be able to<br />

fully test your VLANs or port security.<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configuration<br />

fa0/2<br />

fa0/3<br />

VLAN 30<br />

fa0/17<strong>–</strong>24<br />

VLAN 10<br />

fa0/4<strong>–</strong>8<br />

Chapter 8: Virtual LANs 371<br />

VLAN 1: 10.1.0.3<br />

DefGate: 10.1.0.1<br />

fa0/2<br />

SWB<br />

fa0/3<br />

VLAN 20<br />

fa0/9<strong>–</strong>16<br />

VLAN 30<br />

fa0/17<strong>–</strong>24<br />

Step 1. Choose two 2950 switches <strong>and</strong> cable them according to the topology. (If using NetLab, choose<br />

a Basic Switch Pod. Portions of this lab will not be verifiable.)


372 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 2. Configure the switches according to your instructor’s required basic configurations, including<br />

hostnames, passwords, host tables, banner, <strong>and</strong> lines. Configure each of the switches with the<br />

correct VLAN 1 IP addresses <strong>and</strong> the correct default gateway.<br />

Step 3. Verify connectivity between SWA <strong>and</strong> SWB. Pings should be successful. If not, troubleshoot.<br />

Note: Switches should not be able to ping the router yet.<br />

Task 2: Configure VLANs<br />

Step 1. Configure the following VLANs on both SWA <strong>and</strong> SWB:<br />

■ VLAN 10 is the Accounting VLAN<br />

■ VLAN 20 is the Marketing VLAN<br />

■ VLAN 30 is the Purchasing VLAN<br />

Step 2. Configure the appropriate ports on SWA <strong>and</strong> SWB for trunking with the switchport mode<br />

trunk comm<strong>and</strong>. Verify trunking is properly configured with the show interface trunk comm<strong>and</strong><br />

on both SWA <strong>and</strong> SWB.<br />

SWA#show interface trunk<br />

Port Mode Encapsulation Status Native vlan<br />

Fa0/2 on 802.1q trunking 1<br />

Fa0/3 on 802.1q trunking 1<br />

Port Vlans allowed on trunk<br />

Fa0/2 1-4094<br />

Fa0/3 1-4094<br />

Port Vlans allowed <strong>and</strong> active in management domain<br />

Fa0/2 1,10,20,30<br />

Fa0/3 1,10,20,30<br />

Port Vlans in spanning tree forwarding state <strong>and</strong> not pruned<br />

Fa0/2 1,10,20,30<br />

Fa0/3 1,10,20,30<br />

Step 3. The Fa0/1 port is unused on both SWA <strong>and</strong> SWB. For enhanced security, administratively shut<br />

down this port. Otherwise, the port will activate whenever it detects a device on the other end.<br />

Step 4. Configure access mode on the rest of the ports using the switchport mode access comm<strong>and</strong>.<br />

Assign the access ports to their correct VLAN as specified in the topology.<br />

Step 5. Verify the VLAN configuration on both switches with the show vlan brief comm<strong>and</strong>. Your output<br />

should look similar to the following output:<br />

SWA#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11,<br />

Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15,<br />

Fa0/16


30 Purchasing active Fa0/17, Fa0/18, Fa0/19,<br />

Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23,<br />

Fa0/24<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

Task 3: Configure the Root Bridge for STP<br />

Step 1. For VLANs 1, 10, <strong>and</strong> 30, SWA should always be the root bridge. Configure SWA with a spanning-tree<br />

priority of 4096 for these three VLANs.<br />

For VLAN 20, SWA is to never be the root bridge. Configure SWA with a spanning-tree priority<br />

of 61,440.<br />

What is the default priority?<br />

32768<br />

Why would you want to configure some VLANs with a different STP root bridge?<br />

By using different spanning-tree instances for different VLANs, redundant trunk ports can be<br />

used for forwarding traffic for some VLANs while blocking for others.<br />

Step 2. Verify SWA is the root with the show spanning-tree summary comm<strong>and</strong>. SWA should be listed<br />

as the root bridge, as shown in the following output below:<br />

SWA#show spanning-tree summary<br />

Switch is in pvst mode<br />

Root bridge for: VLAN0001, VLAN0010, VLAN0030<br />

EtherChannel misconfiguration guard is enabled<br />

Extended system ID is enabled<br />

Portfast is disabled by default<br />

PortFast BPDU Guard is disabled by default<br />

Portfast BPDU Filter is disabled by default<br />

Loopguard is disabled by default<br />

UplinkFast is disabled<br />

BackboneFast is disabled<br />

Pathcost method used is short<br />

Chapter 8: Virtual LANs 373<br />

Name Blocking Listening Learning Forwarding STP Active<br />

——————————— ———— ————- ———— ————— —————<br />

VLAN0001 0 0 0 3 3<br />

VLAN0010 0 0 0 3 3<br />

VLAN0020 1 0 0 2 3<br />

VLAN0030 0 0 0 3 3<br />

——————————— ———— ————- ———— ————— —————<br />

4 vlans 1 0 0 11 12<br />

SWB#show spanning-tree summary<br />

Switch is in pvst mode<br />

Root bridge for: VLAN0020<br />

EtherChannel misconfiguration guard is enabled<br />

Extended system ID is enabled<br />

Portfast is disabled by default


374 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

PortFast BPDU Guard is disabled by default<br />

Portfast BPDU Filter is disabled by default<br />

Loopguard is disabled by default<br />

UplinkFast is disabled<br />

BackboneFast is disabled<br />

Pathcost method used is short<br />

Name Blocking Listening Learning Forwarding STP Active<br />

——————————— ———— ————- ———— ————— —————<br />

VLAN0001 1 0 0 1 2<br />

VLAN0010 1 0 0 1 2<br />

VLAN0020 0 0 1 1 2<br />

VLAN0030 1 0 0 1 2<br />

——————————— ———— ————- ———— ————— —————<br />

4 vlans 3 0 1 4 8<br />

Task 4: Configure Port Security<br />

Step 1. Configure the access ports (Fa0/4 through 24) for access mode <strong>and</strong> turn on port security.<br />

Step 2. Enter the comm<strong>and</strong> to make the first MAC address learned “stick” to the port. No other MAC<br />

addresses should be allowed (maximum of one MAC per port).<br />

Step 3. Enter the comm<strong>and</strong> that will automatically shut down the port if a security violation occurs.<br />

Step 4. Verify port security with the show port-security comm<strong>and</strong>. Your output should look similar to<br />

the following output:<br />

SWA#show port-security<br />

Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security<br />

Action<br />

(Count) (Count) (Count)<br />

———————————————————————————————————————-<br />

Fa0/4 1 0 0 Shutdown<br />

Fa0/5 1 0 0 Shutdown<br />

Fa0/6 1 0 0 Shutdown<br />

Fa0/7 1 0 0 Shutdown<br />

Fa0/8 1 0 0 Shutdown<br />

Fa0/9 1 0 0 Shutdown<br />

Fa0/10 1 0 0 Shutdown<br />

Fa0/11 1 0 0 Shutdown<br />

Fa0/12 1 0 0 Shutdown<br />

Fa0/13 1 0 0 Shutdown<br />

Fa0/14 1 0 0 Shutdown<br />

Fa0/15 1 0 0 Shutdown<br />

Fa0/16 1 0 0 Shutdown<br />

Fa0/17 1 0 0 Shutdown<br />

Fa0/18 1 0 0 Shutdown<br />

Fa0/19 1 0 0 Shutdown<br />

Fa0/20 1 0 0 Shutdown<br />

Fa0/21 1 0 0 Shutdown<br />

Fa0/22 1 0 0 Shutdown<br />

Fa0/23 1 0 0 Shutdown<br />

Fa0/24 1 0 0 Shutdown<br />

———————————————————————————————————————-


Total Addresses in System : 0<br />

Max Addresses limit in System : 1024<br />

Task 5: Verify VLANs <strong>and</strong> Port Security<br />

Step 1. Test the VLAN configuration by verifying that a host attached to VLAN 10 cannot ping the<br />

hosts of VLAN 20 or VLAN 30.<br />

Step 2. Test the port security configuration by disconnecting a host from a port <strong>and</strong> connecting a different<br />

host to the same port. The port should automatically shut down. How do you, as the<br />

administrator, re-enable the port?<br />

First, reset port security with the clear port-security sticky comm<strong>and</strong>. Second, administratively<br />

disable the port with the shutdown comm<strong>and</strong>. Third, reactivate the port with the no shutdown<br />

comm<strong>and</strong>. The new MAC address will now stick to the configuration.<br />

SWA !—————————————————<br />

!VLAN configurations do not show<br />

!—————————————————<br />

vlan 10<br />

name Accounting<br />

vlan 20<br />

name Marketing<br />

vlan 30<br />

name Purchasing<br />

!—————————————————<br />

!<br />

hostname SWA<br />

!<br />

enable secret class<br />

!<br />

no ip domain-lookup<br />

ip host SWB 10.1.0.3<br />

!<br />

interface FastEthernet0/1<br />

!<br />

shutdown<br />

interface FastEthernet0/2<br />

!<br />

switchport mode trunk<br />

interface FastEthernet0/3<br />

!<br />

switchport mode trunk<br />

interface range FastEthernet0/4 - 8<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

Chapter 8: Virtual LANs 375


376 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/9 - 16<br />

switchport access vlan 20<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/17 - 24<br />

switchport access vlan 30<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface Vlan1<br />

!<br />

ip address 10.1.0.2 255.255.0.0<br />

no shutdown<br />

ip default-gateway 10.1.0.1<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 5 15<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login


!<br />

end<br />

SWB !—————————————————<br />

!VLAN configurations do not show<br />

!—————————————————<br />

vlan 10<br />

name Accounting<br />

vlan 20<br />

name Marketing<br />

vlan 30<br />

name Purchasing<br />

!—————————————————<br />

!<br />

hostname SWB<br />

!<br />

enable secret class<br />

!<br />

no ip domain-lookup<br />

ip host SWA 10.1.0.2<br />

!<br />

interface FastEthernet0/1<br />

!<br />

shutdown<br />

interface FastEthernet0/2<br />

!<br />

switchport mode trunk<br />

interface FastEthernet0/3<br />

!<br />

switchport mode trunk<br />

interface range FastEthernet0/4 - 8<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/9 - 16<br />

switchport access vlan 20<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

switchport port-security maximum 1<br />

Chapter 8: Virtual LANs 377


378 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

!<br />

interface range FastEthernet0/17 - 24<br />

switchport access vlan 30<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface Vlan1<br />

!<br />

ip address 10.1.0.3 255.255.0.0<br />

no shutdown<br />

ip default-gateway 10.1.0.1<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZED ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 5 15<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end


CHAPTER 9<br />

VLAN Trunking Protocol<br />

The <strong>Study</strong> <strong>Guide</strong> portion of this chapter uses a combination of fill in the blank, open-ended question, <strong>and</strong><br />

unique custom exercises to test your knowledge on the theory of VLAN Trunking Protocol.<br />

The Lab Exercises portion of this chapter includes all of the online curriculum labs as well as a comprehensive<br />

lab <strong>and</strong> a challenge lab to ensure that you have mastered the practical, h<strong>and</strong>s-on skills needed<br />

about VTP.


380 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

<strong>Study</strong> <strong>Guide</strong><br />

Trunking<br />

For the purposes of this chapter, a trunk is a physical <strong>and</strong> logical connection between two switches across<br />

which network traffic travels. In a switched network, a trunk is a point-to-point link that supports several<br />

VLANs. The purpose of a trunk is to conserve ports when a link between two devices that implement<br />

VLANs is created.<br />

In this section, you work through exercises that review trunking, the concept of frame tagging, <strong>and</strong> basic<br />

trunk configuration.<br />

Vocabulary Exercise: Completion<br />

Directions: Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

Two switches directly connected can send <strong>and</strong> receive traffic for multiple VLANs across a trunk link. The<br />

term trunk originated in the telephone industry to describe a link used to carry multiple conversations. In<br />

switching technologies, you need to identify which VLAN a frame belongs to. To make this identification<br />

possible, switches can use one of two major methods of frame tagging: Inter-Switch Link (ISL), a Cisco<br />

proprietary protocol that used to be the most common, <strong>and</strong> IEEE 802.1q, which is now the st<strong>and</strong>ard for<br />

frame tagging. Newer Cisco IOS Software Releases do not even support ISL anymore. It is important to<br />

underst<strong>and</strong> that a trunk link does not belong to a specific VLAN. A trunk link is a conduit for VLANs<br />

between switches <strong>and</strong> routers.<br />

With ISL, an Ethernet frame is encapsulated with an additional header that contains a VLAN ID. With<br />

IEEE 802.1q, a tag containing the VLAN ID is embedded into the Ethernet frame.<br />

A port can be configured as a trunk port, an access port, or a dynamic port. Trunk links should be manually<br />

configured, although the Cisco IOS will, by default, detect a trunk link because all ports are set to<br />

dynamic desirable. Record the comm<strong>and</strong>, including correct prompt, to configure a port for trunking.<br />

Switch(config-if)#switchport mode trunk<br />

For the 1900 series switches <strong>and</strong> the 2950 series switches, you do not have to configure the encapsulation<br />

type on a trunk link. However, if you are using a 2900 series switch, which supports both ISL <strong>and</strong> IEEE<br />

802.1q, then you have to configure the encapsulation type. Record the comm<strong>and</strong>, including correct prompt,<br />

to configure a port to use ISL encapsulation.<br />

Switch(config-if)#switchport trunk encapsulation isl<br />

Note: If you are not sure about this comm<strong>and</strong>, check Curriculum Lab 9-1, “Trunking with ISL (9.1.5a).”<br />

Now record the comm<strong>and</strong>, including correct prompt, to configure a port to use IEEE 802.1q encapsulation.<br />

Switch(config-if)#switchport trunk encapsulation dot1q<br />

If your switch is a 2950 series, you do not configure the encapsulation type. The comm<strong>and</strong> is not even<br />

available. However, when configuring a router with a VLAN trunk to a switch, you must specify the<br />

encapsulation type because the router IOS does not auto-detect it. These comm<strong>and</strong>s are reviewed later in<br />

the chapter, in the section, “Inter-VLAN Routing Overview.”


Chapter 9: VLAN Trunking Protocol 381<br />

To quickly verify trunking, you can use the show interface trunk comm<strong>and</strong> to display output similar to the<br />

following:<br />

Port Mode Encapsulation Status Native vlan<br />

Fa0/1 on 802.1q trunking 1<br />

Fa0/2 on 802.1q trunking 1<br />

Fa0/3 on 802.1q trunking 1<br />

Port Vlans allowed on trunk<br />

Fa0/1 1-4094<br />

Fa0/2 1-4094<br />

Fa0/3 1-4094<br />

Port Vlans allowed <strong>and</strong> active in management domain<br />

Fa0/1 1,10,20,30<br />

Fa0/2 1,10,20,30<br />

Fa0/3 1,10,20,30<br />

Port Vlans in spanning tree forwarding state <strong>and</strong> not pruned<br />

Fa0/1 1,10,20,30<br />

Fa0/2 1,10,20,30<br />

Fa0/3 1,10,30<br />

You can also view more specific information about a port by using the show interface fa0/1 switchport<br />

comm<strong>and</strong> to display output similar to the following:<br />

Name: Fa0/1<br />

Switchport: Enabled<br />

Administrative Mode: trunk<br />

Operational Mode: trunk<br />

Administrative Trunking Encapsulation: dot1q<br />

Operational Trunking Encapsulation: dot1q<br />

Negotiation of Trunking: On<br />

Access Mode VLAN: 1 (default)<br />

Trunking Native Mode VLAN: 1 (default)<br />

Administrative private-vlan host-association: none<br />

Administrative private-vlan mapping: none<br />

Operational private-vlan: none<br />

Trunking VLANs Enabled: ALL<br />

Pruning VLANs Enabled: 2-1001<br />

Protected: false<br />

Voice VLAN: none (Inactive)<br />

Appliance trust: none


382 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Basic Trunk Configuration Exercise<br />

Use Figure 9-1 to answer the following configuration scenario questions.<br />

Figure 9-1 Basic Trunk Configuration<br />

SWA <strong>and</strong> SWB are both 1900 switches. Record the comm<strong>and</strong> or comm<strong>and</strong>s, including prompt, needed to<br />

set the Fa0/2 <strong>and</strong> Fa0/3 interfaces to trunking. If necessary, specify ISL as the encapsulation. You may<br />

need to research the answer for this question. Try your favorite search engine or Cisco.com.<br />

Switch(config)#interface fa 0/2<br />

Switch(config-if)#trunk on<br />

Switch(config)#interface fa 0/3<br />

Switch(config-if)#trunk on<br />

!Trunk configuration is always ISL so no configuration needed<br />

SWA <strong>and</strong> SWB are both 2900 switches. Record the comm<strong>and</strong> or comm<strong>and</strong>s, including prompt, needed to<br />

set the Fa0/2 <strong>and</strong> Fa0/3 interfaces to trunking. If necessary, specify ISL as the encapsulation.<br />

Switch(config)#interface fa 0/2<br />

Switch(config-if)#switchport mode trunk<br />

Switch(config-if)#switchport trunk encapsulation isl<br />

Switch(config)#interface fa 0/3<br />

Switch(config-if)#switchport mode trunk<br />

Switch(config-if)#switchport trunk encapsulation isl<br />

SWA <strong>and</strong> SWB are both 2950 switches. Record the comm<strong>and</strong> or comm<strong>and</strong>s, including prompt, needed to<br />

set the Fa0/2 <strong>and</strong> Fa0/3 interfaces to trunking. If necessary, specify IEEE 802.1q as the encapsulation.<br />

VTP<br />

000e.385d.e380<br />

Priority: Default<br />

SWA<br />

Switch(config)#interface fa 0/2<br />

Switch(config-if)#switchport mode trunk<br />

Switch(config)#interface fa 0/3<br />

fa0/2<br />

fa0/3<br />

Switch(config-if)#switchport mode trunk<br />

!Trunk configuration is always IEEE 802.1q so no configuration needed<br />

Which switch is the STP root bridge <strong>and</strong> why?<br />

000d.6562.e380<br />

Priority: Default<br />

SWB is the STP root bridge, because it has the lowest MAC address.<br />

VTP was created by Cisco to solve operational problems in a switched network with VLANs. It is a Cisco<br />

proprietary protocol. With VTP, VLAN configuration is consistently maintained across a common administrative<br />

domain. Additionally, VTP reduces management <strong>and</strong> monitoring complexities of networks with<br />

VLANs.<br />

In this section, you will work through exercises that cover the basic concepts <strong>and</strong> configurations of VTP.<br />

You will also find several concept questions to answer. A lesson from Cisco.com will round out your study<br />

of VTP.<br />

fa0/2<br />

fa0/3<br />

SWB


Vocabulary Exercise: Completion<br />

Directions: Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

The role of VLAN Trunking Protocol, or VTP, is to maintain VLAN configuration consistency across a<br />

common network administration domain. Although switch ports are normally assigned to only a single<br />

VLAN, trunk ports by default carry frames from all VLANs.<br />

Switches can operate in one of three VTP modes. The default mode is VTP server. A switch operating in<br />

VTP server mode propagates configuration changes as VTP messages across trunk links to all connected<br />

switches in the network. Switches that are in VTP client mode <strong>and</strong> share the same domain name <strong>and</strong> password<br />

as the server use VTP messages to adjust the local VLAN database. Switches that are in VTP transparent<br />

mode do not use VTP messages. However, a switch in this mode forwards the VTP messages out all<br />

trunk links except for the link the messages were originally received on. In addition, a switch in transparent<br />

mode can create, modify, <strong>and</strong> delete its own local VLANs. Provide the missing information in Table 9-1.<br />

Table 9-1 VTP Mode Comparisons<br />

Feature Server Mode Client Mode Transparent Mode<br />

Source VTP messages Yes Yes No<br />

Listen to VTP messages Yes Yes No<br />

Create VLANs Yes No Yes 1<br />

Remember VLANs Yes No Yes 1<br />

1. Locally significant only.<br />

Before the VTP server will propagate VTP messages, it must be configured with a VTP domain name. The<br />

default name is null. Because all switches are in VTP server mode by default, there must be a method to<br />

determine which VLAN database will have priority. This is done through the concept of a configuration<br />

revision number, which is 0 when the switch first boots. Each time a VLAN is added, deleted, or modified<br />

by the VTP server, the configuration revision number is incremented <strong>and</strong> a VTP message is sent out all<br />

trunk ports. If more than one VTP server exists in the same VTP domain, then messages from the server<br />

with the highest configuration revision number take precedence over all other messages. As a precaution<br />

against misconfigurations, it is always a good idea to configure both VTP servers <strong>and</strong> VTP clients with a<br />

VTP password.<br />

VTP Basic Configuration Exercise<br />

Use Figure 9-2 to answer the following configuration scenario questions.<br />

Figure 9-2 VTP Basic Configuration<br />

You want to configure local VLANs on SWB that will not be propagated to SWA or SWC. In addition,<br />

you do not want SWB to apply any VLANs created by SWA or SWC. Therefore, you need to configure<br />

SWB to be in VTP transparent mode. Record the comm<strong>and</strong>s, including prompt, to configure SWB in this<br />

mode.<br />

Switch#vlan database<br />

Switch(vlan)#vtp transparent<br />

!or<br />

SWA<br />

Domain: <strong>CCNA</strong>3<br />

Server Transparent<br />

SWB<br />

Chapter 9: VLAN Trunking Protocol 383<br />

SWC<br />

Client


384 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Switch#config t<br />

Switch(config)#vtp mode transparent<br />

All your domain-wide VLANs are going to be created on SWA <strong>and</strong> propagated throughout the domain.<br />

Therefore, you need to configure SWA to be in VTP server mode. Record the comm<strong>and</strong>s, including<br />

prompt, to configure SWA in this mode.<br />

Switch#vlan database<br />

Switch(vlan)#vtp server<br />

!or<br />

Switch#config t<br />

Switch(config)#vtp mode server<br />

You do not want SWC to inadvertently be able to create VLANs. Therefore, you need to configure SWC<br />

to be in VTP client mode. Record the comm<strong>and</strong>s, including prompt, to configure SWC in this mode.<br />

Switch#vlan database<br />

Switch(vlan)#vtp client<br />

!or<br />

Switch#config t<br />

Switch(config)#vtp mode client<br />

Are there any problems with your configuration? Will SWC update its VLANs when SWA makes VLAN<br />

changes? Explain any problems <strong>and</strong> how to fix them.<br />

You need to make sure that SWC has a lower configuration revision number than SWA or it will disregard<br />

any VTP messages sent by SWA. You can verify that SWC has a lower revision number by using the show<br />

vtp status comm<strong>and</strong> on both switches. However, it is best to delete the VLAN database <strong>and</strong> then reload the<br />

switch:<br />

SWC#delete flash:vlan.dat<br />

Because SWB is in transparent mode, SWC will receive all VTP messages from SWA. However, no<br />

VLAN updates will occur until the domain name has been specified on switches wishing to participate in<br />

the domain. The following comm<strong>and</strong> needs to be entered on both SWA <strong>and</strong> SWC:<br />

Switch#vlan database<br />

Switch(vlan)#vtp domain <strong>CCNA</strong>3<br />

!or<br />

Switch#config t<br />

Switch(config)#vtp domain <strong>CCNA</strong>3<br />

Concept Questions<br />

Explain why VTP was developed by Cisco to solve operational problems in a switched network with<br />

VLANs.<br />

With VTP, VLAN configuration consistency is maintained across a common administration domain.<br />

Additionally, VTP reduces the complexity of managing <strong>and</strong> monitoring VLAN networks. A network engineer<br />

can make changes on a central switch <strong>and</strong> have those changes automatically communicated to all<br />

other switches in the same domain.<br />

List the two main types of VTP advertisements.<br />

Requests from clients that want information at bootup <strong>and</strong> responses from servers are the two main types<br />

of VTP advertisements.


List <strong>and</strong> describe the three types of VTP messages.<br />

■ Advertisement requests—Clients request VLAN information <strong>and</strong> the server responds with summary<br />

<strong>and</strong> subset advertisements.<br />

■ Summary advertisements—Sent by clients <strong>and</strong> servers every 5 minutes. If the switch receives a revision<br />

number that is higher than the current revision number in that switch, it issues an advertisement<br />

request for new VLAN information.<br />

■ Subset advertisements—Detailed information about VLANs such as VTP version type, domain name<br />

<strong>and</strong> related fields, <strong>and</strong> the configuration revision number.<br />

List at least three actions that can trigger a server to send subset advertisements.<br />

■ Create a VLAN<br />

■ Delete a VLAN<br />

■ Suspend a VLAN<br />

■ Change the name of a VLAN<br />

■ Change the MTU of a VLAN<br />

Internet Research: VTP<br />

At Cisco.com, you will find a very thorough review of VTP including information not covered in this<br />

chapter. Use the following link to access this VTP lesson online:<br />

http://www.cisco.com/warp/public/473/vtp_flash/<br />

When you are done, answer the questions that follow.<br />

Introduction to VTP<br />

VTP is a Layer 2 messaging protocol used to maintain VLAN configuration consistency by managing the<br />

addition, deletion, <strong>and</strong> renaming of VLANs on a network-wide basis.<br />

In a network with six switches <strong>and</strong> VLANs that are shared across switches, what would you have to do if<br />

you did not use VTP?<br />

Manually configure <strong>and</strong> maintain the VLANs on every switch.<br />

A VTP frame consists of a VTP header <strong>and</strong> a VTP message type. The VTP information is inserted in the<br />

data portion of an Ethernet frame.<br />

What kind of address do VTP messages use?<br />

VTP messages use a reserved multicast address.<br />

How often are summary advertisements sent <strong>and</strong> what is their purpose?<br />

Summary advertisements are sent every 5 minutes by servers <strong>and</strong> clients to inform other switches in the<br />

domain of what they believe the current configuration revision number to be. They are also sent when a<br />

configuration change is made.<br />

What does an advertisement request cause to happen?<br />

Chapter 9: VLAN Trunking Protocol 385<br />

An advertisement request causes the server to send both a summary <strong>and</strong> subset advertisements.


386 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

VTP Domain <strong>and</strong> VTP Modes<br />

When a switch has been cleared <strong>and</strong> rebooted, it has the following VTP configuration:<br />

■ VTP Domain Name = null<br />

■ VTP Mode = Server<br />

■ Configuration Revision = 0<br />

■ VLANs = 1<br />

The VTP server can add, delete, or rename VLANs. It also advertises the domain name, VLAN configuration,<br />

<strong>and</strong> configuration revision number to all other switches in the VTP domain. It also maintains a list of<br />

all VLANs in NVRAM so that it can retrieve this information if the switch is reset.<br />

A VTP client cannot add, delete, or rename VLANs. It does not store VLANs in NVRAM.<br />

Switches in VTP transparent mode must have their VLANs configured manually. They do not participate<br />

in VTP or advertise their VLAN configuration. When is it useful to configure a switch in this mode?<br />

When you want to manually configure VLANs or when VLANs are only locally significant <strong>and</strong> do not<br />

span the rest of the network.<br />

Before VLANs will be advertised by the VTP server, you must configure a domain name.<br />

Assume that VLANs 10, 20, <strong>and</strong> 30 have been added to a VTP server with appropriate names. What is the<br />

configuration revision number? 3<br />

Now assume that the name for VLAN 10 is changed, VLAN 30 is deleted, <strong>and</strong> VLAN 40 is added. What is<br />

the configuration revision number? 6<br />

List the three types of trunk links that VTP messages will be sent across.<br />

ISL, 802.1q, <strong>and</strong> LANE trunks<br />

What MAC address are VTP messages sent to?<br />

Multicast MAC 01-00-0C-CC-CC-CC<br />

Assume that you configure six VLANs on a VTP transparent switch. What would be the configuration<br />

revision number? 0<br />

The configuration revision number is not incremented in transparent mode.<br />

It what situations will a VTP transparent switch forward VTP messages to other switches.<br />

When it is configured in the same domain as the server or when it is configured in the null domain.<br />

Common VTP Issues<br />

Assuming that a new switch was configured with the correct domain name, what would happen if you<br />

were to add a VTP client or server switch with a higher configuration revision number to the network?<br />

As soon as a trunk link is established with the new switch, it will send out a summary advertisement. The<br />

other switches in the network will note the higher configuration revision number <strong>and</strong> send advertisement<br />

requests to the new switch. The new switch will then send out summary <strong>and</strong> subset advertisements with<br />

the VLAN configuration. All other switches will delete any existing VLAN configuration <strong>and</strong> update their<br />

VLANs with the VLANs advertised by the new switch. They will also update their configuration revision<br />

number. This scenario will occur regardless of whether the new switch is in client or server mode.


List three possible ways to reset the configuration revision number on a switch. (Only two methods are<br />

discussed in the presentation. Can you think of another way?)<br />

The quickest way to reset a configuration revision number is to temporarily set the VTP mode to transparent.<br />

You could also temporarily change the domain name. A third way is to delete the vlan.dat file <strong>and</strong><br />

reload the switch.<br />

Internet Research: VTP Pruning<br />

There will be a lot of traffic on a large switched network with VLANs that span multiple switches. VTP<br />

pruning is a method of reducing traffic. Research VTP pruning <strong>and</strong> briefly describe what it is, how it operates,<br />

<strong>and</strong> what configuration comm<strong>and</strong>s, if any, you would use. Make sure to list your sources.<br />

If the student simply enters “vtp pruning” in the Google search engine, one of the first links should be<br />

Cisco.com. Encourage students to use the Cisco.com explanation as their primary source of information,<br />

especially when learning about a Cisco proprietary technology like VTP. However, also encourage them to<br />

explore third-party explanations that might come at a difficult topic from a different perspective.<br />

The following link provides the Cisco.com discussion of VTP pruning:<br />

http://www.cisco.com/univercd/cc/td/doc/product/lan/cat5000/rel_4_2/config/vlans.htm<br />

The following links are helpful third-party sources:<br />

http://www.certificationzone.com/cisco/newsletter/SL/nla_11-30-04_newage.html<br />

http://www.firewall.cx/vlans-vtp-pruning.php<br />

http://www.networknewz.com/2004/0317.html<br />

Inter-VLAN Routing Overview<br />

Inter-VLAN communication cannot occur without a Layer 3 device, such as a router. You will use ISL or<br />

IEEE 802.1q to enable trunking on a router subinterface. In this section, you will briefly review the concept<br />

of inter-VLAN routing. Then, you will work through a inter-VLAN routing configuration exercise.<br />

Vocabulary Exercise: Completion<br />

Chapter 9: VLAN Trunking Protocol 387<br />

Directions: Complete the paragraphs that follow by filling in appropriate words <strong>and</strong> phrases.<br />

Inter-VLAN communication crosses broadcast domains. When a host in one broadcast domain wishes to<br />

communicate with a host in another broadcast domain, you must use a router. When connecting a router to<br />

a switched network with multiple VLANs, one interface is needed per VLAN because each is on its own<br />

logical network or subnet. You can reduce the number of physical interfaces needed to route VLANs by<br />

using a trunk link between the switch <strong>and</strong> router. You achieve logical division of a physical interface by<br />

implementing subinterfaces. One subinterface would be configured per VLAN. Each subinterface would<br />

also be configured with an IP address from a separate logical subnet.


388 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Basic Inter-VLAN Configuration Exercise<br />

Use Figure 9-3 to answer the following configuration scenario questions.<br />

Figure 9-3 Basic Inter-VLAN Configuration<br />

What does a router like RTA require in order to route between VLANs?<br />

It requires a Fast Ethernet interface <strong>and</strong> an IOS that supports inter-VLAN routing.<br />

Record the comm<strong>and</strong>s, including prompt, to configure RTA to route for all the VLANs shown in Figure 9-<br />

3. Use IEEE 802.1q encapsulation. Describe all interfaces <strong>and</strong> make sure you append the word native to<br />

the end of the encapsulation configuration for VLAN 1. Use the first available IP address in each network.<br />

RTA(config)#interface FastEthernet 0<br />

! Activate the physical interface if it won’t come up<br />

RTA(config-if)#no shutdown<br />

VLAN 1 192.168.1.0/24<br />

VLAN 100 192.168.100.0/24<br />

VLAN 200 192.168.200.0/24<br />

VLAN 300 192.168.300.0/24<br />

! Configure the Management VLAN 1. Don’t forget ‘native’<br />

RTA(config-if)#interface FastEthernet 0.1<br />

RTA(config-subif)#description Management VLAN 1<br />

RTA(config-subif)#encapsulation dot1Q 1 native<br />

RTA(config-subif)#ip address 192.168.1.1 255.255.255.0<br />

! Configure routing for VLAN 100<br />

RTA(config-subif)#interface FastEthernet0.100<br />

RTA(config-subif)#description Accounting VLAN 100<br />

RTA(config-subif)#encapsulation dot1Q 100<br />

RTA(config-subif)#ip address 192.168.100.1 255.255.255.0<br />

! Configure routing for VLAN 200<br />

RTA(config-subif)#interface FastEthernet0.200<br />

RTA(config-subif)#description Marketing VLAN 200<br />

RTA(config-subif)#encapsulation dot1Q 200<br />

RTA(config-subif)#ip address 192.168.200.1 255.255.255.0<br />

! Configure routing for VLAN 300<br />

VLAN 100<br />

Accounting<br />

RTA(config-subif)#interface FastEthernet0.300<br />

RTA(config-subif)#description Purchasing VLAN 300<br />

RTA(config-subif)#encapsulation dot1Q 300<br />

RTA<br />

fa0<br />

SWA<br />

VLAN 200<br />

Marketing<br />

RTA(config-subif)#ip address 192.168.300.1 255.255.255.0<br />

VLAN 300<br />

Purchasing


Lab Exercises<br />

Comm<strong>and</strong> Reference<br />

In the table that follows, record the comm<strong>and</strong>, including the correct switch prompt, that fits the description<br />

for a 1900 Catalyst switch.<br />

1900 Switch Comm<strong>and</strong> Description<br />

Switch(config)#interface fa 0/26<br />

Switch(config-if)#trunk on Turns port to trunking mode<br />

Switch#show trunk A Displays trunking information about port 0/26, which is<br />

trunk A<br />

Switch(config)#vtp client Changes the switch to client mode<br />

Switch(config)#vtp server Changes the switch to server mode<br />

Switch(config)#vtp transparent Changes the switch to transparent mode<br />

Switch(config)#vtp domain <strong>CCNA</strong>3 Sets the name of the VTP management domain to <strong>CCNA</strong>3<br />

Switch(config)#vtp password cisco Set the VTP password to cisco<br />

Switch#show vtp Displays all VTP information<br />

In the table that follows, record the comm<strong>and</strong>, including the correct switch prompt, that fits the description<br />

for a 2900 Catalyst switch. When appropriate, use VLAN database configuration mode.<br />

2900 Switch Comm<strong>and</strong> Description<br />

Switch(config)#interface fa 0/1<br />

Switch(config-if)#switchport mode trunk Turns port to trunking mode<br />

Switch(config-if)#switchport trunk encapsulation isl Sets encapsulation type to ISL<br />

Switch(config-if)#switchport trunk encapsulation dot1q Sets encapsulation type to Dot1Q—<br />

the default encapsulation type<br />

Switch#vlan database Enters VLAN database mode<br />

Switch(vlan)#vtp client Changes the switch to client mode<br />

Switch(vlan)#vtp server Changes the switch to server mode<br />

Switch(vlan)#vtp transparent Changes the switch to transparent mode<br />

Switch(vlan)#vtp domain <strong>CCNA</strong>3 Sets the name of the VTP management<br />

domain to <strong>CCNA</strong>3<br />

Switch(vlan)#vtp password cisco Set the VTP password to cisco<br />

Switch(vlan)#vtp v2-mode Sets VTP mode to version 2<br />

Switch(vlan)#vtp pruning Enables VTP pruning<br />

Chapter 9: VLAN Trunking Protocol 389<br />

Switch(vlan)#exit Applies the VLAN database changes <strong>and</strong><br />

exits the mode


390 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

In the table that follows, record the comm<strong>and</strong>, including the correct switch prompt, that fits the description<br />

for a 2950 Catalyst switch. When appropriate, use global configuration mode. Do not use VLAN database<br />

configuration mode.<br />

2950 Switch Comm<strong>and</strong> Description<br />

Switch(config)#interface fa 0/1<br />

Switch(config-if)#switchport mode trunk Turns port to trunking mode<br />

Switch#show int fa 0/1 switchport Shows the status of interface Fa0/1, including trunking<br />

information (works with both 2900 <strong>and</strong> 2950 switches)<br />

Switch(config)#vtp mode client Changes the switch to client mode<br />

Switch(config)#vtp mode server Changes the switch to server mode<br />

Switch(config)#vtp mode transparent Changes the switch to transparent mode<br />

Switch(config)#vtp domain <strong>CCNA</strong>3 Sets the name of the VTP management domain to <strong>CCNA</strong>3<br />

Switch(config)#vtp password cisco Set the VTP password to cisco<br />

Switch(config)#vtp v2-mode Sets VTP mode to version 2<br />

Switch(config)#vtp pruning Enables VTP pruning<br />

Switch#show vtp status Displays VTP domain status (works with both 2900 <strong>and</strong><br />

2950 switches)<br />

Switch#show vtp counters Displays VTP statistics (works with both 2900 <strong>and</strong> 2950<br />

switches)<br />

In the table that follows, record the comm<strong>and</strong>, including the correct router prompt, that fits the description<br />

for a 2600 series router.<br />

2600 Comm<strong>and</strong> Description<br />

Router(config)#int fa0/0 Enters interface mode for interface Fa0/0<br />

Router(config-if)#no shutdown Turns on the interface<br />

Router(config-if)#int fa 0/0.1 Creates subinterface 0/0.1<br />

Router(config-subif)#encapsulation dot1q 1 native Assigns the native VLAN to this logical<br />

subinterface using Dot1Q encapsulation<br />

Router(config-subif)#ip address 192.168.1.1 255.255.255.0 Assigns the IP address 192.168.1.1/24 to<br />

this logical interface<br />

Router(config-subif)#int fa0/0.10 Creates subinterface 0/0.10<br />

Router(config-subif)#encapsulation dot1q 10 Assigns VLAN 10 to this logical interface<br />

using Dot1Q encapsulation<br />

Router(config-subif)#ip address 192.168.10.1 255.255.255.0 Assigns the IP address 192.168.10.1/24 to<br />

this logical interface


Curriculum Lab 9-1: Trunking with ISL (9.1.5a)<br />

Figure 9-4 Topology for Lab 9-1<br />

Table 9-2 Lab Equipment Configuration<br />

Switch Switch Name VLAN 1 IP Address VLAN Names Switch Port<br />

Designation <strong>and</strong> Numbers Assignments<br />

Switch 1 Switch_A 192.168.1.2 VLAN 1 Native Fa0/2<strong>–</strong>0/3<br />

VLAN 10 Accounting Fa0/4<strong>–</strong>0/6<br />

VLAN 20 Marketing Fa0/7<strong>–</strong>0/9<br />

VLAN 30 Engineering Fa0/10<strong>–</strong>0/12<br />

Switch 2 Switch_B 192.168.1.3 VLAN 1 Native Fa0/2<strong>–</strong>0/3<br />

VLAN 10 Accounting Fa0/4<strong>–</strong>0/6<br />

VLAN 20 Marketing Fa0/7<strong>–</strong>0/9<br />

VLAN 30 Engineering Fa0/10<strong>–</strong>0/12<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

The subnet mask for both routers is 255.255.255.0.<br />

Objectives<br />

FA0/1 FA0/1<br />

FA0/12 Trunk 802.1q<br />

FA0/12<br />

Switch 1 Switch 2<br />

Straight-Through Cable<br />

Crossover Cable<br />

Rollover (Console) Cable<br />

Serial Cable<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Create multiple VLANs, name them, <strong>and</strong> assign multiple member ports to them.<br />

Chapter 9: VLAN Trunking Protocol 391<br />

■ Create an ISL trunk line between the two switches to allow communication between paired VLANs.<br />

■ Test the VLANs’ functionality by moving a workstation from one VLAN to another.


392 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Background/Preparation<br />

Important Note: The use of Catalyst 2950 switches is not appropriate for this lab, because those switches support<br />

only 802.1q trunking.<br />

Trunking changes the formatting of the packets. The ports need to be in agreement as to which format is<br />

being used to transmit data on the trunk, or no data will be passed. If different trunking encapsulation<br />

occurs on the two ends of the link, they will not able to communicate. A similar situation will occur if one<br />

of your ports is configured in trunking mode (unconditionally) <strong>and</strong> the other one is in access mode (unconditionally).<br />

When you are managing a switch, the management domain is always VLAN 1. The network administrator’s<br />

workstation must have access to a port in the VLAN 1 management domain. All ports are assigned to<br />

VLAN 1 by default. This lab will help demonstrate how you can use VLANs to separate traffic <strong>and</strong> reduce<br />

broadcast domains.<br />

Cable a network that is similar to the one in Figure 9-4. The configuration output used in this lab is produced<br />

from a 2900 switch. Another switch might produce different output. You should execute the following<br />

steps on each switch unless you are specifically instructed otherwise.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B, “Erasing <strong>and</strong> Reloading the Switch,” before you<br />

continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostname, access, <strong>and</strong> comm<strong>and</strong> mode passwords, as well as the management LAN settings.<br />

These values are shown in Table 9-2. If you have problems while performing this configuration, refer to<br />

Lab 6-2, “Basic Switch Configuration.”<br />

Task 2: Configure the Hosts Attached to the Switch<br />

Configure the host to use the same subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

Task 3: Verify Connectivity<br />

To verify that the hosts <strong>and</strong> switch are correctly configured, ping the switch from the hosts.<br />

Were the pings successful? Yes<br />

If the answer is no, troubleshoot the hosts <strong>and</strong> switch configurations.<br />

Task 4: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16


1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 5: Create <strong>and</strong> Name Three VLANs<br />

Use the following comm<strong>and</strong>s to create three named VLANs:<br />

2900 Switch<br />

Switch_A#vlan database<br />

Switch_A(vlan)#vlan 10 name Accounting<br />

Switch_A(vlan)#vlan 20 name Marketing<br />

Switch_A(vlan)#vlan 30 name Engineering<br />

Switch_A(config)#exit<br />

2950 Switch<br />

Switch_A#configure terminal<br />

Switch_A(config)#vlan 10<br />

Switch_A(config-vlan)#name Accounting<br />

Switch_A(config-vlan)#vlan 20<br />

Switch_A(config-vlan)#name Marketing<br />

Switch_A(config-vlan)#vlan 30<br />

Switch_A(config-vlan)#name Engineering<br />

Note: VLAN database mode is being deprecated in future releases of Cisco IOS. For now, both VLAN database mode<br />

<strong>and</strong> global configuration mode are supported for creating VLANs.<br />

Task 6: Assign Ports to VLAN 10<br />

Chapter 9: VLAN Trunking Protocol 393


394 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

You must assign ports to VLANs from the interface mode. Enter the following comm<strong>and</strong>s to add ports 0/4<br />

to 0/6 to VLAN 10:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/4<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#interface fastethernet 0/5<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#interface fastethernet 0/6<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#end<br />

Note: Use the range parameter to quickly configure several interfaces with the same comm<strong>and</strong>. For example:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface range fastethernet 0/4 - 6<br />

Switch_A(config-if-range)#switchport mode access<br />

Switch_A(config-if-range)#switchport access vlan 10<br />

Switch_A(config-if-range)#end<br />

Task 7: Assign Ports to VLAN 20<br />

Enter the following comm<strong>and</strong>s to add ports 0/7 to 0/9 to VLAN 20:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/7<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#interface fastethernet 0/8<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#interface fastethernet 0/9<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#end<br />

Task 8: Assign Ports to VLAN 30<br />

Enter the following comm<strong>and</strong>s to add ports 0/10 to 0/12 to VLAN 30:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/10<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 30<br />

Switch_A(config-if)#interface fastethernet 0/11<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 30


Switch_A(config-if)#interface fastethernet 0/12<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 30<br />

Switch_A(config-if)#end<br />

Task 9: Create VLANs on Switch_B<br />

Repeat Tasks 5 through 8 on Switch_B to create its VLANs.<br />

Task 10: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Are ports 0/10 to 0/12 assigned to VLAN 30? Yes<br />

Switch_A#sh vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/13<br />

Fa0/14, Fa0/15, Fa0/16, Fa0/17<br />

Fa0/18, Fa0/19, Fa0/20, Fa0/21<br />

Fa0/22, Fa0/23, Fa0/24<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6<br />

20 Marketing active Fa0/7, Fa0/8, Fa0/9<br />

30 Engineering active Fa0/10, Fa0/11, Fa0/12<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

10 enet 100010 1500 - - - - - 0 0<br />

20 enet 100020 1500 - - - - - 0 0<br />

30 enet 100030 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

Chapter 9: VLAN Trunking Protocol 395<br />

———————————————————————————————————————


396 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 11: Test the VLANs<br />

Step 1. Ping from the host in Switch_A port 0/12 to the host in Switch_B port 0/12.<br />

Was the ping successful? No<br />

Why?<br />

No trunk has been configured.<br />

Step 2. Ping from the host in Switch_A port 0/12 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

The interfaces are in different VLANs.<br />

Task 12: Create the ISL Trunk<br />

On both Switch_A <strong>and</strong> Switch_B, enter the following comm<strong>and</strong> at the Fast Ethernet 0/1 interface comm<strong>and</strong><br />

prompt:<br />

Switch_A(config)#interface fastethernet 0/1<br />

Switch_A(config-if)#switchport mode trunk<br />

Switch_A(config-if)#switchport trunk encapsulation isl<br />

Switch_A(config-if)#end<br />

Switch_B(config)#interface fastethernet 0/1<br />

Switch_B(config-if)#switchport mode trunk<br />

Switch_B(config-if)#switchport trunk encapsulation isl<br />

Switch_B(config-if)#end<br />

Task 13: Verify the ISL Trunk<br />

To verify that port Fast Ethernet 0/1 has been established as a trunk port, enter show interface fastethernet<br />

0/1 switchport at the privileged EXEC mode prompt.<br />

What type of trunking encapsulation is shown in the output? ISL<br />

According to the output with show interface fastethernet 0/1 switchport on Switch_B, is there a difference<br />

between the Administrative Trunking Encapsulation <strong>and</strong> the Operational Trunking Encapsulation?<br />

Switch_A#show interface fastEthernet 0/1 switchport<br />

Name: Fa0/1<br />

Switchport: Enabled<br />

Administrative mode: trunk<br />

Operational Mode: trunk<br />

Administrative Trunking Encapsulation: isl<br />

Operational Trunking Encapsulation: isl<br />

Negotiation of Trunking: Disabled<br />

Access Mode VLAN: 0 ((Inactive))


Trunking Native Mode VLAN: 1 (default)<br />

Trunking VLANs Enabled: ALL<br />

Trunking VLANs Active: 1,10,20,30<br />

Pruning VLANs Enabled: 2-1001<br />

Priority for untagged frames: 0<br />

Override vlan tag priority: FALSE<br />

Voice VLAN: none<br />

Appliance trust: none<br />

Self Loopback: No<br />

No, both encapsulation types are ISL.<br />

On the fragment “Trunking VLANs Enable” from the last output, what does the word ALL mean?<br />

It means that traffic from all VLANs is allowed to cross the trunked link.<br />

What would happen if the two ports of the trunk were using different encapsulation?<br />

It would not form a trunk.<br />

Explain.<br />

The encapsulation must match on both sides of the link in order for the trunk to form.<br />

Task 14: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/12 to the host in<br />

Switch_B port 0/12.<br />

Was the ping successful? Yes<br />

Why?<br />

The hosts are on the same VLAN with trunking enabled on port 0/1.<br />

Step 2. Ping from the host in Switch_A port 0/12 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

The interfaces are on different VLANs.<br />

Task 15: Move the Hosts<br />

Move the host in Switch_A from port 0/12 to port 0/8, wait until the port LED turns green, <strong>and</strong> then go to<br />

the next task.<br />

Task 16: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/8 to the host in<br />

Switch_B port 0/12.<br />

Was the ping successful? No<br />

Why?<br />

The hosts are on different VLANs.<br />

Step 2. Ping from the host in Switch_A port 0/8 to the switch IP 192.168.1.2.<br />

Chapter 9: VLAN Trunking Protocol 397


398 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Was the ping successful? No<br />

Why?<br />

The hosts are on different VLANs.<br />

Task 17: Move the Hosts<br />

Move the host in Switch_B from port 0/12 to port 0/7, wait until the port LED turns green, <strong>and</strong> then go to<br />

the next task.<br />

Task 18: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/8 to the host in<br />

Switch_B port 0/7.<br />

Was the ping successful? Yes<br />

Why?<br />

The hosts are now on the same VLAN (VLAN 20).<br />

Step 2. Ping from the host in Switch_A port 0/8 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

The interfaces are on different VLANs.<br />

Task 19: Move the Hosts<br />

Move the host in Switch_A from port 0/8 to port 0/2, wait until the port LED turns green, <strong>and</strong> then go to<br />

the next task.<br />

Task 20: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/2 to the host in<br />

Switch_B port 0/7.<br />

Was the ping successful? No<br />

Step 2. Ping from the host in Switch_A port 0/2 to the switch IP 192.168.1.2.<br />

Was the ping successful? Yes<br />

Why?<br />

Both interfaces are assigned to the same VLAN (VLAN 1).<br />

Task 21: Move the Hosts<br />

Move the host in Switch_B from port 0/7 to port 0/3, wait until the port LED turns green, <strong>and</strong> then go to<br />

the next task.<br />

Task 22: Test the VLANs <strong>and</strong> the Trunk


Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/2 to the host in<br />

Switch_B port 0/3.<br />

Was the ping successful? Yes<br />

Why?<br />

Both hosts now belong to the same VLAN.<br />

Step 2. Ping from the host in Switch_B port 0/3 to the switch IP 192.168.1.2.<br />

Was the ping successful? Yes<br />

Why?<br />

Both interfaces are assigned to the same VLAN (VLAN 1).<br />

Step 3. Ping from the host in Switch_B port 0/3 to the switch IP 192.168.1.3.<br />

Was the ping successful? Yes<br />

Why?<br />

Both interfaces are assigned to the same VLAN (VLAN 1).<br />

What conclusions can you draw from the testing that you just performed in regard to VLAN<br />

membership <strong>and</strong> VLANs across a trunk?<br />

Hosts must be grouped together into the same VLAN before they can communicate with each<br />

other. Trunk links carry VLAN traffic across switches.<br />

Step 4. After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn all the devices off.<br />

Then, remove <strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Switch_A<br />

Switch_A#show running-config<br />

Building configuration...<br />

Current configuration:<br />

!<br />

version 12.0<br />

no service pad<br />

service timestamps debug uptime<br />

service timestamps log uptime<br />

no service password-encryption<br />

!<br />

hostname Switch_A<br />

!<br />

enable secret 5 $1$Spup$4rLiyqQseDcu2xWzhd9Ko.<br />

Chapter 9: VLAN Trunking Protocol 399


400 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

!<br />

ip subnet-zero<br />

!<br />

interface FastEthernet0/1<br />

switchport mode trunk<br />

!<br />

interface FastEthernet0/2<br />

!<br />

interface FastEthernet0/3<br />

!<br />

interface FastEthernet0/4<br />

switchport access vlan 10<br />

!<br />

interface FastEthernet0<br />

switchport access vlan 10<br />

!<br />

interface FastEthernet0/6<br />

switchport access vlan 10<br />

!<br />

interface FastEthernet0/7<br />

switchport access vlan 20<br />

!<br />

interface FastEthernet0/8<br />

switchport access vlan 20<br />

!<br />

interface FastEthernet0/9<br />

switchport access vlan 20<br />

!


interface FastEthernet0/10<br />

switchport access vlan 30<br />

!<br />

interface FastEthernet0/11<br />

switchport access vlan 30<br />

!<br />

interface FastEthernet0/12<br />

switchport access vlan 30<br />

!<br />

interface VLAN1<br />

ip address 192.168.1.2 255.255.255.0<br />

no ip directed-broadcast<br />

no ip route-cache<br />

!<br />

ip default-gateway 192.168.1.1<br />

!<br />

line con 0<br />

password cisco<br />

login<br />

transport input none<br />

stopbits 1<br />

line vty 0 4<br />

password cisco<br />

login<br />

line vty 5 15<br />

password cisco<br />

login<br />

!<br />

end<br />

Chapter 9: VLAN Trunking Protocol 401


402 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Curriculum Lab 9-2: Trunking with 802.1q (9.1.5b)<br />

Figure 9-5 Topology for Lab 9-2<br />

Table 9-3 Lab Equipment Configuration<br />

Switch Switch VLAN 1 IP VLAN Names Switch Port<br />

Designation Name Address <strong>and</strong> Numbers Assignments<br />

Switch 1 Switch_A 192.168.1.2 VLAN 1 Native Fa0/2<strong>–</strong>0/3<br />

VLAN 10 Accounting Fa0/4<strong>–</strong>0/6<br />

VLAN 20 Marketing Fa0/7<strong>–</strong>0/9<br />

VLAN 30 Engineering Fa0/10<strong>–</strong>0/12<br />

Switch 2 Switch_B 192.168.1.3 VLAN 1 Native Fa0/2<strong>–</strong>0/3<br />

VLAN 10 Accounting Fa0/4<strong>–</strong>0/6<br />

VLAN 20 Marketing Fa0/7<strong>–</strong>0/9<br />

VLAN 30 Engineering Fa0/10<strong>–</strong>0/12<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

The subnet mask for both routers is 255.255.255.0.<br />

Objectives<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Create multiple VLANs, name them, <strong>and</strong> assign multiple member ports to them.<br />

■ Create an 802.1q trunk line between the two switches to allow communication between paired VLANs.<br />

■ Test the VLANs’ functionality by moving a workstation from one VLAN to another.<br />

Background/Preparation<br />

FA0/1 FA0/1<br />

FA0/12 Trunk 802.1q<br />

FA0/12<br />

Switch 1 Switch 2<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Crossover Cable<br />

Serial Cable<br />

Trunking changes the formatting of the packets. The ports need to be in agreement as to which format is<br />

being used to transmit data on the trunk, or no data will be passed. If the two ends of the link have a different<br />

trunking encapsulation, they will not be able to communicate. A similar situation will occur if one<br />

of your ports is configured in trunking mode (unconditionally) <strong>and</strong> the other one is in access mode (unconditionally).<br />

When you are managing a switch, the management domain is always VLAN 1. The network administrator’s<br />

workstation must have access to a port in the VLAN 1 management domain. All ports are assigned to<br />

VLAN 1 by default. This lab will help demonstrate how you can use VLANs to separate traffic <strong>and</strong> reduce<br />

broadcast domains.


Cable a network that is similar to the one in Figure 9-5. The configuration output that is used in this lab is<br />

produced from a 2950 series switch. Another switch might produce different output. You should execute<br />

the following steps on each switch unless you are specifically instructed otherwise.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B before you continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostname, access, <strong>and</strong> comm<strong>and</strong> mode passwords, as well as the management LAN settings.<br />

These values are shown in Table 9-3. If you have problems while performing this configuration, refer to<br />

Lab 6-2, “Basic Switch Configuration.” Do not configure VLANs <strong>and</strong> trunking yet.<br />

Task 2: Configure the Hosts Attached to the Switch<br />

Configure the host to use the same subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

Task 3: Verify Connectivity<br />

To verify that the hosts <strong>and</strong> switch are configured correctly, ping the switch from the hosts.<br />

Were the pings successful? Yes<br />

If the answer is no, troubleshoot the hosts <strong>and</strong> switch configurations.<br />

Task 4: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Chapter 9: VLAN Trunking Protocol 403<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0


404 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 5: Create <strong>and</strong> Name Three VLANs<br />

Enter the following comm<strong>and</strong>s to create three named VLANs:<br />

2900 Switch<br />

Switch_A#vlan database<br />

Switch_A(vlan)#vlan 10 name Accounting<br />

Switch_A(vlan)#vlan 20 name Marketing<br />

Switch_A(vlan)#vlan 30 name Engineering<br />

Switch_A(vlan)#exit<br />

2950 Switch<br />

Switch_A#configure terminal<br />

Switch_A(config)#vlan 10<br />

Switch_A(config-vlan)#name Accounting<br />

Switch_A(config-vlan)#vlan 20<br />

Switch_A(config-vlan)#name Marketing<br />

Switch_A(config-vlan)#vlan 30<br />

Switch_A(config-vlan)#name Engineering<br />

Note: VLAN database mode is being deprecated in future releases of Cisco IOS. For now, both VLAN database mode<br />

<strong>and</strong> global configuration mode are supported for creating VLANs.<br />

Task 6: Assign Ports to VLAN 10<br />

You must assign ports to VLANs from the interface mode. Enter the following comm<strong>and</strong>s to add ports 0/4<br />

to 0/6 to VLAN 10:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/4<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#interface fastethernet 0/5<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#interface fastethernet 0/6<br />

Switch_A(config-if)#switchport mode access


Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#end<br />

Note: Use the range parameter to quickly configure several interfaces with the same comm<strong>and</strong>. For example:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface range fastethernet 0/4 - 6<br />

Switch_A(config-if-range)#switchport mode access<br />

Switch_A(config-if-range)#switchport access vlan 10<br />

Switch_A(config-if-range)#end<br />

Task 7: Assign Ports to VLAN 20<br />

Enter the following comm<strong>and</strong>s to add ports 0/7 to 0/9 to VLAN 20:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/7<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#interface fastethernet 0/8<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#interface fastethernet 0/9<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#end<br />

Task 8: Assign Ports to VLAN 30<br />

Enter the following comm<strong>and</strong>s to add ports 0/10 to 0/12 to VLAN 30:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/10<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 30<br />

Switch_A(config-if)#interface fastethernet 0/11<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 30<br />

Switch_A(config-if)#interface fastethernet 0/12<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 30<br />

Switch_A(config-if)#end<br />

Task 9: Create VLANs on Switch_B<br />

Repeat Tasks 5 through 8 on Switch_B to create its VLANs.<br />

Chapter 9: VLAN Trunking Protocol 405


406 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 10: Display the VLAN Interface Information<br />

On both switches, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Are ports 0/10 to 0/12 assigned to VLAN 30? Yes<br />

Switch_A#sh vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/13<br />

Fa0/14, Fa0/15, Fa0/16, Fa0/17<br />

Fa0/18, Fa0/19, Fa0/20, Fa0/21<br />

Fa0/22, Fa0/23, Fa0/24<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6<br />

20 Marketing active Fa0/7, Fa0/8, Fa0/9<br />

30 Engineering active Fa0/10, Fa0/11, Fa0/12<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

10 enet 100010 1500 - - - - - 0 0<br />

20 enet 100020 1500 - - - - - 0 0<br />

30 enet 100030 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 11: Test the VLANs<br />

Step 1. Ping from the host in Switch_A port 0/12 to the host in Switch_B port 0/12.<br />

Was the ping successful? No


Why?<br />

No trunk has been configured yet.<br />

Step 2. Ping from the host in Switch_A port 0/12 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

The interfaces are in different VLANs.<br />

Task 12: Create the Trunk<br />

On both switches, Switch_A <strong>and</strong> Switch_B, enter the following comm<strong>and</strong> at the Fast Ethernet 0/1 interface<br />

comm<strong>and</strong> prompt. Note that it is not necessary to specify the encapsulation on a 2950, because it only<br />

supports 802.1q.<br />

Switch_A(config)#interface fastethernet 0/1<br />

Switch_A(config-if)#switchport mode trunk<br />

Switch_A(config-if)#end<br />

Switch_B(config)#interface fastethernet 0/1<br />

Switch_B(config-if)#switchport mode trunk<br />

Switch_B(config-if)#end<br />

2900:<br />

Switch_A(config)#interface fastethernet0/1<br />

Switch_A(config-if)#switchport mode trunk<br />

Switch_A(config-if)#switchport trunk encapsulation dot1q<br />

Switch_A(config-if)#end<br />

Switch_B(config)#interface fastethernet0/1<br />

Switch_B(config-if)#switchport mode trunk<br />

Switch_B(config-if)#switchport trunk encapsulation dot1q<br />

Switch_B(config-if)#end<br />

Task 13: Verify the Trunk<br />

To verify that port Fast Ethernet 0/1 has been established as a trunk port, enter show interface fastethernet<br />

0/1 switchport at the privileged EXEC mode prompt.<br />

What type of trunking encapsulation is shown on the output results? Dot1q<br />

According to the output with show interface fastethernet 0/1 switchport on Switch_B, is there a difference<br />

between the Administrative Trunking Encapsulation <strong>and</strong> the Operational Trunking Encapsulation?<br />

Switch_A#show interface fastEthernet 0/1 switchport<br />

Name: Fa0/1<br />

Switchport: Enabled<br />

Administrative Mode: trunk<br />

Operational Mode: trunk<br />

Administrative Trunking Encapsulation: dot1q<br />

Operational Trunking Encapsulation: dot1q<br />

Negotiation of Trunking: On<br />

Chapter 9: VLAN Trunking Protocol 407


408 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Access Mode VLAN: 1 (default)<br />

Trunking Native Mode VLAN: 1 (default)<br />

Voice VLAN: none<br />

Administrative private-vlan host-association: none<br />

Administrative private-vlan mapping: none<br />

Operational private-vlan: none<br />

Trunking VLANs Enabled: ALL<br />

Pruning VLANs Enabled: 2-1001<br />

Capture Mode Disabled<br />

Capture VLANs Allowed: ALL<br />

Protected: false<br />

Voice VLAN: none (Inactive)<br />

Appliance trust: none<br />

No, both encapsulation types were Dot1q.<br />

On the fragment “Trunking VLANs Enable” from the last output, what does the word ALL mean?<br />

It means that traffic from all VLANs is allowed to cross the trunk link.<br />

What would happen if the two ports of the trunk were using different encapsulation?<br />

It would not form a trunk.<br />

Explain.<br />

The encapsulation must match on both sides of the link in order for the trunk to form.<br />

Task 14: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/12 to the host in<br />

Switch_B port 0/12.<br />

Was the ping successful? Yes<br />

Why?<br />

Both hosts are in the same VLAN <strong>and</strong> the trunk has been configured.<br />

Step 2. Ping from the host in Switch_A port 0/12 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

The interfaces belong to different VLANs.<br />

Task 15: Move the Hosts<br />

Move the host in Switch_A from port 0/12 to port 0/8, wait until the port LED turns green, <strong>and</strong> then go to<br />

the next task.


Task 16: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/8 to the host in<br />

Switch_B port 0/12.<br />

Was the ping successful? No<br />

Why?<br />

The hosts are on separate VLANs.<br />

Step 2. Ping from the host in Switch_A port 0/8 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

The interfaces belong to different VLANs.<br />

Task 17: Move the Hosts<br />

Move the host in Switch_B from port 0/12 to port 0/7, wait until the port LED turns green, <strong>and</strong> then go to<br />

the next task.<br />

Task 18: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/8 to the host in<br />

Switch_B port 0/7.<br />

Was the ping successful? Yes<br />

Why?<br />

The hosts are now on the same VLAN (VLAN 20).<br />

Step 2. Ping from the host in Switch_A port 0/8 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

The interfaces belong to different VLANs.<br />

Task 19: Move the Hosts<br />

Chapter 9: VLAN Trunking Protocol 409<br />

Move the host in Switch_A from port 0/8 to port 0/2, wait until the port LED turns green, <strong>and</strong> then go to<br />

the next task.


410 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 20: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/2 to the host in<br />

Switch_B port 0/7.<br />

Was the ping successful? No<br />

Step 2. Ping from the host in Switch_A port 0/2 to the switch IP 192.168.1.2.<br />

Was the ping successful? Yes<br />

Why?<br />

Both interfaces are assigned to the same VLAN (VLAN 1).<br />

Task 21: Move the Hosts<br />

Move the host in Switch_B from port 0/7 to port 0/3, wait until the port LED turns green, <strong>and</strong> then go to<br />

the next task.<br />

Task 22: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/2 to the host in<br />

Switch_B port 0/3.<br />

Was the ping successful? Yes<br />

Why?<br />

Both hosts now belong to the same VLAN.<br />

Step 2. Ping from the host in Switch_B port 0/3 to the switch IP 192.168.1.2.<br />

Was the ping successful? Yes<br />

Why?<br />

Both hosts now belong to the same VLAN.<br />

Step 3. Ping from the host in Switch_B port 0/3 to the switch IP 192.168.1.3.<br />

Was the ping successful? Yes<br />

Why?<br />

Both interfaces are assigned to the same VLAN (VLAN 1).<br />

What conclusions can you draw from the testing that you just performed in regard to VLAN<br />

membership <strong>and</strong> VLANs across a trunk?<br />

Hosts must be grouped together into the same VLAN before they can communicate with each<br />

other. Trunk links carry VLAN traffic across switches.<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn all the devices off. Then, remove<br />

<strong>and</strong> store the cables <strong>and</strong> adapter.


Curriculum Lab 9-3: VTP Client <strong>and</strong> Server<br />

Configurations (9.2.5)<br />

Figure 9-6 Topology for Lab 9-3<br />

Table 9-4 Lab Equipment Configuration<br />

Switch Switch Name VLAN 1 VLAN Names Switch Port<br />

Designation IP Address <strong>and</strong> Numbers Assignments<br />

Switch 1 Switch_A 192.168.1.2 VLAN 1 Native Fa0/2<strong>–</strong>0/3<br />

VLAN 10 Accounting Fa0/4<strong>–</strong>0/6<br />

VLAN 20 Marketing Fa0/7<strong>–</strong>0/9<br />

VLAN 30 Engineering Fa0/10<strong>–</strong>0/12<br />

Switch 2 Switch_B 192.168.1.3 VLAN 1 Native Fa0/2<strong>–</strong>0/3<br />

VLAN 10 Accounting Fa0/4<strong>–</strong>0/6<br />

VLAN 20 Marketing Fa0/7<strong>–</strong>0/9<br />

VLAN 30 Engineering Fa0/10<strong>–</strong>0/12<br />

The enable secret password for both routers is class.<br />

The enable, VTY, <strong>and</strong> console password for both routers is cisco.<br />

The subnet mask for both routers is 255.255.255.0.<br />

Objectives<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Create multiple VLANs, name them, <strong>and</strong> assign multiple member ports to them.<br />

■ Configure the VTP protocol to establish server <strong>and</strong> client switches.<br />

■ Create an 802.1q trunk line between the two switches to allow communication between paired<br />

VLANs.<br />

■ Test the VLANs’ functionality by moving a workstation from one VLAN to another.<br />

Background/Preparation<br />

FA0/1 FA0/1<br />

FA0/12 Trunk 802.1q<br />

FA0/12<br />

Switch 1 Switch 2<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Chapter 9: VLAN Trunking Protocol 411<br />

Crossover Cable<br />

Serial Cable<br />

When you are managing a switch, the management domain is always VLAN 1. The network administrator’s<br />

workstation must have access to a port in the VLAN 1 management domain. All ports are assigned to<br />

VLAN 1 by default.


412 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Cable a network that is similar to the one in Figure 9-6. The configuration output used in this lab is produced<br />

from a 2950 series switch. Another switch might produce different output. You should execute the<br />

following steps on each switch unless you are specifically instructed otherwise.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B before you continue with this lab.<br />

Task 1: Configure the Switches<br />

Configure the hostname, access, <strong>and</strong> comm<strong>and</strong> mode passwords, as well as the management LAN settings.<br />

These values are shown in Table 9-4. If you have problems while performing this configuration, refer to<br />

Lab 6-2, “Basic Switch Configuration.”<br />

Task 2: Configure the Hosts Attached to the Switch<br />

Configure the host to use the same subnet for addresses, masks, <strong>and</strong> the default gateway as the switch.<br />

Task 3: Verify Connectivity<br />

To verify that the hosts <strong>and</strong> switch are configured correctly, ping the switch from the hosts.<br />

Were the pings successful? Yes<br />

If the answer is no, troubleshoot the hosts <strong>and</strong> switch configurations.<br />

Task 4: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0


1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Task 5: Configure VTP<br />

You need to configure VLAN Trunking Protocol (VTP) on both switches. VTP is the protocol that communicates<br />

information about which VLANs exist from one switch to another. If VTP did not provide this<br />

information, you would have to create VLANs on all switches individually.<br />

By default, the Catalyst switch series are configured as VTP servers. If the server services are turned off,<br />

use the following comm<strong>and</strong> to turn it back on.<br />

2900 Switch<br />

Switch_A#vlan database<br />

Switch_A(vlan)#vtp server<br />

Switch_A(vlan)#exit<br />

2950 Switch<br />

Switch_A#configure terminal<br />

Switch_A(config)#vtp mode server<br />

Switch_A(config)#end<br />

Note: VLAN database mode is being deprecated in future releases of Cisco IOS. For now, both VLAN database mode<br />

<strong>and</strong> global configuration mode are supported for creating VLANs.<br />

Task 6: Create <strong>and</strong> Name Three VLANs<br />

Enter the following comm<strong>and</strong>s to create three named VLANs:<br />

2900 Switch<br />

Switch_A#vlan database<br />

Switch_A(vlan)#vlan 10 name Accounting<br />

Switch_A(vlan)#vlan 20 name Marketing<br />

Switch_A(vlan)#vlan 30 name Engineering<br />

Switch_A(vlan)#exit<br />

2950 Switch<br />

Switch_A#configure terminal<br />

Switch_A(config)#vlan 10<br />

Switch_A(config-vlan)#name Accounting<br />

Switch_A(config-vlan)#vlan 20<br />

Switch_A(config-vlan)#name Marketing<br />

Switch_A(config-vlan)#vlan 30<br />

Switch_A(config-vlan)#name Engineering<br />

Chapter 9: VLAN Trunking Protocol 413


414 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 7: Assign Ports to VLAN 10<br />

You must assign ports to VLANs from the interface mode. Enter the following comm<strong>and</strong>s to add ports 0/4<br />

to 0/6 to VLAN 10:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/4<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#interface fastethernet 0/5<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#interface fastethernet 0/6<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#end<br />

Note: Use the range parameter to quickly configure several interfaces with the same comm<strong>and</strong>. For example:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface range fastethernet 0/4 - 6<br />

Switch_A(config-if-range)#switchport mode access<br />

Switch_A(config-if-range)#switchport access vlan 10<br />

Switch_A(config-if-range)#end<br />

Task 8: Assign Ports to VLAN 20<br />

Enter the following comm<strong>and</strong>s to add ports 0/7 to 0/9 to VLAN 20:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/7<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#interface fastethernet 0/8<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#interface fastethernet 0/9<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#end<br />

Task 9: Assign Ports to VLAN 30<br />

Enter the following comm<strong>and</strong>s to add ports 0/10 to 0/12 to VLAN 30:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet 0/10<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 30<br />

Switch_A(config-if)#interface fastethernet 0/11<br />

Switch_A(config-if)#switchport mode access


Switch_A(config-if)#switchport access vlan 30<br />

Switch_A(config-if)#interface fastethernet 0/12<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 30<br />

Switch_A(config-if)#end<br />

Task 10: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/13<br />

Fa0/14, Fa0/15, Fa0/16, Fa0/17<br />

Fa0/18, Fa0/19, Fa0/20, Fa0/21<br />

Fa0/22, Fa0/23, Fa0/24<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6<br />

20 Marketing active Fa0/7, Fa0/8, Fa0/9<br />

30 Engineering active Fa0/10, Fa0/11, Fa0/12<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

10 enet 100010 1500 - - - - - 0 0<br />

20 enet 100020 1500 - - - - - 0 0<br />

30 enet 100030 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Are ports 0/10 to 0/12 assigned to VLAN 30? Yes<br />

Chapter 9: VLAN Trunking Protocol 415


416 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 11: Configure the VTP Client<br />

Configure Switch_B to be a VTP client.<br />

Switch_B#vlan database<br />

Switch_B(vlan)#vtp client<br />

Switch_B(vlan)#vtp domain group1<br />

Switch_B(vlan)#exit<br />

Task 12: Create the Trunk<br />

On both Switch_A <strong>and</strong> Switch_B, enter the following comm<strong>and</strong> at the Fast Ethernet 0/1 interface comm<strong>and</strong><br />

prompt. Note that it is not necessary to specify the encapsulation on a 2950, because it only supports<br />

802.1q.<br />

Switch_A(config)#interface fastethernet 0/1<br />

Switch_A(config-if)#switchport mode trunk<br />

Switch_A(config-if)#end<br />

Switch_B(config)#interface fastethernet 0/1<br />

Switch_B(config-if)#switchport mode trunk<br />

Switch_B(config-if)#end<br />

2900:<br />

Switch_A(config)#interface fastethernet0/1<br />

Switch_A(config-if)#switchport mode trunk<br />

Switch_A(config-if)#switchport trunk encapsulation dot1q<br />

Switch_A(config-if)#end<br />

Switch_B(config)#interface fastethernet0/1<br />

Switch_B(config-if)#switchport mode trunk<br />

Switch_B(config-if)#switchport trunk encapsulation dot1q<br />

Switch_B(config-if)#end<br />

Task 13: Verify the Trunk<br />

To verify that port Fast Ethernet 0/1 has been established as a trunk port, enter show interface fastethernet<br />

0/1 switchport at the privileged EXEC mode prompt.<br />

Switch_A#show interface fastEthernet 0/1 switchport<br />

Name: Fa0/1<br />

Switchport: Enabled<br />

Administrative Mode: trunk<br />

Operational Mode: trunk<br />

Administrative Trunking Encapsulation: dot1q<br />

Operational Trunking Encapsulation: dot1q<br />

Negotiation of Trunking: On<br />

Access Mode VLAN: 1 (default)<br />

Trunking Native Mode VLAN: 1 (default)<br />

Voice VLAN: none


Administrative private-vlan host-association: none<br />

Administrative private-vlan mapping: none<br />

Operational private-vlan: none<br />

Trunking VLANs Enabled: ALL<br />

Pruning VLANs Enabled: 2-1001<br />

Capture Mode Disabled<br />

Capture VLANs Allowed: ALL<br />

Protected: false<br />

Voice VLAN: none (Inactive)<br />

Appliance trust: none<br />

What type of trunking encapsulation is shown in the output? Dot1q<br />

Task 14: Display the VLAN Interface Information<br />

On Switch_B, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_B#show vlan<br />

Switch_B#show vlan<br />

Chapter 9: VLAN Trunking Protocol 417<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4<br />

Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

10 Accounting active<br />

20 Marketing active<br />

30 Engineering active<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

10 enet 100010 1500 - - - - - 0 0<br />

20 enet 100020 1500 - - - - - 0 0<br />

30 enet 100030 1500 - - - - - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0


418 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Do VLANs 10, 20, <strong>and</strong> 30 show without your having to type them in? Yes<br />

Why did this happen?<br />

Because Switch_A is a VTP server <strong>and</strong> it sent VLAN information to Switch_B.<br />

Task 15: Assign Ports to VLAN 10<br />

Although the VLAN definitions have migrated to Switch_B by using VTP, you still must assign ports to<br />

these VLANs on Switch_B. You must assign ports to VLANs from the interface mode. Enter the following<br />

comm<strong>and</strong>s to add ports 0/4 to 0/6 to VLAN 10:<br />

Switch_B#configure terminal<br />

Switch_B(config)#interface fastethernet 0/4<br />

Switch_B(config-if)#switchport mode access<br />

Switch_B(config-if)#switchport access vlan 10<br />

Switch_B(config-if)#interface fastethernet 0/5<br />

Switch_B(config-if)#switchport mode access<br />

Switch_B(config-if)#switchport access vlan 10<br />

Switch_B(config-if)#interface fastethernet 0/6<br />

Switch_B(config-if)#switchport mode access<br />

Switch_B(config-if)#switchport access vlan 10<br />

Switch_B(config-if)#end<br />

Task 16: Assign Ports to VLAN 20<br />

Enter the following comm<strong>and</strong>s to add ports 0/7 to 0/9 to VLAN 20:<br />

Switch_B#configure terminal<br />

Switch_B(config)#interface fastethernet 0/7<br />

Switch_B(config-if)#switchport mode access<br />

Switch_B(config-if)#switchport access vlan 20<br />

Switch_B(config-if)#interface fastethernet 0/8<br />

Switch_B(config-if)#switchport mode access<br />

Switch_B(config-if)#switchport access vlan 20<br />

Switch_B(config-if)#interface fastethernet 0/9<br />

Switch_B(config-if)#switchport mode access<br />

Switch_B(config-if)#switchport access vlan 20<br />

Switch_B(config-if)#end


Task 17: Assign Ports to VLAN 30<br />

Enter the following comm<strong>and</strong>s to add ports 0/10 to 0/12 to VLAN 30:<br />

Switch_B#configure terminal<br />

Switch_B(config)#interface fastethernet 0/10<br />

Switch_B(config-if)#switchport mode access<br />

Switch_B(config-if)#switchport access vlan 30<br />

Switch_B(config-if)#interface fastethernet 0/11<br />

Switch_B(config-if)#switchport mode access<br />

Switch_B(config-if)#switchport access vlan 30<br />

Switch_B(config-if)#interface fastethernet 0/12<br />

Switch_B(config-if)#switchport mode access<br />

Switch_B(config-if)#switchport access vlan 30<br />

Switch_B(config-if)#end<br />

Task 18: Display the VLAN Interface Information<br />

On Switch_B, enter the comm<strong>and</strong> show vlan at the privileged EXEC mode prompt.<br />

Switch_B#show vlan<br />

Switch_B#show vlan<br />

Chapter 9: VLAN Trunking Protocol 419<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/13<br />

Fa0/14, Fa0/15, Fa0/16, Fa0/17<br />

Fa0/18, Fa0/19, Fa0/20, Fa0/21<br />

Fa0/22, Fa0/23, Fa0/24<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6<br />

20 Marketing active Fa0/7, Fa0/8, Fa0/9<br />

30 Engineering active Fa0/10, Fa0/11, Fa0/12<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———<br />

1 enet 100001 1500 - - - - - 0 0<br />

10 enet 100010 1500 - - - - - 0 0<br />

20 enet 100020 1500 - - - - - 0 0<br />

30 enet 100030 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———


420 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Are ports 0/10 to 0/12 assigned to VLAN 30? Yes<br />

Task 19: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/12 to the host in<br />

Switch_B port 0/12.<br />

Was the ping successful? Yes<br />

Why?<br />

Both hosts are in the same VLAN with the trunk link properly configured.<br />

Step 2. Ping from the host in Switch_A port 0/12 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

The interfaces belong to different VLANs.<br />

Task 20: Move the Hosts<br />

Move the host in Switch_A from port 0/12 to port 0/8, wait until the port LED turns green, <strong>and</strong> then go to<br />

the next task.<br />

Task 21: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/8 to the host in<br />

Switch_B port 0/12.<br />

Was the ping successful? No<br />

Why?<br />

The hosts are on separate VLANs.<br />

Step 2. Ping from the host in Switch_A port 0/8 to the switch IP 192.168.1.2.<br />

Was the ping successful? No<br />

Why?<br />

The interfaces belong to different VLANs.<br />

After you complete the previous steps, log off (by typing exit) <strong>and</strong> turn all the devices off. Then, remove<br />

<strong>and</strong> store the cables <strong>and</strong> adapter.


Curriculum Lab 9-4: Configuring Inter-VLAN Routing<br />

(9.3.6)<br />

Figure 9-7 Topology for Lab 9-4<br />

Table 9-5 Lab Equipment Configuration<br />

Switch Switch Name VLAN 1 VLAN Names Switch Port<br />

Designation IP Address <strong>and</strong> Numbers Assignments<br />

Switch 1 Switch_A 192.168.1.2 VLAN 1 Native<br />

VLAN 10 Sales<br />

VLAN 20 SupportFa0/1<strong>–</strong>0/4<br />

Fa0/5<strong>–</strong>0/8<br />

Fa0/9<strong>–</strong>0/12<br />

The enable secret password is class.<br />

The enable, VTY, <strong>and</strong> console password is cisco.<br />

The subnet mask is 255.255.255.0.<br />

Objectives<br />

■ Create a basic switch configuration <strong>and</strong> verify it.<br />

■ Create multiple VLANs, name them, <strong>and</strong> assign multiple member ports to them.<br />

■ Create a basic configuration on a router.<br />

■ Create an 802.1q trunk line between the switch <strong>and</strong> router to allow communication between VLANs.<br />

■ Test the routing functionality.<br />

Background/Preparation<br />

FA0/5<br />

FA0/9<br />

Straight-Through Cable<br />

Rollover (Console) Cable<br />

Chapter 9: VLAN Trunking Protocol 421<br />

Cable a network that is similar to the one in Figure 9-7. The configuration output that is used in this lab is<br />

produced from a 2950 series switch. Another switch might produce different output. You should execute<br />

erase <strong>and</strong> reload procedures on each switch unless you are specifically instructed otherwise. Instructions<br />

are also provided for the 1900 series switch, which initially displays a User Interface Menu. Select the<br />

FA0/1<br />

Crossover Cable<br />

Serial Cable


422 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Comm<strong>and</strong> Line option from the menu to perform the steps for this lab.<br />

Note: The router used must have a Fast Ethernet interface in order to support trunking <strong>and</strong> inter-VLAN routing. The<br />

2500 series router cannot be used for this lab.<br />

Start a HyperTerminal session.<br />

Implement the procedure documented in Appendix B before you continue with this lab.<br />

Task 1: Configure the Switch<br />

Configure the hostname, access, <strong>and</strong> comm<strong>and</strong> mode passwords, as well as the management LAN settings.<br />

These values are shown in Table 9-5. If you have problems while performing this configuration, refer to<br />

Lab 6-2, “Basic Switch Configuration.”<br />

Task 2: Configure the Hosts Attached to the Switch<br />

Configure the hosts by using the following information.<br />

The host in port 0/5:<br />

IP address: 192.168.5.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.5.1<br />

The host in port 0/9:<br />

IP address: 192.168.7.2<br />

Subnet mask: 255.255.255.0<br />

Default gateway: 192.168.7.1<br />

Task 3: Verify Connectivity<br />

Step 1. Verify that the switch ports <strong>and</strong> host NIC link lights are lit.<br />

Step 2. Ping the switch IP address from the hosts.<br />

Were the pings successful? No<br />

Why or why not?<br />

The hosts are on different networks.<br />

Task 4: Create <strong>and</strong> Name Two VLANs<br />

Enter the following comm<strong>and</strong>s to create two named VLANs:<br />

Switch_A#vlan database<br />

Switch_A(vlan)#vlan 10 name Sales<br />

Switch_A(vlan)#vlan 20 name Support<br />

Switch_A(vlan)#exit


1900:<br />

Switch_A#config t<br />

Switch_A(config)#vlan 10 name Sales<br />

Switch_A(config)#vlan 20 name Support<br />

Switch_A(config)#exit<br />

Task 5: Assign Ports to VLAN 10<br />

You must assign ports to VLANs from the interface mode. Enter the following comm<strong>and</strong>s to add ports 0/5<br />

to 0/8 to VLAN 10:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet0/5<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#interface fastethernet0/6<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#interface fastethernet0/7<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#interface fastethernet0/8<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 10<br />

Switch_A(config-if)#end<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#interface ethernet 0/5<br />

Switch_A(config-if)#vlan static 10<br />

Switch_A(config-if)#interface ethernet 0/6<br />

Switch_A(config-if)#vlan static 10<br />

Switch_A(config-if)#interface ethernet 0/7<br />

Switch_A(config-if)#vlan static 10<br />

Switch_A(config-if)#interface ethernet 0/8<br />

Switch_A(config-if)#vlan static 10<br />

Switch_A(config-if)#end<br />

Task 6: Assign Ports to VLAN 20<br />

Enter the following comm<strong>and</strong>s to add ports 0/9 to 0/12 to VLAN 20:<br />

Switch_A#configure terminal<br />

Switch_A(config)#interface fastethernet0/9<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Chapter 9: VLAN Trunking Protocol 423


424 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Switch_A(config-if)#interface fastethernet0/10<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#interface fastethernet0/11<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#interface fastethernet0/12<br />

Switch_A(config-if)#switchport mode access<br />

Switch_A(config-if)#switchport access vlan 20<br />

Switch_A(config-if)#end<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#interface ethernet 0/9<br />

Switch_A(config-if)#vlan static 20<br />

Switch_A(config-if)#interface ethernet 0/10<br />

Switch_A(config-if)#vlan static 20<br />

Switch_A(config-if)#interface ethernet 0/11<br />

Switch_A(config-if)#vlan static 20<br />

Switch_A(config-if)#interface ethernet 0/12<br />

Switch_A(config-if)#vlan static 20<br />

Switch_A(config-if)#end<br />

Task 7: Display the VLAN Interface Information<br />

On Switch_A, enter the comm<strong>and</strong> show VLAN at the privileged EXEC mode prompt.<br />

Switch_A#show vlan<br />

Switch_A#show vlan<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

10 Sales active Fa0/5, Fa0/6, Fa0/7, Fa0/8<br />

20 Support active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

1002 fddi-default act/unsup<br />

1003 token-ring-default act/unsup<br />

1004 fddinet-default act/unsup<br />

1005 trnet-default act/unsup<br />

VLAN Type SAID MTU Parent RingNo BridgeNo Stp BrdgMode Trans1 Trans2<br />

—— ——- ————— ——- ——— ——— ———— —— ———— ——— ———


1 enet 100001 1500 - - - - - 0 0<br />

10 enet 100010 1500 - - - - - 0 0<br />

20 enet 100020 1500 - - - - - 0 0<br />

1002 fddi 101002 1500 - - - - - 0 0<br />

1003 tr 101003 1500 - - - - - 0 0<br />

1004 fdnet 101004 1500 - - - ieee - 0 0<br />

1005 trnet 101005 1500 - - - ibm - 0 0<br />

Remote SPAN VLANs<br />

———————————————————————————————————————<br />

Primary Secondary Type Ports<br />

———- ————- ————————- —————————————————————<br />

Are ports assigned correctly? Yes<br />

Task 8: Create the Trunk<br />

On Switch_A, enter the following comm<strong>and</strong> at the Fast Ethernet 0/1 interface comm<strong>and</strong> prompt. Note that<br />

Fast Ethernet 0/1 <strong>and</strong> the other access ports on a 1900 switch only support 10-Mbps Ethernet <strong>and</strong> cannot<br />

be used as trunk ports. The trunk ports (if present) on a 24-port 1900 are typically Fast Ethernet 0/26 <strong>and</strong><br />

0/27.<br />

Switch_A(config)#interface fastethernet0/1<br />

Switch_A(config-if)#switchport mode trunk<br />

Switch_A(config-if)#end<br />

2900:<br />

Switch_A(config)#interface fastethernet0/1<br />

Switch_A(config-if)#switchport mode trunk<br />

Switch_A(config-if)#switchport trunk encapsulation dot1q<br />

Switch_A(config-if)#end<br />

1900:<br />

Switch_A#config t<br />

Switch_A(config)#interface fastethernet0/26<br />

Switch_A(config-if)#trunk on<br />

Task 9: Configure the Router<br />

Step 1. Configure the router with the following data. Note that, to support trunking <strong>and</strong> inter-VLAN<br />

routing, the router must have a Fast Ethernet interface.<br />

Hostname: Router_A<br />

Console, VTY, <strong>and</strong> enable passwords: cisco<br />

Enable secret password: class<br />

Chapter 9: VLAN Trunking Protocol 425


426 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 2. Configure the Fast Ethernet interface by using the following comm<strong>and</strong>s:<br />

Note: If working with a 1900 switch, replace the dot1.q encapsulation with isl in the following router configuration<br />

comm<strong>and</strong>s.<br />

Router_A(config)#interface fastethernet 0/0<br />

Router_A(config-if)#no shutdown<br />

Router_A(config-if)#interface fastethernet 0/0.1<br />

Router_A(config-subif)#encapsulation dot1q 1<br />

Router_A(config-subif)#ip address 192.168.1.1 255.255.255.0<br />

Router_A(config-if)#interface fastethernet 0/0.2<br />

Router_A(config-subif)#encapsulation dot1q 10<br />

Router_A(config-subif)#ip address 192.168.5.1 255.255.255.0<br />

Router_A(config-if)#interface fastethernet 0/0.3<br />

Router_A(config-subif)#encapsulation dot1q 20<br />

Router_A(config-subif)#end<br />

Task 10: Save the Router Configuration<br />

Enter the copy run start comm<strong>and</strong> to save the current running configuration to NVRAM.<br />

Task 11: Display the Router Routing Table<br />

Enter show ip route at the privileged EXEC mode prompt.<br />

Router_A#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter<br />

area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

C 192.168.5.0/24 is directly connected, FastEthernet0/0.2<br />

C 192.168.7.0/24 is directly connected, FastEthernet0/0.3<br />

C 192.168.1.0/24 is directly connected, FastEthernet0/0.1<br />

Router_A#<br />

Do entries exist in the routing table? Yes, 3<br />

What interface are the entries pointing to? Fast Ethernet 0/0<br />

Why is there not a need to run a routing protocol?<br />

All interfaces are connected.


Task 12: Test the VLANs <strong>and</strong> the Trunk<br />

Step 1. To test the VLANs <strong>and</strong> the trunk, ping from the host in Switch_A port 0/9 to the host in port<br />

0/5.<br />

Was the ping successful? Yes<br />

Why?<br />

The trunk to the router forwarded packets from VLAN 20 to VLAN 10.<br />

Step 2. Ping from the host in Switch_A port 0/5 to the switch IP 192.168.1.2.<br />

Was the ping successful? Yes<br />

Task 13: Move the Hosts<br />

Move the hosts to other VLANs <strong>and</strong> try pinging the management VLAN 1. Note the results.<br />

All pings should be successful with correct IP settings on the host.<br />

After you complete the previous step, log off (by typing exit) <strong>and</strong> turn all the devices off. Then, remove<br />

<strong>and</strong> store the cables <strong>and</strong> adapter.<br />

Switch_A<br />

Switch_A#show running-config<br />

Building configuration...<br />

Current configuration : 2053 bytes<br />

!<br />

version 12.1<br />

no service pad<br />

service timestamps debug uptime<br />

service timestamps log uptime<br />

no service password-encryption<br />

!<br />

hostname Switch_A<br />

!<br />

enable secret 5 $1$5kx7$u7JjZnEXhjhJ0cJIplN4t.<br />

!<br />

ip subnet-zero<br />

!<br />

spanning-tree mode pvst<br />

no spanning-tree optimize bpdu transmission<br />

spanning-tree extend system-id<br />

!<br />

interface FastEthernet0/1<br />

switchport mode trunk<br />

no ip address<br />

!<br />

interface FastEthernet0/2<br />

no ip address<br />

!<br />

interface FastEthernet0/3<br />

Chapter 9: VLAN Trunking Protocol 427


428 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

no ip address<br />

!<br />

interface FastEthernet0/4<br />

no ip address<br />

!<br />

interface FastEthernet0/5<br />

switchport access vlan 10<br />

switchport mode access<br />

no ip address<br />

!<br />

interface FastEthernet0/6<br />

switchport access vlan 10<br />

switchport mode access<br />

no ip address<br />

!<br />

interface FastEthernet0/7<br />

switchport access vlan 10<br />

switchport mode access<br />

no ip address<br />

!<br />

interface FastEthernet0/8<br />

switchport access vlan 10<br />

switchport mode access<br />

no ip address<br />

!<br />

interface FastEthernet0/9<br />

switchport access vlan 20<br />

switchport mode access<br />

no ip address<br />

!<br />

interface FastEthernet0/10<br />

switchport access vlan 20<br />

switchport mode access<br />

no ip address<br />

!<br />

interface FastEthernet0/11<br />

switchport access vlan 20<br />

switchport mode access<br />

no ip address<br />

!<br />

interface FastEthernet0/12<br />

switchport access vlan 20<br />

switchport mode access<br />

no ip address<br />

!<br />

interface FastEthernet0/13


no ip address<br />

!<br />

interface FastEthernet0/14<br />

no ip address<br />

!<br />

interface FastEthernet0/15<br />

no ip address<br />

!<br />

interface FastEthernet0/16<br />

no ip address<br />

!<br />

interface FastEthernet0/17<br />

no ip address<br />

!<br />

interface FastEthernet0/18<br />

no ip address<br />

!<br />

interface FastEthernet0/19<br />

no ip address<br />

!<br />

interface FastEthernet0/20<br />

no ip address<br />

!<br />

interface FastEthernet0/21<br />

no ip address<br />

!<br />

interface FastEthernet0/22<br />

no ip address<br />

!<br />

interface FastEthernet0/23<br />

no ip address<br />

!<br />

interface FastEthernet0/24<br />

no ip address<br />

!<br />

interface Vlan1<br />

ip address 192.168.1.2 255.255.255.0<br />

no ip route-cache<br />

!<br />

ip default-gateway 192.168.1.1<br />

ip http server<br />

!<br />

line con 0<br />

password cisco<br />

login<br />

line vty 0 4<br />

Chapter 9: VLAN Trunking Protocol 429


430 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

password cisco<br />

login<br />

line vty 5 15<br />

password cisco<br />

login<br />

!<br />

end<br />

Switch_B<br />

Router_A#show runnig-config<br />

Building configuration...<br />

Current configuration : 863 bytes<br />

!<br />

version 12.2<br />

service timestamps debug uptime<br />

service timestamps log uptime<br />

no service password-encryption<br />

!<br />

hostname Router_A<br />

!<br />

enable secret 5 $1$ihY0$.S.8M7iVky3u28ZYmHgWx1<br />

!<br />

ip subnet-zero<br />

!<br />

call rsvp-sync<br />

!<br />

interface FastEthernet0/0<br />

no ip address<br />

duplex auto<br />

speed auto<br />

!<br />

interface FastEthernet0/0.1<br />

encapsulation dot1Q 1 native<br />

ip address 192.168.1.1 255.255.255.0<br />

!<br />

interface FastEthernet0/0.2<br />

encapsulation dot1Q 10<br />

ip address 192.168.5.1 255.255.255.0<br />

!<br />

interface FastEthernet0/0.3<br />

encapsulation dot1Q 20<br />

ip address 192.168.7.1 255.255.255.0<br />

!<br />

interface Serial0/0<br />

no ip address


shutdown<br />

no fair-queue<br />

!<br />

interface Serial0/1<br />

no ip address<br />

shutdown<br />

!<br />

ip classless<br />

ip http server<br />

!<br />

!<br />

!<br />

dial-peer cor custom<br />

!<br />

line con 0<br />

password cisco<br />

login<br />

line aux 0<br />

line vty 0 4<br />

password cisco<br />

login<br />

!<br />

end<br />

Comprehensive Lab 9-5: Inter-VLAN <strong>and</strong> VTP<br />

Configuration<br />

Note: This lab continues where Challenge Lab 8-4, “Static VLANs, STP, <strong>and</strong> Port Security” ended. You need to complete<br />

that lab before proceeding with this lab. Another option is to continue on to Challenge Lab 9-6, “Advanced<br />

Switching,” which is not dependent on any previous labs.<br />

Figure 9-8 Inter-VLAN <strong>and</strong> VTP Configuration<br />

VLAN 1 10.1.0.0/16<br />

VLAN 10 10.10.0.0/16<br />

VLAN 20 10.20.0.0/16<br />

VLAN 30 10.30.0.0/16<br />

VLAN 10<br />

fa0/4<strong>–</strong>8<br />

fa0/1<br />

802.1q Trunk<br />

fa0/1<br />

RTA<br />

SWA<br />

VLAN 20<br />

fa0/9<strong>–</strong>16<br />

VLAN 1: 10.1.0.2<br />

DefGate: 10.1.0.1<br />

fa0/2<br />

fa0/3<br />

VLAN 30<br />

fa0/17<strong>–</strong>24<br />

VLAN 10<br />

fa0/4<strong>–</strong>8<br />

Chapter 9: VLAN Trunking Protocol 431<br />

VLAN 1: 10.1.0.3<br />

DefGate: 10.1.0.1<br />

fa0/2<br />

fa0/3 SWB<br />

VLAN 20<br />

fa0/9<strong>–</strong>16<br />

VLAN 30<br />

fa0/17<strong>–</strong>24


432 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Table 9-6 Addressing Scheme<br />

Device Interface IP Address Subnet<br />

Mask<br />

SWA VLAN 1 10.1.0.2 255.255.0.0<br />

SWB VLAN 1 10.1.0.3 255.255.0.0<br />

RTA Fa0/1.1 10.1.0.1 255.255.0.0<br />

Objectives<br />

■ Delete the VLAN database.<br />

■ Configure VTP parameters.<br />

■ Configure inter-VLAN routing.<br />

■ Modify VLANs.<br />

■ Verify <strong>and</strong> document configurations.<br />

Fa0/1.10 10.10.0.1 255.255.0.0<br />

Fa0/1.20 10.20.0.1 255.255.0.0<br />

Fa0/1.30 10.30.0.1 255.255.0.0<br />

The topology shown in Figure 9-8 is using 2950 switches <strong>and</strong> a 2621 router. You can also use a 1700<br />

series router that supports VLAN trunking.<br />

NetLab Compatibility Notes<br />

This lab is fully compatible with a st<strong>and</strong>ard NetLab Basic Switch Pod.<br />

Task 1: Cable the Topology <strong>and</strong> Basic Configuration<br />

Step 1. SWA <strong>and</strong> SWB should be loaded with your saved configurations for Challenge Lab 8-4, “Static<br />

VLANs, STP, <strong>and</strong> Port Security.” If you did not complete that lab, you need to do so now.<br />

Step 2. Configure RTA with basic router configurations, including:<br />

■ Hostname<br />

■ Line configurations<br />

■ Global passwords<br />

■ Host tables<br />

■ Banner<br />

■ Other instructor-required global configurations<br />

Task 2: Configure VTP Parameters<br />

Step 1. SWA will be the VTP server. Configure SWA with the domain name <strong>CCNA</strong>3 <strong>and</strong> password<br />

cisco. Verify your configuration with the show vtp status comm<strong>and</strong>.<br />

SWA#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 3<br />

Maximum VLANs supported locally : 250<br />

Number of existing VLANs : 8


VTP Operating Mode : Server<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0x3B 0x01 0x37 0x7F 0x25 0x20 0xD0 0x0F<br />

Configuration last modified by 0.0.0.0 at 3-1-93 00:30:56<br />

Local updater ID is 10.1.0.2 on interface Vl1 (lowest numbered VLAN interface<br />

found)<br />

Step 2. Notice in the preceding output that the configuration revision number is 3. Why?<br />

Three VLANs have been added (Accounting VLAN 10, Marketing VLAN 20, <strong>and</strong> Purchasing<br />

VLAN 30). The configuration revision number increments by 1 each time a change is made.<br />

Step 3. On SWB, you need to remove the current VLAN configurations <strong>and</strong> reload the switch. What<br />

comm<strong>and</strong> will delete the VLAN database file?<br />

SWB#delete flash:vlan.dat<br />

Delete filename [vlan.dat]?<br />

Delete flash:vlan.dat? [confirm]<br />

SWB#reload<br />

Proceed with reload? [confirm]<br />

Step 4. After you delete the VLAN database <strong>and</strong> reload the switch, your show vlan brief comm<strong>and</strong><br />

should display the following:<br />

SWB#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

SWB#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

Step 5. Your VTP status should display the following output. Take note of the configuration revision<br />

number, the operating mode, <strong>and</strong> the domain name.<br />

SWB#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 0<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 5<br />

VTP Operating Mode : Server<br />

VTP Domain Name :<br />

Chapter 9: VLAN Trunking Protocol 433


434 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0x57 0xCD 0x40 0x65 0x63 0x59 0x47 0xBD<br />

Configuration last modified by 0.0.0.0 at 0-0-00 00:00:00<br />

Local updater ID is 10.1.0.3 on interface Vl1 (lowest numbered VLAN interface<br />

found)<br />

Step 6. Enter the comm<strong>and</strong>s to configure SWB as a VTP client on the <strong>CCNA</strong>3 VTP domain with the<br />

password cisco. Record the comm<strong>and</strong>s you used.<br />

SWB(config)#vtp mode client<br />

Setting device to VTP CLIENT mode.<br />

SWB(config)#vtp domain <strong>CCNA</strong>3<br />

Changing VTP domain name from NULL to <strong>CCNA</strong>3<br />

SWB(config)#vtp password cisco<br />

Setting device VLAN database password to cisco<br />

Step 7. It may take a while for SWB to receive a VTP message from the server, because, unless there<br />

is a change or unless a request is made, the server sends out VTP advertisements only every 5<br />

minutes. You can speed up the process by shutting down the trunks attached to SWA <strong>and</strong> then<br />

reactivating them. This will force an exchange of VTP messages. Verify SWB now has the<br />

VLAN information from SWA.<br />

SWB#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 3<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 8<br />

VTP Operating Mode : Client<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0x3B 0x01 0x37 0x7F 0x25 0x20 0xD0 0x0F<br />

Configuration last modified by 0.0.0.0 at 3-1-93 00:30:56<br />

SWB#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11,<br />

Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15,<br />

Fa0/16<br />

30 Purchasing<br />

Fa0/24<br />

active Fa0/17, Fa0/18, Fa0/19,<br />

Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23,<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active


Task 3: Configure Inter-VLAN Routing<br />

Step 1. The Fast Ethernet interface on RTA that is attached to SWA will trunk VLANs. Make sure you<br />

configure the Fa0/1 port on SWA to trunking mode <strong>and</strong> activate it.<br />

RTA(config)#interface FastEthernet0/1<br />

RTA(config-if)#no shutdown<br />

Step 2. Configure RTA to trunk for all three VLANs by using the subinterface designations <strong>and</strong> IP<br />

addresses shown in Table 9-6. Make sure the physical interface is activated. Also, for VLAN 1,<br />

make sure you add the native argument to the end of the encapsulation comm<strong>and</strong>.<br />

RTA(config-if)#interface FastEthernet0/1.1<br />

RTA(config-subif)#encapsulation dot1Q 1 native<br />

RTA(config-subif)#ip address 10.1.0.1 255.255.0.0<br />

RTA(config-subif)#interface FastEthernet0/1.10<br />

RTA(config-subif)#encapsulation dot1Q 10<br />

RTA(config-subif)#ip address 10.10.0.1 255.255.0.0<br />

RTA(config-subif)#interface FastEthernet0/1.20<br />

RTA(config-subif)#encapsulation dot1Q 20<br />

RTA(config-subif)#ip address 10.20.0.1 255.255.0.0<br />

RTA(config-subif)#interface FastEthernet0/1.30<br />

RTA(config-subif)#encapsulation dot1Q 30<br />

RTA(config-subif)#ip address 10.40.0.1 255.255.0.0<br />

RTA(config-subif)#end<br />

Chapter 9: VLAN Trunking Protocol 435<br />

Output from the show ip interface brief comm<strong>and</strong> should look like the following:<br />

RTA#show ip interface brief<br />

Interface IP-Address OK? Method Status Protocol<br />

FastEthernet0/0 unassigned YES unset administratively down down<br />

Serial0/0 unassigned YES unset administratively down down<br />

FastEthernet0/1 unassigned YES unset up up<br />

FastEthernet0/1.1 10.1.0.1 YES manual up up<br />

FastEthernet0/1.10 10.10.0.1 YES manual up up<br />

FastEthernet0/1.20 10.20.0.1 YES manual up up<br />

FastEthernet0/1.30 10.30.0.1 YES manual up up<br />

Step 3. Attach two workstations to the network. One should be attached to a port on SWA. Attach the<br />

other to SWB on a port that belongs to a different VLAN from the workstation attached to<br />

SWA. Document your choices in the space provided. Remember that the default gateway will<br />

be the IP address of the router’s subinterface that belongs to the same VLAN.


436 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Workstation attached to SWA:<br />

Port __________<br />

VLAN __________<br />

IP address ________________<br />

Subnet mask _______________<br />

Workstation attached to SWB:<br />

Port __________<br />

VLAN __________<br />

IP address ________________<br />

Subnet mask _______________<br />

Step 4. Verify that the two workstations can ping each other. If they cannot, troubleshoot.<br />

Task 4: Adding, Moving, <strong>and</strong> Deleting VLANs<br />

Step 1. A few employees from the Warehousing department are relocating to the office serviced by the<br />

SWB switch. Create a new VLAN 40 named Warehousing. Record the comm<strong>and</strong>s, including<br />

switch prompt, to create this new VLAN.<br />

SWA(config)#vlan 40<br />

SWA(config-vlan)#name Warehousing<br />

Step 2. Verify that SWB has incremented its VTP configuration revision number <strong>and</strong> has the new<br />

VLAN listed.<br />

SWB#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 4<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 9<br />

VTP Operating Mode : Client<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0xBC 0xD2 0x4A 0x5B 0xF3 0x03 0x26 0x75<br />

Configuration last modified by 10.1.0.2 at 3-1-93 01:17:40<br />

SWB#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

30 Purchasing active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24


40 Warehousing active<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

Step 3. Because the Purchasing department has only four employees in the office serviced by SWB,<br />

reassign the last four ports on SWB to the new Warehousing VLAN. Record the comm<strong>and</strong>s<br />

you used <strong>and</strong> verify your configuration with the show vlan brief comm<strong>and</strong>.<br />

SWB(config)#interface range fa0/21 - 24<br />

SWB(config-if-range)#switchport access vlan 40<br />

SWB#show vlan brief<br />

Chapter 9: VLAN Trunking Protocol 437<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

30 Purchasing active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

40 Warehousing active Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

Step 4. The Purchasing department has been consolidated with the Accounting department. The<br />

Purchasing employees on SWB have transferred to the office serviced by SWA. Record the<br />

comm<strong>and</strong> to delete VLAN 30. Verify with the show vtp status <strong>and</strong> show vlan brief comm<strong>and</strong>s<br />

on SWB.<br />

SWA(config)#no vlan 30<br />

SWA(config)#exit<br />

SWB#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 5<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 8<br />

VTP Operating Mode : Client<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0x80 0xED 0x23 0x29 0x92 0x92 0xBE 0x09<br />

Configuration last modified by 10.1.0.2 at 3-1-93 02:07:29<br />

SWB#show vlan brief


438 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

40 Warehousing active Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

Step 5. Notice from the show vlan brief output for SWB that ports Fa0/17 through Fa0/20 are not<br />

assigned to any VLAN. Correct this by assigning them to the Warehousing VLAN. Record the<br />

comm<strong>and</strong>s you used <strong>and</strong> then verify with the show vlan brief comm<strong>and</strong>.<br />

SWB(config)#interface range fa0/17 - 20<br />

SWB(config-if-range)#switchport access vlan 40<br />

SWB#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

40 Warehousing active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

Step 6. On SWA, assign the ports that belonged to the Purchasing VLAN to the Accounting VLAN.<br />

Record the comm<strong>and</strong>s you used <strong>and</strong> then verify with the show vlan brief comm<strong>and</strong>.<br />

SWA(config)#interface range fa0/17 - 24<br />

SWA(config-if-range)#switchport access vlan 10<br />

SWA#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Gi0/1, Gi0/2<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8, Fa0/17, Fa0/18, Fa0/19<br />

Fa0/20, Fa0/21, Fa0/22, Fa0/23<br />

Fa0/24


20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

40 Warehousing active<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

Step 7. If you attach a workstation to the Warehousing VLAN, it will not be able to ping any workstations<br />

outside its own VLAN. Try it. Why were the pings unsuccessful?<br />

Because RTA has not yet been configured to route for VLAN 40.<br />

Chapter 9: VLAN Trunking Protocol 439<br />

Step 8. Record <strong>and</strong> implement the configuration changes necessary to ensure that Warehousing workstations<br />

have inter-VLAN communication ability. Verify that a Warehousing workstation can<br />

ping another workstation attached to a different VLAN.<br />

RTA(config)#no interface fa0/1.30<br />

Not all config may be removed <strong>and</strong> may reappear after reactivating the subinterface<br />

RTA(config)#interface fa0/1.40<br />

RTA(config-subif)#description Warehousing VLAN 40<br />

RTA(config-subif)#encapsulation dot1q 40<br />

RTA(config-subif)#ip address 10.40.0.1 255.255.0.0<br />

RTA(config-subif)#end<br />

RTA#show ip interface brief<br />

Interface IP-Address OK? Method Status Protocol<br />

FastEthernet0/0 unassigned YES unset administratively down down<br />

Serial0/0 unassigned YES unset administratively down down<br />

FastEthernet0/1 unassigned YES unset up up<br />

FastEthernet0/1.1 10.1.0.1 YES manual up up<br />

FastEthernet0/1.10 10.10.0.1 YES manual up up<br />

FastEthernet0/1.20 10.20.0.1 YES manual up up<br />

FastEthernet0/1.30 unassigned YES manual deleted down<br />

FastEthernet0/1.40 10.40.0.1 YES manual up up


440 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 5: Documentation<br />

Document your configurations by capturing the following output:<br />

■ show run<br />

■ show vlan brief<br />

■ show vtp status<br />

■ On RTA, capture show run <strong>and</strong> show ip interface brief<br />

Final scripts <strong>and</strong> verification output:<br />

RTA<br />

!<br />

hostname RTA<br />

!<br />

enable secret class<br />

!<br />

no ip domain lookup<br />

ip host SWB 10.1.0.3<br />

ip host SWA 10.1.0.2<br />

!<br />

interface FastEthernet0/1<br />

no shutdown<br />

!<br />

interface FastEthernet0/1.1<br />

description Management VLAN 1<br />

encapsulation dot1Q 1 native<br />

ip address 10.1.0.1 255.255.0.0<br />

!<br />

interface FastEthernet0/1.10<br />

description Accounting VLAN 10<br />

encapsulation dot1Q 10<br />

ip address 10.10.0.1 255.255.0.0<br />

!<br />

interface FastEthernet0/1.20<br />

description Marketing VLAN 20<br />

encapsulation dot1Q 20<br />

ip address 10.20.0.1 255.255.0.0<br />

!<br />

interface FastEthernet0/1.40<br />

description Warehousing VLAN 40<br />

encapsulation dot1Q 40<br />

ip address 10.40.0.1 255.255.0.0<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************


$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

RTA#show ip interface brief<br />

Interface IP-Address OK? Method Status Protocol<br />

FastEthernet0/0 unassigned YES unset administratively down down<br />

Serial0/0 unassigned YES unset administratively down down<br />

FastEthernet0/1 unassigned YES unset up up<br />

FastEthernet0/1.1 10.1.0.1 YES manual up up<br />

FastEthernet0/1.10 10.10.0.1 YES manual up up<br />

FastEthernet0/1.20 10.20.0.1 YES manual up up<br />

FastEthernet0/1.30 unassigned YES manual deleted down<br />

FastEthernet0/1.40 10.40.0.1 YES manual up up<br />

SWA !————————————————————<br />

!VTP <strong>and</strong> VLAN configuration does not show<br />

!————————————————————<br />

enable<br />

config t<br />

vtp mode server<br />

vtp domain <strong>CCNA</strong>3<br />

vtp password cisco<br />

Chapter 9: VLAN Trunking Protocol 441


442 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

vlan 10<br />

name Accounting<br />

vlan 20<br />

name Marketing<br />

vlan 40<br />

name Warehousing<br />

!————————————————————<br />

!<br />

hostname SWA<br />

!<br />

enable secret class<br />

!<br />

no ip domain-lookup<br />

ip host SWB 10.1.0.3<br />

ip host RTA 10.1.0.1<br />

!<br />

interface FastEthernet0/1<br />

!<br />

switchport mode trunk<br />

interface FastEthernet0/2<br />

!<br />

switchport mode trunk<br />

interface FastEthernet0/3<br />

!<br />

switchport mode trunk<br />

interface range FastEthernet0/4 - 8<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/9 - 16<br />

switchport access vlan 20<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/17 - 24<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky


!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface Vlan1<br />

!<br />

ip address 10.1.0.2 255.255.0.0<br />

no shutdown<br />

ip default-gateway 10.1.0.1<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 5 15<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

SWA#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1, Gi0/1, Gi0/2<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8, Fa0/17, Fa0/18, Fa0/19<br />

Fa0/20, Fa0/21, Fa0/22, Fa0/23<br />

Fa0/24<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

40 Warehousing active<br />

1002 fddi-default active<br />

Chapter 9: VLAN Trunking Protocol 443<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16


444 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

SWA#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 5<br />

Maximum VLANs supported locally : 250<br />

Number of existing VLANs : 8<br />

VTP Operating Mode : Server<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0x80 0xED 0x23 0x29 0x92 0x92 0xBE 0x09<br />

Configuration last modified by 10.1.0.2 at 3-1-93 02:07:29<br />

Local updater ID is 10.1.0.2 on interface Vl1 (lowest numbered VLAN interface found)<br />

SWB !————————————————————<br />

!VTP <strong>and</strong> VLAN configuration does not show<br />

!————————————————————<br />

enable<br />

config t<br />

vtp mode client<br />

vtp domain <strong>CCNA</strong>3<br />

vtp password cisco<br />

!————————————————————<br />

!<br />

hostname SWB<br />

!<br />

enable secret class<br />

!<br />

no ip domain-lookup<br />

ip host SWA 10.1.0.2<br />

ip host RTA 10.1.0.1<br />

!<br />

interface FastEthernet0/1<br />

!<br />

shutdown<br />

interface FastEthernet0/2<br />

!<br />

switchport mode trunk<br />

interface FastEthernet0/3<br />

!<br />

switchport mode trunk


interface range FastEthernet0/4 - 8<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/9 - 16<br />

switchport access vlan 20<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/17 - 24<br />

switchport access vlan 40<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface Vlan1<br />

!<br />

ip address 10.1.0.3 255.255.0.0<br />

no shutdown<br />

ip default-gateway 10.1.0.1<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

Chapter 9: VLAN Trunking Protocol 445


446 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

line vty 5 15<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

SWB#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

40 Warehousing active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

SWB#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 5<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 8<br />

VTP Operating Mode : Client<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

MD5 digest : 0x80 0xED 0x23 0x29 0x92 0x92 0xBE 0x09<br />

Configuration last modified by 10.1.0.2 at 3-1-93 02:07:29


Challenge Lab 9-6: Advanced Switching<br />

Figure 9-9 Advanced Switching Challenge Lab<br />

Table 9-7 Addressing Scheme<br />

Device Interface IP Address Subnet Mask<br />

SWA VLAN 1 172.16.39.2 255.255.255.248<br />

SWB VLAN 1 172.16.39.3 255.255.255.248<br />

DIST Fa0/1.1 172.16.39.1 255.255.255.248<br />

Objectives<br />

■ Configure STP.<br />

■ Configure port security.<br />

■ Configure the VTP server <strong>and</strong> client.<br />

■ Configure <strong>and</strong> assign VLANs.<br />

■ Configure inter-VLAN routing.<br />

■ Verify <strong>and</strong> document configurations.<br />

Equipment<br />

VLAN 10<br />

fa0/4<strong>–</strong>8<br />

fa0/1<br />

802.1q Trunk<br />

fa0/1<br />

Fa0/1.10 172.16.32.1 255.255.252.0<br />

Fa0/1.20 172.16.36.1 255.255.254.0<br />

Fa0/1.30 172.16.38.1 255.255.255.0<br />

The topology shown in Figure 9-9 is using 2950 switches <strong>and</strong> a 2621 router. You can also use a 1700<br />

series router that supports VLAN trunking.<br />

NetLab Compatibility Notes<br />

DIST<br />

SWA<br />

VLAN 20<br />

fa0/9<strong>–</strong>16<br />

fa0/2<br />

fa0/3 802.1q Trunk<br />

VLAN 30<br />

fa0/17<strong>–</strong>24<br />

VLAN 10<br />

fa0/4<strong>–</strong>8<br />

Chapter 9: VLAN Trunking Protocol 447<br />

VLAN 1 172.16.39.0/29<br />

VLAN 10 172.16.32.0/22<br />

VLAN 20 172.16.36.0/23<br />

VLAN 30 172.16.38.0/24<br />

This lab is fully compatible with a st<strong>and</strong>ard NetLab Basic Switch Pod although you will not be able to<br />

fully test your VLANs or port security.<br />

fa0/2<br />

fa0/3<br />

SWB<br />

VLAN 20<br />

fa0/9<strong>–</strong>16<br />

VLAN 30<br />

fa0/17<strong>–</strong>24


448 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 1: Cable the Topology <strong>and</strong> Basic Configuration<br />

Step 1. Choose two 2950 switches <strong>and</strong> one router with a Fast Ethernet interface (1700 or 2600) <strong>and</strong><br />

cable them according to the topology. (If using NetLab, choose a switch router pod.)<br />

Step 2. Configure the switches <strong>and</strong> router according to your instructor’s required basic configuration<br />

hostnames, host tables, lines, <strong>and</strong> banner. Configure each of the switches with the correct<br />

VLAN 1 IP addresses <strong>and</strong> the correct default gateway.<br />

Step 3. Verify connectivity between SWA <strong>and</strong> SWB. Pings should be successful. If they are not, troubleshoot.<br />

Task 2: Configure the Root Bridge for STP<br />

Step 1. SWA should always be the root bridge. Configure SWA with a spanning-tree priority of 4096<br />

for all four VLANs (1, 10, 20, <strong>and</strong> 30).<br />

Step 2. Verify that SWA is the root with the show spanning-tree summary comm<strong>and</strong>. SWA should be<br />

listed as the root bridge, as shown in the following output.<br />

SWA#show spanning-tree summary<br />

Switch is in pvst mode<br />

Root bridge for: VLAN0001, VLAN0010, VLAN0020, VLAN0030<br />

EtherChannel misconfiguration guard is enabled<br />

Extended system ID is enabled<br />

Portfast is disabled by default<br />

PortFast BPDU Guard is disabled by default<br />

Portfast BPDU Filter is disabled by default<br />

Loopguard is disabled by default<br />

UplinkFast is disabled<br />

BackboneFast is disabled<br />

Pathcost method used is short<br />

Name Blocking Listening Learning Forwarding STP Active<br />

——————————— ———— ————- ———— ————— —————<br />

VLAN0001 0 0 0 3 3<br />

VLAN0010 0 0 0 3 3<br />

VLAN0020 0 0 0 3 3<br />

VLAN0030 0 0 0 3 3<br />

——————————— ———— ————- ———— ————— —————<br />

4 vlans 0 0 0 12 12<br />

SWB#show spanning-tree summary<br />

Switch is in pvst mode<br />

Root bridge for: none<br />

EtherChannel misconfiguration guard is enabled<br />

Extended system ID is enabled<br />

Portfast is disabled by default<br />

PortFast BPDU Guard is disabled by default<br />

Portfast BPDU Filter is disabled by default<br />

Loopguard is disabled by default<br />

UplinkFast is disabled<br />

BackboneFast is disabled<br />

Pathcost method used is short


Name Blocking Listening Learning Forwarding STP Active<br />

——————————— ———— ————- ———— ————— —————<br />

VLAN0001 1 0 0 1 2<br />

VLAN0010 1 0 0 1 2<br />

VLAN0020 1 0 0 1 2<br />

VLAN0030 1 0 0 1 2<br />

——————————— ———— ————- ———— ————— —————<br />

4 vlans 4 0 0 4 8<br />

Task 3: Configure Port Security<br />

Step 1. As a security precaution, disable the Fast Ethernet 0/1 interface on SWB, because this interface<br />

will not be used for access mode or trunk mode.<br />

Perform the following steps on both SWA <strong>and</strong> SWB.<br />

Chapter 9: VLAN Trunking Protocol 449<br />

Step 2. Configure the access ports (Fa0/4 to 24) for access mode <strong>and</strong> turn on port security.<br />

Step 3. Enter the comm<strong>and</strong> to make the first MAC address learned “stick” to the port. No other MAC<br />

addresses should be allowed (maximum of one MAC per port).<br />

Step 4. Enter the comm<strong>and</strong> that will automatically shut down the port if a security violation occurs.<br />

Step 5. Verify port security with the show port-security comm<strong>and</strong>. Your output should look similar to<br />

the following:<br />

SWA#show port-security<br />

Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security<br />

Action<br />

(Count) (Count) (Count)<br />

———————————————————————————————————————-<br />

Fa0/4 1 0 0 Shutdown<br />

Fa0/5 1 0 0 Shutdown<br />

Fa0/6 1 0 0 Shutdown<br />

Fa0/7 1 0 0 Shutdown<br />

Fa0/8 1 0 0 Shutdown<br />

Fa0/9 1 0 0 Shutdown<br />

Fa0/10 1 0 0 Shutdown<br />

Fa0/11 1 0 0 Shutdown<br />

Fa0/12 1 0 0 Shutdown<br />

Fa0/13 1 0 0 Shutdown<br />

Fa0/14 1 0 0 Shutdown<br />

Fa0/15 1 0 0 Shutdown<br />

Fa0/16 1 0 0 Shutdown<br />

Fa0/17 1 0 0 Shutdown<br />

Fa0/18 1 0 0 Shutdown<br />

Fa0/19 1 0 0 Shutdown<br />

Fa0/20 1 0 0 Shutdown<br />

Fa0/21 1 0 0 Shutdown<br />

Fa0/22 1 0 0 Shutdown<br />

Fa0/23 1 0 0 Shutdown<br />

Fa0/24 1 0 0 Shutdown<br />

———————————————————————————————————————-<br />

Total Addresses in System : 0<br />

Max Addresses limit in System : 1024


450 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

SWB#show port-security<br />

Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security<br />

Action<br />

(Count) (Count) (Count)<br />

———————————————————————————————————————-<br />

Fa0/4 1 0 0 Shutdown<br />

Fa0/5 1 0 0 Shutdown<br />

Fa0/6 1 0 0 Shutdown<br />

Fa0/7 1 0 0 Shutdown<br />

Fa0/8 1 0 0 Shutdown<br />

Fa0/9 1 0 0 Shutdown<br />

Fa0/10 1 0 0 Shutdown<br />

Fa0/11 1 0 0 Shutdown<br />

Fa0/12 1 0 0 Shutdown<br />

Fa0/13 1 0 0 Shutdown<br />

Fa0/14 1 0 0 Shutdown<br />

Fa0/15 1 0 0 Shutdown<br />

Fa0/16 1 0 0 Shutdown<br />

Fa0/17 1 0 0 Shutdown<br />

Fa0/18 1 0 0 Shutdown<br />

Fa0/19 1 0 0 Shutdown<br />

Fa0/20 1 0 0 Shutdown<br />

Fa0/21 1 0 0 Shutdown<br />

Fa0/22 1 0 0 Shutdown<br />

Fa0/23 1 0 0 Shutdown<br />

Fa0/24 1 0 0 Shutdown<br />

———————————————————————————————————————-<br />

Total Addresses in System : 0<br />

Max Addresses limit in System : 1024<br />

Task 4: Configure VTP <strong>and</strong> VLANs<br />

Step 1. Configure SWA as the VTP server with the domain name <strong>CCNA</strong>3 <strong>and</strong> password cisco.<br />

Configure SWB as a VTP client in the same domain using the same password.<br />

Step 2. Configure VLANs with names on the VTP server.<br />

■ VLAN 10 is the Accounting VLAN.<br />

■ VLAN 20 is the Marketing VLAN.<br />

■ VLAN 30 is the Purchasing VLAN.<br />

Step 3. Configure the appropriate ports on SWA <strong>and</strong> SWB for trunking. Verify trunking is properly<br />

configured with the show interface trunk comm<strong>and</strong> on both SWA <strong>and</strong> SWB.<br />

SWA#show interface trunk<br />

Port Mode Encapsulation Status Native vlan<br />

Fa0/1 on 802.1q trunking 1<br />

Fa0/2 on 802.1q trunking 1<br />

Fa0/3 on 802.1q trunking 1<br />

Port Vlans allowed on trunk<br />

Fa0/1 1-4094<br />

Fa0/2 1-4094


Fa0/3 1-4094<br />

Port Vlans allowed <strong>and</strong> active in management domain<br />

Fa0/1 1,10,20,30<br />

Fa0/2 1,10,20,30<br />

Fa0/3 1,10,20,30<br />

Port Vlans in spanning tree forwarding state <strong>and</strong> not pruned<br />

Fa0/1 1,10,20,30<br />

Fa0/2 1,10,20,30<br />

Fa0/3 1,10,20,30<br />

SWB#show interface trunk<br />

Port Mode Encapsulation Status Native vlan<br />

Fa0/2 on 802.1q trunking 1<br />

Fa0/3 on 802.1q trunking 1<br />

Port Vlans allowed on trunk<br />

Fa0/2 1-4094<br />

Fa0/3 1-4094<br />

Port Vlans allowed <strong>and</strong> active in management domain<br />

Fa0/2 1,10,20,30<br />

Fa0/3 1,10,20,30<br />

Port Vlans in spanning tree forwarding state <strong>and</strong> not pruned<br />

Fa0/2 1,10,20,30<br />

Fa0/3 none<br />

Step 4. Assign access ports to their correct VLAN as specified in the topology.<br />

Step 5. Verify both the VTP status <strong>and</strong> VLAN configuration on both switches with the show vtp status<br />

<strong>and</strong> show vlan brief comm<strong>and</strong>s. Your output should look similar to the following:<br />

SWA#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 1<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 8<br />

VTP Operating Mode : Server<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0xE0 0x67 0x70 0x4A 0x3C 0xAB 0x44 0x67<br />

Configuration last modified by 172.16.39.2 at 3-10-93 01:23:32<br />

Local updater ID is 172.16.39.2 on interface Vl1 (lowest numbered VLAN interface<br />

found)<br />

SWA#show vlan brief<br />

Chapter 9: VLAN Trunking Protocol 451<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-


452 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

1 default active<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

30 Purchasing active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

SWB#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 1<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 8<br />

VTP Operating Mode : Client<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0xE0 0x67 0x70 0x4A 0x3C 0xAB 0x44 0x67<br />

Configuration last modified by 172.16.39.2 at 3-10-93 01:23:32<br />

SWB#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

30 Purchasing active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active


Task 5: Set Up DHCP on the DIST Router<br />

Although DHCP (Dynamic Host Configuration Protocol) is a <strong>CCNA</strong> 4 objective, it will help in this lab to<br />

use dynamic assignment of IP addresses. Later in the lab, when you connect a workstation to one of the<br />

switches, a DHCP broadcast will be sent to DIST. DIST will send a DHCP offer to your workstation with<br />

an appropriate IP address for the VLAN the workstation is attached to. Make sure your workstations are<br />

set to “Obtain IP address automatically.” Add the following comm<strong>and</strong>s while in global configuration mode<br />

on DIST:<br />

ip dhcp excluded-address 172.16.32.1 172.16.32.10<br />

ip dhcp excluded-address 172.16.36.1 172.16.36.10<br />

ip dhcp excluded-address 172.16.38.1 172.16.38.10<br />

!<br />

ip dhcp pool VLAN10<br />

network 172.16.32.0 255.255.252.0<br />

default-router 172.16.32.1<br />

!<br />

ip dhcp pool VLAN20<br />

network 172.16.36.0 255.255.254.0<br />

default-router 172.16.36.1<br />

!<br />

ip dhcp pool VLAN30<br />

network 172.16.38.0 255.255.255.0<br />

default-router 172.16.38.1<br />

Task 6: Configure Inter-VLAN Routing<br />

Configure DIST to route all VLANs by completing the following:<br />

Step 1. Activate the physical interface.<br />

Step 2. Create subinterfaces for each of the four VLANs. Number each subinterface with the VLAN<br />

number. For example, the VLAN 1 subinterface should be numbered fa0.1 or fa0/0.1, depending<br />

on the router.<br />

Step 3. Configure each subinterface for 802.1q trunking <strong>and</strong> assign each subinterface the first IP<br />

address in the appropriate subnet for that VLAN (refer to the topology).<br />

Step 4. Configure each subinterface with an appropriate description.<br />

Chapter 9: VLAN Trunking Protocol 453<br />

Step 5. Verify that the show ip interface brief comm<strong>and</strong> output is similar to the following output:<br />

DIST#show ip interface brief<br />

Interface IP-Address OK? Method Status Protocol<br />

FastEthernet0/0 unassigned YES unset administratively down down<br />

Serial0/0 unassigned YES unset administratively down down<br />

FastEthernet0/1 unassigned YES unset up up<br />

FastEthernet0/1.1 172.16.39.1 YES manual up up<br />

FastEthernet0/1.10 172.16.32.1 YES manual up up<br />

FastEthernet0/1.20 172.16.36.1 YES manual up up<br />

FastEthernet0/1.30 172.16.38.1 YES manual up up


454 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 6. Verify connectivity between all three devices. Each device should be able to ping the other two<br />

devices.<br />

DIST#ping SWA<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 172.16.39.2, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 1/4/8 ms<br />

DIST#ping SWB<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 172.16.39.3, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms<br />

SWB#ping SWA<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 172.16.39.2, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms<br />

Task 7: Verify Inter-VLAN Routing<br />

Step 1. Attach two workstations to different VLANs.<br />

Step 2. Verify that each workstation received an IP address from the DHCP server on DIST.<br />

Step 3. Verify that the two workstations can ping each other. Traceroute should show that the ping<br />

packets are going through the router. The following is some sample output of this verification.<br />

Yours should look similar.<br />

——————————————————————————-<br />

Configuration for a Workstation attached to VLAN 10<br />

——————————————————————————-<br />

C:\>ipconfig<br />

Windows IP Configuration<br />

Ethernet adapter Local Area Connection:<br />

Connection-specific DNS Suffix . :<br />

IP Address. . . . . . . . . . . . : 172.16.32.11<br />

Subnet Mask . . . . . . . . . . . : 255.255.252.0<br />

Default Gateway . . . . . . . . . : 172.16.32.1<br />

——————————————————————————-<br />

Configuration for a Workstation attached to VLAN 20<br />

——————————————————————————-<br />

C:\>ipconfig


Windows IP Configuration<br />

Ethernet adapter Local Area Connection:<br />

Connection-specific DNS Suffix . :<br />

IP Address. . . . . . . . . . . . : 172.16.36.11<br />

Subnet Mask . . . . . . . . . . . : 255.255.255.0<br />

Default Gateway . . . . . . . . . : 172.16.36.1<br />

——————————————————————-<br />

VLAN 10 Workstation pings VLAN 20 workstation<br />

——————————————————————-<br />

C:\>ping 172.16.36.11<br />

Pinging 172.16.36.11 with 32 bytes of data:<br />

Reply from 172.16.36.11: bytes=32 time=2ms TTL=127<br />

Reply from 172.16.36.11: bytes=32 time=1ms TTL=127<br />

Reply from 172.16.36.11: bytes=32 time=1ms TTL=127<br />

Reply from 172.16.36.11: bytes=32 timetracert 172.16.36.11<br />

Tracing route to 172.16.36.12 over a maximum of 30 hops<br />

1 1 ms 1 ms


456 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 000c.857f.9ea0 DYNAMIC Fa0/1<br />

1 000d.28f2.6942 DYNAMIC Fa0/2<br />

1 000d.28f2.6943 DYNAMIC Fa0/3<br />

10 000c.857f.9ea0 DYNAMIC Fa0/1<br />

10 000d.56a1.a975 STATIC Fa0/4<br />

20 000c.857f.9ea0 DYNAMIC Fa0/1<br />

20 000d.56a1.c8f7 STATIC Fa0/9<br />

Total Mac Addresses for this criterion: 11<br />

SWA#show run<br />

<br />

!<br />

interface FastEthernet0/4<br />

switchport port-security mac-address sticky 000d.56a1.a975<br />

!<br />

interface FastEthernet0/9<br />

switchport port-security mac-address sticky 000d.56a1.c8f7<br />

Step 5. Enter the show port-security comm<strong>and</strong>. The output should now show that the two ports are<br />

counted.<br />

SWA#show port-security<br />

Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security<br />

Action<br />

(Count) (Count) (Count)<br />

———————————————————————————————————————-<br />

Fa0/4 1 1 0 Shutdown<br />

Fa0/5 1 0 0 Shutdown<br />

Fa0/6 1 0 0 Shutdown<br />

Fa0/7 1 0 0 Shutdown<br />

Fa0/8 1 0 0 Shutdown<br />

Fa0/9 1 1 0 Shutdown<br />

Fa0/10 1 0 0 Shutdown<br />

Fa0/11 1 0 0 Shutdown<br />

Fa0/12 1 0 0 Shutdown<br />

Fa0/13 1 0 0 Shutdown<br />

Fa0/14 1 0 0 Shutdown<br />

Fa0/15 1 0 0 Shutdown<br />

Fa0/16 1 0 0 Shutdown<br />

Fa0/17 1 0 0 Shutdown<br />

Fa0/18 1 0 0 Shutdown<br />

Fa0/19 1 0 0 Shutdown<br />

Fa0/20 1 0 0 Shutdown<br />

Fa0/21 1 0 0 Shutdown<br />

Fa0/22 1 0 0 Shutdown<br />

Fa0/23 1 0 0 Shutdown<br />

Fa0/24 1 0 0 Shutdown<br />

———————————————————————————————————————-<br />

Total Addresses in System : 2<br />

Max Addresses limit in System : 1024


Chapter 9: VLAN Trunking Protocol 457<br />

Step 6. Verify that a port currently used by one of your workstations will shut down when another<br />

workstation is attached to the same port. When you attach the workstation, you will see the link<br />

beat light go green for a brief moment. Then it will go dark as the port is automatically shut<br />

down. On the switch console, you may get syslog messages similar to the following output.<br />

2d23h: %LINK-3-UPDOWN: Interface FastEthernet0/4, changed state to down<br />

2d23h: %PORT_SECURITY-2-PSECURE_VIOLATION: Security violation occurred,<br />

caused by MAC address 000d.56a1.acfc on port Fa0/4.<br />

2d23h: %PM-4-ERR_DISABLE: psecure-violation error detected on Fa0/4,<br />

putting Fa0/4 in err-disable state<br />

Step 7. Verify that the port is shut down with the show interface <strong>and</strong> show port-security comm<strong>and</strong>s.<br />

SWA#show interface fastethernet 0/4<br />

FastEthernet0/4 is down, line protocol is down (err-disabled)<br />

SWA#show port-security<br />

Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security<br />

Action<br />

(Count) (Count) (Count)<br />

———————————————————————————————————————-<br />

Fa0/4 1 1 1 Shutdown<br />

Fa0/5 1 0 0 Shutdown<br />

Fa0/6 1 0 0 Shutdown<br />

Fa0/7 1 0 0 Shutdown<br />

Fa0/8 1 0 0 Shutdown<br />

Fa0/9 1 1 0 Shutdown<br />

Fa0/10 1 0 0 Shutdown<br />

Fa0/11 1 0 0 Shutdown<br />

Fa0/12 1 0 0 Shutdown<br />

Fa0/13 1 0 0 Shutdown<br />

Fa0/14 1 0 0 Shutdown<br />

Fa0/15 1 0 0 Shutdown<br />

Fa0/16 1 0 0 Shutdown<br />

Fa0/17 1 0 0 Shutdown<br />

Fa0/18 1 0 0 Shutdown<br />

Fa0/19 1 0 0 Shutdown<br />

Fa0/20 1 0 0 Shutdown<br />

Fa0/21 1 0 0 Shutdown<br />

Fa0/22 1 0 0 Shutdown<br />

Fa0/23 1 0 0 Shutdown<br />

Fa0/24 1 0 0 Shutdown<br />

———————————————————————————————————————-<br />

Total Addresses in System : 2<br />

Max Addresses limit in System : 1024<br />

Step 8. Complete the procedures necessary to remove this port from the err-disabled state <strong>and</strong> allow<br />

the new workstation’s MAC address to “stick” to the configuration.


458 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 8: Documentation<br />

Document your configurations by capturing the following output:<br />

■ show run<br />

■ show vlan brief<br />

■ show spanning-tree summary<br />

■ show vtp status<br />

■ show port-security<br />

■ show mac-address-table<br />

■ On DIST, capture show run<br />

Final scripts <strong>and</strong> verification output:<br />

DIST#<br />

!<br />

ena<br />

config t<br />

!<br />

hostname DIST<br />

!<br />

enable secret class<br />

!<br />

ip dhcp excluded-address 172.16.32.1 172.16.32.10<br />

ip dhcp excluded-address 172.16.36.1 172.16.36.10<br />

ip dhcp excluded-address 172.16.38.1 172.16.38.10<br />

!<br />

ip dhcp pool VLAN10<br />

network 172.16.32.0 255.255.252.0<br />

default-router 172.16.32.1<br />

!<br />

ip dhcp pool VLAN20<br />

network 172.16.36.0 255.255.254.0<br />

default-router 172.16.36.1<br />

!<br />

ip dhcp pool VLAN30<br />

network 172.16.38.0 255.255.255.0<br />

default-router 172.16.38.1<br />

!<br />

no ip domain lookup<br />

ip host SWB 172.16.39.3<br />

ip host SWA 172.16.39.2<br />

!<br />

interface FastEthernet0/1<br />

no shutdown<br />

!<br />

interface FastEthernet0/1.1


!<br />

description Management VLAN 1<br />

encapsulation dot1Q 1 native<br />

ip address 172.16.39.1 255.255.255.248<br />

interface FastEthernet0/1.10<br />

!<br />

description Accounting VLAN 10<br />

encapsulation dot1Q 10<br />

ip address 172.16.32.1 255.255.252.0<br />

interface FastEthernet0/1.20<br />

!<br />

description Marketing VLAN 20<br />

encapsulation dot1Q 20<br />

ip address 172.16.36.1 255.255.254.0<br />

interface FastEthernet0/1.30<br />

!<br />

description Purchasing VLAN 30<br />

encapsulation dot1Q 30<br />

ip address 172.16.38.1 255.255.255.0<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

SWA ena<br />

config t<br />

!————————————————————<br />

Chapter 9: VLAN Trunking Protocol 459


460 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

!VTP <strong>and</strong> VLAN configuration does not show<br />

!————————————————————<br />

vtp mode server<br />

vtp domain <strong>CCNA</strong>3<br />

vtp password cisco<br />

vlan 10<br />

name Accounting<br />

vlan 20<br />

name Marketing<br />

vlan 30<br />

name Purchasing<br />

!————————————————————<br />

!<br />

hostname SWA<br />

!<br />

enable secret class<br />

!<br />

ip host SWB 172.16.39.3<br />

ip host DIST 172.16.39.1<br />

!<br />

!<br />

spanning-tree vlan 1 priority 4096<br />

spanning-tree vlan 10 priority 4096<br />

spanning-tree vlan 20 priority 4096<br />

spanning-tree vlan 30 priority 4096<br />

!<br />

!<br />

interface FastEthernet0/1<br />

!<br />

switchport mode trunk<br />

interface FastEthernet0/2<br />

!<br />

switchport mode trunk<br />

interface FastEthernet0/3<br />

!<br />

switchport mode trunk<br />

interface range FastEthernet0/4 - 8<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/9 - 16<br />

switchport access vlan 20


switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/17 - 24<br />

switchport access vlan 30<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface Vlan1<br />

!<br />

ip address 172.16.39.2 255.255.255.248<br />

no shutdown<br />

ip default-gateway 172.16.39.1<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 5 15<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

SWA#show vlan brief<br />

Chapter 9: VLAN Trunking Protocol 461


462 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Gi0/1, Gi0/2<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

30 Purchasing active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

SWA#show spanning-tree summary<br />

Switch is in pvst mode<br />

Root bridge for: VLAN0001, VLAN0010, VLAN0020, VLAN0030<br />

EtherChannel misconfiguration guard is enabled<br />

Extended system ID is enabled<br />

Portfast is disabled by default<br />

PortFast BPDU Guard is disabled by default<br />

Portfast BPDU Filter is disabled by default<br />

Loopguard is disabled by default<br />

UplinkFast is disabled<br />

BackboneFast is disabled<br />

Pathcost method used is short<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

Name Blocking Listening Learning Forwarding STP Active<br />

——————————— ———— ————- ———— ————— —————<br />

VLAN0001 0 0 0 3 3<br />

VLAN0010 0 0 0 3 3<br />

VLAN0020 0 0 0 3 3<br />

VLAN0030 0 0 0 3 3<br />

——————————— ———— ————- ———— ————— —————<br />

4 vlans 0 0 0 12 12<br />

SWA#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 4<br />

Maximum VLANs supported locally : 250<br />

Number of existing VLANs : 8<br />

VTP Operating Mode : Server<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled


MD5 digest : 0xDB 0xC6 0x01 0xD9 0x27 0x8E 0x51 0xF3<br />

Configuration last modified by 172.16.39.2 at 3-1-93 00:07:50<br />

Local updater ID is 172.16.39.2 on interface Vl1 (lowest numbered VLAN interface found)<br />

!The output below was captured from a NetLab switch<br />

!No workstations show. Your output should show ‘CurrentAddr’ for workstations<br />

SWA#show port-security<br />

Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security Action<br />

(Count) (Count) (Count)<br />

———————————————————————————————————————-<br />

Fa0/4 1 0 0 Shutdown<br />

Fa0/5 1 0 0 Shutdown<br />

Fa0/6 1 0 0 Shutdown<br />

Fa0/7 1 0 0 Shutdown<br />

Fa0/8 1 0 0 Shutdown<br />

Fa0/9 1 0 0 Shutdown<br />

Fa0/10 1 0 0 Shutdown<br />

Fa0/11 1 0 0 Shutdown<br />

Fa0/12 1 0 0 Shutdown<br />

Fa0/13 1 0 0 Shutdown<br />

Fa0/14 1 0 0 Shutdown<br />

Fa0/15 1 0 0 Shutdown<br />

Fa0/16 1 0 0 Shutdown<br />

Fa0/17 1 0 0 Shutdown<br />

Fa0/18 1 0 0 Shutdown<br />

Fa0/19 1 0 0 Shutdown<br />

Fa0/20 1 0 0 Shutdown<br />

Fa0/21 1 0 0 Shutdown<br />

Fa0/22 1 0 0 Shutdown<br />

Fa0/23 1 0 0 Shutdown<br />

Fa0/24 1 0 0 Shutdown<br />

———————————————————————————————————————-<br />

Total Addresses in System : 0<br />

Max Addresses limit in System : 1024<br />

!The output below was captured from a NetLab switch<br />

!No workstations show. Your output should show workstation MACs<br />

SWA#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

All 000e.385d.e380 STATIC CPU<br />

Chapter 9: VLAN Trunking Protocol 463


464 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

SWB ena<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 000d.6562.e380 DYNAMIC Fa0/2<br />

1 000d.6562.e382 DYNAMIC Fa0/2<br />

1 000d.6562.e383 DYNAMIC Fa0/3<br />

1 000e.382f.4d81 DYNAMIC Fa0/1<br />

Total Mac Addresses for this criterion: 8<br />

config t<br />

!———————————————————<br />

!VTP configuration does not show<br />

!———————————————————<br />

vtp mode client<br />

vtp domain <strong>CCNA</strong>3<br />

vtp password cisco<br />

!———————————————————<br />

!<br />

hostname SWB<br />

!<br />

enable secret class<br />

!<br />

no ip domain-lookup<br />

ip host SWA 172.16.39.2<br />

ip host DIST 172.16.39.1<br />

!<br />

interface FastEthernet0/1<br />

!<br />

shutdown<br />

interface FastEthernet0/2<br />

!<br />

switchport mode trunk<br />

interface FastEthernet0/3<br />

!<br />

switchport mode trunk<br />

interface range FastEthernet0/4 - 8<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/9 - 16


switchport access vlan 20<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface range FastEthernet0/17 - 24<br />

switchport access vlan 30<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

!The ‘maximum’ comm<strong>and</strong> does not show in configuration<br />

!<br />

switchport port-security maximum 1<br />

interface Vlan1<br />

!<br />

ip address 172.16.39.3 255.255.255.248<br />

no shutdown<br />

ip default-gateway 172.16.39.1<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 5 15<br />

!<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

Chapter 9: VLAN Trunking Protocol 465


466 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

SWB#show vlan brief<br />

VLAN Name Status Ports<br />

—— ———————————————— ————- ———————————————-<br />

1 default active Fa0/1<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6, Fa0/7<br />

Fa0/8<br />

20 Marketing active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

30 Purchasing active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

SWB#show spanning-tree summary<br />

Switch is in pvst mode<br />

Root bridge for: none<br />

EtherChannel misconfiguration guard is enabled<br />

Extended system ID is enabled<br />

Portfast is disabled by default<br />

PortFast BPDU Guard is disabled by default<br />

Portfast BPDU Filter is disabled by default<br />

Loopguard is disabled by default<br />

UplinkFast is disabled<br />

BackboneFast is disabled<br />

Pathcost method used is short<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

Name Blocking Listening Learning Forwarding STP Active<br />

——————————— ———— ————- ———— ————— —————<br />

VLAN0001 1 0 0 1 2<br />

VLAN0010 1 0 0 1 2<br />

VLAN0020 1 0 0 1 2<br />

VLAN0030 1 0 0 1 2<br />

——————————— ———— ————- ———— ————— —————<br />

4 vlans 4 0 0 4 8<br />

SWB#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 4<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 8<br />

VTP Operating Mode : Client<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled


VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0xDB 0xC6 0x01 0xD9 0x27 0x8E 0x51 0xF3<br />

Configuration last modified by 172.16.39.2 at 3-1-93 00:07:50<br />

!The output below was captured from a NetLab switch<br />

!No workstations show. Your output should show ‘CurrentAddr’ for workstations<br />

SWB#show port-security<br />

Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security Action<br />

(Count) (Count) (Count)<br />

———————————————————————————————————————-<br />

Fa0/4 1 0 0 Shutdown<br />

Fa0/5 1 0 0 Shutdown<br />

Fa0/6 1 0 0 Shutdown<br />

Fa0/7 1 0 0 Shutdown<br />

Fa0/8 1 0 0 Shutdown<br />

Fa0/9 1 0 0 Shutdown<br />

Fa0/10 1 0 0 Shutdown<br />

Fa0/11 1 0 0 Shutdown<br />

Fa0/12 1 0 0 Shutdown<br />

Fa0/13 1 0 0 Shutdown<br />

Fa0/14 1 0 0 Shutdown<br />

Fa0/15 1 0 0 Shutdown<br />

Fa0/16 1 0 0 Shutdown<br />

Fa0/17 1 0 0 Shutdown<br />

Fa0/18 1 0 0 Shutdown<br />

Fa0/19 1 0 0 Shutdown<br />

Fa0/20 1 0 0 Shutdown<br />

Fa0/21 1 0 0 Shutdown<br />

Fa0/22 1 0 0 Shutdown<br />

Fa0/23 1 0 0 Shutdown<br />

Fa0/24 1 0 0 Shutdown<br />

———————————————————————————————————————-<br />

Total Addresses in System : 0<br />

Max Addresses limit in System : 1024<br />

!The output below was captured from a NetLab switch<br />

!No workstations show. Your output should show workstation MACs<br />

SWB#show mac-address-table<br />

Mac Address Table<br />

—————————————————————-<br />

Vlan Mac Address Type Ports<br />

—— —————- ———— ——-<br />

Chapter 9: VLAN Trunking Protocol 467


468 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

All 000d.6562.e380 STATIC CPU<br />

All 0100.0ccc.cccc STATIC CPU<br />

All 0100.0ccc.cccd STATIC CPU<br />

All 0100.0cdd.dddd STATIC CPU<br />

1 000e.382f.4d81 DYNAMIC Fa0/2<br />

1 000e.385d.e382 DYNAMIC Fa0/2<br />

10 000e.385d.e382 DYNAMIC Fa0/2<br />

20 000e.385d.e382 DYNAMIC Fa0/2<br />

30 000e.385d.e382 DYNAMIC Fa0/2<br />

Total Mac Addresses for this criterion: 9


APPENDIX A<br />

Router Interface Summary Chart<br />

For most of the <strong>CCNA</strong> 3 labs, you need to examine the following chart to correctly reference the router<br />

interface identifiers to use in comm<strong>and</strong>s based on the equipment in your lab.<br />

Router Ethernet Ethernet Serial Serial<br />

Model Interface 1 Interface 2 Interface 1 Interface 2<br />

800 (806) Ethernet 0 (E0) Ethernet 1 (E1)<br />

1600 Ethernet 0 (E0) Ethernet 1 (E1) Serial 0 (S0) Serial 1 (S1)<br />

1700 FastEthernet 0 (FA0) FastEthernet 1 (FA1) Serial 0 (S0) Serial 1 (S1)<br />

2500 Ethernet 0 (E0) Ethernet 1 (E1) Serial 0 (S0) Serial 1 (S1)<br />

2600 FastEthernet 0/0 (FA0/0) FastEthernet 0/1 (FA0/1) Serial 0/0 (S0/0) Serial 0/1 (S0/1)<br />

To find out exactly how the router is configured, look at the interfaces to identify what type <strong>and</strong> how many<br />

the router has. There is no way to effectively list all of the combinations of configurations for each router<br />

class. The chart provides the identifiers for the possible combinations of interfaces in the device. This<br />

interface chart does not include any other type of interface even though a specific router might contain<br />

one. An example of this is an ISDN BRI interface. The string in parentheses is the legal abbreviation that<br />

you can use in Cisco IOS Software comm<strong>and</strong>s to represent the interface.


This page intentionally left blank


APPENDIX B<br />

Erasing <strong>and</strong> Reloading the Switch<br />

For the majority of the labs in <strong>CCNA</strong> 3 focusing on switch configuration, it is necessary to start with a<br />

basic unconfigured switch; otherwise, the configuration parameters you enter might combine with previous<br />

ones <strong>and</strong> produce unpredictable results. The instructions here enable you to prepare the switch prior to performing<br />

the lab so that previous configuration options do not interfere with your configurations.<br />

The following is the procedure for clearing out previous configurations <strong>and</strong> starting with an unconfigured<br />

switch. Instructions are provided for the 2900, 2950, <strong>and</strong> 1900 series switches.<br />

2900 <strong>and</strong> 2950 Series Switches<br />

Step 1. Disconnect the switch to be erased from all other switches. Verify that there is no uplink or<br />

backbone cabling to any other switch, otherwise VLAN configuration information can be transferred<br />

automatically.<br />

Step 2. Enter into privileged EXEC mode by typing enable. If prompted for a password, enter class (if<br />

that does not work, ask the instructor).<br />

Switch> enable<br />

Step 3. Remove the VLAN database information file:<br />

Switch# delete flash:vlan.dat<br />

Delete filename [vlan.dat]?[Enter]<br />

Delete flash:vlan.dat? [confirm][Enter]<br />

If there was no VLAN file, the following message appears:<br />

%Error deleting flash:vlan.dat (No such file or directory)<br />

Step 4. Remove the switch startup configuration file from NVRAM:<br />

Switch#erase startup-config<br />

The responding line prompt will be<br />

Erasing the nvram filesystem will remove all files! Continue? [confirm]<br />

Press Enter to confirm.<br />

The response should be<br />

Erase of nvram: complete<br />

Step 5. Check that VLAN information was deleted.<br />

Verify that the VLAN configuration was deleted in Step 3 using the show vlan comm<strong>and</strong>. If<br />

previous VLAN configuration information (other than the default management VLAN 1) is still<br />

present, it will be necessary to power cycle the switch (hardware restart) instead of issuing the<br />

reload comm<strong>and</strong>. To power cycle the switch, remove the power cord from the back of the<br />

switch or unplug it. Then plug it back in.<br />

If the VLAN information was successfully deleted in Step 3, go to Step 6 <strong>and</strong> restart the switch<br />

using the reload comm<strong>and</strong>.


472 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Step 6. Restart the software (using the reload comm<strong>and</strong>):<br />

Note: This step is not necessary if the switch was restarted using the power cycle method.<br />

1. In privileged EXEC mode, enter the comm<strong>and</strong> reload:<br />

Switch(config)# reload<br />

The responding line prompt will be<br />

System configuration has been modified. Save? [yes/no]:<br />

2. Type n <strong>and</strong> then press Enter.<br />

The responding line prompt will be<br />

Proceed with reload? [confirm][Enter]<br />

The first line of the response will be<br />

Reload requested by console.<br />

After the switch has reloaded, the line prompt will be<br />

Would you like to enter the initial configuration dialog? [yes/no]:<br />

3. Type n <strong>and</strong> then press Enter.<br />

The responding line prompt will be<br />

Press RETURN to get started![Enter]<br />

1900 Series Switches<br />

Step 1. Remove VLAN Trunking Protocol (VTP) information:<br />

#delete vtp<br />

This comm<strong>and</strong> resets the switch with VTP parameters set to factory defaults.<br />

All other parameters will be unchanged.<br />

Reset system with VTP parameters set to factory defaults, [Y]es or [N]o?<br />

Enter y <strong>and</strong> press Enter.<br />

Step 2. Remove the switch startup configuration from NVRAM:<br />

#delete nvram<br />

This comm<strong>and</strong> resets the switch with factory defaults. All system<br />

parameters will revert to their default factory settings. All static<br />

<strong>and</strong> dynamic addresses will be removed.<br />

Reset system with factory defaults, [Y]es or [N]o?<br />

Enter y <strong>and</strong> press Enter.


APPENDIX C<br />

Erasing <strong>and</strong> Reloading the Router<br />

For some of the <strong>CCNA</strong> 3 labs, it is necessary to start with a basic unconfigured router; otherwise, the configuration<br />

parameters you enter might combine with previous ones <strong>and</strong> produce unpredictable results. The<br />

instructions here allow you to prepare the router prior to performing the lab so that previous configuration<br />

options do not interfere with your configurations.<br />

The following is the procedure for clearing out previous configurations <strong>and</strong> starting with an unconfigured<br />

router.<br />

Step 1. Enter into privileged EXEC mode by typing enable.<br />

Router>enable<br />

If prompted for a password, enter class. (If that does not work, ask your instructor.)<br />

Step 2. In privileged EXEC mode, enter the comm<strong>and</strong> erase startup-config.<br />

Router#erase startup-config<br />

The response from the router will be<br />

Erasing the nvram filesystem will remove all files! Continue? [confirm]<br />

Step 3. Press Enter to confirm.<br />

The response will be<br />

Erase of nvram: complete<br />

Step 4. Now in privileged EXEC mode, enter the comm<strong>and</strong> reload.<br />

Router#reload<br />

response:<br />

System configuration has been modified. Save? [yes/no]:<br />

Step 5. Type n <strong>and</strong> then press Enter.<br />

The router will respond with the following:<br />

Proceed with reload? [confirm]<br />

Step 6. Press Enter to confirm.<br />

The first line of the response will be<br />

Reload requested by console.<br />

After the router reloads, the prompt will be<br />

Would you like to enter the initial configuration dialog? [yes/no]:<br />

Step 7. Type n <strong>and</strong> then press Enter.<br />

The responding prompt will be<br />

Press RETURN to get started!<br />

Step 8. Press Enter.<br />

Now, the router is ready for you to perform the assigned lab.


This page intentionally left blank


APPENDIX D<br />

<strong>CCNA</strong> 3 Skills-Based Assessment Practice<br />

Ultimately, your success on the <strong>CCNA</strong> exams, <strong>and</strong> in your networking career, will depend heavily upon<br />

your ability to plan, design, implement, operate, <strong>and</strong> troubleshoot internetworks. In Switching Basics <strong>and</strong><br />

Intermediate Routing <strong>CCNA</strong> 3, you have learned many new skills. Now it is time to apply what you have<br />

learned to comprehensive skills-based assessments. Because your <strong>CCNA</strong> 3 coursework is divided into<br />

routing <strong>and</strong> switching, this appendix includes a skills-based assessment for routing <strong>and</strong> a skills-based<br />

assessment for switching. Then, you will combine skills from both routing <strong>and</strong> switching in the <strong>CCNA</strong> 3<br />

comprehensive skills-based assessment.<br />

<strong>CCNA</strong> 3 Skills-Based Assessment: Routing<br />

Figure D-1 <strong>CCNA</strong> 3 Skills-Based Assessment: Routing<br />

Objectives<br />

■ Configure OSPF with authentication<br />

■ Configure EIGRP<br />

■ Configure a default route <strong>and</strong> propagate it using OSPF<br />

■ Verify network connectivity <strong>and</strong> gather documentation<br />

Equipment<br />

The topology shown in Figure D-1 is using 2600 series routers. However, you can use any router series<br />

that supports OSPF, including the 1700 <strong>and</strong> 2500 series.<br />

NetLab Compatibility Notes<br />

OSPF<br />

Area 0<br />

172.16.1.2/30<br />

S0/0<br />

DCE<br />

Router2<br />

S0/0<br />

DTE<br />

10.10.1.1/30<br />

S0/1<br />

DCE<br />

S0/1<br />

DTE<br />

Router1 Router3<br />

Fa0/0<br />

172.16.1.1/30<br />

172.16.2.33/27<br />

Fa0/0<br />

172.30.1.1/24<br />

This lab is fully compatible with a st<strong>and</strong>ard NetLab Basic Router Pod.<br />

10.10.1.2/30<br />

Fa0/0<br />

172.30.2.1/24


476 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Preconfigurations<br />

Use the following scripts to preconfigure the routers:<br />

Router1<br />

hostname Router1<br />

interface FastEthernet0/0<br />

ip address 172.16.2.33 255.255.255.224<br />

no shutdown<br />

interface Serial0/0<br />

ip address 172.16.1.2 255.255.255.252<br />

clockrate 56000<br />

no shutdown<br />

Router2<br />

hostname Router2<br />

interface FastEthernet0/0<br />

ip address 172.30.1.1 255.255.255.0<br />

no shutdown<br />

interface Serial0/0<br />

ip address 172.16.1.1 255.255.255.252<br />

no shutdown<br />

interface serial0/1<br />

ip address 10.10.1.1 255.255.255.252<br />

clockrate 56000<br />

no shutdown<br />

Router3<br />

hostname Router3<br />

interface FastEthernet0/0<br />

ip address 172.30.2.1 255.255.255.0<br />

no shutdown<br />

interface serial0/1<br />

ip address 10.10.1.2 255.255.255.252<br />

no shutdown<br />

Task 1: Configure OSPF with Authentication<br />

Step 1. Use a loopback interface to configure Router1 with an OSPF router ID of 192.168.1.1.<br />

Step 2. Use a loopback interface to configure Router2 with an OSPF router ID of 192.168.2.1.<br />

Step 3. Configure OSPF routing between Router1 <strong>and</strong> Router2 with a process ID of 50.<br />

Step 4. Configure OSPF so that only the following 172.16.0.0 subnets will be routed:<br />

■ 172.16.2.32/27<br />

■ 172.16.1.0/30<br />

Step 5. Configure the OSPF hello interval to 5 seconds <strong>and</strong> the OSPF dead interval to 20 seconds.<br />

Step 6. Configure the OSPF communication between the routers to use authentication with MD5<br />

encryption.


Task 2: Configure EIGRP<br />

Step 1. Configure EIGRP between Router2 <strong>and</strong> Router3 with an AS of 100.<br />

Step 2. Configure EIGRP should only to route only for the following networks:<br />

■ 10.10.1.0/30<br />

■ 172.30.1.0/24<br />

■ 172.30.2.0/24<br />

Task 3: Configure Default Routing <strong>and</strong> Propagate It Using OSPF<br />

Step 1. On Router2, configure a default static route to Router3.<br />

Step 2. Propagate that default route to all routers in the OSPF routing domain.<br />

Task 4: Verify Connectivity <strong>and</strong> Gather Documentation<br />

Step 1. From Router2, verify connectivity by pinging all interfaces on all routers.<br />

Step 2. From Router1, ping all OSPF-enabled interfaces.<br />

Step 3. From Router3, ping all EIGRP-enabled interfaces.<br />

Note: Router1 <strong>and</strong> Router3 will not be able to ping all interfaces, because there is no redistribution between OSPF<br />

<strong>and</strong> EIGRP in this scenario.<br />

Step 4. For each of the routers, capture the following output:<br />

■ show run<br />

■ show ip route<br />

■ ping output showing successful pings according to Steps 1 to 3<br />

Router1<br />

Router1#show run<br />

Building configuration...<br />

hostname Router1<br />

!<br />

enable secret class<br />

!<br />

no ip domain lookup<br />

ip host R2 172.16.1.1<br />

!<br />

interface Loopback0<br />

ip address 192.168.1.1 255.255.255.0<br />

!<br />

interface FastEthernet0/0<br />

ip address 172.16.2.33 255.255.255.224<br />

no shutdown<br />

!<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 477


478 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

interface Serial0/0<br />

description Link to R2<br />

ip address 172.16.1.2 255.255.255.252<br />

ip ospf message-digest-key 1 md5 allrouters<br />

ip ospf hello-interval 5<br />

ip ospf dead-interval 20<br />

clock rate 56000<br />

no shutdown<br />

!<br />

router ospf 50<br />

log-adjacency-changes<br />

area 0 authentication message-digest<br />

network 172.16.1.0 0.0.0.3 area 0<br />

network 172.16.2.32 0.0.0.31 area 0<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

Router1#show ip route<br />

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2<br />

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2<br />

ia - IS-IS inter area, * - c<strong>and</strong>idate default, U - per-user static route


o - ODR, P - periodic downloaded static route<br />

Gateway of last resort is 172.16.1.1 to network 0.0.0.0<br />

172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks<br />

C 172.16.2.32/27 is directly connected, FastEthernet0/0<br />

C 172.16.1.0/30 is directly connected, Serial0/0<br />

C 192.168.1.0/24 is directly connected, Loopback0<br />

O*E2 0.0.0.0/0 [110/1] via 172.16.1.1, 00:06:43, Serial0/0<br />

Router1#ping 172.16.1.1<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 172.16.1.1, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 32/32/36 ms<br />

Router1#ping 172.30.1.1<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 172.30.1.1, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 32/33/36 ms<br />

Router1#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) C2600 Software (C2600-J1S3-M), Version 12.3(17a), RELEASE SOFTWARE (fc2)<br />

Technical Support: http://www.cisco.com/techsupport<br />

Copyright (c) 1986-2005 by cisco Systems, Inc.<br />

Compiled Mon 12-Dec-05 14:12 by evmiller<br />

Image text-base: 0x80008098, data-base: 0x81A33618<br />

ROM: System Bootstrap, Version 12.2(7r) [cmong 7r], RELEASE SOFTWARE (fc1)<br />

ROM: C2600 Software (C2600-J1S3-M), Version 12.3(17a), RELEASE SOFTWARE (fc2)<br />

Router1 uptime is 44 minutes<br />

System returned to ROM by power-on<br />

System image file is "flash:c2600-j1s3-mz.123-17a.bin"<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 479<br />

cisco 2611XM (MPC860P) processor (revision 0x100) with 89088K/9216K bytes of mem<br />

ory.<br />

Processor board ID JAE07460SS1 (4270759778)<br />

M860 processor: part number 5, mask 2<br />

Bridging software.<br />

X.25 software, Version 3.0.0.<br />

TN3270 Emulation software.<br />

2 FastEthernet/IEEE 802.3 interface(s)


480 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

2 Serial network interface(s)<br />

32K bytes of non-volatile configuration memory.<br />

32768K bytes of processor board System flash (Read/Write)<br />

Configuration register is 0x2102<br />

Router2<br />

Router2#show run<br />

Building configuration...<br />

hostname Router2<br />

!<br />

enable secret class<br />

!<br />

no ip domain lookup<br />

ip host R1 172.16.1.2<br />

ip host R3 10.10.1.2<br />

!<br />

interface Loopback0<br />

ip address 192.168.2.1 255.255.255.0<br />

!<br />

interface FastEthernet0/0<br />

ip address 172.30.1.1 255.255.255.0<br />

no shutdown<br />

!<br />

interface Serial0/0<br />

description Link to R1<br />

ip address 172.16.1.1 255.255.255.252<br />

ip ospf message-digest-key 1 md5 allrouters<br />

ip ospf hello-interval 5<br />

ip ospf dead-interval 20<br />

no shutdown<br />

!<br />

interface Serial0/1<br />

description Link to R3<br />

ip address 10.10.1.1 255.255.255.252<br />

clock rate 56000<br />

no clockrate<br />

!<br />

router eigrp 100<br />

network 10.0.0.0<br />

network 172.30.0.0<br />

no auto-summary<br />

!<br />

router ospf 50<br />

area 0 authentication message-digest


network 172.16.1.0 0.0.0.3 area 0<br />

default-information originate<br />

!<br />

ip route 0.0.0.0 0.0.0.0 Serial0/1<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

Router2#show ip route<br />

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2<br />

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2<br />

ia - IS-IS inter area, * - c<strong>and</strong>idate default, U - per-user static route<br />

o - ODR, P - periodic downloaded static route<br />

Gateway of last resort is 0.0.0.0 to network 0.0.0.0<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 481<br />

172.16.0.0/16 is variably subnetted, 2 subnets, 2 masks<br />

O 172.16.2.32/27 [110/65] via 172.16.1.2, 00:08:04, Serial0/0<br />

C 172.16.1.0/30 is directly connected, Serial0/0<br />

172.30.0.0/16 is variably subnetted, 2 subnets, 2 masks<br />

D 172.30.0.0/16 [90/2172416] via 10.10.1.2, 00:08:31, Serial0/1<br />

C 172.30.1.0/24 is directly connected, FastEthernet0/0<br />

10.0.0.0/30 is subnetted, 1 subnets


482 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

C 10.10.1.0 is directly connected, Serial0/1<br />

C 192.168.2.0/24 is directly connected, Loopback0<br />

S* 0.0.0.0/0 is directly connected, Serial0/1<br />

Router2#ping 172.16.2.33<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 172.16.2.33, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 40/44/60 ms<br />

Router2#ping 172.30.2.1<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 172.30.2.1, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 32/33/36 ms<br />

Router2#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) C2600 Software (C2600-J1S3-M), Version 12.3(17a), RELEASE SOFTWARE (fc2)<br />

Technical Support: http://www.cisco.com/techsupport<br />

Copyright (c) 1986-2005 by cisco Systems, Inc.<br />

Compiled Mon 12-Dec-05 14:12 by evmiller<br />

Image text-base: 0x80008098, data-base: 0x81A33618<br />

ROM: System Bootstrap, Version 12.2(7r) [cmong 7r], RELEASE SOFTWARE (fc1)<br />

ROM: C2600 Software (C2600-J1S3-M), Version 12.3(17a), RELEASE SOFTWARE (fc2)<br />

Router2 uptime is 43 minutes<br />

System returned to ROM by power-on<br />

System image file is "flash:c2600-j1s3-mz.123-17a.bin"<br />

cisco 2621XM (MPC860P) processor (revision 0x100) with 118784K/12288K bytes of m<br />

emory.<br />

Processor board ID JAE07420G4S (1562611187)<br />

M860 processor: part number 5, mask 2<br />

Bridging software.<br />

X.25 software, Version 3.0.0.<br />

TN3270 Emulation software.<br />

2 FastEthernet/IEEE 802.3 interface(s)<br />

2 Serial network interface(s)<br />

32K bytes of non-volatile configuration memory.<br />

49152K bytes of processor board System flash (Read/Write)<br />

Configuration register is 0x2102


Router3<br />

Router3#show run<br />

Building configuration...<br />

!<br />

hostname Router3<br />

!<br />

enable secret class<br />

!<br />

no ip domain lookup<br />

ip host R2 10.10.1.1<br />

!<br />

interface FastEthernet0/0<br />

ip address 172.30.2.1 255.255.255.0<br />

no shutdown<br />

!<br />

interface Serial0/1<br />

description Link to R2<br />

ip address 10.10.1.2 255.255.255.252<br />

no shutdown<br />

!<br />

router eigrp 100<br />

network 10.0.0.0<br />

network 172.30.0.0<br />

auto-summary<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 483


484 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

Router3#show ip route<br />

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2<br />

i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2<br />

ia - IS-IS inter area, * - c<strong>and</strong>idate default, U - per-user static route<br />

o - ODR, P - periodic downloaded static route<br />

Gateway of last resort is not set<br />

172.30.0.0/16 is variably subnetted, 3 subnets, 2 masks<br />

C 172.30.2.0/24 is directly connected, FastEthernet0/0<br />

D 172.30.0.0/16 is a summary, 00:12:12, Null0<br />

D 172.30.1.0/24 [90/2172416] via 10.10.1.1, 00:12:11, Serial0/1<br />

10.0.0.0/8 is variably subnetted, 2 subnets, 2 masks<br />

C 10.10.1.0/30 is directly connected, Serial0/1<br />

D 10.0.0.0/8 is a summary, 00:12:12, Null0<br />

Router3#ping 172.30.1.1<br />

Type escape sequence to abort.<br />

Sending 5, 100-byte ICMP Echos to 172.30.1.1, timeout is 2 seconds:<br />

!!!!!<br />

Success rate is 100 percent (5/5), round-trip min/avg/max = 40/44/64 ms<br />

Router3#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) C2600 Software (C2600-J1S3-M), Version 12.3(17a), RELEASE SOFTWARE (fc2)<br />

Technical Support: http://www.cisco.com/techsupport<br />

Copyright (c) 1986-2005 by cisco Systems, Inc.<br />

Compiled Mon 12-Dec-05 14:12 by evmiller<br />

Image text-base: 0x80008098, data-base: 0x81A33618<br />

ROM: System Bootstrap, Version 11.3(2)XA4, RELEASE SOFTWARE (fc1)<br />

ROM: C2600 Software (C2600-J1S3-M), Version 12.3(17a), RELEASE SOFTWARE (fc2)<br />

Router3 uptime is 44 minutes<br />

System returned to ROM by power-on


System image file is "flash:c2600-j1s3-mz.123-17a.bin"<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 485<br />

cisco 2621 (MPC860) processor (revision 0x102) with 56320K/9216K bytes of memory<br />

.<br />

Processor board ID JAD04300B3P (4106725847)<br />

M860 processor: part number 0, mask 49<br />

Bridging software.<br />

X.25 software, Version 3.0.0.<br />

TN3270 Emulation software.<br />

2 FastEthernet/IEEE 802.3 interface(s)<br />

2 Serial network interface(s)<br />

32K bytes of non-volatile configuration memory.<br />

16384K bytes of processor board System flash (Read/Write)


486 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Configuration register is 0x2102<br />

<strong>CCNA</strong> 3 Skills-Based Assessment: Switching<br />

Figure D-2 <strong>CCNA</strong> 3 Skills-Based Assessment: Switching<br />

Objectives<br />

■ Router VLAN configuration<br />

■ Basic switch configuration<br />

■ Configure trunk links <strong>and</strong> port security<br />

■ Configure STP, VTP, <strong>and</strong> VLANs<br />

■ Configure VLAN interfaces on switches<br />

■ Configure VLAN trunking <strong>and</strong> spanning tree<br />

■ Verify connectivity <strong>and</strong> gather documentation<br />

Equipment<br />

VLAN 1<br />

172.16.1.0/24<br />

R1<br />

Fa0/1<br />

Trunk<br />

802.1Q<br />

Fa0/1<br />

The topology shown in Figure D-2 has been designed for the 2950 series switch. Other hardware may have<br />

different interface types <strong>and</strong> numbers. 1900 series switches do not support 802.1Q encapsulation <strong>and</strong> thus<br />

require ISL encapsulation.<br />

NetLab Compatibility Notes<br />

This lab is fully compatible with a st<strong>and</strong>ard NetLab Basic Switch Pod.<br />

Task 1: Router VLAN Configuration<br />

Step 1. Configure the router hostname <strong>and</strong> any other basic configurations required by your instructor.<br />

Step 2. Configure the Ethernet interface to trunk for each VLAN on S1—VLAN 1, VLAN 10, <strong>and</strong><br />

VLAN 20 using 802.1Q encapsulation:<br />

Note: 1900 series switches do not support 802.1Q encapsulation. Use ISL encapsulation for 1900 series switches.<br />

■ VLAN 1 = 172.16.1.0/24<br />

Fa0/2 Trunk<br />

Fa0/2<br />

S1 Fa0/3 802.1Q Fa0/3 S2<br />

VLAN 10<br />

Accounting<br />

172.16.10.0/24<br />

VLAN 20<br />

Marketing<br />

172.16.20.0/24<br />

VLAN 1<br />

172.16.1.0/24<br />

VLAN 10<br />

Accounting<br />

172.16.10.0/24<br />

VLAN 20<br />

Marketing<br />

172.16.20.0/24


■ VLAN 10 = 172.16.10.0/24<br />

■ VLAN 20 = 172.16.20.0/24<br />

Task 2: Basic Switch Configuration<br />

Step 1. Configure the hostname on switch S1 to S1.<br />

Step 2. Configure S1 with a VLAN 1 IP address of 172.16.1.3/24.<br />

Step 3. Configure the hostname on S2 to S2.<br />

Step 4. Configure S2 with a VLAN 1 IP address of 172.16.1.4/24.<br />

Step 5. Configure both switches with a default gateway address of 172.16.1.1.<br />

Task 3: Configure Trunk Links <strong>and</strong> Port Security<br />

Step 1. On S1, configure interfaces Fa0/1<strong>–</strong>3 in trunking mode.<br />

Step 2. On S2, configure interface Fa0/2<strong>–</strong>3 in trunking mode. Shut down interface Fa0/1, because it<br />

will not be used.<br />

Note: If you are using a 2900 series switch, you have to specify the encapsulation type used on the<br />

switch’s trunk links.<br />

Step 3. On both switches, configure the following on interfaces Fa0/4<strong>–</strong>24 (or 12 if using a 12-port<br />

switch):<br />

■ Set the ports to access mode.<br />

■ Enable port security.<br />

■ Enable the first MAC address to stick to the configuration.<br />

■ Enable port shutdown if there is a security violation.<br />

Task 4: Configure STP, VTP, <strong>and</strong> VLANs<br />

Step 1. Configure S1 to be the root bridge for VLAN 1 <strong>and</strong> VLAN 10.<br />

Step 2. Configure S2 to be the root bridge for VLAN 20.<br />

Step 3. Configure both S1 <strong>and</strong> S2 as part of VTP domain Group1.<br />

Step 4. Configure S1 as the VTP server <strong>and</strong> S2 as the VTP client.<br />

Step 5. Configure cisco as the VTP password.<br />

Step 6. Create VLAN 10 with the name Accounting.<br />

Step 7. Create VLAN 20 with the name Marketing.<br />

Task 5: Configure VLAN Interfaces on Switches<br />

Step 1. Configure the following on switch S1:<br />

■ Assign interfaces Fa0/4<strong>–</strong>6 to VLAN 10.<br />

■ Assign interfaces Fa0/7<strong>–</strong>9 to VLAN 20.<br />

■ Verify that all other interfaces are in VLAN 1.<br />

Step 2. Configure the following on switch S2:<br />

■ Assign interfaces Fa0/4<strong>–</strong>6 to VLAN 10.<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 487


488 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

■ Assign interfaces Fa0/7<strong>–</strong>9 to VLAN 20.<br />

■ Verify that all other interfaces are in VLAN 1.<br />

Task 6: Configure VLAN Trunking <strong>and</strong> Spanning Tree<br />

Step 1. Configure trunking between S1 <strong>and</strong> S2 with 802.1Q encapsulation using ports Fa0/2 <strong>and</strong> Fa0/3<br />

on both switches.<br />

Note: Use ISL encapsulation for 1900 series switches.<br />

Step 2. Configure S1 for trunking between S1 <strong>and</strong> R1 with 802.1Q encapsulation using port Fa0/1.<br />

Step 3. Configure S1 to be the root bridge for VLAN 1<br />

Task 7: Verify Connectivity <strong>and</strong> Gather Documentation<br />

Step 1. It is not possible to verify inter-VLAN routing, because there are no hosts attached. However,<br />

the router <strong>and</strong> the two switches should be able to ping each other on their VLAN 1 interfaces.<br />

Step 2. For the router, capture the following output:<br />

■ show run<br />

■ show ip interface brief<br />

Step 3. For the switches, capture the following output:<br />

R1<br />

■ show run<br />

■ show vlan brief<br />

■ show vtp status<br />

■ show spanning-tree summary<br />

R1#show run<br />

Building configuration...<br />

hostname R1<br />

!<br />

enable secret class<br />

!<br />

no ip domain lookup<br />

ip host S2 172.16.1.4<br />

ip host S1 172.16.1.3<br />

!<br />

interface FastEthernet0/1<br />

no shutdown<br />

!<br />

interface FastEthernet0/1.1<br />

description Managment VLAN 1<br />

encapsulation dot1Q 1 native<br />

ip address 172.16.1.1 255.255.255.0<br />

!<br />

interface FastEthernet0/1.10


description Accounting VLAN 10<br />

encapsulation dot1Q 10<br />

ip address 172.16.10.1 255.255.255.0<br />

!<br />

interface FastEthernet0/1.20<br />

description Marketing VLAN 20<br />

encapsulation dot1Q 20<br />

ip address 172.16.20.1 255.255.255.0<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 489<br />

R1#show ip interface brief<br />

Interface IP-Address OK? Method Status Prot<br />

ocol<br />

FastEthernet0/0 unassigned YES unset administratively down down<br />

Serial0/0 unassigned YES unset administratively down down<br />

FastEthernet0/1 unassigned YES unset up up<br />

FastEthernet0/1.1 172.16.1.1 YES manual up up<br />

FastEthernet0/1.10 172.16.10.1 YES manual up up<br />

FastEthernet0/1.20 172.16.20.1 YES manual up up


490 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

R1#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) C2600 Software (C2600-IPBASE-M), Version 12.3(1a), RELEASE SOFTWARE (fc1)<br />

Copyright (c) 1986-2003 by cisco Systems, Inc.<br />

Compiled Fri 06-Jun-03 22:08 by dchih<br />

Image text-base: 0x80008098, data-base: 0x80F9CF68<br />

ROM: System Bootstrap, Version 12.2(7r) [cmong 7r], RELEASE SOFTWARE (fc1)<br />

R1 uptime is 1 hour, 47 minutes<br />

System returned to ROM by power-on<br />

System image file is "flash:c2600-ipbase-mz.123-1a.bin"<br />

cisco 2621XM (MPC860P) processor (revision 0x100) with 125952K/5120K bytes of me<br />

mory.<br />

Processor board ID JAE07420G7D (326445113)<br />

M860 processor: part number 5, mask 2<br />

Bridging software.<br />

X.25 software, Version 3.0.0.<br />

2 FastEthernet/IEEE 802.3 interface(s)<br />

1 Serial network interface(s)<br />

32K bytes of non-volatile configuration memory.<br />

49152K bytes of processor board System flash (Read/Write)<br />

Configuration register is 0x2142 (will be 0x2102 at next reload)<br />

S1<br />

S1#show run<br />

Building configuration...<br />

hostname S1<br />

!<br />

enable secret class<br />

!<br />

no ip domain-lookup<br />

ip host R1 172.16.1.1<br />

ip host S2 172.16.1.4<br />

!<br />

!<br />

spanning-tree vlan 1 priority 24576<br />

spanning-tree vlan 10 priority 24576<br />

!<br />

!------------------------------------------<br />

!VTP <strong>and</strong> VLAN Configurations<br />

!----------------------------------------vtp<br />

mode server


vtp domain Group1<br />

vtp password cisco<br />

vlan 10<br />

name Accounting<br />

vlan 20<br />

name Marketing<br />

!------------------------------------------<br />

!<br />

interface FastEthernet0/1<br />

switchport mode trunk<br />

!<br />

interface FastEthernet0/2<br />

switchport mode trunk<br />

!<br />

interface FastEthernet0/3<br />

switchport mode trunk<br />

!<br />

interface range FastEthernet0/4 - 6<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface range FastEthernet0/7 - 9<br />

switchport access vlan 20<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface range FastEthernet0/10 - 24<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface Vlan1<br />

ip address 172.16.1.3 255.255.255.0<br />

no shutdown<br />

!<br />

ip default-gateway 172.16.1.1=<br />

!<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 491


492 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 5 15<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

!<br />

end<br />

S1#show vlan brief<br />

VLAN Name Status Ports<br />

---- -------------------------------- --------- -------------------------------<br />

1 default active Fa0/10, Fa0/11, Fa0/12, Fa0/13<br />

Fa0/14, Fa0/15, Fa0/16, Fa0/17<br />

Fa0/18, Fa0/19, Fa0/20, Fa0/21<br />

Fa0/22, Fa0/23, Fa0/24, Gi0/1<br />

Gi0/2<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6<br />

20 Marketing active Fa0/7, Fa0/8, Fa0/9<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

S1#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 2<br />

Maximum VLANs supported locally : 250<br />

Number of existing VLANs : 7<br />

VTP Operating Mode : Server


VTP Domain Name : Group1<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0xB9 0x8C 0x14 0x31 0x5F 0x85 0x67 0xFC<br />

Configuration last modified by 172.16.1.3 at 3-1-93 00:02:29<br />

Local updater ID is 172.16.1.3 on interface Vl1 (lowest numbered VLAN interface found)<br />

S1#show spanning-tree summary<br />

Switch is in pvst mode<br />

Root bridge for: VLAN0001, VLAN0010<br />

EtherChannel misconfiguration guard is enabled<br />

Extended system ID is enabled<br />

Portfast is disabled by default<br />

PortFast BPDU Guard is disabled by default<br />

Portfast BPDU Filter is disabled by default<br />

Loopguard is disabled by default<br />

UplinkFast is disabled<br />

BackboneFast is disabled<br />

Pathcost method used is short<br />

Name Blocking Listening Learning Forwarding STP Active<br />

---------------------- -------- --------- -------- ---------- ----------<br />

VLAN0001 0 0 0 3 3<br />

VLAN0010 0 0 0 3 3<br />

VLAN0020 1 0 0 2 3<br />

---------------------- -------- --------- -------- ---------- ----------<br />

3 vlans 1 0 0 8 9<br />

S1#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(13)EA1, RELEASE SOFTWARE (fc1)<br />

Copyright (c) 1986-2003 by cisco Systems, Inc.<br />

Compiled Tue 04-Mar-03 02:14 by yenanh<br />

Image text-base: 0x80010000, data-base: 0x805A8000<br />

ROM: Bootstrap program is CALHOUN boot loader<br />

S1 uptime is 34 minutes<br />

System returned to ROM by power-on<br />

System image file is "flash:c2950-i6q4l2-mz.121-13.EA1.bin"<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 493<br />

cisco WS-C2950T-24 (RC32300) processor (revision K0) with 20839K bytes of memory<br />

.<br />

Processor board ID FOC0743Y1E3<br />

Last reset from system-reset


494 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Running Enhanced Image<br />

24 FastEthernet/IEEE 802.3 interface(s)<br />

2 Gigabit Ethernet/IEEE 802.3 interface(s)<br />

32K bytes of flash-simulated non-volatile configuration memory.<br />

Base ethernet MAC Address: 00:0E:38:5D:E3:80<br />

Motherboard assembly number: 73-6114-09<br />

Power supply part number: 34-0965-01<br />

Motherboard serial number: FOC07430LSF<br />

Power supply serial number: DAB0742EDCL<br />

Model revision number: K0<br />

Motherboard revision number: A0<br />

Model number: WS-C2950T-24<br />

System serial number: FOC0743Y1E3<br />

Configuration register is 0xF<br />

S2<br />

S2#show run<br />

Building configuration...<br />

hostname S2<br />

!<br />

enable secret class<br />

!<br />

no ip domain-lookup<br />

ip host S1 172.16.1.3<br />

ip host R1 172.16.1.1<br />

!<br />

!<br />

spanning-tree vlan 20 priority 24576<br />

!<br />

!------------------------------------------<br />

!VTP <strong>and</strong> VLAN Configurations<br />

!----------------------------------------vtp<br />

mode client<br />

vtp domain Group1<br />

vtp password cisco<br />

!------------------------------------------<br />

!<br />

interface FastEthernet0/1<br />

shutdown<br />

!<br />

interface FastEthernet0/2<br />

switchport mode trunk<br />

!<br />

interface FastEthernet0/3


switchport mode trunk<br />

!<br />

interface range FastEthernet0/4 - 6<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface range FastEthernet0/7 - 9<br />

switchport access vlan 20<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface range FastEthernet0/10 - 24<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface Vlan1<br />

ip address 172.16.1.4 255.255.255.0<br />

no shutdown<br />

!<br />

ip default-gateway 172.16.1.1<br />

ip http server<br />

!<br />

banner motd $<br />

***********************************<br />

!!!AUTHORIZE ACCESS ONLY!!!<br />

***********************************<br />

$<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 495


496 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

logging synchronous<br />

login<br />

line vty 5 15<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

S2#show vlan brief<br />

VLAN Name Status Ports<br />

---- -------------------------------- --------- -------------------------------<br />

1 default active Fa0/1, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

10 Accounting active Fa0/4, Fa0/5, Fa0/6<br />

20 Marketing active Fa0/7, Fa0/8, Fa0/9<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

S2#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 2<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 7<br />

VTP Operating Mode : Client<br />

VTP Domain Name : Group1<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0xB9 0x8C 0x14 0x31 0x5F 0x85 0x67 0xFC<br />

Configuration last modified by 172.16.1.3 at 3-1-93 00:02:29<br />

S2#show spanning-tree summary<br />

Switch is in pvst mode<br />

Root bridge for: VLAN0020<br />

EtherChannel misconfiguration guard is enabled<br />

Extended system ID is enabled<br />

Portfast is disabled by default<br />

PortFast BPDU Guard is disabled by default<br />

Portfast BPDU Filter is disabled by default<br />

Loopguard is disabled by default


UplinkFast is disabled<br />

BackboneFast is disabled<br />

Pathcost method used is short<br />

Name Blocking Listening Learning Forwarding STP Active<br />

---------------------- -------- --------- -------- ---------- ----------<br />

VLAN0001 1 0 0 1 2<br />

VLAN0010 1 0 0 1 2<br />

VLAN0020 0 0 0 2 2<br />

---------------------- -------- --------- -------- ---------- ----------<br />

3 vlans 2 0 0 4 6<br />

S2#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) C2950 Software (C2950-I6Q4L2-M), Version 12.1(13)EA1, RELEASE SOFTWARE (fc1)<br />

Copyright (c) 1986-2003 by cisco Systems, Inc.<br />

Compiled Tue 04-Mar-03 02:14 by yenanh<br />

Image text-base: 0x80010000, data-base: 0x805A8000<br />

ROM: Bootstrap program is CALHOUN boot loader<br />

S2 uptime is 35 minutes<br />

System returned to ROM by power-on<br />

System image file is "flash:/c2950-i6q4l2-mz.121-13.EA1.bin"<br />

cisco WS-C2950-24 (RC32300) processor (revision J0) with 20839K bytes of memory.<br />

Processor board ID FHK0728W0XH<br />

Last reset from system-reset<br />

Running St<strong>and</strong>ard Image<br />

24 FastEthernet/IEEE 802.3 interface(s)<br />

32K bytes of flash-simulated non-volatile configuration memory.<br />

Base ethernet MAC Address: 00:0D:65:62:E3:80<br />

Motherboard assembly number: 73-5781-11<br />

Power supply part number: 34-0965-01<br />

Motherboard serial number: FOC07280RA4<br />

Power supply serial number: DAB07278PCM<br />

Model revision number: J0<br />

Motherboard revision number: A0<br />

Model number: WS-C2950-24<br />

System serial number: FHK0728W0XH<br />

Configuration register is 0xF<br />

S2#<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 497


498 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

<strong>CCNA</strong> 3 Comprehensive Skills-Based Assessment<br />

Table D-1 VLSM Addressing Scheme<br />

Device Name Interface Address Subnet Mask<br />

ISP Lo0 209.165.202.192 255.255.255.255<br />

S0 209.165.201.1 255.255.255.252<br />

CORE S0 209.165.201.2 255.255.255.252<br />

E0 172.16.7.65 255.255.255.248<br />

DIST-A Lo0 209.165.200.225 255.255.255.255<br />

S0 172.16.7.81 255.255.255.252<br />

E0 172.16.7.66 255.255.255.248<br />

DIST-B Lo0 172.16.7.1 255.255.255.192<br />

S0 172.16.7.85 255.255.255.252<br />

E0 172.16.7.67 255.255.255.248<br />

DIST-C S0 172.16.7.82 255.255.255.252<br />

S1 172.16.7.86 255.255.255.252<br />

F0.1 172.16.7.73 255.255.255.248<br />

F0.10 172.16.0.1 255.255.252.0<br />

F0.20 172.16.4.1 255.255.254.0<br />

F0.30 172.16.6.1 255.255.255.0<br />

ALSw-A VLAN 1 172.16.7.74 255.255.255.248<br />

ALSw-B VLAN 1 172.16.7.75 255.255.255.248<br />

Objectives<br />

Demonstrate a comprehensive implementation of <strong>CCNA</strong> 3 skills by completing the following:<br />

■ Design a VLSM addressing scheme to meet requirements<br />

■ Configure OSPF, static, <strong>and</strong> default routing<br />

■ Configure STP <strong>and</strong> port security<br />

■ Configure VTP <strong>and</strong> VLANs<br />

■ Verify your configuration <strong>and</strong> gather documentation<br />

Scenario<br />

You are the network administrator for a small corporation. You are planning a migration to a three-layer<br />

hierarchical design using OSPF <strong>and</strong> VLANs. At the core layer, your router will provide access to the<br />

Internet. At the distribution layer, you will use one router for access to your public Web servers (DIST-A),<br />

one router for access to the enterprise server farm (DIST-B), <strong>and</strong> one router for routing VLANs (DIST-C).<br />

At the access layer, you will trunk two switches with VLAN implementation. In addition, you will completely<br />

redesign your addressing scheme using VLSM.


Design Considerations<br />

You can use any five routers at your disposal. However, DIST-C must be a 1700 or 2600 series router that<br />

will support routing VLANs. The server LANs off of ISP, DIST-A, <strong>and</strong> DIST-B can be simulated with<br />

loopback interfaces.<br />

Task 1: Lab Setup<br />

Step 1. Cable the lab with available equipment in the configuration shown in Figure D-3.<br />

Step 2. Label Figure D-3 with the appropriate interface names (such as S0, S0/0, E0, Fa0, <strong>and</strong> so on).<br />

Step 3. Label serial interfaces with the appropriate DTE or DCE designation.<br />

Task 2: Addressing Scheme<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 499<br />

Design an appropriate VLSM addressing scheme using the following method to assign subnets <strong>and</strong> interface<br />

addresses. Maximize the number of host addresses at each level of subnetting.<br />

Step 1. VLSM Level 1: Subnet the given address space 172.16.0.0/16 to provide enough addresses for<br />

1000 hosts <strong>and</strong> assign subnet zero to VLAN 10.<br />

Step 2. VLSM Level 2: Using subnet 1 left over from VLSM Level 1, subnet it to provide enough<br />

addresses for 500 hosts <strong>and</strong> assign subnet 0 to VLAN 20.<br />

Step 3. VLSM Level 3: Using subnet 1 left over from VLSM Level 2, subnet it to provide enough<br />

addresses for 250 hosts <strong>and</strong> assign subnet 0 to VLAN 30.<br />

Step 4. VLSM Level 4: Using subnet 1 left over from VLSM Level 3, subnet it to provide enough<br />

addresses for 60 hosts <strong>and</strong> assign subnet 0 to the server farm.<br />

Step 5. VLSM Level 5: Using subnet 1 left over from VLSM Level 4, subnet it to provide enough<br />

addresses for three hosts. Assign subnet 0 to the CORE LAN (three hosts) <strong>and</strong> subnet 1 to<br />

VLAN 1 (three hosts).<br />

Step 6. VLSM Level 6: Using subnet 2 left over from VLSM Level 5, subnet it to provide enough<br />

addresses for the remaining two WAN links. Assign subnet 0 to the WAN link between DIST-A<br />

<strong>and</strong> DIST-C <strong>and</strong> subnet 1 to the WAN link between DIST-B <strong>and</strong> DIST-C.<br />

Step 7. Fill in Table D-1 with your addressing design <strong>and</strong> label the topology with the assigned subnets.<br />

Step 8. On the topology in Figure D-3, label each interface with the last two octets of the interface’s IP<br />

address.


500 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Figure D-3 <strong>CCNA</strong> 3 Comprehensive Skills-Based Assessment (Answer)<br />

Outside Public Web<br />

Server:<br />

209.165.202.129/32<br />

Lo0<br />

ISP<br />

Private Address<br />

Space<br />

172.16.0.0/16<br />

S0<br />

.201.1/30<br />

Task 3: Basic Router <strong>and</strong> Switch Configuration<br />

Erase the stored configuration on all routers <strong>and</strong> switches <strong>and</strong> reload without saving changes. Configure<br />

each with the following basic configurations:<br />

■ Hostnames<br />

■ Passwords<br />

■ Host table<br />

209.165.201.0/30<br />

Interface designations will<br />

depend on equipment used.<br />

S0<br />

.201.2/30<br />

CORE<br />

E0<br />

.7.65/29<br />

Lo0<br />

E0 E0<br />

.7.66/29 .7.67/29<br />

Lo0<br />

DIST-A S0<br />

S0 DIST-B<br />

OSPF<br />

Server Farm<br />

.7.85/30<br />

.7.81/30<br />

S0 S1<br />

Inside Public Web<br />

Server:<br />

209.165.200.225/32<br />

.7.82/30 .7.86/30<br />

DIST-C<br />

VLAN 1 .7.75/29<br />

Fa0.1 .7.73/20<br />

Fa0.10 0.1/22<br />

Fa0.20 .4.1/23<br />

Fa0.30 .6.1/24<br />

VLAN 1 .7.74/29<br />

ALSw-A 802.1Q Trunk<br />

ALSw-B<br />

VLAN 10 VLAN 20 VLAN 30 VLAN 10 VLAN 20 VLAN 30


■ Console line <strong>and</strong> Telnet lines<br />

■ Interface addresses<br />

Task 4: Configure OSPF, Static, <strong>and</strong> Default Routing<br />

Step 1. Configure OSPF to advertise all inside routes:<br />

■ The ISP router is not to participate in OSPF.<br />

■ CORE is not to advertise the WAN link it shares with ISP.<br />

■ Make sure DIST-A advertises the inside public web server.<br />

Step 2. CORE must never be DR <strong>and</strong> DIST-A must always be DR.<br />

Step 3. Configure a 5-second hello interval on OSPF enabled routers.<br />

Step 4. Configure OSPF routers to use MD5 authentication.<br />

Step 5. Set the LAN interface on DIST-C to passive so that OSPF updates do not get sent out to<br />

ALSw-A.<br />

Step 6. Configure CORE with a default static route to ISP.<br />

Step 7. Advertise the default route to the rest of the inside routers.<br />

Step 8. Configure ISP with a static route to the 172.16.0.0/16 address space <strong>and</strong> a static route to the<br />

inside web server at 209.165.200.225/32.<br />

Step 9. Verify that inside routers can now ping the outside web server.<br />

Task 5: Spanning Tree <strong>and</strong> Port Security<br />

Step 1. Configure ALSw-A to be the STP root bridge for VLAN 1 <strong>and</strong> VLAN 10.<br />

Step 2. Configure ALSw-B to be the STP root bridge for VLAN 20 <strong>and</strong> VLAN 30.<br />

Step 3. On both switches, configure the following on all access ports:<br />

■ Set the ports to access mode.<br />

■ Enable port security.<br />

■ Enable the first MAC address to stick to the configuration.<br />

■ Enable port shutdown if there is a security violation.<br />

Step 4. If necessary for your switch platform, configure the switch trunk links to use IEEE 802.1Q.<br />

Task 6: VLAN <strong>and</strong> VTP Configuration<br />

Step 1. Configure ALSw-A to be the VTP server in the VTP domain <strong>CCNA</strong>3 with an appropriate<br />

password.<br />

Step 2. Configure ALSw-B to be a VTP client in the VTP domain <strong>CCNA</strong>3 with the correct password.<br />

Step 3. Configure the VTP server with the following VLANs:<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 501<br />

■ VLAN 10: Finance<br />

■ VLAN 20: Sales<br />

■ VLAN 30: Purchasing<br />

Step 4. Choose the ports to assign to each VLAN. It is not necessary to configure every port with a<br />

VLAN.


502 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

Task 7: Verify Configurations <strong>and</strong> Gather Documentation<br />

Step 1. You should now have full connectivity from any host on the network to any other host. Verify<br />

end-to-end connectivity.<br />

Step 2. When satisfied with your configurations, gather documentation for future reference. On all five<br />

routers, capture the following output:<br />

■ show run<br />

■ show ip route<br />

■ show ip interface brief<br />

■ show ip ospf neighbors<br />

Step 3. On the two switches, capture the following output:<br />

ISP<br />

■ show run<br />

■ show vlan brief<br />

■ show vtp status<br />

ISP#show run<br />

Building configuration...<br />

hostname ISP<br />

!<br />

enable secret class<br />

!<br />

no ip domain-lookup<br />

ip host DA 172.16.7.66 172.16.7.81<br />

ip host DB 172.16.7.67 172.16.7.85<br />

ip host DC 172.16.7.82 172.16.7.86<br />

ip host CORE 209.165.201.2<br />

ip host SA 172.16.7.74<br />

ip host SB 172.16.7.75<br />

!<br />

interface Loopback0<br />

description Simulated Outside Public Web Server<br />

ip address 209.165.202.129 255.255.255.255<br />

!<br />

interface Serial0<br />

description Link to Enterprise<br />

ip address 200.20.2.1 255.255.255.252<br />

clockrate 64000<br />

no shutdown<br />

!<br />

ip route 209.165.200.225 255.255.255.255 Serial0<br />

ip route 172.16.0.0 255.255.0.0 Serial0<br />

!


!<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

!<br />

end<br />

ISP#show ip interface brief<br />

Interface IP-Address OK? Method Status Protocol<br />

Ethernet0 unassigned YES unset administratively down down<br />

Loopback0 209.165.202.129 YES manual up up<br />

Serial0 200.20.2.1 YES manual up up<br />

Serial1 unassigned YES unset administratively down down<br />

ISP#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

209.165.201.0/30 is subnetted, 1 subnets<br />

C 209.165.201.0 is directly connected, Serial0<br />

S 172.16.0.0/16 is directly connected, Serial0<br />

209.165.200.0/32 is subnetted, 1 subnets<br />

S 209.165.200.225 is directly connected, Serial0<br />

209.165.202.0/32 is subnetted, 1 subnets<br />

C 209.165.202.129 is directly connected, Loopback0<br />

ISP#show version<br />

Cisco Internetwork Operating System Software<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 503


504 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

IOS (tm) 2500 Software (C2500-JS-L), Version 12.2(13b), RELEASE SOFTWARE (fc1)<br />

Copyright (c) 1986-2003 by cisco Systems, Inc.<br />

Compiled Thu 20-Feb-03 14:09 by pwade<br />

Image text-base: 0x0307C780, data-base: 0x00001000<br />

ROM: System Bootstrap, Version 11.0(10c), SOFTWARE<br />

BOOTLDR: 3000 Bootstrap Software (IGS-BOOT-R), Version 11.0(10c), RELEASE SOFTWARE (fc1)<br />

ISP uptime is 6 days, 2 hours, 55 minutes<br />

System returned to ROM by reload<br />

System image file is "flash:c2500-js-l.122-13b.bin"<br />

cisco 2500 (68030) processor (revision N) with 14336K/2048K bytes of memory.<br />

Processor board ID 18423267, with hardware revision 00000000<br />

Bridging software.<br />

X.25 software, Version 3.0.0.<br />

SuperLAT software (copyright 1990 by Meridian Technology Corp).<br />

TN3270 Emulation software.<br />

1 Ethernet/IEEE 802.3 interface(s)<br />

2 Serial network interface(s)<br />

32K bytes of non-volatile configuration memory.<br />

16384K bytes of processor board System flash (Read ONLY)<br />

Configuration register is 0x2102<br />

CORE<br />

CORE#show run<br />

Building configuration...<br />

hostname CORE<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host SB 172.16.7.75<br />

ip host SA 172.16.7.74<br />

ip host ISP 209.165.201.2<br />

ip host DC 172.16.7.82 172.16.7.86<br />

ip host DB 172.16.7.67 172.16.7.85<br />

ip host DA 172.16.7.66 172.16.7.81<br />

ip host WEB 209.165.202.129<br />

!<br />

interface Ethernet0<br />

description Link to Distribution Layer


ip address 172.16.7.65 255.255.255.248<br />

ip ospf priority 0<br />

ip ospf message-digest-key 1 md5 allrouters<br />

ip ospf hello-interval 5<br />

no shutdown<br />

!<br />

interface Serial0<br />

description Link to ISP<br />

ip address 209.165.201.2 255.255.255.252<br />

no shutdown<br />

!<br />

router ospf 1<br />

network 172.16.7.64 0.0.0.7 area 0<br />

area 0 authentication message-digest<br />

default-information originate<br />

!<br />

ip route 0.0.0.0 0.0.0.0 Serial0<br />

!<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

!<br />

end<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 505<br />

CORE#show ip interface brief<br />

Interface IP-Address OK? Method Status Protocol<br />

Ethernet0 172.16.7.65 YES NVRAM up up<br />

Serial0 209.165.201.2 YES NVRAM up up<br />

Serial1 unassigned YES NVRAM administratively down down<br />

CORE#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area


506 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 0.0.0.0 to network 0.0.0.0<br />

209.165.201.2/30 is subnetted, 1 subnets<br />

C 209.165.201.0 is directly connected, Serial0<br />

172.16.0.0/16 is variably subnetted, 8 subnets, 6 masks<br />

O 172.16.4.0/23 [110/75] via 172.16.7.67, 1d21h, Ethernet0<br />

[110/75] via 172.16.7.66, 1d21h, Ethernet0<br />

O 172.16.7.1/32 [110/11] via 172.16.7.67, 1d21h, Ethernet0<br />

O 172.16.6.0/24 [110/75] via 172.16.7.67, 1d21h, Ethernet0<br />

[110/75] via 172.16.7.66, 1d21h, Ethernet0<br />

O 172.16.0.0/22 [110/75] via 172.16.7.67, 1d21h, Ethernet0<br />

[110/75] via 172.16.7.66, 1d21h, Ethernet0<br />

O 172.16.7.80/30 [110/74] via 172.16.7.66, 1d21h, Ethernet0<br />

O 172.16.7.84/30 [110/74] via 172.16.7.67, 1d21h, Ethernet0<br />

O 172.16.7.72/29 [110/75] via 172.16.7.67, 1d21h, Ethernet0<br />

[110/75] via 172.16.7.66, 1d21h, Ethernet0<br />

C 172.16.7.64/29 is directly connected, Ethernet0<br />

209.165.200.0/32 is subnetted, 1 subnets<br />

O 209.165.200.255 [110/11] via 172.16.7.66, 1d21h, Ethernet0<br />

S* 0.0.0.0/0 is directly connected, Serial0<br />

CORE#show ip ospf 1<br />

Routing Process "ospf 1" with ID 209.165.201.0<br />

Supports only single TOS(TOS0) routes<br />

Supports opaque LSA<br />

It is an autonomous system boundary router<br />

Redistributing External Routes from,<br />

SPF schedule delay 5 secs, Hold time between two SPFs 10 secs<br />

Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs<br />

Number of external LSA 1. Checksum Sum 0x00C4B6<br />

Number of opaque AS LSA 0. Checksum Sum 0x000000<br />

Number of DCbitless external <strong>and</strong> opaque AS LSA 0<br />

Number of DoNotAge external <strong>and</strong> opaque AS LSA 0<br />

Number of areas in this router is 1. 1 normal 0 stub 0 nssa<br />

External flood list length 0<br />

Area BACKBONE(0)<br />

Number of interfaces in this area is 1<br />

Area has no authentication<br />

SPF algorithm executed 14 times


Area ranges are<br />

Number of LSA 5. Checksum Sum 0x01DCA5<br />

Number of opaque link LSA 0. Checksum Sum 0x000000<br />

Number of DCbitless LSA 0<br />

Number of indication LSA 0<br />

Number of DoNotAge LSA 0<br />

Flood list length 0<br />

CORE#<br />

CORE#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) 2500 Software (C2500-JS-L), Version 12.2(13b), RELEASE SOFTWARE (fc1)<br />

Copyright (c) 1986-2003 by cisco Systems, Inc.<br />

Compiled Thu 20-Feb-03 14:09 by pwade<br />

Image text-base: 0x0307C780, data-base: 0x00001000<br />

ROM: System Bootstrap, Version 11.0(10c), SOFTWARE<br />

BOOTLDR: 3000 Bootstrap Software (IGS-BOOT-R), Version 11.0(10c), RELEASE SOFTWARE (fc1)<br />

CORE uptime is 2 days, 34 minutes<br />

System returned to ROM by power-on<br />

System image file is "flash:/c2500-js-l.122-13b.bin"<br />

cisco 2500 (68030) processor (revision N) with 14336K/2048K bytes of memory.<br />

Processor board ID 18423246, with hardware revision 00000000<br />

Bridging software.<br />

X.25 software, Version 3.0.0.<br />

SuperLAT software (copyright 1990 by Meridian Technology Corp).<br />

TN3270 Emulation software.<br />

1 Ethernet/IEEE 802.3 interface(s)<br />

2 Serial network interface(s)<br />

32K bytes of non-volatile configuration memory.<br />

16384K bytes of processor board System flash (Read ONLY)<br />

Configuration register is 0x2102<br />

DIST-A<br />

DIST-A#show run<br />

Building configuration...<br />

hostname DIST-A<br />

!<br />

enable secret class<br />

!<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 507


508 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

no ip domain-lookup<br />

ip host CORE 172.16.7.65<br />

ip host WEB 209.165.202.129<br />

ip host DB 172.16.7.67 172.16.7.85<br />

ip host DC 172.16.7.82 172.16.7.86<br />

ip host ISP 209.165.201.1<br />

ip host SA 172.16.7.74<br />

ip host SB 172.16.7.75<br />

!<br />

interface Loopback0<br />

description Simulated Inside Public Web Server<br />

ip address 145.46.47.48 255.255.255.255<br />

!<br />

interface Ethernet0<br />

description Link to CORE <strong>and</strong> DIST-B<br />

ip address 172.16.7.66 255.255.255.248<br />

ip ospf message-digest-key 1 md5 allrouters<br />

ip ospf hello-interval 5<br />

ip ospf priority 2<br />

!<br />

interface Serial0<br />

description Link to DIST-C<br />

ip address 172.16.7.81 255.255.255.252<br />

ip ospf message-digest-key 1 md5 allrouters<br />

ip ospf hello-interval 5<br />

clockrate 64000<br />

!<br />

router ospf 1<br />

area 0 authentication message-digest<br />

network 145.46.47.48 0.0.0.0 area 0<br />

network 172.16.7.64 0.0.0.7 area 0<br />

network 172.16.7.80 0.0.0.3 area 0<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0


password cisco<br />

logging synchronous<br />

login<br />

!<br />

end<br />

DIST-A#show ip interface brief<br />

Interface IP-Address OK? Method Status Protocol<br />

Ethernet0 172.16.7.66 YES manual up up<br />

Loopback0 145.46.47.48 YES manual up up<br />

Serial0 172.16.7.81 YES manual up up<br />

Serial1 unassigned YES unset administratively down down<br />

DIST-A#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 172.16.7.65 to network 0.0.0.0<br />

172.16.0.0/16 is variably subnetted, 8 subnets, 6 masks<br />

O 172.16.4.0/23 [110/65] via 172.16.7.82, 1d21h, Serial0<br />

O 172.16.7.1/32 [110/11] via 172.16.7.67, 1d21h, Ethernet0<br />

O 172.16.6.0/24 [110/65] via 172.16.7.82, 1d21h, Serial0<br />

O 172.16.0.0/22 [110/65] via 172.16.7.82, 1d21h, Serial0<br />

C 172.16.7.80/30 is directly connected, Serial0<br />

O 172.16.7.84/30 [110/74] via 172.16.7.67, 1d21h, Ethernet0<br />

O 172.16.7.72/29 [110/65] via 172.16.7.82, 1d21h, Serial0<br />

C 172.16.7.64/29 is directly connected, Ethernet0<br />

209.165.200.0/32 is subnetted, 1 subnets<br />

C 209.165.200.225 is directly connected, Loopback0<br />

O*E2 0.0.0.0/0 [110/1] via 172.16.7.65, 1d21h, Ethernet0<br />

DIST-A#show ip ospf neighbor<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 509<br />

Neighbor ID Pri State Dead Time Address Interface<br />

209.165.201.2 0 FULL/DROTHER 00:00:35 172.16.7.65 Ethernet0<br />

172.16.7.67 1 FULL/BDR 00:00:34 172.16.7.67 Ethernet0<br />

172.16.7.82 1 FULL/ - 00:00:36 172.16.7.82 Serial0


510 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

DIST-A#show ip ospf 1<br />

Routing Process "ospf 1" with ID 172.16.7.81<br />

Supports only single TOS(TOS0) routes<br />

Supports opaque LSA<br />

SPF schedule delay 5 secs, Hold time between two SPFs 10 secs<br />

Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs<br />

Number of external LSA 1. Checksum Sum 0x00C4B6<br />

Number of opaque AS LSA 0. Checksum Sum 0x000000<br />

Number of DCbitless external <strong>and</strong> opaque AS LSA 0<br />

Number of DoNotAge external <strong>and</strong> opaque AS LSA 0<br />

Number of areas in this router is 1. 1 normal 0 stub 0 nssa<br />

External flood list length 0<br />

Area BACKBONE(0)<br />

Number of interfaces in this area is 3<br />

Area has no authentication<br />

SPF algorithm executed 36 times<br />

Area ranges are<br />

Number of LSA 5. Checksum Sum 0x01DCA5<br />

Number of opaque link LSA 0. Checksum Sum 0x000000<br />

Number of DCbitless LSA 0<br />

Number of indication LSA 0<br />

Number of DoNotAge LSA 0<br />

Flood list length 0<br />

DIST-A#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) 2500 Software (C2500-JS-L), Version 12.2(13b), RELEASE SOFTWARE (fc1)<br />

Copyright (c) 1986-2003 by cisco Systems, Inc.<br />

Compiled Thu 20-Feb-03 14:09 by pwade<br />

Image text-base: 0x0307C780, data-base: 0x00001000<br />

ROM: System Bootstrap, Version 11.0(10c), SOFTWARE<br />

BOOTLDR: 3000 Bootstrap Software (IGS-BOOT-R), Version 11.0(10c), RELEASE SOFTWARE (fc1)<br />

DIST-A uptime is 6 days, 3 hours, 3 minutes<br />

System returned to ROM by reload<br />

System image file is "flash:/c2500-js-l.122-13b.bin"<br />

cisco 2500 (68030) processor (revision N) with 14336K/2048K bytes of memory.<br />

Processor board ID 18424578, with hardware revision 00000000<br />

Bridging software.<br />

X.25 software, Version 3.0.0.<br />

SuperLAT software (copyright 1990 by Meridian Technology Corp).<br />

TN3270 Emulation software.<br />

1 Ethernet/IEEE 802.3 interface(s)<br />

2 Serial network interface(s)


32K bytes of non-volatile configuration memory.<br />

16384K bytes of processor board System flash (Read ONLY)<br />

Configuration register is 0x2102<br />

DIST-B<br />

DIST-B#show run<br />

Building configuration...<br />

hostname DIST-B<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host CORE 172.16.7.65<br />

ip host DC 172.16.7.82 172.16.7.86<br />

ip host WEB 209.165.202.129<br />

ip host DA 172.16.7.66 172.16.7.81<br />

ip host ISP 209.165.201.1<br />

ip host SA 172.16.7.74<br />

ip host SB 172.16.7.75<br />

!<br />

!<br />

interface Loopback0<br />

description Link to Simulated Enterprise Server Farm<br />

ip address 172.16.7.1 255.255.255.192<br />

!<br />

interface Ethernet0<br />

description Link to CORE <strong>and</strong> DIST-A<br />

ip address 172.16.7.67 255.255.255.248<br />

ip ospf message-digest-key 1 md5 allrouters<br />

ip ospf hello-interval 5<br />

no shutdown<br />

!<br />

interface Serial0<br />

description Link to DIST-C<br />

ip address 172.16.7.85 255.255.255.252<br />

ip ospf message-digest-key 1 md5 allrouters<br />

ip ospf hello-interval 5<br />

no shutdown<br />

!<br />

router ospf 1<br />

area 0 authentication message-digest<br />

network 172.16.7.0 0.0.0.63 area 0<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 511


512 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

network 172.16.7.64 0.0.0.7 area 0<br />

network 172.16.7.84 0.0.0.3 area 0<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

!<br />

end<br />

DIST-B#show ip interface brief<br />

Interface IP-Address OK? Method Status Protocol<br />

Ethernet0 172.16.7.67 YES manual up up<br />

Ethernet1 unassigned YES unset administratively down down<br />

Loopback0 172.16.7.1 YES manual up up<br />

Serial0 172.16.7.85 YES manual up up<br />

Serial1 unassigned YES unset administratively down down<br />

DIST-B#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 172.16.7.65 to network 0.0.0.0<br />

172.16.0.0/16 is variably subnetted, 8 subnets, 6 masks<br />

O 172.16.4.0/23 [110/65] via 172.16.7.86, 1d21h, Serial0<br />

O 172.16.6.0/24 [110/65] via 172.16.7.86, 1d21h, Serial0<br />

C 172.16.7.0/26 is directly connected, Loopback0<br />

O 172.16.0.0/22 [110/65] via 172.16.7.86, 1d21h, Serial0<br />

O 172.16.7.80/30 [110/74] via 172.16.7.66, 1d21h, Ethernet0


C 172.16.7.84/30 is directly connected, Serial0<br />

O 172.16.7.72/29 [110/65] via 172.16.7.86, 1d21h, Serial0<br />

C 172.16.7.64/29 is directly connected, Ethernet0<br />

209.165.200.0/32 is subnetted, 1 subnets<br />

O 209.165.200.225 [110/11] via 172.16.7.66, 1d21h, Ethernet0<br />

O*E2 0.0.0.0/0 [110/1] via 172.16.7.65, 1d21h, Ethernet0<br />

DIST-B#show ip ospf neighbor<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 513<br />

Neighbor ID Pri State Dead Time Address Interface<br />

172.16.7.82 1 FULL/ - 00:00:39 172.16.7.86 Serial0<br />

200.20.2.2 0 FULL/DROTHER 00:00:38 172.16.7.65 Ethernet0<br />

172.16.7.81 2 FULL/DR 00:00:35 172.16.7.66 Ethernet0<br />

DIST-B# show ip ospf 1<br />

Routing Process "ospf 1" with ID 172.16.7.67<br />

Supports only single TOS(TOS0) routes<br />

Supports opaque LSA<br />

SPF schedule delay 5 secs, Hold time between two SPFs 10 secs<br />

Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs<br />

Number of external LSA 1. Checksum Sum 0x00C4B6<br />

Number of opaque AS LSA 0. Checksum Sum 0x000000<br />

Number of DCbitless external <strong>and</strong> opaque AS LSA 0<br />

Number of DoNotAge external <strong>and</strong> opaque AS LSA 0<br />

Number of areas in this router is 1. 1 normal 0 stub 0 nssa<br />

External flood list length 0<br />

Area BACKBONE(0)<br />

Number of interfaces in this area is 3<br />

Area has no authentication<br />

SPF algorithm executed 36 times<br />

Area ranges are<br />

Number of LSA 5. Checksum Sum 0x01DCA5<br />

Number of opaque link LSA 0. Checksum Sum 0x000000<br />

Number of DCbitless LSA 0<br />

Number of indication LSA 0<br />

Number of DoNotAge LSA 0<br />

Flood list length 0<br />

DIST-B#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) 2500 Software (C2500-JS-L), Version 12.2(13b), RELEASE SOFTWARE (fc1)<br />

Copyright (c) 1986-2003 by cisco Systems, Inc.<br />

Compiled Thu 20-Feb-03 14:09 by pwade<br />

Image text-base: 0x0307C780, data-base: 0x00001000<br />

ROM: System Bootstrap, Version 11.0(10c)XB2, PLATFORM SPECIFIC RELEASE SOFTWARE (fc1)


514 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

BOOTLDR: 3000 Bootstrap Software (IGS-BOOT-R), Version 11.0(10c)XB2, PLATFORM SPECIFIC<br />

RELEASE SOFTWARE (fc1)<br />

DIST-B uptime is 6 days, 2 hours, 57 minutes<br />

System returned to ROM by reload<br />

System image file is "flash:c2500-js-l.122-13b.bin"<br />

cisco 2500 (68030) processor (revision L) with 14336K/2048K bytes of memory.<br />

Processor board ID 19482472, with hardware revision 00000000<br />

Bridging software.<br />

X.25 software, Version 3.0.0.<br />

SuperLAT software (copyright 1990 by Meridian Technology Corp).<br />

TN3270 Emulation software.<br />

2 Ethernet/IEEE 802.3 interface(s)<br />

2 Serial network interface(s)<br />

32K bytes of non-volatile configuration memory.<br />

16384K bytes of processor board System flash (Read ONLY)<br />

Configuration register is 0x2102<br />

DIST-C<br />

DIST-C#show run<br />

Building configuration...<br />

hostname DIST-C<br />

!<br />

enable secret class<br />

!<br />

ip subnet-zero<br />

no ip domain-lookup<br />

ip host CORE 172.16.7.65<br />

ip host WEB 183.84.85.86<br />

ip host DB 172.16.7.85 172.16.7.67<br />

ip host DA 172.16.7.81 172.16.7.66<br />

ip host ISP 200.20.2.1<br />

ip host SA 172.16.7.74<br />

ip host SB 172.16.7.75<br />

!<br />

!------------------------------------------------<br />

!Although DHCP is not taught until Module 1<br />

!in <strong>CCNA</strong>4, it is useful in this Super Lab.<br />

!So the configuration is provided for instructors<br />

!----------------------------------------------ip<br />

dhcp excluded-address 172.16.0.1 172.16.0.10<br />

ip dhcp excluded-address 172.16.4.1 172.16.4.10


ip dhcp excluded-address 172.16.6.1 172.16.6.10<br />

!<br />

ip dhcp pool VLAN10<br />

network 172.16.0.0 255.255.252.0<br />

default-router 172.16.0.1<br />

!<br />

ip dhcp pool VLAN20<br />

network 172.16.4.0 255.255.254.0<br />

default-router 172.16.4.1<br />

!<br />

ip dhcp pool VLAN30<br />

network 172.16.6.0 255.255.255.0<br />

default-router 172.16.6.1<br />

!------------------------------------------------<br />

!<br />

interface FastEthernet0<br />

no shutdown<br />

!<br />

interface FastEthernet0.1<br />

description Management VLAN 1<br />

encapsulation dot1Q 1 native<br />

ip address 172.16.7.73 255.255.255.248<br />

!<br />

interface FastEthernet0.10<br />

description FINANCE subnet VLAN 10<br />

encapsulation dot1Q 10<br />

ip address 172.16.0.1 255.255.252.0<br />

!<br />

interface FastEthernet0.20<br />

description SALES subnet VLAN 20<br />

encapsulation dot1Q 20<br />

ip address 172.16.4.1 255.255.254.0<br />

ip access-group SALES_TRAFFIC in<br />

!<br />

interface FastEthernet0.30<br />

description PURCHASING subnet VLAN 30<br />

encapsulation dot1Q 30<br />

ip address 172.16.6.1 255.255.255.0<br />

ip access-group PURCHASING_TRAFFIC in<br />

!<br />

interface Serial0<br />

description Link to DIST-B<br />

ip ospf message-digest-key 1 md5 allrouters<br />

ip ospf hello-interval 5<br />

ip address 172.16.7.82 255.255.255.252<br />

no shutdown<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 515


516 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

!<br />

interface Serial1<br />

description Link to DIST-A<br />

ip ospf message-digest-key 1 md5 allrouters<br />

ip ospf hello-interval 5<br />

ip address 172.16.7.86 255.255.255.252<br />

clock rate 64000<br />

no shutdown<br />

!<br />

router ospf 1<br />

area 0 authentication message-digest<br />

network 172.16.0.0 0.0.3.255 area 0<br />

network 172.16.4.0 0.0.0.1 area 0<br />

network 172.16.6.0 0.0.0.255 area 0<br />

network 172.16.7.72 0.0.0.7 area 0<br />

network 172.16.7.80 0.0.0.3 area 0<br />

network 172.16.7.84 0.0.0.3 area 0<br />

passive-interface FastEthernet 0<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line aux 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

!<br />

no scheduler allocate<br />

end<br />

DIST-C#show ip interface brief<br />

Interface IP-Address OK? Method Status Protocol<br />

FastEthernet0 unassigned YES unset up up<br />

FastEthernet0.1 172.16.7.73 YES manual up up<br />

FastEthernet0.10 172.16.0.1 YES manual up up<br />

FastEthernet0.20 172.16.4.1 YES manual up up


FastEthernet0.30 172.16.6.1 YES manual up up<br />

Serial0 172.16.7.82 YES manual up up<br />

Serial1 172.16.7.86 YES manual up up<br />

DIST-C#show ip route<br />

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP<br />

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area<br />

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2<br />

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP<br />

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area<br />

* - c<strong>and</strong>idate default, U - per-user static route, o - ODR<br />

P - periodic downloaded static route<br />

Gateway of last resort is 172.16.7.85 to network 0.0.0.0<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 517<br />

172.16.0.0/16 is variably subnetted, 8 subnets, 6 masks<br />

C 172.16.4.0/23 is directly connected, FastEthernet0.20<br />

C 172.16.6.0/24 is directly connected, FastEthernet0.30<br />

O 172.16.7.1/32 [110/782] via 172.16.7.85, 1d21h, Serial1<br />

C 172.16.0.0/22 is directly connected, FastEthernet0.10<br />

C 172.16.7.80/30 is directly connected, Serial0<br />

C 172.16.7.84/30 is directly connected, Serial1<br />

C 172.16.7.72/29 is directly connected, FastEthernet0.1<br />

O 172.16.7.64/29 [110/791] via 172.16.7.81, 1d21h, Serial0<br />

[110/791] via 172.16.7.85, 1d21h, Serial1<br />

209.165.200.0/32 is subnetted, 1 subnets<br />

O 209.165.200.225 [110/782] via 172.16.7.81, 1d21h, Serial0<br />

O*E2 0.0.0.0/0 [110/1] via 172.16.7.85, 1d21h, Serial1<br />

[110/1] via 172.16.7.81, 1d21h, Serial0<br />

DIST-C#show ip ospf 1<br />

Routing Process "ospf 1" with ID 172.16.7.82<br />

Supports only single TOS(TOS0) routes<br />

Supports opaque LSA<br />

SPF schedule delay 5 secs, Hold time between two SPFs 10 secs<br />

Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs<br />

LSA group pacing timer 240 secs<br />

Interface flood pacing timer 33 msecs<br />

Retransmission pacing timer 66 msecs<br />

Number of external LSA 1. Checksum Sum 0xC4B6<br />

Number of opaque AS LSA 0. Checksum Sum 0x0<br />

Number of DCbitless external <strong>and</strong> opaque AS LSA 0<br />

Number of DoNotAge external <strong>and</strong> opaque AS LSA 0<br />

Number of areas in this router is 1. 1 normal 0 stub 0 nssa


518 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

External flood list length 0<br />

Area BACKBONE(0)<br />

Number of interfaces in this area is 6<br />

Area has no authentication<br />

SPF algorithm executed 26 times<br />

Area ranges are<br />

Number of LSA 5. Checksum Sum 0x1DCA5<br />

Number of opaque link LSA 0. Checksum Sum 0x0<br />

Number of DCbitless LSA 0<br />

Number of indication LSA 0<br />

Number of DoNotAge LSA 0<br />

Flood list length 0<br />

DIST-C#show ip ospf neighbors<br />

Neighbor ID Pri State Dead Time Address Interface<br />

172.16.7.67 1 FULL/ - 00:00:31 172.16.7.85 Serial1<br />

172.16.7.81 1 FULL/ - 00:00:30 172.16.7.81 Serial0<br />

DIST-C#show version<br />

Cisco Internetwork Operating System Software<br />

IOS (tm) C1700 Software (C1700-Y-M), Version 12.2(4)YB, EARLY DEPLOYMENT RELEASE SOFT-<br />

WARE (fc1)<br />

Synched to technology version 12.2(6.8)T2<br />

TAC Support: http://www.cisco.com/tac<br />

Copyright (c) 1986-2002 by cisco Systems, Inc.<br />

Compiled Fri 15-Mar-02 20:32 by ealyon<br />

Image text-base: 0x80008124, data-base: 0x807D8744<br />

ROM: System Bootstrap, Version 12.2(7r)XM1, RELEASE SOFTWARE (fc1)<br />

ROM: C1700 Software (C1700-Y-M), Version 12.2(4)YB, EARLY DEPLOYMENT RELEASE SOFTWARE<br />

(fc1)<br />

DIST-C uptime is 6 days, 31 minutes<br />

System returned to ROM by power-on<br />

System image file is "flash:c1700-y-mz.122-4.YB.bin"<br />

cisco 1721 (MPC860P) processor (revision 0x100) with 29492K/3276K bytes of memory.<br />

Processor board ID FOC07190RE7 (3108345534), with hardware revision 0000<br />

MPC860P processor: part number 5, mask 2<br />

Bridging software.<br />

X.25 software, Version 3.0.0.<br />

1 FastEthernet/IEEE 802.3 interface(s)<br />

2 Low-speed serial(sync/async) network interface(s)


32K bytes of non-volatile configuration memory.<br />

16384K bytes of processor board System flash (Read/Write)<br />

Configuration register is 0x2102<br />

ALSw-A<br />

ALSw-A#show run<br />

Building configuration...<br />

hostname ALSw-A<br />

!<br />

enable secret class<br />

!<br />

no ip domain-lookup<br />

ip host CORE 172.16.7.65<br />

ip host WEB 209.165.202.129<br />

ip host DC 172.16.7.73<br />

ip host DB 172.16.7.85 172.16.7.67<br />

ip host DA 172.16.7.81 172.16.7.66<br />

ip host ISP 209.165.201.1<br />

ip host SB 172.16.7.75<br />

!<br />

!<br />

spanning-tree vlan 1 priority 4096<br />

spanning-tree vlan 10 priority 24576<br />

!<br />

!<br />

interface FastEthernet0/1<br />

switchport mode trunk<br />

!<br />

interface FastEthernet0/2<br />

switchport mode trunk<br />

!<br />

interface range FastEthernet0/3 - 8<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface range FastEthernet0/9 - 16<br />

switchport access vlan 20<br />

switchport mode access<br />

switchport port-security<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 519


520 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface range FastEthernet0/17 - 24<br />

switchport access vlan 30<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface Vlan1<br />

ip address 172.16.7.74 255.255.255.248<br />

no shutdown<br />

!<br />

ip default-gateway 172.16.7.73<br />

!<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 5 15<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

!<br />

end<br />

ALSw-A#show vlan brief<br />

VLAN Name Status Ports<br />

---- -------------------------------- --------- -------------------------------<br />

1 default active<br />

10 FINANCE active Fa0/3, Fa0/4, Fa0/5, Fa0/6<br />

Fa0/7, Fa0/8<br />

20 SALES active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16


30 PURCHASING active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

ALSw-A#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 1<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 8<br />

VTP Operating Mode : Server<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0x3E 0x12 0x21 0x3C 0x7D 0x09 0xAB 0x97<br />

Configuration last modified by 172.16.7.74 at 3-1-93 04:07:07<br />

Local updater ID is 172.16.7.74 on interface Vl1 (lowest numbered VLAN interface found)<br />

ALSw-B<br />

ALSw-B#show run<br />

Building configuration...<br />

hostname ALSw-B<br />

!<br />

enable secret class<br />

!<br />

no ip domain-lookup<br />

ip host CORE 172.16.7.65<br />

ip host SA 172.16.7.74<br />

ip host ISP 209.165.201.1<br />

ip host DA 172.16.7.81 172.16.7.66<br />

ip host DB 172.16.7.85 172.16.7.67<br />

ip host DC 172.16.7.73<br />

ip host WEB 209.165.202.129<br />

!<br />

!<br />

spanning-tree vlan 20 priority 4096<br />

spanning-tree vlan 30 priority 24576<br />

!<br />

!<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 521


522 Switching Basics <strong>and</strong> Intermediate Routing <strong>CCNA</strong> 3 <strong>Labs</strong> <strong>and</strong> <strong>Study</strong> <strong>Guide</strong><br />

interface FastEthernet0/1<br />

shutdown<br />

!<br />

interface FastEthernet0/2<br />

switchport mode trunk<br />

!<br />

interface range FastEthernet0/3 - 8<br />

switchport access vlan 10<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface range FastEthernet0/9 - 16<br />

switchport access vlan 20<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

interface range FastEthernet0/17 - 24<br />

switchport access vlan 30<br />

switchport mode access<br />

switchport port-security<br />

switchport port-security mac-address sticky<br />

switchport port-security maximum 1<br />

switchport port-security violation shutdown<br />

!<br />

!<br />

interface Vlan1<br />

ip address 172.16.7.75 255.255.255.248<br />

no shutdwon<br />

!<br />

ip default-gateway 172.16.7.73<br />

!<br />

!<br />

line con 0<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

line vty 0 4<br />

exec-timeout 0 0<br />

password cisco


logging synchronous<br />

login<br />

line vty 5 15<br />

exec-timeout 0 0<br />

password cisco<br />

logging synchronous<br />

login<br />

end<br />

ALSw-B#show vlan brief<br />

Appendix D: <strong>CCNA</strong> 3 Skills-Based Assessment Practice 523<br />

VLAN Name Status Ports<br />

---- -------------------------------- --------- -------------------------------<br />

1 default active<br />

10 FINANCE active Fa0/2, Fa0/3, Fa0/4, Fa0/5<br />

Fa0/6, Fa0/7, Fa0/8<br />

20 SALES active Fa0/9, Fa0/10, Fa0/11, Fa0/12<br />

Fa0/13, Fa0/14, Fa0/15, Fa0/16<br />

30 PURCHASING active Fa0/17, Fa0/18, Fa0/19, Fa0/20<br />

Fa0/21, Fa0/22, Fa0/23, Fa0/24<br />

1002 fddi-default active<br />

1003 token-ring-default active<br />

1004 fddinet-default active<br />

1005 trnet-default active<br />

ALSw-B#show vtp status<br />

VTP Version : 2<br />

Configuration Revision : 1<br />

Maximum VLANs supported locally : 64<br />

Number of existing VLANs : 8<br />

VTP Operating Mode : Client<br />

VTP Domain Name : <strong>CCNA</strong>3<br />

VTP Pruning Mode : Disabled<br />

VTP V2 Mode : Disabled<br />

VTP Traps Generation : Disabled<br />

MD5 digest : 0x3E 0x12 0x21 0x3C 0x7D 0x09 0xAB 0x97<br />

Configuration last modified by 172.16.7.74 at 3-1-93 04:07:07

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!