Solid-State Fermentation Bioreactors: Fundamentals of Design and ...

English
metropioneer.com - 0 other Mags
Solid-State Fermentation Bioreactors: Fundamentals of Design and ...
|
960 Pages
|
105
|
0 Views
|
Solid-State Fermentation Bioreactors: Fundamentals of Design and ... Inappropriate

Solid-State Fermentation Bioreactors: Fundamentals of Design and

  • Page 2: Solid-State Fermentation Bioreactor
  • Page 6: Dr. David A. Mitchell
  • Page 10: VI Preface
  • Page 14: Contributing Authors
  • Page 18: Contents
  • Page 22: Contents XIII
  • Page 26: Contents XV
  • Page 30: Contents XVII
  • Page 34: Contents XIX
  • Page 38: Abbreviations
  • Page 42: Notation
  • Page 46: CPB overall bed heat capacity (J kg
  • Page 50: Notation XXVII
  • Page 54:

    Notation XXIX

  • Page 58:

    Chapter 20

  • Page 62:

    Notation XXXIII

  • Page 66:

    Notation XXXV

  • Page 70:

    Notation XXXVII

  • Page 74:

    1 Solid-State Fermentation Bioreact

  • Page 78:

    1.2 Why Should We Be Interested in

  • Page 82:

    1.3 What Are the Current and Potent

  • Page 86:

    1.4 Why Do We Need a Book on the Fu

  • Page 90:

    1.5 How Is this Book Organized? 9

  • Page 94:

    1.5 How Is this Book Organized? 11

  • Page 98:

    2 The Bioreactor Step of SSF: A Com

  • Page 102:

    2.2 The General Steps of an SSF Pro

  • Page 106:

    2.4 The Physical Structure of SSF B

  • Page 110:

    (a) (b)

  • Page 114:

    2.4 The Physical Structure of SSF B

  • Page 118:

    2.5 A Dynamic View of the Processes

  • Page 122:

    (a) (b)

  • Page 126:

    concentration

  • Page 130:

    2.5 A Dynamic View of the Processes

  • Page 134:

    2.6 Where Has this Description Led

  • Page 138:

    3 Introduction to Solid-State Ferme

  • Page 142:

    3.2 Bioreactor Selection and Design

  • Page 146:

    3.2 Bioreactor Selection and Design

  • Page 150:

    Mixing

  • Page 154:

    3.4 A Guide for Bioreactor Selectio

  • Page 158:

    Further Reading

  • Page 162:

    4 Basics of Heat and Mass Transfer

  • Page 166:

    4.3 Looking Within the Bioreactor i

  • Page 170:

    (a) direction of

  • Page 174:

    4.3 Looking Within the Bioreactor i

  • Page 178:

    4.3 Looking Within the Bioreactor i

  • Page 182:

    (a) air velocity

  • Page 186:

    5 The Scale-up Challenge for SSF Bi

  • Page 190:

    5.3 The Reason Why Scale-up Is not

  • Page 194:

    5.3 The Reason Why Scale-up Is not

  • Page 198:

    5.4 Approaches to Scale-up of SSF B

  • Page 202:

    6 Group I Bioreactors: Unaerated an

  • Page 206:

    6.3 Heat and Mass Transfer in Tray

  • Page 210:

    6.3 Heat and Mass Transfer in Tray

  • Page 214:

    6.3 Heat and Mass Transfer in Tray

  • Page 218:

    temperature (°C)

  • Page 222:

    6.4 Conclusions 75

  • Page 226:

    7 Group II Bioreactors: Forcefully-

  • Page 230:

    (a) (b)

  • Page 234:

    7.3 Experimental Insights into Pack

  • Page 238:

    ed not more

  • Page 242:

    7.3 Experimental Insights into Pack

  • Page 246:

    (a) Temperature (°C)

  • Page 250:

    moisture content (kg-water kg-total

  • Page 254:

    7.3 Experimental Insights into Pack

  • Page 258:

    7.4 Conclusions on Packed-Bed Biore

  • Page 262:

    8 Group III: Rotating-Drum and Stir

  • Page 266:

    (a) 8.2 Basic Features, Design, and

  • Page 270:

    8.3 Experimental Insights into the

  • Page 274:

    (a) Temperature (°C)

  • Page 278:

    (a) (b)

  • Page 282:

    (a) 8.4 Insights into Mixing and Tr

  • Page 286:

    8.4 Insights into Mixing and Transp

  • Page 290:

    8.4 Insights into Mixing and Transp

  • Page 294:

    temperature

  • Page 298:

    8.5 Conclusions on Rotating-Drum an

  • Page 302:

    9 Group IVa: Continuously-Mixed, Fo

  • Page 306:

    9.3 Where Continuously-Agitated, Fo

  • Page 310:

    9.3 Where Continuously-Agitated, Fo

  • Page 314:

    9.3 Where Continuously-Agitated, Fo

  • Page 318:

    9.3 Where Continuously-Agitated, Fo

  • Page 322:

    9.4 Insights into Mixing and Transp

  • Page 326:

    9.4 Insights into Mixing and Transp

  • Page 330:

    10 Group IVb: Intermittently-Mixed

  • Page 334:

    10.3 Experimental Insights into the

  • Page 338:

    10.3 Experimental Insights into the

  • Page 342:

    10.3 Experimental Insights into the

  • Page 346:

    10.3 Experimental Insights into the

  • Page 350:

    10.4 Insights into Mixing and Trans

  • Page 354:

    11 Continuous Solid-State Fermentat

  • Page 358:

    11.2 Basic Features of Continuous S

  • Page 362:

    11.2 Basic Features of Continuous S

  • Page 366:

    11.2 Basic Features of Continuous S

  • Page 370:

    11.3 Continuous Versus Batch Mode o

  • Page 374:

    11.3 Continuous Versus Batch Mode o

  • Page 378:

    11.4 Comparison by Simulation of th

  • Page 382:

    Productivity (g h -1 kg-DM -1 )

  • Page 386:

    11.4 Comparison by Simulation of th

  • Page 390:

    12 Approaches to Modeling SSF Biore

  • Page 394:

    12.2 Using Models to Design and Opt

  • Page 398:

    12.2 Using Models to Design and Opt

  • Page 402:

    Tin = temperature of inlet air

  • Page 406:

    12.4 The Seven Steps of Developing

  • Page 410:

    12.4 The Seven Steps of Developing

  • Page 414:

    12.4 The Seven Steps of Developing

  • Page 418:

    12.4 The Seven Steps of Developing

  • Page 422:

    (a) (b)

  • Page 426:

    Further Reading 177

  • Page 430:

    13 Appropriate Levels of Complexity

  • Page 434:

    13.2 What Level of Detail Should Be

  • Page 438:

    13.3 What Level of Detail Should Be

  • Page 442:

    13.4 At the Moment Fast-Solving Mod

  • Page 446:

    Table 13.1. Two extremes of approac

  • Page 450:

    Further Reading

  • Page 454:

    14 The Kinetic Sub-model of SSF Bio

  • Page 458:

    (a) (b)

  • Page 462:

    (a) (b)

  • Page 466:

    14.3 What Units Should Be Used for

  • Page 470:

    14.3 What Units Should Be Used for

  • Page 474:

    14.4 Kinetic Profiles and Appropria

  • Page 478:

    14.4 Kinetic Profiles and Appropria

  • Page 482:

    Further Reading

  • Page 486:

    15 Growth Kinetics in SSF Systems:

  • Page 490:

    (a) cotton

  • Page 494:

    15.2 Experimental Planning 211

  • Page 498:

    iomass or component

  • Page 502:

    15.3 Estimation of Biomass from Mea

  • Page 506:

    G x 43.

  • Page 510:

    16 Basic Features of the Kinetic Su

  • Page 514:

    16.2 The Basic Kinetic Expression 2

  • Page 518:

    CXA (kg-dry-biomass

  • Page 522:

    16.3 Incorporating the Effect of th

  • Page 526:

    16.3 Incorporating the Effect of th

  • Page 530:

    Denaturation

  • Page 534:

    specific growth rate

  • Page 538:

    16.4 Modeling Death Kinetics 233

  • Page 542:

    17 Modeling of the Effects of Growt

  • Page 546:

    17.2 Terms for Heat, Water, Nutrien

  • Page 550:

    17.2 Terms for Heat, Water, Nutrien

  • Page 554:

    17.2 Terms for Heat, Water, Nutrien

  • Page 558:

    17.2 Terms for Heat, Water, Nutrien

  • Page 562:

    17.3 Modeling Particle Size Changes

  • Page 566:

    Further Reading 247

  • Page 570:

    18 Modeling of Heat and Mass Transf

  • Page 574:

    18.2 General Forms of Balance Equat

  • Page 578:

    Bioreactor

  • Page 582:

    18.4 Convection

  • Page 586:

    Tsolid

  • Page 590:

    18.5 Evaporation 259

  • Page 594:

    18.5 Evaporation 261

  • Page 598:

    Substituting Eq. (18.21) into Eq. (

  • Page 602:

    19 Substrate, Air, and Thermodynami

  • Page 606:

    19.2 Substrate Properties 267

  • Page 610:

    m p 19.2 Substrate Properties 269

  • Page 614:

    (a) (b) (c)

  • Page 618:

    19.3 Air Density 273

  • Page 622:

    19.4.1 Saturation Humidity

  • Page 626:

    19.4 Thermodynamic Properties 277

  • Page 630:

    20 Estimation of Transfer Coefficie

  • Page 634:

    20.3.1. Bed-to-Wall Heat Transfer C

  • Page 638:

    20.4 Solids-to-Air Heat and Mass Tr

  • Page 642:

    h bg

  • Page 646:

    Pe eff

  • Page 650:

    20.6 Conclusions

  • Page 654:

    21 Bioreactor Modeling Case Studies

  • Page 658:

    21.3 The Amount of Detail Provided

  • Page 662:

    22 A Model of a Well-mixed SSF Bior

  • Page 666:

    Gas phase energy balance (Tg)

  • Page 670:

    22.2 Synopsis of the Model 299

  • Page 674:

    22.2.2 Values of Parameters and Var

  • Page 678:

    22.3 Insights the Model Gives into

  • Page 682:

    Total biomass (kg)

  • Page 686:

    22.3 Insights the Model Gives into

  • Page 690:

    Total biomass (kg)

  • Page 694:

    Contribution (Watts)

  • Page 698:

    Total biomass (kg)

  • Page 702:

    23 A Model of a Rotating-Drum Biore

  • Page 706:

    drum wall energy balance (Tw)

  • Page 710:

    23.2 A Model of a Well-Mixed Rotati

  • Page 714:

    23.2 A Model of a Well-Mixed Rotati

  • Page 718:

    23.2 A Model of a Well-Mixed Rotati

  • Page 722:

    23.2 A Model of a Well-Mixed Rotati

  • Page 726:

    12800 L 1600 L

  • Page 730:

    23.4 Conclusions on the Design and

  • Page 734:

    24 Models of Packed-Bed Bioreactors

  • Page 738:

    24.2 A Model of a Traditional Packe

  • Page 742:

    (a) (b)

  • Page 746:

    24.2 A Model of a Traditional Packe

  • Page 750:

    t90 (h)

  • Page 754:

    24.3 A Model of the Zymotis Packed-

  • Page 758:

    (a) (b)

  • Page 762:

    24.3 A Model of the Zymotis Packed-

  • Page 766:

    24.4 Conclusions on Packed-Bed Bior

  • Page 770:

    25 A Model of an Intermittently-Mix

  • Page 774:

    Gas phase (g)

  • Page 778:

    25.3 Insights the Model Gives into

  • Page 782:

    25.3 Insights the Model Gives into

  • Page 786:

    25.3 Insights the Model Gives into

  • Page 790:

    25.3 Insights the Model Gives into

  • Page 794:

    o Solids temperature ( C)

  • Page 798:

    26 Instrumentation for Monitoring S

  • Page 802:

    26.3 Available Instrumentation for

  • Page 806:

    Table 26.1. Flowmeter characteristi

  • Page 810:

    26.4 Data Filtering

  • Page 814:

    26.5 How to Measure the Other Varia

  • Page 818:

    26.5 How to Measure the Other Varia

  • Page 822:

    27 Fundamentals of Process Control

  • Page 826:

    Fig. 27.2. A computer control loop

  • Page 830:

    27.2 Conventional Control Algorithm

  • Page 834:

    27.2 Conventional Control Algorithm

  • Page 838:

    27.2 Conventional Control Algorithm

  • Page 842:

    27.2.3 Model Predictive Control

  • Page 846:

    28 Application of Automatic Control

  • Page 850:

    28.2 How to Control SSF Bioreactors

  • Page 854:

    Table 28.1. Measured variables in t

  • Page 858:

    28.3 Case Studies of Control in SSF

  • Page 862:

    Bed Temperature [ºC]

  • Page 866:

    o Temperature ( C)

  • Page 870:

    Temperature ( C)

  • Page 874:

    Further Reading 401

  • Page 878:

    29 Design of the Air Preparation Sy

  • Page 882:

    29.2 An Overview of the Options Ava

  • Page 886:

    29.3 Blower/Compressor Selection an

  • Page 890:

    29.6 Humidification Columns 409

  • Page 894:

    29.7 Case Study: An Air Preparation

  • Page 898:

    30 Future Prospects for SSF Bioreac

  • Page 902:

    30.2 Present State and Future Prosp

  • Page 906:

    418 References

  • Page 910:

    420 References

  • Page 914:

    422 References

  • Page 918:

    424 References

  • Page 922:

    426 References

  • Page 926:

    Appendix: Guide to the Bioreactor P

  • Page 930:

    A.3 Use of the Well-Mixed Bioreacto

  • Page 934:

    A.4 Use of the Rotating-Drum Biorea

  • Page 938:

    A.5 Use of the Traditional Packed-B

  • Page 942:

    A.6 Use of the Zymotis Packed-Bed B

  • Page 946:

    A.7 Use of the Model of an Intermit

  • Page 950:

    A.7 Use of the Model of an Intermit

  • Page 954:

    444 Index

  • Page 958:

    446 Index

  • Page 4: David A. Mitchell · Nadia Krieger
  • Page 8: Preface
  • Page 12: Acknowledgements
  • Page 16: X Contributing Authors
  • Page 20: XII Contents
  • Page 24: XIV Contents
  • Page 28: XVI Contents
  • Page 32: XVIII Contents
  • Page 36: XX Contents
  • Page 40: XXII Abbreviations
  • Page 44: XXIV Notation
  • Page 48: XXVI Notation
  • Page 52:

    XXVIII Notation

  • Page 56:

    XXX Notation

  • Page 60:

    XXXII Notation

  • Page 64:

    XXXIV Notation

  • Page 68:

    XXXVI Notation

  • Page 72:

    XXXVIII Notation

  • Page 76:

    2 1 Solid-State Fermentation Biorea

  • Page 80:

    4 1 Solid-State Fermentation Biorea

  • Page 84:

    6 1 Solid-State Fermentation Biorea

  • Page 88:

    8 1 Solid-State Fermentation Biorea

  • Page 92:

    10 1 Solid-State Fermentation Biore

  • Page 96:

    12 1 Solid-State Fermentation Biore

  • Page 100:

    14 2 The Bioreactor Step of SSF: A

  • Page 104:

    16 2 The Bioreactor Step of SSF: A

  • Page 108:

    18 2 The Bioreactor Step of SSF: A

  • Page 112:

    20 2 The Bioreactor Step of SSF: A

  • Page 116:

    22 2 The Bioreactor Step of SSF: A

  • Page 120:

    24 2 The Bioreactor Step of SSF: A

  • Page 124:

    26 2 The Bioreactor Step of SSF: A

  • Page 128:

    28 2 The Bioreactor Step of SSF: A

  • Page 132:

    30 2 The Bioreactor Step of SSF: A

  • Page 136:

    32 2 The Bioreactor Step of SSF: A

  • Page 140:

    34 3 Introduction to Solid-State Fe

  • Page 144:

    36 3 Introduction to Solid-State Fe

  • Page 148:

    38 3 Introduction to Solid-State Fe

  • Page 152:

    40 3 Introduction to Solid-State Fe

  • Page 156:

    42 3 Introduction to Solid-State Fe

  • Page 160:

    44 3 Introduction to Solid-State Fe

  • Page 164:

    46 4 Basics of Heat and Mass Transf

  • Page 168:

    48 4 Basics of Heat and Mass Transf

  • Page 172:

    50 4 Basics of Heat and Mass Transf

  • Page 176:

    52 4 Basics of Heat and Mass Transf

  • Page 180:

    54 4 Basics of Heat and Mass Transf

  • Page 184:

    56 4 Basics of Heat and Mass Transf

  • Page 188:

    58 5 The Scale-up Challenge for SSF

  • Page 192:

    60 5 The Scale-up Challenge for SSF

  • Page 196:

    62 5 The Scale-up Challenge for SSF

  • Page 200:

    64 5 The Scale-up Challenge for SSF

  • Page 204:

    66 6 Group I Bioreactors: Unaerated

  • Page 208:

    68 6 Group I Bioreactors: Unaerated

  • Page 212:

    70 6 Group I Bioreactors: Unaerated

  • Page 216:

    72 6 Group I Bioreactors: Unaerated

  • Page 220:

    74 6 Group I Bioreactors: Unaerated

  • Page 224:

    76 6 Group I Bioreactors: Unaerated

  • Page 228:

    78 7 Group II Bioreactors: Forceful

  • Page 232:

    80 7 Group II Bioreactors: Forceful

  • Page 236:

    82 7 Group II Bioreactors: Forceful

  • Page 240:

    84 7 Group II Bioreactors: Forceful

  • Page 244:

    86 7 Group II Bioreactors: Forceful

  • Page 248:

    88 7 Group II Bioreactors: Forceful

  • Page 252:

    90 7 Group II Bioreactors: Forceful

  • Page 256:

    92 7 Group II Bioreactors: Forceful

  • Page 260:

    94 7 Group II Bioreactors: Forceful

  • Page 264:

    96 8 Group III: Rotating-Drum and S

  • Page 268:

    98 8 Group III: Rotating-Drum and S

  • Page 272:

    100 8 Group III: Rotating-Drum and

  • Page 276:

    102 8 Group III: Rotating-Drum and

  • Page 280:

    104 8 Group III: Rotating-Drum and

  • Page 284:

    106 8 Group III: Rotating-Drum and

  • Page 288:

    108 8 Group III: Rotating-Drum and

  • Page 292:

    110 8 Group III: Rotating-Drum and

  • Page 296:

    112 8 Group III: Rotating-Drum and

  • Page 300:

    114 8 Group III: Rotating-Drum and

  • Page 304:

    116 9 Group IVa: Continuously-Mixed

  • Page 308:

    118 9 Group IVa: Continuously-Mixed

  • Page 312:

    120 9 Group IVa: Continuously-Mixed

  • Page 316:

    122 9 Group IVa: Continuously-Mixed

  • Page 320:

    124 9 Group IVa: Continuously-Mixed

  • Page 324:

    126 9 Group IVa: Continuously-Mixed

  • Page 328:

    128 9 Group IVa: Continuously-Mixed

  • Page 332:

    130 10 Group IVb: Intermittently-Mi

  • Page 336:

    132 10 Group IVb: Intermittently-Mi

  • Page 340:

    134 10 Group IVb: Intermittently-Mi

  • Page 344:

    136 10 Group IVb: Intermittently-Mi

  • Page 348:

    138 10 Group IVb: Intermittently-Mi

  • Page 352:

    140 10 Group IVb: Intermittently-Mi

  • Page 356:

    142 11 Continuous Solid-State Ferme

  • Page 360:

    144 11 Continuous Solid-State Ferme

  • Page 364:

    146 11 Continuous Solid-State Ferme

  • Page 368:

    148 11 Continuous Solid-State Ferme

  • Page 372:

    150 11 Continuous Solid-State Ferme

  • Page 376:

    152 11 Continuous Solid-State Ferme

  • Page 380:

    154 11 Continuous Solid-State Ferme

  • Page 384:

    156 11 Continuous Solid-State Ferme

  • Page 388:

    158 11 Continuous Solid-State Ferme

  • Page 392:

    160 12 Approaches to Modeling SSF B

  • Page 396:

    162 12 Approaches to Modeling SSF B

  • Page 400:

    164 12 Approaches to Modeling SSF B

  • Page 404:

    166 12 Approaches to Modeling SSF B

  • Page 408:

    168 12 Approaches to Modeling SSF B

  • Page 412:

    170 12 Approaches to Modeling SSF B

  • Page 416:

    172 12 Approaches to Modeling SSF B

  • Page 420:

    174 12 Approaches to Modeling SSF B

  • Page 424:

    176 12 Approaches to Modeling SSF B

  • Page 428:

    178 12 Approaches to Modeling SSF B

  • Page 432:

    180 13 Appropriate Levels of Comple

  • Page 436:

    182 13 Appropriate Levels of Comple

  • Page 440:

    184 13 Appropriate Levels of Comple

  • Page 444:

    186 13 Appropriate Levels of Comple

  • Page 448:

    188 13 Appropriate Levels of Comple

  • Page 452:

    190 13 Appropriate Levels of Comple

  • Page 456:

    192 14 The Kinetic Sub-model of SSF

  • Page 460:

    194 14 The Kinetic Sub-model of SSF

  • Page 464:

    196 14 The Kinetic Sub-model of SSF

  • Page 468:

    198 14 The Kinetic Sub-model of SSF

  • Page 472:

    200 14 The Kinetic Sub-model of SSF

  • Page 476:

    202 14 The Kinetic Sub-model of SSF

  • Page 480:

    204 14 The Kinetic Sub-model of SSF

  • Page 484:

    206 14 The Kinetic Sub-model of SSF

  • Page 488:

    208 15 Growth Kinetics in SSF Syste

  • Page 492:

    210 15 Growth Kinetics in SSF Syste

  • Page 496:

    212 15 Growth Kinetics in SSF Syste

  • Page 500:

    214 15 Growth Kinetics in SSF Syste

  • Page 504:

    216 15 Growth Kinetics in SSF Syste

  • Page 508:

    218 15 Growth Kinetics in SSF Syste

  • Page 512:

    220 16 Basic Features of the Kineti

  • Page 516:

    222 16 Basic Features of the Kineti

  • Page 520:

    224 16 Basic Features of the Kineti

  • Page 524:

    226 16 Basic Features of the Kineti

  • Page 528:

    228 16 Basic Features of the Kineti

  • Page 532:

    230 16 Basic Features of the Kineti

  • Page 536:

    232 16 Basic Features of the Kineti

  • Page 540:

    234 16 Basic Features of the Kineti

  • Page 544:

    236 17 Modeling of the Effects of G

  • Page 548:

    238 17 Modeling of the Effects of G

  • Page 552:

    240 17 Modeling of the Effects of G

  • Page 556:

    242 17 Modeling of the Effects of G

  • Page 560:

    244 17 Modeling of the Effects of G

  • Page 564:

    246 17 Modeling of the Effects of G

  • Page 568:

    248 17 Modeling of the Effects of G

  • Page 572:

    250 18 Modeling of Heat and Mass Tr

  • Page 576:

    252 18 Modeling of Heat and Mass Tr

  • Page 580:

    254 18 Modeling of Heat and Mass Tr

  • Page 584:

    256 18 Modeling of Heat and Mass Tr

  • Page 588:

    258 18 Modeling of Heat and Mass Tr

  • Page 592:

    260 18 Modeling of Heat and Mass Tr

  • Page 596:

    262 18 Modeling of Heat and Mass Tr

  • Page 600:

    264 18 Modeling of Heat and Mass Tr

  • Page 604:

    266 19 Substrate, Air, and Thermody

  • Page 608:

    268 19 Substrate, Air, and Thermody

  • Page 612:

    270 19 Substrate, Air, and Thermody

  • Page 616:

    272 19 Substrate, Air, and Thermody

  • Page 620:

    274 19 Substrate, Air, and Thermody

  • Page 624:

    276 19 Substrate, Air, and Thermody

  • Page 628:

    278 19 Substrate, Air, and Thermody

  • Page 632:

    280 20 Estimation of Transfer Coeff

  • Page 636:

    282 20 Estimation of Transfer Coeff

  • Page 640:

    284 20 Estimation of Transfer Coeff

  • Page 644:

    286 20 Estimation of Transfer Coeff

  • Page 648:

    288 20 Estimation of Transfer Coeff

  • Page 652:

    290 20 Estimation of Transfer Coeff

  • Page 656:

    292 21 Bioreactor Modeling Case Stu

  • Page 660:

    294 21 Bioreactor Modeling Case Stu

  • Page 664:

    296 22 A Model of a Well-mixed SSF

  • Page 668:

    298 22 A Model of a Well-mixed SSF

  • Page 672:

    300 22 A Model of a Well-mixed SSF

  • Page 676:

    302 22 A Model of a Well-mixed SSF

  • Page 680:

    304 22 A Model of a Well-mixed SSF

  • Page 684:

    306 22 A Model of a Well-mixed SSF

  • Page 688:

    308 22 A Model of a Well-mixed SSF

  • Page 692:

    310 22 A Model of a Well-mixed SSF

  • Page 696:

    312 22 A Model of a Well-mixed SSF

  • Page 700:

    314 22 A Model of a Well-mixed SSF

  • Page 704:

    316 23 A Model of a Rotating-Drum B

  • Page 708:

    318 23 A Model of a Rotating-Drum B

  • Page 712:

    320 23 A Model of a Rotating-Drum B

  • Page 716:

    322 23 A Model of a Rotating-Drum B

  • Page 720:

    324 23 A Model of a Rotating-Drum B

  • Page 724:

    326 23 A Model of a Rotating-Drum B

  • Page 728:

    328 23 A Model of a Rotating-Drum B

  • Page 732:

    330 23 A Model of a Rotating-Drum B

  • Page 736:

    332 24 Models of Packed-Bed Bioreac

  • Page 740:

    334 24 Models of Packed-Bed Bioreac

  • Page 744:

    336 24 Models of Packed-Bed Bioreac

  • Page 748:

    338 24 Models of Packed-Bed Bioreac

  • Page 752:

    340 24 Models of Packed-Bed Bioreac

  • Page 756:

    342 24 Models of Packed-Bed Bioreac

  • Page 760:

    344 24 Models of Packed-Bed Bioreac

  • Page 764:

    346 24 Models of Packed-Bed Bioreac

  • Page 768:

    348 24 Models of Packed-Bed Bioreac

  • Page 772:

    350 25 A Model of an Intermittently

  • Page 776:

    352 25 A Model of an Intermittently

  • Page 780:

    354 25 A Model of an Intermittently

  • Page 784:

    356 25 A Model of an Intermittently

  • Page 788:

    358 25 A Model of an Intermittently

  • Page 792:

    360 25 A Model of an Intermittently

  • Page 796:

    362 25 A Model of an Intermittently

  • Page 800:

    364 26 Instrumentation for Monitori

  • Page 804:

    366 26 Instrumentation for Monitori

  • Page 808:

    368 26 Instrumentation for Monitori

  • Page 812:

    370 26 Instrumentation for Monitori

  • Page 816:

    372 26 Instrumentation for Monitori

  • Page 820:

    374 26 Instrumentation for Monitori

  • Page 824:

    376 27 Fundamentals of Process Cont

  • Page 828:

    378 27 Fundamentals of Process Cont

  • Page 832:

    380 27 Fundamentals of Process Cont

  • Page 836:

    382 27 Fundamentals of Process Cont

  • Page 840:

    384 27 Fundamentals of Process Cont

  • Page 844:

    386 27 Fundamentals of Process Cont

  • Page 848:

    388 28 Application of Automatic Con

  • Page 852:

    390 28 Application of Automatic Con

  • Page 856:

    392 28 Application of Automatic Con

  • Page 860:

    394 28 Application of Automatic Con

  • Page 864:

    396 28 Application of Automatic Con

  • Page 868:

    398 28 Application of Automatic Con

  • Page 872:

    400 28 Application of Automatic Con

  • Page 876:

    402 28 Application of Automatic Con

  • Page 880:

    404 29 Design of the Air Preparatio

  • Page 884:

    406 29 Design of the Air Preparatio

  • Page 888:

    408 29 Design of the Air Preparatio

  • Page 892:

    410 29 Design of the Air Preparatio

  • Page 896:

    412 29 Design of the Air Preparatio

  • Page 900:

    414 30 Future Prospects for SSF Bio

  • Page 904:

    References

  • Page 908:

    References 419

  • Page 912:

    References 421

  • Page 916:

    References 423

  • Page 920:

    References 425

  • Page 924:

    References 427

  • Page 928:

    430 Appendix: Guide to the Bioreact

  • Page 932:

    432 Appendix: Guide to the Bioreact

  • Page 936:

    434 Appendix: Guide to the Bioreact

  • Page 940:

    436 Appendix: Guide to the Bioreact

  • Page 944:

    438 Appendix: Guide to the Bioreact

  • Page 948:

    440 Appendix: Guide to the Bioreact

  • Page 952:

    Index Key: bold = topic of chapter

  • Page 956:

    temperature effects (isothermal

  • Page 960:

    transport phenomena 249

© 2006-2014 by i-Magazine AG