Views
2 years ago

Solid-State Fermentation Bioreactors: Fundamentals of Design and ...

Solid-State Fermentation Bioreactors: Fundamentals of Design and ...

Solid-State Fermentation Bioreactors: Fundamentals of Design and

  • Page 2: Solid-State Fermentation Bioreactor
  • Page 6: Dr. David A. Mitchell Federal Unive
  • Page 10: VI Preface Even with this focus on
  • Page 14: Contributing Authors Prof. Eduardo
  • Page 18: Contents 1 Solid-State Fermentation
  • Page 22: Contents XIII 7 Group II Bioreactor
  • Page 26: Contents XV 12.4.2 Step 2: Draw the
  • Page 30: Contents XVII 18 Modeling of Heat a
  • Page 34: Contents XIX 24.2.2 Base-Case Predi
  • Page 38: Abbreviations A/D analog-digital AS
  • Page 42: Notation Please note that, due to t
  • Page 46: CPB overall bed heat capacity (J kg
  • Page 50: Notation XXVII Chapter 16 ao to a4
  • Page 54:

    Notation XXIX rsubscript overall ra

  • Page 58:

    Chapter 20 A area for transfer (m 2

  • Page 62:

    Notation XXXIII W water content on

  • Page 66:

    Notation XXXV Chapter 24 Also see T

  • Page 70:

    Notation XXXVII YWB yield of metabo

  • Page 74:

    1 Solid-State Fermentation Bioreact

  • Page 78:

    1.2 Why Should We Be Interested in

  • Page 82:

    1.3 What Are the Current and Potent

  • Page 86:

    1.4 Why Do We Need a Book on the Fu

  • Page 90:

    1.5 How Is this Book Organized? 9 1

  • Page 94:

    1.5 How Is this Book Organized? 11

  • Page 98:

    2 The Bioreactor Step of SSF: A Com

  • Page 102:

    2.2 The General Steps of an SSF Pro

  • Page 106:

    2.4 The Physical Structure of SSF B

  • Page 110:

    (a) (b) (c) penetrative hyphae mois

  • Page 114:

    2.4 The Physical Structure of SSF B

  • Page 118:

    2.5 A Dynamic View of the Processes

  • Page 122:

    (a) (b) PARTICLE polymer [8] proces

  • Page 126:

    concentration concentration particl

  • Page 130:

    2.5 A Dynamic View of the Processes

  • Page 134:

    2.6 Where Has this Description Led

  • Page 138:

    3 Introduction to Solid-State Ferme

  • Page 142:

    3.2 Bioreactor Selection and Design

  • Page 146:

    3.2 Bioreactor Selection and Design

  • Page 150:

    Mixing Continuous mixing, or frequ

  • Page 154:

    3.4 A Guide for Bioreactor Selectio

  • Page 158:

    Further Reading Further Reading 43

  • Page 162:

    4 Basics of Heat and Mass Transfer

  • Page 166:

    4.3 Looking Within the Bioreactor i

  • Page 170:

    (a) direction of flow of saturated

  • Page 174:

    4.3 Looking Within the Bioreactor i

  • Page 178:

    4.3 Looking Within the Bioreactor i

  • Page 182:

    (a) air velocity profile static air

  • Page 186:

    5 The Scale-up Challenge for SSF Bi

  • Page 190:

    5.3 The Reason Why Scale-up Is not

  • Page 194:

    5.3 The Reason Why Scale-up Is not

  • Page 198:

    5.4 Approaches to Scale-up of SSF B

  • Page 202:

    6 Group I Bioreactors: Unaerated an

  • Page 206:

    6.3 Heat and Mass Transfer in Tray

  • Page 210:

    6.3 Heat and Mass Transfer in Tray

  • Page 214:

    6.3 Heat and Mass Transfer in Tray

  • Page 218:

    temperature (°C) FT biomass (kg m

  • Page 222:

    6.4 Conclusions 75 value for the av

  • Page 226:

    7 Group II Bioreactors: Forcefully-

  • Page 230:

    (a) (b) 7.2 Basic Features, Design,

  • Page 234:

    7.3 Experimental Insights into Pack

  • Page 238:

    ed not more than 20 cm high these r

  • Page 242:

    7.3 Experimental Insights into Pack

  • Page 246:

    (a) Temperature (°C) 23 20 17 (c)

  • Page 250:

    moisture content (kg-water kg-total

  • Page 254:

    7.3 Experimental Insights into Pack

  • Page 258:

    7.4 Conclusions on Packed-Bed Biore

  • Page 262:

    8 Group III: Rotating-Drum and Stir

  • Page 266:

    (a) 8.2 Basic Features, Design, and

  • Page 270:

    8.3 Experimental Insights into the

  • Page 274:

    (a) Temperature (°C) (b) 50 40 30

  • Page 278:

    (a) (b) air in Substrate temperatur

  • Page 282:

    (a) 8.4 Insights into Mixing and Tr

  • Page 286:

    8.4 Insights into Mixing and Transp

  • Page 290:

    8.4 Insights into Mixing and Transp

  • Page 294:

    temperature 8.4 Insights into Mixin

  • Page 298:

    8.5 Conclusions on Rotating-Drum an

  • Page 302:

    9 Group IVa: Continuously-Mixed, Fo

  • Page 306:

    9.3 Where Continuously-Agitated, Fo

  • Page 310:

    9.3 Where Continuously-Agitated, Fo

  • Page 314:

    9.3 Where Continuously-Agitated, Fo

  • Page 318:

    9.3 Where Continuously-Agitated, Fo

  • Page 322:

    9.4 Insights into Mixing and Transp

  • Page 326:

    9.4 Insights into Mixing and Transp

  • Page 330:

    10 Group IVb: Intermittently-Mixed

  • Page 334:

    10.3 Experimental Insights into the

  • Page 338:

    10.3 Experimental Insights into the

  • Page 342:

    10.3 Experimental Insights into the

  • Page 346:

    10.3 Experimental Insights into the

  • Page 350:

    10.4 Insights into Mixing and Trans

  • Page 354:

    11 Continuous Solid-State Fermentat

  • Page 358:

    11.2 Basic Features of Continuous S

  • Page 362:

    11.2 Basic Features of Continuous S

  • Page 366:

    11.2 Basic Features of Continuous S

  • Page 370:

    11.3 Continuous Versus Batch Mode o

  • Page 374:

    11.3 Continuous Versus Batch Mode o

  • Page 378:

    11.4 Comparison by Simulation of th

  • Page 382:

    Productivity (g h -1 kg-DM -1 ) 20

  • Page 386:

    11.4 Comparison by Simulation of th

  • Page 390:

    12 Approaches to Modeling SSF Biore

  • Page 394:

    12.2 Using Models to Design and Opt

  • Page 398:

    12.2 Using Models to Design and Opt

  • Page 402:

    Tin = temperature of inlet air Hin

  • Page 406:

    12.4 The Seven Steps of Developing

  • Page 410:

    12.4 The Seven Steps of Developing

  • Page 414:

    12.4 The Seven Steps of Developing

  • Page 418:

    12.4 The Seven Steps of Developing

  • Page 422:

    (a) (b) bed temperature [biomass] t

  • Page 426:

    Further Reading 177 If relatively

  • Page 430:

    13 Appropriate Levels of Complexity

  • Page 434:

    13.2 What Level of Detail Should Be

  • Page 438:

    13.3 What Level of Detail Should Be

  • Page 442:

    13.4 At the Moment Fast-Solving Mod

  • Page 446:

    Table 13.1. Two extremes of approac

  • Page 450:

    Further Reading Further Reading 189

  • Page 454:

    14 The Kinetic Sub-model of SSF Bio

  • Page 458:

    (a) (b) a measure of growth in appr

  • Page 462:

    (a) (b) filter dry and plot or dire

  • Page 466:

    14.3 What Units Should Be Used for

  • Page 470:

    14.3 What Units Should Be Used for

  • Page 474:

    14.4 Kinetic Profiles and Appropria

  • Page 478:

    14.4 Kinetic Profiles and Appropria

  • Page 482:

    Further Reading Further Reading 205

  • Page 486:

    15 Growth Kinetics in SSF Systems:

  • Page 490:

    (a) cotton wool plug gauze layer lo

  • Page 494:

    15.2 Experimental Planning 211 It i

  • Page 498:

    iomass or component time time 15.2

  • Page 502:

    15.3 Estimation of Biomass from Mea

  • Page 506:

    G x 43. 65 44. 61 ( t ) 61. 70

  • Page 510:

    16 Basic Features of the Kinetic Su

  • Page 514:

    16.2 The Basic Kinetic Expression 2

  • Page 518:

    CXA (kg-dry-biomass kg-IDS -1 ) CXR

  • Page 522:

    16.3 Incorporating the Effect of th

  • Page 526:

    16.3 Incorporating the Effect of th

  • Page 530:

    Denaturation Essential enzyme pool

  • Page 534:

    specific growth rate temperature 16

  • Page 538:

    16.4 Modeling Death Kinetics 233 wh

  • Page 542:

    17 Modeling of the Effects of Growt

  • Page 546:

    17.2 Terms for Heat, Water, Nutrien

  • Page 550:

    17.2 Terms for Heat, Water, Nutrien

  • Page 554:

    17.2 Terms for Heat, Water, Nutrien

  • Page 558:

    17.2 Terms for Heat, Water, Nutrien

  • Page 562:

    17.3 Modeling Particle Size Changes

  • Page 566:

    Further Reading 247 fermentation ti

  • Page 570:

    18 Modeling of Heat and Mass Transf

  • Page 574:

    18.2 General Forms of Balance Equat

  • Page 578:

    Bioreactor Tbed-outer-surface T wal

  • Page 582:

    18.4 Convection 18.4 Convection 255

  • Page 586:

    Tsolid awair dry air + vapor heat T

  • Page 590:

    18.5 Evaporation 259 dT GairC Pair

  • Page 594:

    18.5 Evaporation 261 We can therefo

  • Page 598:

    Substituting Eq. (18.21) into Eq. (

  • Page 602:

    19 Substrate, Air, and Thermodynami

  • Page 606:

    19.2 Substrate Properties 267 that

  • Page 610:

    m p 19.2 Substrate Properties 269

  • Page 614:

    (a) (b) (c) 19.2 Substrate Properti

  • Page 618:

    19.3 Air Density 273 Likewise, Cal

  • Page 622:

    19.4.1 Saturation Humidity 19.4 The

  • Page 626:

    19.4 Thermodynamic Properties 277 I

  • Page 630:

    20 Estimation of Transfer Coefficie

  • Page 634:

    20.3.1. Bed-to-Wall Heat Transfer C

  • Page 638:

    20.4 Solids-to-Air Heat and Mass Tr

  • Page 642:

    h bg 20.5 Bed-to-Headspace Transfer

  • Page 646:

    Pe eff 20.5 Bed-to-Headspace Transf

  • Page 650:

    20.6 Conclusions Further Reading 28

  • Page 654:

    21 Bioreactor Modeling Case Studies

  • Page 658:

    21.3 The Amount of Detail Provided

  • Page 662:

    22 A Model of a Well-mixed SSF Bior

  • Page 666:

    Gas phase energy balance (Tg) dTg G

  • Page 670:

    22.2 Synopsis of the Model 299 The

  • Page 674:

    22.2.2 Values of Parameters and Var

  • Page 678:

    22.3 Insights the Model Gives into

  • Page 682:

    Total biomass (kg) Solids temperatu

  • Page 686:

    22.3 Insights the Model Gives into

  • Page 690:

    Total biomass (kg) Solids temperatu

  • Page 694:

    Contribution (Watts) Contribution (

  • Page 698:

    Total biomass (kg) Solids temperatu

  • Page 702:

    23 A Model of a Rotating-Drum Biore

  • Page 706:

    drum wall energy balance (Tw) d[ T

  • Page 710:

    23.2 A Model of a Well-Mixed Rotati

  • Page 714:

    23.2 A Model of a Well-Mixed Rotati

  • Page 718:

    23.2 A Model of a Well-Mixed Rotati

  • Page 722:

    23.2 A Model of a Well-Mixed Rotati

  • Page 726:

    12800 L 1600 L 200 L 25 L Contribut

  • Page 730:

    23.4 Conclusions on the Design and

  • Page 734:

    24 Models of Packed-Bed Bioreactors

  • Page 738:

    24.2 A Model of a Traditional Packe

  • Page 742:

    (a) (b) o Temperature ( C) 48 46 44

  • Page 746:

    24.2 A Model of a Traditional Packe

  • Page 750:

    t90 (h) 100 50 24.2 A Model of a Tr

  • Page 754:

    24.3 A Model of the Zymotis Packed-

  • Page 758:

    (a) (b) dW dt energy storage, due t

  • Page 762:

    24.3 A Model of the Zymotis Packed-

  • Page 766:

    24.4 Conclusions on Packed-Bed Bior

  • Page 770:

    25 A Model of an Intermittently-Mix

  • Page 774:

    Gas phase (g) Gas phase energy bala

  • Page 778:

    25.3 Insights the Model Gives into

  • Page 782:

    25.3 Insights the Model Gives into

  • Page 786:

    25.3 Insights the Model Gives into

  • Page 790:

    25.3 Insights the Model Gives into

  • Page 794:

    o Solids temperature ( C) o Solids

  • Page 798:

    26 Instrumentation for Monitoring S

  • Page 802:

    26.3 Available Instrumentation for

  • Page 806:

    Table 26.1. Flowmeter characteristi

  • Page 810:

    26.4 Data Filtering 26.4 Data Filte

  • Page 814:

    26.5 How to Measure the Other Varia

  • Page 818:

    26.5 How to Measure the Other Varia

  • Page 822:

    27 Fundamentals of Process Control

  • Page 826:

    Fig. 27.2. A computer control loop

  • Page 830:

    27.2 Conventional Control Algorithm

  • Page 834:

    27.2 Conventional Control Algorithm

  • Page 838:

    27.2 Conventional Control Algorithm

  • Page 842:

    27.2.3 Model Predictive Control 27.

  • Page 846:

    28 Application of Automatic Control

  • Page 850:

    28.2 How to Control SSF Bioreactors

  • Page 854:

    Table 28.1. Measured variables in t

  • Page 858:

    28.3 Case Studies of Control in SSF

  • Page 862:

    Bed Temperature [ºC] 35 33 31 29 2

  • Page 866:

    o Temperature ( C) o Temperature (

  • Page 870:

    Temperature ( C) o o Bed Temperatur

  • Page 874:

    Further Reading 401 The design of a

  • Page 878:

    29 Design of the Air Preparation Sy

  • Page 882:

    29.2 An Overview of the Options Ava

  • Page 886:

    29.3 Blower/Compressor Selection an

  • Page 890:

    29.6 Humidification Columns 409 At

  • Page 894:

    29.7 Case Study: An Air Preparation

  • Page 898:

    30 Future Prospects for SSF Bioreac

  • Page 902:

    30.2 Present State and Future Prosp

  • Page 906:

    418 References Bramorski A, Christe

  • Page 910:

    420 References Gibbons WR, Westby C

  • Page 914:

    422 References Matsuno R, Adachi S,

  • Page 918:

    424 References Roussos S, Raimbault

  • Page 922:

    426 References Takamine J (1914) En

  • Page 926:

    Appendix: Guide to the Bioreactor P

  • Page 930:

    A.3 Use of the Well-Mixed Bioreacto

  • Page 934:

    A.4 Use of the Rotating-Drum Biorea

  • Page 938:

    A.5 Use of the Traditional Packed-B

  • Page 942:

    A.6 Use of the Zymotis Packed-Bed B

  • Page 946:

    A.7 Use of the Model of an Intermit

  • Page 950:

    A.7 Use of the Model of an Intermit

  • Page 954:

    444 Index continuous rotating drum

  • Page 958:

    446 Index continuous stirred tank b

Fundamentals of Fluid-Solid Interactions-Analytical and
faculty.mwsu.edu
Fundamentals and Practice of Asphalt Mixture Design Procedures to ...
eng.chula.ac.th
The Fundamentals of GP Lenses Design and Fitting Disclosures GP ...
primaryeye.net
Fundamentals of Physical Design and Query Compilation Fundam ...
lara.epfl.ch
The Fundamentals of Fire Extinguishment - State Fire
statefire.com
Overview of Yeast Selection and Malolactic Fermentation on Aroma ...
apps.fst.vt.edu
NetBoot Fundamentals and Customizations - Penn State University
clc.its.psu.edu
Fundamentals of Time Value of Money Fundamentals of Time Value ...
pds7.egloos.com
Commonwealth of Virginia Fiscal Fundamentals - State Travel ...
doa.virginia.gov
20. Silage Fermentation and Conservation - Department of Animal ...
animal.ufl.edu
Fundamentals of Fair value Measurement and ... - McGladrey
mcgladrey.com
Simultaneous saccharification and fermentation of starch to ... - IRCC
ircc.iitb.ac.in
Introduction to LED Solid-state Lighting and the Optical Design
zoro.ee.ncku.edu.tw
Fundamentals of Geometric Dimensioning and ... - CengageBrain
cengagebrain.co.uk
fundamentals of probability and statistics for ... - Sotonsom.com
sotonsom.com
Fundamentals of Protein Structure and Function.pdf
tok.ro
Fundamentals of Oregon Civil Trial Procedure - Oregon State Bar ...
osbarcle.org
Fundamentals of mold growth in indoor environments and strategies ...
old.frendz4m.com
Fundamentals of Transistors - tubebooks.org
tubebooks.org
Fundamentals of Probability and Statistics for Engineers - HighLearn
highlearn.afeka.ac.il
Fundamentals of Medical Physiology
berghof.eric14