20.01.2013 Views

Technology Roadmap for Energy Reduction in Automotive

Technology Roadmap for Energy Reduction in Automotive

Technology Roadmap for Energy Reduction in Automotive

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Preface<br />

Recogniz<strong>in</strong>g the importance of energy efficiency to the nation and <strong>in</strong>dustry, the U.S. Department of<br />

<strong>Energy</strong>’s (DOE) Industrial Technologies Program (ITP), <strong>in</strong> collaboration with the United States Council<br />

<strong>for</strong> <strong>Automotive</strong> Research LLC (USCAR), hosted a technology roadmap workshop <strong>in</strong> Troy, Michigan on<br />

May 20-21, 2008. The purpose of the workshop was to explore opportunities <strong>for</strong> energy reduction,<br />

discuss the challenges and barriers that might need to be overcome, and identify priorities <strong>for</strong> future<br />

R&D.<br />

The results of the workshop are presented <strong>in</strong> this <strong>Technology</strong> <strong>Roadmap</strong> <strong>for</strong> <strong>Energy</strong> <strong>Reduction</strong> <strong>in</strong><br />

<strong>Automotive</strong> Manufactur<strong>in</strong>g. The roadmap will be used by public and private organizations to help guide<br />

decision-mak<strong>in</strong>g <strong>for</strong> future research, development, and demonstration projects. The priorities presented<br />

here are not all-<strong>in</strong>clusive, but represent a major step toward identify<strong>in</strong>g ways to potentially reduce energy<br />

<strong>in</strong>tensity <strong>in</strong> automotive manufactur<strong>in</strong>g and the associated supply cha<strong>in</strong>.


Table of Contents<br />

Executive Summary ..............................................................................................ii<br />

1 Introduction.......................................................................................................1<br />

2 Overview of the <strong>Automotive</strong> Supply Cha<strong>in</strong>......................................................3<br />

3 Opportunities <strong>for</strong> <strong>Energy</strong> <strong>Reduction</strong> <strong>in</strong> Auto Manufactur<strong>in</strong>g ...........................5<br />

4 Body <strong>in</strong> White and Components .......................................................................7<br />

5 <strong>Automotive</strong> Pa<strong>in</strong>t .............................................................................................17<br />

6 Powertra<strong>in</strong> and Chassis Components................................................................27<br />

7 F<strong>in</strong>al Assembly .................................................................................................37<br />

8 Plant Infrastructure ...........................................................................................45<br />

9 Crosscutt<strong>in</strong>g Opportunities <strong>for</strong> Sav<strong>in</strong>g <strong>Energy</strong> .................................................53<br />

10 Mov<strong>in</strong>g Forward .............................................................................................59<br />

Appendix A: List of Contributors ........................................................................A-1<br />

Appendix B: Comprehensive List of R&D Needs...............................................B-1<br />

Appendix C: Acronyms .......................................................................................C-1<br />

i


Executive Summary<br />

Faced with decreas<strong>in</strong>g supplies and <strong>in</strong>creas<strong>in</strong>g costs of energy resources, reduc<strong>in</strong>g energy use has become an<br />

important challenge <strong>for</strong> the United States. For U.S. automotive manufacturers, energy purchases impact production<br />

costs and the <strong>in</strong>dustry’s competitiveness. Transportation manufactur<strong>in</strong>g, which <strong>in</strong>cludes automotive, is now the 8 th<br />

largest <strong>in</strong>dustrial energy consumer <strong>in</strong> the U.S. Between 2002 and 2005, energy expenditures <strong>in</strong> this sector <strong>in</strong>creased<br />

overall by 20%. Electricity purchases <strong>in</strong>creased by about 20%; purchases of fuels (mostly natural gas and diesel)<br />

<strong>in</strong>creased by a stagger<strong>in</strong>g 50%. [ASM 2005]<br />

<strong>Technology</strong> <strong>Roadmap</strong> Workshop <strong>for</strong><br />

<strong>Energy</strong> <strong>Reduction</strong> <strong>in</strong> <strong>Automotive</strong><br />

Manufactur<strong>in</strong>g, May 20-21, 2008, Troy,<br />

Michigan<br />

While today’s automotive manufactur<strong>in</strong>g facilities are modern and<br />

relatively efficient, significant opportunities rema<strong>in</strong> to reduce energy<br />

demand through better energy management, technology <strong>in</strong>novation,<br />

and research and development (R&D). The benefits could be great –<br />

Included representatives from the U.S.<br />

DOE, USCAR, major automotive<br />

conservation of energy, less impact on the environment, and an<br />

enhanced competitive position <strong>for</strong> the U.S. automotive <strong>in</strong>dustry.<br />

suppliers, utilities, and national<br />

laboratories To address the energy challenge, the U.S. Department of <strong>Energy</strong>’s<br />

(DOE) Industrial Technologies Program (ITP) and the U.S. Council<br />

Identified opportunities <strong>for</strong> energy <strong>for</strong> <strong>Automotive</strong> Research (USCAR) are explor<strong>in</strong>g ways to reduce the<br />

reduction, challenges and barriers to<br />

overcome, and priority R&D areas<br />

energy <strong>in</strong>tensity of automotive manufactur<strong>in</strong>g. Identify<strong>in</strong>g the pre-<br />

competitive, high-risk R&D needed to accelerate the use of more<br />

energy efficient manufactur<strong>in</strong>g processes is critical to their future<br />

Will help guide decision mak<strong>in</strong>g <strong>for</strong><br />

ef<strong>for</strong>ts.<br />

future R&D to reduce energy <strong>in</strong>tensity<br />

<strong>in</strong> automotive manufactur<strong>in</strong>g<br />

This <strong>Technology</strong> <strong>Roadmap</strong> <strong>for</strong> <strong>Energy</strong> <strong>Reduction</strong> <strong>in</strong> <strong>Automotive</strong><br />

Manufactur<strong>in</strong>g will help provide direction and focus to both public<br />

and private decision-makers as they pursue R&D that will help reduce energy consumption and improve energy<br />

efficiency <strong>in</strong> automotive manufactur<strong>in</strong>g.<br />

<strong>Energy</strong> and the U.S. <strong>Automotive</strong> Enterprise<br />

The automotive enterprise encompasses much more than the manufacture of vehicles. As Exhibit E-1 illustrates, it<br />

is a complex supply cha<strong>in</strong> that <strong>in</strong>cludes produc<strong>in</strong>g raw materials such as steel, alum<strong>in</strong>um, plastics, and glass;<br />

<strong>for</strong>m<strong>in</strong>g and fabricat<strong>in</strong>g parts, components, and subsystems; assembl<strong>in</strong>g hundreds of these elements to make the<br />

vehicles; and, distribut<strong>in</strong>g and sell<strong>in</strong>g the vehicles. Over 2 million people are employed <strong>in</strong> the U.S. <strong>in</strong> automobile<br />

manufactur<strong>in</strong>g or retail trade, accord<strong>in</strong>g the U.S. Bureau of Labor Statistics [BLS 2009]. The automotive enterprise<br />

is a major player <strong>in</strong> the U.S. economy, with over 20,000 suppliers and 50,000 facilities contribut<strong>in</strong>g to U.S.<br />

automotive shipments valued at over $500 billion <strong>in</strong> 2006 [BEA 2008]. NADA estimates that dealers generate <strong>in</strong><br />

excess of $20 billion <strong>in</strong> annual sales tax revenue which contributes to the budgets <strong>for</strong> state and local governments<br />

across the country [NADA 2008].<br />

The energy use associated with the U.S. automotive enterprise has been roughly estimated at over 800 trillion Btus<br />

(British thermal units) per year. Note that the energy consumed by the major suppliers serv<strong>in</strong>g the automotive<br />

manufactur<strong>in</strong>g is not <strong>in</strong>cluded <strong>in</strong> this figure, nor is the energy associated with transport and delivery of vehicles to<br />

the market. If all relevant energy use were <strong>in</strong>cluded, the energy attributed to the automotive enterprise would be<br />

significantly higher.<br />

There are many opportunities to reduce energy use where vehicles are manufactured, as well as <strong>in</strong> supplier<br />

operations. Among these are develop<strong>in</strong>g more efficient technologies and materials, implement<strong>in</strong>g best energy<br />

management practices, and <strong>in</strong>creas<strong>in</strong>g use of energy resources such as waste heat. There are also opportunities to<br />

use alternative energy resources such as hydrogen, biomass, solar, geothermal, and w<strong>in</strong>d to provide power and heat<br />

<strong>for</strong> manufactur<strong>in</strong>g operations.<br />

ii


Exhibit E-1. The <strong>Automotive</strong> Enterprise<br />

Exhibit E-2 illustrates the magnitude of the opportunities – the automotive enterprise consumes about 800 trillion<br />

Btus annually. Us<strong>in</strong>g a conservative approach, if estimated energy use could be reduced by just 10%, the energy<br />

sav<strong>in</strong>gs would be 80 trillion Btus per year, the equivalent of about 650 million gallons of gasol<strong>in</strong>e or the energy<br />

needed to heat about 2 million U.S. households.<br />

Increas<strong>in</strong>g energy efficiency also provides ancillary benefits, such as greater productivity, fewer rejected parts and<br />

wastes, and reduced emissions to the environment, as well as lower energy expenditures. The end results will<br />

benefit both the automotive <strong>in</strong>dustry and the nation.<br />

Improvements made <strong>in</strong> automotive manufactur<strong>in</strong>g could also be used <strong>in</strong> <strong>in</strong>dustries where similar processes or<br />

equipment are employed, such as the manufacture of farm equipment, <strong>in</strong>dustrial mach<strong>in</strong>ery, fabricated metals,<br />

heavy trucks, rail cars, ships, and aircraft. As Exhibit E-2 illustrates, these <strong>in</strong>dustries use nearly 700 trillion Btus of<br />

energy annually.<br />

iii


Body Non-Structure<br />

Front Suspension<br />

Rear Suspension<br />

Steer<strong>in</strong>g<br />

Brakes<br />

Electrical<br />

Fuel and Exhaust<br />

Bumpers<br />

Wheels and Tires<br />

Air Condition<strong>in</strong>g<br />

W<strong>in</strong>dows<br />

Pa<strong>in</strong>t<br />

Estimated <strong>Automotive</strong> Enterprise<br />

<strong>Energy</strong> Use >800 TBtu<br />

Materials: ~500 Tbtu*<br />

RAW<br />

MATERIALS<br />

Iron & Steel<br />

Alum<strong>in</strong>um,<br />

Magnesium,<br />

Titanium<br />

Z<strong>in</strong>c, Lead,<br />

Copper<br />

PROCESSED<br />

MATERIALS<br />

Ferrous & Non-<br />

Ferrous Cast<strong>in</strong>gs<br />

Textiles<br />

Plastics, Rubber<br />

Glass<br />

Component and Subsystem Suppliers<br />

*<strong>Energy</strong> values are prelim<strong>in</strong>ary based on published<br />

estimates DOC/Annual Survey of Manufactures<br />

data <strong>for</strong> fuels and electricity. **Could be <strong>in</strong>ternal to<br />

plant or outsourced. TBtu = Trillion Btus<br />

AUTOMOTIVE<br />

OEM<br />

PROCESSES<br />

~300 Tbtu*<br />

Die Mak<strong>in</strong>g**<br />

Cast<strong>in</strong>g**<br />

Stamp<strong>in</strong>g<br />

Body Shop<br />

Pa<strong>in</strong>t<strong>in</strong>g<br />

Power Tra<strong>in</strong><br />

Assembly<br />

<strong>Energy</strong> use <strong>in</strong> <strong>in</strong>dustries<br />

with similar processes:<br />

Transport Mfg ~100 Tbtu<br />

Heavy Mach<strong>in</strong>ery ~180 Tbtu<br />

Fabricated Metals ~390 TBtu<br />

Exhibit E-2. Estimated Distribution of <strong>Energy</strong> Use <strong>in</strong> the <strong>Automotive</strong> Enterprise<br />

Priorities <strong>for</strong> Research and Development<br />

<strong>Roadmap</strong> priorities <strong>for</strong> R&D are grouped <strong>in</strong> the five key areas shown below. These priorities encompass challenges<br />

that occur with<strong>in</strong> the manufactur<strong>in</strong>g production facility, as well as those <strong>in</strong> supplier facilities where subsystems,<br />

modules, and components are manufactured. Exhibit E-3 illustrates the priority topics <strong>for</strong> each of these areas.<br />

Body <strong>in</strong> White (BIW) and Closures – the assembly of the vehicle structure, and the sheet metal closures<br />

(doors, hoods, and deck lids)<br />

<strong>Automotive</strong> Pa<strong>in</strong>t –the <strong>in</strong>terior and exterior body structure from BIW is pa<strong>in</strong>ted us<strong>in</strong>g a multi-layer pa<strong>in</strong>t<br />

process<br />

Powertra<strong>in</strong> and Chassis Components –the eng<strong>in</strong>e, transmission, driveshaft, differential, and suspension<br />

are <strong>in</strong>tegrated with the chassis (frame) and components<br />

F<strong>in</strong>al Assembly – the body, powertra<strong>in</strong>, and chassis of the vehicle are <strong>in</strong>tegrated with all the f<strong>in</strong>al parts,<br />

such as seats, dashboard assemblies, <strong>in</strong>terior trim panels, wheels, w<strong>in</strong>dshields, and many others<br />

Plant Infrastructure – facilities and energy systems that are needed to keep automotive manufactur<strong>in</strong>g<br />

operations runn<strong>in</strong>g and employees <strong>in</strong> a com<strong>for</strong>table and safe environment, such as boilers, power systems,<br />

heat<strong>in</strong>g/cool<strong>in</strong>g, and others<br />

The roadmap also <strong>in</strong>cludes a number of crosscutt<strong>in</strong>g topics with potential application across more than one area of<br />

manufactur<strong>in</strong>g. Among these are waste heat recovery, wireless systems, benchmark<strong>in</strong>g and model<strong>in</strong>g of energy use<br />

<strong>in</strong> production facilities, and manufactur<strong>in</strong>g challenges <strong>for</strong> high volume production of next generation vehicles.<br />

iv


Body In<br />

White<br />

<strong>Automotive</strong><br />

Pa<strong>in</strong>t<br />

Powertra<strong>in</strong><br />

& Chassis<br />

F<strong>in</strong>al<br />

Assembly<br />

Plant Infra ‐<br />

structure<br />

Exhibit E-3<br />

Priority R&D Topics <strong>for</strong> Reduc<strong>in</strong>g <strong>Energy</strong> Use<br />

<strong>in</strong> <strong>Automotive</strong> Manufactur<strong>in</strong>g<br />

<strong>Energy</strong>-efficient jo<strong>in</strong><strong>in</strong>g<br />

technologies <strong>for</strong> highvolume<br />

parts us<strong>in</strong>g<br />

similar or dissimilar<br />

metals, polymers &<br />

composites<br />

Alternative<br />

technologies &<br />

processes to cure and<br />

dry pa<strong>in</strong>t <strong>in</strong> mass<br />

production pa<strong>in</strong>t<br />

shops<br />

Novel, energy-efficient<br />

heat treat<strong>in</strong>g<br />

technologies to enable<br />

50% energy reduction<br />

over conventional<br />

processes<br />

Advanced material<br />

handl<strong>in</strong>g & logistics<br />

technologies (wireless<br />

sensors, advanced<br />

batteries, frictionless<br />

conveyors)<br />

Alternative motor<br />

systems to replace<br />

compressed air actuators<br />

(CNC mach<strong>in</strong>es, stamp<strong>in</strong>g<br />

counter balances,<br />

conveyor take-ups)<br />

New materials <strong>for</strong><br />

high strength, high<br />

<strong>for</strong>mability,<br />

lightweight parts<br />

and body<br />

structures<br />

Non-spray pa<strong>in</strong>t<br />

processes with<br />

today’s per<strong>for</strong>mance<br />

& elim<strong>in</strong>ation of<br />

large air volume<br />

condition<strong>in</strong>g<br />

<strong>Energy</strong>-efficient diecast<br />

& semipermanent<br />

mold<br />

cast<strong>in</strong>g, and novel<br />

sand-cast<strong>in</strong>g <strong>for</strong> high<br />

volume cyl<strong>in</strong>der heads<br />

Low friction<br />

fasteners that<br />

m<strong>in</strong>imize energy<br />

use while<br />

achiev<strong>in</strong>g desired<br />

clamp loads<br />

Advanced<br />

monitor<strong>in</strong>g/control of<br />

energy/emissions,<br />

with plant-wide data<br />

collection & feedback<br />

systems<br />

Crosscutt<strong>in</strong>g R&D Topics<br />

Processes to<br />

reduce scrap and<br />

<strong>in</strong>crease<br />

materials<br />

utilization <strong>in</strong> body<br />

structures<br />

Elim<strong>in</strong>ation/<br />

reduction of<br />

energy, water &<br />

chemical<br />

requirements <strong>in</strong><br />

pa<strong>in</strong>t pretreatment<br />

Optimized mach<strong>in</strong><strong>in</strong>g via<br />

control/logic strategies,<br />

dry mach<strong>in</strong><strong>in</strong>g, mach<strong>in</strong>e<br />

structure design, power<br />

storage, & preheat<br />

reduction<br />

<strong>Energy</strong>-efficient tool<strong>in</strong>g<br />

& equipment <strong>for</strong><br />

assembly (energy<br />

regeneration, m<strong>in</strong>imized<br />

idle state energy, less<br />

compressed air)<br />

Reliable wireless<br />

<strong>in</strong>dustrial networks to<br />

monitor/control energy<br />

& build<strong>in</strong>g systems with<br />

new frequency<br />

spectrums<br />

Advanced auto body<br />

manufactur<strong>in</strong>g –<br />

energy efficient<br />

processes, tools, dies<br />

and molds, reduction<br />

of process steps<br />

Spray coat<strong>in</strong>g<br />

materials that adapt<br />

to vary<strong>in</strong>g spray booth<br />

air environments –<br />

relative humidity<br />

adaptive pa<strong>in</strong>t<br />

Manufactur<strong>in</strong>g of<br />

powertra<strong>in</strong> &<br />

chassis<br />

components with<br />

new lightweight net<br />

shape materials<br />

Alternative energy<br />

(solar, biogas, w<strong>in</strong>d,<br />

hydrogen,<br />

advanced batteries)<br />

<strong>for</strong> light<strong>in</strong>g & HVAC<br />

<strong>in</strong> assembly<br />

Life cycle<br />

management of<br />

facilities and<br />

process equipment<br />

to reduce over-siz<strong>in</strong>g<br />

& energy losses<br />

<strong>Energy</strong> Recovery Assess<strong>in</strong>g /Model<strong>in</strong>g <strong>Energy</strong> Next Generation Vehicles<br />

•Cast<strong>in</strong>g or heat treat<strong>in</strong>g of metals •Processes and sub-processes •<strong>Energy</strong> efficient high volume<br />

•Bulk materials manufactur<strong>in</strong>g •Build<strong>in</strong>g envelope manufactur<strong>in</strong>g processes<br />

•Plastic scrap <strong>in</strong>c<strong>in</strong>eration •Plant-wide logistics systems •High volume energy storage<br />

•Cool<strong>in</strong>g fluids •<strong>Energy</strong> embedded <strong>in</strong> subsystems, production (batteries, ultra<br />

•Low temperature waste heat modules, components capacitors, others)<br />

•Thermal regeneration •Raw material energy •Power electronics & wir<strong>in</strong>g<br />

•Comb<strong>in</strong>ed heat and power •Life cycle energy •Electric motors manufacture<br />

v


Mov<strong>in</strong>g Forward<br />

Creation of this technology roadmap represented a focused ef<strong>for</strong>t to understand the opportunities <strong>for</strong> reduc<strong>in</strong>g<br />

energy consumption <strong>in</strong> automotive manufactur<strong>in</strong>g and the associated supply cha<strong>in</strong>. Clearly, the opportunities are<br />

many and span every aspect of the <strong>in</strong>dustry.<br />

It is hoped that this roadmap will provide direction and a basis <strong>for</strong> future decision mak<strong>in</strong>g and <strong>in</strong>vestments <strong>in</strong> R&D<br />

to enable energy reduction <strong>in</strong> automotive manufactur<strong>in</strong>g. While it does not cover all areas <strong>in</strong> depth, it does br<strong>in</strong>g out<br />

some important ideas. It is notable that the concepts presented here represent a wide range of technologies and<br />

opportunities – from the very near-term to revolutionary changes that could be achieved <strong>in</strong> the future. One th<strong>in</strong>g is<br />

certa<strong>in</strong> – the automotive enterprise will cont<strong>in</strong>ue to adapt and improve to meet approach<strong>in</strong>g energy challenges.<br />

Look<strong>in</strong>g <strong>for</strong>ward, this roadmap illum<strong>in</strong>ates some of the key opportunities <strong>for</strong> energy efficiency <strong>in</strong> the automotive<br />

enterprise that can potentially be achieved through R&D and other actions. Develop<strong>in</strong>g these energy efficiency<br />

ga<strong>in</strong>s may require long-term, high-risk research, and the foundation of new public-private collaborations <strong>in</strong>volv<strong>in</strong>g<br />

academia, national labs, government, OEMs, and suppliers. As future R&D projects are <strong>in</strong>itiated, the automotive<br />

<strong>in</strong>dustry and the nation can beg<strong>in</strong> to reap the benefits that accrue from reduc<strong>in</strong>g the use of our precious energy<br />

resources.<br />

This roadmap is dynamic – it will cont<strong>in</strong>ue to change and be ref<strong>in</strong>ed and expanded as more <strong>in</strong>dustry participants<br />

become <strong>in</strong>volved and as technology breakthroughs emerge.<br />

Sources<br />

ASM 2005. Annual Survey of Manufacturers 2005. U.S. Department of Commerce.<br />

BEA 2008. Gross Domestic Product by Industry, 1998-2007. Bureau of Economic Analysis. U.S. Department of<br />

Commerce.<br />

BLS 2009. <strong>Automotive</strong> Industry: Employment, Earn<strong>in</strong>gs, and Hours. U.S. Department of Labor, Bureau of Labor<br />

Statistics (http://www.bls.gov/iag/tgs/iagauto.htm)<br />

NADA 2008. National Automobile Dealers Association. NADA Sales Data 2008.<br />

(http://www.nada.org/Publications/NADADATA/2008/)<br />

vi


1.0 Introduction<br />

<strong>Energy</strong> efficiency is an important priority <strong>for</strong> the United States. As it relates to automotive<br />

manufactur<strong>in</strong>g, energy purchases have a major impact on production costs and ultimately the<br />

<strong>in</strong>dustry’s competitiveness. Transportation manufactur<strong>in</strong>g, (which <strong>in</strong>cludes automotive), is now the<br />

8 th largest <strong>in</strong>dustrial energy consumer <strong>in</strong> the United States. Between 2002 and 2005, energy<br />

expenditures <strong>in</strong>creased 20% <strong>in</strong> the transportation sector, purchases of electricity went up nearly<br />

10%, and the cost of fuels <strong>in</strong>creased nearly 50%. 1 The energy embodied <strong>in</strong> the large and complex<br />

supply cha<strong>in</strong> needed to produce a vehicle – from production of raw materials to f<strong>in</strong>al assembly – is<br />

substantial.<br />

Conserv<strong>in</strong>g energy through more efficient processes, technologies, and products is the fastest way<br />

to lower energy use <strong>in</strong> automotive manufactur<strong>in</strong>g <strong>in</strong> the near-term. While many manufactur<strong>in</strong>g<br />

facilities today are modernized and relatively efficient, significant opportunities rema<strong>in</strong> to reduce<br />

energy demand via <strong>in</strong>novation and research and development (R&D). The benefits: greater<br />

conservation of energy resources, improved productivity, reduced impact on the environment, and<br />

an enhanced competitive position <strong>for</strong> U.S. <strong>in</strong>dustry.<br />

To address this energy efficiency challenge, the U.S. Department of <strong>Energy</strong>’s (DOE) Industrial<br />

Technologies Program (ITP) and the United States Council <strong>for</strong> <strong>Automotive</strong> Research LLC<br />

(USCAR) are explor<strong>in</strong>g ways to reduce the energy <strong>in</strong>tensity of automotive manufactur<strong>in</strong>g. At the<br />

core is identify<strong>in</strong>g the pre-competitive, high-risk R&D needed to accelerate the use of more energy<br />

efficient production processes <strong>for</strong> automotive manufactur<strong>in</strong>g.<br />

To ga<strong>in</strong> <strong>in</strong>sights on reduc<strong>in</strong>g energy <strong>in</strong>tensity <strong>in</strong> automotive manufactur<strong>in</strong>g, a technology roadmap<br />

workshop was held at Michigan State Management Education Center <strong>in</strong> Troy, Michigan on May<br />

20-21, 2008. This meet<strong>in</strong>g brought together representatives from DOE, USCAR, major or <strong>in</strong>tegral<br />

supplier to the automotive <strong>in</strong>dustry (referred to as Allied and Tier suppliers), utilities, and national<br />

laboratories – all with expertise <strong>in</strong> the automotive <strong>in</strong>dustry. The purpose of the workshop was to<br />

explore opportunities <strong>for</strong> energy reduction, discuss the challenges and barriers that might need to<br />

be overcome, and identify priorities <strong>for</strong> future R&D. The workshop covered five topics relative to<br />

major operations <strong>in</strong> automotive manufactur<strong>in</strong>g, as well as crosscutt<strong>in</strong>g issues such as waste<br />

m<strong>in</strong>imization, materials, and recycl<strong>in</strong>g (see Exhibit 1.1).<br />

The results of the workshop, along with public <strong>in</strong><strong>for</strong>mation from other sources, provide a<br />

foundation <strong>for</strong> this <strong>Technology</strong> <strong>Roadmap</strong> <strong>for</strong> <strong>Automotive</strong> Manufactur<strong>in</strong>g <strong>Energy</strong> <strong>Reduction</strong>. The<br />

roadmap will be used by public and private organizations to help guide decision-mak<strong>in</strong>g <strong>for</strong> future<br />

research, development, and demonstration (RD&D) projects. It provides an important foundation<br />

<strong>for</strong> mov<strong>in</strong>g <strong>for</strong>ward to reap the benefits of more energy-efficient automotive manufactur<strong>in</strong>g<br />

processes.<br />

It is noted that the priorities presented here are not all-<strong>in</strong>clusive, but represent a major step toward<br />

identify<strong>in</strong>g ways to potentially reduce energy <strong>in</strong>tensity <strong>in</strong> automotive manufactur<strong>in</strong>g and the<br />

associated supply cha<strong>in</strong>. Over time, new technologies will emerge and change, the knowledge base<br />

will grow, and progress will be made. To keep pace with technology <strong>in</strong>novation and the chang<strong>in</strong>g<br />

world, this technology roadmap is dynamic and should be periodically revisited.<br />

1<br />

Annual Survey of Manufactures, Fuels, and Electricity Purchases. 2005. U.S. Department of Commerce. Economic<br />

Census 2005.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 1


Body <strong>in</strong> White and<br />

Components<br />

Pa<strong>in</strong>t<br />

Powertra<strong>in</strong> and<br />

Chassis Components<br />

F<strong>in</strong>al Assembly<br />

Plant Infrastructure<br />

<strong>Energy</strong> Efficient<br />

Manufactur<strong>in</strong>g &<br />

Production <strong>for</strong> Exist<strong>in</strong>g<br />

Materials<br />

<strong>Energy</strong> Efficient<br />

Manufactur<strong>in</strong>g &<br />

Production <strong>for</strong> New<br />

Materials<br />

<strong>Energy</strong> Efficient Design<br />

of Products and<br />

Processes<br />

Organization of the Report<br />

Exhibit 1.1. <strong>Technology</strong> <strong>Roadmap</strong> Workshop Topics<br />

Major Operations<br />

Production of body structure: tool manufacture, weld<strong>in</strong>g, cast<strong>in</strong>gs, jo<strong>in</strong><strong>in</strong>g, robotics<br />

assembly, non-ferrous materials/parts/ fluids, body construction<br />

Application of <strong>in</strong>terior/exterior pa<strong>in</strong>t and f<strong>in</strong>ish: pa<strong>in</strong>t booths, ovens, compressed air,<br />

abatement, coat<strong>in</strong>gs, materials, waste treatment<br />

Integration of eng<strong>in</strong>e, transmission, and chassis components: cast<strong>in</strong>gs, net shape<br />

cast<strong>in</strong>g and <strong>for</strong>g<strong>in</strong>g, <strong>for</strong>m<strong>in</strong>g, heat treat<strong>in</strong>g, mach<strong>in</strong><strong>in</strong>g/cutt<strong>in</strong>g/ tool<strong>in</strong>g, powdered<br />

metals, robotics assembly<br />

Assembly of parts and components to produce f<strong>in</strong>ished vehicle: assembly<br />

processes, robotics, f<strong>in</strong>al <strong>in</strong>spection of vehicles<br />

Utilities and build<strong>in</strong>g envelope: generation, distribution, and ma<strong>in</strong>tenance of power<br />

and heat and utility systems; HVAC and other build<strong>in</strong>g utilities; O&M of plant-wide<br />

systems such as compressed air, motors and other equipment<br />

Crosscutt<strong>in</strong>g Topics<br />

• Materials that improve efficiency of the exist<strong>in</strong>g manufactur<strong>in</strong>g process (heat<br />

transfer, improved tool<strong>in</strong>g/tool coat<strong>in</strong>gs, mach<strong>in</strong><strong>in</strong>g, etc.)<br />

• <strong>Energy</strong> efficient processes <strong>for</strong> production and use of next generation materials<br />

<strong>in</strong> vehicle design (use the same or less energy when <strong>in</strong>corporat<strong>in</strong>g new<br />

materials)<br />

• Efficient transfer/transport of parts and materials<br />

• Design <strong>for</strong> recycle, predictive manufactur<strong>in</strong>g <strong>for</strong> waste elim<strong>in</strong>ation/reduction<br />

• Design <strong>for</strong> parts consolidation, reduction of content, elim<strong>in</strong>ation of process<br />

steps – all to reduce energy use<br />

This report is organized around the major operations shown <strong>in</strong> Exhibit 1.1. For each area,<br />

<strong>in</strong><strong>for</strong>mation is provided on the scope (technologies and processes <strong>in</strong>cluded); how the operation<br />

might look or change <strong>in</strong> the future (i.e., a vision <strong>for</strong> the future); opportunities <strong>for</strong> energy sav<strong>in</strong>gs;<br />

and R&D priorities.<br />

In each chapter, a summary table provides a list of the<br />

priorities <strong>for</strong> reduc<strong>in</strong>g energy <strong>in</strong>tensity <strong>in</strong> the major<br />

operational area. These ideas have been compiled <strong>in</strong>to a set<br />

of priority R&D topics <strong>for</strong> each area, with greater detail<br />

provided on per<strong>for</strong>mance targets, relative benefits, the<br />

barriers to be overcome, specific avenues that might be<br />

pursued through R&D, and major milestones.<br />

Chrysler Warren Truck Assembly Plant,<br />

Dodge Ram Box l<strong>in</strong>e, Body <strong>in</strong> White<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 2


2.0 Overview of the <strong>Automotive</strong> Supply Cha<strong>in</strong><br />

The <strong>Automotive</strong> Enterprise<br />

The automotive enterprise encompasses much more than the manufacture of vehicles. As Exhibit<br />

2.1 illustrates, it is a complex supply cha<strong>in</strong> that <strong>in</strong>cludes produc<strong>in</strong>g raw materials (steel, alum<strong>in</strong>um,<br />

plastics, glass, others); <strong>for</strong>m<strong>in</strong>g and fabricat<strong>in</strong>g raw materials <strong>in</strong>to parts, components and<br />

subsystems; manufactur<strong>in</strong>g components <strong>in</strong>to a product vehicle; and f<strong>in</strong>ally, distribution and sales.<br />

The automotive enterprise is a major player <strong>in</strong> the U.S. economy, with over 20,000 suppliers and<br />

50,000 facilities contribut<strong>in</strong>g to U.S. automotive shipments valued at over $500 billion <strong>in</strong> 2006. 2<br />

Exhibit 2.1. The <strong>Automotive</strong> Enterprise<br />

2 BEA 2008. Gross Domestic Product by Industry, 1998-2007. Bureau of Economic Analysis. Department of Commerce.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 3


<strong>Energy</strong> Use <strong>in</strong> OEM Operations and Supply Cha<strong>in</strong><br />

The automotive enterprise relies on energy <strong>for</strong> manufactur<strong>in</strong>g operations; the production of raw<br />

materials, components, and subsystems; and transport of vehicles and parts between suppliers and<br />

consumer markets. Exhibit 2.2 illustrates the ma<strong>in</strong> elements of the automotive enterprise and its<br />

associated energy use, which has been roughly estimated at over 800 trillion Btus annually. Note<br />

that the energy consumed by the major suppliers serv<strong>in</strong>g the automotive <strong>in</strong>dustry is not <strong>in</strong>cluded <strong>in</strong><br />

this figure, nor is the energy associated with transport and delivery of vehicles to market. If all<br />

relevant energy use were <strong>in</strong>cluded, the energy attributed to the automotive enterprise would be<br />

significantly higher.<br />

There are opportunities to reduce energy use with<strong>in</strong> the plant walls where vehicles are<br />

manufactured, as well as <strong>in</strong> supplier operations, <strong>in</strong>clud<strong>in</strong>g implementation of more efficient<br />

technologies and materials and best energy management practices as well as <strong>in</strong>creased use of<br />

energy resources such as waste heat. If estimated energy use could be reduced by just 10%, this<br />

would equate to 80 trillion Btus – the equivalent of about 650 million gallons of gasol<strong>in</strong>e, or<br />

enough energy to heat about 2 million households <strong>for</strong> a year 3 .<br />

Mak<strong>in</strong>g processes and operations more energy efficient also can provide ancillary benefits, such as<br />

lower energy expenditures, greater productivity, fewer rejected parts and wastes, and reduced<br />

emissions to the environment. Improvements made <strong>in</strong> automotive manufacture could also be<br />

applicable <strong>in</strong> <strong>in</strong>dustries where similar processes or equipment are used, such as manufacture of<br />

farm equipment, <strong>in</strong>dustrial mach<strong>in</strong>ery, fabricated metals, heavy trucks, rail cars, ships and aircraft.<br />

Body Non-Structure<br />

Front Suspension<br />

Rear Suspension<br />

Steer<strong>in</strong>g<br />

Brakes<br />

Electrical<br />

Fuel and Exhaust<br />

Bumpers<br />

Wheels and Tires<br />

Air Condition<strong>in</strong>g<br />

W<strong>in</strong>dows<br />

Pa<strong>in</strong>t<br />

Estimated <strong>Automotive</strong> Enterprise<br />

<strong>Energy</strong> Use >800 TBtu<br />

Materials: ~500 Tbtu*<br />

RAW<br />

MATERIALS<br />

Iron & Steel<br />

Alum<strong>in</strong>um,<br />

Magnesium,<br />

Titanium<br />

Z<strong>in</strong>c, Lead,<br />

Copper<br />

PROCESSED<br />

MATERIALS<br />

Ferrous & Non-<br />

Ferrous Cast<strong>in</strong>gs<br />

Textiles<br />

Plastics, Rubber<br />

Glass<br />

Component and Subsystem Suppliers<br />

*<strong>Energy</strong> values are prelim<strong>in</strong>ary based on published<br />

estimates DOC/Annual Survey of Manufactures<br />

data <strong>for</strong> fuels and electricity. **Could be <strong>in</strong>ternal to<br />

plant or outsourced. TBtu = Trillion Btus<br />

AUTOMOTIVE<br />

OEM<br />

PROCESSES<br />

~300 Tbtu*<br />

Die Mak<strong>in</strong>g**<br />

Cast<strong>in</strong>g**<br />

Stamp<strong>in</strong>g<br />

Body Shop<br />

Pa<strong>in</strong>t<strong>in</strong>g<br />

Power Tra<strong>in</strong><br />

Assembly<br />

<strong>Energy</strong> use <strong>in</strong> <strong>in</strong>dustries<br />

with similar processes:<br />

Transport Mfg ~100 Tbtu<br />

Heavy Mach<strong>in</strong>ery ~180 Tbtu<br />

Fabricated Metals ~390 TBtu<br />

Exhibit 2.2. Estimated Distribution of <strong>Energy</strong> Use <strong>in</strong> the <strong>Automotive</strong> Enterprise<br />

3 Residential <strong>Energy</strong> Consumption Survey 2005. U.S. DOE <strong>Energy</strong> In<strong>for</strong>mation Adm<strong>in</strong>istration, 2008.<br />

Based on 2,171 square feet per household average.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 4


3.0 Opportunities <strong>for</strong> <strong>Energy</strong> <strong>Reduction</strong> <strong>in</strong> <strong>Automotive</strong><br />

Manufactur<strong>in</strong>g Operations<br />

Understand<strong>in</strong>g how and where energy is used throughout the automotive enterprise is a necessary<br />

first step <strong>in</strong> identify<strong>in</strong>g opportunities <strong>for</strong> energy reduction, and to beg<strong>in</strong> to set priorities <strong>for</strong> areas <strong>in</strong><br />

which to focus such ef<strong>for</strong>ts. This a complex undertak<strong>in</strong>g given the thousands of processes, parts,<br />

and components that go <strong>in</strong>to the mak<strong>in</strong>g of a vehicle.<br />

Exhibit 3.1 illustrates an approximate flow of the processes with<strong>in</strong> orig<strong>in</strong>al equipment<br />

manufacturer (OEM) facilities. Suppliers are <strong>in</strong>tegral to every one of the major process units. The<br />

supplier-OEM relationship is a close one; suppliers must meet the exact<strong>in</strong>g specifications,<br />

per<strong>for</strong>mance levels, quality, and other criteria necessary to ensure parts and components fit together<br />

as seamlessly as possible. As a result, supplier <strong>in</strong>puts are closely <strong>in</strong>tegrated with onsite operations.<br />

In some cases, supplier equipment and systems are operated and ma<strong>in</strong>ta<strong>in</strong>ed on-site at the OEM<br />

facility by the supplier.<br />

The energy percentages shown <strong>in</strong> Exhibit 3.1 are a prelim<strong>in</strong>ary estimate of how energy use is<br />

distributed among these areas, based on a limited set of data. These do not reflect how energy is<br />

<strong>Energy</strong><br />

Losses<br />

Transport<br />

<strong>Energy</strong><br />

Build<strong>in</strong>g<br />

<strong>Energy</strong>/<br />

Infrastructure<br />

Process<br />

<strong>Energy</strong><br />

Other Subsystems<br />

&<br />

Component<br />

Suppliers<br />

Die-Mak<strong>in</strong>g*(TBD)<br />

Dies are assembled from<br />

cast<strong>in</strong>gs, <strong>in</strong>serts, b<strong>in</strong>ders,<br />

other parts<br />

Processes: assembly,<br />

mach<strong>in</strong><strong>in</strong>g, tun<strong>in</strong>g<br />

Stamp<strong>in</strong>g (12%)<br />

F<strong>in</strong>ished parts are pressed<br />

out of coiled sheet metal<br />

Processes: feed, blank,<br />

draw, <strong>for</strong>m, re-strike, trim,<br />

wash<br />

Body Shop (10%)<br />

Body structure <strong>in</strong>clud<strong>in</strong>g<br />

closures are produced<br />

(body <strong>in</strong> white)<br />

Processes: 1st<br />

dimensional sets, parts<br />

assembly, two-stage spot<br />

welds (<strong>in</strong>itial and f<strong>in</strong>al<br />

structure), robot-<strong>in</strong>tensive<br />

assembly<br />

Abatement<br />

(volatiles,<br />

f<strong>in</strong>es) occurs<br />

with<strong>in</strong> all<br />

operations to<br />

some degree.<br />

Cast<strong>in</strong>g* (TBD)<br />

Multiple test and <strong>in</strong>spection po<strong>in</strong>ts<br />

occur with<strong>in</strong> and between operations<br />

Pa<strong>in</strong>t (36%)<br />

F<strong>in</strong>ished body structure is<br />

pa<strong>in</strong>ted<br />

Processes: pretreatment,<br />

seal, prime, top coat,<br />

repair; cure and dry<strong>in</strong>g<br />

*These can be captive operations (on-site) or outsourced. Rough<br />

percentages do not <strong>in</strong>clude these operations.<br />

Cast<strong>in</strong>g of metal parts<br />

Processes: pattern mak<strong>in</strong>g, sand<br />

handl<strong>in</strong>g/process<strong>in</strong>g; core mfg; mold<br />

l<strong>in</strong>es; metal melt<strong>in</strong>g, transport,<br />

pour<strong>in</strong>g; mach<strong>in</strong><strong>in</strong>g<br />

Transmission (19%)<br />

Transmissions are assembled<br />

(clutch, gear sets, case, controls,<br />

converters, shift)<br />

Processes: mach<strong>in</strong><strong>in</strong>g, heat<br />

treat<strong>in</strong>g, assembly<br />

POWER TRAIN<br />

Eng<strong>in</strong>e (13%)<br />

Eng<strong>in</strong>es are produced<br />

from cast<strong>in</strong>gs/<strong>for</strong>g<strong>in</strong>gs<br />

(pistons, heads, block)<br />

Processes: mach<strong>in</strong><strong>in</strong>g,<br />

heat treat<strong>in</strong>g, assembly<br />

General Assembly<br />

(10%)<br />

Assembly produces a retailready<br />

vehicle<br />

Processes: trim, fit and f<strong>in</strong>ish,<br />

f<strong>in</strong>al assembly; power tra<strong>in</strong><br />

and chassis assembly;<br />

exterior & <strong>in</strong>terior<br />

components/ subsystems,<br />

electrical systems<br />

F<strong>in</strong>ished<br />

Vehicles<br />

Exhibit 3.1. Rough Distribution of <strong>Energy</strong> Use <strong>in</strong> Major OEM Operations <strong>for</strong> <strong>Automotive</strong><br />

Manufactur<strong>in</strong>g<br />

(Source: Prelim<strong>in</strong>ary Data <strong>for</strong> Selected OEM Plants, 2008)<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 5


used among the many supplier operations, or the energy embodied <strong>in</strong> the raw materials used to<br />

produce countless parts and components.<br />

What we do know is that energy is Exhibit 3.2. <strong>Energy</strong> Consumed by Fuel Type,<br />

used <strong>in</strong> many different ways <strong>in</strong> the 2006 3<br />

automotive manufactur<strong>in</strong>g supply<br />

cha<strong>in</strong>, from heat<strong>in</strong>g and cool<strong>in</strong>g the<br />

build<strong>in</strong>g envelope to power<strong>in</strong>g<br />

processes and to transport<strong>in</strong>g parts<br />

and equipment. Most of the energy is<br />

consumed <strong>in</strong> the <strong>for</strong>m of fuel (natural<br />

gas) and electricity, 4 as illustrated <strong>in</strong><br />

Exhibit 3.2. While Exhibit 3.2 does<br />

not <strong>in</strong>clude the entire supply cha<strong>in</strong>, it<br />

is generally representative of the<br />

automotive enterprise. Materials<br />

suppliers, who use energy to convert<br />

ores, m<strong>in</strong>erals and petroleum <strong>in</strong>to<br />

materials that are used <strong>in</strong> vehicle<br />

manufacture, may have a more diverse<br />

energy footpr<strong>in</strong>t. For example,<br />

production of materials such as glass,<br />

alum<strong>in</strong>um and steel is generally more<br />

fuel-<strong>in</strong>tensive (natural gas, coal) than<br />

electricity-<strong>in</strong>tensive.<br />

Due to current <strong>in</strong>efficiencies and technology limitations, energy is lost dur<strong>in</strong>g the manufactur<strong>in</strong>g<br />

process and <strong>in</strong> production facilities. These energy losses take many <strong>for</strong>ms, such as waste heat<br />

escap<strong>in</strong>g <strong>in</strong> gases or liquids, energy embodied <strong>in</strong> rejected parts that must be reprocessed, losses<br />

from transmission or delivery of energy from one part of the plant to another, or energy represented<br />

<strong>in</strong> fluids that are wasted or must be disposed of. Reduc<strong>in</strong>g these losses can be accomplished by<br />

improv<strong>in</strong>g the way energy is managed, upgrad<strong>in</strong>g systems, recoup<strong>in</strong>g waste heat, m<strong>in</strong>imiz<strong>in</strong>g<br />

rejected parts and materials, and by the <strong>in</strong>troduction of new and improved technologies. <strong>Energy</strong><br />

consumption can also be reduced by redesign<strong>in</strong>g processes, us<strong>in</strong>g new materials, or just reth<strong>in</strong>k<strong>in</strong>g<br />

how energy is used.<br />

The rema<strong>in</strong>der of this technology roadmap focuses on some of the priority solutions that have been<br />

identified <strong>for</strong> improv<strong>in</strong>g energy efficiency and reduc<strong>in</strong>g energy use. While these ideas are not all<strong>in</strong>clusive,<br />

they represent an important step toward better <strong>in</strong>tegration of energy management <strong>in</strong> all<br />

aspects of the automotive enterprise. As this report shows, while much progress has already been<br />

made, there are still opportunities to improve the energy footpr<strong>in</strong>t of automotive manufactur<strong>in</strong>g.<br />

4 Annual Survey of Manufactures 2006. EIA State <strong>Energy</strong> In<strong>for</strong>mation 2006.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 6


4.0 Body <strong>in</strong> White and Components<br />

Body <strong>in</strong> White (BIW) refers to the stage <strong>in</strong> automotive manufactur<strong>in</strong>g <strong>in</strong> which the vehicle body<br />

sheet metal (doors, hoods, and deck lids) has been assembled but be<strong>for</strong>e components (chassis,<br />

motor) and trim (w<strong>in</strong>dshields, seats, upholstery, electronics, etc.) have been added.<br />

BIW is derived from the manufactur<strong>in</strong>g practices <strong>in</strong><br />

place be<strong>for</strong>e the advent of the steel unibody. When<br />

most cars were made as just a frame with an<br />

eng<strong>in</strong>e, suspension, and fenders attached, the<br />

manufacturers built or purchased wooden bodies<br />

(with th<strong>in</strong>, non-structural metal sheets on the<br />

outside) to bolt onto the frame. The bodies were<br />

then pa<strong>in</strong>ted white be<strong>for</strong>e be<strong>in</strong>g pa<strong>in</strong>ted the<br />

customer's chosen color. With today’s vehicle<br />

bodies made of steel, the phrase rema<strong>in</strong>s as a<br />

colloquialism that comes from the appearance of<br />

the vehicle body after it is dipped <strong>in</strong>to a white bath<br />

of primer. In practice, this color is usually a light gray.<br />

Chrysler St. Louis Assembly South Plant, Body <strong>in</strong><br />

White, Net Form and Pierce<br />

The unibody commonly <strong>in</strong> use today is <strong>in</strong>tegrated <strong>in</strong>to a s<strong>in</strong>gle unit with the chassis rather than<br />

hav<strong>in</strong>g a separate body-on-frame. Today’s unibody construction often <strong>in</strong>volves true monocoque<br />

frames, where the structural members around the w<strong>in</strong>dow and door frames are built by fold<strong>in</strong>g the<br />

sk<strong>in</strong>n<strong>in</strong>g material several times. Compared to older techniques where a body would be bolted to a<br />

frame, monocoque cars are less expensive and stronger.<br />

BIW processes <strong>in</strong>clude production of first dimensional sets, parts assembly, two-stage spot welds<br />

(<strong>in</strong>itial and f<strong>in</strong>al structure), robot-<strong>in</strong>tensive assembly, and primer application. These processes rely<br />

primarily on electricity and are characteristically complex, computer-controlled systems utiliz<strong>in</strong>g<br />

large amounts of robotic and automated processes. The supply cha<strong>in</strong> elements that are most<br />

closely <strong>in</strong>tegrated with BIW <strong>in</strong>clude producers and suppliers of sheet metal parts and components,<br />

weld<strong>in</strong>g equipment and connectors, and robotics, along with the complicated computer modules<br />

needed to control these systems.<br />

Vision <strong>for</strong> the Future<br />

In the future, it is expected that the operations,<br />

equipment, and systems employed by BIW will<br />

change to meet needs <strong>for</strong> greater flexibility,<br />

<strong>in</strong>creased safety and per<strong>for</strong>mance, and energy<br />

efficiency. BIW will evolve to accommodate the<br />

advent of new technology as well as changes <strong>in</strong><br />

consumer demands.<br />

The vision elements and future characteristics<br />

identified <strong>for</strong> BIW are shown <strong>in</strong> Exhibit 4.1.<br />

These reflect some of the trends and conditions<br />

that the <strong>in</strong>dustry will adapt to over time. For<br />

example, advances <strong>in</strong> technology, especially the<br />

Exhibit 4.1 Vision <strong>for</strong> Body <strong>in</strong> White<br />

• Greater flexibility of production <strong>in</strong> manufactur<strong>in</strong>g<br />

• Wider variety of materials and ways to jo<strong>in</strong> them<br />

- Higher strength, lighter weight, more<br />

<strong>for</strong>mable<br />

• Greater reclamation and reuse of waste energy<br />

• Fewer parts put together with less jo<strong>in</strong><strong>in</strong>g and<br />

weld<strong>in</strong>g<br />

• Improved design tools us<strong>in</strong>g an <strong>in</strong>tegrated plant,<br />

structural and construction approach<br />

• More energy efficient ways to make the new body<br />

structure<br />

- <strong>Energy</strong>-efficient methods <strong>for</strong> mak<strong>in</strong>g sheet<br />

metal<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 7


development of new, more lightweight, and stronger materials, will provide benefits, but could also<br />

impact the design and manufacture of body structures. The use of improved materials will need to<br />

be balanced by energy efficient ways to <strong>in</strong>corporate those materials <strong>in</strong> the vehicle body.<br />

Some of the factors that could <strong>in</strong>fluence BIW are described below.<br />

Vehicle body technology<br />

• Lighter weight vehicles will cont<strong>in</strong>ue to evolve<br />

• Lighter vehicles made of multi-materials could lead to new issues (e.g., jo<strong>in</strong><strong>in</strong>g dissimilar<br />

materials) and may not reduce the number of jo<strong>in</strong>ts<br />

• More niche vehicles and common plat<strong>for</strong>ms could lead to specialized manufactur<strong>in</strong>g at<br />

lower volumes<br />

• New fuel and propulsion systems will evolve and impact body requirements (e.g., need to<br />

store hydrogen); materials, jo<strong>in</strong><strong>in</strong>g, and other factors may also change as a result<br />

• Safety regulations will be raised with concomitant impacts on body structure<br />

<strong>Energy</strong> and environment<br />

• Incorporat<strong>in</strong>g energy as a key factor could <strong>in</strong>crease complexity; new software systems may<br />

be required to manage this<br />

• More regulation of <strong>in</strong>-plant emission, lube oils, and coolants could impact processes<br />

<strong>Energy</strong> Opportunities<br />

Reduc<strong>in</strong>g energy use over the entire BIW system can occur <strong>in</strong> two ways: 1) evolutionary changes;<br />

and 2) catalyz<strong>in</strong>g revolutionary changes through new designs and materials. This will require a<br />

focus on both near-term (improv<strong>in</strong>g today’s designs) and longer term (us<strong>in</strong>g ideal designs and<br />

materials <strong>in</strong> future vehicles structures) opportunities.<br />

Some of the more promis<strong>in</strong>g opportunities <strong>for</strong> energy reduction have been identified as:<br />

• Any reduction <strong>in</strong> waste/scrap<br />

- Net shape <strong>for</strong>m<strong>in</strong>g<br />

- Design <strong>for</strong> scrap/waste reduction<br />

- Recycl<strong>in</strong>g<br />

• Ensur<strong>in</strong>g new component/part materials are energy efficient<br />

- More streaml<strong>in</strong>ed<br />

- Efficient production, usage and distribution<br />

- Efficient ways to <strong>in</strong>corporate new materials <strong>in</strong> the body structure<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 8


R&D Needs <strong>for</strong> Body <strong>in</strong> White<br />

A number of areas have been identified as targets <strong>for</strong> improv<strong>in</strong>g energy efficiency and reduc<strong>in</strong>g<br />

energy use <strong>in</strong> BIW. These have been classified as manufactur<strong>in</strong>g systems or materials process<strong>in</strong>g,<br />

which <strong>in</strong>clude materials development, jo<strong>in</strong><strong>in</strong>g, <strong>for</strong>m<strong>in</strong>g, and associated tool<strong>in</strong>g. Exhibits 4.2 and<br />

4.3 provide an abbreviated summary of the topics that are considered higher priorities; Appendix B<br />

conta<strong>in</strong>s a complete list of R&D topics <strong>for</strong> BIW.<br />

Materials and component process<strong>in</strong>g, rang<strong>in</strong>g from raw materials to parts <strong>for</strong>m<strong>in</strong>g and tool<strong>in</strong>g,<br />

was identified as an area with the potential to <strong>in</strong>crease energy efficiency <strong>in</strong> BIW (see Exhibit 4.2).<br />

The primary processes used <strong>in</strong> BIW, weld<strong>in</strong>g, are automated. These processes represent targets <strong>for</strong><br />

reduc<strong>in</strong>g energy use through advanced technologies and methods that are faster, lighter, and more<br />

effective. There is also potential to reduce energy through the design and use of more efficient part<strong>for</strong>m<strong>in</strong>g<br />

processes (such as those that reduce scrap and rejects) or to use advanced concepts (such<br />

as s<strong>in</strong>gle-sided <strong>for</strong>m<strong>in</strong>g or tubular structures).<br />

Materials are another area where <strong>in</strong>novation could provide an advantage <strong>in</strong> terms of energy use, as<br />

well as improved functionality and ease of production. For example, new materials that are more<br />

easily welded or jo<strong>in</strong>ed, or those that can be readily recycled, could reduce both process<strong>in</strong>g time<br />

and waste materials. In the area of plastics, entirely new materials could be explored, such as those<br />

made from non-petroleum raw materials or that <strong>in</strong>corporate low cost carbon fibers.<br />

Exhibit 4.2 Selected R&D Needs <strong>for</strong> BIW – Materials and Component Process<strong>in</strong>g<br />

Jo<strong>in</strong><strong>in</strong>g<br />

High Priority • Assessment of energy use <strong>in</strong> material <strong>for</strong>m<strong>in</strong>g processes/jo<strong>in</strong><strong>in</strong>g processes used to create<br />

substructures<br />

• Solid state jo<strong>in</strong><strong>in</strong>g methods <strong>for</strong> similar and dissimilar materials (ultrasonic, magnetic, pulse)<br />

• Non-heat cured adhesives (<strong>in</strong>duction)<br />

• Better software to predict <strong>for</strong>mability, spr<strong>in</strong>g back, jo<strong>in</strong><strong>in</strong>g, and process<strong>in</strong>g parameters<br />

Medium Priority • New hybrid jo<strong>in</strong><strong>in</strong>g methods and mix<strong>in</strong>g technology (weld<strong>in</strong>g and adhesives, mix processes,<br />

fasteners and adhesives, laser assisted arc weld<strong>in</strong>g)<br />

Efficient Part Form<strong>in</strong>g and Shape<br />

High Priority • Increased process yields <strong>in</strong> stamp<strong>in</strong>g and cast<strong>in</strong>g: reduced scrap, less runners, no scalp<strong>in</strong>g,<br />

reduced edge trimm<strong>in</strong>g, lower rejects, better ways to reuse scrap<br />

Medium Priority • S<strong>in</strong>gle-sided <strong>for</strong>m<strong>in</strong>g - improved low-cost materials, improved cycle times<br />

• Hydro-<strong>for</strong>m<strong>in</strong>g (tubular and sheet); lower energy through reduced mass and waste material<br />

Materials Development <strong>for</strong> In Process Use<br />

High Priority • High-<strong>for</strong>mable, high-strength materials: weldable, jo<strong>in</strong>able, recyclable<br />

• Composites made from non-petroleum-based raw materials<br />

• Predictive material properties models (design, waste)<br />

Medium Priority • Vacuum-less materials handl<strong>in</strong>g <strong>for</strong> stamp<strong>in</strong>g, body shop, etc.<br />

• Manufactur<strong>in</strong>g technology <strong>for</strong> high strength, less <strong>for</strong>mable materials<br />

• Selection of corrosion-protective, mill-applied coat<strong>in</strong>gs with m<strong>in</strong>imum total energy usage<br />

• Low-cost carbon fiber and manufactur<strong>in</strong>g methods <strong>for</strong> low-mass stronger plastics<br />

• Stamp<strong>in</strong>g lubes that are easy to remove be<strong>for</strong>e pa<strong>in</strong>t<strong>in</strong>g; tribology die surface that does not<br />

need lube oils<br />

• Glass-manufactur<strong>in</strong>g process <strong>for</strong> stamped “colors”, or molded color, e.g., pa<strong>in</strong>ts without ovens<br />

Basic/Raw Materials<br />

High Priority • Cont<strong>in</strong>uous-cast alum<strong>in</strong>um, magnesium, and ferrous metals to strip<br />

Medium Priority • Hot metal on demand (no need to re-melt)<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 9


In the area of manufactur<strong>in</strong>g systems, heat recovery has been identified as one of the top priorities<br />

<strong>for</strong> reduc<strong>in</strong>g energy use (see Exhibit 4.3). Areas of opportunity <strong>in</strong>clude various heat s<strong>in</strong>k<br />

operations, such as cool<strong>in</strong>g fluids and metal cast<strong>in</strong>g or heat treat<strong>in</strong>g of sheet metal and other<br />

components. <strong>Energy</strong> recovery is an important opportunity area that crosscuts many operations, and<br />

is covered <strong>in</strong> more detail <strong>in</strong> Section 9.<br />

Other areas with potential <strong>for</strong> energy reduction <strong>in</strong>clude plant systems that are <strong>in</strong>tegral to the BIW<br />

operation. Plant layout and production sequenc<strong>in</strong>g, <strong>for</strong> example, while designed to emphasize<br />

productivity and cost, could also be optimized <strong>for</strong> energy use. In tool<strong>in</strong>g systems, the many<br />

hundreds of tools used to weld and connect body components could be m<strong>in</strong>iaturized and made<br />

lighter. This would enable the use of robots that require less energy and are able to work faster.<br />

Exhibit 4.3 Selected R&D Needs <strong>for</strong> BIW – Manufactur<strong>in</strong>g Systems<br />

BIW Systems<br />

High Priority • Process models to optimize balance of number of parts (higher yield) versus other goals<br />

Medium Priority • Plant layout and production sequenc<strong>in</strong>g to m<strong>in</strong>imize energy use<br />

• M<strong>in</strong>iaturized, lightweight tools: welders, riveters, etc. that lead to smaller, lighter, lower power<br />

robots that work faster and more efficiently<br />

BIW Design<br />

Medium Priority • Mass compound<strong>in</strong>g designs: smaller eng<strong>in</strong>e, smaller body and powertra<strong>in</strong><br />

• Tubular structures: new designs, connections, tubes made from advanced high strength steel<br />

(AHSS) and other materials<br />

Heat and <strong>Energy</strong> Recovery<br />

High Priority • Reclamation of heat from heat s<strong>in</strong>k operations (e.g., from cool<strong>in</strong>g fluids)<br />

• Recovery of heat from cast<strong>in</strong>g (heat of fusion, sheet products, etc.) or heat treat<strong>in</strong>g<br />

Sensors and Controls<br />

Medium Priority • Process monitor<strong>in</strong>g and sens<strong>in</strong>g technologies (e.g., non-destructive evaluation (NDE), total<br />

quality management (TQM))<br />

Priority Topics<br />

The areas of R&D illustrated <strong>in</strong> Exhibits 4.2 and 4.3 have been comb<strong>in</strong>ed <strong>in</strong>to larger priority<br />

topics that could potentially be suitable <strong>for</strong> future exploration. These priority topics, which are<br />

listed below, are described <strong>in</strong> greater detail <strong>in</strong> Exhibits 4.4 though 4.9 on the follow<strong>in</strong>g pages.<br />

• Advanced Auto Body Manufactur<strong>in</strong>g<br />

• <strong>Energy</strong> Efficient Jo<strong>in</strong><strong>in</strong>g Technologies<br />

• High Formability, High Strength Parts<br />

• Elim<strong>in</strong>ation of Process Steps <strong>in</strong> Materials Manufactur<strong>in</strong>g <strong>for</strong> BIW<br />

• Processes to Reduce Scrap and Make More Efficient Use of Materials<br />

• Design <strong>for</strong> Life Cycle <strong>Energy</strong> <strong>Reduction</strong> of Body Structures<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 10


Advanced Auto Body Manufactur<strong>in</strong>g<br />

Improve the energy efficiency of current manufactur<strong>in</strong>g processes, methods, tools, dies, and molds,<br />

and develop alternative manufactur<strong>in</strong>g processes and generic tool<strong>in</strong>g to overcome the barriers to<br />

high high‐volume ‐ volume implementation of current and future materials <strong>for</strong> lightweight<strong>in</strong>g vehicles<br />

Applications<br />

•Body parts,<br />

manufactur<strong>in</strong>g tools,<br />

assembly tools, dies,<br />

molds, measurement<br />

measurement<br />

fixtures, and transfer<br />

tools<br />

Partners<br />

I – Benchmark, solution <strong>in</strong>put,<br />

test, cost share<br />

F,U – Research, solution<br />

development<br />

G – Fund<strong>in</strong>g<br />

Exhibit 4.4 BIW Priority Topic<br />

Challenges<br />

• High dimensional part<br />

requirements<br />

• Material <strong>for</strong>mability limitations<br />

• High volume/low cycle time<br />

requirements<br />

• Low process and tool<strong>in</strong>g<br />

ma<strong>in</strong>tenance requirements<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Quantify the energy content of manufactu manufactur<strong>in</strong>g r<strong>in</strong>g<br />

processes, methods, and associated tool<strong>in</strong>g and<br />

weight sav<strong>in</strong>gs from implement<strong>in</strong>g mate materials rials <strong>for</strong><br />

lightweight<strong>in</strong>g<br />

‐ Identify greatest opportunities <strong>for</strong> improv improvement ement<br />

or im implementation plementation<br />

of alternatives<br />

‐ Identify barriers to material implementat<br />

implementation ion<br />

‐ Conduct laboratory research research and simulation to<br />

understand the variables, relationships, and<br />

parameters of alternatives alternatives<br />

‐ Select most promis<strong>in</strong>g alternatives alternatives <strong>for</strong> feasibility<br />

test<strong>in</strong> test<strong>in</strong>g g<br />

Mid ‐ Develop methods <strong>for</strong> implementation of<br />

alternatives<br />

‐ Conduct <strong>in</strong>dustrial prototype feasibility tes test t of<br />

selected alternatives<br />

‐ Establish, validate, and document potentia potential l<br />

benefits<br />

Long ‐ Conduct <strong>in</strong>dustrial implementation test at<br />

volume and speed <strong>in</strong> manufactur<strong>in</strong>g enviro environment nment<br />

‐ Optimize solution parameters and metho methods ds<br />

‐ Document energy and weight sav<strong>in</strong>gs<br />

Risks<br />

Technical<br />

• Risk depends on alternative<br />

selected<br />

Commercial<br />

• Selected alternative may not meet<br />

required volume, cycle time,<br />

ma<strong>in</strong>tenance, or dimensional part<br />

requirements<br />

8.31.09<br />

Targets<br />

•Improvethe •Improve the energy<br />

efficiency of current<br />

manufactur<strong>in</strong>g<br />

processes, methods,<br />

tools, dies, and molds<br />

and enable the high<br />

volume implementation<br />

of materials <strong>for</strong><br />

lightweight<strong>in</strong>g the<br />

vehicle<br />

Benefits<br />

<strong>Energy</strong><br />

• Reduced or lean tool<strong>in</strong>g<br />

requires less material and less<br />

energy<br />

•Processesthat •Processes that require<br />

fewer resources require less<br />

energy<br />

•Lowerweight •Lower weight vehicle uses<br />

less fuel<br />

Environment<br />

• Manufactur<strong>in</strong>g requires less<br />

hazardous material<br />

• <strong>Energy</strong> sav<strong>in</strong>gs results <strong>in</strong><br />

lower CO 2<br />

Economics<br />

•Neutral cost<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 11


Applications<br />

•Body structures,<br />

closures, subframes, and<br />

frames <strong>for</strong> lightweight<br />

BIW BIW<br />

•Users <strong>in</strong>clude<br />

automotive OEMs, Tier<br />

1, and component<br />

suppliers<br />

•Applicable to<br />

<strong>in</strong>dustries outside<br />

automotive:<br />

commercial vehicles,<br />

consumer products,<br />

aerospace<br />

Exhibit 4.5 BIW Priority Topic<br />

<strong>Energy</strong>‐Efficient Jo<strong>in</strong><strong>in</strong>g Technologies<br />

Develop energy energy‐efficient ‐ efficient jo<strong>in</strong><strong>in</strong>g technologies <strong>for</strong> high high‐volume ‐ volume automotive components and structures<br />

composed of similar and dissimilar metals, polymers, and composite materials<br />

Partners<br />

ALL<br />

•Industry<br />

•Federal Laboratories<br />

•Universities<br />

Challenges<br />

• Process cycle times, corrosion, and<br />

material compatibility<br />

• Jo<strong>in</strong> properties and per<strong>for</strong>mance<br />

• Infrastructure and equipment<br />

impacts<br />

• Reparability of <strong>in</strong>‐service <strong>in</strong> ‐ service structures<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Demonstrate solid state jo<strong>in</strong><strong>in</strong>g technologies tech nologies <strong>for</strong><br />

similar BIW materials<br />

‐ Develop hybrid jo<strong>in</strong><strong>in</strong>g jo<strong>in</strong><strong>in</strong>g methods <strong>for</strong> <strong>in</strong>creased<br />

manufacturability and per<strong>for</strong>mance (e.g., laser‐<br />

assisted arc weld<strong>in</strong>g [LAAW], weld bond<strong>in</strong>g, etc.)<br />

Mid ‐ Demonstrate solid state jo<strong>in</strong><strong>in</strong>g and repair<br />

methods <strong>for</strong> dissimilar materials<br />

Long ‐ Demonstrate production‐capable production‐ capable solid state stat e<br />

jo<strong>in</strong><strong>in</strong>g systems<br />

‐ Demonstrate field‐repairable field‐ repairable jo<strong>in</strong>t technologies<br />

Risks<br />

Technical<br />

• Production rates; field field‐repairable ‐ repairable<br />

processes <strong>for</strong> jo<strong>in</strong><strong>in</strong>g processes and<br />

new materials<br />

Commercial<br />

Other<br />

• Acceptance of alternative jo<strong>in</strong><strong>in</strong>g<br />

processes<br />

8.31.09<br />

Targets<br />

• Develop dissimilar<br />

jo<strong>in</strong><strong>in</strong>g techniques that<br />

enable new material use<br />

<strong>in</strong> BIW<br />

• Develop solid state<br />

jo<strong>in</strong><strong>in</strong>g jo<strong>in</strong><strong>in</strong>g methods that<br />

reduce energy <strong>in</strong>put by<br />

20% or more<br />

• Develop rapid cure<br />

jo<strong>in</strong><strong>in</strong>g processes <strong>for</strong><br />

adhesive bond<strong>in</strong>g of<br />

materials <strong>for</strong> BIW<br />

structures<br />

Benefits<br />

<strong>Energy</strong><br />

Environment<br />

Economics<br />

Other<br />

• Enable lightweight body<br />

structures <strong>for</strong> fuel‐efficient<br />

vehicles<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 12


Applications<br />

•BIW components<br />

Exhibit 4.6 BIW Priority Topic<br />

High‐Formability, High‐Strength Parts<br />

Develop highly highly manufacturable materials <strong>for</strong> high high‐strength, ‐ strength, lightweight structures<br />

Partners<br />

I F – Benchmark<strong>in</strong>g<br />

I F G –CostShar<strong>in</strong>g<br />

–Cost Shar<strong>in</strong>g<br />

I F – Test<strong>in</strong>g, prov<strong>in</strong>g prov<strong>in</strong>g out<br />

concepts<br />

Challenges<br />

• Ability to capture all energy<br />

• Compatibility with future<br />

manufactur<strong>in</strong>g processes<br />

• Lack of <strong>in</strong>frastructure <strong>for</strong> new<br />

materials/processes<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Def<strong>in</strong>e potential paths to achieve high high‐strength ‐ stre ngth<br />

automotive parts<br />

Conventional stamped AHSS or high‐<br />

stren strength g th alum<strong>in</strong>um alum<strong>in</strong>um, , titani titanium, um, and<br />

magnesium<br />

Press‐hardenable materials<br />

Heat‐treatable structures<br />

Co Co‐extruded,co‐<strong>in</strong>jected ‐ extruded,co‐ <strong>in</strong>jected multi multi‐material ‐ mate rial<br />

structures<br />

Mid ‐ Predictive model<strong>in</strong>g to determ<strong>in</strong>e material energy<br />

usage <strong>for</strong> selective parts <strong>for</strong> a specific BIW<br />

application<br />

Long ‐ Validate predictive models<br />

‐ Determ<strong>in</strong>e potential potential energy and cost savi sav<strong>in</strong>gs ngs<br />

Risks<br />

Technical<br />

• Unproven technology<br />

Commercial<br />

• Total cost sav<strong>in</strong>gs may not be equal<br />

to total energy sav<strong>in</strong>gs<br />

8.31.09<br />

Targets<br />

• Produce ultra‐high<br />

strength lightweight<br />

parts by us<strong>in</strong>g<br />

materials/processes<br />

that enable enable accurate<br />

complex shapes<br />

necessary <strong>for</strong> optimized<br />

structural design. design. This<br />

should result result <strong>in</strong> a cradle‐<br />

to‐grave energy<br />

reduction of 25%<br />

Benefits<br />

<strong>Energy</strong><br />

•Reducetotal •Reduce total energy usage<br />

Environment<br />

• Produce more efficient<br />

structures<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 13


Elim<strong>in</strong>ation of Process Process Steps <strong>in</strong> Materials Manufactur<strong>in</strong>g <strong>for</strong> BIW<br />

Elim<strong>in</strong>ation of energy energy‐<strong>in</strong>tensive ‐ <strong>in</strong>tensive material process<strong>in</strong>g steps from ore to f<strong>in</strong>al dimension<br />

Applications<br />

•BIW structures and<br />

components<br />

•Potential applications<br />

to similar <strong>in</strong>dustries<br />

(e.g., other transport<br />

manufacture, heavy<br />

equipment)<br />

Partners<br />

I F – Benchmark<strong>in</strong>g<br />

I G –Costshar<strong>in</strong>g<br />

–Cost shar<strong>in</strong>g<br />

I F G – Prototyp<strong>in</strong>g pilot<br />

operations<br />

Exhibit 4.7 BIW Priority Topic<br />

Challenges<br />

• Ability to capture all energy usage<br />

(cradle to grave)<br />

• Global logistics of material<br />

process<strong>in</strong>g flow<br />

• Achiev<strong>in</strong>g material properties<br />

• Economic bus<strong>in</strong>ess case<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Determ<strong>in</strong>e potential energy sav<strong>in</strong>gs with targets<br />

(energy delta)<br />

‐ Develop and evaluate cost model <strong>for</strong> modified<br />

process steps<br />

Mid ‐ Calculate and predict process rout<strong>in</strong>g, ma material terial<br />

flow, and efficiency ga<strong>in</strong>s<br />

Long ‐ Pilot plant<br />

Risks<br />

Technical<br />

• Unproven technology<br />

Commercial<br />

• Bus<strong>in</strong>ess case<br />

8.31.09<br />

Targets<br />

Elim<strong>in</strong>ate at least one<br />

reheat step realiz<strong>in</strong>g<br />

energy sav<strong>in</strong>gs at least<br />

25%. Examples <strong>in</strong>clude:<br />

• Solidification directly <strong>in</strong>to<br />

strip from molten steels,<br />

magnesium, alum<strong>in</strong>um,<br />

and titanium (strip cast<strong>in</strong>g,<br />

spray <strong>for</strong>m<strong>in</strong>g)<br />

• Elim<strong>in</strong>ate the pigg<strong>in</strong>g<br />

step from smelt<strong>in</strong>g/blast<br />

furnace<br />

• Elim<strong>in</strong>ate slab reheat<br />

step <strong>for</strong> all materials<br />

Benefits<br />

<strong>Energy</strong><br />

•Lowertotal •Lower total energy usage<br />

Environment<br />

• Fewer emissions from<br />

energy combustion<br />

Economics<br />

• Reduced material costs and<br />

shorter production cycle<br />

times<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 14


Processes to Reduce Scrap and Use Materials More Efficiently<br />

Increase materials utilization and, as a result, reduce materials <strong>in</strong>put requirements and the energy<br />

associated with materials production<br />

Applications<br />

• Stamp<strong>in</strong>g/cast<strong>in</strong>g<br />

plants<br />

•Metal producers <strong>for</strong> a<br />

variety of <strong>in</strong>dustries, <strong>in</strong><br />

addition addition to automotive<br />

Partners<br />

F –Developscrap‐tolerant<br />

–Develop scrap‐tolerant<br />

alloys<br />

F, I – Develop reduced scrap<br />

processes<br />

I –Implementnew –Implement new processes<br />

Exhibit 4.8 BIW Priority Topic<br />

Challenges<br />

• Logistics <strong>for</strong> scrap handl<strong>in</strong>g<br />

• Process development<br />

• Upstream <strong>in</strong>tegration of optimized<br />

mix of part <strong>in</strong>tegration<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ ‐Develop Develop impurity impurity‐tolerant ‐ tolerant alloys that can be made<br />

from sc scrap rap<br />

‐ De Develop velop process with reduced offal, runne runners, rs,<br />

sprues, etc. with lower reject reject rates<br />

‐ Develop concepts to reuse scrap as feedstock <strong>for</strong><br />

another process<br />

‐ Optimize mix of part <strong>in</strong>tegration with high<br />

utiliza utilization tion<br />

Mid Mid ‐ ‐Implement Implement process with reduced offal, ru runners, nners,<br />

sprues, etc. with lower reject reject rates<br />

‐ Pilot production of parts from new ma materials terials<br />

Long ‐ Implement the production of parts from th the e new<br />

scrap scrap‐based ‐ based materials<br />

Risks<br />

Technical<br />

Commercial<br />

• If processes are developed, it seems<br />

that they will f<strong>in</strong>d ready adoption due<br />

to economic advantage<br />

8.31.09<br />

Targets<br />

• Higher‐yield<br />

manufactur<strong>in</strong>g<br />

processes<br />

•Morematerials •More materials ends<br />

up <strong>in</strong> the f<strong>in</strong>ished part<br />

•Processto •Process to directly use<br />

scrap from one process<br />

as the feedstock <strong>for</strong><br />

another<br />

•<strong>Technology</strong>to<br />

•<strong>Technology</strong> to<br />

economically recycle<br />

scrap <strong>in</strong>to new<br />

feedstocks to reduce<br />

the use of higher energy<br />

content virg<strong>in</strong> materials<br />

Benefits<br />

<strong>Energy</strong><br />

• Reduced need <strong>for</strong> primary<br />

metal production<br />

Environment<br />

•Lessscrap •Less scrap to dispose of and<br />

handle<br />

Economics<br />

•Economicsav<strong>in</strong>gs<br />

•Economic sav<strong>in</strong>gs<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 15


Applications<br />

• Components<br />

•Processes<br />

• Products<br />

•End use<br />

Exhibit 4.9 BIW Priority Topic<br />

Design <strong>for</strong> Life‐Cycle <strong>Energy</strong> <strong>Reduction</strong> of Body Structures<br />

Analysis model and software tool to assist <strong>in</strong> vehicle design to allow assessment of life cycle energy<br />

use<br />

Partners<br />

I –Provideaccess –Provide access to data,<br />

collaborate on analysis model<br />

validation, cost share,<br />

commercialize<br />

F –Analysismodel<br />

– Analysis model<br />

development<br />

U –Analysis model<br />

development and validation<br />

G –Cost share<br />

Challenges<br />

• Diversity of materials and<br />

processes<br />

• Generation and access of data<br />

• Commonly accepted parameter <strong>for</strong><br />

analysis model<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Characterization of process level energy us use e and<br />

model development<br />

‐ Analysis model validation with the current<br />

processes<br />

Mid ‐ Establish basel<strong>in</strong>e energy use<br />

Long ‐ Design optimization method <strong>for</strong> m<strong>in</strong>imized energy<br />

Risks<br />

Technical<br />

• Analysis model accuracy<br />

Commercial<br />

• Balanc<strong>in</strong>g of vehicle life cycle energy<br />

use and cost of production<br />

8.31.09<br />

Targets<br />

• <strong>Reduction</strong> <strong>in</strong> life life cycle<br />

energy consumption of<br />

basel<strong>in</strong>e of current<br />

vehicle<br />

Benefits<br />

<strong>Energy</strong><br />

Environment<br />

Economics<br />

• Reduces energy costs over<br />

time<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 16


5.0 <strong>Automotive</strong> Pa<strong>in</strong>t<br />

In the automotive pa<strong>in</strong>t shop, the body structure from BIW undergoes a series of operations to<br />

pa<strong>in</strong>t both the <strong>in</strong>terior and exterior of the structure. Prior to 1985, the majority of domestic cars had<br />

s<strong>in</strong>gle-stage pa<strong>in</strong>t when they arrived from the factory. Today, the traditional automotive pa<strong>in</strong>t<br />

process is multi-stage. It usually beg<strong>in</strong>s with the application of pretreatment and electrocoat,<br />

followed by a primer layer. Typically, after the primer<br />

is cured, a topcoat of basecoat and clearcoat is applied<br />

and cured. The topcoat chemistry is based on water,<br />

solvent, or powder. The end result of this process is a<br />

five-layer, sh<strong>in</strong>y and durable f<strong>in</strong>ish.<br />

While it produces a lustrous f<strong>in</strong>ish, this process is<br />

both costly and time-consum<strong>in</strong>g. The normal pa<strong>in</strong>t<br />

process can take 3 hours per vehicle to complete and<br />

uses considerable amounts of materials, electricity,<br />

Ford Compact Pa<strong>in</strong>t<strong>in</strong>g System<br />

natural gas, and labor or robotics. Some new<br />

technologies are available that may reduce the total cost and time of vehicle pa<strong>in</strong>t<strong>in</strong>g. Compact<br />

pa<strong>in</strong>t systems, <strong>for</strong> example, elim<strong>in</strong>ate either the need <strong>for</strong> a separate primer layer altogether or<br />

reduce process complexity while reta<strong>in</strong><strong>in</strong>g the benefits provided by the primer layer. Either method<br />

reduces the total cost and time of vehicle pa<strong>in</strong>t<strong>in</strong>g.<br />

In general, there are three basic <strong>in</strong>gredients <strong>in</strong> automotive pa<strong>in</strong>t: res<strong>in</strong>, pigment, and solvent. The<br />

res<strong>in</strong> is the component that holds together the pigment <strong>in</strong> suspension, provides adhesion to the<br />

surface applied, and determ<strong>in</strong>es the quality and durability of the pa<strong>in</strong>t job. The average aftermarket<br />

automotive pa<strong>in</strong>t-mix<strong>in</strong>g system <strong>in</strong>cludes about 100 colors or toners with the capability to mix<br />

<strong>for</strong>mulas that <strong>in</strong>clude metallic and pearl pa<strong>in</strong>t colors. The solvent provides transferability; without<br />

it, the pa<strong>in</strong>t would be too viscous to transfer.<br />

Automakers have the capability to pa<strong>in</strong>t vehicles <strong>in</strong> a wide variety of colors and types of pa<strong>in</strong>t.<br />

Most vehicle manufacturers decide on a standard color <strong>for</strong> production and submit a pa<strong>in</strong>ted sample<br />

to their suppliers. The pa<strong>in</strong>t manufacturer then produces a <strong>for</strong>mula <strong>for</strong> the “standard sample” and is<br />

allowed a plus or m<strong>in</strong>us tolerance which can result <strong>in</strong> slightly different shades of the same color.<br />

For this reason pa<strong>in</strong>t manufacturers usually have the standard <strong>for</strong>mula followed by two alternates.<br />

Metallic pa<strong>in</strong>ts add another level of complexity to the pa<strong>in</strong>t process, as they are classified <strong>in</strong><br />

multiple categories (e.g. extra f<strong>in</strong>e, f<strong>in</strong>e, medium, medium coarse, coarse, etc.). The metallic colors<br />

control the value (lightness and darkness) of the color, similar to the way white affects pastels.<br />

Temperature, pa<strong>in</strong>t film thickness, flash-off time between coats, fluid tip sizes, speed of the spray<br />

gun, surface type (plastic or metal), and humidity can cause lighter or darker variations <strong>in</strong> metallic<br />

colors.<br />

Pa<strong>in</strong>t processes <strong>in</strong>clude pa<strong>in</strong>t booths, ovens, compressed air, abatement of volatile components,<br />

application of coat<strong>in</strong>gs, storage, and handl<strong>in</strong>g of materials, and waste treatment. Dry<strong>in</strong>g processes<br />

rely heavily on steam and natural gas. Most are automated to some degree and utilize numerous<br />

robots and computer-controlled systems. The supply cha<strong>in</strong> elements that are most closely<br />

<strong>in</strong>tegrated with pa<strong>in</strong>t <strong>in</strong>clude producers and suppliers of pa<strong>in</strong>t, pa<strong>in</strong>t booth and oven/cur<strong>in</strong>g<br />

systems, robotics, and abatement systems.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 17


Vision <strong>for</strong> the Future<br />

Over the next decade, it is expected that automotive pa<strong>in</strong>t operations will become more efficient,<br />

faster, more flexible, and easier to control. <strong>Technology</strong> advances that reduce the energy<br />

requirements <strong>for</strong> pa<strong>in</strong>t<strong>in</strong>g will be achieved, such as reduction <strong>in</strong> cure temperatures and time, and<br />

more efficient, less energy-<strong>in</strong>tensive ways to dry pa<strong>in</strong>t. Better ways to m<strong>in</strong>imize solid wastes,<br />

recovery waste heat, and make optimum use of water also will improve the overall efficiency of the<br />

automotive pa<strong>in</strong>t operation.<br />

The vision elements and future<br />

characteristics identified <strong>for</strong> automotive<br />

pa<strong>in</strong>t <strong>in</strong> the near- to mid-term are shown <strong>in</strong><br />

Exhibit 5.1. These illustrate some of the<br />

key areas where changes and improvements<br />

are expected.<br />

Over the longer term, perhaps two decades<br />

or more, revolutionary changes will be<br />

possible <strong>in</strong> the pa<strong>in</strong>t operation. The way<br />

vehicles look and what consumers want <strong>in</strong><br />

their personal conveyance could change<br />

dramatically. The appearance of vehicles<br />

will change not just <strong>in</strong> response to<br />

consumer demands, but to advances <strong>in</strong><br />

technology and the need <strong>for</strong> greater fuel<br />

economy, per<strong>for</strong>mance, economics, and<br />

other objectives as well. Mass<br />

customization of vehicles could be possible,<br />

with consumers select<strong>in</strong>g customized pa<strong>in</strong>ts<br />

and exterior attributes be<strong>for</strong>e the vehicle is<br />

produced (“attributes on demand”).<br />

Exhibit 5.2 Long Term Vision <strong>for</strong><br />

<strong>Automotive</strong> Pa<strong>in</strong>t<br />

• Revolutionary appearance of vehicles<br />

• Mass customization to meet <strong>in</strong>dividual<br />

consumer requirements<br />

• Optimized cost <strong>in</strong> production through<br />

technological and other advances<br />

• Zero emissions<br />

• Color<strong>in</strong>g of metal <strong>for</strong> some components<br />

(versus pa<strong>in</strong>t<strong>in</strong>g)<br />

• 100% transfer efficiency <strong>in</strong> pa<strong>in</strong>t process<br />

• Elim<strong>in</strong>ation of compressed air requirements<br />

• Complete understand<strong>in</strong>g of life-cycle<br />

requirements - materials, emissions, costs,<br />

and energy<br />

Exhibit 5.1 Near-Mid Term Vision <strong>for</strong><br />

<strong>Automotive</strong> Pa<strong>in</strong>t<br />

• Lower cure temperature and less cure time<br />

• Greater pa<strong>in</strong>t application efficiency and reduced pa<strong>in</strong>t<br />

layer thickness<br />

• S<strong>in</strong>gle coat<strong>in</strong>g or consolidated processes (3 wet)<br />

• Smaller, flexible footpr<strong>in</strong>t and more automation<br />

• Pre-pa<strong>in</strong>ted material be<strong>for</strong>e stamp, or color plastic<br />

panels<br />

• Elim<strong>in</strong>ation of need <strong>for</strong> product repairs<br />

• Ambient dry<strong>in</strong>g processes, or direct fire heat<strong>in</strong>g vs.<br />

<strong>in</strong>direct and steam<br />

• Environmentally-friendly pre-treatment chemistry<br />

• Materials and processes control the air <strong>in</strong>side spray<br />

booths (temperature, humidity)<br />

• Elim<strong>in</strong>ation of need <strong>for</strong> abatement and controls<br />

• Solid waste m<strong>in</strong>imization and recovery of waste heat<br />

• Efficient water utilization<br />

• Customization – “change end-f<strong>in</strong>ish at home”<br />

Exhibit 5.2 illustrates some of the areas where<br />

dramatic changes over the long-term could occur. In<br />

the process area, it is expected that transfer efficiency<br />

(of pa<strong>in</strong>t to surface) will approach 100%, and that<br />

compressed air needs could be elim<strong>in</strong>ated. This<br />

would enable significant reductions <strong>in</strong> waste and<br />

energy, as well as raw materials. A full understand<strong>in</strong>g<br />

of life cycle requirements would enable optimization<br />

of all aspects of the pa<strong>in</strong>t process, from <strong>in</strong>com<strong>in</strong>g raw<br />

materials to better control of emissions, energy, and<br />

economics.<br />

<strong>Energy</strong> Opportunities<br />

Reduc<strong>in</strong>g energy use <strong>in</strong> the pa<strong>in</strong>t shop can occur <strong>in</strong><br />

every stage of the process. Some of the more<br />

promis<strong>in</strong>g opportunities <strong>for</strong> energy reduction are<br />

illustrated <strong>in</strong> Exhibit 5.3, accord<strong>in</strong>g to the area of pa<strong>in</strong>t operations that they impact.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 18


WASTE<br />

HEAT<br />

RECOVERY<br />

(tim<strong>in</strong>g, storage)<br />

INTEGRATE CHP<br />

PAINT<br />

• Formulation<br />

• Supply (material, manufactur<strong>in</strong>g, transportation<br />

weight)<br />

PRE-<br />

TREATMENT<br />

Phosphate, electric,<br />

heat<strong>in</strong>g and cool<strong>in</strong>g<br />

tanks<br />

PRIME BOOTH<br />

• Elim<strong>in</strong>ation<br />

• W<strong>in</strong>dows<br />

• Air movement,<br />

recirculation cascad<strong>in</strong>g<br />

• Chang<strong>in</strong>g pa<strong>in</strong>t<br />

TOP COAT BOOTH<br />

• Application equipment<br />

• Air requirements<br />

(temperature, f low,<br />

humidity, filtration,<br />

recovery f rom air and<br />

water pumped)<br />

• Chang<strong>in</strong>g pa<strong>in</strong>t<br />

CURE/DRYING<br />

• Direct and <strong>in</strong>direct<br />

• Plasma, UV, IR, <strong>in</strong>duction<br />

• Air, temperature,<br />

recirculation flow, time,<br />

oven design<br />

ABATEMENT<br />

• Flow<br />

• Temperature<br />

• Type heat<strong>in</strong>g –<br />

thermal efficiency<br />

• Destruction efficiency<br />

requirements<br />

• Concentration<br />

efficiency<br />

SOLID WASTE<br />

RECOVERY<br />

(Slog recovery,<br />

transport<br />

R&D Needs <strong>for</strong><br />

<strong>Automotive</strong> Pa<strong>in</strong>t<br />

A number of areas have been<br />

identified as targets <strong>for</strong><br />

reduc<strong>in</strong>g energy use <strong>in</strong><br />

automotive pa<strong>in</strong>t operations.<br />

These are classified accord<strong>in</strong>g<br />

to top coat and prime,<br />

pretreatment, and abatement.<br />

Exhibits 5.4 and 5.5 provide a<br />

brief summary of the topics that<br />

have been identified as higher<br />

priorities; Appendix B conta<strong>in</strong>s<br />

a complete list of R&D topics<br />

<strong>for</strong> automotive pa<strong>in</strong>t.<br />

In the area of top coat and<br />

prime, energy reductions are<br />

possible through advances <strong>in</strong><br />

materials handl<strong>in</strong>g, design, and<br />

optimization of the spray<br />

process, development of nospray<br />

pa<strong>in</strong>t processes, and more<br />

Exhibit 5.3 <strong>Energy</strong> Opportunity Areas <strong>in</strong> <strong>Automotive</strong> Pa<strong>in</strong>t energy-efficient cure and dry<strong>in</strong>g<br />

processes. For example,<br />

apply<strong>in</strong>g less coat<strong>in</strong>g more<br />

efficiently with<strong>in</strong> a smaller footpr<strong>in</strong>t would reduce air flow requirements, have lower “hands on”<br />

labor requirements, and create a more “<strong>for</strong>giv<strong>in</strong>g” material process w<strong>in</strong>dow (temperature,<br />

humidity). Elim<strong>in</strong>at<strong>in</strong>g the use of the spray process altogether could provide energy, raw material,<br />

economic, and environmental advantages if 100% transfer efficiency could be achieved. One<br />

benefit would be elim<strong>in</strong>ation of waste and compressed air requirements.<br />

Cur<strong>in</strong>g and dry<strong>in</strong>g processes account <strong>for</strong> a significant portion of the energy consumed <strong>in</strong><br />

automotive pa<strong>in</strong>t, and are prime targets <strong>for</strong> efficiency improvements. Improvements to these<br />

processes could also result <strong>in</strong> fewer environmental impacts and less need <strong>for</strong> abatement and control<br />

systems. Technologies that are not entirely “new” but are not commonly used <strong>in</strong> automotive pa<strong>in</strong>t<br />

processes today could be applied, such as ultraviolet (UV), <strong>in</strong>frared (IR), microwaves, or plasmas.<br />

Go<strong>in</strong>g to direct fir<strong>in</strong>g of all ovens could significantly reduce energy use, but result <strong>in</strong> small<br />

amounts of combustion products on f<strong>in</strong>ishes, which would need to be characterized. New pa<strong>in</strong>t<br />

<strong>for</strong>mulas could reduce air volume, m<strong>in</strong>imize control needs, and reduce energy <strong>in</strong>tensity.<br />

In areas that support top coat and prime, such as pretreatment and abatement, elim<strong>in</strong>at<strong>in</strong>g or<br />

reduc<strong>in</strong>g the need <strong>for</strong> these processes has been identified as a priority (see Exhibit 5.5). Integration<br />

of energy recovery technologies <strong>for</strong> process heat and power could provide a means to reduce the<br />

energy requirements <strong>for</strong> exist<strong>in</strong>g abatement systems.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 19


Exhibit 5.4 Selected R&D Needs <strong>for</strong> <strong>Automotive</strong> Pa<strong>in</strong>t – Top Coat and Prime<br />

Pa<strong>in</strong>t Formulation<br />

High Priority • Re<strong>for</strong>mulate pa<strong>in</strong>t to operate <strong>in</strong> wide booth climate (less booth control)<br />

- Pa<strong>in</strong>t that can adapt to air environment - control, but expand w<strong>in</strong>dow (temperature, air flow)<br />

- Re<strong>for</strong>mulate pa<strong>in</strong>t to <strong>in</strong>crease transfer efficiency and <strong>in</strong>crease pa<strong>in</strong>t spray w<strong>in</strong>dow (would<br />

reduce air volume and temperature)<br />

- Pa<strong>in</strong>t that provides a high-quality f<strong>in</strong>ish with little to no control of the booth’s environment<br />

• Low temperature cure material<br />

- Def<strong>in</strong>e temperature, time, number/type of coat<strong>in</strong>gs; some process steps can be elim<strong>in</strong>ated<br />

Process Design and Materials Application<br />

Medium<br />

Priority<br />

• Material handl<strong>in</strong>g/application of f<strong>in</strong>e micron size powder<br />

• Method to handle air <strong>in</strong> booths without us<strong>in</strong>g air handl<strong>in</strong>g units<br />

• Means to apply less coat<strong>in</strong>g, more efficiently, <strong>in</strong> smaller booth, with same quality<br />

Lower Priority • Ultra high solids material with high transfer efficiency equipment and dry booth with solids recovery<br />

Spray Process (near-term, 0-5 years)<br />

Medium • Elim<strong>in</strong>ate need to supply fresh air to pa<strong>in</strong>t application process<br />

Priority • Reduce or elim<strong>in</strong>ate compressed air pressure required <strong>for</strong> automation and applicators<br />

Non-Spray Process (long term, 10-15 years)<br />

High Priority • Achieve 100% transfer efficiency (TE) with today’s per<strong>for</strong>mance (layer, substrate, no waste,<br />

elim<strong>in</strong>ate air/spray needs, dip, roll, shr<strong>in</strong>k, color materials); goal is 100% TE on application and/or<br />

dry under booth to elim<strong>in</strong>ate water circulation and sludge<br />

Cure/Dry<strong>in</strong>g<br />

High Priority • Efficient, feasible, cost-effective cure/dry pa<strong>in</strong>t methods us<strong>in</strong>g <strong>in</strong>novative cur<strong>in</strong>g technologies;<br />

achieve uni<strong>for</strong>m <strong>in</strong>tensity, resolve l<strong>in</strong>e-of-sight issues (UV, plasma, microwave, IR, etc.)<br />

Medium • Reduce dry<strong>in</strong>g time/ temperature with reduced air flow, direct-fired ovens/systems<br />

Priority • Elim<strong>in</strong>ate the need to supply fresh air to the oven or cur<strong>in</strong>g process (e.g., via IR, UV, Cat, solvents)<br />

• Optimize composition of carrier to transport through oven<br />

Exhibit 5.5 Selected R&D Needs <strong>for</strong> <strong>Automotive</strong> Pa<strong>in</strong>t: Support<strong>in</strong>g Processes<br />

Pretreatment<br />

High Priority • Elim<strong>in</strong>ate pretreatment<br />

- Coil coat<strong>in</strong>g (clean only be<strong>for</strong>e cut edges prime)<br />

Medium Priority • Methods to prepare metal to promote coat<strong>in</strong>g adhesion with fewer steps, less fresh water<br />

requirements, and reduced temperatures<br />

• Ambient temperature pretreatment<br />

- Reduce heat<strong>in</strong>g/cool<strong>in</strong>g requirements and reduce liquid flow requirements<br />

Abatement and Control<br />

Medium Priority • Alternate technology <strong>for</strong> CO2 and NOx reduction<br />

• Elim<strong>in</strong>ate need <strong>for</strong> abatement via advanced technologies and materials<br />

• Integrate CHP, utilize waste heat recovery<br />

Priority Topics<br />

The areas of R&D illustrated <strong>in</strong> Exhibits 5.4 and 5.5 have been comb<strong>in</strong>ed <strong>in</strong>to larger priority<br />

topics that could potentially be suitable <strong>for</strong> future exploration. These priority topics, which are<br />

listed below, are described <strong>in</strong> greater detail <strong>in</strong> Exhibits 5.6 though 5.11 on the follow<strong>in</strong>g pages.<br />

• Alternate Methods to Cure Pa<strong>in</strong>t<br />

• Non-Spray Process with Today’s Per<strong>for</strong>mance<br />

• Elim<strong>in</strong>ation/<strong>Reduction</strong> of Pretreatment<br />

• Relative Humidity Adaptive Pa<strong>in</strong>t Application<br />

• <strong>Energy</strong> Efficient Abatement<br />

• Liquid Spray Booth with Improved <strong>Energy</strong> Per<strong>for</strong>mance<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 20


Applications<br />

• Mass produced<br />

pa<strong>in</strong>ted parts<br />

• Manufactured pa<strong>in</strong>ted<br />

products<br />

Exhibit 5.6 Priority Topic <strong>Automotive</strong> Pa<strong>in</strong>t<br />

Alternate Methods to Cure Pa<strong>in</strong>t<br />

Develop alternative technologies and processes to achieve significant energy reduction <strong>in</strong> the cur<strong>in</strong>g<br />

and dry<strong>in</strong>g of pa<strong>in</strong>t <strong>in</strong> the mass production auto pa<strong>in</strong>t shop<br />

Partners<br />

I – <strong>Technology</strong> test<strong>in</strong>g<br />

I, G –Costshar<strong>in</strong>g<br />

–Cost shar<strong>in</strong>g<br />

F –Developmentand –Development and Test<strong>in</strong>g<br />

U ‐ Research<br />

Challenges<br />

• Employee issues –hygiene,health<br />

–hygiene, health<br />

and safety, hazardous chemicals<br />

• Safety issues –withprocess<br />

–with process<br />

technology –<br />

combustion (LEL)<br />

• Cost issues –<br />

<strong>in</strong>stallation and<br />

manufactur<strong>in</strong>g must be cost‐effective<br />

cost ‐ effective<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Explore separation of abatement from curi cur<strong>in</strong>g ng<br />

‐ Re Re<strong>in</strong>troduce <strong>in</strong>troduce<br />

catalyzed clear coat<br />

‐ Ch Change ange pa<strong>in</strong>t <strong>for</strong>mula utiliz<strong>in</strong>g exist<strong>in</strong>g process<br />

equipment, equipment, result<strong>in</strong>g <strong>in</strong> lower temperature cures<br />

‐ Convert to direct‐fired heat<strong>in</strong>g of ovens to<br />

improve combustion efficiency, open pa<strong>in</strong>t w<strong>in</strong>dow<br />

Mid ‐ Change coat<strong>in</strong>g material to significantly lo lower wer<br />

cur<strong>in</strong>g temperature<br />

‐ Develop alternative means to heat high ma mass ss<br />

po<strong>in</strong>ts, lower<strong>in</strong>g the oven temperature<br />

Long ‐ Develop alternative pa<strong>in</strong>t cure processes a and/or nd/or<br />

material coat<strong>in</strong>g to allow ambient cur<strong>in</strong>g<br />

Risks<br />

Technical<br />

• Material to meet per<strong>for</strong>mance<br />

requirement and cost effective<br />

process equipment to meet objectives<br />

Commercial<br />

• Scale‐up Scale ‐ up effectiveness of technology<br />

and cost<br />

8.31.09<br />

Targets<br />

•Ma<strong>in</strong>ta<strong>in</strong>or •Ma<strong>in</strong>ta<strong>in</strong> or improve<br />

manufactur<strong>in</strong>g<br />

throughput time<br />

•Ma<strong>in</strong>ta<strong>in</strong>or •Ma<strong>in</strong>ta<strong>in</strong> or improve<br />

pa<strong>in</strong>t requirement<br />

• Dramatically reduce<br />

energy required to cure<br />

pa<strong>in</strong>t over time (thermal<br />

and electric)<br />

Benefits<br />

<strong>Energy</strong><br />

Environment<br />

Economics<br />

•Lowimpact •Low impact on total<br />

manufactur<strong>in</strong>g cost<br />

Economics<br />

•Goodimpact •Good impact on controllable<br />

manufactur<strong>in</strong>g costs<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 21


Exhibit 5.7 Priority Topic <strong>Automotive</strong> Pa<strong>in</strong>t<br />

Non‐Spray Process with Today’s Per<strong>for</strong>mance<br />

Elim<strong>in</strong>ate need <strong>for</strong> temperature and humidity condition<strong>in</strong>g of large volumes of air <strong>in</strong> spray booth,<br />

significantly reduc<strong>in</strong>g energy requirement <strong>for</strong> coat<strong>in</strong>g vehicles<br />

Applications<br />

•Pa<strong>in</strong>tspray •Pa<strong>in</strong>t spray processes<br />

•Repairprocesses<br />

•Repair processes<br />

Partners<br />

I – <strong>Technology</strong> <strong>in</strong>vestigation at<br />

all scales<br />

I, G –Costshar<strong>in</strong>g<br />

–Cost shar<strong>in</strong>g<br />

Challenges<br />

• Complexity of new materials<br />

• Impacts to vehicle manufactur<strong>in</strong>g<br />

process<br />

• Coat<strong>in</strong>g reparability and durability<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Investigate exist<strong>in</strong>g alternative methods and an d<br />

assess feasibility <strong>for</strong> automotive manufactur<strong>in</strong>g<br />

‐ Analyze gaps between exploratory methodology<br />

and available alternatives<br />

‐ Establish laboratory test drills to determ<strong>in</strong>e<br />

validity<br />

Mid ‐ Implement pilot‐scale pilot‐ scale application to ascerta<strong>in</strong> ascert a<strong>in</strong> key<br />

per<strong>for</strong>mance issues, and energy and CPU impacts<br />

‐ Test field durability of applied coat<strong>in</strong>gs<br />

Long ‐ Implement <strong>in</strong> a low‐risk/low‐production low‐ risk/low‐ production facility<br />

Risks<br />

Technical<br />

• Achiev<strong>in</strong>g today’s today ’ s per<strong>for</strong>mance and<br />

customer satisfaction<br />

Commercial<br />

• Achiev<strong>in</strong>g economic feasibility<br />

Other<br />

• Could be detrimental to other areas<br />

of manufactur<strong>in</strong>g cha<strong>in</strong><br />

8.31.09<br />

Targets<br />

• Ma<strong>in</strong>ta<strong>in</strong> customer<br />

satisfaction <strong>in</strong> f<strong>in</strong>ished<br />

appearance and coat<strong>in</strong>g<br />

per<strong>for</strong>mance<br />

• Ma<strong>in</strong>ta<strong>in</strong> operat<strong>in</strong>g<br />

cost per unit<br />

•Reduceenvironmental<br />

•Reduce environmental<br />

impact<br />

Benefits<br />

<strong>Energy</strong><br />

• Addresses the s<strong>in</strong>gle largest<br />

process energy usage <strong>in</strong> pa<strong>in</strong>t<br />

shop<br />

Environment<br />

• Reduces emissions; reduces<br />

solid waste and wastewater<br />

discharge<br />

Economics<br />

•Dependson •Depends on the economics<br />

of brownfield versus<br />

greenfield <strong>in</strong>stallations<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 22


Applications<br />

•Tier I/Tier II suppliers<br />

and and OEM<br />

•Other <strong>in</strong>dustries with<br />

similar corrosion/<br />

adhesion requirements<br />

Exhibit 5.8 Priority Topic <strong>Automotive</strong> Pa<strong>in</strong>t<br />

Elim<strong>in</strong>ate/Reduce Pretreatment<br />

Reduce or elim<strong>in</strong>ate energy, water, and chemical requirements <strong>in</strong> pretreatment<br />

pretreatment<br />

Partners<br />

I – <strong>Technology</strong> development<br />

development<br />

I, G –Costshar<strong>in</strong>g –Cost shar<strong>in</strong>g and test<strong>in</strong>g test<strong>in</strong>g<br />

F‐ Federal labs –test<strong>in</strong>g<br />

U ‐ Research<br />

• Employee issues –hygiene,<br />

ergonomics, health and safety<br />

• Cost issues –costeffective<br />

–cost effective<br />

<strong>in</strong>stallation and manufactur<strong>in</strong>g<br />

• <strong>Technology</strong> issues –effectivemeans<br />

–effective means<br />

of provid<strong>in</strong>g adhesion and corrosion<br />

protection layer on material prior to<br />

stamp<strong>in</strong>g<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Explore and develop ambient pretreatme pretreatment nt<br />

process<br />

Mid Mid ‐ Comb<strong>in</strong>e pretreatment process <strong>for</strong> smaller<br />

footpr<strong>in</strong>t<br />

‐ Inves Investigate tigate alternative methods <strong>for</strong> clean<strong>in</strong> clean<strong>in</strong>g g of<br />

vehicle body<br />

Long ‐ Elim<strong>in</strong>ate pretreatment, f<strong>in</strong>d alternative cl clean<strong>in</strong>g ean<strong>in</strong>g<br />

methods, explore possibilities such as mate materials rials<br />

that don’t corrode<br />

Risks<br />

Technical<br />

• High <strong>for</strong> metallic substrates<br />

Commercial<br />

Challenges<br />

8.31.09<br />

<strong>Energy</strong><br />

Targets<br />

•Ma<strong>in</strong>ta<strong>in</strong>or •Ma<strong>in</strong>ta<strong>in</strong> or improve<br />

manufactur<strong>in</strong>g<br />

throughput time<br />

•Ma<strong>in</strong>ta<strong>in</strong>or •Ma<strong>in</strong>ta<strong>in</strong> or improve<br />

corrosion protection<br />

and adhesion<br />

requirements<br />

• Dramatically reduce<br />

energy, water, and<br />

chemical requirements<br />

Benefits<br />

Environment<br />

•Sludgeand •Sludge and water reduction<br />

Economics<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 23


Applications<br />

•Any liquid pa<strong>in</strong>t or<br />

repair booth facility<br />

across the supply cha<strong>in</strong><br />

Exhibit 5.9 Priority Topic <strong>Automotive</strong> Pa<strong>in</strong>t<br />

Relative Humidity Adaptive Pa<strong>in</strong>t Application<br />

Spray coat<strong>in</strong>g materials that adapt to vary<strong>in</strong>g spray booth booth air environment conditions, reduc<strong>in</strong>g energy<br />

requirements<br />

Partners<br />

I – <strong>Technology</strong> and bus<strong>in</strong>ess<br />

development<br />

I, G –Costshar<strong>in</strong>g<br />

–Cost shar<strong>in</strong>g<br />

Challenges<br />

• Complexity of algorithms and<br />

<strong>in</strong>jection/mix<strong>in</strong>g equipment<br />

• Aversion to change <strong>in</strong> OEM/supplier<br />

community<br />

• Reproducibility <strong>in</strong> test facility<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Analyze cost versus impact across supply cha<strong>in</strong><br />

‐ Develop pa<strong>in</strong>t <strong>for</strong>mulation and algorithms<br />

‐ Conduct Conduct pilot scale applications at supplier test<br />

facility<br />

Implement via a low low‐risk ‐ risk launch pla plan n<br />

Mid ‐ Cont<strong>in</strong>ue to test and ref<strong>in</strong>e process and<br />

equipment as needed to ensure quality<br />

Risks<br />

Technical<br />

• May be overly overly complex<br />

Commercial<br />

• May not be economically feasible<br />

Other<br />

• Fear factor: wide fluctuations <strong>in</strong><br />

ambient conditions may impact<br />

quality and process stability<br />

8.31.09<br />

Targets<br />

•Ma<strong>in</strong>ta<strong>in</strong>customer<br />

•Ma<strong>in</strong>ta<strong>in</strong> customer<br />

satisfaction <strong>in</strong> f<strong>in</strong>ished<br />

appearance<br />

•Ma<strong>in</strong>ta<strong>in</strong>equipment<br />

•Ma<strong>in</strong>ta<strong>in</strong> equipment<br />

ma<strong>in</strong>tenance cost<br />

• Reduce environmental<br />

impact<br />

Benefits<br />

<strong>Energy</strong><br />

• Elim<strong>in</strong>ates the energy<br />

impact of weather conditions<br />

Environment<br />

• Reduces carbon footpr<strong>in</strong>t –<br />

waterborne conversions may<br />

reduce BOC and HAP<br />

emissions<br />

Economics<br />

•Tobe •To be determ<strong>in</strong>ed<br />

Other<br />

•Mayfacilitate •May facilitate conversion of<br />

exist<strong>in</strong>g solvent‐borne<br />

facilities to water‐borne<br />

coat<strong>in</strong>gs<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 24


Applications<br />

•Tier I and II suppliers,<br />

OEM<br />

•All manufactur<strong>in</strong>g<br />

facilities with similar<br />

abatement<br />

requirements<br />

Exhibit 5.10 Priority Topic <strong>Automotive</strong> Pa<strong>in</strong>t<br />

<strong>Energy</strong>‐Efficient Abatement<br />

Develop technologies to achieve a significant reduction <strong>in</strong> the energy required <strong>for</strong> abatement <strong>in</strong><br />

automotive pa<strong>in</strong>t shops<br />

I – <strong>Technology</strong><br />

Partners<br />

F –Labtest<strong>in</strong>g –Lab test<strong>in</strong>g and cost<br />

shar<strong>in</strong>g<br />

I, G – Environmental agencies<br />

pre‐acceptance<br />

• Environmental issues –<br />

confidence<br />

<strong>in</strong> air quality required<br />

• Employee issues –<br />

confidence <strong>in</strong><br />

booth safety and reliability of<br />

monitor<strong>in</strong>g <strong>in</strong>struments<br />

• Cost issues –<br />

<strong>in</strong>stallation and<br />

operat<strong>in</strong>g cost competitiveness<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Ex Explore plore<br />

system efficiency improvements<br />

‐ Validate new abatement technology to en enhance hance<br />

exist<strong>in</strong>g abatement equipment<br />

Mid ‐ Expand thermal abatement exhaust air utilization<br />

to m<strong>in</strong>imize spray booth booth fresh air and condition<strong>in</strong>g<br />

condition<strong>in</strong>g<br />

requirements<br />

Long ‐ Elim<strong>in</strong>ate abatement requirement tied to pa<strong>in</strong>t<br />

materials development and 100% transfer<br />

efficiency<br />

Risks<br />

Technical<br />

• <strong>Technology</strong> requires <strong>in</strong>tegration<br />

Commercial<br />

Challenges<br />

8.31.09<br />

<strong>Energy</strong><br />

Targets<br />

•Complywith •Comply with emission<br />

requirements<br />

• Equipment life life<br />

expectancy meets<br />

current requirements<br />

(10‐15 years)<br />

Environment<br />

Economics<br />

Benefits<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 25


Liquid Spray Booth with Improved <strong>Energy</strong> Per<strong>for</strong>mance<br />

Reduce airflow requirements and elim<strong>in</strong>ate water water‐based ‐ based scrubber <strong>for</strong> particulate removal<br />

Applications<br />

•All pa<strong>in</strong>t spray<br />

processes across supply supply<br />

cha<strong>in</strong> cha<strong>in</strong> and OEMs<br />

(brownfield (brownfield and<br />

greenfield) greenfield)<br />

Partners<br />

I –OEM,suppliers<br />

–OEM, suppliers<br />

Exhibit 5.11 Priority Topic <strong>Automotive</strong> Pa<strong>in</strong>t<br />

Challenges<br />

• Short ‐<br />

sighted f<strong>in</strong>ancial payback<br />

expectations<br />

• Production downtime required <strong>for</strong><br />

conversion<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Investigate/test technology and process<br />

improvements<br />

‐ Anal Analyze yz e ROI on case case‐by‐case ‐ by‐ case basis<br />

‐ Assess benefits based on reduction of ener energy, gy,<br />

water use, and other parameters<br />

Risks<br />

Technical<br />

• Exist<strong>in</strong>g proven technology<br />

Commercial<br />

• May not meet unrealistic ROI<br />

expectations<br />

8.31.09<br />

Targets<br />

• M<strong>in</strong>imize booth<br />

downdraft requirement<br />

•Dry •Dryparticulate particulate<br />

removal<br />

• Reduce differential differential<br />

pressure requirements<br />

Benefits<br />

<strong>Energy</strong><br />

•Savesabout •Saves about 5% of pa<strong>in</strong>t<br />

shop energy<br />

Environment<br />

•Followsthe •Follows the relative level of<br />

energy sav<strong>in</strong>gs<br />

Economics<br />

• Reduces life cycle costs<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 26


6.0 Powertra<strong>in</strong> and Chassis Components<br />

In a motor vehicle, powertra<strong>in</strong> refers to the components that generate power and deliver it to the<br />

road surface. This <strong>in</strong>cludes the eng<strong>in</strong>e, transmission, drive shafts, and differentials. Improved<br />

eng<strong>in</strong>eer<strong>in</strong>g has led to powertra<strong>in</strong> systems that are <strong>in</strong>creas<strong>in</strong>gly long-last<strong>in</strong>g, economical to<br />

manufacture, higher <strong>in</strong> product quality, per<strong>for</strong>mance, and<br />

reliability, more fuel efficient, and less pollut<strong>in</strong>g.<br />

Powertra<strong>in</strong>s today <strong>in</strong>volve high <strong>in</strong>ternal pressures, are<br />

subject to great <strong>in</strong>stantaneous <strong>for</strong>ces, and are complex <strong>in</strong><br />

design and operation. While the <strong>in</strong>ternal combustion<br />

eng<strong>in</strong>e dom<strong>in</strong>ates today, new propulsion systems are on<br />

the horizon, such as hybrid systems (gasol<strong>in</strong>e plus<br />

electric), fuels cells, and all-electric vehicles.<br />

Powertra<strong>in</strong> designs impose severe requirements on the<br />

shape, flatness, wav<strong>in</strong>ess, roughness, and porosity of<br />

GM Volt Powertra<strong>in</strong> Assembly<br />

powertra<strong>in</strong> subsystems. There are significant limitations<br />

on the extent of allowable defects <strong>in</strong> the surfaces and other dimensional characteristics of the<br />

system components and assemblies. These requirements have led to improved materials and<br />

material-<strong>for</strong>m<strong>in</strong>g methods, along with advanced metrology that accurately measures and enables<br />

improved control of powertra<strong>in</strong> manufactur<strong>in</strong>g processes.<br />

The term chassis refers to the BIW plus the "runn<strong>in</strong>g gear" such as the eng<strong>in</strong>e, transmission,<br />

driveshaft, differential, and suspension. The chassis structure is usually a unibody able to carry all<br />

the rema<strong>in</strong><strong>in</strong>g components of the vehicle. Chassis components are comprised of transmission<br />

mounts, eng<strong>in</strong>e mounts, rear end mounts, suspensions <strong>for</strong> the mechanical l<strong>in</strong>kage of wheels with<br />

the framework, wheels and tires, steer<strong>in</strong>g system, brake system, and transmission.<br />

In the powertra<strong>in</strong> facility, the eng<strong>in</strong>e and transmission components are assembled. Typical<br />

processes <strong>in</strong>clude cast<strong>in</strong>g of metal parts, net shape cast<strong>in</strong>g and <strong>for</strong>g<strong>in</strong>g, <strong>for</strong>m<strong>in</strong>g, metal heat<br />

treat<strong>in</strong>g, mach<strong>in</strong><strong>in</strong>g/cutt<strong>in</strong>g/ tool<strong>in</strong>g, powdered metals, and robotics assembly. Some of these<br />

components and processes are outsourced rather than captive operations <strong>in</strong> the automotive<br />

manufactur<strong>in</strong>g facility. Supply cha<strong>in</strong> elements <strong>in</strong>clude eng<strong>in</strong>e and transmission component<br />

producers, tool<strong>in</strong>g suppliers, and various other parts manufacturers.<br />

Vision of the Future<br />

As shown <strong>in</strong> Exhibit 6.1, the future vision <strong>for</strong> powertra<strong>in</strong> depends <strong>in</strong> part on the propulsion systems<br />

that enter the market. The <strong>in</strong>dustry is steadily mov<strong>in</strong>g toward a mix of propulsion technologies that<br />

<strong>in</strong>cludes <strong>in</strong>ternal combustion eng<strong>in</strong>es and next generation systems such as hybrids and fuel cells.<br />

These will require significant changes <strong>in</strong> the powertra<strong>in</strong> manufactur<strong>in</strong>g process, components, and<br />

systems.<br />

It is envisioned that future design processes will be optimized <strong>for</strong> energy, and that advances <strong>in</strong><br />

technology and design tools will enable shorter lead times to new vehicles. <strong>Energy</strong> efficiency will<br />

become an <strong>in</strong>tegral part of plann<strong>in</strong>g and operations. The future will also be characterized by the<br />

availability of many new materials and manufactur<strong>in</strong>g technologies that are more energy-efficient<br />

and cost-effective.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 27


New bus<strong>in</strong>ess models will make it easier <strong>for</strong> suppliers and manufacturers to work together, with<br />

cluster<strong>in</strong>g and co-locat<strong>in</strong>g provid<strong>in</strong>g more efficient operations. Powertra<strong>in</strong> operations could<br />

possibly move to vendor-operated plants.<br />

Exhibit 6.1 Vision <strong>for</strong> Powertra<strong>in</strong> and Components<br />

Propulsion and Chassis Systems<br />

• While improvements will cont<strong>in</strong>ue to be made to <strong>in</strong>ternal combustion eng<strong>in</strong>e (ICE) systems, future products will<br />

<strong>in</strong>clude a mix of propulsion technologies, <strong>in</strong>clud<strong>in</strong>g ICE and next generation of vehicles such as hybrid electric,<br />

plug-<strong>in</strong>s, direct drive (no transmission). The powertra<strong>in</strong> could be powered electrically with exchangeable<br />

batteries.<br />

• “One size” powertra<strong>in</strong> <strong>for</strong> all vehicles could emerge, with a reduction <strong>in</strong> parts and process<strong>in</strong>g.<br />

• Next generation powertra<strong>in</strong> systems will use lighter weight materials and process<strong>in</strong>g and fewer jo<strong>in</strong>ts; new<br />

processes will enable parts consolidation (fewer parts and jo<strong>in</strong>ts, net shapes).<br />

• Robust technologies <strong>for</strong> hybrid batteries will be available; high volumes of batteries will be required to supply<br />

hybrid and plug-<strong>in</strong> vehicles.<br />

• Chassis components (brak<strong>in</strong>g and steer<strong>in</strong>g) will exhibit more safety control, be adaptable to hybrid, and have<br />

more electronic <strong>in</strong>terfaces.<br />

Design and Manufactur<strong>in</strong>g<br />

• The design process will be optimized <strong>for</strong> energy – from eng<strong>in</strong>e to process to manufactur<strong>in</strong>g – driv<strong>in</strong>g yields up<br />

and energy use down.<br />

• There will be shorter lead times to new vehicles; qualify<strong>in</strong>g durations will be reduced (i.e., test<strong>in</strong>g of mach<strong>in</strong><strong>in</strong>g<br />

equipment).<br />

• M<strong>in</strong>imal process<strong>in</strong>g and associated equipment will be the norm (dry mach<strong>in</strong><strong>in</strong>g, etc.).<br />

• Components production will improve through more accurate cast<strong>in</strong>gs (requir<strong>in</strong>g less mach<strong>in</strong><strong>in</strong>g), improved<br />

cast<strong>in</strong>g yields (cyl<strong>in</strong>der blocks, cyl<strong>in</strong>der heads, cranks, etc) and <strong>for</strong>m<strong>in</strong>g processes.<br />

• Wireless facilities and mach<strong>in</strong><strong>in</strong>g operations will be pervasive.<br />

• More refurbished parts will be used.<br />

• There will be more multi-material process<strong>in</strong>g (dissimilar materials, metals, non-metals), greater use of nonmetallic<br />

components, and higher temperature materials (low-cost, high temperature materials enable eng<strong>in</strong>e to<br />

run at higher temp; higher temperature = higher efficiency).<br />

• CAFE standards will drive manufactur<strong>in</strong>g and design improvements (per<strong>for</strong>mance versus miles per gallon<br />

(MPG)).<br />

Bus<strong>in</strong>ess Models<br />

• New bus<strong>in</strong>ess models are <strong>in</strong>corporated to improve the way suppliers and manufactur<strong>in</strong>g work together (colocated<br />

and <strong>in</strong>tegrated).<br />

• Upstream test<strong>in</strong>g rather than end-of-l<strong>in</strong>e test<strong>in</strong>g will be the norm.<br />

• Powertra<strong>in</strong> will <strong>in</strong>creas<strong>in</strong>gly move to vendor-operated plants; the “powertra<strong>in</strong> plant” could be elim<strong>in</strong>ated.<br />

• There will be fewer clusters of suppliers and users, and a return to regional clusters.<br />

<strong>Energy</strong> Optimization and Use<br />

• <strong>Energy</strong> use is m<strong>in</strong>imized and waste heat is recovered <strong>in</strong> cast<strong>in</strong>g and heat<strong>in</strong>g treatment processes; these<br />

processes are fully energy-optimized.<br />

• Use of “on-off” energy systems – such as waves, laser, battery storage, spike/peak management, etc. – will<br />

<strong>in</strong>crease.<br />

• The grid may not be able to supply all our energy/electricity needs; this could lead to greater reliance on <strong>in</strong>-house<br />

energy generation.<br />

• Transport energy and shipp<strong>in</strong>g costs will be reduced via a return to regional and localized clusters of suppliers<br />

and users.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 28


<strong>Energy</strong> Opportunities<br />

Electricity is one of the ma<strong>in</strong> drivers beh<strong>in</strong>d the powertra<strong>in</strong> operation at the manufactur<strong>in</strong>g facility.<br />

Offsite, however, where parts and components are manufactured at supplier facilities, both heat<br />

(supplied by natural gas and steam) and electricity are major <strong>in</strong>puts to the process.<br />

Many of the components are produced from cast metal. When you consider the energy used <strong>in</strong><br />

produc<strong>in</strong>g the raw material through the production of the cast part, the embodied energy is<br />

substantial. Although modern cast<strong>in</strong>g processes are relatively effective, some cast<strong>in</strong>gs have defects<br />

that result <strong>in</strong> scrap which must be re-melted and re-cast. In addition, connect<strong>in</strong>g and comb<strong>in</strong><strong>in</strong>g cast<br />

parts and other parts can be difficult, requir<strong>in</strong>g many fasteners and jo<strong>in</strong><strong>in</strong>g methods. Heat treat<strong>in</strong>g,<br />

<strong>for</strong>m<strong>in</strong>g, and <strong>for</strong>g<strong>in</strong>g are also energy-<strong>in</strong>tensive processes needed to produce many of the<br />

components used <strong>in</strong> powertra<strong>in</strong>.<br />

Some of the primary opportunity areas identified <strong>for</strong> energy reduction <strong>in</strong> powertra<strong>in</strong> are listed<br />

below. Many of these focus on the most energy-<strong>in</strong>tensive processes <strong>in</strong> powertra<strong>in</strong> component<br />

manufacture across the supply cha<strong>in</strong>.<br />

• Efficient cast<strong>in</strong>g of parts, which requires more knowledge about the comparative energy<br />

footpr<strong>in</strong>t of <strong>in</strong>dividual cast<strong>in</strong>g processes<br />

• Reduc<strong>in</strong>g scrap, a key source of energy<br />

losses<br />

• Bulk trans<strong>for</strong>mation of the raw material<br />

<strong>in</strong>to rough parts (cast<strong>in</strong>g and <strong>for</strong>g<strong>in</strong>g)<br />

• Heat recovery from cast<strong>in</strong>g, heat<br />

treatment, and other energy s<strong>in</strong>ks<br />

• Tak<strong>in</strong>g advantage of more efficient<br />

technology that already exists today and is<br />

underutilized<br />

• Process-level<strong>in</strong>g accomplished by a better<br />

understand<strong>in</strong>g of the vehicle energy<br />

balance<br />

• Chip removal to reduce the use of<br />

coolants, or us<strong>in</strong>g dry mach<strong>in</strong><strong>in</strong>g<br />

Midwest Industrial Cast<strong>in</strong>gs<br />

• Design <strong>for</strong> energy efficiency, a concept where energy considerations are <strong>in</strong>corporated <strong>in</strong><br />

vehicle design through plant construction and design of manufactur<strong>in</strong>g processes<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 29


R&D Needs <strong>for</strong> Powertra<strong>in</strong><br />

Targets <strong>for</strong> reduc<strong>in</strong>g energy use <strong>in</strong> powertra<strong>in</strong> have been identified <strong>in</strong> manufactur<strong>in</strong>g systems,<br />

design, and eng<strong>in</strong>eer<strong>in</strong>g. Exhibits 6.2 and 6.3 provide a brief summary of the topics that are<br />

considered higher priorities; Appendix B conta<strong>in</strong>s a complete list of R&D topics <strong>for</strong> powertra<strong>in</strong>.<br />

In the area of manufactur<strong>in</strong>g systems, energy reductions are possible through advances <strong>in</strong> heat<br />

treat<strong>in</strong>g, advanced cast<strong>in</strong>g and <strong>for</strong>m<strong>in</strong>g, and mach<strong>in</strong><strong>in</strong>g processes. Current processes are energy<strong>in</strong>tensive<br />

and could potentially be improved through new technology, better controls and<br />

manufactur<strong>in</strong>g methods, and improved materials.<br />

Exhibit 6.2 Selected R&D Needs <strong>for</strong> Powertra<strong>in</strong> – Manufactur<strong>in</strong>g Systems<br />

Heat Treat<strong>in</strong>g<br />

High Priority • Localized heat treatment design/transient process<strong>in</strong>g (<strong>in</strong> situ) that elim<strong>in</strong>ates the furnace; possibilities<br />

<strong>in</strong>clude non-bulk heat-treat<strong>in</strong>g processes (laser, microwave, magnetic field, <strong>in</strong>duction, etc.)<br />

- Real-time capability to apply energy where it is needed, when it is needed<br />

- Achieve high strength <strong>in</strong> particular areas of a part without us<strong>in</strong>g energy on waste material<br />

- Surface-only heat treat<strong>in</strong>g (comb<strong>in</strong>e heat treatment with cast<strong>in</strong>g)<br />

- Heat-treat <strong>in</strong> the foundry<br />

- Well-controlled cool<strong>in</strong>g<br />

Advanced Cast<strong>in</strong>g and Form<strong>in</strong>g<br />

High Priority • Advanced cast<strong>in</strong>g technologies (<strong>in</strong>crease yields, utilize light weight materials)<br />

• Integrated computational tools <strong>for</strong> materials design and process<strong>in</strong>g<br />

Medium • Optimal cast<strong>in</strong>g design and manufactur<strong>in</strong>g – reduce scrap and <strong>in</strong>crease yield<br />

Priority • Design or develop high yield gat<strong>in</strong>g systems <strong>in</strong> cast<strong>in</strong>g processes; enable reduction of air entrapment<br />

<strong>in</strong> die cast<strong>in</strong>g processes<br />

• Optimize cast<strong>in</strong>g designs <strong>for</strong> mass reduction via better analysis tools, validation, experiment, and<br />

R&D<br />

• Powder mold<strong>in</strong>g and chemical cure; metal <strong>in</strong>jection but new ways of <strong>for</strong>m<strong>in</strong>g (near-net, chemical<br />

cure)<br />

• M<strong>in</strong>imize metal chips and <strong>in</strong>frastructure via net-shape manufactur<strong>in</strong>g<br />

Optimized Mach<strong>in</strong><strong>in</strong>g<br />

High Priority • Dry mach<strong>in</strong><strong>in</strong>g – elim<strong>in</strong>ate coolant <strong>in</strong> pump<strong>in</strong>g systems, collection systems, spray/application<br />

systems<br />

Medium • Low energy mach<strong>in</strong><strong>in</strong>g ( low-friction bear<strong>in</strong>g/slid, low-mass structures, energy management control,<br />

Priority<br />

New Materials<br />

no chiller requirement)<br />

Medium • Understand life cycle energy burden of new materials and impact on powertra<strong>in</strong> manufactur<strong>in</strong>g<br />

Priority<br />

- <strong>Energy</strong> implications of alternative materials (both <strong>in</strong> plant scrap and materials production)<br />

- Understand real energy cost/life cycle of component up to use<br />

• Strong, light, near-net materials that require less mach<strong>in</strong><strong>in</strong>g<br />

• Manufactur<strong>in</strong>g research - develop cost-effective proven processes <strong>for</strong> new materials<br />

<strong>Energy</strong> Assessment<br />

High Priority • <strong>Energy</strong> mapp<strong>in</strong>g – multi-use energy database <strong>for</strong> processes <strong>for</strong> designers, managers, others, to<br />

identify sub-energy use <strong>for</strong> processes (metal removal, mach<strong>in</strong><strong>in</strong>g, HVAC and oil mist and ventilation,<br />

coolant filters, metal melt<strong>in</strong>g)<br />

- Quantify where energy is used and source/function (electrical, air, motion, hydraulic)<br />

- Enable prioritization of energy reduction opportunities <strong>for</strong> powertra<strong>in</strong> and chassis based on<br />

annual use, opportunity to improve, and ease of implementation<br />

Heat Recovery<br />

High Priority • Ways to efficiently recover and reuse low temperature waste heat (salt bath, cool<strong>in</strong>g, etc.)<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 30


Understand<strong>in</strong>g how energy is used <strong>in</strong> powertra<strong>in</strong> is a critical precursor to reduc<strong>in</strong>g energy <strong>in</strong>tensity.<br />

<strong>Energy</strong> assessment could be accomplished via mapp<strong>in</strong>g of major processes and sub-processes such<br />

as metal removal, mach<strong>in</strong><strong>in</strong>g, coolant filter<strong>in</strong>g, and metal melt<strong>in</strong>g. An important aspect is to<br />

understand value-added versus non-value added use of energy, i.e., what energy <strong>in</strong>puts are<br />

absolutely necessary. <strong>Energy</strong> assessment is important to all manufactur<strong>in</strong>g areas, and is discussed<br />

<strong>in</strong> more detail <strong>in</strong> Section 9, Cross-Cutt<strong>in</strong>g Topics.<br />

In the area of future eng<strong>in</strong>eer<strong>in</strong>g and design, the energy efficient manufactur<strong>in</strong>g of alternative<br />

vehicles was identified as a priority (see Exhibit 6.3). As new propulsion systems are <strong>in</strong>tegrated<br />

<strong>in</strong>to vehicles and high volume production, it will be important to ensure they are manufactured as<br />

efficiently as possible.<br />

Integrat<strong>in</strong>g energy efficiency <strong>in</strong>to process and vehicle design is another priority. There are various<br />

ways that processes could be condensed or redesigned to remove <strong>in</strong>efficiencies. At the front end,<br />

when vehicles are designed, energy efficiency considerations could be better <strong>in</strong>tegrated <strong>in</strong>to design<br />

methods. Some design concepts that could be considered <strong>in</strong>clude consolidation of parts and<br />

components, design <strong>for</strong> re-use and recovery of parts and/or materials, the use of net shapes, and<br />

vehicles that require fewer process steps to manufacture.<br />

Exhibit 6.3 Selected R&D Needs <strong>for</strong> Powertra<strong>in</strong> – Future Eng<strong>in</strong>eer<strong>in</strong>g & Design<br />

Alternative Vehicles<br />

High Priority • Manufactur<strong>in</strong>g processes and materials <strong>for</strong> fuel cells and hybrids<br />

• Efficient manufacture of electric motors and <strong>in</strong>tegration <strong>in</strong>to current high-volume vehicle<br />

manufactur<strong>in</strong>g processes<br />

• Explore most energy-efficient processes <strong>for</strong> powertra<strong>in</strong> and chassis components <strong>in</strong><br />

alternative/hybrid vehicles manufacture<br />

Process Design and Eng<strong>in</strong>eer<strong>in</strong>g<br />

Medium Priority • Enabl<strong>in</strong>g processes <strong>for</strong> parts consolidation<br />

- Roll-<strong>for</strong>m<strong>in</strong>g elim<strong>in</strong>ates cast<strong>in</strong>g and requires less energy<br />

- Gears – powder metal technology<br />

Vehicle Design and Eng<strong>in</strong>eer<strong>in</strong>g<br />

Medium Priority • Designs <strong>for</strong> energy efficiency (DFE 2 )<br />

- Consolidated designs<br />

- Design <strong>for</strong> parts and component reuse<br />

- Net shapes<br />

- Fewer process steps<br />

Priority Topics<br />

The areas of R&D illustrated <strong>in</strong> Exhibits 6.2 and 6.3 have been comb<strong>in</strong>ed <strong>in</strong>to larger priority<br />

topics that could potentially be suitable <strong>for</strong> future exploration. These priority topics, which are<br />

listed below, are described <strong>in</strong> greater detail <strong>in</strong> Exhibits 6.4 though 6.8 on the follow<strong>in</strong>g pages.<br />

• <strong>Energy</strong> Efficient Heat Treat<strong>in</strong>g Technologies<br />

• <strong>Energy</strong> Efficient Cast<strong>in</strong>g Technologies<br />

• Manufactur<strong>in</strong>g with New Lightweight, Net Shape Materials<br />

• Optimized Mach<strong>in</strong><strong>in</strong>g<br />

• Alternative Vehicles Manufactur<strong>in</strong>g Challenge<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 31


Applications<br />

• Powertra<strong>in</strong><br />

components<br />

• Chassis components<br />

•Body <strong>in</strong> White<br />

components<br />

Exhibit 6.4 Priority Topic Powertra<strong>in</strong><br />

<strong>Energy</strong> Efficient Heat Treat<strong>in</strong>g Technologies<br />

Novel, production production‐ready ‐ ready heat treatment technologies with reduced energy consumption relative to<br />

commercial heat treat<strong>in</strong>g processes<br />

Partners<br />

I – Production‐scale<br />

demonstration<br />

F/G – Develop<br />

<strong>in</strong>strumentation/sensors,<br />

pilot‐scale equipment, data<br />

collection<br />

U –Pilot‐scale equipment,<br />

data collection<br />

• Real ‐ time temperature<br />

measurements dur<strong>in</strong>g heat<br />

treatment process (i.e., solution,<br />

quench, age)<br />

• Emissivity of alum<strong>in</strong>um and<br />

magnesium<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Develop sensors/<strong>in</strong>strumentation to meas measure ure<br />

proc process ess<br />

parameters<br />

Mid ‐ Develop novel, novel, production‐ready heat treatment<br />

technologies to reduce energy consumption by 50%<br />

relative relative to current commercial heat treatment<br />

proces processes ses<br />

Long ‐ Develop novel, production production‐ready ‐ ready heat trea treatment tment<br />

technologies to reduce energy consumption by 80%<br />

relative to current commercial heat treatme treatment nt<br />

processes<br />

Technical<br />

Commercial<br />

Challenges<br />

Risks<br />

8.31.09<br />

<strong>Energy</strong><br />

<strong>Energy</strong><br />

Targets<br />

• Reduce heat<br />

treatment treatment energy<br />

consumption by 50‐80%<br />

relative to current heat<br />

treatment processes<br />

• Optimize alloy<br />

chemistry chemistry and<br />

microstructure microstructure to<br />

m<strong>in</strong>imize heat<br />

treatment energy<br />

• Production‐ready<br />

process sensors to<br />

monitor and control<br />

heat treatment process<br />

Environment<br />

Environment<br />

Economics<br />

Economics<br />

Benefits<br />

Benefits<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 32


Applications<br />

•Cyl<strong>in</strong>der heads<br />

•Torque converter<br />

hous<strong>in</strong>gs<br />

•Cyl<strong>in</strong>der blocks<br />

•Intake manifolds<br />

•Transmission cases<br />

•Electric motor<br />

hous<strong>in</strong>gs (hybrid vehicle)<br />

•Electric rotors (hybrid<br />

vehicle)<br />

•Chassis components<br />

Exhibit 6.5 Priority Topic Powertra<strong>in</strong><br />

<strong>Energy</strong> Efficient Cast<strong>in</strong>g Technologies<br />

Innovative process and material technologies to significantly improve the energy efficiency (<strong>in</strong>crease<br />

cast<strong>in</strong>g yield, scrap reduction, lower heat treatment energy) of die‐cast die‐ cast and semi‐permanent semi‐ permanent mold<br />

(SPM) cast<strong>in</strong>g processes. Novel sand‐cast sand‐ cast process technology (less heat treat energy, higher<br />

mechanical properties) <strong>for</strong> cyl<strong>in</strong>der head high‐volume high‐ volume applications<br />

Partners<br />

I –Productiondemonstration,<br />

–Production demonstration,<br />

data collection<br />

F/G – Sensor/<strong>in</strong>strumentation<br />

development, data collection,<br />

pilot‐scale facility<br />

U –Data collection, pilot‐scale<br />

facility<br />

• Lack of cast<strong>in</strong>g research fund<strong>in</strong>g<br />

• Lack of cast<strong>in</strong>g research facilities<br />

• Lack of sensors and <strong>in</strong>strumentation<br />

to measure process parameters<br />

• Lack of validated computational<br />

analysis tools<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Develop pilot pilot‐scale ‐ scale facilities, capabilities, and<br />

methods; met hods; <strong>in</strong>strumentation <strong>for</strong> die die‐cast<strong>in</strong>g, ‐ cast<strong>in</strong>g, se semi‐ mi‐<br />

permanent mold and novel sand sand‐cast ‐ cast proces processes ses<br />

‐ ‐ Integrate cast<strong>in</strong>g process parameters (mea (measured) sured)<br />

<strong>in</strong>to com computational putational analysis tools (temperatu (temperature, re,<br />

pre pressure, ssure,<br />

fill pattern)<br />

Mid ‐ Optimize analysis tools us<strong>in</strong>g experimental<br />

validation data<br />

‐ Develop production‐ready <strong>in</strong>strumentation<br />

(conta (contact ct and non non‐contact) ‐ contact) <strong>for</strong> monitor<strong>in</strong>g pr process ocess<br />

parameters parameters (die (die‐cast, ‐ cast, SPM, novel, sand sand‐cast ‐ cast<br />

process)<br />

Long ‐ Production demonstration of die die‐cast ‐ cast and SPM<br />

<strong>in</strong>novative process technologies (cyl<strong>in</strong>der he heads, ads,<br />

SPM transmission case –diecast) –die‐cast) ‐<br />

‐ Validated analysis tools to accurately predic predict t<br />

prese presence nce of porosity (micro, macro), oxides,<br />

mmicrostructure,<br />

icrostructure, residual stress, mechanical<br />

pproperties<br />

roperties (ultimate tensile strength [UTS],<br />

ffatigue)<br />

atigue)<br />

Technical<br />

Commercial<br />

Other<br />

Challenges<br />

Risks<br />

8.31.09<br />

Targets<br />

• Reduce cast<strong>in</strong>g scrap by<br />

50%, reduce energy<br />

needed to process<br />

components<br />

•Improvedcast<strong>in</strong>g •Improved cast<strong>in</strong>g yield by<br />

50%<br />

•Cast<strong>in</strong>galloys •Cast<strong>in</strong>g alloys that<br />

achieve/exceed<br />

permanent mold<br />

properties, require<br />

m<strong>in</strong>imal heat treatment<br />

• Validated novel sand‐<br />

cast<strong>in</strong>g process <strong>for</strong> cyl<strong>in</strong>der<br />

head components, where<br />

mechanical properties<br />

exceed permanent mold<br />

Benefits<br />

<strong>Energy</strong><br />

•Reducedscrap, •Reduced scrap, higher<br />

cast<strong>in</strong>g yields, less <strong>in</strong>tensive<br />

heat treatment<br />

Environment<br />

•Reducedemissions<br />

•Reduced emissions<br />

Economics<br />

• Significant cost benefits due<br />

to reduced scrap, reduced<br />

heat treatment, higher cast<strong>in</strong>g<br />

yields<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 33


Manufactur<strong>in</strong>g with New Lightweight Net Shape Materials<br />

Identify energy use associated with <strong>in</strong>got or compound res<strong>in</strong> materials <strong>for</strong> mak<strong>in</strong>g powertra<strong>in</strong> and<br />

chassis components; compare with alternative lightweight materials meet<strong>in</strong>g current functional<br />

requirements to enable selection of the most efficient materials <strong>for</strong> the the application<br />

Applications<br />

• Powertra<strong>in</strong><br />

components<br />

• Chassis components<br />

•Body <strong>in</strong> <strong>in</strong> White<br />

components<br />

Partners<br />

•Powertra<strong>in</strong>components<br />

•Powertra<strong>in</strong> components<br />

• Chassis components<br />

•Body •Body<strong>in</strong> <strong>in</strong> White components<br />

Exhibit 6.6 Priority Topic Powertra<strong>in</strong><br />

Challenges<br />

• Quality risks<br />

• Transfer of knowledge from other<br />

<strong>in</strong>dustry or academia<br />

• Confidentiality concerns<br />

• Sunk capital <strong>in</strong>vestments<br />

• Legacy of current processes and<br />

development<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Literature review of applications of mate materials rials and<br />

processes <strong>for</strong> functional powertra<strong>in</strong> and cha chassis ssis<br />

components<br />

‐ Literature review of near net shape processes <strong>for</strong><br />

different materials<br />

‐ Basel<strong>in</strong>e Basel<strong>in</strong>e of energy <strong>for</strong> mak<strong>in</strong>g current current components<br />

from <strong>in</strong>dustry standard materials<br />

Mid ‐ Material application matrix <strong>for</strong> component components s with<br />

energy per component per vehicle<br />

‐ Cont<strong>in</strong>ue material application literature re review view<br />

Long ‐ Validate energy use <strong>for</strong> different materials and<br />

processes<br />

Risks<br />

Technical<br />

• Durability and high volume<br />

production<br />

Commercial<br />

• Perceived market quality concerns<br />

Other<br />

• Material advancement may not<br />

meet <strong>in</strong>vestment plans<br />

8.31.09<br />

Targets<br />

•Identifyenergy •Identify energy used<br />

<strong>for</strong> near net shape<br />

processes <strong>in</strong> the market<br />

<strong>for</strong> major components<br />

•Basel<strong>in</strong>eenergy •Basel<strong>in</strong>e energy use<br />

<strong>for</strong> current materials<br />

and processes used <strong>in</strong><br />

major components of<br />

powertra<strong>in</strong> and chassis<br />

•Identifyenergy<br />

•Identify energy<br />

reduction percentages<br />

<strong>for</strong> different processes<br />

and materials<br />

Benefits<br />

<strong>Energy</strong><br />

•Potentiallylarge •Potentially large reduction<br />

of energy use<br />

Environment<br />

• Different materials may or<br />

may not present<br />

environmental impact risk<br />

Economics<br />

• M<strong>in</strong>imizes scrap via less<br />

process<strong>in</strong>g, but environmental<br />

risk could degrade economics<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 34


Applications<br />

•All <strong>in</strong>dustries <strong>in</strong> the the<br />

powertra<strong>in</strong> and chassis<br />

component<br />

manufactur<strong>in</strong>g process<br />

•Dry mach<strong>in</strong><strong>in</strong>g will<br />

impact alum<strong>in</strong>um<br />

mach<strong>in</strong><strong>in</strong>g process<br />

•Hard mach<strong>in</strong><strong>in</strong>g will<br />

impact impact shaft and gear<br />

manufactur<strong>in</strong>g<br />

Exhibit 6.7 Priority Topic Powertra<strong>in</strong><br />

Optimized Mach<strong>in</strong><strong>in</strong>g<br />

Reduce energy consumption <strong>in</strong> the mach<strong>in</strong><strong>in</strong>g of powertra<strong>in</strong> and chassis components through<br />

mach<strong>in</strong>e control and logic strategies, dry mach<strong>in</strong><strong>in</strong>g, mach<strong>in</strong>e structural design, power storage <strong>for</strong><br />

peak use, and process elim<strong>in</strong>ation of pre pre‐heat ‐ heat treat components<br />

Partners<br />

I –Pilotvalidation –Pilot validation studies, dry<br />

and hard mach<strong>in</strong><strong>in</strong>g<br />

I,U,G – Develop strategies and<br />

techniques (methods) <strong>for</strong><br />

power controls and power<br />

storage systems<br />

I, G –Share –Sharecosts costs<br />

U, G –Validate –Validate<strong>in</strong> <strong>in</strong> lab dry<br />

mach<strong>in</strong><strong>in</strong>g process and alloys<br />

and hard mach<strong>in</strong><strong>in</strong>g<br />

Challenges<br />

• Common <strong>in</strong>dustry standards <strong>for</strong><br />

reduc<strong>in</strong>g power usage with<strong>in</strong> OEMs<br />

• Lack of new materials that enable<br />

dry mach<strong>in</strong><strong>in</strong>g <strong>in</strong>itiatives<br />

• Insufficient power storage and<br />

control and power management<br />

strategies <strong>for</strong> power level<strong>in</strong>g<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Operational strategies reduc<strong>in</strong>g mach<strong>in</strong>e systems’<br />

energy use through controls that energize mach<strong>in</strong>e<br />

component and require power when need needed. ed.<br />

Rewrite control logic to m<strong>in</strong>imize energy us use. e.<br />

Validate <strong>in</strong> lab<br />

Mid ‐ Dry mach<strong>in</strong><strong>in</strong>g <strong>in</strong>itiatives that consider: to tool ol wear; wear;<br />

tool li life; fe;<br />

compensation <strong>for</strong> heat generated;<br />

dimensional dimensional controls respond<strong>in</strong>g respond<strong>in</strong>g to heat generated;<br />

chip management (part and mach<strong>in</strong>e mach<strong>in</strong>e clean<strong>in</strong>g);<br />

health health issues issues <strong>in</strong> dust collection; and new materials<br />

and alloys to allow <strong>for</strong> efficient dry mach<strong>in</strong><strong>in</strong>g<br />

‐ Mach<strong>in</strong>e structural design strategies to<br />

<strong>in</strong>corporate efficient low low‐energy ‐ energy mach<strong>in</strong>es. Study<br />

low friction ways and slides, efficient motors motors, , low<br />

mass systems <strong>for</strong> part movement. M<strong>in</strong>imize use use of<br />

compressed air<br />

‐ Power storage system to manage manage peak power and<br />

torque; store energy at mach<strong>in</strong>e <strong>for</strong> peak use<br />

Long ‐ Hard mach<strong>in</strong><strong>in</strong>g <strong>in</strong>itiatives. Elim<strong>in</strong>ate pre pre‐heat ‐heat<br />

mach<strong>in</strong><strong>in</strong>g and operations prior to heat tre treat‐ at‐<br />

ment. Consider new materials, tool wear, to tool ol<br />

life, dimensional, and part quality and <strong>in</strong> <strong>in</strong>tegrity tegrity<br />

Risks<br />

Technical<br />

• Control strategies <strong>for</strong> power level<strong>in</strong>g,<br />

power storage systems<br />

Commercial<br />

• Validate dry mach<strong>in</strong><strong>in</strong>g and hard<br />

mach<strong>in</strong><strong>in</strong>g<br />

8.31.09<br />

Targets<br />

• <strong>Reduction</strong> <strong>in</strong> power<br />

consumption <strong>for</strong> <strong>for</strong><br />

mach<strong>in</strong><strong>in</strong>g<br />

• Optimization of<br />

mach<strong>in</strong><strong>in</strong>g requirements<br />

requirements<br />

•Ability •Abilityto to store energy<br />

at the mach<strong>in</strong>e <strong>for</strong> peak<br />

use<br />

• Elim<strong>in</strong>ate pre‐heat<br />

mach<strong>in</strong><strong>in</strong>g<br />

Benefits<br />

<strong>Energy</strong><br />

• Reduces energy use through<br />

controls <strong>for</strong> mach<strong>in</strong>e systems<br />

Environment<br />

•Drymach<strong>in</strong><strong>in</strong>g •Dry mach<strong>in</strong><strong>in</strong>g may pose<br />

health risks <strong>for</strong> dust collection<br />

Economics<br />

• Significant energy cost<br />

sav<strong>in</strong>gs<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 35


Exhibit 6.8 Priority Topic Powertra<strong>in</strong><br />

Alternativ Alt ative Vehicles Manufactur<strong>in</strong>g<br />

Manufac <strong>in</strong>g Challenge Challeng<br />

Op Optimize ener energy<br />

us use <strong>in</strong> new manu nufac facturi ur<strong>in</strong>g ng operatio op ions ns to pr produce al alte ternat ative vehicl ve cles. Consid Co ider<br />

motors, po power electronics el tronics and wi wir<strong>in</strong>g, and en energy gy st storag age<br />

Ch Challen allenges<br />

• Li Limited ted availab availability of bench‐ be<br />

mark mark<strong>in</strong>g<br />

<strong>in</strong><strong>for</strong>mati <strong>in</strong><strong>for</strong>mation<br />

• Ti Timeli mel<strong>in</strong>e ne fo <strong>for</strong> ramp<strong>in</strong>g mp<strong>in</strong>g up to hig high<br />

volume volum prod producti tion on of alterna ternati tive<br />

vehicles<br />

Applic Applicatio ations ns Ta Targe rgets<br />

•All<strong>in</strong> •A <strong>in</strong>dust stries <strong>in</strong> th the • Ene nergy rgy effic efficien ent<br />

powertra powertra<strong>in</strong><br />

<strong>in</strong> an and chassi ssis<br />

comp compon onen ent<br />

R& R&D Timel<strong>in</strong>e<br />

manufact ma ctur<strong>in</strong> <strong>in</strong>g (high<br />

volu volume)<br />

me) of alterna alternativ<br />

ive<br />

ma manufa fact ctur<strong>in</strong> <strong>in</strong>g process proc Nea Near ‐ Bench Benchmark<br />

ark curre current pr proces esses ses and an ass associa ciated ed fu fuel el vehicl veh cles<br />

en ener ergy con consum umption ion fo <strong>for</strong> manufa ma fact ctur<strong>in</strong> <strong>in</strong>g alternat alt rnativ ive<br />

powe owertra<strong>in</strong>, rtra<strong>in</strong>, <strong>in</strong>clud <strong>in</strong>clud<strong>in</strong>g ng:<br />

Ele Electri tric moto tors rs; power po el electron onic ics and an<br />

wir<strong>in</strong>g;<br />

en ener ergy st storage (batte (batteries<br />

es, ultra tra<br />

capacitors capa tors, other oth vi viable technologie nologies); ); and<br />

ass assembly bly processes proc<br />

• Effic fficien ent, hig high‐vo volume me<br />

prod oduct uction on of st storage<br />

technologie nologies (e.g .g., .,<br />

batteries) ba<br />

Mid Mi ‐ Develop Dev stra trate tegi gies fo <strong>for</strong> most<br />

ener energy<br />

gy effi effici cien ent<br />

manuf nufactu tur<strong>in</strong>g r<strong>in</strong>g of alternativ ternative powe wertra<strong>in</strong> rtra<strong>in</strong> vehicle hicles, s,<br />

<strong>in</strong>cludi <strong>in</strong>clud<strong>in</strong>g<br />

the th same item items li liste sted ab abov ove<br />

Long ‐ Va Valid lidation on an and pilo pilot demon onstra tratio tion/o /ope perat ration on of<br />

manuf nufactu tur<strong>in</strong>g r<strong>in</strong>g pr processe ses<br />

Risks<br />

Partners<br />

Techni chnical cal<br />

I – Pilo ilot new ne processes proc<br />

• Compo ponent nt manu manufac actur<strong>in</strong> ur<strong>in</strong>g<br />

I,U,G I,U – Dev evel elop op stra trate tegi gies and an<br />

techni niqu ques (m (methods hods) <strong>for</strong><br />

benchm nchmark<strong>in</strong>g ark<strong>in</strong>g<br />

I, G –S –Shareco cost sts<br />

U, G – Valid Validate ate ne new<br />

manufa nufactu tur<strong>in</strong> r<strong>in</strong>g proce processe ses <strong>in</strong><br />

lab<br />

Comm mmercial cial<br />

•Highvo •H volume me prod oduct uction on<br />

8. 8.31. 1.09 09<br />

Be Bene nefits fits<br />

En Ener ergy, En Environment,<br />

Economi Economics<br />

•N •Notknow known un until til<br />

benchm nchmark<strong>in</strong>g k<strong>in</strong>g is done do<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 36


7.0 F<strong>in</strong>al Assembly<br />

F<strong>in</strong>al assembly encompasses the f<strong>in</strong>al steps to produce a f<strong>in</strong>ished vehicle. While most automotive<br />

manufactur<strong>in</strong>g operations make use of assembly l<strong>in</strong>e concepts, f<strong>in</strong>al assembly has the greatest<br />

concentration of supply cha<strong>in</strong> parts be<strong>in</strong>g assembled manually.<br />

An assembly l<strong>in</strong>e is a manufactur<strong>in</strong>g process <strong>in</strong> which the parts are<br />

added to a product <strong>in</strong> a sequential manner us<strong>in</strong>g optimally planned<br />

logistics, enabl<strong>in</strong>g creation of a f<strong>in</strong>ished product much faster than<br />

with handcraft<strong>in</strong>g methods.<br />

In f<strong>in</strong>al assembly, the body, powertra<strong>in</strong>, and chassis of the vehicle<br />

are <strong>in</strong>tegrated with all the f<strong>in</strong>al parts. These <strong>in</strong>clude seats,<br />

dashboard assemblies, <strong>in</strong>terior trim panels, wheels, w<strong>in</strong>dshields,<br />

and many other <strong>in</strong>terior and exterior trim components. The f<strong>in</strong>al<br />

assembly l<strong>in</strong>e is the culm<strong>in</strong>ation of ef<strong>for</strong>ts across numerous<br />

departments and suppliers, and successful assembly of the vehicle<br />

is dependent on receiv<strong>in</strong>g all components that are produced<br />

elsewhere <strong>in</strong> the plant or by suppliers.<br />

The processes <strong>in</strong> f<strong>in</strong>al assembly range from highly-automated to a comb<strong>in</strong>ation of manual and<br />

automated techniques. While robots and other automated systems are used to complete some tasks<br />

(i.e., w<strong>in</strong>dshields), most require a human touch and judgment. Automated transport systems are<br />

often used to br<strong>in</strong>g component subsystems out to the production floor where they are <strong>in</strong>tegrated<br />

with the vehicle. Many of these systems (e.g., dashboard and steer<strong>in</strong>g assemblies) are assembled at<br />

the supplier and arrive <strong>in</strong> specialized transport systems that are synchronized to <strong>in</strong>tegrate with the<br />

assembly process. Supply cha<strong>in</strong> components reflect the highly diverse nature of the components<br />

that are put together dur<strong>in</strong>g f<strong>in</strong>al assembly. These <strong>in</strong>clude,<br />

<strong>for</strong> example, electrical and computer systems, wheels and<br />

tires, seats, carpets, dashboard, and steer<strong>in</strong>g assemblies,<br />

w<strong>in</strong>dows, lights and other components.<br />

Inspection of the vehicle is the f<strong>in</strong>al process. While<br />

<strong>in</strong>spection of parts, components, and assemblies occurs<br />

throughout the manufactur<strong>in</strong>g process, f<strong>in</strong>al assembly<br />

<strong>in</strong>spection is the f<strong>in</strong>al step be<strong>for</strong>e delivery to the market.<br />

<strong>Automotive</strong> Assembly L<strong>in</strong>e: Ford<br />

Motor Company<br />

Chevy Cobalt on the assembly l<strong>in</strong>e at the<br />

Lordstown, Ohio Assembly Plant.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 37


Vision of the Future<br />

As shown <strong>in</strong> Exhibit 7.1, the vision <strong>for</strong><br />

f<strong>in</strong>al assembly is characterized by<br />

energy efficient processes and<br />

operations that are frictionless, airless,<br />

and require less space. In short, f<strong>in</strong>al<br />

assembly operations are “pick – place –<br />

and secure”.<br />

In the future, it is envisioned that new<br />

technologies will reduce energy<br />

<strong>in</strong>tensity, such as components which<br />

<strong>in</strong>corporate lighter materials (and require<br />

less energy to transport) or systems to<br />

convey parts and materials more<br />

efficiently. Efficiency will be<br />

<strong>in</strong>corporated not just <strong>in</strong>to processes and<br />

tool<strong>in</strong>g, but <strong>in</strong>to more efficient build<strong>in</strong>g<br />

designs and layouts <strong>for</strong> the f<strong>in</strong>al assembly area.<br />

<strong>Energy</strong> Opportunities<br />

Exhibit 7.1 Vision <strong>for</strong> F<strong>in</strong>al Assembly<br />

Assembly Processes and Parts/Component Supply<br />

• <strong>Energy</strong> <strong>in</strong> material handl<strong>in</strong>g and movement is m<strong>in</strong>imized<br />

through use of lighter weight materials, efficient conveyor<br />

design, wireless track<strong>in</strong>g and other technologies<br />

• <strong>Energy</strong> efficient tools and processes m<strong>in</strong>imize or elim<strong>in</strong>ate<br />

compressed air, reduce hydraulic energy, and permeate DC<br />

tools and robots<br />

• Designs <strong>in</strong>corporate flexible, re-configurable work stations to<br />

help reduce waste <strong>in</strong> model change-overs and create more<br />

efficient floor space design to m<strong>in</strong>imize movement of<br />

materials<br />

• <strong>Energy</strong> is optimized, from raw materials to suppliers and f<strong>in</strong>al<br />

assembly: energy is reduced <strong>in</strong> supply cha<strong>in</strong><br />

• F<strong>in</strong>al assembly shifts to dealerships<br />

F<strong>in</strong>al assembly processes rely mostly on electricity and compressed air due to the extensive use of<br />

robotics, conveyors, tools and other automated systems results. Many of the components and parts<br />

that are delivered to f<strong>in</strong>al assembly, such as dashboard assemblies, seats, tires, w<strong>in</strong>dshields, and<br />

numerous electronics and subassemblies, are manufactured outside the facility. The processes used<br />

to make these components rely on electricity as well as natural gas and other fossil fuels. Many<br />

components conta<strong>in</strong> plastics and rubber, which are derived largely from petroleum via energy<strong>in</strong>tensive<br />

processes.<br />

Top energy sav<strong>in</strong>gs opportunity areas <strong>in</strong> f<strong>in</strong>al assembly are shown below. While many of these<br />

apply to the operations with<strong>in</strong> the manufactur<strong>in</strong>g facility, some relate to external suppliers and<br />

producers of components.<br />

• Material handl<strong>in</strong>g (reduce length of conveyor systems, reduce plant square footage, and<br />

reduce energy <strong>in</strong> transport<strong>in</strong>g materials)<br />

- Just-<strong>in</strong>-time sequenc<strong>in</strong>g<br />

- Efficient modes of transportation<br />

- Reduc<strong>in</strong>g distance between Tier 1 and Tier 2 suppliers<br />

- Better logistics management<br />

• Facility HVAC and light<strong>in</strong>g<br />

• Tool<strong>in</strong>g equipment efficiency<br />

• Design and layout of system<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 38


R&D Needs <strong>for</strong> F<strong>in</strong>al Assembly<br />

Reduc<strong>in</strong>g energy use <strong>in</strong> f<strong>in</strong>al assembly can occur through technology improvements and R&D <strong>in</strong><br />

tool<strong>in</strong>g, model<strong>in</strong>g and simulation, monitor<strong>in</strong>g and control, use of alternative energy sources, and<br />

materials handl<strong>in</strong>g. Exhibit 7.2 is an abbreviated summary of the topics that are considered higher<br />

priorities; Appendix B conta<strong>in</strong>s a complete list of R&D topics <strong>for</strong> f<strong>in</strong>al assembly.<br />

As Exhibit 7.2 illustrates, direct energy reductions are possible through efficiency improvements <strong>in</strong><br />

some of the key energy-consum<strong>in</strong>g processes <strong>in</strong> f<strong>in</strong>al assembly. These processes rely primarily on<br />

electricity <strong>for</strong> motor drive, and to power computer modules, robotics, and other electronic systems.<br />

Table 7.2 Selected R&D Needs <strong>for</strong> F<strong>in</strong>al Assembly<br />

<strong>Energy</strong> Efficient Tool<strong>in</strong>g and Equipment<br />

High Priority • Equipment that consumes no energy when idle<br />

• Use of electrical regeneration <strong>in</strong> assembly tool<strong>in</strong>g and equipment<br />

Materials Handl<strong>in</strong>g<br />

High Priority • More efficient conveyors<br />

- Low friction<br />

- Better conveyance methods<br />

- Lighter weight materials<br />

Medium<br />

Priority<br />

- Efficient layout<br />

• Concepts that <strong>in</strong>corporate more automated guided vehicles (AGV)/rail guided vehicles (RGV)<br />

• Fuel cell <strong>for</strong>klifts<br />

Model<strong>in</strong>g and Simulation <strong>for</strong> <strong>Energy</strong> Efficiency<br />

High Priority • Reverse logistics: consider “cradle-to-cradle" product life cycle from raw material to use to raw<br />

Medium<br />

Priority<br />

material<br />

• Material content and logistics energy simulation model (raw materials through assembly)<br />

• Virtual eng<strong>in</strong>eer<strong>in</strong>g tools <strong>for</strong> concurrent product/process designs that <strong>in</strong>corporate energy<br />

• Investigate and analyze <strong>in</strong>terface and trade-offs between throughput, quality, and energy use<br />

• Total build<strong>in</strong>g/process energy math model <strong>for</strong> difficult operat<strong>in</strong>g scenarios (zero to full capacity)<br />

• Include energy utilization factors <strong>in</strong> product design <strong>for</strong> manufactur<strong>in</strong>g<br />

• Study the fully accounted cost of recyclable versus returnable dunnage<br />

Monitor<strong>in</strong>g and Control Systems<br />

High Priority • Systems <strong>for</strong> accelerated start-up and shut-down of plant light<strong>in</strong>g and systems<br />

• Wireless sensor technology <strong>for</strong> material track<strong>in</strong>g, handl<strong>in</strong>g and sequenc<strong>in</strong>g<br />

• Low-cost, po<strong>in</strong>t-of-use sensors to monitor power consumption<br />

Alternative and Waste <strong>Energy</strong> Sources<br />

High Priority • Ultra long life, rechargeable, advanced batteries<br />

• Thermal regeneration processes to capture and use waste heat<br />

Medium • Greater use of solar panels<br />

Priority • Utilization of landfill gas <strong>for</strong> plant energy<br />

<strong>Energy</strong> Efficient Parts/Components<br />

Medium • Low-friction, self-lock<strong>in</strong>g fasteners (bolts, etc.)<br />

Priority • Application of nanotechnology where possible to <strong>in</strong>crease efficiency<br />

Operation and Ma<strong>in</strong>tenance<br />

High Priority • Innovative approaches <strong>for</strong> provid<strong>in</strong>g HVAC and light<strong>in</strong>g <strong>in</strong> f<strong>in</strong>al assembly<br />

Medium • Develop ways to reduce leak loads from compressors, e.g., better fitt<strong>in</strong>gs, ultrasonics<br />

Priority<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 39


Effective monitor<strong>in</strong>g and control of both assembly processes and energy consumption could<br />

provide a way to reduce energy <strong>in</strong>tensity through process optimization. Better controls, <strong>for</strong><br />

example, could be used to optimize materials handl<strong>in</strong>g systems by track<strong>in</strong>g requirements <strong>for</strong><br />

materials movement and sequenc<strong>in</strong>g the movement of parts and components <strong>in</strong> real time.<br />

Monitor<strong>in</strong>g of energy consumption <strong>in</strong>herently allows the plant operators to determ<strong>in</strong>e how energy<br />

is used and identify possible sources of <strong>in</strong>efficiency. <strong>Energy</strong> model<strong>in</strong>g and benchmark<strong>in</strong>g is a<br />

crosscutt<strong>in</strong>g topic that is covered <strong>in</strong> more detail <strong>in</strong> Section 9.<br />

The use of alternative sources of energy has some promise <strong>for</strong> reduc<strong>in</strong>g overall energy use.<br />

Technologies such as advanced batteries with long life electricity storage, or those that efficiently<br />

capture and use waste heat to produce electricity could provide more efficient sources of energy.<br />

Renewable energy technologies such as solar and or biogas could also be explored as sources of<br />

energy <strong>for</strong> various operations <strong>in</strong> f<strong>in</strong>al assembly or build<strong>in</strong>g envelope HVAC.<br />

Priority Topics<br />

The areas of R&D illustrated <strong>in</strong> Exhibit 7.2 have been comb<strong>in</strong>ed <strong>in</strong>to larger priority topics that<br />

could potentially be suitable <strong>for</strong> future exploration. These priority topics, which are listed below,<br />

are described <strong>in</strong> greater detail <strong>in</strong> Exhibits 7.3 though 7.6 on the follow<strong>in</strong>g pages.<br />

• Material Handl<strong>in</strong>g <strong>in</strong> F<strong>in</strong>al Assembly<br />

• Low Friction Fasteners<br />

• <strong>Energy</strong> Efficient Tool<strong>in</strong>g and Equipment<br />

• Alternative <strong>Energy</strong> <strong>for</strong> Advanced Light<strong>in</strong>g and HVAC <strong>in</strong> F<strong>in</strong>al Assembly<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 40


Applications<br />

• Overhead Overhead conveyance conveyance<br />

systems<br />

•In‐floor •Infloor ‐ conveyance conveyance<br />

systems<br />

•Mobile equipment<br />

• Inventory<br />

management systems<br />

• Ma<strong>in</strong>tenance<br />

• Facility space<br />

reduction<br />

Exhibit 7.3 Priority Topic F<strong>in</strong>al Assembly<br />

Material Handl<strong>in</strong>g Handl<strong>in</strong>g <strong>in</strong> F<strong>in</strong>al Assembly<br />

Explore and demonstrate opportunities <strong>for</strong> advanced material handl<strong>in</strong>g and logistics technologies that<br />

lower energy use, <strong>in</strong>clud<strong>in</strong>g wireless sensor technologies<br />

Partners<br />

I –Implement<br />

F –Provideresearch –Provide research resources<br />

U – Conduct <strong>in</strong>‐depth research<br />

G –Providefund<strong>in</strong>g –Provide fund<strong>in</strong>g <strong>for</strong><br />

research and demonstration<br />

Challenges<br />

• Cost, security, and reliability issues<br />

associated with wireless sensor<br />

technologies<br />

• User acceptability of hydrogen<br />

technologies<br />

• Availability of <strong>in</strong> ‐ plant hydrogen<br />

<strong>in</strong>frastructure<br />

• Advanced nanotechnology enabl<strong>in</strong>g<br />

frictionless conveyance operation<br />

• Fund<strong>in</strong>g<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Establish basel<strong>in</strong>e of current practice<br />

‐ Develop De velop wireless sensor technologies <strong>for</strong> material<br />

track<strong>in</strong>g, handl<strong>in</strong>g, and sequenc<strong>in</strong>g<br />

Mid ‐ Deploy wireless sensor technologies<br />

‐ Validation and demonstration of frictionless<br />

conveyor technologies<br />

‐ Develop advanced battery technologies <strong>for</strong><br />

material handl<strong>in</strong>g equipment<br />

Long ‐ Battery‐ and hydrogen‐powered hydrogen‐ powered AGV/RGV<br />

‐ Frictionless conveyors<br />

Risks<br />

Technical<br />

Commercial<br />

Other<br />

• Depends on battery technologies,<br />

technologies,<br />

nanotechnologies, lightweight<br />

materials<br />

8.31.09<br />

Targets<br />

• Substantial reduction<br />

of l<strong>in</strong>e‐side storage by<br />

streaml<strong>in</strong><strong>in</strong>g material<br />

flow, result<strong>in</strong>g <strong>in</strong><br />

reduced energy<br />

consumption<br />

• <strong>Reduction</strong> <strong>in</strong> <strong>in</strong>ventory<br />

cost<br />

• <strong>Reduction</strong> of carbon<br />

footpr<strong>in</strong>t <strong>in</strong> material<br />

handl<strong>in</strong>g processes<br />

<strong>Energy</strong><br />

Environment<br />

Economics<br />

Benefits<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 41


Applications<br />

•Tier 1 supplier supplier<br />

•Tier •Tier 2 suppliers<br />

•OEM •OEM –<strong>Automotive</strong><br />

•Any bus<strong>in</strong>ess which<br />

uses uses nuts and bolts to<br />

secure jo<strong>in</strong>ts<br />

Exhibit 7.4 Priority Topic F<strong>in</strong>al Assembly<br />

Low‐friction Fasteners<br />

Low Low‐friction ‐ friction fasten<strong>in</strong>g methods that achieve clamp loads, reduc<strong>in</strong>g energy <strong>in</strong>put<br />

Partners<br />

F –DOEmaterial –DOE material research, or<br />

aerospace material research<br />

U – Benchmark, def<strong>in</strong>e scope<br />

and algorithms, model<strong>in</strong>g,<br />

application area<br />

I – Implementation and real<br />

life trials<br />

G –Helpdef<strong>in</strong>e –Help def<strong>in</strong>e labs,<br />

materials, and technology that<br />

can be used and shared with<br />

other <strong>in</strong>dustries<br />

Challenges<br />

• Material science<br />

• Cost of materials<br />

• Ability to implement new<br />

technology <strong>in</strong> plants, production<br />

• New design approaches<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Benchmark current fasten<strong>in</strong>g methods <strong>in</strong> f<strong>in</strong>al f<strong>in</strong>al<br />

assembly (i.e., thread <strong>for</strong>m<strong>in</strong>g, torque prevail<strong>in</strong>g,<br />

free runn<strong>in</strong>g)<br />

Mid ‐ Investigate nanotechnology that would would allow<br />

fasteners to have low dynamic friction but high<br />

static friction<br />

Long ‐ Investigate new fasten<strong>in</strong>g methods<br />

Risks<br />

Technical<br />

• The ability to create the new<br />

technology<br />

Commercial<br />

• Needs to be the same or lower cost<br />

with same quality, capability, and<br />

reliability<br />

8.31.09<br />

Targets<br />

• M<strong>in</strong>imize energy use<br />

while torqu<strong>in</strong>g<br />

• Retention of clamp<br />

load post‐torque<br />

•Lowdynamic •Low dynamic friction,<br />

high static friction<br />

Benefits<br />

<strong>Energy</strong><br />

Environment<br />

Economics<br />

Ergonomics<br />

Other<br />

•Smallerfasteners, •Smaller fasteners, smaller<br />

tools, lower torque are better<br />

<strong>for</strong> design, potentially easier<br />

to work with<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 42


Applications<br />

•All <strong>in</strong>dustries that use<br />

motors, sensor,<br />

Exhibit 7.5 Priority Topic F<strong>in</strong>al Assembly<br />

<strong>Energy</strong> Efficient Tool<strong>in</strong>g and Equipment<br />

Develop and <strong>in</strong>corporate new technologies <strong>in</strong>to tool<strong>in</strong>g and equipment optimiz<strong>in</strong>g energy utilization,<br />

such as technology capable of energy regeneration, m<strong>in</strong>imiz<strong>in</strong>g energy energy use <strong>in</strong> an idle state, and<br />

reduc<strong>in</strong>g or elim<strong>in</strong>at<strong>in</strong>g compressed compressed air use and/or leak loads from compressors<br />

• Benchmark<strong>in</strong>g: f<strong>in</strong>d large opportunities<br />

• M<strong>in</strong>iaturiz<strong>in</strong>g recovery devices/methods<br />

• New technologies to make motors more<br />

energy efficient<br />

• Develop<strong>in</strong>g methods to reuse or capture<br />

energy<br />

• <strong>Energy</strong> monitor<strong>in</strong>g devices built <strong>in</strong><br />

• Cost of devices<br />

switches, etc. R&D Timel<strong>in</strong>e<br />

Partners<br />

I –Economicvalue –Economic value versus cost<br />

impact<br />

F –DOE,advanced –DOE, advanced research<br />

<strong>for</strong> electrical or electronic<br />

controls, capacitors, batteries<br />

G –Overallcoord<strong>in</strong>ation –Overall coord<strong>in</strong>ation of<br />

technologies<br />

Challenges<br />

Near ‐ Develop De velop an "<strong>Energy</strong> Star" rat<strong>in</strong>g system <strong>for</strong><br />

components used <strong>in</strong> <strong>in</strong>dustry<br />

‐ Benchmark current devices and potential areas to<br />

save or reduce energy energy usage usage<br />

‐ Determ<strong>in</strong>e which devices can be put <strong>in</strong> “sleep<br />

mode" to reduce reduce idle power usage<br />

Mid ‐ R&D solutions <strong>for</strong> each area/device based on<br />

benchmark<strong>in</strong>g and potential sav<strong>in</strong>gs<br />

Long ‐ Provide tax tax credits or demonstrate payback paybac k to<br />

encourage <strong>in</strong>dustry adoption<br />

Risks<br />

Technical<br />

• Creat<strong>in</strong>g new, economically sound<br />

devices<br />

Commercial<br />

• Industry reluctance to replace<br />

legacy <strong>in</strong>frastructure<br />

8.31.09<br />

Targets<br />

• Develop technologies<br />

to capture mechanical<br />

energy<br />

• Capture waste heat to<br />

improve tool efficiency<br />

or use <strong>in</strong> other<br />

applications<br />

• M<strong>in</strong>imize energy use<br />

<strong>in</strong> idle state (i.e., “sleep<br />

mode”)<br />

• Reduce/elim<strong>in</strong>ate<br />

compressed air use<br />

and/or leak loads from<br />

compressors<br />

Benefits<br />

<strong>Energy</strong><br />

•Valueof •Value of sav<strong>in</strong>gs<br />

Environment<br />

•<strong>Reduction</strong><strong>in</strong> •<strong>Reduction</strong> <strong>in</strong> carbon output<br />

Economics<br />

•Valueto •Value to <strong>in</strong>dustry<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 43


Applications<br />

•Plant <strong>in</strong>frastructure<br />

and supply supply cha<strong>in</strong> energy<br />

systems<br />

• <strong>Energy</strong> storage<br />

Exhibit 7.6 Priority Topic F<strong>in</strong>al Assembly<br />

Alternative <strong>Energy</strong> <strong>for</strong> Advanced Light<strong>in</strong>g and HVAC <strong>in</strong> <strong>in</strong><br />

F<strong>in</strong>al Assembly<br />

Conduct research on <strong>in</strong>novative approaches to provide HVAC and light<strong>in</strong>g <strong>in</strong> the f<strong>in</strong>al assembly area,<br />

result<strong>in</strong>g <strong>in</strong> energy energy‐efficient ‐ efficient and alternative energy usage opportunities<br />

Partners<br />

I – Demonstration and<br />

implementation<br />

F –R&D<br />

U –R&D<br />

G – Fund<strong>in</strong>g<br />

Challenges<br />

• Bus<strong>in</strong>ess case<br />

• <strong>Technology</strong> breakthrough to enable<br />

cost ‐<br />

effectiveness<br />

• Uncerta<strong>in</strong>ty of hydrogen supply<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Pre‐analysis of opportunities<br />

‐ Alternative energy feasibility studies<br />

‐ Comprehensive cost studies<br />

Mid ‐ Engage national laboratories <strong>in</strong> alternative energy<br />

use feasibility studies <strong>for</strong> f<strong>in</strong>al assembly plants,<br />

<strong>in</strong>clud<strong>in</strong>g solar, landfill gas, w<strong>in</strong>d power, and<br />

stationary hydrogen<br />

‐ Investigate hydrogen production and use <strong>in</strong> <strong>in</strong> plants<br />

Long ‐ Implement HVAC and light<strong>in</strong>g opportunities opportunitie s <strong>for</strong><br />

energy reduction<br />

Risks<br />

Technical<br />

Commercial<br />

Other<br />

•Low risk <strong>for</strong> opportunities that don’t<br />

require R&D<br />

8.31.09<br />

Targets<br />

•Moreefficient •More efficient HVAC<br />

and light<strong>in</strong>g<br />

• Elim<strong>in</strong>ation of leaks<br />

• Ultra long‐life<br />

rechargeable batteries<br />

•Alternativeenergy<br />

•Alternative energy<br />

uses<br />

<strong>Energy</strong><br />

Environment<br />

Economics<br />

Benefits<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 44


8.0 Plant Infrastructure<br />

Plant <strong>in</strong>frastructure refers to the facilities and systems that are needed to keep automotive<br />

manufactur<strong>in</strong>g operations runn<strong>in</strong>g and employees <strong>in</strong> a safe and com<strong>for</strong>table environment. A variety<br />

of energy systems come under the purview of plant <strong>in</strong>frastructure, <strong>in</strong>clud<strong>in</strong>g:<br />

• Direct process energy <strong>in</strong>puts (natural gas, electricity, diesel and other fuels)<br />

• Boilers and steam systems<br />

• Electricity generation and cogeneration systems<br />

• Compressed air systems<br />

• Motor drives <strong>for</strong> plant-wide equipment, such as conveyors and other systems<br />

• Water and other utilities<br />

• Build<strong>in</strong>g envelope light<strong>in</strong>g and heat<strong>in</strong>g, ventilat<strong>in</strong>g, and air condition<strong>in</strong>g (HVAC)<br />

• Implementation of energy management best practices<br />

<strong>Energy</strong>, water, and other utilities are delivered to<br />

the plant gate and used throughout the facility <strong>in</strong> a<br />

variety of ways to power and fuel processes.<br />

These resources are managed centrally and<br />

sometimes at the po<strong>in</strong>t of use. At a plant site,<br />

power and steam may be generated at a central<br />

location and then transported to the site where it is<br />

needed. Compressed air systems and motor-drive<br />

systems such as conveyors, materials handl<strong>in</strong>g,<br />

robots, and other equipment are typically located<br />

across the plant site at po<strong>in</strong>t of use and have many Liv<strong>in</strong>g roof composed of sedum grow<strong>in</strong>g on top of the<br />

different uses, degrees of complexity, and energy Ford Dearborn Truck Plant f<strong>in</strong>al assembly build<strong>in</strong>g<br />

loads. Supply cha<strong>in</strong> elements <strong>in</strong>clude utilities<br />

(natural gas and electricity), energy systems manufacturers, energy services providers, and<br />

equipment suppliers.<br />

<strong>Automotive</strong> manufactur<strong>in</strong>g facilities have energy managers that are responsible <strong>for</strong> monitor<strong>in</strong>g and<br />

controll<strong>in</strong>g energy systems used <strong>in</strong> the plant <strong>in</strong>frastructure. The level of real-time energy<br />

<strong>in</strong><strong>for</strong>mation available to energy managers and plant operators varies widely, depend<strong>in</strong>g on the<br />

system of use. Individual equipment is typically not metered <strong>for</strong> energy use, although data on the<br />

aggregate use of energy utilities is available. Larger systems such as boilers and power generators<br />

are big energy consumers and often more closely monitored <strong>for</strong> energy use and efficiency.<br />

Vision of the Future<br />

As shown <strong>in</strong> Exhibit 8.1, the vision <strong>for</strong> plant <strong>in</strong>frastructure is driven by new advances <strong>in</strong> build<strong>in</strong>g<br />

controls, better understand<strong>in</strong>g of the life cycle impacts of the <strong>in</strong>frastructure and its associated<br />

energy use, greater flexibility <strong>in</strong> manufactur<strong>in</strong>g processes (and the facilities that house them), more<br />

efficient management of resources, and reduction or even elim<strong>in</strong>ation of some of the more energy<strong>in</strong>tensive<br />

systems that power or fuel the plant. Beyond the immediate plant <strong>in</strong>frastructure, it is<br />

envisioned that energy management best practices will be extended to support and <strong>for</strong>malize such<br />

programs <strong>in</strong> the supplier base. This will help ensure that the manufacturers supply<strong>in</strong>g<br />

parts/components are striv<strong>in</strong>g to ma<strong>in</strong>ta<strong>in</strong> efficient facilities.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 45


In the future, it is hoped that the<br />

environmental impacts from utility supply<br />

will be m<strong>in</strong>imized, and susta<strong>in</strong>ability will<br />

be cont<strong>in</strong>uously <strong>in</strong>tegrated <strong>in</strong>to bus<strong>in</strong>ess<br />

management. Life cycle analysis plays a<br />

key role <strong>in</strong> understand<strong>in</strong>g the impacts of<br />

energy systems over time, particularly <strong>in</strong><br />

terms of the use of resources and<br />

environmental impacts. Future plant<br />

<strong>in</strong>frastructure will benefit from more<br />

sophisticated life cycle analysis that<br />

accurately predicts the energy use and<br />

other parameters associated with plant<br />

equipment and systems.<br />

<strong>Energy</strong> Opportunities<br />

There are a number of steps energy<br />

managers can take to optimize energy<br />

consumption associated with the plant<br />

<strong>in</strong>frastructure. These <strong>in</strong>clude<br />

implement<strong>in</strong>g best energy management<br />

practices, per<strong>for</strong>m<strong>in</strong>g energy assessments<br />

and benchmark<strong>in</strong>g of energy use,<br />

demonstrat<strong>in</strong>g efficient technologies, and<br />

undertak<strong>in</strong>g capital projects or<br />

Exhibit 8.1 Vision <strong>for</strong> Plant Infrastructure<br />

Advances <strong>in</strong> <strong>Technology</strong><br />

• The level of build<strong>in</strong>g automation is <strong>in</strong>creased (3-5 years)<br />

• Elim<strong>in</strong>ation of compressed air and steam is possible (3-5 years)<br />

• Facilities can support flexible manufactur<strong>in</strong>g<br />

• Reusable <strong>in</strong>frastructure systems that are modular and relocatable are<br />

available (15 plus years)<br />

• Real-time management of resources (energy, water, etc.) on a<br />

component level is possible<br />

• Accurate resource usage is <strong>in</strong>cluded <strong>in</strong> project lifecycle management<br />

(PLM ) software<br />

• Formalized supplier energy management programs <strong>in</strong> use (3 years)<br />

Susta<strong>in</strong>able <strong>Energy</strong> Systems<br />

• <strong>Automotive</strong> manufactur<strong>in</strong>g operates <strong>in</strong> a collaborative technology park<br />

that is net zero carbon neutral, utiliz<strong>in</strong>g renewables and maximum heat<br />

recovery<br />

• Integrated environmental stewardship is the norm<br />

• There is no environmental impact from utility supply (15 years)<br />

• Life cycle analysis justifies <strong>in</strong>frastructure expenditures to promote<br />

operat<strong>in</strong>g cost and carbon footpr<strong>in</strong>t reductions<br />

• A self-designed paradigm <strong>for</strong> carbon and greenhouse gas (GHG)<br />

reduction is <strong>in</strong>tegrated with a bus<strong>in</strong>ess model (3-5 years)<br />

• Non fossil-fuel based utilities (hydrogen, w<strong>in</strong>d, solar, biomass,<br />

geothermal) are readily available (10- 15 years)<br />

improvements that are focused on energy efficiency. Potential opportunity areas are shown below.<br />

Greatest potential High potential<br />

• Curtailment and energy and • Light<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g fiber optics<br />

build<strong>in</strong>g management • HVAC, chiller plants/process cool<strong>in</strong>g<br />

• Compressed air • Fluids management<br />

• Steam • Natural gas consumption<br />

• Weld<strong>in</strong>g and jo<strong>in</strong><strong>in</strong>g systems<br />

R&D Needs <strong>for</strong> Plant Infrastructure<br />

Areas where implementation of best energy management practices can potentially reduce energy<br />

use <strong>in</strong> plant <strong>in</strong>frastructure are shown <strong>in</strong> Exhibit 8.2. These cover the spectrum of <strong>in</strong>frastructure<br />

energy use, from utilities such as energy, compressed air, and water to control of the build<strong>in</strong>g<br />

envelope. Exhibit 8.2 is a brief summary of the topics that are considered higher priorities;<br />

Appendix B conta<strong>in</strong>s a complete list of R&D topics <strong>for</strong> plant <strong>in</strong>frastructure.<br />

New technologies could enable reduced energy use throughout the <strong>in</strong>frastructure. Wireless systems<br />

that are robust and optimized <strong>for</strong> use <strong>in</strong> the automotive environment could be used to monitor and<br />

control energy as well as many other build<strong>in</strong>g parameters. This would allow real-time feedback<br />

loops and dynamic changes <strong>in</strong> the build<strong>in</strong>g environment to m<strong>in</strong>imize energy requirements.<br />

Understand<strong>in</strong>g the life cycle energy parameters and <strong>in</strong>corporat<strong>in</strong>g these <strong>in</strong>to models and systems<br />

could ultimately improve the energy footpr<strong>in</strong>t of the manufactur<strong>in</strong>g plant overall. Such tools would<br />

need to <strong>in</strong>clude energy and emissions data as well as cost data.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 46


Utilities are vital to the plant <strong>in</strong>frastructure, and also can be a source of <strong>in</strong>efficiency or wasted<br />

energy. Elim<strong>in</strong>ation or reduction <strong>in</strong> the use of compressed air systems, <strong>for</strong> example, could have a<br />

significant impact on electricity consumption. One approach <strong>for</strong> accomplish<strong>in</strong>g this might be<br />

implementation of alternative motion systems <strong>for</strong> large compressed air movers and equipment.<br />

Reduc<strong>in</strong>g water use would reduce energy used <strong>in</strong> water pump<strong>in</strong>g and delivery systems. Elim<strong>in</strong>at<strong>in</strong>g<br />

the need <strong>for</strong> steam <strong>in</strong> some operations would reduce the natural gas fuel requirement. The build<strong>in</strong>g<br />

shell requires heat<strong>in</strong>g, light<strong>in</strong>g, and cool<strong>in</strong>g to ma<strong>in</strong>ta<strong>in</strong> operations and to provide a safe,<br />

com<strong>for</strong>table work environment <strong>for</strong> employees. Better control of the build<strong>in</strong>g through application of<br />

more sophisticated sensors and controls (e.g., wireless systems) would enable real time monitor<strong>in</strong>g<br />

and adjustment of the energy required to susta<strong>in</strong> the build<strong>in</strong>g environment.<br />

Exhibit 8.2 Selected R&D Needs <strong>for</strong> Plant Infrastructure<br />

Curtailment and <strong>Energy</strong> Build<strong>in</strong>g Management<br />

High Priority • Wireless monitor<strong>in</strong>g and control plus data collection<br />

• Standardized and robust (reliable) wireless spectrum <strong>in</strong> the <strong>in</strong>dustry and all components that go<br />

along with it (flow meters, energy meters, etc.)<br />

• Standardized, simple protocols to simplify <strong>in</strong><strong>for</strong>mation technology (IT) management<br />

Medium Priority • Special bandwidth <strong>for</strong> auto plants (due to noise, other <strong>in</strong>terference, etc.)<br />

• Spectrum def<strong>in</strong>itions, improved shield<strong>in</strong>g and transmission (antennae)<br />

Life Cycle <strong>Energy</strong> Decision Tools<br />

High Priority • Infrastructure to monitor energy usage and emissions with data feedback to manufactur<strong>in</strong>g<br />

systems design software and suppliers<br />

• Studies to identify the <strong>in</strong>itial costs and life cycle costs of right-siz<strong>in</strong>g process components via<br />

standardized data collection<br />

Compressed Air<br />

High Priority • Alternative motion systems <strong>for</strong> large compressed air movers/equipment: elim<strong>in</strong>ate compressed air,<br />

i.e., conveyor take-ups<br />

• New counter-balance cyl<strong>in</strong>der technology<br />

Medium Priority • <strong>Energy</strong> model <strong>for</strong> compressed air that is implemented and <strong>in</strong>tegrated <strong>in</strong>to systems<br />

Water Consumption<br />

Medium Priority • Dry mach<strong>in</strong><strong>in</strong>g processes: elim<strong>in</strong>ate water <strong>in</strong> the powertra<strong>in</strong> mach<strong>in</strong><strong>in</strong>g process<br />

• Dry clean<strong>in</strong>g processes: no water <strong>in</strong> powertra<strong>in</strong> or pa<strong>in</strong>t shop<br />

Steam<br />

Medium Priority • No- heat clean<strong>in</strong>g process systems <strong>for</strong> metals<br />

Build<strong>in</strong>g Shell<br />

High Priority • <strong>Technology</strong> to use the build<strong>in</strong>g as an antenna<br />

Medium Priority • Elim<strong>in</strong>ate bandwidth issues associated with facility layout<br />

Priority Topics<br />

The areas of R&D illustrated <strong>in</strong> Exhibit 8.2 have been comb<strong>in</strong>ed <strong>in</strong>to larger priority topics that<br />

could potentially be suitable <strong>for</strong> future exploration. These priority topics, which are listed below,<br />

are described <strong>in</strong> greater detail <strong>in</strong> Exhibits 8.3 though 8.7 on the follow<strong>in</strong>g pages.<br />

• Alternative Motor Systems to Replace Compressed Air Actuators<br />

• Monitor<strong>in</strong>g and Control System <strong>for</strong> <strong>Energy</strong> Consumption and Emissions<br />

• <strong>Energy</strong> Usage Feedback to Manufactur<strong>in</strong>g System Design, Software, and Suppliers<br />

• Wireless Communications Network us<strong>in</strong>g New Frequency Spectrum Communications<br />

• <strong>Energy</strong> Management Through Right-Siz<strong>in</strong>g of Facilities and Process Equipment<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 47


Alternative Motor Systems to Replace Compressed Air Actuators<br />

Explore ways to replace compressed air actuators with CNC mach<strong>in</strong>es, stamp<strong>in</strong>g counter balances,<br />

and conveyor take take‐ups ‐ ups<br />

Applications<br />

•CNC mach<strong>in</strong>e and<br />

stamp<strong>in</strong>g counter<br />

balance<br />

•L<strong>in</strong>ear motion<br />

cyl<strong>in</strong>ders<br />

•Conveyor take‐ups take‐ ups<br />

•Pa<strong>in</strong>t delivery systems<br />

Partners<br />

I – Collaboration between<br />

Auto OEMs and suppliers<br />

F, U, G –R&Don –R&D on mechanical<br />

solution<br />

Exhibit 8.3 Priority Topic Plant Infrastructure<br />

• Durability<br />

• Cost (life cycle)<br />

• Weight<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Industry Indus try collaboration ‐ OEMs, suppliers, DOE,<br />

etc.<br />

‐ Study, prototype, pilot<br />

‐ OEMs to update specifications<br />

Mid ‐ Deploy first generation solutions<br />

‐ Pa<strong>in</strong>t Pa<strong>in</strong> t delivery systems that do not use compressed co mpressed<br />

air<br />

‐ Analyze per<strong>for</strong>mance and ref<strong>in</strong>e designs<br />

Long ‐ Deploy second generation solutions<br />

Risks<br />

Technical<br />

• Durability, weight weight<br />

Commercial<br />

Challenges<br />

8.31.09<br />

Targets<br />

•Non‐pneumatic<br />

application to replace<br />

compressed air<br />

actuators<br />

•Solutionsmay •Solutions may be<br />

mechanical, magnetic,<br />

or either<br />

•Solutionsmust •Solutions must be life‐<br />

cycle cost effective<br />

•Solutionsmust •Solutions must be<br />

durable<br />

Benefits<br />

<strong>Energy</strong><br />

• Reduced power<br />

consumption<br />

Environment<br />

• Reduced emissions,<br />

improved <strong>in</strong>door air quality<br />

Economics<br />

•Cost‐neutral, reduced<br />

downtime, improved quality<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 48


Monitor<strong>in</strong>g and Control System <strong>for</strong> <strong>Energy</strong> Consumption and<br />

Emissions<br />

Monitor<strong>in</strong>g and control system to measure and optimize energy consumption and emissions, <strong>for</strong><br />

discrete manufactur<strong>in</strong>g (automotive)<br />

Applications<br />

• <strong>Energy</strong> management<br />

(BIM)<br />

•Emissions monitor<strong>in</strong>g monitor<strong>in</strong>g<br />

• Equipment PLM<br />

•Discrete I/O control control<br />

Partners<br />

I –Betatest –Beta test site,<br />

commercialization<br />

F – <strong>Technology</strong> development<br />

U –N/A<br />

G –Costshar<strong>in</strong>g<br />

–Cost shar<strong>in</strong>g<br />

Exhibit 8.4 Priority Topic Plant Infrastructure<br />

Challenges<br />

• Response time<br />

• Develop<strong>in</strong>g a low cost solution<br />

• Spectrum availability<br />

• Wireless power supply<br />

• Exist<strong>in</strong>g plant RFI<br />

• Achiev<strong>in</strong>g ~100% up‐time up ‐ time<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Wireles Wireless s cost analysis<br />

‐ Develop De velop wireless specification<br />

‐ Identify technical gaps <strong>for</strong> wireless<br />

Mid ‐ Develop prototype sensor sensor network system<br />

‐ Beta te test s t sit site e ddeployment eployment Long ‐ Industry acceptance (e.g., IEEE, SP100)<br />

‐ Large‐scale Large‐ scale deployment <strong>in</strong> commercial world<br />

‐ <strong>Energy</strong> data made available to suppliers <strong>for</strong> cost‐<br />

sav<strong>in</strong>g ideas<br />

Risks<br />

Technical<br />

• May be unable to bridge caps, speed,<br />

cost<br />

Commercial<br />

• May not become <strong>in</strong>dustry standard<br />

8.31.09<br />

Targets<br />

• Component/mach<strong>in</strong>e<br />

level system with low<br />

acquisition, <strong>in</strong>stallation,<br />

and ma<strong>in</strong>tenance cost<br />

•Lowpower, •Low power, secure,<br />

and reliable response<br />

time under 10ms<br />

Benefits<br />

<strong>Energy</strong><br />

• Establish energy basel<strong>in</strong>e at<br />

component level to<br />

substantially reduce energy<br />

consumption <strong>in</strong><br />

manufactur<strong>in</strong>g<br />

Environment<br />

• Establish emissions footpr<strong>in</strong>t<br />

<strong>for</strong> manufactur<strong>in</strong>g<br />

substantially reduce it<br />

Economics<br />

• Significant cost benefits due<br />

to <strong>in</strong>novative energy and<br />

emissions management<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 49


<strong>Energy</strong> Usage Feedback to to Manufactur<strong>in</strong>g System Design,<br />

Software, and Suppliers<br />

Internet accessible, plant‐wide plant‐ wide data collection via sensor technology and protocols allow<strong>in</strong>g <strong>for</strong> “drill<br />

down” down” compatibility <strong>for</strong> all physical criteria, such as pressure, flow, temperature, energy use, etc., to<br />

monitor and establish effective response action, data collection, and process optimization<br />

Applications<br />

•Process monitor<strong>in</strong>g and<br />

optimization with result<strong>in</strong>g<br />

efficiencies and and improved<br />

cost‐competitiveness<br />

cost‐ competitiveness<br />

•Make •Make and and process<br />

feedback to plant and<br />

suppliers <strong>for</strong> equipment<br />

monitor and process<br />

optimization<br />

optimization<br />

•Robust manufactur<strong>in</strong>g<br />

systems, proactive<br />

ma<strong>in</strong>tenance, and and the<br />

opportunity <strong>for</strong> <strong>in</strong>novative,<br />

optimized process process<br />

equipment<br />

•I,F, •I, F, G<br />

Partners<br />

•USCARand •USCAR and NIST/FCC/NAM,<br />

equipment vendors, suppliers,<br />

DOE (fund<strong>in</strong>g and facilitation)<br />

work<strong>in</strong>g together<br />

Exhibit 8.5 Priority Topic Plant Infrastructure<br />

Challenges<br />

• Non ‐<br />

<strong>in</strong>trusive compressed air flow<br />

monitor<strong>in</strong>g<br />

• Current lack of sub ‐<br />

meter<strong>in</strong>g data<br />

collection, <strong>in</strong>clud<strong>in</strong>g gas and water<br />

• Installation costs, ROI<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Standardize protocol <strong>for</strong> data type and collection<br />

with supplier<br />

‐ Develop pilot program with data collection<br />

Mid ‐ Cont<strong>in</strong>ue to ref<strong>in</strong>e and improve feedback systems<br />

based on per<strong>for</strong>mance and results<br />

‐ Explore/implement new sensor and contro control l<br />

technologies as breakthroughs emerge<br />

Risks<br />

Technical<br />

•Very low perceived risk; benign<br />

monitor<strong>in</strong>g only<br />

Commercial<br />

•Very low perceived risk; generally<br />

standard protocols exist<br />

Other<br />

•Mov<strong>in</strong>g<strong>for</strong>ward •Mov<strong>in</strong>g <strong>for</strong>ward with compet<strong>in</strong>g<br />

protocols is NG<br />

8.31.09<br />

Targets<br />

•Non‐<strong>in</strong>trusive sensors<br />

•Real‐time data<br />

collection<br />

•Plugand •Plug and play<br />

connectivity <strong>for</strong> all<br />

sensors and end users<br />

Benefits<br />

<strong>Energy</strong>, Environment,<br />

Economics<br />

•Abilityto •Ability to prioritize and<br />

proactively address issues<br />

lead<strong>in</strong>g to optimized systems.<br />

Better ma<strong>in</strong>tenance, energy,<br />

environmental management<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 50


Wireless Communications Network Utiliz<strong>in</strong>g New Frequency<br />

Spectrum Communications<br />

Develop a reliable, standardized, wireless <strong>in</strong>dustrial service network to monitor and control energy<br />

and build<strong>in</strong>g systems by utiliz<strong>in</strong>g new frequency spectrum(s)<br />

Applications<br />

•Applicable wherever<br />

life/safety concerns<br />

exist<br />

• HVAC controls,<br />

pressure and<br />

temperature sensors,<br />

capacitor noise filters, filters,<br />

and and antenna<br />

technologies<br />

Partners<br />

I –JCI,Honeywell, –JCI, Honeywell, Benham,<br />

3ETI, Lucent<br />

F –NIST<br />

U –UDRI<br />

G – FCC, FTC, DOE Labs<br />

Exhibit 8.6 Priority Topic Plant Infrastructure<br />

Challenges<br />

• Reduce <strong>in</strong>stallation costs and improve<br />

reliability of critical systems <strong>for</strong><br />

production<br />

• Standardize IT systems <strong>for</strong> replication<br />

on diverse network applications<br />

• Overcome “noise”– EM <strong>in</strong>terference–<br />

with new technologies and frequency<br />

spectrums<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Def<strong>in</strong>e wireless network applications, systems,<br />

devices, and architecture <strong>for</strong> EMS at typical auto<br />

plant<br />

‐ Assess production environment <strong>for</strong> EMI “noise”<br />

<strong>in</strong>terference and exist<strong>in</strong>g technologies<br />

technologies<br />

Mid ‐ Test, analyze, and recommend frequencies and<br />

spectrums suitable <strong>for</strong> reliable operations<br />

‐ Validate through beta test<strong>in</strong>g of best available availa ble<br />

technologies and hardware <strong>in</strong> an auto plant<br />

environment<br />

Long ‐ Replicate Replicate systems and devices to other plants, pla nts,<br />

applications, and production equipment<br />

‐ Ma<strong>in</strong>ta<strong>in</strong> common systems and open protocols prot ocols<br />

with network security and encryption<br />

Risks<br />

Technical<br />

•Reliability criteria not achievable due<br />

to noise and technical limitations<br />

Commercial<br />

• Spectrum already already assigned<br />

8.31.09<br />

Targets<br />

•Def<strong>in</strong>esystem<br />

•Def<strong>in</strong>e system<br />

requirement and metric<br />

<strong>for</strong> typical <strong>in</strong>tegration<br />

<strong>in</strong>to automotive<br />

facilities<br />

• Exam<strong>in</strong>e exist<strong>in</strong>g<br />

systems, facilities and<br />

spectrums <strong>for</strong> cost and<br />

reliability<br />

• Exam<strong>in</strong>e new<br />

technologies and<br />

frequencies emerg<strong>in</strong>g<br />

that could improve cost,<br />

reliability, or capability<br />

Benefits<br />

<strong>Energy</strong><br />

Environment<br />

Economics<br />

Other<br />

• Technologies available <strong>for</strong><br />

replication, new applications,<br />

and/or export<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 51


<strong>Energy</strong> Management Through Right‐Siz<strong>in</strong>g of Facilities/Process<br />

Equipment<br />

Life cycle asset management of facilities and process equipment to reduce reduce over over‐siz<strong>in</strong>g ‐ siz<strong>in</strong>g and other<br />

practices that lead to excessive energy losses or consumption<br />

Applications<br />

• Facilities design design and<br />

operation<br />

• Manufactur<strong>in</strong>g<br />

systems design and and<br />

operation<br />

Partners<br />

I –Datacollection, –Data collection, Beta test<br />

site<br />

F –PLM<strong>in</strong>tegration<br />

–PLM <strong>in</strong>tegration<br />

U –DFECprogram<br />

–DFEC program<br />

G –Costshar<strong>in</strong>g, –Cost shar<strong>in</strong>g, partnerships<br />

with energy<br />

Exhibit 8.6 Priority Topic Plant Infrastructure<br />

Challenges<br />

• Accurate data collection<br />

• Analytical models <strong>for</strong> energy<br />

management<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Gather energy and emissions data<br />

‐ Develop De velop energy ener gy model<br />

Mid ‐ Develop Product Product Lifecycle Management (PLM)<br />

model<br />

‐ La Layout yout <strong>for</strong> energy‐efficient energy‐ efficient facilities and process process<br />

equipment design<br />

Long ‐ Design <strong>for</strong> <strong>Energy</strong> Consumption (DFEC)<br />

Risks<br />

Technical<br />

•Data collection with feedback loop to<br />

PLM is challeng<strong>in</strong>g<br />

Commercial<br />

•PLM <strong>in</strong>tegration may be challeng<strong>in</strong>g<br />

8.31.09<br />

Targets<br />

• Reduce plant energy<br />

consumption and<br />

emissions through right‐<br />

siz<strong>in</strong>g of facilities and<br />

process equipment<br />

•Costreduction •Cost reduction of<br />

capital equipment<br />

Benefits<br />

<strong>Energy</strong><br />

•DFEC(trademark •DFEC (trademark pend<strong>in</strong>g)<br />

Environment<br />

•Goeshand‐<strong>in</strong>‐hand •Goes hand‐<strong>in</strong>‐hand with<br />

energy consumption<br />

Economics<br />

•Plantswill •Plants will become more<br />

efficient<br />

Other<br />

• Provides real‐time data <strong>for</strong><br />

manag<strong>in</strong>g change<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 52


9.0 Crosscutt<strong>in</strong>g Opportunities <strong>for</strong> Sav<strong>in</strong>g <strong>Energy</strong><br />

There are a number of opportunities <strong>for</strong> reduc<strong>in</strong>g energy or <strong>in</strong>creas<strong>in</strong>g efficiency that cut across<br />

many parts of the automotive enterprise. These crosscutt<strong>in</strong>g energy concepts could be widely<br />

applied – with concomitantly large energy benefits. These <strong>in</strong>clude energy recovery; assess<strong>in</strong>g,<br />

predict<strong>in</strong>g, and model<strong>in</strong>g energy consumption; and others.<br />

<strong>Energy</strong> Recovery<br />

Opportunities <strong>for</strong> energy recovery <strong>in</strong> automotive manufactur<strong>in</strong>g have been identified that have the<br />

potential to directly reduce energy consumption. These opportunities cover a range of processes,<br />

from cur<strong>in</strong>g and dry<strong>in</strong>g <strong>in</strong> pa<strong>in</strong>t, to metal and materials process<strong>in</strong>g and recover<strong>in</strong>g the energy<br />

embodied <strong>in</strong> scrap. These concepts could theoretically be applied by an automotive OEM or <strong>in</strong><br />

supplier operations.<br />

The recovery of energy from bulk materials manufacture is seen as one opportunity that could<br />

provide substantial energy sav<strong>in</strong>gs and provide favorable environmental impacts as well (see<br />

Exhibit 9.1). Bulk manufacture of metals is one example where energy recovery could be applied<br />

<strong>in</strong> supplier plants.<br />

Some of the most important ideas <strong>for</strong> energy recovery are shown below. These are not all<strong>in</strong>clusive,<br />

but show the breadth of possibilities.<br />

• Recovery of heat from cast<strong>in</strong>g of metal (e.g., heat of fusion, sheet products, etc.) or heat<br />

treat<strong>in</strong>g of metals<br />

• Recovery of energy from bulk materials manufactur<strong>in</strong>g (slabs, sheets, <strong>in</strong>gots)<br />

• Inc<strong>in</strong>eration of plastic scrap to generate power and heat and augment the power grid of the<br />

plant<br />

• Alternative cool<strong>in</strong>g technology (e.g., cool<strong>in</strong>g water, elim<strong>in</strong>at<strong>in</strong>g fans) with a means of<br />

recaptur<strong>in</strong>g lost energy, or recovery of energy from cool<strong>in</strong>g fluids<br />

• Ways to efficiently recover and reuse low temperature waste heat (salt bath, cool<strong>in</strong>g water,<br />

etc.)<br />

• Thermal regeneration processes to capture and reuse waste heat<br />

• Capture waste heat to improve tool efficiency or <strong>for</strong> use <strong>in</strong> other applications<br />

Comb<strong>in</strong>ed heat and power (CHP) is one means of effectively utiliz<strong>in</strong>g waste heat from various<br />

sources throughout the plant. The economic feasibility of us<strong>in</strong>g CHP <strong>for</strong> this purpose depends on<br />

the quality (temperature) and quantity of waste heat, the reliability of the source, and plant needs<br />

<strong>for</strong> electricity or heat near the proposed location of the CHP system. There may also be issues with<br />

how easily CHP can be <strong>in</strong>tegrated <strong>in</strong>to the current plant configuration, and the cost of the system<br />

(and return on <strong>in</strong>vestment (ROI)). CHP systems are costly to construct and ma<strong>in</strong>ta<strong>in</strong> and are<br />

usually most viable above a certa<strong>in</strong> power and heat generation level. The advent of small, modular<br />

CHP systems and other power generators such as fuel cells could make it easier to implement CHP<br />

systems <strong>for</strong> smaller-volume heat recovery applications <strong>in</strong> the future.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 53


Recovery of Process <strong>Energy</strong> from Bulk Materials Manufactur<strong>in</strong>g<br />

Methods to capture and reuse energy needed to produce metals <strong>in</strong> bulk <strong>for</strong>ms; entails conversion of<br />

hot hot air and hot water <strong>in</strong>to usable/reusable energy<br />

Applications<br />

•Cast<strong>in</strong>g<br />

slabs/sheets/<strong>in</strong>gots of<br />

metals (recover latent<br />

heat and cool<strong>in</strong>g energy)<br />

• Recovery of radiant<br />

heat losses from<br />

equipment <strong>in</strong> basic<br />

metals plants plants (e.g., from<br />

melt<strong>in</strong>g/hold<strong>in</strong>g<br />

furnaces, roll<strong>in</strong>g mills,<br />

etc.)<br />

Partners<br />

F, U – Identify/develop/<strong>in</strong>vent<br />

basic energy collection and<br />

conversion processes and<br />

mechanisms<br />

I, F – Develop pilot and<br />

demonstrate the technologies<br />

Exhibit 9.1 Crosscutt<strong>in</strong>g Priority R&D Topic<br />

Challenges<br />

• Heat transfer media<br />

• <strong>Energy</strong> conversion <strong>in</strong>to <strong>for</strong>m<br />

amenable to transmission and storage<br />

• Economical, conta<strong>in</strong>able devices<br />

and methods<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Survey ways of recover<strong>in</strong>g heat, select candidates ca ndidates<br />

with capability to handle metal production<br />

processes<br />

‐ Quantify and characterize heat <strong>in</strong> metal<br />

production processes<br />

‐ Identify needed R&D<br />

‐ Outl<strong>in</strong>e conceptual system design<br />

Mid ‐ Conduct needed R&D on aspects of system<br />

‐ Demonstrate processes on pilot scale<br />

Long ‐ Integrate and demonstrate technologies on<br />

production level<br />

Risks<br />

Technical<br />

• Unidentified method/technologies<br />

<strong>for</strong> accomplish<strong>in</strong>g goals –very high<br />

amount of energy, large volumes of<br />

water/air conta<strong>in</strong><strong>in</strong>g low‐grade low ‐ grade<br />

energy<br />

Commercial<br />

• Technologies must be compact and<br />

economical<br />

8.31.09<br />

Targets<br />

• Reduced net energy<br />

consumption <strong>in</strong><br />

materials production<br />

Benefits<br />

<strong>Energy</strong><br />

•Thisis •This is a large fraction of the<br />

energy consumed <strong>in</strong> the<br />

production of bulk metals<br />

Environment<br />

• Currently this energy is<br />

dissipated <strong>in</strong>to the<br />

environment<br />

Economics<br />

•If •Ifprocess process energy could be<br />

effectively recycled/reused, it<br />

would have a major favorable<br />

economic impact<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 54


Assess<strong>in</strong>g, Predict<strong>in</strong>g, and Model<strong>in</strong>g <strong>Energy</strong> Consumption<br />

A major factor <strong>in</strong> identify<strong>in</strong>g the source and magnitude of opportunities <strong>for</strong> energy efficiency<br />

improvements is a solid understand<strong>in</strong>g of energy use <strong>in</strong> process operations. While some processes<br />

are well known as large energy consumers, the energy footpr<strong>in</strong>ts of others are less transparent. For<br />

example, while a s<strong>in</strong>gle robot or conveyor may be a small consumer of energy, when this s<strong>in</strong>gle<br />

piece of equipment is multiplied a hundred-fold, the aggregate energy use may be substantial.<br />

Without a targeted understand<strong>in</strong>g of the magnitude of energy use <strong>in</strong> processes, sub-processes, and<br />

facilities, it is more difficult to justify where to focus <strong>in</strong>vestments <strong>in</strong> energy efficiency.<br />

The level of <strong>in</strong><strong>for</strong>mation on energy use <strong>in</strong> automotive manufactur<strong>in</strong>g varies significantly between<br />

plants and processes <strong>in</strong> use. Many factors impact energy consumption at the site of manufactur<strong>in</strong>g<br />

and all sites are different. The mix of automated and manual systems, and the types of processes<br />

(and the energy they use) can often vary substantially between plants, and with<strong>in</strong> the same<br />

company. This site-specific variation <strong>in</strong> energy use makes it difficult to apply a one-size-fits-all<br />

paradigm to reduc<strong>in</strong>g energy use. The lack of meter<strong>in</strong>g and monitor<strong>in</strong>g of energy except <strong>for</strong> large<br />

energy-consum<strong>in</strong>g equipment is also a limit<strong>in</strong>g factor.<br />

Despite these uncerta<strong>in</strong>ties, there are some general concepts that could be applied to ga<strong>in</strong> an<br />

understand<strong>in</strong>g of energy sources and s<strong>in</strong>ks <strong>in</strong> automotive manufactur<strong>in</strong>g <strong>in</strong> order to aid <strong>in</strong> decisionmak<strong>in</strong>g.<br />

These <strong>in</strong>clude build<strong>in</strong>g understand<strong>in</strong>g <strong>in</strong> some key areas:<br />

• Value-added versus non-value added energy consumed <strong>in</strong> processes<br />

• <strong>Energy</strong> s<strong>in</strong>ks <strong>in</strong> functional areas of the plant, <strong>in</strong>clud<strong>in</strong>g processes and sub-processes and<br />

the build<strong>in</strong>g envelope (HVAC, etc.)<br />

• <strong>Energy</strong> attributed to plant-wide logistical operations such as mov<strong>in</strong>g of materials or parts<br />

from one area to another<br />

• <strong>Energy</strong> consumption that is embedded <strong>in</strong> the materials of construction and use <strong>in</strong> parts and<br />

components, from raw materials to f<strong>in</strong>ished products<br />

• Source and function of energy (electrical, air, motion, hydraulic)<br />

• How models and simulation can p<strong>in</strong>po<strong>in</strong>t targets of opportunity<br />

Two priority R&D topics have been identified that relate specifically to understand<strong>in</strong>g energy<br />

consumption <strong>in</strong> the automotive enterprise. The first deals with assess<strong>in</strong>g the energy footpr<strong>in</strong>t of<br />

automotive manufactur<strong>in</strong>g unit operations and the associated supplier base, as shown <strong>in</strong> Exhibit<br />

9.2. The second ef<strong>for</strong>t, illustrated <strong>in</strong> Exhibit 9.3, focuses on us<strong>in</strong>g data from various sources to<br />

model and predict the patterns and sensitivities <strong>in</strong> energy consumption throughout the automotive<br />

enterprise, from raw materials to suppliers of parts and components to OEM manufacture.<br />

Comb<strong>in</strong>ed, the tools that results from the ef<strong>for</strong>ts shown <strong>in</strong> Exhibits 9.2 and 9.3 would provide a<br />

basis <strong>for</strong> strategic plann<strong>in</strong>g and decision mak<strong>in</strong>g <strong>for</strong> energy efficiency and related projects.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 55


Assess<strong>in</strong>g Opportunities <strong>for</strong> <strong>Energy</strong> <strong>Reduction</strong> <strong>in</strong> <strong>in</strong> Vehicle<br />

Manufacture<br />

Applications<br />

• <strong>Energy</strong> opportunity<br />

targets <strong>in</strong> automotive<br />

(OEMs (OEMs and supplier<br />

base)<br />

• <strong>Energy</strong> targets <strong>in</strong><br />

similar <strong>in</strong>dustries (e.g.,<br />

other transport<br />

manufacture, heavy<br />

equipment)<br />

•Models <strong>for</strong> energy<br />

simulation and<br />

prediction<br />

Partners<br />

I –OEMs,suppliers, –OEMs, suppliers, utility<br />

supply, equipment suppliers<br />

(<strong>in</strong>put and feedback)<br />

F –Datagather<strong>in</strong>g –Data gather<strong>in</strong>g and<br />

mapp<strong>in</strong>g and model<strong>in</strong>g<br />

G – Fund<strong>in</strong>g <strong>for</strong><br />

precompetitive aspects<br />

Exhibit 9.2 Crosscutt<strong>in</strong>g R&D Priority Topic<br />

Understand the energy flows <strong>in</strong> mak<strong>in</strong>g a vehicle<br />

Challenges<br />

• Competitive data<br />

• Lack of access to data<br />

• Availability of motors motors‐component<br />

‐ component<br />

level data<br />

• Variations and methods of<br />

captur<strong>in</strong>g energy data<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ <strong>Energy</strong> Ene rgy flow diagrams diag rams (2 (2009) 009)<br />

‐ Assessments/Validation (2009/2010)<br />

‐ Pareto diagram of energy use (2010/2011)<br />

(2010/2011)<br />

Mid ‐ Be Best st practic practices, es, benchmark<strong>in</strong>g (2012/ongo<strong>in</strong>g)<br />

Long ‐ Cont<strong>in</strong>ue to update and improve model<br />

Risks<br />

Technical<br />

• Chang<strong>in</strong>g energy profiles<br />

Commercial<br />

• Chang<strong>in</strong>g product profiles<br />

Bus<strong>in</strong>ess<br />

• Possibility of reveal<strong>in</strong>g <strong>in</strong><strong>for</strong>mation<br />

<strong>for</strong> OEM or supplier<br />

8.31.09<br />

<strong>Energy</strong><br />

Targets<br />

• <strong>Energy</strong> use <strong>in</strong><br />

manufactur<strong>in</strong>g all<br />

vehicle systems and<br />

components<br />

•Targetedgoals •Targeted goals and<br />

opportunities <strong>for</strong> energy<br />

reduction<br />

Environment<br />

Economics<br />

Benefits<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 56


Applications<br />

• Build<strong>in</strong>g designs<br />

•Product designs<br />

•Selection of energy<br />

reduction opportunities<br />

and projects<br />

•Development and<br />

execution of energy<br />

management plans<br />

• Strategic bus<strong>in</strong>ess<br />

decision decision‐mak<strong>in</strong>g ‐ mak<strong>in</strong>g support<br />

Exhibit 9.3 Crosscutt<strong>in</strong>g R&D Priority Topic<br />

Model<strong>in</strong>g and Simulation <strong>for</strong> <strong>Energy</strong> <strong>Reduction</strong><br />

Develop mathematical models and simulation tools to assess assess the relative sensitivities <strong>in</strong> energy<br />

consumption through the supply cha<strong>in</strong>, from raw materials to f<strong>in</strong>al assembly<br />

Partners<br />

I –Lead,provide –Lead, provide data, def<strong>in</strong>e<br />

scope, usability, benchmark,<br />

beta test, validate<br />

F –Designexperiments,<br />

–Design experiments,<br />

develop algorithms,<br />

<strong>in</strong>teroperability, comput<strong>in</strong>g<br />

power, validate<br />

U – Develop algorithms<br />

G –Providedata, –Provide data, fund<br />

Challenges<br />

• Fund<strong>in</strong>g/Cost<br />

• Acquir<strong>in</strong>g basel<strong>in</strong>e data applicable<br />

across the <strong>in</strong>dustry<br />

• Equitable ways to measure energy<br />

utilization and carbon allocation<br />

• Complexity of <strong>in</strong>tegrat<strong>in</strong>g all systems<br />

and processes<br />

• De Develop<strong>in</strong>g velop<strong>in</strong>g ou outputs tputs su suitable itable <strong>for</strong><br />

eng<strong>in</strong>eer<strong>in</strong>g decision<br />

• Interoperability across bus<strong>in</strong>ess units<br />

and plat<strong>for</strong>ms<br />

R&D Timel<strong>in</strong>e<br />

Near ‐ Establish energy basel<strong>in</strong>es <strong>for</strong> model calibration,<br />

utiliz<strong>in</strong>g tools such as EPA, EPI, and others, as<br />

appropriate<br />

‐ Study the fully‐accounted fully‐ accounted cost of recyclable recyclab le vs.<br />

return returnable able dunnage<br />

‐ Develop De velop a material content and logistics energy<br />

simulation model (raw materials to assembly)<br />

‐ Develop total build<strong>in</strong>g process energy math model<br />

under different operat<strong>in</strong>g scenarios (zero to full<br />

capacity) capacity)<br />

Mid ‐ Develop virtual eng<strong>in</strong>eer<strong>in</strong>g tools <strong>for</strong> concurrent co ncurrent<br />

product/process design <strong>in</strong>corporat<strong>in</strong>g energy energy<br />

‐ Investigate and analyze <strong>in</strong>terface and trade‐offs trade ‐offs<br />

between throughput, quality, and energy use us e<br />

‐ Include energy utilization factors <strong>in</strong> product prod uct design<br />

<strong>for</strong> manufactur<strong>in</strong>g<br />

Long ‐ Reverse logistics: consider product life‐cycle life‐ cyc le<br />

from raw material to use of raw material<br />

Risks<br />

Technical<br />

Commercial<br />

Other<br />

• Complexity and dynamics of the<br />

supply cha<strong>in</strong> can lead to <strong>in</strong>accurate<br />

model<strong>in</strong>g<br />

8.31.09<br />

Targets<br />

Software tools to model<br />

energy usage that can:<br />

• Analyze energy<br />

distribution, use,<br />

optimization, <strong>in</strong>tegration<br />

<strong>for</strong> concurrent product/<br />

process design;<br />

• Separate build<strong>in</strong>g energy<br />

from process energy, value‐<br />

added added from non‐value<br />

added;<br />

•Per<strong>for</strong>m •Per<strong>for</strong>mtrade‐off trade‐off<br />

analysis;<br />

•Provide •Providedecision‐mak<strong>in</strong>g<br />

decision‐mak<strong>in</strong>g<br />

support <strong>for</strong> various issues<br />

To predict relative relative energy<br />

distribution at different<br />

production loads<br />

Benefits<br />

Benefits<br />

<strong>Energy</strong><br />

<strong>Energy</strong><br />

Environment<br />

Environment<br />

Economics<br />

Economics<br />

•Used<strong>in</strong> •Used •Used<strong>in</strong> <strong>in</strong> prioritiz<strong>in</strong>g prioritiz<strong>in</strong>g and<br />

and<br />

maximiz<strong>in</strong>g maximiz<strong>in</strong>g the the synergetic<br />

synergetic<br />

effects effects of of project project selection<br />

selection<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 57


Other Crosscutt<strong>in</strong>g Topics<br />

Other crosscutt<strong>in</strong>g topics are:<br />

• Wireless systems <strong>for</strong> control and monitor<strong>in</strong>g – expansion and improvement of wireless<br />

systems was noted <strong>in</strong> several areas as a way to improve energy efficiency. Concepts<br />

<strong>in</strong>clude wireless systems <strong>for</strong> materials handl<strong>in</strong>g, track<strong>in</strong>g and sequenc<strong>in</strong>g parts and<br />

components; plant-wide use of wireless; and standardized wireless spectrum <strong>for</strong> all<br />

build<strong>in</strong>g and <strong>in</strong>frastructure systems, potentially utiliz<strong>in</strong>g the build<strong>in</strong>g shells as antennae.<br />

• Design <strong>for</strong> energy consumption – <strong>in</strong>corporation of energy <strong>in</strong>to design practices and plant<br />

layout is a concept that could ultimately reduce energy use throughout the vehicle life<br />

cycle. Ideas <strong>in</strong>clude consolidation of parts, design <strong>for</strong> part and material reuse, and<br />

elim<strong>in</strong>ation of process steps.<br />

• Materials –the development and implementation of new materials is a high priority <strong>in</strong> a<br />

number of areas. Materials improvements range from new light-weight, high-strength,<br />

<strong>for</strong>mable materials, to low-carbon materials and <strong>in</strong>novative coat<strong>in</strong>gs and pa<strong>in</strong>t<br />

<strong>for</strong>mulations. Materials to enable scrap reduction and/or that are reusable is another<br />

concept of <strong>in</strong>terest.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 58


10.0 Mov<strong>in</strong>g Forward<br />

Creation of this technology roadmap represented a focused ef<strong>for</strong>t to understand the opportunities<br />

<strong>for</strong> reduc<strong>in</strong>g energy consumption <strong>in</strong> automotive manufactur<strong>in</strong>g and the associated supply cha<strong>in</strong>.<br />

Clearly, the opportunities are many and span every aspect of the <strong>in</strong>dustry.<br />

It is hoped that this roadmap will provide direction and a basis <strong>for</strong> future decision mak<strong>in</strong>g and<br />

<strong>in</strong>vestments <strong>in</strong> R&D to enable energy reduction <strong>in</strong> automotive manufactur<strong>in</strong>g. While it does not<br />

cover all areas <strong>in</strong> depth, it does br<strong>in</strong>g out some important ideas. It is notable that the concepts<br />

presented here represent a wide range of technologies and opportunities – from the very near-term<br />

to revolutionary changes that could be achieved <strong>in</strong> the future. One th<strong>in</strong>g is certa<strong>in</strong> – the automotive<br />

enterprise will cont<strong>in</strong>ue to adapt and improve to meet approach<strong>in</strong>g energy challenges.<br />

Look<strong>in</strong>g <strong>for</strong>ward, this roadmap illum<strong>in</strong>ates some of the key opportunities <strong>for</strong> energy efficiency <strong>in</strong><br />

the automotive enterprise that can potentially be achieved through R&D and other actions.<br />

Develop<strong>in</strong>g these energy efficiency ga<strong>in</strong>s may require long-term, high-risk research, and the<br />

foundation of new public-private collaborations <strong>in</strong>volv<strong>in</strong>g academia, national labs, government,<br />

OEMs, and suppliers. As future R&D projects are <strong>in</strong>itiated, the automotive <strong>in</strong>dustry and the nation<br />

can beg<strong>in</strong> to reap the benefits that accrue from reduc<strong>in</strong>g the use of our precious energy resources.<br />

This roadmap is dynamic – it will cont<strong>in</strong>ue to change and be ref<strong>in</strong>ed and expanded as more<br />

<strong>in</strong>dustry participants become <strong>in</strong>volved and as technology breakthroughs emerge.<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 59


(this page <strong>in</strong>tentionally left blank)<br />

TECHNOLOGY ROADMAP FOR AUTOMOTIVE MANUFACTURING ENERGY REDUCTION 60


APPENDIX A: List of Contributors<br />

Bill Allemon<br />

Ford Motor Company<br />

wallemon@<strong>for</strong>d.com<br />

George Andrews<br />

General Motors Corp<br />

george.p.andrews@gm.com<br />

Rex Armstrong<br />

Chrysler, LLC.<br />

reai@chrysler.com<br />

Bob Baird<br />

General Motors Corp<br />

bob.k.baird@gm.com<br />

Margaret Baxter<br />

Orig<strong>in</strong>al Equipment Suppliers<br />

Assoc.<br />

mbaxter@oesa.org<br />

Kay Bedenis<br />

Chrysler, LLC.<br />

kfb5@chrysler.com<br />

Victor Bell<br />

Chrysler<br />

vtb@chrysler.com<br />

Raymond Betham<br />

General Motors Corp<br />

ray.betham@gm.com<br />

Stephan Biller<br />

General Motors Corp<br />

stephan.biller@gm.com<br />

Craig Blue<br />

Oak Ridge National<br />

Laboratory<br />

blueca@ornl.gov<br />

Dennis Blumenfeld<br />

General Motors Corp<br />

dennis.blumenfeld@gm.com<br />

Laura Brandt<br />

TRW <strong>Automotive</strong><br />

laura.brandt@trw.com<br />

Henry Cas<strong>in</strong>elli<br />

Ford Motor Company<br />

hcas<strong>in</strong>el@<strong>for</strong>d.com<br />

Troy Casteel<br />

Maxon Corporation<br />

tcasteel@maxoncorp.com<br />

Isaac Chan<br />

U.S. Department of <strong>Energy</strong><br />

isaac.chan@ee.doe.gov<br />

Bill Charron<br />

Ford Motor Company<br />

wcharron@<strong>for</strong>d.com<br />

Mark Cl<strong>in</strong>e<br />

General Motors Corp<br />

mark.c.cl<strong>in</strong>e@gm.com<br />

Matthew Daraskavich<br />

Ford Motor Company<br />

mdaraska@<strong>for</strong>d.com<br />

Paula Deeds<br />

General Motors Corp<br />

paula.j.deeds@gm.com<br />

Melissa Eichner<br />

Energetics Incorporated<br />

meichner@energetics.com<br />

John Eidt<br />

Ford Motor Company<br />

jeidt@<strong>for</strong>d.com<br />

Rick Gerth<br />

Center <strong>for</strong> <strong>Automotive</strong><br />

Research<br />

RGerth@cargroup.org<br />

A-1<br />

John Goetzmann<br />

General Motors Corp<br />

john.goetzmann@gm.com<br />

Tom Gustafson<br />

General Motors Corp<br />

tom.gustafson@gm.com<br />

Yoram Guy<br />

ZF Group NA<br />

yoram.guy@zf.com<br />

Gordon Harbison<br />

Durr Systems, Inc<br />

gordon.harbison@durrusa.com<br />

Brad Hare<br />

The BAM Group, Inc.<br />

bhare@hbidesign.com<br />

Roger Heimbuch<br />

Auto/Steel Partnership<br />

rheimbuch@a-sp.org<br />

Karen Henderson<br />

Bayer MaterialScience<br />

karen.henderson@bayerbms.<br />

com<br />

Jack Hu<br />

University of Michigan<br />

jackhu@umich.edu<br />

Rich Hutch<strong>in</strong>s<br />

Chrysler, LLC.<br />

rmh3@chrysler.com<br />

Jon Jenn<strong>in</strong>gs<br />

EWI<br />

jjenn<strong>in</strong>gs@ewi.org<br />

Don Jordan<br />

Ford Motor Company<br />

djorda19@<strong>for</strong>d.com


Doug Kaempf<br />

U.S. Department of <strong>Energy</strong><br />

douglas.kaempf@ee.doe.gov<br />

Dean Kanelos<br />

Nucor<br />

Dean.Kanelos@nucor.com<br />

Charlotte Kelly<br />

General Motors R&D<br />

charlotte.kelly@gm.com<br />

Tim Kelly<br />

PCE Monarch<br />

tkelly@pcemonarch.com<br />

John Kimball<br />

U.S. Department of <strong>Energy</strong><br />

john.kimball@ee.doe.gov<br />

Menachem Kimchi<br />

Edison Weld<strong>in</strong>g Institute<br />

mkimchi@ewi.org<br />

Pradeep Kokate<br />

Process Control &<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Inc.<br />

pkokate@pcemonarch.com<br />

Bob Konicki<br />

Ford Motor Company<br />

rkonicki@<strong>for</strong>d.com<br />

Bill Kramer<br />

<strong>Automotive</strong> Components<br />

Hold<strong>in</strong>gs, LLC<br />

wkramer7@ach-llc.com<br />

Steve Lepper<br />

Retired Dow Chemical<br />

longtaters@aol.com<br />

Kev<strong>in</strong> Lyons<br />

National Institute of<br />

Standards and <strong>Technology</strong><br />

kev<strong>in</strong>.lyons@nist.gov<br />

Nancy Margolis<br />

Energetics Incorporated<br />

nmargolis@energetics.com<br />

Shawna McQueen<br />

Energetics Incorporated<br />

smcqueen@energetics.com<br />

Rachel Meck<br />

Federal-Mogul Corporation<br />

rachel.meck@federalmogul.com<br />

Gordon Nader<br />

Ford Land & Detroit Edison<br />

gnader@<strong>for</strong>d.com<br />

Tom Neelands<br />

General Motors Corp<br />

tom.neelands@gm.com<br />

Jim Nicholson<br />

Ford Motor Company<br />

jnichol4@<strong>for</strong>d.com<br />

James Ohl<strong>in</strong>ger<br />

PPG Industries<br />

ohl<strong>in</strong>ger@ppg.com<br />

Mark Osborne<br />

General Motors<br />

Dean Paxton<br />

U.S. Department of <strong>Energy</strong><br />

dean.paxton@ee.doe.gov<br />

Joan Pellegr<strong>in</strong>o<br />

Energetics Incorporated<br />

jpellegr<strong>in</strong>o@energetics.com<br />

Paul Platte<br />

Bayer MaterialScience<br />

paul.platte@bayerbms.com<br />

Patrick Ryan<br />

Ford Motor Company<br />

Pryan4@<strong>for</strong>d.com<br />

Rich Saad<br />

General Motors Corp<br />

richard.saad@gm.com<br />

Scott Schramm<br />

Chrysler, LLC.<br />

sws1@chrysler.com<br />

A-2<br />

Rob Seats<br />

Ashland, Inc.<br />

rlseats@ashland.com<br />

Andy Sherman<br />

Ford Motor Company<br />

asherma1@<strong>for</strong>d.com<br />

M<strong>in</strong>g Shi<br />

United States Steel<br />

Corporation<br />

mfshi@uss.com<br />

Phil Sklad<br />

Oak Ridge National<br />

Laboratory<br />

skladps@ornl.gov<br />

Mark Smith<br />

Pacific Northwest National<br />

Laboratory<br />

mark.smith@pnl.gov<br />

Susan Smyth<br />

General Motors R&D<br />

susan.smyth@gm.com<br />

Reg Sobczynski<br />

General Motors Corp<br />

reg<strong>in</strong>ald.sobczynski@gm.com<br />

Brad Spear<br />

Energetics Incorporated<br />

bspear@energetics.com<br />

Raj Suthar<br />

Ford Motor Company<br />

rsuthar@<strong>for</strong>d.com<br />

Janice Tardiff<br />

Ford Motor Company<br />

jtardiff@<strong>for</strong>d.com<br />

Jeffrey Tew<br />

General Motors Corp<br />

jeffrey.tew@gm.com<br />

Chip Tolle<br />

Idaho National Lab<br />

charles.tolle@<strong>in</strong>l.gov


Don Walkowicz<br />

United States Council <strong>for</strong><br />

<strong>Automotive</strong> Research<br />

(USCAR)<br />

Scott Walters<br />

Chrysler, LLC.<br />

sww@chrysler.com<br />

Qigui Wang<br />

General Motors Corp.<br />

Qigui.wang@gm.com<br />

Phil Wilson<br />

BASF<br />

phillip.wilson@basf.com<br />

Larry Workens<br />

Chrysler, LLC.<br />

LMW7@chrysler.com<br />

Jie Xiao<br />

General Motors R&D<br />

jie.xiao@gm.com<br />

Faiz Yono<br />

Chrysler, LLC.<br />

fy2@chrysler.com<br />

A-3<br />

Kurt Zabel<br />

Siemens Build<strong>in</strong>g<br />

Technologies<br />

woodcockz@aol.com<br />

Bill Zdeblick<br />

Federal-Mogul Corporation<br />

Bill.Zdeblick@federalmogul.<br />

com<br />

John Ziegert<br />

Clemson University<br />

ziegert@exchange.clemson.e<br />

du<br />

Aaron Zoeller<br />

Maxon Corporation<br />

azoeller@maxoncorp.com


(this page left <strong>in</strong>tentionally blank)<br />

A-4


APPENDIX B: Comprehensive List of R&D Needs<br />

R&D NEEDS – BODY IN WHITE (MANUFACTURING PROCESSES)<br />

Jo<strong>in</strong><strong>in</strong>g<br />

• Solid state jo<strong>in</strong><strong>in</strong>g methods -<br />

similar materials, dissimilar<br />

materials - ultrasonic,<br />

magnetic, pulse ●●●●●●<br />

• Non-heat cured adhesives -<br />

<strong>in</strong>duction ●●●●<br />

• New hybrid jo<strong>in</strong><strong>in</strong>g methods<br />

mix<strong>in</strong>g technology - weld<strong>in</strong>g<br />

and adhesives, mix<br />

processes, fasteners and<br />

adhesives, laser assist arc<br />

weld<strong>in</strong>g ●●<br />

• Multi-material cast<strong>in</strong>g -<br />

explore metals/ processes<br />

that self-bond “cast-<strong>in</strong>” to<br />

create metallurgical bond<br />

• Enablers to laser weld<strong>in</strong>g –<br />

part design, tool<strong>in</strong>g,<br />

methods to get better parts<br />

out of dies (not the design of<br />

the laser itself)<br />

Model<strong>in</strong>g/<br />

Studies<br />

• Assessment of energy use <strong>in</strong> material <strong>for</strong>m<strong>in</strong>g<br />

processes/jo<strong>in</strong><strong>in</strong>g processes used to create<br />

substructures ●●●●●●●●●<br />

• Def<strong>in</strong>ition of current energy consumption <strong>for</strong> current<br />

materials as benchmark (need <strong>in</strong> order to compare<br />

alternatives)<br />

• Predictive material properties (design, waste)<br />

●●●● and<br />

• Better software to predict - <strong>for</strong>mability, spr<strong>in</strong>g back,<br />

jo<strong>in</strong><strong>in</strong>g, process<strong>in</strong>g<br />

• Mathematical model to predict material properties<br />

<strong>in</strong> material manufactur<strong>in</strong>g<br />

• Process models to optimize balance of number<br />

parts (higher yield) vs. other goals ●●●<br />

• Virtual functional build (dur<strong>in</strong>g launch of prototypes)<br />

• Next generation CAD/CAM systems that <strong>in</strong>clude<br />

energy cost at the design level (both systems-level<br />

and part-level)<br />

• Develop l<strong>in</strong>e die CAE simulation<br />

capabilities/technology (<strong>for</strong> tool<strong>in</strong>g)<br />

Efficient Vehicle Part<br />

Form<strong>in</strong>g Shape<br />

• Increased process yields <strong>in</strong><br />

stamp<strong>in</strong>g, and cast<strong>in</strong>g - reduce<br />

scrap, less runners, no scalp<strong>in</strong>g,<br />

reduced edge trimm<strong>in</strong>g, lower<br />

rejects, ways to reuse scrap ●●●●<br />

• S<strong>in</strong>gle sided <strong>for</strong>m<strong>in</strong>g - improved lowcost<br />

materials, improved cycle times<br />

●<br />

• Hydro-<strong>for</strong>m<strong>in</strong>g (tubular and sheet);<br />

lower energy through reduced mass<br />

and offal ●<br />

• Die-<strong>in</strong>-die stamp<strong>in</strong>g design to utilize<br />

offal<br />

• Net shape cast<strong>in</strong>g to improve yields<br />

• Low-pressure mold<strong>in</strong>g<br />

Vehicle and Process Design Sensors/Controls/<br />

• Mass compound<strong>in</strong>g designs - smaller eng<strong>in</strong>e,<br />

smaller body and powertra<strong>in</strong> ●<br />

• Tubular structures - new designs, connections,<br />

make tubes from AHSS and other materials ●<br />

• Re-use of manufactur<strong>in</strong>g systems and<br />

components (e.g., dies, <strong>in</strong>frastructure)<br />

• A one step process to <strong>for</strong>m the BIW shell<br />

• <strong>Technology</strong> transfer - designers won’t use<br />

materials they aren’t familiar with<br />

• Optimization design <strong>for</strong> entire BIW based on<br />

per<strong>for</strong>mance requirements<br />

• Weld-less bodies<br />

B-1<br />

• Process monitor<strong>in</strong>g, sens<strong>in</strong>g<br />

technologies, NDE, total quality<br />

management<br />

• Sensors powered from <strong>in</strong>-situ waste<br />

energy (e.g., vibrations, thermal,<br />

etc.)<br />

• Global BIW NDE to elim<strong>in</strong>ate<br />

teardown/non- accessible welds


R&D NEEDS - BODY IN WHITE (MANUFACTURING INFRASTRUCTURE)<br />

Plant Infrastructure<br />

• Reclaim heat from heat s<strong>in</strong>k operations (e.g., from cool<strong>in</strong>g fluids) ●●●●<br />

• Alternate cool<strong>in</strong>g technology (a. cool<strong>in</strong>g water, b. elim<strong>in</strong>ate fans) - with a<br />

means of re-captur<strong>in</strong>g lost energy<br />

• Plant layout and production sequenc<strong>in</strong>g to m<strong>in</strong>imize energy use ●●<br />

• M<strong>in</strong>iaturized, lightweight tools - welders, riveters, etc. – that lead to smaller,<br />

lighter, lower power robots that may work faster and more efficiently ●<br />

• Shutdown effectiveness between production periods<br />

• Wireless control and operation of BIW build<br />

• Light<strong>in</strong>g - effective, m<strong>in</strong>imal; could weld <strong>in</strong> the dark<br />

• Ventilation reduction - good close capture ventilate where needed<br />

• M<strong>in</strong>imize plant footpr<strong>in</strong>t<br />

• Efficient dunnage systems - denser pack<strong>in</strong>g, more efficient load<strong>in</strong>g and<br />

unload<strong>in</strong>g, light weight, flexibility<br />

• Elim<strong>in</strong>ate steam<br />

• Optimize cool<strong>in</strong>g water; use ambient-T washers <strong>for</strong> chemicals<br />

• Lightweight materials resistant to break<strong>in</strong>g sharp edges of metal parts <strong>for</strong> part<br />

touch<strong>in</strong>g tool<strong>in</strong>g<br />

• More efficient motors<br />

• Low friction surfaces (or low surface energy coat<strong>in</strong>g) on part conveyors (e.g.,<br />

vibration conveyors)<br />

B-2<br />

Heat/<strong>Energy</strong><br />

Recovery<br />

• Recovery of heat from cast<strong>in</strong>g (heat of<br />

fusion, sheet products, etc.) or heat<br />

treat<strong>in</strong>g ●●●<br />

• Inc<strong>in</strong>erate plastic scrap to augment power<br />

grid of plant ●●<br />

• Alternative methods <strong>for</strong> UHSS - quench,<br />

heat recovery<br />

• Harvest mechanical energy (waste) <strong>in</strong><br />

stamp<strong>in</strong>g and other operations and put it<br />

<strong>in</strong> power grid of plant


Facility design,<br />

application & materials<br />

• Material handl<strong>in</strong>g/ application of<br />

f<strong>in</strong>e micron size powder ●●<br />

• New method to handle air <strong>in</strong><br />

booths without us<strong>in</strong>g air<br />

handl<strong>in</strong>g units ●●<br />

• Need to develop means to -<br />

apply less coat<strong>in</strong>g (meet<br />

customer requirements), more<br />

efficiently, <strong>in</strong> smaller booth to<br />

reduce air flow requirements,<br />

low/no people requirements,<br />

“<strong>for</strong>giv<strong>in</strong>g” material process<br />

w<strong>in</strong>dow (temp, humidity) ●<br />

• Reduce scrubber ∆P and still<br />

capture pa<strong>in</strong>t overspray<br />

• Ultra high solids material with<br />

high transfer efficiency<br />

equipment and dry booth with<br />

solids recovery<br />

• Wet pa<strong>in</strong>t<br />

technology/application that<br />

doesn’t require voltage <strong>for</strong><br />

transfer efficiency % - next step<br />

after electrostatic<br />

R&D NEEDS – PAINT PROCESS<br />

Top Coat and Prime<br />

Spray Process<br />

<strong>in</strong> 0 -5 Years<br />

• Elim<strong>in</strong>ate need to supply fresh air to pa<strong>in</strong>t<br />

application process ●<br />

• Reduce or elim<strong>in</strong>ate compressed air<br />

pressure required <strong>for</strong> automation and<br />

applicators ●<br />

• M<strong>in</strong>imize downdraft - re-evaluate maximum<br />

allowable solvent concentrations <strong>in</strong> booth<br />

air<br />

• Cascade/re-circulate air <strong>in</strong> a booth with low<br />

scrubber static requirements - low water<br />

flow, filtration requirements<br />

• Incorporate solid waste <strong>in</strong>to product, i.e.,<br />

recycle<br />

Non-Spray <strong>in</strong><br />

0 - 5 Years<br />

• Develop demonstrations of late R&D and<br />

non R&D<br />

Non-Spray<br />

<strong>in</strong> 10 - 15 years<br />

• 100 % transfer efficiency at today’s<br />

per<strong>for</strong>mance - layer, substrate, no waste,<br />

elim<strong>in</strong>ate air/spray needs, dip, roll, shr<strong>in</strong>k,<br />

color materials<br />

- 100% TE application and/or dry under<br />

booth to elim<strong>in</strong>ate water circulation and<br />

sludge ●●●●●●●●●●●● (Change the<br />

way coat<strong>in</strong>g is applied)<br />

B-3<br />

Cure/<br />

Dry<strong>in</strong>g<br />

• Effective/feasible production method<br />

of UV cure - uni<strong>for</strong>m <strong>in</strong>tensity, l<strong>in</strong>e-ofsight<br />

issues<br />

- Alternate methods to cure/dry<br />

pa<strong>in</strong>t <strong>in</strong> a cost effective way (UV,<br />

plasma, microwave, IR, etc.)<br />

●●●●●●●●●<br />

• Reduce dry<strong>in</strong>g time/ temperature with<br />

reduced air flow - direct fired<br />

- Direct fire all ovens - what is the<br />

effect of small amounts of<br />

products of combustion on<br />

f<strong>in</strong>ishes? ●●<br />

• Elim<strong>in</strong>ate the need to supply fresh air<br />

to the oven or cur<strong>in</strong>g process (IR,<br />

UV, Cat, solvents) ●●<br />

• Composition of carrier to transport<br />

through oven ●<br />

• Investigate alternate heat transfer<br />

mechanisms - vapor zone, liquid<br />

phase<br />

• Reuse exhaust air/waste heat from<br />

other pa<strong>in</strong>t/non-pa<strong>in</strong>t processes<br />

• Elim<strong>in</strong>ate clean<strong>in</strong>g of carrier<br />

• Integrate CHP <strong>in</strong>to cure process


R&D NEEDS – PAINT PROCESS<br />

Abatement Pretreatment<br />

Pa<strong>in</strong>t Formulation and<br />

Operat<strong>in</strong>g Parameters<br />

• Alternate technology <strong>for</strong> CO2 and • Elim<strong>in</strong>ate pretreatment ●●●●●● • Re<strong>for</strong>mulate pa<strong>in</strong>t to operate <strong>in</strong> wide<br />

NOx reduction; critical if clean air - Coil coat<strong>in</strong>g (clean only be<strong>for</strong>e cut booth operat<strong>in</strong>g climate (less booth<br />

act is implemented (if can’t edges prime) control) ●●●●●●●●●●●●<br />

elim<strong>in</strong>ate) ●● • Methods to prep metal to promote - Develop pa<strong>in</strong>t that can adapt to air<br />

• Elim<strong>in</strong>ate need <strong>for</strong> abatement coat<strong>in</strong>g adhesion with fewer steps, environment - feasibility <strong>for</strong> booth<br />

(materials, environmental less fresh water requirements and not no control but expand w<strong>in</strong>dow<br />

regulations) ●● reduced temperatures ●● (temperature, air flow)<br />

• Integrate CHP ● • Ambient temperature pretreatment ● - Re<strong>for</strong>mulate pa<strong>in</strong>t to <strong>in</strong>crease<br />

• Waste heat recovery ● - Reduce heat<strong>in</strong>g/cool<strong>in</strong>g transfer efficiency and <strong>in</strong>crease<br />

• Tighter control of air/fuel ratio requirements and reduce liquid pa<strong>in</strong>t spray w<strong>in</strong>dow (would reduce<br />

control on oxidizer/ <strong>in</strong>c<strong>in</strong>erator flow requirements air volume and temperature)<br />

burner • Elim<strong>in</strong>ate deionized water requirement - Modify pa<strong>in</strong>t <strong>for</strong>mula to allow less<br />

• Improve <strong>in</strong>ternal energy efficiency • Condensed pretreatment/electrocoat volume of air and open <strong>for</strong>m the<br />

of abatement equipment process (replace exist<strong>in</strong>g multi-step temperature and humidity w<strong>in</strong>dow,<br />

• Increase concentration ratio <strong>in</strong> system) mov<strong>in</strong>g towards ambient application<br />

both abatement systems - Fewer stages (improved chemistry)<br />

• Conduct late-stage or non R&D<br />

- CHP <strong>in</strong>tegrated <strong>in</strong>to process -<br />

bus<strong>in</strong>ess development (not R&D)<br />

end of product R&D<br />

- Heat pump e-coat and phosphate -<br />

system <strong>in</strong>tegration<br />

B-4<br />

of pa<strong>in</strong>t. (understood guid<strong>in</strong>g<br />

pr<strong>in</strong>ciples must be - appearance<br />

parameter and environmental<br />

emission unchanged)<br />

- Pa<strong>in</strong>t that will provide a high-quality<br />

f<strong>in</strong>ish with little to no control of the<br />

booth’s environment<br />

• Low temperature cure material<br />

●●●●●●●●<br />

- Def<strong>in</strong>e temperature, time, #/type<br />

coat<strong>in</strong>gs and other process steps<br />

elim<strong>in</strong>ated<br />

- Reduce energy-primer/top coat use<br />

different catalyst (new ones) -<br />

(faster cure), use different energy<br />

sources<br />

• Improve rheology characteristics of<br />

the pa<strong>in</strong>t <strong>for</strong> high solids materials


R&D NEEDS – POWERTRAIN AND CHASSIS COMPONENTS<br />

Heat<br />

Treat<strong>in</strong>g<br />

Advanced<br />

Cast<strong>in</strong>g/Form<strong>in</strong>g<br />

Optimized<br />

Mach<strong>in</strong><strong>in</strong>g<br />

New Materials<br />

Alternative<br />

Vehicle<br />

Manufactur<strong>in</strong>g<br />

• Localized heat • Advanced cast<strong>in</strong>g • R&D <strong>for</strong> dry • R&D to understand • Manufactur<strong>in</strong>g<br />

treatment technologies (<strong>in</strong>crease mach<strong>in</strong><strong>in</strong>g - life cycle energy processes and<br />

design/transient yields, utilize light elim<strong>in</strong>ate coolant, burden of new materials <strong>for</strong> fuel<br />

process<strong>in</strong>g (<strong>in</strong> situ) weight materials) pump<strong>in</strong>g systems, materials and impact cells and hybrids<br />

●●●●● ●●●●●●● collection systems, on manufactur<strong>in</strong>g ●●●●●<br />

- Put energy where • Integrated spray/application process ●●● • Electric motors -<br />

it is needed, when computational tools <strong>for</strong> systems ●●●● - <strong>Energy</strong> implications how do we make<br />

it is needed materials design and • Low energy of alternative these efficiently and<br />

- Achieve high process<strong>in</strong>g ●●●● mach<strong>in</strong><strong>in</strong>g ● materials (both <strong>in</strong> <strong>in</strong>tegrate <strong>in</strong>to<br />

strength <strong>in</strong> • Optimal cast<strong>in</strong>g design - Low friction plant scrap and current high volume<br />

particular areas of and manufactur<strong>in</strong>g - bear<strong>in</strong>g/slide materials vehicle<br />

a part without reduce scrap and - Low mass production) manufactur<strong>in</strong>g<br />

wast<strong>in</strong>g energy on <strong>in</strong>crease yield ●●● structures - Understand real processes ●●●●<br />

offal (BIW)<br />

- Surface-only heat<br />

treat<strong>in</strong>g (comb<strong>in</strong>e<br />

heat treatment<br />

with cast<strong>in</strong>g)<br />

- No furnace<br />

- Heat treat <strong>in</strong> the<br />

foundry<br />

- Control cool<strong>in</strong>g<br />

- Non-bulk heat<br />

treat<strong>in</strong>g processes<br />

(laser, microwave,<br />

magnetic field,<br />

<strong>in</strong>duction, etc.) to<br />

reduce energy<br />

requirements<br />

• Materials or<br />

processes that don’t<br />

require heat treat<strong>in</strong>g<br />

or elim<strong>in</strong>ate steps<br />

• Design or develop high<br />

yield gat<strong>in</strong>g systems ●●<br />

- All cast<strong>in</strong>g processes<br />

- Die cast<strong>in</strong>g process<br />

(reduce air<br />

entrapment)<br />

• Optimize cast<strong>in</strong>g<br />

designs <strong>for</strong> mass<br />

reduction via better<br />

analysis tools,<br />

validation, experiment,<br />

and R&D ●●<br />

• Powder mold<strong>in</strong>g and<br />

chemical cure; metal<br />

<strong>in</strong>jection but new ways<br />

of <strong>for</strong>m<strong>in</strong>g (near-net,<br />

chemical cure) ●●<br />

• M<strong>in</strong>imize metal chips<br />

and <strong>in</strong>frastructure via<br />

net-shape<br />

manufactur<strong>in</strong>g ●<br />

• Thixo mold<strong>in</strong>g of<br />

alum<strong>in</strong>um <strong>for</strong><br />

components<br />

• Develop cast alloys that<br />

use less energy to<br />

process, i.e., melt with<br />

less Btus, yet are strong<br />

(less mass)<br />

- <strong>Energy</strong><br />

management<br />

control<br />

- No chiller<br />

requirement<br />

• R&D to optimize<br />

energy efficiency of<br />

mach<strong>in</strong>e motor<br />

controllers<br />

• Mach<strong>in</strong>e quality<br />

control (MQC)<br />

development -<br />

elim<strong>in</strong>ate flood<br />

coolant<br />

energy cost/life<br />

cycle of component<br />

up to use<br />

• Strong, light, near-net<br />

materials that require<br />

less mach<strong>in</strong><strong>in</strong>g ●●<br />

• Manufactur<strong>in</strong>g<br />

research - develop<br />

cost effective proven<br />

processes <strong>for</strong> new<br />

materials ●<br />

• Nano-manufactur<strong>in</strong>g<br />

processes - higher<br />

strength materials<br />

with reduced weight<br />

(cross-sectional)<br />

• Multi-function<br />

materials/<br />

components<br />

• R&D <strong>for</strong> alternative<br />

vehicles/hybrid<br />

manufactur<strong>in</strong>g –<br />

explore most energy<br />

efficient processes<br />

<strong>for</strong> powertra<strong>in</strong> and<br />

chassis components<br />

●●<br />

• R&D <strong>for</strong> battery<br />

technology (power<br />

storage, energy<br />

storage) <strong>for</strong> high<br />

volume production<br />

B-5


R&D NEEDS – POWERTRAIN AND CHASSIS COMPONENTS<br />

Process/Design<br />

Eng<strong>in</strong>eer<strong>in</strong>g<br />

Vehicle Design/<br />

Eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>Energy</strong><br />

Efficient<br />

Bus<strong>in</strong>ess<br />

Models<br />

<strong>Energy</strong> Assessment/<br />

Benchmarks<br />

●●●●●●●●●●●●●<br />

Waste Heat<br />

M<strong>in</strong>imization<br />

• Enabl<strong>in</strong>g processes • Designs <strong>for</strong> energy • Reduce transport • <strong>Energy</strong> mapp<strong>in</strong>g – develop • Ways to efficiently<br />

<strong>for</strong> parts efficiency (DFE 2 ) energy database that is multi-use recover and reuse<br />

consolidation ● ●● consumption (processes, designers, low temperature<br />

- Roll – <strong>for</strong>m<strong>in</strong>g - Consolidate - <strong>Energy</strong> <strong>for</strong> managers, others) waste heat (salt<br />

elim<strong>in</strong>ates cast<strong>in</strong>g - Reuse outsource vs. <strong>in</strong>- • Identify sub-energy use <strong>for</strong> bath, cool<strong>in</strong>g, etc.)<br />

and requires less - Net shapes source processes (metal removal, ●●●●●<br />

energy - Fewer process - Trucks wait<strong>in</strong>g at mach<strong>in</strong><strong>in</strong>g, HVAC and oil • Comb<strong>in</strong>ed heat<br />

- Gears – powder steps the bridge mist and ventilation, and power from<br />

metal technology • Identify important (waste energy) coolant filters, metal waste heat from<br />

• “Make part right” the DFE 2 processes - Go back to tra<strong>in</strong>s melt<strong>in</strong>g) heat treat<strong>in</strong>g,<br />

first time, quick (heat treat<strong>in</strong>g, versus trucks • Map and <strong>in</strong>clude extraction motors, cast<strong>in</strong>g,<br />

correct change-over cast<strong>in</strong>g/ <strong>for</strong>g<strong>in</strong>g, - Use big trucks or and conversion of raw other sources<br />

techniques mach<strong>in</strong><strong>in</strong>g, more smaller materials <strong>in</strong> energy<br />

• Product module weld<strong>in</strong>g/<strong>for</strong>m<strong>in</strong>g/ fuel efficient footpr<strong>in</strong>t<br />

design, <strong>for</strong> recovery bend<strong>in</strong>g) trucks • Quantify where energy is<br />

and re-use • Identify DFE 2 • Green used and source/function<br />

• Develop processes to checklists to manufactur<strong>in</strong>g plan - Electrical<br />

limit energy <strong>in</strong>crease per<strong>for</strong>m energy - similar to green - Air<br />

<strong>for</strong> light weight impact analysis build<strong>in</strong>g <strong>in</strong>itiatives - Motion<br />

materials use (provide an energy - Hydraulic<br />

• Explore ways to score) • Create prioritization matrix<br />

reduce or elim<strong>in</strong>ate • Develop rules <strong>for</strong> <strong>for</strong> energy assessment <strong>for</strong><br />

f<strong>in</strong>al test<strong>in</strong>g (e.g., designers to powertra<strong>in</strong> and chassis<br />

upstream test<strong>in</strong>g, evaluate energy based on annual usage<br />

under one roof impact of product (high, medium, low);<br />

reduces test<strong>in</strong>g design, e.g., energy opportunity to improve<br />

needs) versus quality and (high, medium, low); ease<br />

• Resolve noise, function of implementation (easy,<br />

redundancy, moderate, difficult).<br />

<strong>in</strong>frastructure, safety • Understand value-added<br />

and other issues versus non-value added<br />

related to wireless energy (what’s necessary)<br />

(potential energy • Conduct detailed energy<br />

benefits) audit of current<br />

• Integrate renewables manufactur<strong>in</strong>g processes;<br />

<strong>in</strong>to processes use to prioritize R&D<br />

B-6


Material Handl<strong>in</strong>g<br />

R&D NEEDS – FINAL ASSEMBLY<br />

<strong>Energy</strong> Efficient<br />

Tool<strong>in</strong>g and<br />

Equipment<br />

Facilities<br />

Alternative<br />

<strong>Energy</strong> Use<br />

• Research on more efficient • Develop equipment that • Research on <strong>in</strong>novative • Research to develop ultra<br />

conveyors ●●●●●● does not consume energy approaches <strong>for</strong> provid<strong>in</strong>g long life, rechargeable,<br />

- Low friction when not <strong>in</strong> use ●●●●●● HVAC and light<strong>in</strong>g <strong>in</strong> f<strong>in</strong>al advanced batteries ●●●●●<br />

- Conveyance methods • Develop thermal assembly area ●●●●●● • Install solar panels ●●●<br />

- Lighter weight materials regeneration processes to • Develop ways to reduce • Utilize landfill gas <strong>for</strong> plant<br />

- Layout capture and use waste heat leak loads from energy ●●<br />

• Develop concepts that ●●●●● compressors ●● • Utilize alternative energy <strong>for</strong><br />

<strong>in</strong>corporate more AGV/RGV<br />

●●●<br />

• Use fuel cell <strong>for</strong>klifts ●<br />

• Investigate use of electrical<br />

regeneration <strong>in</strong> assembly<br />

tool<strong>in</strong>g and equipment<br />

- Fitt<strong>in</strong>gs<br />

- Ultrasonics<br />

- etc.<br />

assembly processes<br />

• Research feasibility of<br />

underground coal<br />

• Develop new, low-energy ●●●● gasification <strong>for</strong> hydrogen<br />

technologies <strong>for</strong> material production and use <strong>in</strong><br />

storage and retrieval plants<br />

Model<strong>in</strong>g and Simulation Monitor<strong>in</strong>g and Control <strong>Energy</strong> Efficient Products<br />

• Reverse logistics: consider “cradle-tocradle"<br />

product life cycle from raw<br />

material Æ use Æ raw material<br />

●●●●<br />

• Develop a material content and<br />

logistics energy simulation model (raw<br />

materials through assembly) ●●●<br />

• Develop virtual eng<strong>in</strong>eer<strong>in</strong>g tools <strong>for</strong><br />

concurrent product/process design<br />

that <strong>in</strong>corporates energy ●●●<br />

• Investigate and analyze <strong>in</strong>terface and<br />

trade-offs between throughput, quality<br />

and energy use ●●<br />

• Develop total build<strong>in</strong>g process energy<br />

math model under difficult operat<strong>in</strong>g<br />

scenarios (zero to full capacity) ●●<br />

• Include energy utilization factors <strong>in</strong><br />

product design <strong>for</strong> manufactur<strong>in</strong>g ●<br />

• Study the fully accounted cost of<br />

recyclable vs. returnable dunnage ●<br />

• Develop systems <strong>for</strong> accelerated startup<br />

and shut-down of plant light<strong>in</strong>g and<br />

systems ●●●●●●<br />

• Research wireless sensor technology<br />

<strong>for</strong> material track<strong>in</strong>g, handl<strong>in</strong>g and<br />

sequenc<strong>in</strong>g ●●●●●<br />

• Develop low-cost, po<strong>in</strong>t of use sensors<br />

to monitor power consumption ●●●●<br />

B-7<br />

• Develop low-friction, self-lock<strong>in</strong>g<br />

fasteners (bolts, etc.) ●●●<br />

- Apply nanotechnology ●


Curtailment & <strong>Energy</strong> Build<strong>in</strong>g<br />

Management<br />

R&D NEEDS – PLANT INFRASTRUCTURE<br />

Compressed<br />

Air<br />

H2O Consumption<br />

(Mach<strong>in</strong><strong>in</strong>g)<br />

• Wireless monitor<strong>in</strong>g and control + data • Develop alternative motion • Develop dry mach<strong>in</strong><strong>in</strong>g processes -<br />

collection ●●●●●●●●●●● systems <strong>for</strong> large compressed air elim<strong>in</strong>ate H20 <strong>in</strong> the powertra<strong>in</strong><br />

• Standardized a robust (reliable) wireless movers/equipment - elim<strong>in</strong>ate mach<strong>in</strong><strong>in</strong>g process ●●<br />

spectrum <strong>in</strong> the <strong>in</strong>dustry and all compressed air, i.e., conveyor • Develop dry clean<strong>in</strong>g processes - no<br />

components that go along with it (flow take-ups ●●●●●● H20 powertra<strong>in</strong> pa<strong>in</strong>t shop ●<br />

meters, energy meters, etc) • Develop new counterbalance<br />

●●●●●●●●●● cyl<strong>in</strong>der technology ●●●●<br />

• Standardized simple protocols to simplify • <strong>Energy</strong> model <strong>for</strong> compressed air<br />

IT management ●●●●●● that is implemented and<br />

• Determ<strong>in</strong>e special bandwidth <strong>for</strong> auto <strong>in</strong>tegrated <strong>in</strong>to systems ●●<br />

plants (due to noise, etc) ● • Develop efficient non-compressed<br />

• Achieve spectrum def<strong>in</strong>itions, improved air blow-offs<br />

shield<strong>in</strong>g and transmission (antennae) ●<br />

Decisions Based on Lifecycle<br />

Not Just Initial Cost<br />

Steam<br />

Build<strong>in</strong>g<br />

Shell<br />

• Develop <strong>in</strong>frastructure to monitor energy • Develop no heat process clean<strong>in</strong>g • Determ<strong>in</strong>e how to use the build<strong>in</strong>g<br />

usage and emissions and feed it back to systems <strong>for</strong> metals itself as your antenna ●●●●<br />

manufactur<strong>in</strong>g systems design software • Determ<strong>in</strong>e how to elim<strong>in</strong>ate<br />

and suppliers ●●●●●●●● bandwidth issues associated with<br />

• Do studies to identify the <strong>in</strong>itial costs and facility layout ●●<br />

lifecycle costs of right-siz<strong>in</strong>g process • Utilize the “shield” around the<br />

components via standardized data build<strong>in</strong>g<br />

collection ●●●●●●●<br />

B-8


APPENDIX C: Acronyms<br />

AGV automated guided vehicle<br />

AHSS advanced high strength steel<br />

BIW body <strong>in</strong> white<br />

CPU central process<strong>in</strong>g unit<br />

DFEC design <strong>for</strong> energy consumption<br />

DOE U.S. Department of <strong>Energy</strong><br />

EERE U.S. DOE Office of <strong>Energy</strong> Efficiency and Renewable <strong>Energy</strong><br />

F Federal Laboratory<br />

G Government<br />

GHG greenhouse gas<br />

I <strong>in</strong>dustry<br />

I/O <strong>in</strong>put/output, as <strong>in</strong> comput<strong>in</strong>g systems<br />

ICE <strong>in</strong>ternal combustion eng<strong>in</strong>e<br />

IEEE <strong>in</strong>stitute of electrical and electronics eng<strong>in</strong>eers<br />

IT <strong>in</strong><strong>for</strong>mation technology<br />

ITP <strong>in</strong>dustrial technologies program<br />

LCA life cycle analysis<br />

LEL lower exposure limit<br />

MPG miles per gallon<br />

NDE non-destructive evaluation<br />

OEM orig<strong>in</strong>al equipment manufacturer<br />

PLM project lifecycle management<br />

R&D research and development<br />

RD&D research, development, and demonstration<br />

RFI radio frequency <strong>in</strong>terference<br />

RGV rail guided vehicle<br />

ROI return on <strong>in</strong>vestment<br />

TE Tellurium<br />

TQM total quality management<br />

U University<br />

USCAR United States Council <strong>for</strong> <strong>Automotive</strong> Research LLC<br />

C-1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!