01.02.2013 Views

Rainer Heintzmann

Rainer Heintzmann

Rainer Heintzmann

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hochaufl<br />

Hochauflösende<br />

Hochaufl<br />

Hochaufl<br />

Hochaufl sende sende<br />

sende<br />

sende<br />

Fluorezenzmikroskopie basierend basierend<br />

basierend<br />

basierend auf<br />

auf<br />

auf<br />

auf<br />

computergest<br />

computergestützter<br />

computergest<br />

computergest<br />

computergest tzter tzter<br />

tzter<br />

Datenauswertung<br />

Datenauswertung<br />

Datenauswertung<br />

Datenauswertung<br />

Datenauswertung<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>,<br />

<strong>Heintzmann</strong><br />

<strong>Rainer</strong>.<strong>Heintzmann</strong>@kcl.ac.uk<br />

Randall Division, King‘s King College London<br />

RANDALL<br />

division of cell and<br />

molecular biophysics<br />

Jena, November 2007


Overview: Direct Imaging<br />

�� 4Pi Microscopy, Scanning Wavefield + I 5M �� STED Microscopy


3<br />

Bigger NA:<br />

4Pi Microscopy<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


4<br />

Aperture increase: 4 Pi Microscope (Type C)<br />

Dichromatic<br />

Beamsplitter<br />

Sample between<br />

Coverslips<br />

Detector<br />

Pinhole<br />

Fluorescence Emisssion<br />

2 Photon Effect<br />

z<br />

Laser<br />

Stefan W. Hell,<br />

Max Planck Inst. bpc,<br />

Goettingen, Germany<br />

High<br />

Sidelobes<br />

Fluorescence<br />

Intensity<br />

z<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


5<br />

APD1<br />

Leica 4Pi<br />

APD2<br />

http://www.leica-microsystems.com<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


6<br />

Leica 4Pi<br />

http://www.leica-microsystems.com<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


7<br />

4Pi images<br />

Deviding Escherichia Coli<br />

From: Bahlmann, K., S. Jakobs<br />

and S. W. Hell<br />

(2001). Ultramicr. 87: 155-164.<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


8<br />

4Pi images<br />

Confocal (2-Photon ) 4Pi (2-Photon)<br />

Thanks to: Elisabeth Ehler, Reiner Rygiel, Martin Fiala, Tanjef Szellas<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


9<br />

Aperture increase (3): ( ):<br />

I5 Microscope<br />

icroscope<br />

incoherent<br />

ncoherent illumination<br />

llumination interference<br />

nterference<br />

imag mage interference<br />

nterference<br />

Sample<br />

CCD<br />

Camera<br />

z<br />

Dichroic Mirror<br />

White Light<br />

Source<br />

Offset!!<br />

Fluorescence Emisssion<br />

• No XY scanning required<br />

(full field illum., full field det.)<br />

• No laser required<br />

• Higher background<br />

no pinhole ⇒ more signal<br />

Fluorescence<br />

Intensity<br />

z<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


10<br />

I5M M images and OTF<br />

Mats Gustafsson,<br />

UCSF, San Francisco<br />

http://www.msg.ucsf.edu/sedat/mats/<br />

k x,y<br />

k z<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


11<br />

Stimulated<br />

Stimulated<br />

Emission mission<br />

Depletion epletion<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


12<br />

STED Microscopy<br />

Klar, T. A., S. Jakobs, M. Dyba, A. Egner and S. W. Hell<br />

(2000). Proc.Nat. Acad. Sc. U.S.A. 97(15): 8206-8210.<br />

P s1<br />

~P s0 σI ex<br />

P s0<br />

Singlet<br />

ps<br />

ps<br />

Stimulated<br />

Emission<br />

Depletion<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Saturation of the stimulated emission<br />

… provides the nonlinearity<br />

Klar, T. A., S. Jakobs, M. Dyba, A. Egner and S. W. Hell<br />

(2000). Proc.Nat. Acad. Sc. U.S.A. 97(15): 8206-8210.<br />

13<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


STED, the details<br />

14<br />

Intensity<br />

First<br />

(excitation)<br />

Dispersion Element<br />

Or Pulsed Laser Diode!<br />


STED, the details<br />

15<br />

Intensity<br />

Excitation<br />

Emission<br />

wavelength<br />

554nm, 250fs<br />

Detection Range<br />

STED<br />

745-760nm, 13ps<br />

Low efficiency<br />

⇒ Very strong light<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


STED, selecting a dye<br />

16<br />

S 2<br />

Singlet<br />

S 1<br />

~P s0σI ex<br />

S 0<br />

ps<br />

ps<br />

~µs<br />

∼P s1 τ –1 ~ I ex<br />

Triplet<br />

T 1<br />

T 0<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


17<br />

STED Microscopy<br />

STED beam Resulting PSF<br />

1 µm<br />

NA 1.3, 10nm pixelsize, no background<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


18<br />

STED Microscopy<br />

STED beam Resulting PSF<br />

1 µm<br />

NA 1.3, 10nm pixelsize, 10% background,<br />

STED PSF gets quite dim<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


19<br />

4Pi-STED 4Pi STED images<br />

Fluorescent plane:<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


20<br />

STED Images Confocal STED<br />

Klar, T. A., S. Jakobs, M. Dyba, A. Egner and S. W. Hell<br />

(2000). Proc.Nat. Acad. Sc. U.S.A. 97(15): 8206-8210.<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


21<br />

STED Images<br />

Confocal STED<br />

human embryonic kidney<br />

labeled with a red-emitting<br />

dye (MR 121SE)<br />

Microtubules<br />

Immunofluorescence<br />

Current Opinion in Biotechnology 2005, 16:3–12<br />

From micro to nano: recent advances in high-resolution microscopy; Yuval Garini, Bart J Vermolen and Ian T Young<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


22<br />

STED Images<br />

Willig, K. I., J. Keller, M. Bossi, S. W. Hell (2006):<br />

STED microscopy resolves nanoparticle assemblies.<br />

New J. Phys. 8: 106.<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


23<br />

Computational spectacles<br />

Methods requiring computation<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Paradigm: Optimize for direct visibility<br />

+ →<br />

Optics<br />

Object Image<br />

E.g.: Widefield, Confocal, STED<br />

Does not necessarily optimize information content!<br />

24<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Paradigm: Optimize for information content<br />

Object<br />

25<br />

+ →<br />

Optics<br />

Data<br />

Data Computation<br />

Image<br />

+ →<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


26<br />

Examples in Medical Imaging<br />

MRI<br />

http://www.cis.rit.edu/htbooks/mri/images/head.gif<br />

PET<br />

http://www.cerebromente.org.br/n01/pet/petdep.gif<br />

CT<br />

http://www.vetmed.lsu.edu/vth&c/Orthopedics/Images/<br />

Computed%20Tomography%20(CT)%20Scanner.RV.jpg<br />

SPECT<br />

http://www.physics.ubc.ca/research/images/spect.gif<br />

fMRI<br />

http://www.fmri.wfubmc.edu/other%20pics/<br />

lab_brain_logo.JPG<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


27<br />

Overview<br />

�� Pointilism: Localisation not resolution<br />

�� Axial Tomography<br />

�� Structured Illumination Microscopy<br />

�� Circumventing the limit<br />

… using Non-linear Non linear Effects<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


28<br />

Overview<br />

�� Pointilism: Localisation not resolution<br />

�� Axial Tomography<br />

�� Structured Illumination Microscopy<br />

�� Circumventing the limit<br />

… using Non-linear Non linear Effects<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


29<br />

Localization not resolution<br />

Localization not resolution<br />

If positions are know you can<br />

paint a picture!<br />

If particles can be separated,<br />

their relative positions can be<br />

measured accurately<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, Seurat: 2007 Tiger


30<br />

How to separate particles?<br />

Spectral precision distance microscopy<br />

Problems: Chromatic Aberrations, few dyes<br />

P. Edelmann, A. Esa, H. Bornfleth, R..<strong>Heintzmann</strong>, M. Hausmann, and C. Cremer. Proc. of SPIE , 3568:89-95, 1999<br />

Using fluorescence lifetime for separation (FLIM)<br />

Problems: Lifetime depends on microenvironm.<br />

M. Heilemann, D.P. Herten, R.<strong>Heintzmann</strong>, C. Cremer, C. Müller, P. Tinnefeld, K.D. Weston,<br />

J. Wolfrum and M. Sauer. Anal. Chem., 74, 3511-3517, 2002.<br />

Can we use the blinking characteristics?<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


31<br />

Can we separate Quantum Dots by their individual blinking?<br />

�� Localization >10 times<br />

better than resolution<br />

�� Quantum dots blink<br />

slow enough for imaging<br />

�� QDs blink independent<br />

�� Can we separate,<br />

even with strong overlap? 655 nm quantum dots<br />

on a cover slip<br />

K.A. Lidke, B. Rieger, T.M. Jovin, R. <strong>Heintzmann</strong> Optics Express 13, 7052-7062, 2005.<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Large Separation<br />

10 frames of the times series.<br />

Sum of time series<br />

ICA analysis finds 2 blinking sources<br />

Separation 535 nm<br />

ICA Results<br />

32 K.A. Lidke, B. Rieger, T.M. Jovin, R. <strong>Heintzmann</strong> Optics Express 13, 7052-7062, <strong>Rainer</strong> 2005.<br />

<strong>Heintzmann</strong>, 2007


33<br />

Close Separation<br />

10 frames of the times series.<br />

Sum of time series ICA Results<br />

ICA analysis identifies 2 closely spaced blinking sources<br />

Can resolve 2 spots at 23 nm. (current max: 5 spots)<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


34<br />

Single Dot<br />

10 frames of the times series.<br />

Sum of time series ICA Results<br />

ICA analysis finds only 1 source<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Outlook<br />

•Process entire images (many particles)<br />

Resolution by in Microscopy<br />

•Use of specific QD-blinking statistical distribution<br />

•Use of spatial information<br />

•Use temporal information<br />

K.A. Lidke, B. Rieger, T.M. Jovin, R. <strong>Heintzmann</strong> Optics Express 13, 7052-7062, 2005.<br />

35<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


36<br />

Photo Activated Localization Microscopy<br />

See also<br />

STORM, FPALM<br />

E. Betzig et al.,<br />

Imaging Intracellular Fluorescent<br />

Proteins at Nanometer Resolution<br />

Science 313,<br />

1642 - 1645<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


37<br />

Photo Activated Localization Microscopy<br />

WF PALM<br />

EM<br />

E. Betzig et al., Science 313, 1642 – 1645 (2006)<br />

Mitochondria<br />

COS-7 cells<br />

cryo sections Cytochrom C oxidase import sequence - dEosFP<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


38<br />

Overview<br />

�� Pointilism: Localisation not resolution<br />

�� Axial Tomography<br />

�� Structured Illumination Microscopy<br />

�� Circumventing the limit<br />

… using Non-linear Non linear Effects<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


39<br />

Problem: Limited Numerical<br />

umerical Aperture perture<br />

z<br />

x,y<br />

Cell<br />

Objective Lense<br />

Immersion Medium<br />

Cover Slip<br />

Slide<br />

α<br />

Immersion<br />

Medium<br />

NA = n sin α<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


40<br />

Solution: Axial Tomography<br />

z<br />

Cell<br />

x,y<br />

Objective Lense<br />

Immersion Medium<br />

Cover Slip<br />

Glass Fiber<br />

Immersion<br />

Medium<br />

Aperture increase<br />

by rotation of<br />

the specimen<br />

Shaw et al.,<br />

Cogswell et al.,<br />

Kawata et al.,<br />

<strong>Heintzmann</strong> et al.<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


41<br />

OTF in Axial Tomography<br />

Aperture increase<br />

by rotation of<br />

the specimen<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


42<br />

Axial Tomography Experiments<br />

Confocal image (1 view) of quartz beads<br />

∅ 416 nm<br />

RITC<br />

Quartz<br />

∅ 200 nm<br />

R. <strong>Heintzmann</strong> and C. Cremer., J. Microsc., 206 (1), 7-23, 2002<br />

R. <strong>Heintzmann</strong>, G. Kreth, and C. Cremer, Analytical Cellular Pathology, 20(1):7-15, 2000<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


43<br />

Reconstructed Image<br />

Cluster of quartz beads<br />

Positions of the quartz beads<br />

∅ 416 nm<br />

RITC<br />

Quartz<br />

∅ 200 nm<br />

One bead as PSF,<br />

Segmentation of Result<br />

R. <strong>Heintzmann</strong> and C. Cremer., J. Microsc., 206 (1), 7-23, 2002<br />

R. <strong>Heintzmann</strong>, G. Kreth, and C. Cremer, Analytical Cellular Pathology, 20(1):7-15, 2000<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


44<br />

Combined ML-Deconvolution<br />

ML Deconvolution<br />

View 1 View 2<br />

Measured<br />

Register<br />

View 1 View 2<br />

M i<br />

Reconstructed Estimate<br />

Apply<br />

,<br />

Back<br />

Convolution<br />

Convolution<br />

Compare<br />

Simulated<br />

,<br />

C NC<br />

E i<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


45<br />

Biological Specimen<br />

Polytrichum Commune<br />

R. <strong>Heintzmann</strong> and C. Cremer., J. Microsc., 206 (1), 7-23, 2002<br />

Moss Spore<br />

Fully automatically<br />

registered<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


46<br />

Biological Specimen<br />

Polytrichum Commune<br />

Moss Spore<br />

Fully automatically<br />

registered<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


Selective elective Plane lane Illumination<br />

llumination Microscopy<br />

icroscopy<br />

47<br />

Plane of focus<br />

Illumination<br />

Unnessesary<br />

Bleaching<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


Selective elective Plane lane Illumination<br />

llumination Microscopy<br />

icroscopy<br />

48<br />

Illumination<br />

Cylinder Lens<br />

Light Sheet<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


Selective elective Plane lane Illumination<br />

llumination Microscopy<br />

icroscopy<br />

49<br />

Illumination<br />

Detection<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


50<br />

Results (SPIM)<br />

View 1 Deconv. Combined Deconv.<br />

c. elegans embryo, i-lineage cells expressing RAP11-GFP (GTPase)<br />

as endocytotic marker<br />

Data: MPI Dresden, Sebastian Höpfner, Marino Zerial<br />

(collaboration with Zeiss)<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


Electrodes<br />

51<br />

Results (Cell Suspensions)<br />

Cell in Suspension<br />

View 1, Deconvolved:<br />

View 2, Deconvolved:<br />

Combined Deconvolution:<br />

Data: Olivier Renaud, Spencer Shorte (Inst. Pasteur),<br />

SW13/20, lamin-GFP (green), mito-tracker (red),<br />

spinning disc system (Andor)<br />

5 µm<br />

O. Renaud, R. <strong>Heintzmann</strong>, A. Sáez-Cirión, T. Schnelle, T. Muller and S. Shorte, Proc. SPIE,<br />

6441, 10.1117/12.699000, 2007<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


52<br />

Overview<br />

�� Pointilism: Localisation not resolution<br />

�� Axial Tomography<br />

�� Structured Illumination Microscopy<br />

�� Circumventing the limit<br />

… using Non-linear Non linear Effects<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


53<br />

Linear<br />

Structured Illumination<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


54<br />

Moiré Demo<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>


55<br />

Patterned Excitation 2D Setup<br />

lightsource<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


56<br />

I em (x) = Obj(x) · I ex (x)<br />

Multiplication in real space<br />

↕<br />

Convolution in Fourier space<br />

~ ~ ~<br />

Iem (k) = Obj(k) ⊗ Iex (k)<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


57<br />

Convolution<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


58<br />

Convolution<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


59<br />

Convolution<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


60<br />

Influence of optical imaging<br />

…reconstructing the data?<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


61<br />

Separating the orders…<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


62<br />

Separating the orders…<br />

Shifting the orders…<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


63<br />

Separating the orders…<br />

Shifting the orders…<br />

Recombining the orders…<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


64<br />

Separating the orders…<br />

Shifting the orders…<br />

Recombining the orders… using the correct weights.<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


65<br />

Sample Widefield Image Reconstructed Image<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


66<br />

Experimental Setup<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Structured Illumination experiments<br />

67<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Structured Illumination experiments<br />

68<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Structured Illumination experiments<br />

69<br />

Grating<br />

Resolution Enhanced ~2×<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


4 Directions: A Puzzle<br />

70<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Structured Illumination experiments<br />

71<br />

2 µm<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Structured Illumination experiments<br />

72<br />

Sample: Darren Williams, Guy Tear<br />

Drosophila<br />

Polyteen Squash<br />

Sitox Green<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Structured Illumination experiments<br />

73<br />

Sample: Darren Williams, Guy Tear<br />

Drosophila<br />

Polytene Squash<br />

Sitox Green<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


74<br />

Application in Ophtalmology?<br />

Ophtalmology<br />

Structured illumination,<br />

a method for higher resolution and<br />

better optical sectioning in retinal<br />

imaging ?<br />

Local radiation density can be kept low.<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


75<br />

Overview<br />

�� Pointilism: Localisation not resolution<br />

�� Axial Tomography<br />

�� Structured Illumination Microscopy<br />

�� Circumventing the limit<br />

… using Non-linear Non linear Effects<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Circumventing<br />

1<br />

0<br />

relative<br />

transfer<br />

|kx,y| x,y|<br />

[1/m]<br />

the Abbe Resolution Limit<br />

requires nonlinearity<br />

76<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


77<br />

Non-linear<br />

Non linear<br />

Structured Illumination<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


78<br />

Two Spaces<br />

Linear Excitation (low intensity)<br />

magnitude<br />

Border of<br />

detection OTF<br />

-ϕ0 ϕ ~<br />

0 Obj +1 (k)<br />

-K 0 0 K0 Non-Linear Excitation (high<br />

intensity)<br />

magnitude<br />

Border of<br />

detection OTF<br />

-3ϕ 0<br />

-3K 0<br />

-2ϕ 0<br />

-2K 0<br />

-ϕ0<br />

-K 0<br />

0<br />

ϕ 0<br />

K 0<br />

spatial<br />

frequency<br />

2ϕ0~ Obj +2 (k)<br />

spatial<br />

frequency<br />

R. <strong>Heintzmann</strong>, T.M. Jovin, and C. Cremer., J. Opt. Soc. Am. A,19 (8), 1599-1609, 2002<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


R. <strong>Heintzmann</strong>, T.M. Jovin, and C. Cremer.,<br />

J. Opt. Soc. Am. A,19 (8), 1599-1609, 2002<br />

79<br />

PSF comparison<br />

SPEM (7x7)<br />

70 nm<br />

λ em = 520 nm<br />

SPEM (9x9)<br />

PEM<br />

118 nm Widefield<br />

57 nm 215 nm<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


80<br />

1 µm<br />

2D Patterned SPEM Approach<br />

Conventional<br />

microscopy<br />

Mats Gustafsson, U.C. San Francisco:<br />

1 µm<br />

50 nm microspheres<br />

Linear<br />

structured<br />

illumination<br />

M.G.L. Gustafsson (2005), PNAS, 37, 13081-13086<br />

1 µm<br />

Saturated<br />

structured<br />

illumination<br />

(3 new harmonics,<br />

53 J/m 2 , triangle apodized)<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


81<br />

2D Patterned SPEM Approach<br />

Line profile through bead<br />

FWHM<br />

Mats Gustafsson, U.C. San Francisco:<br />

– including the bead diameter of ~51 nm.<br />

Distribution of FWHM<br />

50 60 70 (nm)<br />

Mean FWHM = 58.6 nm<br />

Estimate FWHM of PSF: 59 2 - (51/ 2 ) 2 = 46 nm<br />

M.G.L. Gustafsson (2005), PNAS, 37, 13081-13086<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


The Abbe limit has been<br />

circumvented,<br />

the new limit is a matter of<br />

signal and noise<br />

82<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


Saturation<br />

of<br />

Photoswitching<br />

as non-linear non linear effect<br />

83<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


84<br />

Photoswitchable Proteins<br />

DRONPA<br />

(photoswitchable protein)<br />

for resolution improvement<br />

- Transfectable, living cells<br />

- Low power lighsources<br />

Dron: to hide<br />

Pa: to appear<br />

See also:<br />

Anemonia Sulcata<br />

purple fluorescent protein<br />

asFP595,<br />

Diheteroarylethenes<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


85<br />

Intensity<br />

Photoswitchable Proteins<br />

Object: 2 Pairs of lines<br />

dark<br />

state<br />

Low intensity activation<br />

(~20% activated)<br />

position<br />

bright<br />

state<br />

depletion light<br />

(= read light)<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


86<br />

Intensity<br />

Moving the pattern<br />

Object: 2 Pairs of lines<br />

dark<br />

state<br />

position<br />

bright<br />

state<br />

Expected Resolution: < 50 nm<br />

depletion light<br />

(= read light)<br />

Related to<br />

SPEM + STED<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


87<br />

Conclusion:<br />

Computational spectacles<br />

can help to see the nature<br />

in greater detail<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007


88<br />

Acknowledgement<br />

�� Liisa Hirvonen, Kai Wicker,<br />

Ondrej Mandula,<br />

Yannick Colpin,<br />

Mats Gustafsson,<br />

Christoph Cremer (PEM, Axial)<br />

Elisabeth Ehler, Darren Williams (PEM)<br />

Gustafsson, (PEM, SPEM)<br />

�� Thomas Jovin, Quentin Hanley,<br />

Keith Lidke, Bernd Rieger (PAM, Pointillism)<br />

<strong>Rainer</strong> <strong>Heintzmann</strong>, 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!