Download pdf - Freie Universität Berlin

geofuberlin

Download pdf - Freie Universität Berlin

Block-Kurs

Luftchemie

19 – 23 März 2007

Freie Universität Berlin, FB Geowissenschaften

Institut für Meteorologie

Arbeitsgruppe TRUMF – TRoposphärische UMweltForschung

9.00 - 13.00 / Nachmittag Selbststudie

Peter Builtjes


2

Fokus des Kurses

Atmosphärische chemische Zusammensetzung der Troposphäre

und der Stratosphäre

Welche Phenomäne bestimmen die chemische

Zusammensetzung

Geowissenschaften – Meteorologie – Atmosphärische Chemie

Atmosphärische Chemie ist wichtig für:

− Strahlungsbilanz und Klimaänderung

− Luftqualität

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


3

Ziel von der Block-Kurs

Einführung in Atmosphärische Chemie

Lesen/Studieren zwei algemeine - kurze - Artikeln

Studieren/Verstehen von ein ausgewählte Artikel (zu zwei)

Kurze Presentation am Freitag über dieses Artikel

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


4

Struktur des Kurses (1)

Montagmorgen : Entwicklung Erdatmosphäre/Basisprinzipen

Chemie/Stratosphäre 1

Montagnachmittag : “Aerosols Before Pollution” Meinrat Andreae,

Science Jan. 2007

Dienstagmorgen : Stratosphäre II / Troposphäre I

Dienstagnachmittag : “Is the cleansing capacity of the atmosphere

changing?” Guy Brasseur and Ron Prinn,

IGBP Newsletter 43, 2001

Mittwochmorgen : Troposphäre II und III

Mittwochnachmittag : Anfang ausgewählte Artikeln

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


5

Struktur des Kurses (2)

Donnerstagmorgen : Aerosolen

Donnerstagnachmittag : 13.30-14.30 Presentation “Luftkwalität in Berlin

Block-Kurs Luftchemie

Martin Lutz, Senat Berlin

Studieren Artikeln

Freitag : Präsentationen

Berlin, 19-23 März 2007


6

Teilnahme Schein : 80 % Teilnahme

Seminar Schein : 80 % Teilnahme + Präsentation

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


7

I) Entwicklung der Zusammensetzung

der Erdatmosphäre

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


8

Literatur

Peter Warneck, Chemistry of the Natural Atmosphere, Acadamic Press,

Inc., 1988

E. Meszaros, Atmospheric Chemistry, Elsevier, 1981

John Seinfeld and Spyros Pandis, Atmospheric Chemistry and Physics,

John Wileyd Sons, 1998

Detlev Möller, Luft, Chemie Physik Biologie Reinhaltung Recht,

Walter de Gruyter, 2003

Richard Wayne, Chemistry of Atmospheres, Clarendon Press, 1993

Peter Hobbs, Basic physical Chemistry for the Atmospheric Sciences, Cambridge

Univ. Press, 1995

Junge, Air Chemistry and Radioactivity, Academic Press, 1963

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


9

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


10

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


11

Formation and evolution of the atmosphere

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


12

Block-Kurs Luftchemie

Berlin, 19-23 März 2007

Richard Wayne


13

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


14

Io : a satellite of Jupiter. Active volcano’s, atmosphere with

SO 2 and O-atoms

Titan : a satellite of Saturn. Possibly pools of liquid CH 4 ,

< 91 K

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


15

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


16

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


17

Development of the earth atmosphere

1) Proto-planet, gasphase H 2 , He (little CH 4 , H 2 O, NH 3 , H 2 S)

Block-Kurs Luftchemie

followed by dissipation of the leighter atoms

Development of gravitation field and of temperature

(by radioactive heating + solar radiation)

followed by condensation of H 2 O, binding of H

Berlin, 19-23 März 2007


18

2) Solid surface, secondairy elements: gases from the solid earth,

outgassing + volcano’s

CH 4 , NH 3 , H 2 O, a reducing atmosphere with H

Block-Kurs Luftchemie

proof: Old (3.000 - 1000 million years) Fe-layers are

reduced, not oxidised

vulcano’s lead to CO 2 , H 2 O, N 2 , an oxidising atmosphere

with O

Berlin, 19-23 März 2007


19

Averaged composition of volcanic gas

Block-Kurs Luftchemie

H 2 O 20 - 97 %

CO 2 1-48 %

N 2 1-38 %

SO 2 1-30 %

SO 3 0- 8 %

H 2 0- 4 %

Cl 2 0- 4 %

Berlin, 19-23 März 2007


20

3) Surface temperature at the edge between reducing and

oxidysing atmosphere: T ~ -10 / -15 °C

Block-Kurs Luftchemie

With increasing amount of CO 2 and H 2 O

(greenhouse effect) T increases to above 0 °C,

liquid water

Berlin, 19-23 März 2007


21

Formation of O 2 in the atmosphere

H 2 O + hν →H + OH λ < 195 nm

H 2 O + hν →H 2 + O

O + O + M → O 2 + M

But, O 2 absorbs at λ < 195 nm, blocking

Estimated equilibrium at O 2 ~ 0.02 %, 10 -3 PAL

(present atmospheric level)

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


22

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


23

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


24

O 2 + hv → O + O

O+ O 2 → O 3

Mehr in Detail später

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


25

Live on earth started in a reduced atmosphere

Photosynthesis:

2H 2 O + CO 2 + hν →CH 2 O + H 2 O + O 2 + energy

live in the sea, or in mudded areas because of lack of O 3 -layer

gradual increase of O 2 level to 0.01 - 0.1 PAL

formation of O 3 -layer makes live on the surface possible

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


26

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


27

Respiration:

C n H m O p + O 2 → H 2 O + CO 2 + energy

(more energy than by photosynthesis)

Fermentation:

C n H m O p → C 2 H 5 OH + CO 2 + energy

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


28

Possible fluctuations in concentration levels

1) Higher O 2 levels in the past, upto 25 %

Proof. Current insects about 10 cm

In the past about 50 cm

Probability of forest-fires increases by 70 % with every percent

increase in O 2 -concentration, leading to decrease in O 2 -levels

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


29

Air

Ocean

Block-Kurs Luftchemie

The chemical composition of the

atmosphere is far from equilibrium

CO 2

N 2

O 2

Ar

H 2 O

NaCl

NaNO 3

Present world

0.03

78

21

1

96

3.5

~ O

Equilibrium world

99

0

~ 0

1

63

35

1.7

Berlin, 19-23 März 2007


30

Live is the deviation from equilibrium,

the living planet

Gaia hypothesis : James Lovelock

Homeostasis : The eco-system creates the atmosphere,

the environment, in which it feels well

Capacity of control

Block-Kurs Luftchemie

The system contains numerous (delicate)

feed-back mechanisms to keep the balance

Berlin, 19-23 März 2007


31

Figures from:

The revenge of Gaia James Lovelock Penguin Books 2006

Question: What is the best temperature for life on earth?

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


32

Block-Kurs Luftchemie

Figure 1: Distribution of Life

Berlin, 19-23 März 2007


33

Block-Kurs Luftchemie

Figure 2: Algal life in the oceans: blue: ocean deserts

Berlin, 19-23 März 2007


34

Doom-scenario I

New micro-organisms appear:

They kill the plants/forests

CO2 rises

T > 100 °C

H2O-vapour to stratosphere

H2O + hν →H2 + O

H2 escapes to space

3O + N2 → 2NO3 NO3 desolves in the sea, before evaporation

Results in CO 2 -atmosphere at high temperatures: Venus

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


35

Doom-scenario II

New micro-organisms appear:

They consume nearly all CO 2

CO 2 decreases

T decreases to ~ -10 / -15 °C

Atmosphere with some CO 2 , some H 2 O: Mars

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


36

Current composition of the earth atmosphere

N 2

O 2

Block-Kurs Luftchemie

78.09 %

Ar 0.93 %

CO 2

Ne 18.2 ppm

He 5.24 ppm

CH 4

Kr 1140 ppb

20.95 %, very minor decrease by increase of CO 2

0.0038 %, equals 360 ppm, pre-industrial 270 ppm

1.8 ppm = 1800 ppb, pre-industrial 600 ppb

Composition of the dry atmosphere, H 2 O-vapour between 0.02-4 % in the

troposphere

Berlin, 19-23 März 2007


37

Wissenschaftliche Frage

Wie wahr der Chemische Zusammensetzung von der natürliche

Erdatmosphäre?

Für CO 2 und CH 4 : Eiskernbohren, zurück ca. 150.000 Jahr

Was mit Aerosolen/Feinstaub??

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


38

Natural Aerosols

Soil Dust

Sea Spray

Smoke from Wildfires

Biological Particles

Biogenic Dimethyl Sulfide

Vulcano’s

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


39

Aerosols and Cloud Condensation Nuclei-CCN

Paper Andreae “Aerosols before Pollution”

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


40

Units

ppm : parts per million : 10 -6

ppb : parts per billion : 10 -9

ppt : parts per trillion : 10 -12

Nearly always : volume ratio: ppm (ν)

Sometimes : mass ratio

Example : O 2 : 20.95 % is volume ratio (ν)

Moleculair weight O2 : 32

Averaged moleculair weight air : 29

O2 mass-ratio : 20.95 x 32/29 = 23.1 % (m)

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


41

Also used, especially in air quality: mass/volume:

gr/m 3 , or µgr/m 3 (10 -6 gr)

ppm (ν) = RT/pMi x conc. in µgr/m 3

Mi is moleculair weight

So, µgr/m 3 is function from T and p

Often µgr/m 3 STP = standard temperature and pressure:

1013 hPa and 20 °C (293 K)

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


42

Atmospheric residence time

The earth + atmosphere is a (nearly) closed system

(only not for H 2 , but the sun-wind contains protons~

no effective loss of H 2 )

Definition: The mean residence time of a gasmolecule:

t = mass of gas in the atmosphere / emission per time-unit

= mass ... / sink per time unit

In case of equilibrium

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


43

Emission : Anthropogenic and/or biogenic and/or natural

(geogenic)

Sink : dry deposition and/or wet deposition and/or

chemical conversion

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


44

Example

Total mass of the atmosphere : 5.15 10 18 kg

(total mass of the oceans:

1.4 10 21 kg, mass of the earth : 6.0 10 24 kg)

N 2 . 78 % 3.9 10 18 kg

N 2 -emission . biogenic : 10 12 kg/year

anthropogenic : 0.06 10 12 kg/year

t = 3.9 10 6 year

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


45

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


46

Junge’s law

C = C + C* (fluctuation)

C1 = √ C *2 ⎯

C 1

⎯ = a.T -b

C

T in years; a = 2.16.10 -2 ; b = 0.95

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


47

Relative Standard Deviation

10 2

10 0

10 -2

10 -4

10 -6

Rn

10-3 100 103 106 Tropospheric Residence Time/yr

Block-Kurs Luftchemie

O 3

H 2 O

CH 4

CO

CO 2

H 2

N 2 O

O 2

He

Berlin, 19-23 März 2007


48

Atmospheric mixing time scales

Troposphere, zonal average ≈ 2 weeks

Troposphere, global ≈ 1-2 years

Troposphere + stratosphere, global ≈ 2-5 years

Small τ: large variation in concentration in time and place

Large τ: constant (not at sources/sinks)

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


49

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


50

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


51

Turbulent diffusion / Eddy diffusion is essential to describe the

concentration patterns

Kz ~ 1-10 m 2 /s

Ky ~ 2.10 +6 m 2 /s

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


52

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


53

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


54

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


55

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


56

II) Basisprinzipen von Chemie

und Strahlung

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


57

Chemical reactions occur by adding energy to the system:

By – elevated – temperature or by radiation.

In the atmosphere the strongest driving force is radiation, sunlight,

so photo-chemistry. Thermal reactions are less important.

Some aspects: Mass-conservation. Stoichiometry

Example: CH 4 + 2O 2 → CO 2 + 2H 2 O (only at T > 400 °C)

This is the overall reaction

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


58

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


59

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


60

Energy →

AB + C

Block-Kurs Luftchemie

E act

∆H

(ABC) + +

Reaction Path →

E: Activatie Energy

Exotherme reactie

Depiction of the transition state for a bimolecular reaction

A + BC

Berlin, 19-23 März 2007


61

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


62

AB + hν →A + B (dissociation)

dn ab

dt

Block-Kurs Luftchemie

= n ab . j i

j i = photo-dissociation constant

ji = ∫ ∅i (λ) σab (λ) I (λ) d λ

∆λ

∅ i (λ) : Quantum yield

= product molecules formed/cm3 s

photons absorbed/cm3 s

Berlin, 19-23 März 2007


63

σ ab (λ) : Absorption cross-section

I (λ) : Local photo flux

I total =I direct (taking into account absorption)

Block-Kurs Luftchemie

+I diffuse

+ I reflected (at earth surface and clouds)

Berlin, 19-23 März 2007


64

Attenuation of solar radiation in the atmosphere

UV-A 100 - 280 nm

UV-B 280 - 315 nm

UV-C 315 - 400 nm

Visible light 400 - 800 nm

Infra-red > 800 nm

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


65

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


66

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


67

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


68

III) Stratospheric chemistry and other trace

gases

First, some observations

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


69

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


70

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


71

At 55 ° N January 360 DU

Block-Kurs Luftchemie

March 400 DU

May 370 DU

July 360 DU

September 310 DU

November 320 DU

DU = Dobson Unit = equivalent column height at standard pressure

and temperature, in units of 10 -2 mm

Berlin, 19-23 März 2007


72

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


73

Formation of stratosphere O 3

O 2 + hν O + O j a

O + O 2 + M O 3 + M k b

O 3 + hν O 2 + O j c

O + O 3 O 2 + O 2 k d

Role of stratospheric O 3 :

Absorption λ < 300 nm

Temperature increase in the stratosphere

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


74

O 2 + hV O + O (‘D) λ 180-240 nm

Block-Kurs Luftchemie

50 km 30 km 15 km

J (O 2 ) [s -1 ] 10 -9 5.10 -11 10 -14

Photo-dissociation of O 3

O 3 + hV O 2 + O (‘D) λ 200-300 nm

50 km 30 km 15 km

J (O 3 ) [s -1 ] 8.10 -3 10 -3 7.10 -4

Remark: O (‘D) + H 2 O OH

Berlin, 19-23 März 2007


75

n 1 : conc. O

n 2 : conc. O 2

n 3 : conc. O 3

n m : conc. (N 2 + O 2 )

dn 1

dt

dn 2

dt

dn 3

dt

Block-Kurs Luftchemie

=2 j a n 2 –k b n 1 n 2 n m

+ j c n 3 –k d n 1 n 3

=–j a n 2 –k b n 1 n 2 n m

+ j c n 3 + 2k d n 1 n 3

=k d n 1 n 2 n m + j c n 3

–k d n 1 n 3

Berlin, 19-23 März 2007


76

In addition:

n 2 (O 2 ) >> n 1 (O) + n 3 (O 3 )

dn 2

⇒ = 0

dt

n 1 (O) in equilibrium in 10-20 sec

dn 1

⇒ = 0

dt

As result:

B 1 – exp. [-2 (AB) ½ t]

n3 (O3 ) = .

A 1 + exp. [-2 (AB) ½ ½

t]

A = 2 k d j c / k b n 2 n m

B = 2 j a n 2

In equilibrium:

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


77

Theory of Chapman (1932)

From the 4 reactions follows:

conc. O 3 = conc. O 2

Block-Kurs Luftchemie

( )

K b .j a .conc (N 2 + O 2 ) 0.5

K d .j c

(for equilibrium, long time scales)

Qualitative correct, but factor 2 too high compared

to measurements

Berlin, 19-23 März 2007


78

Possible explanation of the overestimation of stratospheric

ozone by Chapman Theory:

Dynamics, transport. However, this should not influence the total

budget

Chemistry, missing loss-processes

Remark: This explanation should hold for the natural,

undisturbed stratospheric ozone layer!

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


79

O 3 “residence time”

Block-Kurs Luftchemie

50 km 5 - 20 hours

30 km ≈ 1 week

20 km 1 - 3 years

Other stratospheric trace gases

N 2 O, H 2 O, CH 4 , (CH 3 Cl etc.)

Origin: the troposphere

Berlin, 19-23 März 2007


80

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


81

Block-Kurs Luftchemie

N 2 O (ca. 90 % of biogenic origin)

N 2 O + hV N 2 + O ('D) λ ≈ 200 nm

O ('D) + N 2 O N 2 + O 2

2NO

from O 3 -photo-dissociation

Berlin, 19-23 März 2007


82

Followed by: NO + O3 NO2 + O

NO2 + hV NO + O

O + O2 + M O3 + M

(NO + NO2 = constant)

O + NO2 NO + O2 (O + O3 2O2 )

Leading to: O3 + hV O + O2 O + NO2 O2 + NO

NO + O3 NO2 + O2 Netto: O 3 + O 3 2O 2

With NO x as catalyst

Paul Crutzen: 1970

“The influence of nitrogen oxides on the atmospheric ozone content”

Quart. J.R.Met.Soc. (1970), 320-325

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


83

Impact of NO and NO 2 , but also of:

OH

HO 2

No explanation where NO/NO 2 comes from,

mentiones “photodissociation” of N 2 O

But main source is N 2 O + O → 2NO

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


84

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


85

H 2 O troposphere: 0.2 - 4%

stratosphere: 2 - 7 ppm

O ('D) + H 2 O 2OH

CH 4 in the stratosphere

CH 4 + OH H 2 O + CH 3 (lower stratosphere)

CH 4 + O ('D) OH + CH 3 (higher stratosphere)

CH 4 + Cl HCl + CH 3

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


86

O + H 2 O → 2 OH

OH in Stratosphäre und Troposphäre

OH reagiert mit sehr viel Komponenten, nur nicht mit N 2 , O 2 und

CO 2

OH ist "cleansing agent", und bestimmt der Oxidation Capacity

von der Atmosphäre

Is the cleansing capacity of the atmosphere changing?

Guy Brasseur and Ron Prinn

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


87

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


88

Stratospheric chlorine

Methylchloride: CH 3 Cl (biogenic)

F 11 : CFCl 3 (antropogenic)

F 12 : CF 2 Cl 2 (antropogenic)

Carbontetrachloride: CCl 4 (antropogenic)

Methylchloroform: CH 3 CCl 3 (antropogenic)

Example: CFCl3 + hV Cl + CFCl2 λ 170-190 nm

CFCl2 + O2 COFCl + ClO

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


89

Followed by: Cl + O 3 ClO + O 2

O + ClO Cl + O 2

O 3 + hV O + O 2

Netto: O 3 + O 3 2O 2

With Cl as catalyst

Molina and Rowland: 1974

“Stratospheric sink for chlorofluormethanes:

chlorine atom-catalysed destruction of ozone”

Nature, vol.249, June 28, 1974, 810-812

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


90

CFC-11 : CFCl 3 : last number amount of F

fore-last number amount of H+1

first number amount of C-1

CF C-22 : HCF 2 Cl

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


91

Loss reactions for Cl

Cl + CH4 HCl + CH3 Cl + HO2 HCl + O2 Cl + H2 HCl + H

CH4 most important reaction

OH + HCl H2O + Cl: slow

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


92

Important:

Binding Cl in less reactive compounds

Cl + CH 4 → HCl + CH 3

ClO + NO 2 → ClONO 2

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


93

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


94

Photo-dissociation in the stratosphere

N 2 O, CFCl 3 , CF 2 Cl 2 , CCl 4

Block-Kurs Luftchemie

(all λ > 175 nm)

No photo-dissociation of CH 4 , NH 3

Components without H-atoms: photo-dissociation

Components with H-atom: reaction with OH and O ('D)

Photo-dissociation in the troposphere

NO 2 λ 175 - 240 nm

240 - 307 nm

CH 2 O λ < 300 nm

Berlin, 19-23 März 2007


95

Stratospheric ozone budget

Block-Kurs Luftchemie

X + O3 XO + O2n+1 XO + O2 X + (n+1) O2 Netto: O 3 + O 2n+1 (n+2) O 2

n: 0 or 1

X: H, OH, NO, Cl, O

Model calculations, Crutzen & Schmailzel, 1983

Stratosphere, 2-D model

O + O3 2O2 20%

NO + O3 NO2 + O2 30%

H + O3 OH + O2 30%

Cl + O3 ClO + O2 20% anthropogenic

Also: ClO + NO2 ClONO2 Berlin, 19-23 März 2007


96

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


97

Block-Kurs Luftchemie

F 11: DuPont, 1932, for cooling

Production F 11 + F 12

1960 150.10 3 ton/year

1974 800

1982 600

1986 750

spray-can war

Berlin, 19-23 März 2007


98

Block-Kurs Luftchemie

Concentrations

1975 1986 1991

F 11 0.1 ppb 0.23 0.30

F 12 0.1-0.2 ppb 0.40 0.50

Residence time

Estimates F 11 F 12

Sze & Wu (1974) 10 year 10-20 years

Singh (1979) 40 70

Crutzen (1987) 75-100 75-100

Elkins (1993) 55 140

Berlin, 19-23 März 2007


99

British Antartic Survey; 1982

TOMS instrument NASA

Ozone hole: fully unexpected

Normal chemistry can not explain this

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


100

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


101

Block-Kurs Luftchemie

‘Om het behoud van de ozonlaag’

John Gribbin, DuPoc, Wageningen, 1992

Berlin, 19-23 März 2007


102

Der Zusammenhang zwischen Ozon und ClO in das Chemisch Zerstörte Gebiet

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


103

Situation

Polar night: polar vortex ≈ 60 o S

temperature: < -83 o C

HNO 3 + H 2 O polar stratospheric

clouds, PSC’s

In the polar night, at the surface of PSC’s:

ClONO 2 + HCl Cl 2 + HNO 3

ClONO 2 + H 2 O HOCl + HNO 3

Inactive Cl becomes potential active Cl

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


104

At sunrise

Cl 2 + hV 2Cl

HOCl + hV OH + Cl

O 3 increase after October:

Block-Kurs Luftchemie

breaking of polar vortex mixing

T > - 83 o C, no polar clouds

Berlin, 19-23 März 2007


105

Block-Kurs Luftchemie

PSC: Polar Stratospheric Clouds

Key Role

Berlin, 19-23 März 2007


106

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


107

Stratospheric ozone worldwide

Seasonal variation ≈ 50 DU

Solar cycle ≈ 6 DU

Quasi-biennal oscillations ≈ 8 DU

Vulcano’s ≈ ...

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


108

Weniger O3 in der Stratosphäre gibt weniger

Absorption von UV-B (280-315 nm)

in der Stratosphäre

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


109

Increase of UV-B leads to

Increase in melonomia, skin cancer

1% less O 3 leads to 4 % more skin cancer

Eye-problems

Damage to protection-system at the skin-surface

Damage to plancton

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


110

1) Ozone depletion potential-ODP

mean O 3 -depletion due to kg. of species X, divided by:

mean O 3 -depletion due to kg. CFC-11

2) Global warming potential-GWP

increase radiative forcing due to kg of species X, divided by:

increase radiative forcing due to kg.CO 2 (or CFC-11)

3) Atmospheric residence time

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


111

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


112

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


113

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


114

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


115

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


116

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


(WMO, 2007)

117

Block-Kurs Luftchemie

CFC Trends 1978 - 2006

Berlin, 19-23 März 2007


118

(WMO, 2007)

Block-Kurs Luftchemie

Trends HCFC

Berlin, 19-23 März 2007


119

Block-Kurs Luftchemie

(WMO, 2007)

Trends CH 3ClCH 3 and CCl 4

Berlin, 19-23 März 2007


120

(WMO, 2007)

Block-Kurs Luftchemie

Trend CH 3Br

Berlin, 19-23 März 2007


121

Block-Kurs Luftchemie

ODP and GWP of different CFC’s

Berlin, 19-23 März 2007


122

Effects of the emission reduction of CFC’s

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


123

Block-Kurs Luftchemie

Ozone in Earth’s stratosphere

Berlin, 19-23 März 2007


124

Block-Kurs Luftchemie

Pollution of the stratosphere

Berlin, 19-23 März 2007


125

Koplung Klima-änderung und

Stratosphärische O 3-Schicht

Erhöhte CO 2 usw.:

Erhöhte Temperatur in der Troposphäre

So, Abkühlung in der Stratosphäre

Mehr Polar Stratospheric Clouds

J. Austin et al.

“Possibility of an Artic ozone hole in a double-CO 2 climate”,

Nature, vol. 360, Nov. 19, 1992, 221-225

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


126

IV Tropospheric chemistry

Gasphase chemistry: tropospheric ozone and related

components

Heterogeneous chemistry: Aerosol physics and chemistry

Dry and wet deposition

Chemical Transport Modelling - CTM

Emissions

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


127

Tropospheric ozone

90 % of all ozone is in the stratosphere, only about 10 % is in the troposphere

Ozone concentration in the troposphere increases with height above the surface

Basic question in 1970: What is the origin of ozone in the troposphere and at groundlevel??

Block-Kurs Luftchemie

Diffusion from the stratosphere (Junge)

Current insight: In the Northern hemisphere:

Produced by anthropogenic emissions (Crutzen)

Total troposphere: 50 % of the ozone from stratosphere

50 % anthropogenic

At ground level : 90-95 % anthropogenic

Berlin, 19-23 März 2007


128

Ozone and summersmog

Los Angeles, 1945, Haagen-Smit

Photochemical smog : (smoke + fog = smog) in summer

Wintersmog : London ‘fog’ 1940-1950: SO 2 and Sulfate-aerosols

Summersmog : LA: NOx and Reactive Hydro-carbons

Effects : Eye-irritation, breathing problems (asmatics)

Forest

Plants (tomato’s, tabacco)

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


129

Surface-near ozone at Montsouris 1876-1905

(Volz et al., 1986) compared to the Arkona series

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


130

Block-Kurs Luftchemie

Open symbols : Before 1950

Closed symbols : After 1990

Berlin, 19-23 März 2007


131

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


132

Tropospheric chemistry

Stratospheric chemistry: mostly gasphase

Tropospheric chemistry: gasphase, aquous phase, aerosols

Formation of tropospheric ozone

NO 2 + hV NO + O λ < 410 nm

O + O 2 + M O 3 + M

O 3 + NO NO 2 + O 2

NO2 + O2 Photo-stationairy state

Block-Kurs Luftchemie

NO + O 3

Berlin, 19-23 März 2007


133

Increase of tropospheric ozone: shift in

photo-stationairy state:

NO 2 + O 2

Reactive hydrocarbons:

Block-Kurs Luftchemie

NO + O 3

RH + OH + O2 RO2 + H2O RO2 + NO RO + NO2 R: CH 3 , C 2 H 5 etc. etc.

RO + O2 Aldehydes + HO2 H2O + NO NO2 + OH

Berlin, 19-23 März 2007


134

Example

CH4 + OH H2O + CH3 CH3 + O2 + M CH3O2 + M

CH3O2 + NO CH3O + NO2 CH3O + O2 HCHO + HO2 stable product

CO + OH CO 2 + H

H + O 2 + M HO 2 + M

HO 2 + NO NO 2 + OH

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


135

Netto:

CH 4 + 8 O 2 → CO + 4 O 3 + 2 OH + H 2 O

CO + 2 O 2 → CO 2 + O 3

Also:

P (O 3 ) = k 1 [NO] [RO 2 ]

+ k 2 [NO] [HO 2 ]

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


136

Reactive Hydrocarbons: RH's transform NO in NO 2 without a loss

of O 3 , so leads to increase in O 3 concentration

Different RH's have a different Photochemical Ozone Creation

Potential: POCP

Ethene

Propene

1-Butene

Ethane

Propane

Block-Kurs Luftchemie

Initial NO-NO 2

2

2

2

2

3

Total, including products

4

7

10

6

8

Berlin, 19-23 März 2007


137

RH : Reactive Hydrocarbons

VOC : Volatile Organic Compounds

NMVOC : Non Methane VOC

Alkanes : Saturated Compounds

Block-Kurs Luftchemie

Examples : Ethane C 2H 6 atmospheric life-time : 80 days

Alkenes : Unsaturated Compounds

Propane C 3H 8 15 days

Examples : Ethene C 2H 4 2 days

Propene C 3H 6 15 hours

Isoprene C 5H 8 5 hours (biogenic)

Berlin, 19-23 März 2007


138

Alkynes : Example: Acethylene C 2H 2 30 days

Aromatics : Example: Benzene C 6H 6 20 days (carciogenic)

Tolueen : C 6H 5CH 3 3.6 days

Terpenes : C 10H 16 2 hours (biogenic)

Aldehydes and ketones : Example: Formaldehyde HCHO 1.6 days

Alcohols : Example: Methanol: CH 3OH 20 days

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


139

Block-Kurs Luftchemie

O 2

ην

O 3

NO 2

NO

OH

RH

Aldehydes

Berlin, 19-23 März 2007


140

NO → NO 2 → O 3

RH → Aldehyden

Block-Kurs Luftchemie

Messungen in L.A.

Berlin, 19-23 März 2007


141

Policy for tropospheric O 3

RH versus NO x abatement,

Non-lineair: NO + O 3 NO 2 + O 2

lowering of NO leads to increase in O 3

high RH/NO x -ratio: NO x -strategy

low RH/NO x -ratio: RH-strategy

Biogenic RH-emissions

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


142

Biogenic RH/VOC Emissions

From Decidious and Coniferous Forest:

Isoprene and Terpene

Strong dependence on Temperature and Radiations

(PAR+ Photosynthetic Active Radiation)

Biogenic NO Emissions

From surface, bacteria

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


143

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


144

Normal reactions in Northern Hemisphere,

for NOx > 50 ppt

RH + OH + O 2 → RO 2 + H 2 O

RO 2 + NO → RO + NO 2

RO + O 2 → aldehydes

HO 2 + NO → NO 2 + OH

For NOx < 50 ppt

HO 2 + HO 2 → H 2 O 2 + O 2

O 3 + HO 2 → 2O 2 + OH

O 3 + OH → O 2 + HO 2

Leads to decrease on O 3 -concentration

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


145

The formation of the OH-radical,

the hydroxyl-radical

O 3 + hν →O 2 + O ('D)

O ('D) + H 2 O → 2 OH

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


146

In free troposphere (> 2/3 km):

reaction OH with CH 4 , CO most important

In the polluted boundary layers:

reaction OH with NO 2 and HCHO most important

residence time OH ≈ 0.3 - 25 sec

mean concentration: 5.10 5 molecules/cm 3

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


147

OH-radical 'discovered' by Levy, 1971

OH reactes with CH 4 , CO, with NO 2 , HCHO, H 2 , O 3 , NH 3 , SO 2 , RH

OH is the cleansing agent of the atmosphere, and determines the

atmospheric life time of species

OH does not react with N 2 , O 2 , H 2 O, CO 2

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


148

Atmospheric Chemistry and the OH Radical

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


149

Trends in the OH-concentration

Increase in O 3

Block-Kurs Luftchemie

Increase in OH

Increase in hv Increase in OH

Increase in H 2O Increase in OH

Increase in CH 4

Decrease in OH

Increase in CO Decrease in OH

But: increase in CH 4, CO leads to increase in O 3 also …

Guy Brasseur and Ron Prinn: “Is the ‘cleansing capacity’ of the atmosphere

changing?”

IGBP Newsletter 43, 2002.

Conclusion: Relatively constant since 1850, may be about 20 % less.

Berlin, 19-23 März 2007


150

Studies to analyse the Budget of a Species

Emissions

Chemical formation and destruction

Dry and Wet Deposition

Can I understand the resulting concentrations?

Are emissions in balance with the loss terms?

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


151

Dry Deposition

Flux = Fs [conc. m/s]

Fs = Kz (z)

Block-Kurs Luftchemie

∂C

∂ z

- Fs = ( C (z)ref – C (o) ) /

o

= ( C (z)ref – C (o) ) / ra (z)

zref : reference hight, within the constant flux-layer

ra (z) : atmospheric resistance

rb : viscous sublayer

rc : surface resistance


z

d z

K z (z)

Berlin, 19-23 März 2007


152

-F s = [ C (z ref ) – c (o) ] / r a + r b + r c

with C (o) : concentration at z = 0, often zero:

-F s = V d C (z ref )

V d : Deposition velocity

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


153

Block-Kurs Luftchemie

Dry deposition velocity V d in cm/ s

SO 2

O 3

HNO 3

NO 2

Grassland

0.8

0.8

2.5

0.5

Water

0.4

0.04

0

0

Berlin, 19-23 März 2007


154

Dissolve in water

∆z g

∆z l

F s = ( C gi –C g )

Block-Kurs Luftchemie

D g

∆z g

D l

= ( C l –C li )

∆z l

C l

C gi

C g

C li

air

interface

water

Berlin, 19-23 März 2007


155

Dg, Dl = Moleculair Diffusion Coefficient in gasphase

and liquid phase

Cgi = H . Cli

H : Henry Constant

Fs = ( Cl – Cgi / H ) / ( 1/kg H + 1/kl )

D g

∆z g

Block-Kurs Luftchemie

D l

= kg = kl

∆z l

kg, kl : fct (windspeed)

Fs = l ( Cl – Cgi / H )

r

Berlin, 19-23 März 2007


156

SO 2

O 3

Block-Kurs Luftchemie

Dry deposition to watersurfaces

Kg, K l , V d in cm/s

Kg

0.44

0.51

K l

9.6

0.049

H

0.02

3

V d

0.4

0.05

Berlin, 19-23 März 2007


157

Wet Deposition

Two processes:

In cloud processes: Gases absorped in droplets followed by

deposition when it rains:

Rain Out

Below cloud processes:

Wash out

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


158

Global CH 4 -budget

Emission sources in Tg/ year

Animals 100-220

Rice-paddies 280

Swamp 130-260

Termites 150

Biomass-burning 30-100

Natural gas leakage 20

Coal mines 40

Total ~ 500

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


159

Loss term

CH 4 + OH ~ 400 Tg/ year

CH 4 -flux to the stratosphere ~ 60

Total ~ 460

Concentration CH 4

Atmospheric life-time ~ 8 years

Block-Kurs Luftchemie

~ 1800 ppb Northern Hemisphere

~ 1700 ppb Southern Hemisphere

Berlin, 19-23 März 2007


160

Biogenic: Anaerob : 2 H 2 + CO 2 → CH 4 + O 2

Block-Kurs Luftchemie

Aerob : CH 4 + 2O 2 → CO 2 + 2H 2 O

Biogenic/Anthropogenic distinction by

14 C production by cosmic radiation t ~ 5700 year

So, 14 C content biogenic emissions = 14 C content trees

14 C content fossil fuel = 0

Berlin, 19-23 März 2007


161

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


162

Trend increase CH 4-concentration

1970-1985 : 1.5 % / year

1985-1989 : 0.8 % / year

around 1993 : 0 %

1995-2003 : 0.3 % / year

Reason : CH 4 -emission changes ??

OH increase ??

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


163

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


164

Han van Dop and Maarten Krol

“Changing trends in tropospheric methane and carbon monoxide: a

sensitivity analysis of the OH-Radical”, Journal of Atm. Chem. 25,

1996

Calculations with a 1-D transport-chemistry model

M. Khalil et al

“Atmospheric Methane: Trends and Cycles of Sources and Sinks”,

Draft Paper 01/2007

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


165

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


166

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


167

I) Eiszeit Methan

Vor 38.000/14.500/11.500 Jahre :

Erwärmung in weniger hundert Jahren

Als reaction steigt auch CH 4 an-verstärkt Temperatur Erhöhung

Quelle unklar:

Im Eiskristalle gelagert CH 4 .H 2 O, vielleicht nicht??

Mehr bei Bacterien?

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


168

II) Nature Artikel, Januar 2006

Frank Keppler et al:

Methane emissions from terrestial plants under aerobic conditions

A lot of discussions!

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


169

Tropospheric O 3-budget

A. Inflow from the stratosphere

B. Dry deposition at the surface

C. Chemical production

D. Chemical destruction

No wet deposition, O 3 does not desolves in water

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


170

Ad A. Stratosphere-Troposphere exchange

Change in tropopause height

Tropopause folding

Turbulent transport by jet-streams

Small scale turbulence

Estimate: NH 300-500 Tg/ year

Block-Kurs Luftchemie

SH 150-250 Tg/ year

(jet-streams stronger in NH)

Berlin, 19-23 März 2007


171

ad B. Deposition flux

V d deposition velocity

Oceans/snow 0.001 m/s

Grassland 0.005 m/s

Forest 0.006 m/s

Result: NH 425 Tg/ year

Block-Kurs Luftchemie

SH 275 Tg/ year

Berlin, 19-23 März 2007


172

Ozone Production: NOx and RH

Ozone Destruction: by hν

Somewhat by O 3+ OH → HO 2 +O 2

O 3 + HO 2 → 2O 2 + OH

Conc. O 3 NH tropics 35 ppb

> 30 ° N 45 ppb

Total: NH 140 Tg

SH 120 Tg

Block-Kurs Luftchemie

SH tropics 30 ppb

< 30 ° S 40 ppb

Atmospheric life time NH 100 days

SH 120 days

Berlin, 19-23 März 2007


173

Chem. Prod.

Chem. Destr.

Netto

Dep.Flux

Strat. Flux

Block-Kurs Luftchemie

Calculations with a global chemical

transport model

Pre-industrial

1384

1327

12

400

388

In Tg/year

2000

2212

2020

194

678

388

Berlin, 19-23 März 2007


174

Block-Kurs Luftchemie

2-D model

Berlin, 19-23 März 2007


175

Emissions

Anthropogenic

Biogenic (living species) and natural

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


176

Anthropogenic

Combustion:

C + O 2 → CO 2

C x H y + O 2 → xCO 2 + 0.5y H 2 O

Incomplete Combustion:

VOC, CO, CH 4 , Dust (BLACK CARBON!!)

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


177

Contained in fuels

S → SO 2

Heavy metals

N → NO x

in gas N about 0 %

in coal about 0.5- 3 %

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


178

Thermic NO x

N 2 + O 2 → NO x

High T + high O 2 → NO high

Low T + low O 2 → NO low

Industrial processes:

HF, CFC’s, heavy metals, pesticides, particles etc.

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


179

Emissie benzine-auto’s

N 2 78 %

CO 2 12 %

H 2 O 5 %

O 2 1 %

CO 2 %

H 2 2 %

NO 0.06 %

RH 0.08 %

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


180

Biogenic Emissions

Animals: CO 2 , CH 4 , NH 3

Forests: VOC

Soil/Bacteria: NO, N 2 O

Wetlands: CH 4

Plancton: DMS, H 2 S

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


181

Natural emissions

Sea-salt (NaCl)

Wind-blown dust (sahara-sand)

Lightning (NO)

Natural forest fires (CO 2 , CH 4 , CO, VOC, NO, particles)

Meteorites (particles)

Vulcano's (CO 2 , SO 2 , H 2 S, HCl, particles)

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


182

Anthropogenic PM2.5 emissions over Europe

in 2000 including shipping

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


183

Resolution needed?

Emission Test file TNO Europe NOX total at ~ 6 x 6 km

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


184

Resolution needed?

Emission Test file TNO Europe at ~ 6 x 6 km

Block-Kurs Luftchemie

“striping” is an error in the gridding which is currently repaired.

Berlin, 19-23 März 2007


185

A more refined Budget Analysis

By the development and use of Chemical Transport

Models-CTM’s

CTM’s describe the relation between emissions and

concentrations/deposition

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


186

∂C i

∂t


∂y

Block-Kurs Luftchemie

The basis of atmospheric

transport-chemistry modelling

∂C i

∂C i

∂C i

+ u + v + w =

∂x ∂y ∂z ∂x

(K h

∂C i )

∂y

+


∂z

(K z

∂C i ) +


(K h

∂C i ) +

chemistry + emissions – dry deposition – wet deposition

∂z

∂x

Berlin, 19-23 März 2007


187

Block-Kurs Luftchemie

Examples of thae use of

Chemical Transport Models

Global Models

− Troposphere + Lower Stratosphere

− Horizontal grids of ca. 2.5 x 2.5 latlong

Regional Models, for example covering Europe

Urban Models

Local Models, Street scale

Berlin, 19-23 März 2007


188

Some examples of global ozone modelling

Some recent calculations of the tropospheric ozone budget

Ozone as greenhouse gas

Impact of climate change on air quality

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


189

Increase in surface ozone from transatlantic

transport of North American pollution

(July 1997)

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


190

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


191

Block-Kurs Luftchemie

ECHAM

Berlin, 19-23 März 2007


192

G.J.Roelofs, J. Lelieveld and R.van Dorland

“A three-dimensional chemistry/general circulation model

simulation of anthropogenically derived ozone in the troposphere

and its radiative climate forcing”

J. of Geoph. Res. 102, D19, 23389-23401, 1997

Model calculations with the European Center Hamburg Model-

ECHAM, with pre-industrial and contemporary emissions

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


193

Block-Kurs Luftchemie

Radiative forcing sensitivity of global

surface temperature to changes in

vertical ozone distribution. The heavy

solid line is a least squares fit to onedimensional

model radiative-convective

equilibrium results computed for 10

Dobson unit ozone increment added to

each atmospheric layer. Ozone

increases in region I (below ≈ 30 km)

warm the surface temperature. No

feedback effects are included in the

radiative forcing. From: Lacis et al., 1990

Berlin, 19-23 März 2007


194

Peter H.Zimmermann

“Moguntia: A handy global tracer model”

Air Pollution Modelling and its Application, Cambridge,

17 th ITM, 1988

Global 3-D model using monthly averaged winds and eddy

diffusion

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


195

Block-Kurs Luftchemie

MOGUNTIA

Berlin, 19-23 März 2007


196

Block-Kurs Luftchemie

Atmospheric Chemistry

and Greenhouse Gases

Berlin, 19-23 März 2007


197

3-D Eulerian grid modelling

Global scale, continental scale, urban scale.

Model system at TRUMF : REM/CALGRID ( continental)

+ urban version

Model system at TNO : LOTOS ( continental)

and LOTOS –zoom ( urban)

Characteristics of the model –systems:

Horizontal grid resolution 0.25 x 0.5 latlong, with nesting down to about

4 x 4 km2 Vertical layers: 5-10 upto about 3-5 km

Gasphase chemistry (O 3 ) and aerosol physics and chemistry

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


198

Required input data

Boundary conditions from observations, or global modelling

(TM-3)

Anthropogenic and biogenic and natural emissions

Land use data base

Diagnostic meteorological fields (by Eberhard Reimer)

Prognostic meteorological fields:

− DWD-LM

− NWP

− MM5-reanalysis

− ECMWF-ERA 40

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


199

Model calculations hour-by-hour for

one year, or more

Computer demand : several days on a PC

Purpose of modelling : Understanding the phenomena that

control the chemical composition

Policy applications : emission reduction strategies

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


200

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


201

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


202

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


203

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


204

Model evaluation:

How reliable present the model the ‘reality’

Aspects:

Model calculates volume averaged concentrations, observations are at

a specific point

Observations (might) contain errors, and their spatial representativity is

(often) not well known

Uncertainty and errors in input data: emissions

Weak parts of the model as description of vertical exchange processes

and the treatment of clouds

Chemistry is non-linear: Right for the wrong reasons

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


205

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


206

Waldhof: Tagesmittelwerte Ozon 1997

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


207

Block-Kurs Luftchemie

Waldhof: Tagesmaxima Ozon 1997

Berlin, 19-23 März 2007


208

Block-Kurs Luftchemie

REM3-CBM4: Station Waldhof

Berlin, 19-23 März 2007


209

Acidification / Eutrophication

and Ground level ozone

Protection of the Ecos-systems: Freshwater, Forests, Vegetation

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


210

Critical loads of S- and N- deposition,

depending on the character of the soil

S-Deposition: Acidification

N-Deposition: Acidification and Eutrophication

Ground level Ozone, averaged over the growing season

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


211

Policy based on

− Average Accumulated Exceedance: AAE

− Accumulation over Threshold of 40 ppb O3 of forest: AOT40f

AAE and AOT40f are weighted with sensitive areas, resp. forest

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


212

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


213

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


214

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


215

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


216

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


217

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


218

Three areas of current research

Data assimilation

Ensemble approach

Impact of climate change on air quality, and vice versa

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


219

Data assimilation by combining models and observations

(Kalnay, E (2003). Atmospheric modelling, data assimilation and

predictability.

Cambridge Univc. Press, UK)

Concept:

Model calculated and observed concentrations represent different

sources of information about air quality concentration levels.

Necessary: Estimation of uncertainties in model calculated and

observed concentrations

Necessary: Decision of weighting these uncertainties

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


220

Different methods

Optimal Interpolation-OI

3-D Var and 4-D Var

Kalman filtering

M.van Loon, P.Builtjes and A.Segers

“Modelling and data assimilation of ozone”

Air Pollution Modelling and its Application XIV

Kluwer/Plenum, 2001

Preliminary results of applying Kalman filtering for combining

observed and modelled ozone concentrations over Europe

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


221

Ensemble using different CTM’s to

determine the spread of models

Example for O3 using EMEP, RCG, MATCH, LOTOS-EUROS,

CHIMERE, TM-5, DEHM

Loon, van M. et al “Evaluation of long-term ozone simulations

from seven regional air quality models and their ensemble”

Accepted Atm. Env. 2007

Ensemble is a method to determine uncertainty

(Science florishes by uncertainty, policy freeces by uncertainty)

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


222

Yearly mean diurnal cycle of ozone, in µg.m -3 , as a function of hour, for all models,

averaged over all monitoring stations.

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


223

Yearly mean diurnal cycle of ozone, in µg.m -3 , as a function of hour, for all models,

averaged over all monitoring stations, relative to the average of each data set.

In order to obtain values in this figure, values of Figure 1 are divided by their

Average over hours for each model.

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


224

Block-Kurs Luftchemie

Impact of climate change on

regional air pollution budgets

Berlin, 19-23 März 2007


225

Block-Kurs Luftchemie

DEM with climate change

Berlin, 19-23 März 2007


226

Atmospheric Chemistry / Air quality and

Climate Change are coupled phenomena

Example: High ozone concentrations in the hot period of August

2003

Tropospheric ozone is a greenhouse gas

Most aerosols are cooling, BC is warming

Research question:

Air quality/atmospheric chemistry situation over Europe in

2050/2100, so in a modified climate.

Detailed question: OH-radical in 2050/2100 ???

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


227

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


228

Climate Change is not only due to CO 2

Importance

of Tropospheric ozone

of aerosols

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


229

Block-Kurs Luftchemie

Radiative Forcing Components

Berlin, 19-23 März 2007


230

Aerosols, fine particles, particle matter

Definition:

Dispersed system containing solid or liquid particles suspended in

air (cloud droplets are not considered to be aerosols)

Aerosols : Size-spectrum

Chemical composition

Aerosols : Radius > radius molecules

Mass > mass molecules

Aerosols : > 10 -3 µm

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


231

Aitken particles : r < 0.1 µm

Fine particles : 0.1 < r < 2.5 µm

Coarse particles : 2.5 < r < 10 µm

Fine particles : r ~ wavelenght of light

Block-Kurs Luftchemie

Particle size < wavelenght of light: Rayleigh scattering

~ wavelenght of light: Mie scattering

Berlin, 19-23 März 2007


232

Grenzwerte in Europa

PM10 (diameter)

Jahresmittel wert: 40 µgr/m 3

Tagesmittel wert: 50 µgr/m 3 , max 35 Tagen pro Jahr

Diese Grenzwert gillt überall !!!!

Im Gespäch: Zusätzlich:

PM2.5, Jahresmittel wert: 25 µgr/m 3 , Stadthintergrund

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


233

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


234

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


235

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


236

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


237

Removal of aerosols by:

Coagulation + Accumulation

Wet precipitation

Sedimentation

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


238

Block-Kurs Luftchemie

Coalescence by Brownian motion


N

k

l

r

µ :

A

:

:

dynamic gas

:

dN

dt

:

:

=

numbers of

Bolzmann−constant

mean free path

radius

Stokes

kT ⎛

+

µ


4

3 ⎜1

particles

viscosity

Al


⎟ N

r ⎠

− Cunningham correction

2

Berlin, 19-23 März 2007


239

Wet deposition and aqueous phase chemistry

Cloud-formation by Cloud Condensation Nucleii-CCN

CCN’s are aerosol, size ~ 0.05 µm

In-cloud scaveging : Rain out

Below-cloud scaveging : Wash out

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


240

Example for in-cloud scaveging:

SO 2 , gas + H 2 O ↔ SO 2 .H 2 O

In droplets:

SO2 .H2O ↔ H + -

+ HSO3 -

HSO3 +

↔ H

2-

+ SO3

2- 2-

SO3 + ½ O2 → SO4 Block-Kurs Luftchemie

Berlin, 19-23 März 2007


241

Cloud-drops can evaporate Aerosols ”back”, called: processing

Cloud-drops can grow and precipitate

Wash out by raindrops

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


Berlin, 19-23 März 2007

Block-Kurs Luftchemie

242

aerosol

of

radius

:

r

ion

concentrat

number

:

(r)

N

)

(

:

mass

Total

)

:

(

:

drop

of

Radius

:

R

:

out

Wash

3

3

4

2

2


=

r

o

dr

r

N

r

h

R

m

surface

the

above

height

h

h

R

π

π

π


243

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


244

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


Berlin, 19-23 März 2007

Block-Kurs Luftchemie

245

s

m

V

m

kg

m

r

for

g

r

V

s

p

s

/

1

.

0

/

10

.

2

30

viscosity

gas

dynamic

:

µ

density

particle

:

ρ

radius

:

r

law

Stokes'

n

Gravitatio

3

3

p

2

9

2







=

ρ

µ

µ

ρ


246

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


247

Messungen von Aerosolen

Zusammensetzung:

– primär, anthropogen und natürlich

– sekundär anorganisch

– sekundär organisch-biogen und anthropogen

PM 10 und PM 2.5

Chemie sekundärer Aerosole

Anzahl Messungen + Zusammensetzung sehr gering

– AFO-2000 Projekt FU-Berlin-Reimer

– Messungen Stadt Berlin-Lutz

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


248

Voerde, Germany, PM10

Metals

1%

Na

4%

UD

26%

NH4

9%

Figure 1 Composition of PM10 expressed in relative units at three sites in Europe.

Block-Kurs Luftchemie

NO3

19%

BC

7%

Barcelona, PM10

Ca

7%

Na

3%

Cl

3%

EC

11%

NH4

9%

NO3

19%

SO4

21%

OC

12%

SO4

22%

OC

27%

BC

OC

SO4

NO3

NH4

Na

Metals

UD

EC

OC

SO4

NO3

NH4

Ca

Na

Cl

Po Valley, PM10

Elements

16%

NH4

11%

NO3

18%

UD

7%

EC

3%

OC

24%

SO4

21%

EC

OC

SO4

NO3

NH4

Elements

UD

Berlin, 19-23 März 2007


249

Satelliet-messungen von

Aerosol Optical Depth-AOD

Grosse Verteilung, Ångström Coefficient

Versuch um mit LOTOS-EUROS und Data assimilation PM2.5

zu bestimmen

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


250

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


251

Mean Ångström coefficient (a) and its variance (b) for August 1997 computed from the

Ångström law using all possible combination of wavelengths.

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


252

Block-Kurs Luftchemie

Preliminary estimate of the average PM2.5 (µg/m3 )concentration

for August 1997, based on ATSR-2 data.

0 to 5

5 to 10

10 to 15

15 to 20

20 to 25

25 to 35

35 to 45

Berlin, 19-23 März 2007


253

Secondary inorganic aerosol

NO 2 + OH → HNO 3

HNO 3 + NH 3 ↔ NH 4 NO 3

SO 2 + 2OH → H 2 SO 4

H 2 SO 4 + 2NH 3 → (NH 4 ) 2 SO 4

secondary organic aerosol

ROG + OH → Σ α i C i

Block-Kurs Luftchemie

+ NO 3

+ O 3

Berlin, 19-23 März 2007


254

Example PM10 consists of

Secondary Inorganic Aerosol: SIA

Biogenic Secondary Organic Aerosol: BSOA

Anthropogenic Secondary Organic Aerosol: ASOA

Primary Aerosol, BC = Black Carbon and OC + Organic Carbon

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


255

Erste Ergebnisse Modellierung von

Aerosolen

REM-Calgrid/RCG und LOTOS und erste Validierung

Additionelle Information AOD mit ATSR

Hauptbeschränkungen Modellierung:

Zu wenig gute Beobachtungen

Wolkenbeschreibung / Chemie / CCN

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


256

Average PM 2.5 28 July - 13 August 1997

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


257

Average BSOA 28 July - 13 August 1997

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


258

Block-Kurs Luftchemie

Primary part of the PM 10 concentrations in 1995 (µg/m 3 )

as modeled by the LOTOS model

Berlin, 19-23 März 2007

20

17.5

15

12.5

10

7.5

5

2.5

0


259

Average computed (LOTOS) wind blown dust concentration (µg/m 3 ) in 1995

Block-Kurs Luftchemie

Berlin, 19-23 März 2007

7

6

5

4

3

2

0


260

Windgeblasenen Sand

Funktion von

Landnutzung

Bodenfeuchte

Windgeschwindigkeit + Grenzwert

Agrar bodenbearbeitung

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


261

Soot ( Russ) is the same as Black Carbon – BC- or Elementary

Carbon-EC

It is produced by burning, so is part of the primary emissions of PM

PM 2.5 exists to a large extent of BC and Organic Carbon-OC

BC might be the health relevant part of PM 2.5

BC is a greenhouse “gas”, it absorbs light

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


262

MODELLING BLACK CARBON OVER EUROPE

Overview of the total European BC and non-BC emissions per source category

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


263

Block-Kurs Luftchemie

Figure 2 European BC emission (tonnes) derived in this study

Berlin, 19-23 März 2007


264

Average computed (LOTOS) Black Carbon concentration (µg/m 3 ) in 1995

Block-Kurs Luftchemie

Berlin, 19-23 März 2007

2

1.5

1.25

1

0.75

0.5

0.25

0


265

Block-Kurs Luftchemie

Figure 4

Annual average distribution of BC,

APPM, SO 4, NO 3 and NH 4 over

Europe (µg/m 3 ).

Berlin, 19-23 März 2007


266

Block-Kurs Luftchemie

Figure 5

Annual average distribution of

PM2.5 (µg/m 3 ) over Europe in the

upper left panel and the associated

fractions of BC, APPM, SO 4, NO 3

and NH 4 in the other panels.

Berlin, 19-23 März 2007


267

Block-Kurs Luftchemie

SO 3 Scatter Diagram

Berlin, 19-23 März 2007


268

Block-Kurs Luftchemie

TNO 3 Scatter Diagram

Berlin, 19-23 März 2007


269

Block-Kurs Luftchemie

BC to measurements

Berlin, 19-23 März 2007


270

Modellierte PM10 über Europa (2003)

Block-Kurs Luftchemie

Total Anthropogen (ohne See-Saltz)

Berlin, 19-23 März 2007


Model

271

60

50

40

30

20

10

0

Verifikation von Modell-Ergebnisse: PM10

Block-Kurs Luftchemie

PM10 Model vs Airbase metingen

0 10 20 30 40 50 60

Meting

45

40

35

30

25

20

15

10

5

0

Holland:

PM10 wird 45 %

unterschätzt

Korrelation: 0.52-0.62

NL0007R

NL0010R

NL0220A

NL0223A

NL0226A

NL0227A

NL0249A

NL0250A

NL0252A

Berlin, 19-23 März 2007

Meting

Model


272

Verifikation von Modell-Ergebnisse: Sulfaat

Modelled concentration (mg/m 3 Modelled concentration (mg/m) 3 )

6

5

4

3

2

1

0

Block-Kurs Luftchemie

SO2

SO4

0 1 2 3 4 5 6

Observed concentration (mg/m 3 Observed concentration (mg/m )

3 )

Unsicherheit: Nicht-Lineare Trend in SO 2 -SO 4 umsetzung

(Wolken/Mist, heterogene Reaktion, usw

Berlin, 19-23 März 2007


Modelled concentration ( µg/m 3 Modelled concentration ( µg/m )

3 Modelled concentration ( µg/m )

3 )

273

6

5

4

3

2

1

0

TNO3

NO3

Block-Kurs Luftchemie

Verifikation von Modell-Ergebnisse:

Nitraat en ammonium

0 1 2 3 4 5 6

Observed concentration (µg/m 3 Observed concentration (µg/m )

3 Observed concentration (µg/m )

3 )

Modelled concentration ( µg/m 3 Modelled concentration ( µg/m )

3 Modelled concentration ( µg/m )

3 )

5

4

3

2

1

0

TNH4

NH4

0 1 2 3 4 5

Observed concentration (µg/m 3 Observed concentration (µg/m )

3 Observed concentration (µg/m )

3 )

Berlin, 19-23 März 2007


274

Konklusionen

Modellierung von Secondär Inorganisch Aerosol-SIA- geht gut

Modellierung von PM10 geht “nicht” gut

Noch laufende Studie, Artikel in Vorbereitung:

A model intercomparison study focussing on episodes with

elevated PM10 concentrations

Block-Kurs Luftchemie

FU, TNO, LISA-Paris, Köln

Berlin, 19-23 März 2007


275

Die EU-Rahmenrichtlinien und andere

Massnahmen

Massnahmen in Brussel : Focus auf Gesundheit – Stadt

Massnahmen in Genf : Focus auf Eco-system – Laendliche

Gebiete

Bruessel : EU-Rahmenrichtlinien, NEC-Directive

(National Emission Ceilings)

Genf : UNECE-Grenzueberschreitende

Luftverschmutzung-Gothenburg Protokoll

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


276

EU-Rahmenrichtlinien

Fuer SO 2 , NO 2 , NO x , PM 10 (PM 2.5 ), Pb, O 3

In der Zukunft: PAK und Schwermetalle

Fuer Stadtgebiete sind NO 2 und PM 10 /PM 2.5 die wichtigsten Stoffen

(Im allgemeinen ist O 3 in der Stadt niedrig)

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


277

Grenzwerte

NO 2 40 µg/m 3 Jahresmittelwert

200 µg/m 3 Stundenmittel, max. 18 x pro Jahr

PM 10 40 µg/m 3 Jahresmittelwert

50 µg/m 3 Tagesmittel, max. 35 x pro Jahr

In Grossstaedten: Ueberschreitungen, auch in Berlin

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


278

Konzentrationen in der Stadt sind bestimmt

durch

Grossraeumigen Hintergrund

Allgemeinen Stadt-Hintergrund

Lokale Situation: Hot spots

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


279

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


280

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


CALCULATED RCG

281

80

70

60

50

40

30

20

10

0

NOV10_01

NOV10_07

NO 2 Berlin-Buch (Hourly in microgr/m 3 )

NOV10_13

NOV10_19

NOV11_01

Block-Kurs Luftchemie

NOV11_07

NOV11_13

NOV11_19

NOV12_01

NOV12_07

NOV12_13

NOV12_19

NOV13_01

NOV13_07

NOV13_13

NOV13_19

NOV14_01

NOV14_07

NOV14_13

NOV14_19

NOV15_01

OBSERVED

OBSERVATIONS REM/CALGRID

NOV15_07

NOV15_13

NOV15_19

NOV16_01

NOV16_07

NOV16_13

NOV16_19

NOV17_01

NOV17_07

NOV17_13

NOV17_19

NOV18_01

NOV18_07

NOV18_13

Berlin, 19-23 März 2007

NOV18_19


CALCULATED RCG

282

45

40

35

30

25

20

15

10

5

0

NOV10_01

NOV10_07

NOV10_13

PM10 ZARTOU (Hourly in microgr/m 3 )

NOV10_19

NOV11_01

NOV11_07

Block-Kurs Luftchemie

NOV11_13

NOV11_19

NOV12_01

NOV12_07

NOV12_13

NOV12_19

NOV13_01

NOV13_07

NOV13_13

NOV13_19

NOV14_01

NOV14_07

NOV14_13

NOV14_19

NOV15_01

OBSERVED

OBSERVATIONS REM/CALGRID

NOV15_07

NOV15_13

NOV15_19

NOV16_01

NOV16_07

NOV16_13

NOV16_19

NOV17_01

NOV17_07

NOV17_13

NOV17_19

NOV18_01

NOV18_07

Berlin, 19-23 März 2007

NOV18_13

NOV18_19


283

RCG: Zartau: PM10 COMPOSITION 1999

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


284

Modellierung von PM10 über Berlin

Hauptfrage

Wie gut kann ich PM10 in Berlin modellieren?

Wieviel von PM10 ist verursacht durch Emissionen in Berlin?

Paper

R. Stern et al. “Analyzing the response of a chemical transport

model to emission reductions utilizing various grid resolutions”,

ITM, Leipzig, May 2006

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


RCG modelling domains. Upper left: European scale grid with resolution of 0.25° Lat., 0.5° Lon. Upper right:

Nest 1, national scale (Germany) grid with resolution of 0.125° Lat., 0.25° Lon. Lower left: Nest 2, the

Federal State (Brandenburg) grid with resolution of 0.03125° Lat., 0.0625° Lon., embedded in Nest 1. Lower

right: Nest 3, urban grid Berlin with resolution of 0.0078125° Lat., 0.015625° Lon., embedded in Nest 2 (and

Nest 1) and also showing the major “ring” motorway around Berlin.

285

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


286

Scatter diagram of observed and calculated NO 2 and PM10 annual means in the greater Berlin area at four

scales, including regression lines and correlation coefficients. Dashed lines indicate the range of +/- 50% of

the observations. For further explanations see text.

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


287

Many problems in understanding /

modelling of PM10 and PM2.5

In observations : PM2.5 1/3 Anorganic

Block-Kurs Luftchemie

1/3 Organic

1/3 Primary

Coarse Particles : PM10- PM2.5

Berlin, 19-23 März 2007


288

In general: Modelled concentrations of especially

PM10 are lower than observations

Possible explanations :

Missing emission-sources : Wind-blown dust

Block-Kurs Luftchemie

Road abrasion

Tyres and brakes

Berlin, 19-23 März 2007


289

Aerosols are also relevant for Climate Change

Most aerosols are cooling (reflection)

Estimate over Europe ~ -2 W/m 2

Black Carbon is warming (absorption)

Estimate over Europe ~ +1 W/m 2

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


290

Block-Kurs Luftchemie

Modelling Black Carbon over Europe

Radiative forcing (W/m 2 ) of BC over Europe

Berlin, 19-23 März 2007


291

M.Schaap et al.

“Anthropogenic black carbon and fine aerosol distribution over

Europe.

J. of Geoph. Res. 109, D 18207, 2004

Model calculations over 1995 over Europe using the LOTOSmodel,

overview paper.

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


292

Schlussbemerkungen

Weitere Untersuchung notwending in der Messung von

PM 10/2.5 mit chemische Aufsplittung

Weitere Untersuchung notwending in der Modellierung

von PM 10 /PM 2.5 , einschliesslich der Emissionen

Herausforderung: Kombination von Messungen und

Modellierung bei Data-assimilation / Optimale Interpolation

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


293

Block-Kurs Luftchemie

PM10 MEAN 1999 BERLIN/BRB

Jahresmittelwert der PM10-Konzentration für Berlin\Brandenburg aus der kleinräumigen Modellrechung

(links, oben), der OI-Methode aus Modell und Beobachtung (links unten) und der Beobachtung

(rechts oben) und der OI-Methode ausschließlich aus Messungen für das Jahr 1999.

Berlin, 19-23 März 2007


294

Data assimilatie AOD en PM in LOTOS-EUROS

23-5-2000

Exp 2.

Retrieved

Model

Block-Kurs Luftchemie

geässimileerd

Berlin, 19-23 März 2007


295

Block-Kurs Luftchemie

Validatie AOD → systeem werkt!

Berlin, 19-23 März 2007


296

Diplomthermen TRUMF (1)

Weitere Modell-Evaluierung REM-CALGRID (RCG)

Budget Analyse PM über Berlin mit RCG

(Dr. Arbeit Andreas Kerschbaumer)

Verbesserung Depositions Modul in RCG

Prognoseverifizierung für PM10 und PM2.5

Statistische Auswertung PM10 usw im Vergleich zu

Meteorologische Grössen

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


297

Diplomthermen TRUMF (2)

Verwendung von Wolkenanalyse, Wolken Top und -Basis,

Einbau in TRAMPER

Source/Receptor Statistik für Pollenmessungen, Einbau in RCG

Verbesserung Aerosol-Modellierung, mit TNO

Data Assimilation, mit TNO

Analyse Satelliet-Data für Luftqualität, mit TNO

Block-Kurs Luftchemie

Berlin, 19-23 März 2007


298

Danke für die Interesse !!!

Block-Kurs Luftchemie

Berlin, 19-23 März 2007

More magazines by this user
Similar magazines