07.02.2013 Views

synthesis and in vitro pharmacology of a series of histamine h2 ...

synthesis and in vitro pharmacology of a series of histamine h2 ...

synthesis and in vitro pharmacology of a series of histamine h2 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SYNTHESIS AND IN VITRO<br />

PHARMACOLOGY OF A SERIES OF<br />

HISTAMINE H 2-AGONISTS<br />

WITH ADDITIONAL<br />

CARDIOVASCULAR ACTIVITIES<br />

Johannes A.M. Christiaans


VRIJE UNIVERSITEIT<br />

SYNTHESIS AND IN VITRO PHARMACOLOGY OF A SERIES OF<br />

HISTAMINE H2-AGONISTS WITH ADDITIONAL<br />

CARDIOVASCULAR ACTIVITIES<br />

ACADEMISCH PROEFSCHRIFT<br />

ter verkrijg<strong>in</strong>g van de graad van doctor aan<br />

de Vrije Universiteit te Amsterdam,<br />

op gezag van de rector magnificus<br />

pr<strong>of</strong>.dr E. Boeker,<br />

<strong>in</strong> het openbaar te verdedigen<br />

ten overstaan van de promotiecommissie<br />

van de faculteit der scheikunde<br />

op ma<strong>and</strong>ag 28 maart 1994 te 15.30 uur<br />

<strong>in</strong> het ho<strong>of</strong>dgebouw van de universiteit, De Boelelaan 1105<br />

door<br />

JOHANNES ANTONIUS MARIA CHRISTIAANS<br />

geboren te Boxmeer


Promotor : pr<strong>of</strong>.dr H. Timmerman<br />

Copromotor : dr H. van der Goot<br />

Referent : pr<strong>of</strong>.dr W. Schunack


Aan mijn ouders


The <strong>in</strong>vestigations described <strong>in</strong> this thesis were f<strong>in</strong>ancially supported by Byk<br />

Nederl<strong>and</strong> B.V. <strong>and</strong> were performed at the Department <strong>of</strong> Pharmacochemistry,<br />

Leiden/Amsterdam Center for Drug Research, Vrije Universiteit, Amsterdam, The<br />

Netherl<strong>and</strong>s.


Contents<br />

Chapter 1 Pharmacotherapeutic treatment <strong>of</strong> cardiovascular diseases; drug 1<br />

effects on functions <strong>of</strong> the heart <strong>and</strong> the circulatory system<br />

Chapter 2 Hybrid molecules: comb<strong>in</strong>ation <strong>of</strong> more than one pharmacological 33<br />

property <strong>in</strong> one s<strong>in</strong>gle molecule<br />

Chapter 3 Organic nitrate esters as synthons for the <strong>synthesis</strong> <strong>of</strong> hybrid 81<br />

molecules comb<strong>in</strong><strong>in</strong>g histam<strong>in</strong>e H2-agonistic properties <strong>and</strong><br />

nitrovasodilation<br />

Chapter 4 L-type voltage-operated Ca 2+<br />

-channels: molecular biology,<br />

lig<strong>and</strong>s, molecular structure, <strong>and</strong> molecular <strong>pharmacology</strong><br />

95<br />

Chapter 5 Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> a <strong>series</strong> <strong>of</strong> new 1,4- 131<br />

dihydropyrid<strong>in</strong>es. 1.<br />

Diethyl 2-(co-am<strong>in</strong>oalkylthio)methyl-2,6-dimethyl-4-[(substituted)<br />

phenyl]-l,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylates as potent calcium<br />

channel blockers<br />

Chapter 6 Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> a <strong>series</strong> <strong>of</strong> new 1,4- 149<br />

dihydropyrid<strong>in</strong>es. 2.<br />

Diethyl 4-[2-(co-am<strong>in</strong>oalkoxy)phenyl]-2,6-dimethyl-l,4-dihydro<br />

pyrid<strong>in</strong>e-3,5-dicarboxylates <strong>and</strong> their correspond<strong>in</strong>g isothioureas<br />

as tools for determ<strong>in</strong><strong>in</strong>g structure-activity relationships<br />

Chapter 7 Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> a <strong>series</strong> <strong>of</strong> hybrid 163<br />

molecules possess<strong>in</strong>g 1,4-dihydropyrid<strong>in</strong>e calcium channel<br />

block<strong>in</strong>g activity <strong>and</strong> histam<strong>in</strong>e H2-agonistic properties<br />

Chapter 8 A new <strong>series</strong> <strong>of</strong> dimaprit analogues with histam<strong>in</strong>e H2-agonistic 191<br />

<strong>and</strong> histam<strong>in</strong>e Hi-antagonistic activities<br />

Summary 207<br />

Samenvatt<strong>in</strong>g<br />

s<br />

209<br />

List <strong>of</strong> Publications 213<br />

Curriculum Vitae 215<br />

Dankwoord I Acknowledgements 111


Chapter 1<br />

Chapter 1<br />

Pharmacotherapeutic treatment <strong>of</strong> cardiovascular diseases;<br />

drug effects on functions <strong>of</strong> the heart <strong>and</strong> the circulatory system<br />

1 Introduction<br />

To underst<strong>and</strong> causes <strong>of</strong> cardiovascular diseases <strong>and</strong> the effects <strong>of</strong> drugs, certa<strong>in</strong><br />

pathophysiological functions <strong>of</strong> the heart <strong>and</strong> the circulatory system have to be<br />

considered 1<br />

. A number <strong>of</strong> factors play an important role <strong>in</strong> the regulation <strong>of</strong> the<br />

circulatory system. These factors consist <strong>of</strong> the pump function <strong>of</strong> the heart, the<br />

vascular system, the blood, <strong>and</strong> the function <strong>of</strong> the kidney <strong>and</strong> the renal vascular<br />

system.<br />

In this chapter only aspects <strong>of</strong> the function <strong>of</strong> the heart <strong>and</strong> the vascular system will<br />

be described. The properties <strong>of</strong> the blood determ<strong>in</strong><strong>in</strong>g the blood flow, such as<br />

aggregation, coagulation, <strong>and</strong> the deformability <strong>of</strong> the blood cells, will not be<br />

considered. Besides, the function <strong>of</strong> the renal vascular system will not be discussed.<br />

In the first part, the function <strong>of</strong> the heart <strong>and</strong> the blood pressure regulation will be<br />

discussed. The follow<strong>in</strong>g part deals with several drugs available for the treatment <strong>of</strong><br />

cardiovascular diseases. A dist<strong>in</strong>ction will be made upon antiarrhythmics,<br />

antiang<strong>in</strong>als, positive <strong>in</strong>otropic agents, <strong>and</strong> antihypertensives. F<strong>in</strong>ally a summary will<br />

be presented about the prospects to achieve drugs with improved therapeutic value<br />

for the treatment <strong>of</strong> cardiovascular diseases.<br />

2 The heart<br />

An optimal function<strong>in</strong>g <strong>of</strong> the heart is <strong>of</strong> vital <strong>in</strong>terest for all mammals. The function <strong>of</strong><br />

the heart is to pump blood throughout the body to supply all liv<strong>in</strong>g cells with oxygen<br />

<strong>and</strong> nutrients.<br />

In a simplified view, the heart consists <strong>of</strong> two sections each act<strong>in</strong>g as a pump.<br />

In the pulmonary circulation, blood deprived <strong>of</strong> oxygen <strong>and</strong> rich <strong>of</strong> carbon dioxide is<br />

pumped from the right part <strong>of</strong> the heart to the lungs. In the lungs carbon dioxide <strong>in</strong><br />

the blood is removed <strong>and</strong> oxygen is taken up. The oxygenated blood is transported<br />

from the lungs to the left part <strong>of</strong> the heart. In the systemic circulation, the oxygenated<br />

blood is transported from the left part <strong>of</strong> the heart through the body to supply, for<br />

<strong>in</strong>stance, muscles <strong>and</strong> organs with oxygen.<br />

The pump function <strong>of</strong> the heart is regulated <strong>in</strong> ^n extremely sophisticated manner.<br />

This <strong>in</strong>cludes automatism, rhythmicity <strong>and</strong> contractility.<br />

2.1 Automatism <strong>and</strong> rhythmicity<br />

Automatism <strong>and</strong> rhythmicity are two important functions to control an optimal<br />

performance <strong>of</strong> the heart.<br />

Cardiac muscle cells (myocytes) are electrically excitable like most other muscle cells<br />

but differ by hav<strong>in</strong>g s<strong>in</strong>o-atrial (SA) <strong>and</strong> atrio-ventricular (AV) nodes which generate<br />

1


Chapter 1<br />

spontaneous rhythm. This is called the <strong>in</strong>tr<strong>in</strong>sic rhythm <strong>of</strong> the heart show<strong>in</strong>g a<br />

frequency <strong>of</strong> about 70 beats per m<strong>in</strong>ute. As a result <strong>of</strong> an electrical or chemical<br />

stimulus, the transmembrane action potential <strong>of</strong> a cardiac muscle cell changes. This<br />

cardiac transmembrane action potential, manifested as a propagat<strong>in</strong>g wave <strong>of</strong><br />

transient depolarisation, can be divided <strong>in</strong>to several phases (fig. 1).<br />

At rest<strong>in</strong>g potential, cardiac ventricular cells ma<strong>in</strong>ta<strong>in</strong> a transmembrane potential<br />

vary<strong>in</strong>g from -80 to -95 mV. The rest<strong>in</strong>g potential is ma<strong>in</strong>ta<strong>in</strong>ed by the concentration<br />

<strong>of</strong> <strong>in</strong>tra- <strong>and</strong> extracellular potassium <strong>and</strong> is determ<strong>in</strong>ed by K +<br />

-permeability <strong>of</strong> the cell<br />

membrane <strong>and</strong> a Na +<br />

/K +<br />

-ATPase which exchanges three sodium ions for two<br />

potassium ions.<br />

At phase 0, a rapid depolarisation occurs by open<strong>in</strong>g <strong>of</strong> Na +<br />

-channels lead<strong>in</strong>g to a<br />

fast <strong>in</strong>ward Na +<br />

-current.<br />

At phase 1, a partial repolarisation takes place, known as the transient outward<br />

current caused almost exclusively by K +<br />

-efflux 2<br />

' 3<br />

.<br />

At phase 2, a plateau region exists as a result <strong>of</strong> reduced K +<br />

-efflux <strong>and</strong> a slow <strong>in</strong>flux<br />

<strong>of</strong> Na +<br />

2 +<br />

<strong>and</strong> Ca lead<strong>in</strong>g to a net slow <strong>in</strong>ward current.<br />

At phase 3, a rapid repolarisation takes place because <strong>of</strong> the closure <strong>of</strong> Na +<br />

- <strong>and</strong> Ca 2+<br />

-<br />

channels <strong>and</strong> activation <strong>of</strong> one or more fast outward K +<br />

-channels.<br />

This eventually leads to phase 4 <strong>in</strong> which the rest<strong>in</strong>g potential is reached. The K +<br />

-<br />

concentration is restored via the Na +<br />

/K +<br />

-pump <strong>and</strong> by K +<br />

-permeability <strong>of</strong> the cell<br />

membrane.<br />

+30 to +40 mV<br />

•80 to -95 mV<br />

b<br />

0 100 200 300 400 ms<br />

a) phase 0;fast <strong>in</strong>ward Na+-current<br />

b) phase 1; partial repolarisation by K+-efflux<br />

c) phase 2; reduced K+-efflux <strong>and</strong> slow Na +<br />

- <strong>and</strong> Ca 2<br />

* -<strong>in</strong>flux<br />

d) phase 3; closure <strong>of</strong>Na+- <strong>and</strong> Ca*+-channels, fast outward K +<br />

-current<br />

e) phase 4; rest<strong>in</strong>g potential, K+-concentration is restored via the Na+IK+-pump <strong>and</strong> by<br />

the K+-permeability <strong>of</strong> the cell membrane<br />

Figure 1: Action potential curve<br />

This <strong>in</strong>tr<strong>in</strong>sic rhythm, however, is not the only factor <strong>in</strong>fluenc<strong>in</strong>g heart rate. Also the<br />

sympathetic nervous system, which accelerates heart beat<strong>in</strong>g <strong>and</strong> the para­<br />

sympathetic nervous system, which slows heart beat<strong>in</strong>g, play a role.<br />

2


Chapter 1<br />

2.2 Role <strong>of</strong> calcium<br />

Calcium is <strong>in</strong>volved <strong>in</strong> all processes <strong>of</strong> excitation result<strong>in</strong>g <strong>in</strong> biological effects. These<br />

excitation processes can be <strong>in</strong>itiated by either an electrical or chemical stimulus. A<br />

calcium concentration gradient across the cell membrane contributes to generation<br />

<strong>and</strong> ma<strong>in</strong>tenance <strong>of</strong> a potential gradient.<br />

Calcium homeostasis <strong>in</strong> the cell is regulated by several mechanisms. Calcium <strong>in</strong>flux<br />

takes place via calcium channels. Calcium efflux proceeds via a Na +<br />

/Ca 2+<br />

-exchange<br />

process driven by the Na +<br />

electrochemical potential <strong>and</strong> a Ca 2+<br />

-ATPase which relies<br />

on the utilization <strong>of</strong> ATP. Calmodul<strong>in</strong>-calcium-sensitive Ca 2+<br />

-ATPases with different<br />

properties are present <strong>in</strong> the plasma membrane <strong>and</strong> <strong>in</strong> the endoplasmic reticulum <strong>of</strong><br />

smooth muscles.<br />

Activation <strong>of</strong> calcium channels, lead<strong>in</strong>g to Ca 2+<br />

-<strong>in</strong>flux, can occur by membrane<br />

depolarization or by receptor stimulation. Calcium channels which are primarily<br />

regulated by electrical signals are called voltage-operated channels (VOC), potentialdependent<br />

channels (PDC), or voltage-dependent calcium channels (VDCC). Calcium<br />

channels which respond to chemical signals are called receptor-operated channels<br />

(ROC) or lig<strong>and</strong>-gated channels.<br />

The cellular system is provided with mitochondria <strong>and</strong> sarcoplasmic reticulum, which<br />

prevent <strong>in</strong>tracellular calcium overload. The mitochondria <strong>and</strong> sarcoplasmic reticulum<br />

are <strong>in</strong>tracellular pools responsible for the calcium sequestration <strong>and</strong> calcium liberation<br />

2 +<br />

after stimulation. Influx <strong>of</strong> Ca through VOCs or ROCs triggers the release <strong>of</strong> a<br />

relatively large amount <strong>of</strong> calcium from <strong>in</strong>tracellular stores to reach an <strong>in</strong>tracellular<br />

calcium concentration which is above a threshold result<strong>in</strong>g <strong>in</strong> a contractile response.<br />

In the heart, the <strong>in</strong>tracellular Ca 2+<br />

-release occurs via a calcium release channel which<br />

is thought to be part <strong>of</strong> a large prote<strong>in</strong> called the ryanod<strong>in</strong>e receptor <strong>and</strong> is located <strong>in</strong><br />

the membrane <strong>of</strong> the sarcoplasmic reticulum 4<br />

. The alkaloid ryanod<strong>in</strong>e exhibits two<br />

oppos<strong>in</strong>g effects on the calcium release channels <strong>in</strong> the sarcoplasmic reticulum, which<br />

are concentration dependent. At high concentrations (> 30 |iM) the channel is<br />

deactivated (closed), <strong>and</strong> at lower concentrations the channel is activated (opened).<br />

Gerzon et al. reported synthetically modified ryanod<strong>in</strong>e analogues which are able to<br />

open the channels <strong>and</strong> lack the ability to close them 5<br />

.<br />

In the skeletal muscle, the Ca 2+<br />

-release from the sarcoplasmic reticulum is <strong>in</strong>itiated by<br />

"voltage sensors", located <strong>in</strong> specialized regions <strong>of</strong> the sarcoplasmic membrane,<br />

<strong>in</strong>stead <strong>of</strong> activation <strong>of</strong> the sarcoplasmic Ca 2+<br />

-release channels by calcium, as <strong>in</strong> heart<br />

cells 6<br />

.<br />

In addition also <strong>in</strong> smooth muscles evidence exists Tor calcium be<strong>in</strong>g released from the<br />

sarcoplasmic reticulum either through Ca 2+<br />

-<strong>in</strong>duced Ca 2+<br />

-release mechanisms 7<br />

' 8<br />

or<br />

through a mechanism l<strong>in</strong>ked to phosphatidyl<strong>in</strong>ositol metabolism 9<br />

' 10<br />

.<br />

The reaction pathway lead<strong>in</strong>g to contraction <strong>in</strong> heart <strong>and</strong> skeletal muscle differs from<br />

that <strong>in</strong> smooth muscle. Therefore, <strong>in</strong> the next section, these contractile processes will<br />

be discussed <strong>in</strong> more detail.<br />

3


Chapter 1<br />

Calcium homeostasis <strong>in</strong> the cell is <strong>in</strong>fluenced by modification <strong>of</strong> cellular calciumb<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong>s that regulate calcium metabolism.<br />

There are two types <strong>of</strong> calcium-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s 11<br />

:<br />

- calcium-transport<strong>in</strong>g prote<strong>in</strong>s <strong>in</strong>tegrated <strong>in</strong> the cell wall or <strong>in</strong>tegrated <strong>in</strong><br />

membranes <strong>of</strong> <strong>in</strong>tracellular organelles.<br />

- calcium-modulated prote<strong>in</strong>s which are freely dissolved <strong>in</strong> the cell or are part <strong>of</strong><br />

a nonmembranous <strong>in</strong>tracellular structure like tropon<strong>in</strong> or calmodul<strong>in</strong>.<br />

Drugs affect<strong>in</strong>g cardiac calcium-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s can therefore act on calciumtransport<strong>in</strong>g<br />

prote<strong>in</strong>s or calcium-modulat<strong>in</strong>g prote<strong>in</strong>s by direct b<strong>in</strong>d<strong>in</strong>g to the prote<strong>in</strong><br />

or by modification <strong>of</strong> the b<strong>in</strong>d<strong>in</strong>g through drug-receptor <strong>in</strong>teraction.<br />

As mentioned before, calcium homeostasis is regulated by Ca 2+<br />

-<strong>in</strong>flux <strong>and</strong> efflux<br />

processes. Indirectly, the <strong>in</strong>tracellular calcium concentration is also <strong>in</strong>fluenced by the<br />

Na +<br />

/K +<br />

-exchange process. Interferences <strong>of</strong> Na +<br />

/K +<br />

-pump disturbs the steady state<br />

concentration <strong>of</strong> sodium <strong>and</strong> hence via the Na +<br />

/Ca 2+<br />

-pump also the <strong>in</strong>tracellular<br />

calcium concentration.<br />

2.3 Contractility<br />

The heart exerts its work by rhythmic contraction (systole) <strong>and</strong> relaxation (diastole).<br />

Contraction <strong>of</strong> the cardiac muscle at constant ventricular volume causes a rise <strong>in</strong><br />

ventricular pressure. When this ventricular pressure exceeds the actual aortic<br />

pressure, the ventricular valve will be opened <strong>and</strong> the blood flows <strong>in</strong>to the aorta. The<br />

stroke volume is about 70 ml <strong>and</strong> a rest volume <strong>of</strong> about 70 ml rema<strong>in</strong>s <strong>in</strong> the<br />

ventricle. With the decrease <strong>in</strong> ventricular pressure, the aortic valve is closed <strong>and</strong> the<br />

atrio-ventricular valve is opened when the aortic pressure is higher then the<br />

ventricular pressure. The <strong>in</strong>flux <strong>of</strong> blood <strong>in</strong>to the atrium <strong>and</strong> ventricle takes place via<br />

a passive mechanism.<br />

The contractile process <strong>of</strong> the cardiac myocytes is regulated by biochemical factors<br />

such as ATP <strong>and</strong> <strong>in</strong>tracellular calcium <strong>and</strong> hence depends on Ca 2+<br />

-entry across the<br />

cell membrane. The slow <strong>in</strong>ward Ca 2+<br />

-current promotes the release <strong>of</strong> a much larger<br />

2 +<br />

amount <strong>of</strong> Ca<br />

from the sarcoplasmic reticulum. The <strong>in</strong>creased <strong>in</strong>tracellular Ca 2+<br />

-<br />

concentration unblocks the effects <strong>of</strong> tropon<strong>in</strong> <strong>and</strong> tropomyos<strong>in</strong>, which then <strong>in</strong> turn<br />

allows act<strong>in</strong> <strong>and</strong> myos<strong>in</strong> to <strong>in</strong>teract with the muscle fiber filaments to contract.<br />

The contractile activity <strong>in</strong> smooth muscle is also regulated by the free <strong>in</strong>tracellular<br />

Ca 2+<br />

-concentration <strong>and</strong> Ca 2+<br />

-sensitivity <strong>of</strong> the contractile prote<strong>in</strong>s. Upon stimulation,<br />

the <strong>in</strong>tracellular Ca 2+<br />

-concentration is <strong>in</strong>creased from about 10~ 7<br />

M to 10~ 5<br />

M, by<br />

2 +<br />

<strong>in</strong>flux <strong>of</strong> extracellular Ca <strong>and</strong> from release M Ca 2+<br />

from <strong>in</strong>tracellular stores. In the<br />

cytosol, the <strong>in</strong>creased Ca 2+<br />

-concentration allows calcium to <strong>in</strong>teract with specific<br />

b<strong>in</strong>d<strong>in</strong>g sites on calmodul<strong>in</strong>. Calmodul<strong>in</strong> is an <strong>in</strong>tracellular prote<strong>in</strong> <strong>in</strong>volved <strong>in</strong> several<br />

activation processes <strong>of</strong> target enzymes. This prote<strong>in</strong> is the mediator <strong>of</strong> the excitationcontraction<br />

coupl<strong>in</strong>g <strong>in</strong> smooth muscle. The calcium-calmodul<strong>in</strong> complex <strong>in</strong>teracts<br />

with another prote<strong>in</strong>, the myos<strong>in</strong> light cha<strong>in</strong> k<strong>in</strong>ase. This newly formed complex then<br />

phosphorylates a smooth muscle myos<strong>in</strong> light cha<strong>in</strong> which, <strong>in</strong> its phosphorylated<br />

form, <strong>in</strong>teracts with act<strong>in</strong> lead<strong>in</strong>g to shorten<strong>in</strong>g (contraction) <strong>of</strong> the my<strong>of</strong>ilaments.<br />

4


Chapter 1<br />

The excitation-contraction process is reversible <strong>and</strong> therefore dephosphorylation <strong>of</strong><br />

myos<strong>in</strong> light cha<strong>in</strong> causes the muscle to relax. In these processes, calmodul<strong>in</strong> plays a<br />

complex regulatory role. However, the consideration <strong>of</strong> the several dist<strong>in</strong>ct classes <strong>of</strong><br />

so-called calmodul<strong>in</strong> antagonists <strong>and</strong> their putative applications <strong>in</strong> therapy, is beyond<br />

this scope, they are reviewed elsewhere 12,13<br />

.<br />

2.4 Cardiac performance<br />

Cardiac performance <strong>and</strong> the mean arterial pressure are <strong>in</strong>creased when the stroke<br />

volume <strong>of</strong> the heart is <strong>in</strong>creased at constant peripheral resistance. The stroke volume<br />

depends on the central venous pressure (pre-load) which <strong>in</strong>fluences the cardiac fill<strong>in</strong>g<br />

pressure <strong>and</strong> hence the end-diastolic volume. By <strong>in</strong>creas<strong>in</strong>g the pre-load, the cardiac<br />

work is <strong>in</strong>creased <strong>and</strong> the oxygen consumption <strong>of</strong> the heart is enhanced.<br />

When the peripheral resistance is <strong>in</strong>creased without changes <strong>in</strong> the central venous<br />

pressure, the after-load is <strong>in</strong>creased. To achieve the same cardiac output, the cardiac<br />

work <strong>and</strong> hence the oxygen consumption are <strong>in</strong>creased.<br />

At exercise, cardiac output is <strong>in</strong>fluenced by changes <strong>in</strong> stroke volume <strong>and</strong> heart<br />

frequency. Sympathetic activation gives an <strong>in</strong>creased positive <strong>in</strong>otropic effect so that<br />

more <strong>of</strong> the rest volume can be used <strong>and</strong> hence more stroke volume is available or it<br />

can overcome a higher peripheral resistance.<br />

Increas<strong>in</strong>g <strong>of</strong> the heart frequency gives a shorten<strong>in</strong>g <strong>of</strong> the diastole <strong>and</strong> thus a shorter<br />

time for ventricle fill<strong>in</strong>g <strong>and</strong> less coronary perfusion <strong>of</strong> the ventricle if it is not<br />

accompanied with coronary dilation. A fast <strong>in</strong>crease <strong>in</strong> frequency is thereby<br />

economically unfavourable.<br />

2.5 Myocardial oxygen supply, ang<strong>in</strong>a, <strong>and</strong> myocardial <strong>in</strong>farction<br />

The heart consumes energy for all the processes executed. This energy is ma<strong>in</strong>ly<br />

supplied by glucose <strong>and</strong> by oxygen delivered by the blood <strong>in</strong> the cardiac chamber<br />

<strong>and</strong>, especially, from blood <strong>in</strong> the coronary artery system. The heart is particularly<br />

sensitive to disturbances <strong>in</strong> blood supply. If the heart is deprived <strong>of</strong> blood (becomes<br />

ischemic), the pump function <strong>of</strong> the heart is reduced with<strong>in</strong> seconds. Atherosclerosis<br />

is <strong>of</strong>ten the underly<strong>in</strong>g mechanism which leads to ischemic heart disease. Partial<br />

occlusion <strong>of</strong> coronary arteries by formation <strong>of</strong> atherosclerotic plaques leads to ang<strong>in</strong>a,<br />

because <strong>of</strong> oxygen depletion <strong>of</strong> the heart. Ang<strong>in</strong>a is felt as a severe pa<strong>in</strong> <strong>in</strong> the chest<br />

<strong>and</strong> occurs upon exercise or excitement. Total occlusion <strong>of</strong> a coronary artery, also<br />

called myocardial <strong>in</strong>farction, can lead to necrosis <strong>of</strong> certa<strong>in</strong> parts <strong>of</strong> the heart.<br />

Antiang<strong>in</strong>al drugs reduce the oxygen dem<strong>and</strong> <strong>of</strong> the heart <strong>and</strong> <strong>in</strong>crease myocardial<br />

oxygen supply by improv<strong>in</strong>g myocardial perfusion.<br />

Decreased cardiac p-adrenoceptor density <strong>and</strong> tissue reactivity, as a result <strong>of</strong><br />

prolonged treatment with P-adrenergics, are reported <strong>in</strong> heart failure <strong>in</strong> both cl<strong>in</strong>ical<br />

<strong>and</strong> animal studies 14,15<br />

. Also, evidence for reduction <strong>of</strong> both ATP-sensitive K +<br />

-<br />

channel <strong>and</strong> dihydropyrid<strong>in</strong>e-sensitive Ca 2+<br />

-channel densities are shown <strong>in</strong> left<br />

ventricular tissue homogenates from rats with heart failure 16<br />

.<br />

5


Chapter 1<br />

In the majority <strong>of</strong> patients with heart failure an enlargement <strong>of</strong> the left ventricle is the<br />

<strong>in</strong>itial process lead<strong>in</strong>g to progressive cardiac dysfunction. Congestive heart failure<br />

(CHF) results when the left ventricle is unable to adequately perfuse the peripheral<br />

tissue <strong>and</strong> thereby cannot provide the cardiac output dem<strong>and</strong>ed by exercise.<br />

Insufficient cardiac output <strong>in</strong>itiates a cascade <strong>of</strong> responses which gives a reduction <strong>of</strong><br />

peripheral circulation eventually lead<strong>in</strong>g to a worsen<strong>in</strong>g <strong>of</strong> the effect.<br />

Congestive heart failure (CHF) can be therapeutically attended by:<br />

-improv<strong>in</strong>g the action <strong>of</strong> the left ventricle with positive <strong>in</strong>otropic agents also called<br />

cardiotonics<br />

-lower<strong>in</strong>g <strong>of</strong> the peripheral resistance with antihypertensive agents as vasodilators<br />

2.6 Blood pressure<br />

Hypertension is a health problem <strong>of</strong> wide dimensions <strong>and</strong> is correlated with<br />

cardiovascular disease <strong>and</strong> results from an <strong>in</strong>crease <strong>in</strong> peripheral vascular resistance 17<br />

.<br />

Initially, hypertension is caused by vasoconstriction; prolonged hypertension leads to<br />

structural changes <strong>of</strong> the vessel walls by hypertrophy <strong>of</strong> the arteries <strong>and</strong> <strong>in</strong>crease <strong>of</strong><br />

left ventricular mass 18<br />

. Increased peripheral vascular resistance rema<strong>in</strong>s a major risk<br />

for cardiovascular disease, especially for stroke, myocardial <strong>in</strong>farction, congestive<br />

heart failure, <strong>and</strong> renal failure.<br />

The electrochemical, mechanical, <strong>and</strong> metabolic activities <strong>of</strong> the heart are mediated by<br />

transmembrane movements <strong>of</strong> ions <strong>and</strong> the <strong>in</strong>tracellular calcium concentration. The<br />

mechanical output <strong>of</strong> the heart is not only determ<strong>in</strong>ed by the force <strong>of</strong> contraction but<br />

also dependent on the state <strong>of</strong> the circulation system, such as the peripheral<br />

resistance <strong>of</strong> the blood vessels <strong>and</strong> the viscosity <strong>of</strong> the blood. The peripheral<br />

resistance <strong>of</strong> the blood vessels affects the performance <strong>of</strong> the heart by <strong>in</strong>fluenc<strong>in</strong>g the<br />

systole-diastole mechanism.<br />

Vasodilators <strong>in</strong>crease blood flow by lower<strong>in</strong>g the peripheral resistance. Depend<strong>in</strong>g on<br />

the class to which vasodilators belong, they are used as antiang<strong>in</strong>al drugs or for the<br />

treatment <strong>of</strong> congestive heart failure or <strong>in</strong> peripheral vasoconstrictive conditions.<br />

3 Cardiovascular drugs<br />

Cardiovascular drugs are used for the treatment or prevention <strong>of</strong> cardiovascular<br />

diseases <strong>and</strong> can be divided <strong>in</strong>:<br />

- antiarrhythmics<br />

- antiang<strong>in</strong>al drugs<br />

- cardiotonics, also called positive <strong>in</strong>otropic agents<br />

- antihypertensives<br />

3.1 Antiarrhythmics<br />

Cardiac arrhythmias result from disorders <strong>in</strong> impulse generation <strong>and</strong>/or conduction<br />

[for details see ref. 19].<br />

6


Chapter 1<br />

Antiarrhythmic drugs modify or restore an abnormal cardiac rhythm. Therefore, drugs<br />

used for the treatment <strong>of</strong> arrhythmia can be directed towards several phases <strong>of</strong> the<br />

cardiac action potential.<br />

There are at least four different groups <strong>of</strong> antiarrhythmic drugs orig<strong>in</strong>ally def<strong>in</strong>ed by<br />

Vaughan Williams 20<br />

:<br />

- Class I<br />

21<br />

The class I antiarrhythmic agents exists <strong>of</strong> three subtypes Ia, Ib <strong>and</strong> Ic (e.g., Ia agents: qu<strong>in</strong>id<strong>in</strong>e 1, proca<strong>in</strong>amide 2, disopyramide 3; Ib agents: toca<strong>in</strong>ide 4,<br />

mexilet<strong>in</strong>e 5; Ic agents fleca<strong>in</strong>ide 6, <strong>and</strong> enca<strong>in</strong>ide 7; fig. 2a). This subclassification<br />

is based on their effect on action potential duration. All class I agents are<br />

sodium channel blockers <strong>and</strong> <strong>in</strong>hibit the propagation <strong>of</strong> the action potential by<br />

reduc<strong>in</strong>g the rate <strong>of</strong> depolarisation dur<strong>in</strong>g phase 0 (reduction <strong>of</strong> the fast<br />

<strong>in</strong>ward Na +<br />

-current).<br />

3 Disopyramide 4 Toca<strong>in</strong>ide 5 Mexilet<strong>in</strong>e<br />

Figure 2a: Class I antiarrhythmics; sodium channel blockers<br />

7


Chapter 1<br />

- Class n<br />

Arrhythmias occurr<strong>in</strong>g after myocardial <strong>in</strong>farction are partly a result <strong>of</strong><br />

<strong>in</strong>creased sympathetic activity. Adrenal<strong>in</strong>e can cause ventricular extrasystoles<br />

by affect<strong>in</strong>g the rest<strong>in</strong>g potential <strong>of</strong> the action potential curve. The AV<br />

conduction is disturbed <strong>and</strong> the refractory period is shortened by an <strong>in</strong>creased<br />

sympathetic activity. p radrenergic antagonists [like propranolol 8<br />

(nonselective), metoprolol 9 <strong>and</strong> atenolol 10; fig. 2b] <strong>in</strong>crease the refractory<br />

period <strong>of</strong> the AV node, <strong>in</strong>terfere with AV conduction, <strong>and</strong> slow down the<br />

ventricular rate. The most important adverse effect <strong>of</strong> p rblockers is the<br />

negative <strong>in</strong>otropic activity <strong>and</strong> reduced cardiac output.<br />

Figure 2b: Class II antiarrhythmics; p radrenergic blockers<br />

- Class IH<br />

The primary antiarrhythmic activity <strong>of</strong> agents belong<strong>in</strong>g to this class rely on<br />

the fact that they prolong the cardiac action potential <strong>and</strong> so <strong>in</strong>crease the<br />

refractory period <strong>of</strong> the cardiac muscle. These electrophysiological changes are<br />

caused by cardiac potassium channel blockade. Amiodarone 11 (fig. 2c) was<br />

one <strong>of</strong> the first drugs show<strong>in</strong>g K +<br />

-channel blockade. S<strong>in</strong>ce then major <strong>in</strong>terest<br />

was shown <strong>in</strong> this field <strong>of</strong> drugs. Nowadays sotalol 12, orig<strong>in</strong>ally developed as<br />

a p-adrenergic receptor antagonist, is the typical class III antiarrhythmic drug.<br />

The majority <strong>of</strong> potent class III anti-arrhythmic drugs recently developed (E-<br />

4031 13, UK-68,798 14, L-691,121 15 22<br />

; fig. 2c) all possess the methanesulfonamide<br />

group as present <strong>in</strong> sotalol. N<br />

- Class IV<br />

Calcium channel blockers reduce the slow calcium <strong>in</strong>flux <strong>and</strong> shorten the<br />

plateau phase <strong>of</strong> the cardiac action potential <strong>and</strong> restore the <strong>in</strong>tr<strong>in</strong>sic rhythm.<br />

The disadvantageous effect is the reduction <strong>in</strong> myocardial contractility.<br />

Calcium channel blockers are discussed <strong>in</strong> more detail as antihypertensives.<br />

8


Chapter 1<br />

Until now, no selective class III antiarrhythmic drug has reached the market <strong>and</strong>,<br />

therefore, the effectiveness <strong>of</strong> these type <strong>of</strong> agents <strong>in</strong> therapy is still unproved 23<br />

.<br />

In cl<strong>in</strong>ical use, the choice <strong>of</strong> the best antiarrhythmic drug is <strong>of</strong>ten a matter <strong>of</strong> trial <strong>and</strong><br />

error. A special problem is that some antiarrhythmic drugs used to suppress<br />

arrhythmias actually turned out to act pro-arrhythmogenic 24<br />

. In practice the dihydropyrid<strong>in</strong>e<br />

calcium channel blockers carry a serious risk for proischemia, a term def<strong>in</strong>ed<br />

by Waters 25<br />

. The most likely possibility to cause proischemia is that dihydropyrid<strong>in</strong>e<strong>in</strong>duced<br />

peripheral vasodilation simultaneously reduces coronary perfusion pressure<br />

<strong>and</strong>, as a reflex, <strong>in</strong>creases heart rate.<br />

i<br />

11 Amiodarone 12 Sotalol<br />

14 UK-68,798<br />

Figure 2c: Class III antiarrhythmics; potassium channel blockers<br />

The most promis<strong>in</strong>g drugs for the treatment <strong>of</strong> arrhythmias seem to be the sodium<br />

channel blockers. However, much is still unclear about the exact mechanisms <strong>of</strong> these<br />

drugs.<br />

All antiarrhythmic drugs exert negative <strong>in</strong>otropic effects which may <strong>in</strong>duce or worsen<br />

congestive heart failure <strong>in</strong> up to 5% <strong>of</strong> all treated patients 26<br />

. Treatment <strong>of</strong> arrhythmia<br />

with s<strong>in</strong>gle drugs is <strong>of</strong>ten <strong>in</strong>effective. Therefore, comb<strong>in</strong>ations <strong>of</strong> antiarrhythmic drugs<br />

are used. In general, drugs belong<strong>in</strong>g to the same electrophysiological class are not<br />

applied <strong>in</strong> comb<strong>in</strong>ation therapy. However, also drugs with pharmacok<strong>in</strong>etic<br />

<strong>in</strong>teractions, such as qu<strong>in</strong>id<strong>in</strong>e <strong>and</strong> amiodarone, should be avoided 27<br />

.<br />

9<br />

C H 3


Chapter 1<br />

3.2 Antiang<strong>in</strong>al drugs<br />

As already discussed, ang<strong>in</strong>a is caused by a disturbance <strong>in</strong> balance between oxygen<br />

supply by the coronary blood flow <strong>and</strong> the oxygen dem<strong>and</strong> <strong>of</strong> the heart. Relief <strong>of</strong><br />

ang<strong>in</strong>al pa<strong>in</strong> can be achieved by drugs <strong>in</strong>creas<strong>in</strong>g the oxygen supply or by drugs<br />

which decrease the oxygen dem<strong>and</strong> <strong>of</strong> the heart by reduc<strong>in</strong>g contractility (<strong>in</strong>otropy)<br />

<strong>and</strong> frequency (chronotropy). Drugs used for the treatment <strong>of</strong> ang<strong>in</strong>a are vasodilators<br />

as the organic nitrate esters <strong>and</strong> the calcium channel blockers, which both reduce the<br />

oxygen dem<strong>and</strong> <strong>and</strong> simultaneously improve myocardial perfusion, p-adrenoceptor<br />

antagonists only affect the oxygen dem<strong>and</strong> <strong>of</strong> the heart. The antiang<strong>in</strong>al drugs can<br />

be divided <strong>in</strong>to three classes:<br />

- nitrate <strong>and</strong> nitrites<br />

- calcium channel blockers<br />

- P radrenoceptor antagonists<br />

3.2.1 Nitrates <strong>and</strong> nitrites<br />

Nitrates <strong>and</strong> nitrites exert their effects on the systemic circulation by relaxation <strong>of</strong><br />

small bloodvessels, arterioles, capillaries <strong>and</strong> the venous capacitance vessels 28<br />

. The<br />

secondary effect is the reduction <strong>of</strong> the pre-load. Reduction <strong>of</strong> the arterial pressure<br />

<strong>and</strong> cardiac output leads to a lower<strong>in</strong>g <strong>of</strong> the cardiac oxygen consumption.<br />

Cont<strong>in</strong>uous treatment with nitrates, however, results <strong>in</strong> a dim<strong>in</strong>ish<strong>in</strong>g relaxant effect.<br />

This tolerance especially occurs with long-act<strong>in</strong>g organic nitrates, like isosorbide<br />

d<strong>in</strong>itrate 16 <strong>and</strong> to a lesser extent with nitroglycer<strong>in</strong> 17. Organic nitrates <strong>and</strong> nitrites<br />

most likely produce their vasodilation by releas<strong>in</strong>g nitric oxide. Organic nitrites (like<br />

amylnitrite 18) release nitric oxide via a simple one-electron reduction. The organic<br />

nitrates require a three-electron reduction to release nitric oxide, proceed<strong>in</strong>g via an<br />

enzyme system attached to the cellular surface <strong>of</strong> vascular smooth muscle membranes.<br />

The nitric oxide releas<strong>in</strong>g activity mimics the effect <strong>of</strong> the endothelium-derived<br />

relax<strong>in</strong>g factor (EDRF), orig<strong>in</strong>at<strong>in</strong>g from endothelial cells present <strong>in</strong> bloodvessels,<br />

which also turned out to be nitric oxide 29<br />

.<br />

ON0 2<br />

ON0 2<br />

16 Isosorbide d<strong>in</strong>itrate 17 Nitroglycer<strong>in</strong> 18 Amyl nitrite<br />

The nitrate esters are extensively reviewed <strong>in</strong> chapter 3.<br />

3.2.2 Calcium channel blockers<br />

Reduction <strong>of</strong> myocardial oxygen consumption is thought to result from both an<br />

<strong>in</strong>crease <strong>in</strong> coronary blood flow <strong>and</strong> a reduction <strong>of</strong> total heart work. From these<br />

effects <strong>and</strong> from the afterload reduction due to their hypotensive action, dihydro-<br />

10


Chapter 1<br />

pyrid<strong>in</strong>es are expected to be beneficial for the treatment <strong>of</strong> ang<strong>in</strong>a. The calcium<br />

channel blockers are discussed <strong>in</strong> a follow<strong>in</strong>g section (Antihypertensives).<br />

3.2.3 ^-Adrenoceptor antagonists<br />

Pi-antagonists are used to reduce the frequency <strong>of</strong> ang<strong>in</strong>al attacks. They reduce the<br />

cardiac work by <strong>in</strong>hibition <strong>of</strong> the sympathetic nervous system <strong>and</strong> <strong>in</strong>hibit the action<br />

<strong>of</strong> circulat<strong>in</strong>g catecholam<strong>in</strong>es on the heart. The catecholam<strong>in</strong>es exert a positive<br />

<strong>in</strong>otropic <strong>and</strong> chronotropic action on the heart. By blockade <strong>of</strong> the p radrenoceptors<br />

the frequency <strong>of</strong> the heart is reduced dur<strong>in</strong>g exercise <strong>and</strong> at rest.<br />

p radrenoceptor antagonists have already been discussed <strong>in</strong> the section <strong>of</strong> class II<br />

antiarrhythmics.<br />

3.3 Cardiotonics (<strong>in</strong>otropic agents)<br />

Cardiotonic drugs <strong>in</strong>crease the contractile force (<strong>in</strong>otropy) <strong>of</strong> the heart <strong>and</strong> exert<br />

important actions on cardiac excitability, automaticity, conduction velocity <strong>and</strong><br />

refractory periods <strong>and</strong> are ma<strong>in</strong>ly <strong>in</strong>dicated for congestive heart failure.<br />

A number <strong>of</strong> agents have effects on cardiac function <strong>and</strong> can be classified as follows:<br />

- cardiac glycosides<br />

- p radrenoceptor agonists <strong>and</strong> histam<strong>in</strong>e H 2-agonists<br />

- phosphodiesterase (III) <strong>in</strong>hibitors<br />

- calcium channel activators<br />

Figure 3 shows the sites <strong>of</strong> action <strong>of</strong> the different positive <strong>in</strong>otropic agents <strong>in</strong> which<br />

they <strong>in</strong>terfere <strong>in</strong> the <strong>in</strong>tracellular calcium concentration. Positive <strong>in</strong>otropic agents act<br />

by <strong>in</strong>creas<strong>in</strong>g the <strong>in</strong>tracellular Ca 2+<br />

-concentration which then becomes available for<br />

the contractile prote<strong>in</strong>s (tropon<strong>in</strong>, myos<strong>in</strong>, act<strong>in</strong>).<br />

Stimulation <strong>of</strong> G-prote<strong>in</strong> coupled receptors (p2-adrenoceptors, histam<strong>in</strong>e H2 receptors) activates the adenylate cyclase system, convert<strong>in</strong>g ATP <strong>in</strong>to cAMP. In<br />

cardiac tissue a special form <strong>of</strong> adenylate cyclase has been found recently, which is<br />

<strong>in</strong>hibited by Ca 2+<br />

. It is proposed that the physiological significance <strong>of</strong> this type <strong>of</strong><br />

adenylate cyclase provides a negative feedback control on elevation <strong>of</strong> cAMP <strong>and</strong><br />

hence on cardiac contractility <strong>and</strong> rhythmicity 30<br />

. cAMP is capable to phosphorylate<br />

certa<strong>in</strong> prote<strong>in</strong> k<strong>in</strong>ases. These k<strong>in</strong>ases, <strong>in</strong> turn, phosphorylate prote<strong>in</strong>s <strong>in</strong> the<br />

sarcolemma <strong>and</strong> prote<strong>in</strong>s <strong>in</strong> the sarcoplasmic reticulum 31<br />

. Although the primary signal<br />

to which voltage-operated calcium channels respond is constituted by the membrane<br />

potential, also a variety <strong>of</strong> lig<strong>and</strong>-receptor <strong>in</strong>itiated modulations <strong>of</strong> these channels<br />

occur. This happens by phosphorylation <strong>of</strong> certa<strong>in</strong> prote<strong>in</strong>s <strong>in</strong> the sarcolemma, which<br />

are part <strong>of</strong> voltage dependent L-type Ca 2+<br />

-channels. When phosphorylated, these<br />

prote<strong>in</strong>s allow the ion channel configuration to switch <strong>in</strong> the open, also called<br />

activated, state. This leads to a slow <strong>in</strong>ward Ca 2+<br />

-current 32<br />

.<br />

prAdrenoceptor stimulation <strong>in</strong>creases the slow <strong>in</strong>ward Ca 2+<br />

-current through cardiac<br />

L-type Ca 2+<br />

-channels. Guanid<strong>in</strong>e nucleotide b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s (G-prote<strong>in</strong>s) provide<br />

the l<strong>in</strong>k between pradrenoceptors <strong>and</strong> K +<br />

- or Ca 2+<br />

-channels. This l<strong>in</strong>k can be either<br />

11


Chapter 1<br />

<strong>in</strong>direct (also called cytoplasmic pathway) or direct (also called the membranedelimited<br />

pathway). Indirectly activation takes place via activation <strong>of</strong> cytoplasmic<br />

k<strong>in</strong>ases which phosphorylate the ion channels 33<br />

' 34<br />

. The stimulat<strong>in</strong>g prote<strong>in</strong> Gs directly activates K +<br />

- <strong>and</strong> Ca 2+<br />

-channels 35<br />

. Although a direct effect <strong>of</strong> G-prote<strong>in</strong>s on<br />

neuronal Ca 2+<br />

-channels have been established, it is still debated if such a mechanism<br />

also regulates cardiac Ca 2+<br />

-channels 36,37<br />

' 38<br />

.<br />

Na +<br />

Cardiac glycosides<br />

/K*" ATPase<br />

Na +<br />

u<br />

Na +<br />

ATP^AMP ATP^\ DAMP<br />

K +<br />

Na +<br />

/Ca 2+<br />

ATPase<br />

tropon<strong>in</strong>^^<br />

electromechanical coupl<strong>in</strong>g<br />

via the tropon<strong>in</strong>-myos<strong>in</strong>-act<strong>in</strong><br />

complex<br />

Figure 3: Mode <strong>of</strong> action <strong>of</strong> cardiotonics<br />

Calcium channel<br />

blockers<br />

2 +<br />

Ca<br />

ion channel<br />

^-agonist<br />

H 2-agonist<br />

ss-*-® — adenylate<br />

cyclase<br />

\ . /<br />

prote<strong>in</strong> /<br />

k<strong>in</strong>ase A ^<br />

Ca 2+<br />

- calmodul<strong>in</strong><br />

ATP<br />

PDE III <strong>in</strong>hibitors<br />

°C-*5'-AMP<br />

Ca 2+<br />

- calmodul<strong>in</strong> - MLCK<br />

SMOOTH MUSCLE<br />

12<br />

ATP<br />

myos<strong>in</strong> • LC my 0s<strong>in</strong>- LC


Chapter 1<br />

Like the p-adrenoceptor system, calcium channels seem to be subject to up <strong>and</strong> down<br />

regulation. Both homologous <strong>and</strong> heterologous desensitization can occur, <strong>and</strong><br />

various factors that may alter the number <strong>and</strong> function <strong>of</strong> voltage-operated channels<br />

have been described by Ferrante et al. 39<br />

. Despite the exist<strong>in</strong>g evidence that voltageoperated<br />

channels are subject to drug- or disease-<strong>in</strong>duced regulatory <strong>in</strong>fluences,<br />

several controversial results demonstrate that much <strong>of</strong> the underly<strong>in</strong>g mechanism is<br />

still unclear.<br />

3.3.1 Cardiac glycosides<br />

Cardiac glycosides (like digitox<strong>in</strong> 19 <strong>and</strong> digox<strong>in</strong> 20; fig. 4a) <strong>in</strong>hibit the Na +<br />

/K +<br />

-<br />

exchange process by Na +<br />

/K +<br />

-ATPase 40<br />

. This <strong>in</strong>hibition then causes a decrease <strong>in</strong> the<br />

<strong>in</strong>tracellular sodium concentration which <strong>in</strong> turn lowers the extrusion <strong>of</strong> <strong>in</strong>tracellular<br />

Ca 2+<br />

, by the Na +<br />

/Ca 2+<br />

-pump, across the sarcolemma.<br />

2 +<br />

The <strong>in</strong>crease <strong>of</strong> <strong>in</strong>tracellular Ca <strong>in</strong>directly activates the myocardial contraction.<br />

Obviously also drugs that <strong>in</strong>crease <strong>in</strong>tracellular Na +<br />

, such as Na +<br />

-channel openers,<br />

trigger the Ca 2+<br />

-mediated contractile process. One <strong>of</strong> the major disadvantages <strong>of</strong><br />

cardiac glycosides is their rather small therapeutic range <strong>in</strong> which they can be used.<br />

Figure 4a: Cardiotonics; cardiac glycosides<br />

3.3.2 p }-Adrenoceptor agonists<br />

prAdrenoceptor agonists (like dobutam<strong>in</strong>e 21, isoprenal<strong>in</strong>e 22 (nonselective),<br />

ibopam<strong>in</strong>e 23, denopam<strong>in</strong>e 24 <strong>and</strong> xamoterol 25; fig. 4b) <strong>and</strong> histam<strong>in</strong>e H2-agonists (impromid<strong>in</strong>e 41<br />

26 <strong>and</strong> arpromid<strong>in</strong>e 42<br />

27; fig. 4c) stimulate the adenylate cyclase<br />

system <strong>and</strong> <strong>in</strong>crease the <strong>in</strong>tracellular cAMP concentration <strong>and</strong> subsequently the<br />

<strong>in</strong>tracellular Ca 2+<br />

-concentration. Prolonged pradrenoceptor stimulation leads to<br />

13


Chapter 1<br />

receptor down-regulation <strong>and</strong> f<strong>in</strong>ally the receptor becomes <strong>in</strong>sensitive to<br />

catecholam<strong>in</strong>e stimulation.<br />

Figure 4b: Cardiotonics; p radrenoceptor agonists<br />

Histam<strong>in</strong>e H2-agonists also stimulate the gastric acid secretion. Therefore new drugs<br />

<strong>of</strong> this k<strong>in</strong>d need to be cardioselective. Good prospects are expected for the thiazole<br />

derivative 28 <strong>of</strong> arpromid<strong>in</strong>e like compounds 43<br />

. However, probably also the histam<strong>in</strong>e<br />

H2-receptors are subject to receptor down-regulation.<br />

26 Impromid<strong>in</strong>e<br />

27 Arpromid<strong>in</strong>e<br />

28 VUF 9012<br />

Figure 4c: Cardiotonics; histam<strong>in</strong>e H 2-agonists<br />

14


Chapter 1<br />

3.3.3 Phosphodiesterase III <strong>in</strong>hibitors<br />

The phosphodiesterase constitutes a family <strong>of</strong> enzymes which regulate the<br />

<strong>in</strong>tracellular degradation <strong>of</strong> cAMP to 5'-AMP. PDE <strong>in</strong>hibitors selective for the cAMP<br />

PDE isoenzyme found <strong>in</strong> bra<strong>in</strong> tissue are <strong>of</strong> <strong>in</strong>terest for treatment <strong>of</strong> central nervous<br />

system disorders. Three different cardiac phosphodiesterases (PDE I, II <strong>and</strong> III) have<br />

been dist<strong>in</strong>guished. Only PDE III is highly specific for cAMP, while PDE I <strong>and</strong> II also<br />

affects cGMP. The prototype PDE(III)-<strong>in</strong>hibitors amr<strong>in</strong>one 29 <strong>and</strong> milr<strong>in</strong>one 30 (fig.<br />

2 +<br />

4d) <strong>in</strong>hibit the turnover <strong>of</strong> cAMP <strong>and</strong> thus <strong>in</strong>creases the <strong>in</strong>tracellular Ca<br />

-concentration. This results <strong>in</strong> <strong>in</strong>creased cardiac output <strong>and</strong> decreased left ventricular<br />

fill<strong>in</strong>g pressure. Besides a positive <strong>in</strong>otropic effect, PDE(III)-<strong>in</strong>hibitors also possess a<br />

vasodilator activity. In long term therapy PDE(III)-<strong>in</strong>hibitors <strong>in</strong>crease heart rate which<br />

rises oxygen dem<strong>and</strong> <strong>of</strong> the heart <strong>and</strong> also due to their proarrhythmogenic activity<br />

<strong>of</strong>ten lead to arrhythmias 44<br />

.<br />

29 amr<strong>in</strong>one 30 milr<strong>in</strong>one<br />

Figure 4d: Cardiotonics; phosphodiesterase (III) <strong>in</strong>hibitors<br />

3.3.4 Calcium channel activators<br />

Calcium channel activators, such as the dihydropyrid<strong>in</strong>es Bay K 8644 31, CGP<br />

28392 32 <strong>and</strong> 202-791 33 (fig. 4e), stabilize the open state <strong>of</strong> the slow <strong>in</strong>ward<br />

calcium channels <strong>and</strong> thus <strong>in</strong>crease <strong>in</strong>tracellular Ca 2+<br />

. However calcium channel<br />

activators also promote Ca 2+<br />

-<strong>in</strong>flux <strong>in</strong> vascular smooth muscle cells lead<strong>in</strong>g to a<br />

vasoconstriction <strong>of</strong> the peripheral <strong>and</strong> coronary vessels which is unfavourable <strong>in</strong> the<br />

treatment <strong>of</strong> congestive heart failure.<br />

31 BAY K 8644 32 CGP 28392 33 202-791<br />

Figure 4e: Cardiotonics; calcium channel activators<br />

In cases <strong>of</strong> severe cardiac <strong>in</strong>sufficiency, <strong>of</strong>ten stimulators <strong>of</strong> the adenylate cyclase (p r<br />

adrenoceptor agonists) are comb<strong>in</strong>ed with PDE(III)-<strong>in</strong>hibitors to simultaneously<br />

<strong>in</strong>crease the cAMP production <strong>and</strong> decrease the cAMP degradation. However, <strong>in</strong><br />

15


Chapter 1<br />

patients suffer<strong>in</strong>g from severe heart failure, drugs act<strong>in</strong>g by cAMP elevation fail to<br />

<strong>in</strong>crease contractility because <strong>of</strong> desensitization <strong>of</strong> adenylate cyclase coupled<br />

receptors. Therefore, ß x-adrenoceptor agonists are thought to have no future <strong>in</strong><br />

treat<strong>in</strong>g patients suffer<strong>in</strong>g from chronic heart failure 45<br />

. Calcium channel activators<br />

hold promise for future development <strong>of</strong> cardiotonics. However, until now no calcium<br />

channel activator is reported possess<strong>in</strong>g a positive <strong>in</strong>otropic effect without<br />

simultaneously <strong>in</strong>creas<strong>in</strong>g vascular resistance <strong>and</strong> enhanced blood pressure.<br />

3.4 Antihypertensives<br />

For the treatment <strong>of</strong> hypertension one can choose from a wide variety <strong>of</strong> drugs, such<br />

as:<br />

- diuretics<br />

- direct act<strong>in</strong>g vasodilators<br />

- modulators <strong>of</strong> the ren<strong>in</strong>-angiotens<strong>in</strong> system<br />

- ß radrenoceptor antagonists<br />

- ocj-adrenoceptor antagonists<br />

- oc 2-adrenoceptor agonists<br />

- K +<br />

-channel activators<br />

- calcium channel blockers<br />

The mode <strong>of</strong> action <strong>of</strong> antihypertensive agents is depicted <strong>in</strong> figure 5.<br />

3.4.1 Diuretics<br />

Diuretics, especially the thiazides (chlorothiazide 34; fig. 6), are the most common<br />

drugs for the treatment <strong>of</strong> hypertension. They <strong>in</strong>crease the salt excretion via the ur<strong>in</strong>e<br />

<strong>and</strong> thus reduce the blood volume <strong>and</strong> the extracellular volume which is essential for<br />

treat<strong>in</strong>g hypertension. The blood pressure lower<strong>in</strong>g effect <strong>of</strong> diuretics is based on the<br />

lower<strong>in</strong>g <strong>of</strong> the plasma <strong>and</strong> extracellular volume.<br />

Figure 6: Diuretic<br />

34 Chlorothiazide<br />

3.4.2 Direct act<strong>in</strong>g vasodilators<br />

The direct act<strong>in</strong>g vasodilators hydralaz<strong>in</strong>e 35 <strong>and</strong> m<strong>in</strong>oxidil 36 are <strong>of</strong> limited<br />

therapeutic significance. They <strong>in</strong>duce baroreflexes, thereby lead<strong>in</strong>g to stimulation <strong>of</strong><br />

the sympathetic nervous system caus<strong>in</strong>g reflex tachycardia, <strong>and</strong> stimulation <strong>of</strong> the<br />

ren<strong>in</strong>-angiotens<strong>in</strong>, caus<strong>in</strong>g fluid retention.<br />

16<br />

N


arteries<br />

bra<strong>in</strong><br />

Central Nervous System<br />

noradrenal<strong>in</strong>e<br />

peripheral resistance<br />

direct act<strong>in</strong>g<br />

vasodilators<br />

calcium<br />

channel<br />

blockers<br />

angiotens<strong>in</strong> II<br />

antagonists<br />

arterial blood<br />

pressure<br />

kidney<br />

renal blood flow<br />

ren<strong>in</strong><br />

angiotens<strong>in</strong><br />

<strong>in</strong>hibitors<br />

ren<strong>in</strong>-angiotens<strong>in</strong><br />

system<br />

angiotens<strong>in</strong> II<br />

a 2-agonists<br />

heart<br />

cardiac output<br />

Chapter 1<br />

extracellular / blood volume<br />

sodium excretion<br />

diuretics<br />

adrenal gl<strong>and</strong><br />

aldosteron<br />

Figure 5: Sites <strong>of</strong> action <strong>of</strong> antihypertensive agents on blood pressure regulation<br />

17


Chapter 1<br />

Figure 7: Direct act<strong>in</strong>g vasodilators<br />

3.4.3 Modulators <strong>of</strong> the ren<strong>in</strong>-angiotens<strong>in</strong> system<br />

The ren<strong>in</strong>-angiotens<strong>in</strong> system is one <strong>of</strong> the hormonal mechanisms <strong>in</strong>volved <strong>in</strong> cardiac<br />

regulation <strong>and</strong> control <strong>of</strong> blood pressure 46<br />

. In the coronary circulation the endocr<strong>in</strong>e<br />

<strong>and</strong> paracr<strong>in</strong>e ren<strong>in</strong>-angiotens<strong>in</strong> system modulates the vasoconstrictor tone. In<br />

myocytes it <strong>in</strong>creases contractility partly because <strong>of</strong> the facilitation <strong>of</strong> noradrenal<strong>in</strong>e<br />

release 47<br />

. An historical overview <strong>of</strong> the development <strong>of</strong> ren<strong>in</strong>-angiotens<strong>in</strong> system<br />

modulators is given by Menard 48<br />

.<br />

Angiotens<strong>in</strong> is enzymatically formed from<br />

angiotens<strong>in</strong>ogen, an a 2-globul<strong>in</strong>. The<br />

enzyme ren<strong>in</strong> cleaves angiotens<strong>in</strong>ogen to<br />

afford the decapeptide angiotens<strong>in</strong> I.<br />

Another cleavage <strong>of</strong> two am<strong>in</strong>o acid<br />

residues by the angiotens<strong>in</strong>-convert<strong>in</strong>g<br />

enzyme (ACE) gives the octapeptide<br />

angiotens<strong>in</strong> II. By several peptidases<br />

angiotens<strong>in</strong> II is degraded to angiotens<strong>in</strong><br />

HI <strong>and</strong> further to <strong>in</strong>active peptide<br />

fragments.<br />

AO<br />

AI<br />

All<br />

AMI<br />

angiotens<strong>in</strong>ogen<br />

^ ren<strong>in</strong><br />

angiotens<strong>in</strong>-l<br />

J ACE<br />

angiotens<strong>in</strong>-l I<br />

^ am<strong>in</strong>opeptidase<br />

angiotens<strong>in</strong>-lll<br />

I peptidase<br />

<strong>in</strong>activé fragments<br />

Figure 8. The ren<strong>in</strong>-angiotens<strong>in</strong> system<br />

Angiotens<strong>in</strong> II is a potent vasoconstrictor, it stimulates aldosteron secretion, <strong>in</strong>creases<br />

sympathetic nervous system activity, <strong>and</strong> has a positive <strong>in</strong>otropic activity. Production<br />

<strong>of</strong> angiotens<strong>in</strong> II results <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> systemic blood pressure. Angiotens<strong>in</strong>convert<strong>in</strong>g<br />

enzyme <strong>in</strong>hibitors (ACE-<strong>in</strong>hibitors: Captopril 37, enalapril 38, lis<strong>in</strong>opril 39;<br />

fig. 9a) show side effects which are thought to be due to <strong>in</strong>hibited breakdown <strong>of</strong> the<br />

<strong>in</strong>flammatory peptide bradyk<strong>in</strong><strong>in</strong> 49<br />

. Bradyk<strong>in</strong><strong>in</strong> accumulation near the endothelial<br />

cells stimulates the nitric oxide synthase <strong>and</strong> <strong>in</strong>duces vasodilation caus<strong>in</strong>g an <strong>in</strong>crease<br />

<strong>in</strong> coronary flow 50<br />

.<br />

18


Chapter 1<br />

The development <strong>of</strong> ren<strong>in</strong> <strong>in</strong>hibitors is complicated because <strong>of</strong> the poor oral<br />

bioavailability <strong>of</strong> these drugs which all possess a peptic character. Improvements are<br />

made by modify<strong>in</strong>g their physical properties <strong>and</strong> reduc<strong>in</strong>g their peptic character 51<br />

.<br />

37 Captopril 38 Enalapril<br />

19


Chapter 1<br />

Angiotens<strong>in</strong> II antagonists get more <strong>and</strong> more attention as drugs for the treatment <strong>of</strong><br />

arterial hypertension, heart failure <strong>and</strong> coronary artery disease. They regulate the<br />

ren<strong>in</strong>-angiotens<strong>in</strong> system via blockade <strong>of</strong> the effector hormone rather than <strong>in</strong>hibition<br />

<strong>of</strong> its production <strong>and</strong> are potentially more selective than angiotens<strong>in</strong>-convert<strong>in</strong>g<br />

enzyme <strong>in</strong>hibitors 52<br />

.<br />

5 3<br />

The discovery <strong>of</strong> the non peptide angiotens<strong>in</strong> II antagonist S-(83 08) 4 0 , a<br />

benzylimidazole derivative led to the development <strong>of</strong> many biphenylimidazoles 54<br />

' 55<br />

5 6<br />

based upon DuP 753 41 . Radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g studies with DuP 753 <strong>in</strong> rat bra<strong>in</strong><br />

have demonstrated that there are two subtypes <strong>of</strong> Angiotens<strong>in</strong> II receptors, called the<br />

ATj <strong>and</strong> AT2-receptors 57<br />

. In rat bra<strong>in</strong> the ATrreceptor is located <strong>in</strong> the periventricular<br />

areas <strong>and</strong> the AT2-receptor <strong>in</strong> midbra<strong>in</strong>, cerebellum <strong>and</strong> bra<strong>in</strong>stem 58<br />

. In rat<br />

heart the ATX <strong>and</strong> AT2-receptors are equally distributed over the myocardium 59<br />

. The<br />

prototype ATrreceptor antagonist is DuP 753, while the prototype AT2-receptor antagonist is PD-123,319 42 60<br />

. Only AT!-receptor antagonists are able to block the<br />

vasoconstrictor effects <strong>of</strong> angiotens<strong>in</strong> II. The functional role <strong>of</strong> AT2-receptor antagonists is still unclear.<br />

3.4.4 ß rAdrenoceptor antagonists<br />

ß^Blockers are used as antihypertensives, antiang<strong>in</strong>al <strong>and</strong> antiarrhythmic drugs.<br />

Blockade <strong>of</strong> the cardiac ß rreceptors results <strong>in</strong> the reduction <strong>of</strong> heart rate, myocardial<br />

contractility, cardiac output <strong>and</strong> blood pressure. This class <strong>of</strong> drugs was already<br />

discussed <strong>in</strong> the section <strong>of</strong> antiarrhythmics.<br />

3.4.5 a-Adrenoceptor modulators<br />

Noradrenal<strong>in</strong>e <strong>and</strong> adrenal<strong>in</strong>e are the endogenous agonists for the a-adrenoceptors<br />

present <strong>in</strong> synapses <strong>of</strong> the sympathetic nervous system. Both central <strong>and</strong> peripheral<br />

a r <strong>and</strong> a2-adrenoceptors are present at postsynaptic sites. At the presynaptic site<br />

only a2-adrenoceptors occur <strong>and</strong> their stimulation leads to auto-<strong>in</strong>hibition <strong>of</strong><br />

noradrenal<strong>in</strong>e release. Stimulation, by an appropriate agonist, <strong>of</strong> both postsynaptic<br />

a r <strong>and</strong> oc2-adrenoceptors <strong>in</strong> vascular smooth muscle can trigger extracellular Ca 2+<br />

-<br />

<strong>in</strong>flux through receptor-operated calcium channels. Calcium channel blockers do not<br />

<strong>in</strong>terfere with the formation <strong>of</strong> the lig<strong>and</strong>-receptor complex, <strong>and</strong> only prevent Ca 2+<br />

-<br />

<strong>in</strong>flux through calcium channels. oeradrenoceptor stimulation <strong>in</strong>volves both IP3 <strong>in</strong>duced <strong>in</strong>tracellular release <strong>of</strong> calcium from the sarcoplasmic reticulum <strong>and</strong><br />

extracellular Ca 2+<br />

-<strong>in</strong>flux 61<br />

. N<br />

The alkaloid reserp<strong>in</strong>e depletes catecholam<strong>in</strong>es from central <strong>and</strong> peripheral neurones<br />

by prevent<strong>in</strong>g the uptake <strong>of</strong> catecholam<strong>in</strong>es from the cytoplasmic pool <strong>in</strong>to the<br />

storage vesicles <strong>of</strong> sympathetic neurones, lead<strong>in</strong>g to depletion <strong>of</strong> neuronal<br />

catecholam<strong>in</strong>e stores. Reserp<strong>in</strong>e, once used <strong>in</strong> antihypertensive therapy, has become<br />

obsolete.<br />

20


^-ADRENOCEPTOR ANTAGONISTS<br />

Chapter 1<br />

^-Adrenoceptor antagonists are vasodilators <strong>and</strong> give a decrease <strong>in</strong> blood pressure<br />

because <strong>of</strong> the blockade <strong>of</strong> vascular a radrenoceptors. Prazos<strong>in</strong> 43 <strong>and</strong> doxazos<strong>in</strong> 44<br />

(fig. 9b) are selective a radrenoceptor antagonists <strong>and</strong> have become valuable drugs<br />

for the treatment <strong>of</strong> hypertension <strong>and</strong> congestive heart failure 62<br />

. In contrast to non­<br />

selective a 1/a 2-adrenoceptor blockers, these drugs are virtually devoid <strong>of</strong> reflex<br />

tachycardia triggered by the baroreflex system <strong>and</strong> the autonomic nervous system.<br />

Figure 9b: Antihypertensives; oc radrenoceptor antagonists<br />

(^-ADRENOCEPTOR AGONISTS active <strong>in</strong> the central nervous system<br />

Agonists <strong>of</strong> the a 2-adrenoceptors <strong>in</strong> the central nervous system mediate hypertension<br />

<strong>and</strong> bradycardia. Centrally act<strong>in</strong>g


Chapter 1<br />

0C2-ADRENOCEPTOR ANTAGONISTS active at peripheral arterial (^-adrenoceptors<br />

The selective a 2-adrenoceptor antagonists SK&F 86466 49 <strong>and</strong> SK&F 104078 50<br />

(fig. 9d) have been shown to reduce blood pressure <strong>in</strong> some animal models, by<br />

block<strong>in</strong>g the post-synaptic a2-adrenoceptor 63<br />

. However, <strong>in</strong> humans SK&F 86466<br />

caused tachycardia <strong>and</strong> had little effect on blood pressure. Post-synaptic a 2-<br />

adrenoceptor blockers are important tools <strong>in</strong> identify<strong>in</strong>g the vascular oc 2-<br />

adrenoceptor. However, <strong>in</strong> contrast to vascular a radrenergic antagonists, post­<br />

synaptic vascular a 2-adrenoceptor antagonists have not yet been established <strong>in</strong><br />

antihypertensive treatment.<br />

R<br />

49 SK&F 86466 R = H<br />

50 SK&F 104078 R = OCH 2CH=C(CH 3) 2<br />

Figure 9d: Antihypertensives; o^-adrenoceptor antagonist<br />

3.4.6 Potassium channel activators<br />

K +<br />

-channel activators affect K +<br />

-channels <strong>in</strong> cardiac muscles, neurones, <strong>and</strong> <strong>in</strong><br />

secretory cells but exhibit their greatest effect <strong>in</strong> the smooth muscle system 64<br />

. S<strong>in</strong>ce<br />

cromakalim 51 (fig. 9e) was discovered to enhance the transport <strong>of</strong> potassium ions<br />

across smooth muscle membranes, it <strong>in</strong>creased the <strong>in</strong>terest <strong>in</strong> the function <strong>of</strong> ATPsensitive<br />

K +<br />

6 5 6 6<br />

-channels ' . K+-channel activators are under development for<br />

treatment <strong>of</strong> hypertension, ang<strong>in</strong>a <strong>and</strong> asthma. K +<br />

-channel activators relax vascular<br />

smooth muscle <strong>and</strong> protect the heart dur<strong>in</strong>g acute ischemia 67<br />

. Different tissues, like<br />

smooth muscle, pancreatic <strong>and</strong> cardiac cells have different subtypes <strong>of</strong> ATP-sensitive<br />

K +<br />

-channels 68<br />

. Various activators <strong>of</strong> the ATP-sensitive K +<br />

-channels <strong>in</strong> cardiac cells<br />

(like nicor<strong>and</strong>il 52, p<strong>in</strong>acidil 53; fig. 9e) protect the myocardium without depress<strong>in</strong>g<br />

myocardial function. Nicor<strong>and</strong>il has additional properties such as vasodilation<br />

because <strong>of</strong> the present nitrate ester (see antiang<strong>in</strong>al drugs).<br />

Recently, aprikalim 54 (fig. 9e) was selected for further <strong>in</strong>vestigations to establish the<br />

antihypertensive <strong>and</strong> antiang<strong>in</strong>al actions 69<br />

. Attempts have been made by Brown et<br />

al. 70<br />

to remove one <strong>of</strong> the chiral centers <strong>of</strong> aprikalim to give synthetically easily<br />

accessible compounds, but this has led to less active compounds.<br />

22


51 Cromakalim 52 Nicor<strong>and</strong>il<br />

53 P<strong>in</strong>acidil 54 Aprikalim<br />

Figure 9e: Antihypertensives; K +<br />

-channel activators<br />

3.4.7 Calcium channel blockers<br />

Chapter 1<br />

Calcium channel blockers (CCBs) are now <strong>of</strong> primary importance <strong>in</strong> the treatment <strong>of</strong><br />

cardiovascular diseases, particularly for ang<strong>in</strong>a pectoris <strong>and</strong> hypertension, because<br />

they <strong>in</strong>fluence the free cytosolic Ca 2+<br />

-concentration. The Ca 2+<br />

-concentration plays a<br />

key role <strong>in</strong> the smooth muscle contraction-relaxation process. As mentioned <strong>in</strong> a<br />

previous section, calcium homeostasis <strong>in</strong> the cell is regulated by several <strong>in</strong>flux <strong>and</strong><br />

efflux mechanisms.<br />

The calcium <strong>in</strong>flux occurs via voltage-operated (VOC) or potential-operated channels<br />

(POC).<br />

Nowadays, 4 different types <strong>of</strong> VOCs have been identified. Each subtype may be<br />

dist<strong>in</strong>guished by electrophysiological, pharmacological, <strong>and</strong> distribution criteria.<br />

These criteria are based upon differences <strong>in</strong> their activation <strong>and</strong> <strong>in</strong>activation k<strong>in</strong>etics,,<br />

<strong>and</strong> their drug <strong>and</strong> tox<strong>in</strong> sensitivity 71<br />

.<br />

1) L-type channels are the primary type <strong>in</strong> heat, skeletal, <strong>and</strong> smooth muscle cells.<br />

High voltage activated L-type channel open<strong>in</strong>gs produce a slowly <strong>in</strong>activat<strong>in</strong>g<br />

long last<strong>in</strong>g Ca 2+<br />

-current. Therefore, these channels are also referred to as<br />

slow <strong>in</strong>ward calcium channels.<br />

2) T-type, or low voltage activated, channels are responsible for a rapidly<br />

<strong>in</strong>activat<strong>in</strong>g transient Ca 2+<br />

-current. These channels are located <strong>in</strong> myocardial<br />

cells, particularly <strong>in</strong> s<strong>in</strong>oatrial nodes, atrioventricular nodes, <strong>and</strong> <strong>in</strong> smooth<br />

muscle cells <strong>and</strong> neurones.<br />

23


Chapter 1<br />

3) N-type channels are found <strong>in</strong> neurones <strong>and</strong> may regulate neurotransmitter<br />

release. Like P-type channels, they have an <strong>in</strong>termediate s<strong>in</strong>gle-channel conductance<br />

compared to L- or T-type channels. N-type channels are highly<br />

sensitive to co-conotox<strong>in</strong>s.<br />

4) P-type channels, like L- <strong>and</strong> N-type channels, are high voltage activated Ca 2+<br />

-<br />

channels. P-type channels are located <strong>in</strong> cerebellar Purk<strong>in</strong>je cells <strong>and</strong> may be<br />

responsible for neurotransmitter release <strong>in</strong> many bra<strong>in</strong> regions.<br />

In vascular smooth muscle cells, calcium <strong>in</strong>flux ma<strong>in</strong>ly takes place via specific L-type<br />

Ca 2+<br />

-channels <strong>and</strong> to a lesser extent via the Na +<br />

/Ca 2+<br />

-exchange process.<br />

Several exogenous lig<strong>and</strong>s exist which can selectively block Ca 2+<br />

-entry through Ltype<br />

calcium channels. These lig<strong>and</strong>s can be classified accord<strong>in</strong>g to several criteria,<br />

based upon: chemistry, specificity on calcium current <strong>in</strong>hibition <strong>and</strong> tissue selectivity /<br />

cl<strong>in</strong>ical usage 72<br />

.<br />

In this chapter the chemical criterion is used to def<strong>in</strong>e the classes <strong>of</strong> CCBs (fig. 9f):<br />

- phenylalkylam<strong>in</strong>es, like verapamil 55<br />

- benzodiazep<strong>in</strong>es, like diltiazem 56<br />

- dihydropyrid<strong>in</strong>es (DHPs), like nifedip<strong>in</strong>e 57<br />

57 Nifedip<strong>in</strong>e 58 Nicardip<strong>in</strong>e<br />

Figure 9f: Antihypertensives; calcium channel blockers<br />

24


Chapter 1<br />

The CCBs are a heterogeneous group <strong>of</strong> agents that differ <strong>in</strong> their aff<strong>in</strong>ity for<br />

vascular smooth muscle <strong>and</strong> myocardial cells, which both are more dependent on<br />

extracellular Ca 2+<br />

-<strong>in</strong>flux than skeletal muscle. Despite their structural heterogeneity,<br />

they all block Ca 2+<br />

-<strong>in</strong>flux through L-type calcium channels.<br />

CCBs have favourable effects on ischemia which could be contributed to their direct<br />

cardioprotective effects, prevention <strong>of</strong> Ca 2+<br />

-accumulation <strong>in</strong> the mitochondria <strong>in</strong><br />

ischemic cells, decrease <strong>in</strong> oxygen consumption or coronary artery vasoconstriction<br />

<strong>and</strong>/or prevention <strong>of</strong> ischemia <strong>in</strong>duced arrhythmias 73<br />

.<br />

CCBs prevent ventricular arrhythmias via reduction <strong>of</strong> the free <strong>in</strong>tracellular Ca 2+<br />

-<br />

concentration <strong>and</strong> their negative <strong>in</strong>otropic, chronotropic, <strong>and</strong> dromotropic effects <strong>and</strong><br />

by vasodilation. Myocardial oxygen consumption is decreased by negative <strong>in</strong>otropic<br />

<strong>and</strong> chronotropic effects, as well as, peripheral vasodilation. Dilation <strong>of</strong> the coronary<br />

artery system enhances oxygen supply to the myocardium. The ratio <strong>of</strong> the negative<br />

<strong>in</strong>otropic effects versus vasodilation determ<strong>in</strong>es the use <strong>of</strong> CCBs <strong>in</strong> cl<strong>in</strong>ical practice.<br />

Verapamil <strong>and</strong> diltiazem analogues reduce the heart rate <strong>and</strong> elongate atrioventricular<br />

conductance <strong>and</strong>, therefore, makes them particularly useful for the treatment <strong>of</strong><br />

supraventricular arrhythmias <strong>and</strong> prevention <strong>of</strong> heart failure 74<br />

.<br />

DHPs have a higher degree <strong>of</strong> selectivity for vascular smooth muscle cells <strong>and</strong> exhibit<br />

greater vasodilat<strong>in</strong>g properties, but show less depressant effects on myocardial<br />

contractility than verapamil or diltiazem <strong>and</strong> their analogues, <strong>and</strong> therefore makes<br />

them less suitable for cardiac arrhythmias 75<br />

. The first generation <strong>of</strong> DHPs, like<br />

nifedip<strong>in</strong>e, have the disadvantage <strong>of</strong> a short duration <strong>of</strong> action, especially <strong>in</strong> chronic<br />

treatment <strong>of</strong> essential hypertension. Therefore, new DHPs (like nicardip<strong>in</strong>e 58; fig. 9f)<br />

have been developed, which have a longer duration <strong>of</strong> action or selectivity for<br />

specific vascular beds which <strong>in</strong>clude the resistance vessels for hypertension, the<br />

coronary system for ang<strong>in</strong>a pectoris, <strong>and</strong> the renal vascular system for renal<br />

diseases 76<br />

.<br />

4 Prospects for drug therapy <strong>of</strong> cardiovascular disorders<br />

4.1 S<strong>in</strong>gle drug therapy<br />

For quite a long time it was believed that CCBs should not be used for treatment <strong>of</strong><br />

congestive heart failure, because <strong>of</strong> their hazardous negative <strong>in</strong>otropic effects 77<br />

.<br />

However, the newer generation <strong>of</strong> DHPs have emerged CCBs which are now<br />

thought to be suitable for therapeutic treatment 78<br />

.<br />

Progress <strong>in</strong> antiang<strong>in</strong>al therapy can be achieved by develop<strong>in</strong>g nitrate esters which<br />

dissolve the problems <strong>of</strong> nitrate-tolerance, hypotension <strong>and</strong> reflex tachycardia.<br />

Although the use <strong>of</strong> long-act<strong>in</strong>g orally available drugs is recommended, their benefit<br />

has not been proven yet. The use <strong>of</strong> (3 rantagonists <strong>in</strong> chronic treatment <strong>of</strong> ang<strong>in</strong>a<br />

has to be carried out with care. Especially, because sudden <strong>in</strong>terruption <strong>of</strong> antiang<strong>in</strong>al<br />

treatment with p x-antagonists worsen the symptoms <strong>of</strong> ang<strong>in</strong>a pectoris <strong>and</strong> even<br />

myocardial <strong>in</strong>farcts can occur.<br />

25


Chapter 1<br />

Today, quite a number <strong>of</strong> dist<strong>in</strong>ct agents can be applied for the treatment <strong>of</strong><br />

hypertension. Traditionally p-adrenergic blockers <strong>and</strong> diuretics were the drugs <strong>of</strong><br />

choice. Nowadays the use <strong>of</strong> calcium channel blockers <strong>and</strong> angiotens<strong>in</strong>-convert<strong>in</strong>g<br />

enzyme <strong>in</strong>hibitors ga<strong>in</strong> more <strong>in</strong>terest for the treatment <strong>of</strong> hypertension. The position<br />

<strong>of</strong> the p-adrenergic antagonists <strong>and</strong> diuretics seem to rema<strong>in</strong> constant 79<br />

.<br />

The major disadvantage <strong>of</strong> thiazide diuretics is their <strong>in</strong>duction <strong>of</strong> metabolic<br />

disturbances affect<strong>in</strong>g circulat<strong>in</strong>g lipids, blood glucose, <strong>and</strong> serum electrolytes. These<br />

disadvantageous effects are also observed upon treatment with P-adrenergic<br />

blockers, but are absent with ACE-<strong>in</strong>hibitors <strong>and</strong> CCBs. Furthermore, side effects<br />

exhibited by p-blockers are the reduction <strong>of</strong> left ventricular function<strong>in</strong>g <strong>and</strong><br />

appearance <strong>of</strong> chronic obstructive pulmonary disease 80<br />

.<br />

ACE-<strong>in</strong>hibitors <strong>and</strong> CCBs reduce cardiac hypertrophy, <strong>and</strong> are thought to prevent<br />

remodell<strong>in</strong>g <strong>of</strong> the vascular system <strong>and</strong> renal damage, <strong>of</strong>ten accompanied with<br />

hypertension. It is suggested that drugs which prevent left ventricular hypertrophy<br />

may reduce mortality <strong>in</strong> patients suffer<strong>in</strong>g from heart failure, whereas antiarrhythmic<br />

drugs failed to do so 81<br />

. The arantagonist prasoz<strong>in</strong> <strong>and</strong> the p-antagonists are devoid<br />

<strong>of</strong> these actions. Despite the suggestion that ACE-<strong>in</strong>hibitors can have beneficial<br />

effects <strong>in</strong> the treatment <strong>of</strong> coronary artery disease, cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>gs are <strong>in</strong>consistent<br />

<strong>and</strong> controversial 82<br />

.<br />

Selective angiotens<strong>in</strong> II subtype antagonists (ATX <strong>and</strong> AT2) will present a valuable<br />

tool for further unravell<strong>in</strong>g <strong>of</strong> the possible beneficial contribution to treatment <strong>of</strong><br />

atherosclerosis <strong>and</strong> certa<strong>in</strong> cardiovascular diseases. Extensive research is go<strong>in</strong>g on <strong>in</strong><br />

the development <strong>of</strong> new selective angiotens<strong>in</strong> II antagonists. This is clearly noticed <strong>in</strong><br />

literature; presently almost each new issue <strong>of</strong> the Journal <strong>of</strong> Medic<strong>in</strong>al Chemistry<br />

conta<strong>in</strong>s articles concern<strong>in</strong>g both peptidic <strong>and</strong> nonpeptidic ACE-<strong>in</strong>hibitors <strong>and</strong> ACE-<br />

antagonists.<br />

As mentioned before, CCBs are devoid <strong>of</strong> adverse effects on circulat<strong>in</strong>g lipids or on<br />

<strong>in</strong>sul<strong>in</strong> <strong>in</strong>sensitivity. One <strong>of</strong> the advantages <strong>of</strong> CCBs over ACE-<strong>in</strong>hibitors is that<br />

CCBs are metabolized <strong>in</strong> the liver <strong>and</strong> that their dosages do not have to be reduced<br />

<strong>in</strong> patients suffer<strong>in</strong>g from hypertension <strong>and</strong> malfunction<strong>in</strong>g <strong>of</strong> the kidney 74<br />

. The<br />

DHP-type calcium channel blockers have been shown to be more vascular selective<br />

than the phenylalkylam<strong>in</strong>e- or benzothiazep<strong>in</strong>e-type calcium channel blockers. Still<br />

these DHP-type calcium channel blockers may be improved by prolongation <strong>of</strong> their<br />

duration <strong>of</strong> action <strong>and</strong> by <strong>in</strong>creas<strong>in</strong>g their vascular selectivity, <strong>and</strong> by <strong>in</strong>corporation<br />

<strong>of</strong> additional biological activities 83<br />

.<br />

The most <strong>in</strong>trigu<strong>in</strong>g new aspect <strong>of</strong> DHP-type CCBs which still has to be fully<br />

explored, is their antiatherogenic effect. Such effects would add most desirable<br />

properties to calcium entry blockade, s<strong>in</strong>ce cl<strong>in</strong>ical trials with hypertensive patients<br />

have demonstrated that vasodilation <strong>and</strong> blood pressure reduction are not sufficient<br />

enough to protect aga<strong>in</strong>st coronary diseases.<br />

26


Chapter 1<br />

4.2 Comb<strong>in</strong>ation <strong>of</strong> cardiovascular drugs<br />

Although it is still preferred to start antihypertensive treatment with one s<strong>in</strong>gle drug,<br />

most <strong>of</strong> the antihypertensive effects <strong>of</strong> the described agents can be <strong>in</strong>creased by<br />

comb<strong>in</strong>ation with agents belong<strong>in</strong>g to one <strong>of</strong> the other antihypertensive classes 84<br />

.<br />

However, not every comb<strong>in</strong>ation results <strong>in</strong> beneficial effects. The beneficial effect <strong>of</strong><br />

ß-blockers with DHP-type CCBs is their prevention <strong>of</strong> <strong>in</strong>itial reflex tachycardia<br />

occurr<strong>in</strong>g upon DHP treatment. Especially useful comb<strong>in</strong>ations are the DHP-type<br />

CCBs with ß-blockers or with ACE-<strong>in</strong>hibitors. The verapamil- <strong>and</strong> diltiazem-type<br />

CCBs should be avoided <strong>in</strong> comb<strong>in</strong>ation with ß-blockers because <strong>of</strong> the <strong>in</strong>creased<br />

negative <strong>in</strong>otropic <strong>and</strong> dromotropic effects, which will lead to bradycardia <strong>and</strong><br />

atrioventricular block.<br />

Not only comb<strong>in</strong>ations with<strong>in</strong> one certa<strong>in</strong> pharmacological class can give beneficial<br />

effects, also comb<strong>in</strong>ations <strong>of</strong> antiarrhythmics, cardiotonics, antiang<strong>in</strong>als <strong>and</strong> antihypertensives<br />

are possible, ßi-Adrenoceptor antagonists are used as antiarrhythmic,<br />

antiang<strong>in</strong>al, <strong>and</strong> antihypertensive drugs. Because one s<strong>in</strong>gle class <strong>of</strong> compounds (ß r<br />

adrenoceptor antagonists) is used <strong>in</strong> the treatment <strong>of</strong> three dist<strong>in</strong>ct types <strong>of</strong><br />

cardiovascular disorders, it might be expected that, <strong>in</strong> pr<strong>in</strong>cipal, comb<strong>in</strong>ations <strong>of</strong> drugs<br />

belong<strong>in</strong>g to the antihypertensive, antiang<strong>in</strong>al <strong>and</strong> antihypertensive classes can<br />

contribute additional beneficial properties.<br />

Inodilation, the comb<strong>in</strong>ation <strong>of</strong> enhanced contractility <strong>and</strong> vasodilation therapy<br />

should hypothetically be ideal for the treatment <strong>of</strong> heart failure 85<br />

. Inodilators should<br />

reduce systolic <strong>and</strong> diastolic wall stress by improv<strong>in</strong>g cardiac pump function. As<br />

mentioned before, <strong>in</strong> severe heart failure, the positive <strong>in</strong>otropic action <strong>in</strong> <strong>in</strong>odilation<br />

should not be achieved by <strong>in</strong>creas<strong>in</strong>g cAMP levels. More benefit could be obta<strong>in</strong>ed<br />

by <strong>in</strong>creas<strong>in</strong>g the calcium sensitivity <strong>of</strong> the contractile prote<strong>in</strong>s. Such an effect then<br />

could open a field for new therapeutic drugs.<br />

References<br />

1 Lee J, Mann<strong>in</strong>g L, Heart Attacks, New Scientist; Inside Science, 138, 1-4 (1993)<br />

2 Giles WR, van G<strong>in</strong>neken AC, A transient outward current <strong>in</strong> isolated cells from the<br />

crista term<strong>in</strong>alis <strong>of</strong> rabbit heart, J.Physiol (London) 368, 243-264 (1985)<br />

3 Ten Eick RE, Whalley DW, Rasmussen HH, Connections: heart disease, cellular<br />

electrophysiology, <strong>and</strong> ion channels., FASEB J., 6, 2568-2580 (1992)<br />

4 Schwartz A, Calcium antagonists: Review <strong>and</strong> perspective on mechanism <strong>of</strong> action,<br />

AmJ.Cardiol., 64, 31-91 (1989)<br />

5 Gerzon K, Humerickhouse RA, Besch HR Jr, Bidasee KR, Emmick JT, Roeske RW,<br />

Zhenp<strong>in</strong>g T, Ruest L, Sutko JL, Am<strong>in</strong>o- <strong>and</strong> guanid<strong>in</strong>oacylryanod<strong>in</strong>es: Basic ryanod<strong>in</strong>e<br />

esters with enhanced aff<strong>in</strong>ity for the sarcoplasmic reticulum Ca 2+<br />

-release channel,<br />

J.Med.Chem., 36, 1319-1323 (1993)<br />

6 Katz AM, Molecular basis <strong>of</strong> calcium channel blockade, AmJ.Cardiol., 69, 17E-22E<br />

(1992)<br />

27


Chapter 1<br />

I Saida K, van Breemen C, A possible Ca 2+<br />

-<strong>in</strong>duced Ca 2+<br />

release mechanism mediated<br />

by norep<strong>in</strong>epher<strong>in</strong>e <strong>in</strong> vascular smooth muscle, Pflügers Arch., 397, 166-177 (1983)<br />

8 Galione A, Ca 2+<br />

-<strong>in</strong>duced Ca 2+<br />

release <strong>and</strong> its modulation by cyclic ADP-ribose, Trends<br />

Pharm.Sci., 13, 304-306 (1992)<br />

9 Meldolesi J, Clementi E, Fasolato C, Zacchetti D, Pozzan T, Ca 2+<br />

<strong>in</strong>flux follow<strong>in</strong>g<br />

receptor activation, Trends Pharm.Sci., 12, 289-292 (1991)<br />

10 Somlyo AV, Bond M, Somlyo AP, Scarpa A, Inositol triphosphate-<strong>in</strong>duced calcium<br />

release <strong>and</strong> contraction <strong>in</strong> vascular smooth muscle, Proc.Natl.Acad.Sci.USA, 82,<br />

5231-5235(1985)<br />

II Carafoli E, The homeostasis <strong>of</strong> calcium <strong>in</strong> heart cells, J.Mol.Cell.Cardiol., 17, 203-212<br />

(1985)<br />

12 Mannhold R, Timmerman H, Putative therapeutic applications <strong>of</strong> calmodul<strong>in</strong><br />

antagonists, Pharm.Weekbl.(Sci.), 14, 161-166 (1992)<br />

13 Caldirola MP, Diphenylalkylam<strong>in</strong>es: modulators <strong>of</strong> calcium <strong>and</strong> calmodul<strong>in</strong>, Thesis<br />

Vrije Universiteit, Amsterdam, 1992<br />

14 Böhm M, Beukelmann D, Brown L, Feiler G, Lorenz B, Nabauer M, Kemkes B,<br />

Erdmann E, Reduction <strong>of</strong> beta-adrenoceptor density <strong>and</strong> evaluation <strong>of</strong> positive <strong>in</strong>otropic<br />

responses <strong>in</strong> isolated, diseased human myocardium., Eur.Heart J., 9, 844-852 (1988)<br />

15 Bristow MR, G<strong>in</strong>sburg R, Umans V, Fowler M, M<strong>in</strong>obe W, Menlove R, Shah P,<br />

Jamieson S, St<strong>in</strong>son EB, ßr <strong>and</strong> ß2-adrenergic receptor subpopulations <strong>in</strong> nonfail<strong>in</strong>g<br />

<strong>and</strong> fail<strong>in</strong>g human ventricular myocardium: coupl<strong>in</strong>g <strong>of</strong> both receptor subtypes to muscle<br />

contraction <strong>and</strong> selective ßi-receptor down regulation <strong>in</strong> heart failure., Circ.Res., 59,<br />

297-309 (1986)<br />

16 Gopalakrishnan M, Triggle DJ, Rutledge A, Kwon YW, Bauer JA, Fung H, Regulation<br />

<strong>of</strong> K +<br />

<strong>and</strong> Ca 2+<br />

channels <strong>in</strong> experimental cardiac failure., Am.J.PhysioL, 261., H1979-<br />

H1987 (1991)<br />

17 Ganten D, Mulrow PG, Basis for the treatment <strong>of</strong> hypertension: Some considerations<br />

concern<strong>in</strong>g the epidemiology, pathophysiology, treatment, <strong>and</strong> prevention <strong>of</strong><br />

hypertension, In: H<strong>and</strong>book <strong>of</strong> Experimental Pharmacology: Pharmacology <strong>of</strong><br />

antihypertensive therapeutics (Eds: Ganten D, Mulrow PJ), Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>,<br />

93, 1-20 (1990)<br />

18 We<strong>in</strong>berger MH, Calcium antagonists for the treatment <strong>of</strong> systemic hypertension,<br />

AmJ.Cardiol., 69, 13E-16E (1992)<br />

19 Rang HP, Dale MM, Pharmacology, Churchill Liv<strong>in</strong>gstone, Longman Group UK<br />

Limited, Ed<strong>in</strong>burgh, 2nd Ed, 309-368 (1991)<br />

20 a) Vaughan Williams EM, A classification <strong>of</strong> antiarrhythmic actions reassessed after a<br />

decade <strong>of</strong> new drugs, J.Cl<strong>in</strong>.Pharmacol., 24, 129-147 (1984)<br />

b) Vaughan Williams EM, Cassification <strong>of</strong> antiarrhythmic actions., In: H<strong>and</strong>book <strong>of</strong><br />

Experimental Pharmacology: Antiarrhythmic drugs, (Ed., Vaughan Williams EM),<br />

Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 89, 303-308 (1989)<br />

21 Arrowsmith JE, Cross PE, Antiarrhythmic agents, Ann.Rep.Med.Chem, 25, 79-88<br />

(1989)<br />

28


Chapter 1<br />

22 Claremon DA, Baldw<strong>in</strong> JJ, Elliott JM, Remy DC, Ponticello GS, Se<strong>in</strong>ick HG, Lynch JJ<br />

Jr, Sangu<strong>in</strong>etti MC, Selective IK f potassium channel blockers as class III antiarrhythmic<br />

agents, In: Perspectives <strong>in</strong> Medic<strong>in</strong>al Chemistry (Eds: Testa B, Kyburz E, Fuhrer W,<br />

Giger R), Verlag Helvetica Chimica Acta, Basel, 389-404 (1993)<br />

23 Morgan TK, Sullivan ME, An overview <strong>of</strong> class III electrophysiological agents: A new<br />

generation <strong>of</strong> antiarrhythmic therapy, Progress Med.Chem., 29, 65-106 (1992)<br />

24 Horowitz LN, Zipes DP, Am.J.Cardiol., 59, IE (1987)<br />

25 Waters D, Proischemic complications <strong>of</strong> dihydropyrid<strong>in</strong>e calcium channel blockers.,<br />

Circ, 84, 2598-2600 (1991)<br />

26 Pfisterer M, Negative <strong>in</strong>otropic effects <strong>of</strong> antiarrhythmic drugs: a cl<strong>in</strong>ical po<strong>in</strong>t <strong>of</strong> view,<br />

J.CardiovascPharmacoL, 17, S44-S47 (1991)<br />

27 Lüderitz B, Mletzko R, Jung W, Manz M, Comb<strong>in</strong>ation <strong>of</strong> antiarrhythmic drugs,<br />

J.Cardiovasc.Pharmacol., 17, S48-S52 (1991)<br />

28 Carr CJ, Pharmacological properties, In: H<strong>and</strong>book <strong>of</strong> Experimental Pharmacology:<br />

Organic nitrates (Needleman P, Ed), Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 40, 39-56 (1975)<br />

29 Harrison DG, Bates JN, The nitrovasodilators: New ideas about old drugs, Circ, 87,<br />

1461-1467 (1993)<br />

30 Cooper DMF, Brooker G, Ca 2+<br />

-<strong>in</strong>hibited adenylyl cyclase <strong>in</strong> cardiac tissue, Trends<br />

Pharm.Sci., 14, 34-36 (1993)<br />

31 Scholz H, Eschenhagen T, Mende U, Schmitz W, Neue Aspekte zum Wirkungsmechanismus<br />

<strong>in</strong>otroper Substanzen, Arch.Pharm.(We<strong>in</strong>heim), 324, 1062-1073 (1991)<br />

32 Janis RA, Triggle DJ, New developments <strong>in</strong> Ca 2+<br />

channel antagonists, J.Med.Chem.,<br />

26, 775-785 (1983)<br />

33 a) Brown AM, A cellular logic for G prote<strong>in</strong>-coupled ion channel pathways, FASEB J.,<br />

5, 2175-2179 (1991)<br />

b) Brown AM, Regulation <strong>of</strong> heartbeat by G prote<strong>in</strong>-coupled receptors., Am. J.<br />

Physiol, 259, H1621-H1628 (1990)<br />

34 Schultz G, Hescheler J, Hormonal modulations <strong>of</strong> calcium channel activity, Arzneim.-<br />

Forsch./Drug Res., 43, 229-232 (1993)<br />

35 Nelson DJ, Chan HC, Ion channel structure <strong>and</strong> modulation, In: Perspectives <strong>in</strong><br />

Medic<strong>in</strong>al Chemistry (Eds: Testa B, Kyburz E, Fuhrer W, Giger R), Verlag Helvetica<br />

Chimica Acta, Basel, 349-371 (1993)<br />

36 Schultz G, Hescheler J, Hormonal regulation <strong>of</strong> calcium channel activity, Arzneim.<br />

Forsch./Drug Res., 43, 229-232 (1993)<br />

37 Brown AM, A cellular logic for G prote<strong>in</strong>-coupled ion channel pathways, FASEB J., 5,<br />

2175-2179 (1991)<br />

38 Hartzel HC, Fischmeister R, Direct regulation <strong>of</strong> cardiac Ca 2+<br />

channels by G prote<strong>in</strong>s:<br />

neither proven nor necessary ?, Trends Pharm.ScL, 13, 380-385 (1992)<br />

39 Ferrante J, Triggle DJ, Drug- <strong>and</strong> disease-<strong>in</strong>duced regulation <strong>of</strong> voltage-dependent<br />

calcium channels, Pharmacol.Rev., 42, 29-44 (1990)<br />

40 Thomas R, Gray P, Andrews J, Digitalis: Its mode <strong>of</strong> action, receptor, <strong>and</strong> structureactivity<br />

relationships, Adv.Drug Res., 19, 311-562 (1990)<br />

29


Chapter 1<br />

41 Baumann G, Permanetter B, Wirtzfeld A, Possible value <strong>of</strong> H2-receptor agonists for<br />

treatment <strong>of</strong> catecholam<strong>in</strong>e-<strong>in</strong>sensitive congestive heart failure., Pharmacol.Ther., 24,<br />

165-177 (1984)<br />

42 a) Buschauer A, Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> arpromid<strong>in</strong>e <strong>and</strong> related<br />

phenyl(pyridylalkyl)guanid<strong>in</strong>es, a potential new class <strong>of</strong> positive <strong>in</strong>otropic drugs.,<br />

J.Med.Chem., 32, 1963-1970 (1990)<br />

b) Felix SB, Buschauer A, Baumann G, Therapeutic value <strong>of</strong> H2-receptor stimulation <strong>in</strong><br />

congestive heart failure. Hemodynamic effects <strong>of</strong> BU-E-76, BU-E-75 <strong>and</strong> arpromid<strong>in</strong>e<br />

(BU-E-50) <strong>in</strong> comparison to impromid<strong>in</strong>e., Agents Actions Suppl., 33,257-269 (1991)<br />

43 Eriks JC, Sterk GJ, Van der Aar EM, Van Acker SABE, Van der Goot H, Timmerman<br />

H, 4- or 5-(co-am<strong>in</strong>oalkyl)thiazoles <strong>and</strong> derivatives; new selective H2-receptor agonists,<br />

Agents Actions Suppl., 33, 301-314 (1991)<br />

44 Hauel N, New <strong>in</strong>otropic agents for the treatment <strong>of</strong> heart failure, In: Trends <strong>in</strong> Medic<strong>in</strong>al<br />

Chemistry '88 (Van der Goot H, Domäny G, Pallos L, Timmerman H, Eds), Elsevier<br />

Science Publishers, Amsterdam, 691-708 (1989)<br />

45 Wilmshurst P, New positive <strong>in</strong>otropic substances - True <strong>in</strong>otropy or peripheral effects ?,<br />

Z.Kardiol., 77, 103-111 (1988)<br />

46 Brunner HR, Nussberger J, Waeber B, Inhibitors <strong>of</strong> the ren<strong>in</strong>-angiotens<strong>in</strong> system.,<br />

Arzneim.-Forsch./Drug Res., 43, 274-279 (1993)<br />

47 Dietz R, Waas W, Süsselbeck T, Willenbrock R, Osterziel KJ, Improvement <strong>of</strong> cardiac<br />

function by angiotens<strong>in</strong> convert<strong>in</strong>g enzyme <strong>in</strong>hibition: sites <strong>of</strong> action, Circ, 87, IV-108<br />

-IV-116(1993)<br />

48 Menard J, Anthology <strong>of</strong> the ren<strong>in</strong>-angiotens<strong>in</strong> system: a one hundred reference approach<br />

to angiotens<strong>in</strong> II antagonists, J.Hypertension, 11, S3-S11 (1993)<br />

49 Odenthal H-J, Josephs W, Angiotens<strong>in</strong>-convert<strong>in</strong>g-enzym-hemmung und ang<strong>in</strong>a<br />

pectoris., Dtsch.Med.Wschr., 117, 1849-1853 (1992)<br />

50 Lee MA, Böhm M, Paul M, Ganten D, Tissue ren<strong>in</strong>-angiotens<strong>in</strong> systems: their role <strong>in</strong><br />

cardivascular disease, Circ, 87, IV-7 - IV-13 (1993)<br />

51 Greenlee WJ, Siegl PKS, Angiotens<strong>in</strong> / Ren<strong>in</strong> modulators., Ann.Rep.Med.Chem., 27,<br />

59-68 (1992)<br />

52 Petrillo Jr.EW, Trippodo NC, DeForrest JM, Antihypertensive agents., Ann.Rep.Med.<br />

Chem., 25, 51-60 (1989)<br />

53 Furukawa Y, Kishimoto S, Nishikawa K, U.S.Patent 4340598 (1982)<br />

54 Bovy PR,Reitz DB, Coll<strong>in</strong>s JT, Chamberl<strong>in</strong> TS, Ol<strong>in</strong>s GM, Corpus VM, McMahon<br />

EG, Palomo MA, Koepke JP, Smits GJ, McGraw DE, Gaw JF, Nonpeptide<br />

angiotens<strong>in</strong> II antagonists: N-phenyl-l/Z-pyrrole derivatives are angiotens<strong>in</strong> II receptor<br />

antagonists, J.Med.Chem., 36, 101-110 (1993)<br />

55 Ashton WT, Cantone CL, Chang LL, Hutch<strong>in</strong>s SM, Strelitz RA, McCoss M, Chang<br />

RSL, Lotti VJ, Faust KA, Chen T-B, Bunt<strong>in</strong>g P, Schorn TW, Kivlighn SD, Siegl<br />

PKS, Nonpeptide angiotens<strong>in</strong> II antagonists derived from 4//-l,2,4-triazoles <strong>and</strong> 3Himidazo[l,2-£][l,2,4]triazoles,<br />

J.Med.Chem., 36, 591-609 (1993)<br />

30


Chapter 1<br />

56 Car<strong>in</strong>i DJ, Chiu AT, Duncia JV, Wong PC, Synthesis <strong>and</strong> SAR <strong>of</strong> nonpeptidic<br />

angiotens<strong>in</strong> II antagonists, In: Perspectives <strong>in</strong> Medic<strong>in</strong>al Chemistry (Eds: Testa B,<br />

Kyburz E, Fuhrer W, Giger R), Verlag Helvetica Chimica Acta, Basel, 193-206 (1993)<br />

57 Van Meel JCA, Entzeroth M, Hauel N, Narr B, Ries U, Wienen W, Angiotens<strong>in</strong> II<br />

receptor antagonists, Arzneim.-Forsch./Drug Res., 43, 242-246 (1993)<br />

58 Saxena PR, Man <strong>in</strong>'t Veld AJ, ACE <strong>in</strong>hibitors can reverse blood vessel damage, Trends<br />

Pharm.Sci., 12, 239-241 (1991)<br />

59 Sechi LA, Griff<strong>in</strong> CA, Grady EF, Kal<strong>in</strong>yak JE, Schambelan M, Characterization <strong>of</strong><br />

angiotens<strong>in</strong>-II receptor subtypes <strong>in</strong> rat heart, Circ.Res., 71, 1482-1489 (1992)<br />

60 Blankley CJ, Hodges JC, Klutchko SR, Himelsbach RJ, Chucholowski A, Connolly<br />

CJ, Neergaard SJ, Van Nieuwenhuize MS, Sebastian A, Qu<strong>in</strong> J, Essenburg AD, Cohen<br />

DM, Synthesis <strong>and</strong> structure-activity relationships <strong>of</strong> a novel <strong>series</strong> <strong>of</strong> nonpeptide<br />

angiotens<strong>in</strong> II receptor b<strong>in</strong>d<strong>in</strong>g <strong>in</strong>hibitors specific for the AT2 subtype, J.Med.Chem.,<br />

34, 3248-3260 (1991)<br />

61 van Zwieten PA, Vascular effects <strong>of</strong> calcium antagonists: Implications for hypertension<br />

<strong>and</strong> other risk factors for coronary heart disease, AmJ.Cardiol., 64, 1171-1211 (1989)<br />

62 van Zwieten PA, a-adrenoceptor antagonists, In: H<strong>and</strong>book <strong>of</strong> Experimental<br />

Pharmacology: Pharmacology <strong>of</strong> antihypertensive therapeutics (Eds: Ganten D Mulrow<br />

PJ), Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 93, 105-129 (1990)<br />

63 Roesler RM, McCafferty JP, De Mar<strong>in</strong>is RM, Matthews WD, Hieble JP, Characterization<br />

<strong>of</strong> the antihypertensive activity <strong>of</strong> SK&F 86466, a selective ot2-antagonist <strong>in</strong> the<br />

rat. J.Pharmacol.Exp.Ther., 236, 1-7 (1986)<br />

64 Weston AH, Edwards G, Recent progress <strong>in</strong> potassium channel opener <strong>pharmacology</strong>,<br />

Biochem.Pharmacol., 43, 47-54 (1992)<br />

65 Evans JM, Longman SD, Potassium channel activators, Ann.Rep.Med.Chem., 26, 73-<br />

82, (1991)<br />

66 Longman SD, Hamilton TC, Potassium channel activator drugs: Mechanism <strong>of</strong> action,<br />

pharmacological properties <strong>and</strong> therapeutic potential, Med.Res.Rev., 12,73-148 (1992)<br />

67 Esc<strong>and</strong>e D, Cavero I, K +<br />

channel openers <strong>and</strong> 'natural' cardioprotection, Trends<br />

Pharmacol.Sci., 13, 269-272 (1992)<br />

68 Allard B, Lazdunski M, Pharmacological properties <strong>of</strong> ATP-sensitive K +<br />

-channels <strong>in</strong><br />

mammalian skeletal muscle cells, Eur.J.Pharmacol., 236,419-426 (1993)<br />

69 Brown TJ, Chapman RF, Cook DC, Hart TW, McLay IM, Jordan R, Mason JS,<br />

Palfreyman MN, Walsh RJA, Withnall MT, Aloupe J-C, Cavero I, Farge D, James C,<br />

Mondot S, Synthesis <strong>and</strong> biological activity s<br />

<strong>of</strong> trans-(±)-N-Methyl-2-(3-pyridyl)-2tetrahydrothiopyrancarbothiamide<br />

1-Oxide (RP 49356) <strong>and</strong> analogues: A new class <strong>of</strong><br />

potassium channel opener, J.Med.Chem., 35, 3613-3624 (1992)<br />

70 Brown TJ, Chapman RF, Mason JS, Palfreyman MN, Vicker N, Walsh RJA,<br />

Synthesis <strong>and</strong> biological activities <strong>of</strong> potent potassium channel openers derived from<br />

(±)-2-Oxo-l-pyrid<strong>in</strong>-3-yl-cyclohexanecarbothio acid methylamide: New potassium<br />

channel openers, J.Med.Chem., 36, 1604-1612 (1993)<br />

31


Chapter 1<br />

11 Spedd<strong>in</strong>g M, Paoletti R, Classification <strong>of</strong> calcium channels <strong>and</strong> the sites <strong>of</strong> action <strong>of</strong><br />

drugs modify<strong>in</strong>g channel function, Pharmacol.Rev., 44, 363-376 (1992)<br />

72 Naylor WG, Classification <strong>and</strong> tissue selectivity <strong>of</strong> calcium antagonists, Z.KardioL, 79,<br />

107-111(1990)<br />

73 Kern MJ, The cellular <strong>in</strong>fluences <strong>of</strong> calcium antagonists on systemic <strong>and</strong> coronary<br />

hemodynamics, AmJ.CardioL, 69, 3B-7B (1992)<br />

74 Klaus D, The role <strong>of</strong> calcium antagonists <strong>in</strong> the treatment <strong>of</strong> hypertension,<br />

J.CardiovascPharmacoL, 20, S5-S14 (1992)<br />

75 Tamargo J, Delpon E, Dihydropyrid<strong>in</strong>es <strong>and</strong> vascular diseases, Z.KardioL, 80, 106-<br />

111 (1991)<br />

76 van Zwieten PA, Pfaffendorf M, Similarities <strong>and</strong> differences between calcium<br />

antagonists: pharmacological aspects, JJHypertension, 11, S3-S11 (1993)<br />

77 Packer M, Kessler PD, Lee WH, Calcium-channel blockade <strong>in</strong> the management <strong>of</strong><br />

severe chronic congestive heart failure: A bridge too far, Circ, 75, V56-V64 (1987)<br />

78 Opie LH, Calcium antagonists for congestive heart failure: Is it really one bridge too far<br />

to cross ?, Cardiovasc. Drugs Ther., 7, 93-94 (1993)<br />

79 O'Malley K, Kelly JG, New developments <strong>in</strong> antihypertensive drugs, Trends<br />

Cardiovasc.Med., 1, 201-204 (1991)<br />

80 Zanchetti A, Why a new calcium antagonist ?, J.CardiovascPharmacoL, 17, V-VII,<br />

(1991)<br />

81 Ertl G, Kochsiek K, Development, early treatment, <strong>and</strong> prevention <strong>of</strong> heart failure,<br />

Circ, 87, IV-l-IV-3 (1993)<br />

82 reference 58 [Saxena et al.]<br />

83 Naylor WG, Calcium channels <strong>and</strong> their <strong>in</strong>volvement <strong>in</strong> cardiovascular disease,<br />

Biochem.PharmacoL, 43, 39-46 (1992)<br />

84 Rahn KH, Pr<strong>in</strong>ciples <strong>in</strong> the comb<strong>in</strong>ation <strong>of</strong> antihypertensive drugs, In: H<strong>and</strong>book <strong>of</strong><br />

Experimental Pharmacology: Pharmacology <strong>of</strong> antihypertensive therapeutics (Eds:<br />

Ganten D Mulrow PJ), Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 93,677-685 (1990)<br />

85 Remme WJ, Inodilator therapy for heart failure; early, late, or not at all ?, Circ, 87, IV-<br />

97-IV-107 (1993)<br />

32


Chapter 2<br />

Chapter 2<br />

Hybrid molecules:<br />

comb<strong>in</strong>ation <strong>of</strong> more than one pharmacological property <strong>in</strong> one<br />

s<strong>in</strong>gle molecule<br />

1 Introduction<br />

A problem <strong>of</strong>ten faced <strong>in</strong> the treatment <strong>of</strong> certa<strong>in</strong> diseases is the complex <strong>and</strong><br />

heterogeneous pathogenesis. A variety <strong>of</strong> mediators can be <strong>in</strong>volved <strong>in</strong> the<br />

pathophysiological process lead<strong>in</strong>g to a disease. In many <strong>in</strong>stances, treatment with a<br />

s<strong>in</strong>gle drug cannot adequately control the illness. Sometimes, the use <strong>of</strong> a therapeutic<br />

agent alone <strong>in</strong> the treatment <strong>of</strong> a disease may be limited by side effects caused by its<br />

own action. Then comb<strong>in</strong>ations <strong>of</strong> drugs with different pharmaco-therapeutic effects<br />

are feasible.<br />

Comb<strong>in</strong>ation drug therapy can be applied either to overcome the side effects <strong>of</strong> the<br />

s<strong>in</strong>gle drug or to add beneficial effects. The pr<strong>in</strong>ciple <strong>of</strong> comb<strong>in</strong>ation drug therapy<br />

can be achieved by either us<strong>in</strong>g concomitant adm<strong>in</strong>istration <strong>of</strong> two or more s<strong>in</strong>gle<br />

active drugs or by drugs <strong>in</strong> which the s<strong>in</strong>gle active agents are comb<strong>in</strong>ed <strong>in</strong> one<br />

molecule, so-called hybrid molecules. These hybrid molecules <strong>of</strong>ten consist <strong>of</strong><br />

different pharmacophoric groups which are l<strong>in</strong>ked to each other via spacers.<br />

Although it is tempt<strong>in</strong>g to designate every molecule which produces more than one<br />

biological effect as a hybrid molecule, there are certa<strong>in</strong> restrictions:<br />

- first <strong>of</strong> all, hybrid molecules must conta<strong>in</strong> two or more pharmacophoric groups<br />

which exert biological actions via different receptors.<br />

- secondly, to be <strong>of</strong> cl<strong>in</strong>ical value, the biological properties must be present <strong>in</strong> the<br />

same concentration range.<br />

- thirdly, hybrid molecules must be resistant to metabolic processes which, after<br />

adm<strong>in</strong>istration, would result <strong>in</strong> regeneration <strong>of</strong> the orig<strong>in</strong>al drugs.<br />

In this review, the examples <strong>of</strong> hybrid molecules are ma<strong>in</strong>ly conf<strong>in</strong>ed to<br />

cardiovascular drugs, besides some examples <strong>of</strong> anti-<strong>in</strong>flammatory <strong>and</strong> antiallergic<br />

agents discussed. If not <strong>in</strong>dicated, the chiral compounds were pharmacologically<br />

evaluated as racemic mixtures.<br />

2 Classification <strong>of</strong> hybrid molecules<br />

The classification <strong>of</strong> hybrid molecules will be discussed only briefly, because this<br />

theme has extensively been reviewed by Ariens 1<br />

.<br />

In scheme 1 a classification <strong>of</strong> compounds hav<strong>in</strong>g more than one biological action or<br />

compounds conta<strong>in</strong><strong>in</strong>g two or more pharmacophores is given.<br />

33


Chapter 2<br />

1 prodrugs<br />

2 tw<strong>in</strong> drugs a) identical tw<strong>in</strong>s<br />

3 pseudo-hybrids<br />

4 hybrid drugs<br />

b) non-identical tw<strong>in</strong>s<br />

Scheme 1: Classification <strong>of</strong> hybrid molecules<br />

2.1 Prodrugs<br />

c) symmetrical drugs ("siamese tw<strong>in</strong>s")<br />

Prodrugs are used to <strong>in</strong>crease the bioavailability <strong>and</strong>/or the local concentration <strong>of</strong><br />

drugs. These prodrugs conta<strong>in</strong> a chemical moiety which, after adm<strong>in</strong>istration, is<br />

cleaved from the parent drug. This implies that the metabolite <strong>of</strong> the applied<br />

compound conta<strong>in</strong>s the pharmacological activity, while the prodrug itself is <strong>of</strong>ten<br />

<strong>in</strong>active. Depend<strong>in</strong>g on the target area <strong>of</strong> action <strong>and</strong> the physicological properties <strong>of</strong><br />

the drug, lipophilic or hydrophilic structural moieties are used. L-DOPA is an example<br />

<strong>of</strong> a naturally occurr<strong>in</strong>g (endogenous) prodrug which is metabolized by the enzyme<br />

DOPA-decarboxylase <strong>in</strong>to dopam<strong>in</strong>e. Prednisolone succ<strong>in</strong>ate (fig. 1) is an example <strong>of</strong><br />

a synthetic prodrug. The succ<strong>in</strong>ate moiety adds hydrophilicity to the steroid<br />

derivative <strong>and</strong> is split after adm<strong>in</strong>istration.<br />

O<br />

Figure 1: The prodrugs 1-DOPA <strong>and</strong> prednisolone<br />

2.2 Tw<strong>in</strong> drugs<br />

O<br />

Compounds classified as tw<strong>in</strong> drugs are not hybrid molecules <strong>in</strong> the def<strong>in</strong>ition <strong>of</strong> our<br />

classification. Although the non-identical tw<strong>in</strong> drugs exist <strong>of</strong> two structural different<br />

moieties, these compounds are considered as chemical hybrids <strong>and</strong> not as<br />

pharmacological hybrids.<br />

All tw<strong>in</strong> drugs are <strong>in</strong> vivo metabolized <strong>in</strong>to their parent drugs. Actually, also tw<strong>in</strong><br />

drugs can be considered as prodrugs from which the orig<strong>in</strong>al drug molecules are<br />

released. A schematic representation <strong>of</strong> tw<strong>in</strong> drugs <strong>and</strong> their metabolites is given <strong>in</strong><br />

figure 2.<br />

34


identical tw<strong>in</strong> drug (A-A) - 2A<br />

non-identical tw<strong>in</strong> drug (A-A 1<br />

) ^ A + A'<br />

(A-B) - A + B<br />

symmetrical drug (A-A) 2A<br />

Figure 2: Tw<strong>in</strong> drugs <strong>and</strong> their metabolites<br />

2.2.a Identical tw<strong>in</strong>s (fig. 3)<br />

Chapter 2<br />

Compounds belong<strong>in</strong>g to this class consist <strong>of</strong> two identical structural moieties,<br />

hav<strong>in</strong>g the same pharmacological pr<strong>of</strong>ile. After adm<strong>in</strong>istration, tw<strong>in</strong> drugs are<br />

metabolized <strong>in</strong>to their identical agents. In figure 3 the dotted l<strong>in</strong>es <strong>in</strong>dicate the place<br />

were the identical tw<strong>in</strong> drugs are cleaved dur<strong>in</strong>g metabolization.<br />

Figure 3: Identical tw<strong>in</strong> drugs<br />

2.2.b Non-identical tw<strong>in</strong>s (fig. 4)<br />

This class consists <strong>of</strong> drugs which have different structural moieties. Upon<br />

adm<strong>in</strong>istration, the non-identical tw<strong>in</strong> drugs are metabolized <strong>in</strong>to two structural<br />

moieties which can have an identical or non-identical pharmacological pr<strong>of</strong>ile. For<br />

example, et<strong>of</strong>ibrate is cleaved <strong>in</strong>to a cl<strong>of</strong>ibric acid derivative <strong>and</strong> nicot<strong>in</strong>ic acid, both<br />

hav<strong>in</strong>g lipolytic activity. The analgesic compound benorilate is constructed <strong>of</strong> the<br />

analgesics acetylsalicylic acid <strong>and</strong> paracetamol. Metabolization <strong>of</strong> non-identical tw<strong>in</strong>s<br />

<strong>in</strong>to structural moieties which have different pharmacological pr<strong>of</strong>iles can be<br />

considered as an unwanted side effect on hybrid molecules.<br />

35


Chapter 2<br />

Figure 4: Non-identical tw<strong>in</strong> drugs<br />

cl<strong>of</strong>ibric acid nicot<strong>in</strong>ic acid<br />

2.2.C Symmetrical tw<strong>in</strong> drugs<br />

Symmetrical tw<strong>in</strong> drugs, also called "Siamese tw<strong>in</strong>s", conta<strong>in</strong> two identical structural<br />

moieties (fig. 5). After adm<strong>in</strong>istration these compounds, however, rema<strong>in</strong> <strong>in</strong>tact. In<br />

bifunctional symmetrical drugs, the two identical pharmacophore groups can be<br />

directly l<strong>in</strong>ked to each other or via a spacer. The examples shown <strong>in</strong> figure 5 are the<br />

anticoagulant dicoumarol, the analgesic forbisen <strong>and</strong> the a-adrenoceptor blocker<br />

dibozane.<br />

H,C.<br />

H 3C-<br />

N<br />

N<br />

Figure 5: Symmetrical drugs ("Siamese tw<strong>in</strong>s")<br />

Many symmetrical lig<strong>and</strong>s have been used to identify the <strong>in</strong>terb<strong>in</strong>d<strong>in</strong>g site distances<br />

at pharmacological receptors. In these drugs the aff<strong>in</strong>ity for the receptors might be<br />

enhanced by dimeric agents which are capable <strong>of</strong> successfully bridg<strong>in</strong>g two adjacent<br />

receptors.<br />

36


Chapter 2<br />

Dimeric 1,4-dihydropyrid<strong>in</strong>e (DHP) calcium channel blockers have been synthesized<br />

<strong>and</strong> pharmacologically evaluated <strong>in</strong> a radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g assay 2<br />

. The alkylene spacer<br />

l<strong>in</strong>k<strong>in</strong>g the two identical DHP derivatives was varied from an ethyl to a dodecyl cha<strong>in</strong><br />

(fig. 6). However, the aff<strong>in</strong>ities <strong>of</strong> the dimeric compounds were similar to that <strong>of</strong> the<br />

correspond<strong>in</strong>g monomelic DHPs. Inactivation, by proper structural changes, <strong>of</strong> one <strong>of</strong><br />

the DHP structural moieties revealed that this <strong>series</strong> <strong>of</strong> lig<strong>and</strong>s did not bridge adjacent<br />

1,4-DHP receptors <strong>of</strong> the calcium channel.<br />

H H<br />

Figure 6: Dimeric 1,4-dihydropyrid<strong>in</strong>es; n varies from 2,4,6,8,10 to 12<br />

2.3 Pseudo-hybrids<br />

Pseudo-hybrids are drugs which comb<strong>in</strong>e two or more pharmacological actions <strong>in</strong> a<br />

racemic mixture <strong>of</strong> a chiral molecule. Many chiral adrenoceptor lig<strong>and</strong>s, tested as<br />

racemates exhibit more than one pharmacological action. However, separation <strong>of</strong> the<br />

stereoisomers <strong>of</strong>ten revealed that the pharmacophoric groups are localized <strong>in</strong> the<br />

different stereoisomers 3<br />

.<br />

Labetalol (AH-5158) is the best known example <strong>of</strong> a pseudohybrid molecule.<br />

Labetalol conta<strong>in</strong>s two chiral centers <strong>and</strong> therefore consists <strong>of</strong> four stereoisomers<br />

(fig.7). Racemic labetalol exhibits oc r, p r <strong>and</strong> p2-adrenergic block<strong>in</strong>g activities. In<br />

table 1 the adrenoceptor block<strong>in</strong>g activities <strong>of</strong> racemic labetalol <strong>and</strong> its enantiomers<br />

are given.<br />

Figure 7: Racemic labetalol (* <strong>in</strong>dicates chiral center)<br />

Table 1 shows that, although the racemic labetalol is a potent antagonist for all three<br />

receptors, the oci-adrenergic block<strong>in</strong>g activity ma<strong>in</strong>ly resides <strong>in</strong> the (S,R) isomer, while<br />

(3-adrenergic block<strong>in</strong>g activity is found <strong>in</strong> the (R,R) isomer called dilevalol. Therefore,<br />

labetalol is considered to be a pseudo-hybrid molecule.<br />

37


Chapter 2<br />

Table 1: Adrenoceptor block<strong>in</strong>g activities <strong>of</strong> labetalol <strong>and</strong> its stereoisomers<br />

compound pA 2 (ßi) pA 2 (ß 2) pA 2 (ai)<br />

(±)-labetalol a<br />

(R,R) b<br />

(S,S) b<br />

(R,S) b<br />

8.31 8.10 7.44<br />

8.26 8.52 5.87<br />

6.43


Chapter 2<br />

plasma-prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g sites <strong>and</strong> thus <strong>in</strong>fluenc<strong>in</strong>g each others bioavailability, the total<br />

plasma-prote<strong>in</strong> bound fraction <strong>and</strong> the free drug concentration rema<strong>in</strong> the same for<br />

hybrid drugs.<br />

A disadvantage <strong>of</strong> hybrid molecules could be the fixed concentration ratio <strong>of</strong> the<br />

pharmacophore groups. Although <strong>in</strong> theory each pharmacophoric group should<br />

reta<strong>in</strong> its own pharmacological pr<strong>of</strong>ile, this could imply that at a certa<strong>in</strong> concentration<br />

<strong>of</strong> the hybrid molecule, only one <strong>of</strong> the pharmacophoric groups is able to exert its<br />

biological effect. Therefore, it is important that the pharmacophoric groups must exert<br />

their biological action <strong>in</strong> a narrow concentration range.<br />

The question arises whether every compound which exhibits besides its ma<strong>in</strong><br />

(desired) action, more or less unwanted side effects are due to the fact that the<br />

molecule conta<strong>in</strong>s more than one pharmacophoric group. Both ma<strong>in</strong> action <strong>and</strong> side<br />

effect obeys the receptor-lig<strong>and</strong> theory. However, if the side effect is based on a<br />

common mechanism (same lig<strong>and</strong>s <strong>and</strong> receptors) one cannot speak <strong>of</strong> hybrid<br />

molecules.<br />

In nature <strong>and</strong> among current drugs, a number <strong>of</strong> molecules exist which exhibit more<br />

than one biological activity. In contrast to designed hybrid molecules, it is <strong>of</strong>ten very<br />

difficult to dist<strong>in</strong>guish the pharmacophoric groups. The chemical moieties responsible<br />

for the different biological effects may co<strong>in</strong>cide or overlap to a considerable degree.<br />

At this po<strong>in</strong>t, structure-activity relationship studies together with the three<br />

dimensional structure <strong>of</strong> the molecule could contribute to the <strong>in</strong>sight how to modify<br />

the molecular structure <strong>in</strong> such a way that the biological action responsible for the<br />

side effect is elim<strong>in</strong>ated. A nice example <strong>of</strong> "destruction" <strong>of</strong> a hybrid molecule to<br />

unravel the dist<strong>in</strong>ct pharmacophoric groups is given by Chenard et al. 9<br />

who<br />

exam<strong>in</strong>ed the m<strong>in</strong>imal structural requirements <strong>of</strong> ifenprodil (fig. 9) to be active as a Nmethyl-D-aspartate<br />

(NMDA) antagonist.<br />

HO<br />

m<strong>in</strong>imal structure with<br />

NMDA antagonistic activity<br />

Figure 9: Ifenprodil <strong>and</strong> the m<strong>in</strong>imal structure <strong>in</strong> this class exhibit<strong>in</strong>g NMDA<br />

antagonistic activity<br />

Racemic ifenprodil possesses both potent a radrenoceptor <strong>and</strong> NMDA antagonistic<br />

activity. Separation <strong>of</strong> the stereoisomers revealed that a!-adrenergic <strong>and</strong> NMDA<br />

potencies can be dist<strong>in</strong>guished between the erythro <strong>and</strong> threo diastereoisomers <strong>of</strong><br />

ifenprodil. With<strong>in</strong> the (+)- <strong>and</strong> (-)-enantiomers <strong>of</strong> threo ifenprodil these activities run<br />

together (table 2). By <strong>in</strong>dividual removal <strong>of</strong> most <strong>of</strong> the structural fragments from<br />

39


Chapter 2<br />

ifenprodil, a m<strong>in</strong>imal structure has been identified with nearly equivalent <strong>in</strong> <strong>vitro</strong><br />

activity as ifenprodil This m<strong>in</strong>imal structure has little selectivity for the NMDA <strong>and</strong><br />

oq-adrenergic actions. By appropriate substitution this m<strong>in</strong>imal structure could afford<br />

potent antagonists selective for NMDA or a radrenoceptors.<br />

Table 2: NMDA antagonistic activity <strong>and</strong> a radrenergic aff<strong>in</strong>ity <strong>of</strong> ifenprodil isomers<br />

ifenprodil NMDA 1 (Xi 2<br />

(Xi/NMDA<br />

erythro (+/-) 263 100 0.38<br />

erythro (+) - - -<br />

erythro (-) 110 135 1.23<br />

threo (+/-) 55 843 15.3<br />

threo (+) 48 2306 48<br />

threo (-) 13.3 629 47.3<br />

m<strong>in</strong>imal structure 290 347 1.19<br />

1 Measured on rat hippocampal cell cultures<br />

2 Displacement <strong>of</strong> [ 3<br />

H]prazos<strong>in</strong> from rat bra<strong>in</strong> membranes<br />

3 The selectivity ratio <strong>of</strong> ifenprodil for NMDA receptor <strong>and</strong> ai-adrenoceptors<br />

Although <strong>in</strong> many cases drug design aims at the elim<strong>in</strong>ation <strong>of</strong> side effects <strong>of</strong><br />

particular drugs, it is also possible to modify the chemical structure <strong>in</strong> such a way that<br />

the side effect is converted <strong>in</strong>to the ma<strong>in</strong> therapeutic effect. Such a shift from<br />

therapeutic effect to side effect <strong>and</strong> vice versa is described for the anti-<strong>in</strong>fectious<br />

agent sulfanilamide 1<br />

(fig. 10). Structural modifications carried out on sulfanilamide<br />

analogues with a ma<strong>in</strong> anti-<strong>in</strong>fectious action <strong>and</strong> hypoglycemic side effects, afforded<br />

the oral antidiabetic tolbutamide (fig. 10), which was devoid <strong>of</strong> anti-<strong>in</strong>fectious<br />

activity.<br />

sulfanilamide tolbutamide<br />

Figure 10: The anti-<strong>in</strong>fectious agent sulfanilamide <strong>and</strong> the antidiabetic tolbutamide<br />

Another example <strong>of</strong> shift<strong>in</strong>g from action A via a hybrid molecule (action A+B) to<br />

action B is demonstrated by the platelet activat<strong>in</strong>g factor (PAF) antagonists UK-<br />

1 0<br />

74,505 (fig. II) . The 1,4-dihydropyrid<strong>in</strong>e-type calcium channel blocker amlodip<strong>in</strong>e<br />

(fig. 11) is a potent <strong>and</strong> long-last<strong>in</strong>g antihypertensive agent 11<br />

. The search for other<br />

potent vasodilators resulted <strong>in</strong> the amlodip<strong>in</strong>e derivative compound 6a 12<br />

. Besides,<br />

be<strong>in</strong>g a potent vasodilator, compounds 6a also possessed potent PAF antagonistic<br />

activity. A <strong>synthesis</strong> program undertaken to elim<strong>in</strong>ate the calcium channel block<strong>in</strong>g<br />

activities <strong>of</strong> compound 6a resulted <strong>in</strong> UK-74,505. UK-74,505 is highly selective as a<br />

40


Chapter 2<br />

PAF antagonist, show<strong>in</strong>g only weak aff<strong>in</strong>ity for the dihydropyrid<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g site<br />

(table 3).<br />

UK-74,505<br />

Figure 11: Structures <strong>of</strong> the calcium channel blocker (CCB) amlodip<strong>in</strong>e, a hybrid<br />

CCB/PAF antagonist, <strong>and</strong> the PAF antagonist UK-74,505<br />

Table 3: Pharmacological data <strong>of</strong> amlodip<strong>in</strong>e 11<br />

1 2<br />

, compound 6a , <strong>and</strong> UK-74,505<br />

K;;nM a IC 5 0;nM b KJ; nM c IC 50; nM à<br />

amlodip<strong>in</strong>e NP 7.9 NA NA<br />

compound 6a NP 5.0 12 25<br />

UK-74,505 6600 NT NP 4.3<br />

NP Not presented, NT Not tested, NA Not active<br />

a Inhibition <strong>of</strong> [ 3<br />

H]nitrendip<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g to rat cortex membranes<br />

b Inhibition <strong>of</strong> K +<br />

-depolarization <strong>in</strong>duced contraction <strong>in</strong> rat aorta<br />

c Inhibition <strong>of</strong> [ 3<br />

H]PAF b<strong>in</strong>d<strong>in</strong>g to rabbit washed platelets<br />

d Inhibition <strong>of</strong> PAF-<strong>in</strong>duced aggregation <strong>of</strong> rabbit washed platelets<br />

41


Chapter 2<br />

Sunkel et al. 13<br />

have described the <strong>synthesis</strong> <strong>of</strong> several other selective PAF<br />

antagonists which are devoid <strong>of</strong> calcium channel block<strong>in</strong>g activity. PCA 4248<br />

(fig. 12) is, just like UK-74,505, derived from DHP calcium channel blockers, which<br />

were structurally modified <strong>in</strong> such a way that the therapeutic pr<strong>of</strong>ile was completely<br />

switched from calcium channel blockers via hybrid molecules to PAF antagonists 14<br />

.<br />

Figure 12: The selective PAF antagonist PCA 4248<br />

H<br />

PCA 4248 has been shown to be a potent PAF antagonist <strong>in</strong> <strong>vitro</strong> 15<br />

<strong>and</strong> <strong>in</strong> vivo 16<br />

<strong>and</strong> was devoid <strong>of</strong> calcium channel block<strong>in</strong>g activity.<br />

While most <strong>of</strong> the fortuitously discovered hybrid molecules have co<strong>in</strong>cid<strong>in</strong>g or<br />

overlapp<strong>in</strong>g pharmacophore groups, <strong>in</strong> most <strong>of</strong> the designed hybrid molecules the<br />

pharmacophore groups are l<strong>in</strong>ked to each other via spacers.<br />

Comb<strong>in</strong>ation <strong>of</strong> different pharmacophore groups does not automatically lead to<br />

successful hybrid drugs. Rather, it <strong>of</strong>ten appears that the <strong>in</strong>dividual structure-activity<br />

relationships may be mutually exclusive. Structural modifications <strong>of</strong> moderately<br />

active hybrid molecules to <strong>in</strong>crease the biological activities is also <strong>of</strong>ten restricted to<br />

the narrow structure-activity relationships. The follow<strong>in</strong>g examples illustrate the<br />

failure <strong>of</strong> comb<strong>in</strong>ation <strong>of</strong> two pharmacophore groups.<br />

Baldw<strong>in</strong> et al. 17<br />

have synthesized hybrid molecules (fig. 13) comb<strong>in</strong><strong>in</strong>g a 1,4dihydropyrid<strong>in</strong>e<br />

(1,4-DHP) calcium channel blocker with a pj-adrenergic blocker<br />

(aryloxypropanolam<strong>in</strong>e). Both substitution on the ortho- <strong>and</strong> para-position on the 4phenyl<br />

r<strong>in</strong>g <strong>of</strong> the 1,4-DHP structure afforded hybrid molecules which were devoid <strong>of</strong><br />

potent pj-adrenergic activity.<br />

OH<br />

H<br />

Figure 13: A hybrid molecule conta<strong>in</strong><strong>in</strong>g DHP <strong>and</strong> p radrenergic block<strong>in</strong>g structural<br />

moiety<br />

42


Corsano et al. 18<br />

Chapter 2<br />

have synthesized a <strong>series</strong> <strong>of</strong> hybrid molecules based on the calcium<br />

channel blocker c<strong>in</strong>nariz<strong>in</strong>e <strong>and</strong> the p rantagonist propranolol (fig. 14). Whereas<br />

some <strong>of</strong> the hybrid molecules showed low aff<strong>in</strong>ity for atrial p adrenoceptors, none <strong>of</strong><br />

the designed hybrid molecules exhibited <strong>in</strong> <strong>vitro</strong> calcium channel block<strong>in</strong>g activity.<br />

Figure 14: A hybrid molecule related to c<strong>in</strong>nariz<strong>in</strong>e <strong>and</strong> propranolol<br />

Laguerre et al. 19<br />

have synthesized several hybrid molecules <strong>in</strong> which the calcium<br />

channel blocker verapamil was comb<strong>in</strong>ed with a- <strong>and</strong> p-adrenergic block<strong>in</strong>g<br />

structural moieties <strong>and</strong> with c<strong>in</strong>nariz<strong>in</strong>e type calcium channel blockers (fig. 15). Some<br />

hybrid molecules with a p-adrenergic block<strong>in</strong>g moiety were nearly as potent as<br />

verapamil <strong>in</strong> calcium channel block<strong>in</strong>g activity. The <strong>in</strong> <strong>vitro</strong> calcium channel block<strong>in</strong>g<br />

activities (PIC50 values) determ<strong>in</strong>ed on K +<br />

-depolarization-<strong>in</strong>duced contractions on<br />

rabbit aorta ranged from 6.11-6.63. However, <strong>in</strong> vivo no <strong>in</strong>crease <strong>in</strong> blood pressure<br />

reduction was observed <strong>in</strong> spontaneously hypertensive rats. Besides, no adrenergic<br />

block<strong>in</strong>g activities or aff<strong>in</strong>ities are presented. Therefore, it is impossible to confirm<br />

whether these compounds can be considered as pharmacological relevant hybrid<br />

molecules.<br />

Willard et al. 20<br />

have synthesized hybrid molecules based on a benzodioxane P-<br />

adrenergic blocker <strong>and</strong> the diuretic qu<strong>in</strong>carbate (fig. 16). However, the designed<br />

tricyclic am<strong>in</strong>o alcohols appeared to be <strong>in</strong>active as a diuretic or as a p-adrenergic<br />

blocker.<br />

43


Chapter 2<br />

HoCO<br />

ß-blocker moiety<br />

plC 50 = 5.76<br />

structural moiety<br />

present <strong>in</strong> c<strong>in</strong>nariz<strong>in</strong>e<br />

plC 50 = 4.72<br />

modified part<br />

calcium<br />

channel<br />

blocker<br />

r w verapamil<br />

C H a<br />

OCHo<br />

plC 50 = 6.80<br />

a-blocker moieties<br />

r~\<br />

— N N<br />

H 3CO<br />

plC 50 = 4.88<br />

OCHo<br />

Figure 15: Structural modifications on verapamil <strong>and</strong> the correspond<strong>in</strong>g calcium<br />

channel block<strong>in</strong>g activities (PIC50).<br />

Cl O<br />

COOC 2H 5<br />

X = H or CI<br />

COOC 2H 5<br />

Figure 16: Hybrid molecules comb<strong>in</strong><strong>in</strong>g diuretic <strong>and</strong> (3-antagonist structural moieties<br />

44


Chapter 2<br />

Görlitzer et al. 21<br />

synthesized dihydropyrid<strong>in</strong>es (1,4-DHPs) with comb<strong>in</strong>ed etacrynic<br />

acid structural moieties (fig. 17). Etacrynic acid is a diuretic, while 1,4-DHPs are<br />

vasodilators. This comb<strong>in</strong>ation could be useful as antihypertensive drugs. However,<br />

the 1,4-DHPs were easily oxidized to the correspond<strong>in</strong>g pyrid<strong>in</strong>es, which are <strong>in</strong>active<br />

as calcium channel blockers.<br />

Cl O<br />

Figure 17: Hybrid molecules comb<strong>in</strong><strong>in</strong>g vasodilat<strong>in</strong>g <strong>and</strong> diuretic activities<br />

These few examples demonstrate that even if designed hybrid molecules can be<br />

synthesized, the result<strong>in</strong>g compounds <strong>of</strong>ten are <strong>in</strong>active at one or both systems.<br />

3 Replacement <strong>of</strong> comb<strong>in</strong>ation drug therapy by hybrid drugs<br />

Comb<strong>in</strong>ation drug therapy is applied <strong>in</strong> the treatment <strong>of</strong> many disorders. In many<br />

cases comb<strong>in</strong>ation drug therapy could be successfully be replaced by hybrid drug<br />

therapy. Among the hybrid drugs developed for the treatment <strong>of</strong> certa<strong>in</strong> disorders<br />

belong, <strong>in</strong>ter alia, antibiotics, central nervous system therapeutics, anti-<strong>in</strong>flammatory<br />

<strong>and</strong> antiallergic agents, <strong>and</strong> cardiovasculair agents. With the aid <strong>of</strong> two different<br />

pr<strong>in</strong>ciples, the <strong>in</strong>flammatory / allergic disorders <strong>and</strong> cardiovascular disorders, the<br />

rational idea beh<strong>in</strong>d hybrid molecules will be expla<strong>in</strong>ed. In section 4 antagonists <strong>and</strong><br />

<strong>in</strong>hibitors <strong>of</strong> <strong>in</strong>flammatory/allergic disorders are discussed <strong>and</strong> some examples <strong>of</strong><br />

synergistically act<strong>in</strong>g hybrid molecules will be presented. In section 5, cardiovascular<br />

drugs used for the treatment <strong>of</strong> arrhythmias, ang<strong>in</strong>a pectoris, congestive heart failure,<br />

<strong>and</strong> hypertension are discussed. Furthermore, several hybrid drugs will be discussed<br />

45


Chapter 2<br />

with regard to their potenciáis for the treatment <strong>of</strong> a comb<strong>in</strong>ation <strong>of</strong> cardiovascular<br />

disorders.<br />

4 Inflammatory <strong>and</strong> allergic disorders<br />

The pathogenesis <strong>of</strong> <strong>in</strong>flammatory <strong>and</strong> allergic disorders is a complex <strong>and</strong><br />

heterogeneous process. Leukotrienes, prostagl<strong>and</strong><strong>in</strong>s, <strong>and</strong> thromboxane are<br />

arachidonic acid metabolites synthesized <strong>and</strong> released from their stores <strong>in</strong> response to<br />

a variety <strong>of</strong> <strong>in</strong>flammatory <strong>and</strong> immunological stimuli. Furthermore, several other<br />

mediators, such as histam<strong>in</strong>e, are released.<br />

Arachidonic acid is stored <strong>in</strong> cell membranes as a phospholipid. Phospholipase A 2<br />

hydrolyzes the cellular phospholipid <strong>and</strong> releases arachidonic acid (fig. 18).<br />

Arachidonic acid can be oxygenated by the enzyme cyclooxygenase result<strong>in</strong>g <strong>in</strong> the<br />

formation <strong>of</strong> the prostagl<strong>and</strong><strong>in</strong>s PGG 2 <strong>and</strong> PGH 2. Subsequently, these prostagl<strong>and</strong><strong>in</strong>s<br />

are converted <strong>in</strong>to the prostagl<strong>and</strong><strong>in</strong>s (PGD 2, PGE^, <strong>and</strong> PGF 2a), prostacycl<strong>in</strong> (PGI 2)<br />

<strong>and</strong> thromboxane A 2 (TxA 2).<br />

cell membrane<br />

phospholipase A 2<br />

arachidonic acid-phospholipid ester<br />

—<br />

arachidonic acid<br />

T prostacycl<strong>in</strong>e<br />

LTÈ4 ^ PGI 2<br />

Figure 18: Bio<strong>synthesis</strong> <strong>of</strong> leukotrienes, prostagl<strong>and</strong><strong>in</strong>s, prostacycl<strong>in</strong>e <strong>and</strong><br />

thromboxane<br />

Prostagl<strong>and</strong><strong>in</strong>s are <strong>in</strong>volved <strong>in</strong> <strong>in</strong>flammation (e.g., capillary permeability).<br />

Prostacycl<strong>in</strong>e (PGI 2) is a vasodilator <strong>and</strong> an <strong>in</strong>hibitor <strong>of</strong> platelet aggregation.<br />

Thromboxane A 2 produces vasoconstriction, platelet aggregation, <strong>and</strong> contributes to<br />

airway hyperresponsiveness, <strong>in</strong>duced by the platelet activat<strong>in</strong>g factor (PAF). The<br />

46


Chapter 2<br />

enzyme cyclooxygenase is <strong>in</strong>hibited by non-steroidal anti-<strong>in</strong>flammatory drugs<br />

(NSAIDs), such as <strong>in</strong>dometac<strong>in</strong> <strong>and</strong> flurbipr<strong>of</strong>en (fig. 23).<br />

The other oxygenation routes <strong>of</strong> arachidonic acid proceed via lipoxygenases<br />

result<strong>in</strong>g <strong>in</strong> the formation <strong>of</strong> several hydroperoxyeicosatetraenoic acid derivatives<br />

(HPETE) which are precursors <strong>of</strong> the leukotrienes. By several peroxidases HPETE is<br />

converted <strong>in</strong>to leukotriene LTA4 which than can be further metabolized to LTB 4,<br />

LTC4, LTD 4, <strong>and</strong> LTE 4. LTB4 is <strong>in</strong>volved <strong>in</strong> <strong>in</strong>flammatory processes, while LTC4,<br />

LTD 4, <strong>and</strong> LTE 4 play a role <strong>in</strong> asthma (bronchoconstriction).<br />

Dur<strong>in</strong>g allergic reactions histam<strong>in</strong>e <strong>and</strong> PAF are released from a variety <strong>of</strong> cells <strong>and</strong><br />

are able to <strong>in</strong>duce bronchoconstriction <strong>and</strong> capillary permeability.<br />

Summarized, <strong>in</strong>flammation <strong>and</strong> allergic disorders can be treated with the follow<strong>in</strong>g<br />

drugs:<br />

- cyclooxygenase <strong>in</strong>hibitors or prostagl<strong>and</strong><strong>in</strong> antagonists<br />

- thromboxane A 2 synthetase <strong>in</strong>hibitors (TxSI) or thromboxane A 2 receptor<br />

antagonists (TxRA)<br />

- platelet activat<strong>in</strong>g factor (PAF) antagonists<br />

- nonsteroidal anti-<strong>in</strong>flammatory drugs (NSAIDs)<br />

- histam<strong>in</strong>e H rantagonists<br />

- lipoxygenase <strong>in</strong>hibitors or leukotriene antagonists<br />

- steroids<br />

- immuno suppressant agents<br />

4.1 Hybrid molecules comb<strong>in</strong><strong>in</strong>g synergistic effects<br />

The complementary action <strong>of</strong> histam<strong>in</strong>e <strong>and</strong> PAF <strong>in</strong> asthma <strong>of</strong>fers the opportunity to<br />

<strong>in</strong>hibit their actions by hybrid molecules.<br />

Sch 37370 (fig. 19) has been reported to antagonize both histam<strong>in</strong>e- <strong>and</strong> PAF<strong>in</strong>duced<br />

allergic responses 22<br />

. Although Sch 37370 is structurally related to histam<strong>in</strong>e<br />

Hi-antagonists, such as loratad<strong>in</strong>e, the latter ones are unable to antagonize PAF<strong>in</strong>duced<br />

platelet aggregation. Furthermore, while many <strong>of</strong> the tricyclic histam<strong>in</strong>e H r<br />

antagonists also possess ax-adrenoceptor block<strong>in</strong>g activities <strong>and</strong> antiseroton<strong>in</strong> (5-<br />

HT2) activity, Sch 37370 seems to be devoid <strong>of</strong> such actions.<br />

N<br />

Sch37370 R = CH 3<br />

Loratad<strong>in</strong>e R = OC 2H;<br />

Figure 19: Sch 37370 a dual PAF <strong>and</strong> histam<strong>in</strong>e ^-antagonist (structurally related<br />

to loratad<strong>in</strong>e)<br />

47


Chapter 2<br />

Structural modifications carried out at the C-3 position <strong>of</strong> Sch 37370 revealed that<br />

analogues with electron withdraw<strong>in</strong>g groups were less active dual antagonists than<br />

those with electron donat<strong>in</strong>g groups 23<br />

* 24<br />

. Thus structurally modify<strong>in</strong>g Sch 37370 can<br />

afford compounds which are more selective for histam<strong>in</strong>e Hj-receptors or for the<br />

TxA2-receptor.<br />

Although <strong>in</strong> vivo Sch 37370 exhibits equipotent PAF <strong>and</strong> histam<strong>in</strong>e Hrantagoniz<strong>in</strong>g activities, the PAF activity is rapidly lost. This loss <strong>in</strong> PAF activity has been expla<strong>in</strong>ed<br />

by metabolization <strong>in</strong>to compounds which are devoid <strong>of</strong> PAF activity but which<br />

reta<strong>in</strong>ed histam<strong>in</strong>e Hrantagonistic activity. The peculiar question arises whether Sch<br />

37370 can really be considered as a hybrid molecule, because the histam<strong>in</strong>e H r<br />

antagonistic activity resides <strong>in</strong> the metabolite <strong>and</strong> is not caused by the orig<strong>in</strong>al<br />

supposed hybrid molecule.<br />

Other examples <strong>of</strong> antiallergic agents possess<strong>in</strong>g thromboxane A 2 <strong>and</strong> histam<strong>in</strong>e H r<br />

dual antagoniz<strong>in</strong>g activity are KW-4099 <strong>and</strong> KF15766 25<br />

(fig. 20). Both compounds<br />

are based on the observation that KW-4994 (fig. 20) has histam<strong>in</strong>e H rantagonistic<br />

<strong>and</strong> antiallergic activities 26<br />

. KW-4994, however, is devoid <strong>of</strong> potent thromboxane A 2<br />

receptor antagonistic (TxRA 2) activity. Although racemic KW-4099 seems to be one<br />

<strong>of</strong> the most promis<strong>in</strong>g dual TxRA 2/histam<strong>in</strong>e 1A X-antagonists, separation <strong>of</strong> the<br />

enantiomers reveals that KW-4099 is actually a pseudo-hybrid. The highest activity<br />

for both TxRA 2- <strong>and</strong> histam<strong>in</strong>e H rreceptors does not reside <strong>in</strong> one enantiomer, the<br />

two modes <strong>of</strong> actions are devided among the optical isomers (table 4). Structural<br />

modifications <strong>of</strong> KW-4099 resulted <strong>in</strong> KF15766 (fig. 20), <strong>in</strong> which the E-isomer<br />

conta<strong>in</strong>s both activities, demonstrat<strong>in</strong>g that it is possible to obta<strong>in</strong> dual<br />

TxRA 2/histam<strong>in</strong>e H rantagonists possess<strong>in</strong>g a dibenzoxep<strong>in</strong> r<strong>in</strong>g system.<br />

Figure 20: Hybrid molecules with dual TxRA 2/histam<strong>in</strong>e H rantagonistic activity<br />

48


Chapter 2<br />

Table 4: TxA 2/PGH 2 b<strong>in</strong>d<strong>in</strong>g (gu<strong>in</strong>ea pig washed platelets) <strong>and</strong> Hj receptor b<strong>in</strong>d<strong>in</strong>g<br />

(gu<strong>in</strong>ea pig cerebellum) <strong>of</strong> the several dual H^-TxA^GHk antagonists.<br />

compound TxA 2yPGH 2 b<strong>in</strong>d<strong>in</strong>g; Kj [nM] Hi receptor b<strong>in</strong>d<strong>in</strong>g; K; [nM]<br />

KW-4994 18% at 1 u.M 9.0 + 1.6<br />

(±)-KW-4099 140 + 3 18 + 3.8<br />

(+)-KW-4099 14000 ±1100 9.9 ± 0.29<br />

0-KW-4O99 42 + 3.8 740 + 69<br />

(E)-KF15766 740 ± 44 20 + 0.8<br />

(Z)-KF15766 2600 15 + 1.6<br />

Examples <strong>of</strong> fortuitous hybrid molecules are terfenad<strong>in</strong>e (fig. 21) <strong>and</strong> AHR-5333 (fig.<br />

22). Terfenad<strong>in</strong>e has been orig<strong>in</strong>ally developed <strong>in</strong> a program search<strong>in</strong>g for<br />

tranquillizers 27<br />

. Later on, the antihistam<strong>in</strong>ergic activity was discovered 28<br />

. Terfenad<strong>in</strong>e<br />

is the first non-sedat<strong>in</strong>g histam<strong>in</strong>e Hrantagonist <strong>and</strong> one <strong>of</strong> the most frequently<br />

prescribed antiallergic agents. Furthermore, terfenad<strong>in</strong>e is structurally related to the<br />

diphenylalkylam<strong>in</strong>e-type calcium channel blockers, <strong>and</strong> has aff<strong>in</strong>ity for the calcium<br />

channels. The calcium channel block<strong>in</strong>g activity <strong>of</strong> terfenad<strong>in</strong>e might contribute to its<br />

antiallergic action. Recently it has been described that calcium channel blockers are<br />

capable to relax bronchial smooth muscle 29<br />

<strong>and</strong> to <strong>in</strong>hibit histam<strong>in</strong>e release from<br />

human mast cells 30<br />

. Zhang et al. 31<br />

have synthesized the optical isomers <strong>of</strong> terfenad<strong>in</strong>e<br />

<strong>and</strong> determ<strong>in</strong>ed their antihistam<strong>in</strong>e (Hrantagonism) activities 32<br />

<strong>and</strong> calcium channel<br />

aff<strong>in</strong>ities 33<br />

(table 5).<br />

(+)-R-terfenad<strong>in</strong>e — c —<br />

(-)-S-terfenad<strong>in</strong>e — c —<br />

VUF4591 -CH 2—<br />

Figure 21: Structure <strong>of</strong> terfenad<strong>in</strong>e enantiomers <strong>and</strong> the terfenad<strong>in</strong>e analogue VUF<br />

4591<br />

49


Chapter 2<br />

Table 5: Antihistam<strong>in</strong>e activity <strong>and</strong> calcium channel aff<strong>in</strong>ity <strong>of</strong> terfenad<strong>in</strong>e<br />

enantiomers <strong>and</strong> VUF 4591<br />

Hj-antagonism H^aff<strong>in</strong>ity calcium channel aff<strong>in</strong>ity<br />

a<br />

pA 2<br />

pKd b<br />

c<br />

pK d<br />

terfenad<strong>in</strong>e (R/S) 7.65 ±0.11 6.88 ±0.10 6.36 ± 0.03<br />

R-(+) 7.72 ± 0.09 7.06 ± 0.08 6.39 ± 0.08<br />

s-(-) 7.61 ±0.11 6.81 ± 0.08 6.40 ± 0.08<br />

VUF 4591 7.73 ±0.16 6.49 ±0.18 7.18 ±0.12<br />

a Inhibition <strong>of</strong> histam<strong>in</strong>e-<strong>in</strong>duced contraction <strong>in</strong> gu<strong>in</strong>ea pig ileum<br />

b Displacement <strong>of</strong> [ 3<br />

H]mepyram<strong>in</strong>e from gu<strong>in</strong>ea pig cerebellum membranes<br />

c Displacement <strong>of</strong> [ 3<br />

H]nitrendip<strong>in</strong>e from rat cortex membranes<br />

Terfenad<strong>in</strong>e is an example <strong>of</strong> chiral hybrid drugs <strong>in</strong> which stereochemistry does not<br />

seem to play a role <strong>in</strong> several pharmacological tests, as the <strong>in</strong>dividual enantiomers are<br />

equally active as histam<strong>in</strong>e Hi-antagonists <strong>and</strong> have similar aff<strong>in</strong>ities for calcium<br />

channels. Elucidation <strong>of</strong> the metabolic process <strong>of</strong> terfenad<strong>in</strong>e has to reveal whether<br />

one <strong>of</strong> the enantiomers is favoured, confirm<strong>in</strong>g the necessity to use a s<strong>in</strong>gle<br />

enantiomer 34<br />

.<br />

Orig<strong>in</strong>ally AHR-5333 (fig. 22) was developed for a central nervous system (CNS)<br />

project, but <strong>in</strong> <strong>vitro</strong> screen<strong>in</strong>g tests revealed that AHR-5333 has antiallergic<br />

properties. Pr<strong>of</strong>ound <strong>in</strong> <strong>vitro</strong> <strong>in</strong>vestigations demonstrated that AHR-5333 <strong>in</strong>hibited 5lipoxygenase<br />

activity <strong>and</strong> <strong>in</strong>hibited leukotriene <strong>in</strong>duced contractions <strong>in</strong> gu<strong>in</strong>ea pig<br />

ileum. Furthermore, AHR-5333 <strong>in</strong>hibited histam<strong>in</strong>e release from rat mast cells 35<br />

.<br />

Figure 22: Antiallergic <strong>and</strong> antihistam<strong>in</strong>ic hybrid molecules structurally related to<br />

terfenad<strong>in</strong>e<br />

The AHR-5333 analogue AHR-13268D (fig. 22) was developed because drug<br />

metabolism studies revealed that AHR-5333 was extensively metabolized <strong>and</strong> that<br />

50


Chapter 2<br />

the compound had poor oral availability <strong>in</strong> rats <strong>and</strong> dogs. Table 6 shows that AHR-<br />

13268D has a lower aff<strong>in</strong>ity for the histam<strong>in</strong>e H rreceptor than AHR-5333, but is a<br />

more potent antiallergic agent.<br />

Table 6: Histam<strong>in</strong>e H rreceptor aff<strong>in</strong>ity <strong>and</strong> antiallergic activity <strong>of</strong> AHR-13268D <strong>and</strong><br />

AHR-5333<br />

compound IC 50; nMa PFAb<br />

AHR-13268D 600 +++<br />

AHR-5333 8 ++<br />

astemizole 10 NT<br />

terfenad<strong>in</strong>e 295 -<br />

a Inhibition <strong>of</strong> [ 3<br />

H]mepyram<strong>in</strong>e histam<strong>in</strong>e Hj-receptor b<strong>in</strong>d<strong>in</strong>g to gu<strong>in</strong>ea pig cortex<br />

membranes<br />

b Relative oral antiallergic activity <strong>in</strong> the passive foot anaphylaxis (PFA) model <strong>in</strong> rats<br />

(+++ very active; ++ active; - <strong>in</strong>active; NT not tested)<br />

AHR-5333 <strong>and</strong> AHR-13268D show no aff<strong>in</strong>ity for the 5-HT 2 receptor. Determ<strong>in</strong>ation<br />

<strong>of</strong> the drug metabolism process <strong>and</strong> <strong>of</strong> the bioavailability have to confirm the<br />

therapeutic efficacy <strong>of</strong> AHR-13268D as an antiallergic agent.<br />

The acidic non-steroidal anti-<strong>in</strong>flammatory drugs (NSAIDs) are widely used aga<strong>in</strong>st<br />

<strong>in</strong>flammatory diseases, but they also cause gastroduodenal <strong>in</strong>jury. NSAIDs <strong>in</strong>hibit the<br />

<strong>synthesis</strong> <strong>of</strong> prostagl<strong>and</strong><strong>in</strong>s by block<strong>in</strong>g the enzyme cyclooxygenase. However,<br />

prostagl<strong>and</strong><strong>in</strong>s are also believed to regulate gastric acid secretion <strong>and</strong> gastric mucosal<br />

blood flow. The major observed side effect <strong>of</strong> NSAIDs is therefore due to their ma<strong>in</strong><br />

action. At the same time, <strong>in</strong>hibition <strong>of</strong> prostagl<strong>and</strong><strong>in</strong> <strong>synthesis</strong> implies an <strong>in</strong>crease <strong>of</strong><br />

leukotriene <strong>synthesis</strong>, which <strong>in</strong> turn activates several biological effects.<br />

Histam<strong>in</strong>e H 2-antagonists have anti-ulcerogenic activity. Therefore, hybrid molecules<br />

constructed <strong>of</strong> an NSAID <strong>and</strong> a histam<strong>in</strong>e H 2-antagonist have been developed with<br />

the goal to counteract the side effects <strong>of</strong> NSAIDs.<br />

The designed hybrid molecule CP-331 (fig. 23) is based on the NSAID <strong>in</strong>dometac<strong>in</strong><br />

<strong>and</strong> the histam<strong>in</strong>e H2-antagonist roxatid<strong>in</strong>e 36<br />

, while the hybrid molecule FP-PPA (fig.<br />

23) conta<strong>in</strong>s the structural moieties <strong>of</strong> roxatid<strong>in</strong>e <strong>and</strong> <strong>of</strong> the NSAID flurbipr<strong>of</strong>en 37<br />

.<br />

The anti-<strong>in</strong>flammatory, analgesic, <strong>and</strong> antipyretic effects <strong>of</strong> FP-PPA <strong>and</strong> CP-331 are<br />

exerted at about equimolar concentrations as <strong>in</strong>dometac<strong>in</strong> while they are devoid <strong>of</strong><br />

gastric mucosal damag<strong>in</strong>g effects <strong>and</strong> <strong>in</strong>duce less damage to the <strong>in</strong>test<strong>in</strong>al mucosa 38<br />

.<br />

However, <strong>in</strong>sufficient evidence is presented to exclude the possibility <strong>of</strong> hydrolysis <strong>of</strong><br />

these hybrid molecules.<br />

51


Chapter 2<br />

a roxatid<strong>in</strong>e analogue (histam<strong>in</strong>e H 2-antagonist)<br />

H<br />

N<br />

FP-PPA<br />

Figure 23: The hybrid molecules CP-331 <strong>and</strong> FP-PPA, constructed <strong>of</strong> a NSAID<br />

moiety <strong>and</strong> a histam<strong>in</strong>e H 2-antagonist<br />

5 Designed hybrid molecules as potential cardiovascular drugs<br />

Cardiovascular diseases <strong>in</strong>volve several dist<strong>in</strong>ct disorders such as arrhythmia, ang<strong>in</strong>a<br />

pectoris, congestive heart failure or hypertension. The pharmacotherapeutic treatment<br />

<strong>of</strong> cardiovascular disorders has been discussed <strong>in</strong> chapter 1. In this chapter only some<br />

antiarrhythmic, antiang<strong>in</strong>al, <strong>in</strong>otropic/cardiotonic, <strong>and</strong> antihypertensive agents are<br />

52


Chapter 2<br />

presented to expla<strong>in</strong> why hybrid molecules could be successful <strong>in</strong> treat<strong>in</strong>g these<br />

disorders.<br />

From table 7 it follows that several <strong>of</strong> the designed hybrid molecules are based on<br />

calcium channel blockers <strong>and</strong> on ß x-adrenoceptor antagonists. Probably because<br />

these type <strong>of</strong> cardiovascular agents, as 's<strong>in</strong>gle' drug, can be applied as antiarrhythmics,<br />

antiang<strong>in</strong>als, <strong>and</strong> as antihypertensive drugs. Furthermore, comb<strong>in</strong>ation<br />

drug therapy <strong>in</strong> a s<strong>in</strong>gle dosage form has been proven to be successful <strong>in</strong> certa<strong>in</strong><br />

cardiovascular disorders.<br />

Table 7: Cardiovascular drugs used for the treatment or prevention <strong>of</strong><br />

cardiovascular disorders<br />

antiarrhythmics: antiang<strong>in</strong>als:<br />

class I; Na +<br />

-channel blockers nitrates <strong>and</strong> nitrites<br />

classll; -adrenoceptor antagonists Ca 2+<br />

-channel blockers<br />

class III; K +<br />

-channel blockers<br />

class IV; Ca<br />

ßx-adrenoceptor antagonists<br />

2+<br />

-channel blockers<br />

antihypertensives<br />

<strong>in</strong>otropics / cardiotonics diuretics<br />

cardiac glycosides direct vasodilators<br />

-adrenoceptor agonists ßi-adrenoceptor antagonists<br />

histam<strong>in</strong>e H2-agonists ocradrenoceptor antagonists<br />

phosphodiesterase (III) <strong>in</strong>hibitors ot2-adrenoceptor agonists<br />

Ca 2+<br />

-channel activators angiotens<strong>in</strong> II convert<strong>in</strong>g enzyme (ACE)<strong>in</strong>hibitors<br />

K +<br />

-channel activators<br />

Ca 2+<br />

-channel blockers<br />

ANTIHYPERTENSIVE DRUGS<br />

In hypertensive patients the total peripheral vascular resistance is abnormally high,<br />

while the cardiac output <strong>and</strong> heart rate could still be unaffected. In the long-term<br />

treatment <strong>of</strong> hypertension, the use <strong>of</strong> vasodilators alone does not adequately control<br />

blood pressure, because <strong>of</strong> aris<strong>in</strong>g side effects which are a consequence <strong>of</strong> their<br />

action: the <strong>in</strong>duced reduction <strong>in</strong> blood pressure activates the baroreceptor complex<br />

lead<strong>in</strong>g to <strong>in</strong>creased sympathetic stimulation <strong>and</strong>lhus activation <strong>of</strong> ß-adrenoceptors,<br />

result<strong>in</strong>g <strong>in</strong> tachycardia, <strong>in</strong>crease <strong>in</strong> heart rate, <strong>and</strong> vasoconstriction <strong>and</strong> fluid<br />

retention via the ren<strong>in</strong>-angiotens<strong>in</strong> system 39<br />

(fig. 24).<br />

In the long-term treatment <strong>of</strong> hypertension, there is no s<strong>in</strong>gle antihypertensive drug<br />

which is able to normalize the elevated blood pressure <strong>in</strong> all hypertensive patients.<br />

Rahn 40<br />

has described the pr<strong>in</strong>ciples <strong>in</strong> the comb<strong>in</strong>ation <strong>of</strong> antihypertensive drugs <strong>and</strong><br />

<strong>in</strong>dicated that many antihypertensive drugs have synergistic effects upon comb<strong>in</strong>ed<br />

application (table 8).<br />

53


Chapter 2<br />

peripheral act<strong>in</strong>g<br />

a 1-adrenoceptor<br />

blockers<br />

<strong>in</strong>hibition by<br />

ACE-<strong>in</strong>hibitors<br />

activation <strong>of</strong> the<br />

ren<strong>in</strong>/angiotens<strong>in</strong><br />

system<br />

I ^ » diuretics<br />

retention <strong>of</strong> sodium<br />

<strong>and</strong> water<br />

vasodilator<br />

vasodilation<br />

I<br />

^:<br />

3<br />

reduction <strong>in</strong> blood pressure<br />

I activation <strong>of</strong> ç<br />

baroreceptor complex<br />

<strong>in</strong>crease <strong>in</strong> sympathetic tone<br />

i < =<br />

CNS<br />

a 2-adrenoceptor<br />

agonists<br />

<strong>in</strong>hibiton by centrally<br />

act<strong>in</strong>g -adrenoceptor<br />

blockers<br />

<strong>in</strong>hibiton by<br />

3 ß-j-adrenoceptor<br />

blockers<br />

<strong>in</strong>crease <strong>in</strong> heart rate,<br />

contractility <strong>and</strong> <strong>in</strong> plasma<br />

noradrenal<strong>in</strong>e concentration<br />

Figure 24: The mode <strong>of</strong> action <strong>of</strong> several antihypertensive agents.<br />

Table 8: Percentage <strong>of</strong> patients with mild to moderate hypertension (diastolic blood<br />

pressure <strong>in</strong> the range <strong>of</strong> 90-114 mmHg) respond<strong>in</strong>g to antihypertensive<br />

agents (to a target diastolic blood pressure below 90 mmHg).<br />

s<strong>in</strong>gle drug % comb<strong>in</strong>ation <strong>of</strong> drugs %<br />

propranolol (p) 52 propranolol + HCT 81<br />

atenolol (p) 57 N atenolol + nifedip<strong>in</strong>e 100<br />

nifedip<strong>in</strong>e (CCB) 64 HCT + nifedip<strong>in</strong>e ++<br />

HCT(D) 56 HCT + diltiazem (CCB) n.a.e.<br />

enalapril (ACE) 60 ACE + CCB ++<br />

P P-adrenergic blocker CCB calcium channel blocker<br />

HCT hydrochlorothiazide D diuretic<br />

ACE angiotens<strong>in</strong> (II) convert<strong>in</strong>g enzyme <strong>in</strong>hibitor<br />

n.a.e. no additional effect ++ better than either one <strong>of</strong> them alone<br />

54


Chapter!<br />

When two antihypertensive drugs together are <strong>in</strong>sufficiently effective, even triple<br />

drug comb<strong>in</strong>ations can be used such as the comb<strong>in</strong>ation <strong>of</strong>:<br />

(3-adrenergic blocker + diuretic + nifedip<strong>in</strong>e<br />

p-adrenergic blocker + diuretic + angiotens<strong>in</strong> (II) convert<strong>in</strong>g enzyme <strong>in</strong>hibitor<br />

diuretic + angiotens<strong>in</strong> (II) convert<strong>in</strong>g enzyme <strong>in</strong>hibitor + calcium channel blocker<br />

On theoretical grounds, comb<strong>in</strong>ation <strong>of</strong> p-blockers <strong>and</strong> calcium channel blockers<br />

should be avoided, because they both exhibit myocardial depressant effects. This is<br />

especially valid for verapamil- <strong>and</strong> diltiazem-like calcium channel blockers because<br />

they have potent negative chronotropic <strong>and</strong> <strong>in</strong>otropic activities. Dihydropyrid<strong>in</strong>e<br />

calcium channel blockers have less cardiodepressant effects <strong>and</strong> have been proved to<br />

have beneficial antihypertensive effects when comb<strong>in</strong>ed with p-blockers.<br />

5.1 Antiarrhythmic hybrid drugs<br />

Reentrant ventricular arrhythmias are one <strong>of</strong> the major contributors to sudden cardiac<br />

death. Because no s<strong>in</strong>gle agent is effective aga<strong>in</strong>st all types <strong>of</strong> arrhythmia, hybrid<br />

drugs have been developed comb<strong>in</strong><strong>in</strong>g class II <strong>and</strong> III antiarrhythmic activity.<br />

Class III antiarrhythmic agents (K +<br />

-channel blockers) prolong action potential<br />

duration <strong>and</strong> are effective aga<strong>in</strong>st reentrant arrhythmias. Class II antiarrhythmic<br />

agents (pradrenoceptor blockers) reduce sympathetic activity, which is thought to<br />

be <strong>in</strong>volved <strong>in</strong> the generation <strong>of</strong> reentrant arrhythmias. The st<strong>and</strong>ard class II/III agent<br />

sotalol, orig<strong>in</strong>ally developed as a px-adrenoceptor blocker, also appeared to possess<br />

K +<br />

-channel block<strong>in</strong>g activity.<br />

Lis et al. 41<br />

have prepared several hybrid molecules comb<strong>in</strong><strong>in</strong>g the structure <strong>of</strong> the K +<br />

-<br />

channel blocker sematilide with the structures <strong>of</strong> several pradrenoceptor blockers,<br />

such as propranolol, metoprolol, <strong>and</strong> epanolol (fig. 25).<br />

Figure 25: Class II/III antiarrhythmic agent<br />

55


Chapter 2<br />

A new class <strong>of</strong> 4-imidazolylphenyl selective class III agents 42<br />

(compound 2; fig. 26)<br />

exp<strong>and</strong>ed the possibilities to synthesize more class II/III agents. Comb<strong>in</strong>ation <strong>of</strong><br />

4 3<br />

compound 2 with the prselective compound 3b resulted <strong>in</strong> compound l (fig. 26).<br />

compound 2 compound 3 b<br />

Figure 26: Compound 2, 3b, <strong>and</strong> 1<br />

compound 1<br />

Furthermore, Phillips et al. 44<br />

comb<strong>in</strong>ed sematilide with 1-arylpiperaz<strong>in</strong>e derivatives, a<br />

seldom used class II pharmacophore to afford compound 7a (fig. 27). The<br />

pharmacological data are shown <strong>in</strong> table 9.<br />

Figure 27: Compound 7a, comb<strong>in</strong>ation <strong>of</strong> sematilide <strong>and</strong> a 1-arylpiperaz<strong>in</strong>e<br />

derivative<br />

O<br />

56


Chapter 2<br />

Table 9: p-Receptor aff<strong>in</strong>ity <strong>and</strong> class III activity <strong>of</strong> a number <strong>of</strong> classII/III agents 44<br />

a<br />

ic50;MMp1/p2 relative class III activity b<br />

ref.<br />

propranolol 0.018/0.017 not active 41<br />

sematilide 7000 (p! / p2 not specified) ++ 41<br />

sotalol 8.9/5.2 + 41<br />

compound 5 0.15 (p! / p2 not specified) ++ 41<br />

compound 1 (R/S) 2.4/46.5 +++ 42<br />

compound 1-(S) 1.6/ca. 100 +++ 42<br />

compound 1-(R) 37.5 />100 +++ 42<br />

compound 2 - ++ 43<br />

compound 7 a 0.16/3.4 +++ 44<br />

a Concentration <strong>of</strong> compounds which <strong>in</strong>hibited the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> [ 3<br />

H]dihydroalprenolol (4.5<br />

nM) by 50% <strong>in</strong> partially purified membrane fractions, pi-adrenoceptor aff<strong>in</strong>ities were<br />

determ<strong>in</strong>ed <strong>in</strong> can<strong>in</strong>e ventricular muscle <strong>in</strong> the presence <strong>of</strong> 1 |iM z<strong>in</strong>terol (p2-blocker). p 2-<br />

adrenoceptor aff<strong>in</strong>ities were determ<strong>in</strong>ed <strong>in</strong> can<strong>in</strong>e lung tissue <strong>in</strong> the presence <strong>of</strong> 1 }i,M<br />

metoprolol (pi-blocker).<br />

b Electrophysiological activity was assessed <strong>in</strong> isolated can<strong>in</strong>e cardiac Purk<strong>in</strong>je fibers us<strong>in</strong>g<br />

st<strong>and</strong>ard microelectrode techniques<br />

Table 9 shows no correlation between p-adrenergic aff<strong>in</strong>ity <strong>and</strong> class III activity as is<br />

demonstrated by propranolol <strong>and</strong> compound 2. Compound 1 is presently undergo<strong>in</strong>g<br />

cl<strong>in</strong>ical <strong>in</strong>vestigations, while compound 5 was not further <strong>in</strong>vestigated, because <strong>of</strong> the<br />

relatively low class III activity.<br />

These examples <strong>of</strong> hybrid class II/III molecules developed by the same research group<br />

demonstrated the potential benefits <strong>of</strong> antiarrhythmic hybrid molecules.<br />

5.2 Antiang<strong>in</strong>al hybrid drugs<br />

In theory every comb<strong>in</strong>ation <strong>of</strong> a nitrate ester with a p adrenoceptor antagonist or a<br />

calcium channel blocker could act synergistically as antiang<strong>in</strong>al agents.<br />

Presently calcium channel blockers are the most widest used drugs for the treatment<br />

<strong>of</strong> myocardial ischemia. The reduction <strong>in</strong> oxygen dem<strong>and</strong> <strong>of</strong> the heart by PJ-<br />

adrenoceptor antagonists could add beneficial effects to calcium channel blockers for<br />

treat<strong>in</strong>g patients with severe ang<strong>in</strong>a. s<br />

1,4-Dihydropyrid<strong>in</strong>e (DHP) type calcium channel blockers are used <strong>in</strong> particular for<br />

the treatment <strong>of</strong> ischemic heart disease <strong>and</strong> cerebrovascular disorders. Organic<br />

nitrates have already been used medic<strong>in</strong>ally for more than 100 years. DHP calcium<br />

channel blockers with nitrate ester moieties might be used as antihypertensive agents<br />

or antiang<strong>in</strong>als. Sterk et al. 45<br />

have synthesized a number <strong>of</strong> 1,4-DHPs with a<br />

nitratoalkyloxy moiety at the 4-phenyl r<strong>in</strong>g <strong>of</strong> the 1,4-DHP structure (fig. 28).<br />

57


Chapter 2<br />

Figure 28: 1,4-Dihydropyrid<strong>in</strong>es with nitrate ester moieties<br />

Increas<strong>in</strong>g the alkyl cha<strong>in</strong> length from ethyl to tetradecyl showed an optimum <strong>in</strong><br />

relaxation <strong>of</strong> KCl-<strong>in</strong>duced contractions <strong>in</strong> rat aorta for the hexyl <strong>and</strong> octyl derivatives<br />

(PIC50 = 8.0), while the highest DHP-receptor aff<strong>in</strong>ity was found for the tetradecyl<br />

derivative (pKj = 9.7; displacement <strong>of</strong> [ 3<br />

H]nitrendip<strong>in</strong>e from rat cortex membranes). It<br />

is not possible to determ<strong>in</strong>e the <strong>in</strong>dividual contribution to vasodilation <strong>of</strong> nitrate<br />

esters <strong>and</strong> calcium channel blockers, because <strong>of</strong> their synergistically mechanism <strong>of</strong><br />

actions.<br />

Numerous 1,4-DHPs with one or two nitrate ester groups on the C3 <strong>and</strong>/or C5<br />

position on the 1,4-DHP r<strong>in</strong>g have been synthesized 46<br />

activity relationship studies 47<br />

result<strong>in</strong>g <strong>in</strong> CD-349 48<br />

<strong>and</strong> evaluated <strong>in</strong> structure-<br />

(fig. 29). CD-349 is a potent<br />

vasodilator. Besides its actions as an antihypertensive agent, CD-349 appeared to be<br />

a potent cerebrovasodilator <strong>in</strong> dogs 49<br />

treatment <strong>of</strong> cerebrovascular disorders <strong>in</strong> human.<br />

Figure 29: CD-349<br />

<strong>and</strong> cats 50<br />

, <strong>and</strong>, therefore, could be useful <strong>in</strong> the<br />

The <strong>synthesis</strong> <strong>of</strong> the stereoisomers <strong>of</strong> CD-349 is currently under <strong>in</strong>vestigation 51<br />

might reveal whether the cardiovascular <strong>and</strong> cerebrovascular actions reside <strong>in</strong> the<br />

same stereoisomer.<br />

Nicor<strong>and</strong>il (fig. 30), orig<strong>in</strong>ally developed as a nitrovasodilator, can be considered as a<br />

hybrid molecule comb<strong>in</strong><strong>in</strong>g a nitrate ester function with a potassium channel<br />

activat<strong>in</strong>g moiety. The pr<strong>of</strong>ound antiang<strong>in</strong>al effects <strong>of</strong> nicor<strong>and</strong>il are ascribed to the<br />

58<br />

<strong>and</strong>


Chapter 2<br />

dual vasodilat<strong>in</strong>g mechanisms 52<br />

. The dual vasodilat<strong>in</strong>g mechanism was demonstrated<br />

by the nicor<strong>and</strong>il analogue KRN2391 <strong>and</strong> its denitrated derivative Ki3315 53<br />

(fig. 30).<br />

Figure 30: Vasodilator / K +<br />

-channel activator hybrid molecules<br />

While KRN2391 has similar vasodilat<strong>in</strong>g effects as nicor<strong>and</strong>il, Ki3315 was less active<br />

as a vasodilator. The vasodilat<strong>in</strong>g properties <strong>of</strong> Ki3315 could solely be ascribed to<br />

K +<br />

-channel activation because <strong>of</strong> the lack <strong>of</strong> a nitrate ester function. Structureactivity<br />

relationship studies revealed that the nitroxy moiety was not only important<br />

for its action as a nitrate ester, but also for its action as a K +<br />

-channel activator.<br />

Nipradilol (K-351; fig. 31) is a nonselective (3-adrenoceptor block<strong>in</strong>g agent with<br />

vasodilat<strong>in</strong>g properties without <strong>in</strong>tr<strong>in</strong>sic sympathomimetic action 54<br />

. The nitrate ester<br />

is important for vasodilation as was shown by the compound desnitro K-351<br />

(hydroxyl group <strong>in</strong>stead <strong>of</strong> a nitrate ester function) which had no relaxant effects on<br />

K +<br />

-depolarization <strong>in</strong>duced contractions <strong>in</strong> isolated can<strong>in</strong>e blood vessels. Furthermore,<br />

nipradilol has also a r <strong>and</strong> a2- adrenergic block<strong>in</strong>g activities 55<br />

.<br />

Figure 31: Nipradilol<br />

z<br />

KRN2391 Z = NCN;R = N0 2<br />

Ki3315 Z = NCN; R = H<br />

nicor<strong>and</strong>il Z = O; R = N0 2<br />

However, the pharmacological activities <strong>of</strong> nipradilol were evaluated for the racemic<br />

mixture. It therefore, cannot be excluded that pharmacological actions reside <strong>in</strong> the<br />

different stereoisomers. As a consequence, nipradilol might have to be considered as a<br />

pseudo-hybrid.<br />

5.3 Cardiotonic hybrid molecules<br />

In search for products which could replace digitalis-like compounds, several<br />

cardiotonic (<strong>in</strong>otropic) drugs have been designed <strong>and</strong> cl<strong>in</strong>ically evaluated for their<br />

use <strong>in</strong> the treatment <strong>of</strong> congestive heart failure 56<br />

.<br />

59<br />

CH 3


Chapter 2<br />

Histam<strong>in</strong>e H2-agonists have positive <strong>in</strong>otropic <strong>and</strong> chronotropic actions. An<br />

important side effect <strong>of</strong> histam<strong>in</strong>e H2-agonists is the stimulation <strong>of</strong> gastric acid<br />

secretion. In order to develop histam<strong>in</strong>e H2-agonists with more selective positive<br />

<strong>in</strong>otropic activity over chronotropic activity <strong>and</strong> to abolish gastric acid secretion,<br />

compounds have been synthesized <strong>in</strong> which both histam<strong>in</strong>e Hp <strong>and</strong> H 2pharmacophores<br />

are present. Based on the histam<strong>in</strong>e H2-agonist impromid<strong>in</strong>e <strong>and</strong> the<br />

general diarylalkylam<strong>in</strong>o structure <strong>of</strong> histam<strong>in</strong>e Hj-antagonists, several hybrid<br />

molecules, such as arpromid<strong>in</strong>e (fig. 32), have been synthesized (reviewed by Van der<br />

Goot et al. 57<br />

).<br />

impromid<strong>in</strong>e<br />

arpromid<strong>in</strong>e<br />

figure 32: Histam<strong>in</strong>e H 2-agonists impromid<strong>in</strong>e <strong>and</strong> arpromid<strong>in</strong>e<br />

Arpromid<strong>in</strong>e may represent a promis<strong>in</strong>g therapeutic improvement for the treatment <strong>of</strong><br />

patients suffer<strong>in</strong>g from congestive heart failure 58<br />

.<br />

Phosphodiesterase (PDE) is a family <strong>of</strong> enzymes which <strong>in</strong>crease the total <strong>in</strong>tracellular<br />

cAMP concentration, result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>crease <strong>of</strong> the contractile force <strong>of</strong> muscles. The<br />

cardiotonic actions <strong>of</strong> phosphodiesterase <strong>in</strong>hibitors might be enhanced by<br />

comb<strong>in</strong>ation with other <strong>in</strong>otropic agents which elevate the <strong>in</strong>tracellular cAMP<br />

concentration, such as p2-adrenoceptor agonists or histam<strong>in</strong>e H2-agonists. GlaB et al. 59<br />

have synthesized a <strong>series</strong> hybrid molecules based on the phosphodiesterase<br />

III (PDE III) <strong>in</strong>hibitor enoximone <strong>and</strong> the histam<strong>in</strong>e H2-agonist impromid<strong>in</strong>e. DG20 <strong>and</strong> its ethyl derivative (fig. 33) demonstrated potent <strong>in</strong>otropic<br />

activities <strong>in</strong> a screen<strong>in</strong>g assay, despite the weak PDE III <strong>in</strong>hibitory action <strong>of</strong> DG20<br />

(table 10) 60<br />

.<br />

60


Figure 33: Hybrid molecule DG20 (R = CH 3), constructed <strong>of</strong> enoximone <strong>and</strong><br />

impromid<strong>in</strong>e<br />

Chapter 2<br />

Table 10: Inhibition <strong>of</strong> PDE III from gu<strong>in</strong>ea pig heart <strong>and</strong> positive <strong>in</strong>otropic activities<br />

<strong>of</strong> DG20 <strong>and</strong> its ethyl analogue<br />

IC 5 0 [\m EC 5 0 [\m i.a.<br />

DG20 51.6 16 1.0<br />

ethyl derivative 50.1 3 1.0<br />

enoximone 2.6 30 0.4<br />

IC50 PDE HI <strong>in</strong>hibition<br />

EC50 Positive <strong>in</strong>otropic activity determ<strong>in</strong>ed on gu<strong>in</strong>ea pig papillary muscle<br />

i.a. Intr<strong>in</strong>sic activity relative to isoprenal<strong>in</strong>e<br />

The aff<strong>in</strong>ity for the histam<strong>in</strong>e H 2-receptor is lower than that <strong>of</strong> impromid<strong>in</strong>e (pKj =<br />

5.15 <strong>and</strong> 7.5, respectively), whereas the DG20-<strong>in</strong>duced stimulation <strong>of</strong> adenylate<br />

cyclase is about 8 times lower than that produced by histam<strong>in</strong>e (0.1 mM), <strong>in</strong>dicat<strong>in</strong>g<br />

weak histam<strong>in</strong>e H2-agonistic activity. Nevertheless, DG20 <strong>and</strong> its ethyl derivative<br />

have shown to be potent cardiotonic agents, which comb<strong>in</strong>e, <strong>in</strong> <strong>vitro</strong>, both PDE III<br />

<strong>in</strong>hibitory <strong>and</strong> histam<strong>in</strong>e H 2-agonistic activity.<br />

Recently Shaffer et al. 61<br />

have suggested to use a comb<strong>in</strong>ation <strong>of</strong> phosphodiesterase<br />

<strong>in</strong>hibitors <strong>and</strong> p-adrenergic blockers <strong>in</strong> a hybrid molecule. However, at first <strong>in</strong>stance,<br />

this comb<strong>in</strong>ation seems rather peculiar because p-adrenergic blockers have opposite<br />

actions to PDE <strong>in</strong>hibitors. Overall, p-adrenergic blockers have potential benefits <strong>in</strong><br />

treat<strong>in</strong>g congestive heart failure, e.g., by a decrease <strong>of</strong> sympathetic <strong>in</strong>duced ren<strong>in</strong>-<br />

release, by antiarrhythmic actions <strong>and</strong> by improv<strong>in</strong>g coronary blood flow <strong>and</strong><br />

<strong>in</strong>creas<strong>in</strong>g diastolic period. The accompanied negative <strong>in</strong>otropic actions <strong>of</strong> p-<br />

blockers could be antagonized by the positive <strong>in</strong>otropic actions <strong>of</strong> PDE III <strong>in</strong>hibitors.<br />

61


Chapter 2<br />

The hybrid molecule GI104313 (fig. 34) comb<strong>in</strong>es both p-block<strong>in</strong>g <strong>and</strong> PDE III<br />

<strong>in</strong>hibit<strong>in</strong>g properties <strong>in</strong> one s<strong>in</strong>gle agent.<br />

Figure 34: GI104313<br />

C! O OH CN<br />

In <strong>vitro</strong> Gil04313 appeared to be a potent <strong>and</strong> selective PDE III <strong>in</strong>hibitor (pKj = 0.1<br />

|iM), whereas it is a nonselective p-antagonist (pA 2 = 8.8). In vivo GI104313<br />

exhibited both p-block<strong>in</strong>g <strong>and</strong> PDE III <strong>in</strong>hibitory activity. The comb<strong>in</strong>ed actions <strong>of</strong><br />

GI104313 as an <strong>in</strong>otropic <strong>and</strong> p-blocker are congruent. Further studies are<br />

undertaken to exam<strong>in</strong>e whether the actions occur <strong>in</strong> the sett<strong>in</strong>gs <strong>of</strong> ventricular<br />

failure.<br />

Today, most <strong>of</strong> the newly developed cardiotonic agents <strong>in</strong>corporate pronounced<br />

vasodilat<strong>in</strong>g properties. Examples <strong>of</strong> such comb<strong>in</strong>ed <strong>in</strong>otropic/vasodilator agents are<br />

the histam<strong>in</strong>e H2-agonist hybrid molecules type A 62<br />

6 3<br />

, B<br />

6 2<br />

<strong>and</strong> C<br />

(fig. 35). These<br />

hybrid molecules can be considered as vasodilators to which a positive <strong>in</strong>otropic<br />

action is added to overcome the negative <strong>in</strong>otropic actions exerted by<br />

dihydropyrid<strong>in</strong>es.<br />

H<br />

type A: = 2-O-Q; R 2 = C 2H 5; R 3 = CH 3<br />

type B: R 1 = 3-N0 2; R 2 = Q; R 3 = CH 3<br />

type C: = 3-N0 2; R 2 = C 2H 5; R 3 = CH 2-S-Q<br />

Figure 35: Hybrid molecules with comb<strong>in</strong>ed histam<strong>in</strong>e H 2-agonistic/calcium channel<br />

block<strong>in</strong>g activity<br />

62


5.4 Antihypertensive hybrid molecules<br />

Figure 36: Prizidalol derived from hydralaz<strong>in</strong>e<br />

Chapter 2<br />

5.4.a Hybrid molecules comb<strong>in</strong><strong>in</strong>g direct vasodilators <strong>and</strong> ß^adrenoceptor<br />

blockers<br />

The side effects <strong>of</strong> vasodilators, the <strong>in</strong>crease <strong>of</strong> <strong>in</strong>tr<strong>in</strong>sic sympathetic activity, can be<br />

<strong>in</strong>hibited by $i-adrenoceptor antagonists. Therefore, hybrid molecules with<br />

vasodilat<strong>in</strong>g <strong>and</strong> $i-adrenoceptor block<strong>in</strong>g properties have been developed.<br />

Prizidilol (fig. 36) is a comb<strong>in</strong>ation <strong>of</strong> the vasodilator hydralaz<strong>in</strong>e <strong>and</strong> a ßpadrenoceptor<br />

antagonist. The therapeutic pr<strong>of</strong>ile <strong>of</strong> prizidalol looked very promis<strong>in</strong>g.<br />

Prizidilol appeared to be a potent antihypertensive agent without affect<strong>in</strong>g the action<br />

<strong>of</strong> the heart 64<br />

. However, the occurrence <strong>of</strong> toxicological effects upon long-term<br />

treatment abolished further <strong>in</strong>vestigations.<br />

The hydraz<strong>in</strong>o group <strong>of</strong> prizidilol was found to be responsible for the toxicological<br />

effects <strong>and</strong> therefore, the hydraz<strong>in</strong>opyridaz<strong>in</strong>e moiety was replaced by 4,5-dihydro-<br />

3(2//)-pyridaz<strong>in</strong>one moieties result<strong>in</strong>g <strong>in</strong> SK&F95018 (fig. 37) 65<br />

. SK&F95018 is a<br />

moderately active ßi-adrenoceptor antagonist with a prolonged antihypertensive<br />

action 66<br />

(table 11).<br />

Figure 37: SK&F95018, derived from a direct vasodilator (shown at the left) <strong>and</strong><br />

betaxolol<br />

63


Chapter 2<br />

Table 11: Reduction <strong>in</strong> rat blood pressure <strong>and</strong> p radrenoceptor antagonistic<br />

activities <strong>of</strong> SK&F95018 <strong>and</strong> prizidalol<br />

compound lower<strong>in</strong>g <strong>of</strong> rat blood ß radrenoceptor antag;<br />

pressure ED 4 0 (imol/kg ID 5 0 pmol/kg<br />

SK&F 95018 1.6 1.0<br />

hydralaz<strong>in</strong>e 1 -<br />

prizidilol 14 0.06<br />

propranolol - 0.08<br />

SK&F95018 appeared to be a potent antihypertensive agent with ß radrenoceptor<br />

selective block<strong>in</strong>g properties without baroreflex <strong>in</strong>duced sympathetic activity.<br />

Baldw<strong>in</strong> et al. 67<br />

have comb<strong>in</strong>ed other type direct vasodilators with ßj-adrenoceptor<br />

antagonists (fig. 38). However, the peripheral vasodilat<strong>in</strong>g properties <strong>of</strong> the hybrid<br />

molecule had to be ascribed ma<strong>in</strong>ly to ß 2-adrenoceptor agonistic activity.<br />

direct vasodilator ß-blocker CL<br />

N JL<br />

Figure 38: ß rAdrenoceptor blocker with acute antihypertensive activity (due to ß 2-<br />

adrenoceptor agonistic activity)<br />

Replacement <strong>in</strong> this compound <strong>of</strong> the trifluoroimidazolylphenyl moiety by a<br />

cyanopyrid<strong>in</strong>yl moiety (fig. 39) dim<strong>in</strong>ished the <strong>in</strong>tr<strong>in</strong>sic ß2-adrenoceptor agonistic<br />

activity, while antihypertensive activity was reta<strong>in</strong>ed 68<br />

.<br />

CN OH<br />

Figure 39: A vasodilator / ß radrenoceptor antagonist<br />

64


Chapter 2<br />

However, due to the teratogenic effects <strong>of</strong> this hybrid molecule, further cl<strong>in</strong>ical<br />

<strong>in</strong>vestigations were term<strong>in</strong>ated.<br />

5.4.b Hybrid molecules comb<strong>in</strong><strong>in</strong>g diuretics <strong>and</strong> ß radrenoceptor blockers<br />

Diuretics are the most <strong>of</strong>ten used antihypertensive drugs which are comb<strong>in</strong>ed with<br />

other classes <strong>of</strong> antihypertensive drugs.<br />

Cl<strong>in</strong>ical <strong>in</strong>vestigations have shown that propranolol, a ßradrenoceptor antagonist,<br />

improves certa<strong>in</strong> side effects <strong>of</strong> diuretics, such as reduction <strong>of</strong> diuretic-<strong>in</strong>duced ren<strong>in</strong><br />

release.<br />

Cecchetti et al. 69<br />

have designed hybrid molecules comb<strong>in</strong><strong>in</strong>g P radrenoceptor<br />

blockers with the diuretic hydrochlorothiazide, result<strong>in</strong>g <strong>in</strong> hybrid molecule A<br />

(fig.40). Hybrid A was found to <strong>in</strong>hibit isoprenal<strong>in</strong>e <strong>in</strong>duced tachycardia <strong>in</strong> the same<br />

concentration range as propranolol, <strong>and</strong> had 3-fold lower aff<strong>in</strong>ity for p r<br />

adrenoceptors than propranolol (table 12).<br />

hybrid molecule A<br />

Figure 40: Hybrid molecule A, based on hydrochlorothiazide<br />

Hybrid molecules B <strong>and</strong> C were synthesized to <strong>in</strong>vestigate the <strong>in</strong>fluence <strong>of</strong> the cha<strong>in</strong><br />

connect<strong>in</strong>g the two pharmacophore groups 70<br />

. The modifications carried out on the<br />

connect<strong>in</strong>g bridge did not affect the Px-adrenergic activity, while the diuretic activity<br />

was improved 2-fold (table 12).<br />

Figure 41: Hybrid molecule B <strong>and</strong> C<br />

hybrid molecule B; X = S<br />

hybrid molecule C; X = CH 2<br />

65<br />

•CI


Chapter 2<br />

Table 12: ß r Adrenoceptor activity <strong>of</strong> hybrid molecules A, B <strong>and</strong> C<br />

compound ß raff<strong>in</strong>ity; K { [nM] ED 5 0 [pM]; i.V., mg/kg ED 5 0 [pM]; oral; mg/kg<br />

hybrid A 7.4 0.67 ± 0.031 36.24 ± 3.465<br />

hybrid B 5.2 0.45 ±0.016 34.70 ± 2.093<br />

hybrid C 1.4 1.80 ±0.041 53.78 ±3.185<br />

propranolol 2.3 0.18 ±0.023 22.33 ± 1.306<br />

ED50 Concentration required to <strong>in</strong>hibit 50% <strong>of</strong> isoprenal<strong>in</strong>e <strong>in</strong>duced tachycardia <strong>in</strong> rats<br />

Until now it is not clear whether dual behaviour <strong>of</strong> the hybrid molecule is responsible<br />

for its antihypertensive action, because no animal model <strong>of</strong> hypertension is available<br />

which satisfactory responds to both ßj -adrenoceptor blockers <strong>and</strong> diuretic agents.<br />

Kau et al. 71<br />

have synthesized ICI 147,798 (fig. 42) with both diuretic <strong>and</strong> ß r<br />

adrenoceptor block<strong>in</strong>g activity. ICI 147,798 is based on propranolol <strong>and</strong> a slightly<br />

modified diuretic amiloride derivative. The natriuretic activity <strong>of</strong> ICI 147,798 is about<br />

65% <strong>of</strong> the value <strong>of</strong> hydrochlorothiazide, while the ß radrenergic activity is<br />

equipotent to propranolol <strong>in</strong> several animal studies.<br />

NH O<br />

Figure 42: Structure <strong>of</strong> ICI 147,798, derived from amiloride<br />

The observation that propranolol has some diuretic activity <strong>in</strong> rat led to a screen<strong>in</strong>g<br />

program <strong>in</strong>volv<strong>in</strong>g several (3\-adrenoceptor antagonists. Based on the obta<strong>in</strong>ed<br />

results <strong>of</strong> the screen<strong>in</strong>g program, Bouley et al. 72<br />

have synthesized a hybrid molecule<br />

with a thienylamido moiety (fig. 43).<br />

66<br />

N


Figure 43: Hybrid molecule possess<strong>in</strong>g p radrenergic block<strong>in</strong>g <strong>and</strong> diuretic<br />

properties<br />

OH<br />

Chapter 2<br />

The p-adrenergic pharmacophore group <strong>of</strong> the presented hybrid molecule can clearly<br />

be dist<strong>in</strong>guished, while the diuretic activity is thought to reside <strong>in</strong> the thienylamido<br />

moiety. This hybrid molecule has a cardioselective action equipotent to propranolol.<br />

Although the hybrid molecule exhibits diuretic activity <strong>in</strong> vivo, the data are not<br />

related to known diuretics, mak<strong>in</strong>g a comparison <strong>of</strong> the activity impossible.<br />

5.4.c A hybrid molecule comb<strong>in</strong><strong>in</strong>g angiotens<strong>in</strong> convert<strong>in</strong>g enzyme <strong>in</strong>hibitor <strong>and</strong><br />

fi^adrenergic activities<br />

A hybrid molecule comb<strong>in</strong><strong>in</strong>g angiotens<strong>in</strong> II convert<strong>in</strong>g enzyme (ACE) <strong>in</strong>hibitor <strong>and</strong><br />

p!-adrenoceptor block<strong>in</strong>g properties is BW A575C (fig. 44). BW A575C is<br />

constituted <strong>of</strong> the pj-adrenoceptor blocker p<strong>in</strong>dolol <strong>and</strong> the ACE-<strong>in</strong>hibitor<br />

enalapril 73<br />

.<br />

H<br />

Figure 44: BW A575C; based on p<strong>in</strong>dolol <strong>and</strong> enalapril<br />

The p radrenoceptor block<strong>in</strong>g activities were only assessed <strong>in</strong> <strong>vitro</strong>, <strong>and</strong> revealed that<br />

BW A575C is 50 times less active than p<strong>in</strong>dolol. The ACE-<strong>in</strong>hibitory activities <strong>of</strong> BW<br />

67


Chapter 2<br />

A575C were <strong>in</strong> <strong>vitro</strong> <strong>and</strong> <strong>in</strong> vivo equipotent to that <strong>of</strong> the well-known ACE-<strong>in</strong>hibitor<br />

enalapril. Overall, BW A575C has shown to be 2-10 times more effective as an ACE<strong>in</strong>hibitor<br />

than as a ß radrenoceptor blocker <strong>in</strong> several animals.<br />

5A.d Hybrid molecules comb<strong>in</strong><strong>in</strong>g thromboxane A2 (TXA2) <strong>in</strong>hibitory effects <strong>and</strong><br />

calcium channel block<strong>in</strong>g activities<br />

Antihypertensive agents significantly reduce the <strong>in</strong>cidence <strong>of</strong> stroke, congestive<br />

heart failure <strong>and</strong> renal damage, but have little <strong>in</strong>fluence on reduction <strong>of</strong> ang<strong>in</strong>a<br />

pectoris <strong>and</strong> sudden cardiac death. The formation <strong>of</strong> atherosclerotic plaques has been<br />

implicated <strong>in</strong> the onset <strong>of</strong> coronary artery disease. Thromboxane A 2 antagonists<br />

<strong>in</strong>hibit platelet aggregation <strong>and</strong> TxA 2-<strong>in</strong>duced vasoconstriction. Comb<strong>in</strong>ation <strong>of</strong> an<br />

antihypertensive agent with a platelet aggregation <strong>in</strong>hibitor might have beneficial<br />

effects <strong>in</strong> the majority <strong>of</strong> patients suffer<strong>in</strong>g from coronary artery disease.<br />

Imidazole is a thromboxane A 2 synthetase <strong>in</strong>hibitior (TxSI). Several research groups<br />

have <strong>in</strong>corporated the imidazole moiety <strong>in</strong> the well-known dihydropyrid<strong>in</strong>e antihypertensive<br />

agents (calcium channel blockers) result<strong>in</strong>g <strong>in</strong> Wy 27569 <strong>and</strong> FCE<br />

24265 (fig. 45).<br />

r=\<br />

Wy 27569 FCE 24265<br />

Figure 45: Structure <strong>of</strong> the hybrid molecules Wy 27569 <strong>and</strong> FCE 24265<br />

Wy 27569 is a vascular selective calcium channel blocker <strong>and</strong> has been shown to be<br />

similar <strong>in</strong> potency to nitrendip<strong>in</strong>e as an antihypertensive agent 74<br />

. The <strong>in</strong> <strong>vitro</strong> calcium<br />

channel block<strong>in</strong>g activity (IC50) <strong>of</strong> Wy 27569 <strong>and</strong> nitrendip<strong>in</strong>e, determ<strong>in</strong>ed on K +<br />

-<br />

depolarization <strong>in</strong>duced contractions on rat aorta was 7.3 <strong>and</strong> 0.28 nM, respectively.<br />

In the same concentration dose levels Wy 27569 <strong>in</strong>hibited TxA2 synthetase <strong>and</strong> the<br />

collagen-stimulated production <strong>of</strong> thromboxane B 2, the stable TxA2 metabolite, <strong>in</strong><br />

vivo 75<br />

. FCE 24265 is a less potent calcium channel blocker than nifedip<strong>in</strong>e both <strong>in</strong><br />

<strong>vitro</strong> <strong>and</strong> <strong>in</strong> vivo, it lowers blood pressure without <strong>in</strong>duc<strong>in</strong>g reflex tachycardia <strong>in</strong><br />

vivo, which is <strong>of</strong>ten observed with calcium channel blockers. In <strong>vitro</strong> FCE 24265<br />

displayed thromboxane synthetase <strong>in</strong>hibit<strong>in</strong>g properties similar to dazoxiben, a<br />

selective thromboxane A 2 synthetase <strong>in</strong>hibitor 76<br />

.<br />

68


Chapter 2<br />

5.4.e Hybrid molecules comb<strong>in</strong><strong>in</strong>g calcium channel block<strong>in</strong>g <strong>and</strong> adrenergic (a<br />

<strong>and</strong> ß) block<strong>in</strong>g properties<br />

Calcium channel blockers, 04- <strong>and</strong> ß radrenergic antagonists are well documented<br />

antihypertensive agents. Most <strong>of</strong> the research on hybrid molecules has been focused<br />

on comb<strong>in</strong>ations <strong>of</strong> dihydropyrid<strong>in</strong>e (DHP)-type calcium channel blockers <strong>and</strong> 04- or<br />

ßj-adrenergic antagonists. In the follow<strong>in</strong>g sections, some <strong>of</strong> the many reported<br />

hybrid molecules <strong>of</strong> this type are presented.<br />

Niguldip<strong>in</strong>e 77<br />

is an antihypertensive agent with slow onset k<strong>in</strong>etics <strong>and</strong> a long<br />

duration <strong>of</strong> action. Niguldip<strong>in</strong>e <strong>in</strong>corporates the well-known DHP-type calcium<br />

channel block<strong>in</strong>g moiety <strong>and</strong> a diphenylpiperid<strong>in</strong>yl moiety <strong>of</strong>ten observed <strong>in</strong> ajadrenergic<br />

antagonists (fig. 46). Niguldip<strong>in</strong>e also significantly <strong>in</strong>hibits thromboxane<br />

A2-<strong>in</strong>duced coronary vasoconstriction 78<br />

.<br />

Figure 46: Niguldip<strong>in</strong>e<br />

All three biological activities were the most potent for the (S)-(+) enantiomer <strong>of</strong><br />

niguldip<strong>in</strong>e. (S)-(+)-niguldip<strong>in</strong>e b<strong>in</strong>ds with nearly equal aff<strong>in</strong>ity to skeletal muscle,<br />

bra<strong>in</strong>, <strong>and</strong> heart (table 13).<br />

Table 13: DHP-receptor aff<strong>in</strong>ities determ<strong>in</strong>ed on rat bra<strong>in</strong> <strong>and</strong> skeletal muscle (SM)<br />

<strong>and</strong> a ^-adrenergic aff<strong>in</strong>ity determ<strong>in</strong>ed on rat liver membranes <strong>of</strong><br />

niguldip<strong>in</strong>e<br />

pIC 50[nM]; bra<strong>in</strong> (DHP) pIC 5öfnM];SM(DHP) pIC 5 0 [nM]; (Xi A<br />

niguldip<strong>in</strong>e (±) 9.00 9.66 8.82<br />

(SH+) 9.44 9.74 9.14<br />

(R)-(-) 7.93 8.09 7.80<br />

prazos<strong>in</strong> - - 10.04<br />

At first <strong>in</strong>stance, (S) <strong>and</strong> (R)-niguldip<strong>in</strong>e were reported to b<strong>in</strong>d with equal aff<strong>in</strong>ity to<br />

a 1-adrenoceptors <strong>in</strong> rat liver cell membranes (oc 1A-adrenoceptors) <strong>and</strong> to 04-<br />

69


Chapter 2<br />

adrenoceptors <strong>in</strong> gu<strong>in</strong>ea pig rat cortex membranes (a1B-adrenoceptors) 79<br />

. More<br />

recently, it has been shown that (S)-(+)-niguldip<strong>in</strong>e has a 40-fold higher aff<strong>in</strong>ity for<br />

ociA-adrenoceptors than for aig-adrenoceptors 80<br />

.<br />

The stereoselective ratios for 1,4-DHP receptor b<strong>in</strong>d<strong>in</strong>g, <strong>in</strong>hibition <strong>of</strong> TxA2-<strong>in</strong>duced coronary vasoconstriction, <strong>and</strong> antihypertensive activity for (S)-(+)/(R)-(-)niguldip<strong>in</strong>e<br />

are 45,28 <strong>and</strong> 35, respectively.<br />

Manidip<strong>in</strong>e 81<br />

(CV-4093; fig. 47) is a DHP derivative with a diphenylmethylpiperaz<strong>in</strong>e<br />

moiety, also known from aradrenoceptor antagonists.<br />

Figure 47: (S)-(+)-Manidip<strong>in</strong>e<br />

Manidip<strong>in</strong>e, like niguldip<strong>in</strong>e, has slow onset k<strong>in</strong>etics <strong>and</strong> a long last<strong>in</strong>g duration <strong>of</strong><br />

antihypertensive action. The (S)-(+)-enantiomer <strong>of</strong> manidip<strong>in</strong>e is about 30 <strong>and</strong> 80fold<br />

more potent as an antihypertensive agent <strong>and</strong> as an <strong>in</strong>hibitor <strong>of</strong> 1,4-DHP receptor<br />

b<strong>in</strong>d<strong>in</strong>g, respectively, than the (R)-(-)-enantiomer. The IC50 values for the <strong>in</strong>hibition<br />

<strong>of</strong> [ 3<br />

H]nitrendip<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g to rat aorta <strong>of</strong> (S)-(+), (±)- <strong>and</strong> (R)-(-)-manidip<strong>in</strong>e are 0.05,<br />

0.3 <strong>and</strong> 4.0 nM, respectively 82<br />

.<br />

Marc<strong>in</strong>iak et al. 83<br />

have synthesized hybrid molecules comb<strong>in</strong><strong>in</strong>g DHPs with a<br />

benzodioxan moiety, which also appears <strong>in</strong> oci-adrenergic blockers. The most potent<br />

hybrid molecule, shown <strong>in</strong> figure 48, consists <strong>of</strong> four stereoisomers.<br />

Figure 48: DHP calcium channel blocker with a benzodioxan structural moiety<br />

70


Chapter 2<br />

The two pairs <strong>of</strong> enantiomers have been synthesized. The most potent calcium<br />

channel block<strong>in</strong>g activity resides <strong>in</strong> the R-configuration <strong>of</strong> the DHP moiety, whereas,<br />

the highest 0C2-adrenergic block<strong>in</strong>g activity is observed <strong>in</strong> the compounds with an Sconfiguration<br />

<strong>of</strong> the benzodioxan r<strong>in</strong>g (table 14). No stereoselectivity is found for 04adrenoceptors.<br />

Table 14: Biological data <strong>of</strong> the stereoisomers <strong>of</strong> the hybrid molecules<br />

compound pic 5 0;a2 a<br />

pIC 50; a, b pIC 50;DHPc pIC 50;DHPd<br />

hybrid (±) 6.32 6.30 10.00 8.35<br />

(R,R) 5.40 5.62 10.74 8.82<br />

(S,S) 6.85 5.64 8.55 8.00<br />

(S.R) 4.72 5.70 9.00 8.60<br />

(R,S) 6.68 5.72 e e<br />

yohimb<strong>in</strong>e 8.04 6.00 - -<br />

prazos<strong>in</strong> 6.85 9.22 5.52 -<br />

nicardip<strong>in</strong>e 5.85 5.44 10.59 9.52<br />

a Inhibition <strong>of</strong> [ 3<br />

H]yohimb<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g to 0C2-adrenoceptors<br />

b Inhibition <strong>of</strong> [ 3<br />

H]prazos<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g to ai-adrenoceptors<br />

c Inhibition <strong>of</strong> [ 3<br />

H]nitrendip<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g to DHP receptors<br />

d Inhibition <strong>of</strong> K+-depolarization <strong>in</strong>duced contractions <strong>in</strong> pig coronary artery<br />

e Not dose dependent<br />

The ai' <strong>and</strong> ot2-adrenoceptor aff<strong>in</strong>ities are higher than the <strong>in</strong> <strong>vitro</strong> determ<strong>in</strong>ed<br />

adrenergic activities, likely caused by a mask<strong>in</strong>g effect <strong>of</strong> the calcium channel<br />

block<strong>in</strong>g activity.<br />

BMY 20064 <strong>and</strong> BMY 20014 are two examples <strong>of</strong> hybrid molecules bear<strong>in</strong>g a<br />

methoxyphenylpiperaz<strong>in</strong>e (04-adrenergic) moiety at the ester position <strong>of</strong> a DHP<br />

(fig.49).<br />

Figure 49: BMY 20064 (X = O) <strong>and</strong> BMY 20014 (X = NH)<br />

71


Chapter 2<br />

BMY 20064 is equipotent to nifedip<strong>in</strong>e as an <strong>in</strong>hibitor <strong>of</strong> depolarization <strong>in</strong>duced<br />

contractions <strong>in</strong> smooth muscle, but has less pronounced negative <strong>in</strong>otropic effects 84<br />

.<br />

Furthermore, BMY 20064 is a selective ocradrenergic antagonist <strong>in</strong> radiolig<strong>and</strong><br />

b<strong>in</strong>d<strong>in</strong>g assays <strong>and</strong> <strong>in</strong> functional studies, both <strong>in</strong> <strong>vitro</strong> <strong>and</strong> <strong>in</strong> vivo. BMY 20064 has<br />

potent antihypertensive effects <strong>in</strong> both normotensive <strong>and</strong> spontaneously<br />

hypertensive rats <strong>and</strong> is effective aga<strong>in</strong>st myocardial ischemia, be<strong>in</strong>g more potent<br />

than a comb<strong>in</strong>ation <strong>of</strong> nifedip<strong>in</strong>e <strong>and</strong> prazos<strong>in</strong>, or either <strong>of</strong> them alone. Remarkably,<br />

BMY 20064 was pharmacologically evaluated as a racemic mixture.<br />

The stereoisomers <strong>of</strong> BMY 20014, an amido analogue <strong>of</strong> BMY 20064, have been<br />

prepared <strong>and</strong> <strong>in</strong> <strong>vitro</strong> biologically evaluated for its calcium channel block<strong>in</strong>g <strong>and</strong> a r<br />

adrenergic block<strong>in</strong>g activities 85<br />

(table 15).<br />

Table 15: Dual activities <strong>of</strong> BMY 20014<br />

pKi (DHP) a pKiCocOb pIC 50(DHP)c plCsoCa^d<br />

BMY20014 (±) 7.46 7.89 8.20 -<br />

(R) 7.80 8.33 8.60 8.08<br />

(S) 6.47 7.44 6.97 7.30<br />

nifedip<strong>in</strong>e 9.28


I H<br />

CH 3<br />

Figure 50: Urapidil, an 04-adrenoceptor blocker/5-HT 1A-agonist<br />

6 Conclud<strong>in</strong>g remarks<br />

Chapter 2<br />

In summary, this review <strong>of</strong> hybrid molecules describes only the tip <strong>of</strong> an iceberg <strong>of</strong><br />

the many designed hybrid molecules. Most <strong>of</strong> the hybrid molecules are described <strong>in</strong><br />

patents, show<strong>in</strong>g no precise pharmacological data. Thus it might be expected that a<br />

considerable amount <strong>of</strong> claimed hybrid molecules are devoid <strong>of</strong> substantial desired<br />

pharmacological actions.<br />

As has been shown <strong>in</strong> the first part <strong>of</strong> this review, comb<strong>in</strong>ation <strong>of</strong> pharmacophore<br />

groups <strong>in</strong>to one s<strong>in</strong>gle entity <strong>of</strong>ten fails to produce active hybrid molecules, because<br />

the hybrid molecule does not obey the established structure-activity relationships<br />

observed for the s<strong>in</strong>gle structural moieties.<br />

Both, hybrid molecules with co<strong>in</strong>cidal pharmacophoric groups <strong>and</strong> hybrid molecules<br />

with pharmacophoric groups l<strong>in</strong>ked via a bridge, could afford drugs with improved<br />

pharmacological actions. However, especially the chiral hybrid drugs with multiple<br />

adrenergic actions have to be regarded with suspicion. Separation <strong>of</strong> the enantiomers<br />

might reveal that the pharmacophoric groups reside <strong>in</strong> the dist<strong>in</strong>ct enantiomers, as<br />

first observed for labetalol. These compounds are no real hybrid drugs <strong>and</strong> are called<br />

pseudo-hybrids. Because pseudo-hybrids are a fixed-ratio comb<strong>in</strong>ation <strong>of</strong> different<br />

pharmacological agents, they lack the advantages <strong>of</strong> real hybrid drugs (equal<br />

absorption, distribution, metabolization <strong>and</strong> excretion).<br />

To be <strong>of</strong> cl<strong>in</strong>ical value, the pharmacophoric groups have to reta<strong>in</strong> aff<strong>in</strong>ity for their<br />

receptors <strong>and</strong> exhibit their actions <strong>in</strong> a balanced ratio. Thus, the comb<strong>in</strong>ed<br />

pharmacophoric groups have to exert their activity <strong>in</strong> the same concentration range.<br />

Determ<strong>in</strong>ation <strong>of</strong> the separate activities is not always possible because <strong>of</strong> synergistic<br />

mechanisms <strong>of</strong> action <strong>of</strong> the pharmacophoric groups, e.g., the 1,4-dihydropyrid<strong>in</strong>etype<br />

calcium channel blockers bear<strong>in</strong>g a nitrate ester function (fig. 28 <strong>and</strong> 29) which<br />

have both vasodilat<strong>in</strong>g properties. An other s<br />

problem for determ<strong>in</strong>ation <strong>of</strong> the<br />

<strong>in</strong>dividual pharmacophoric actions occurs when the mechanism <strong>of</strong> actions <strong>in</strong>terfere<br />

with each other. This is observed <strong>in</strong>, e.g., hybrid molecules with comb<strong>in</strong>ed histam<strong>in</strong>e<br />

H2-agonistic <strong>and</strong> 1,4-dihydropyrid<strong>in</strong>e-type vasodilat<strong>in</strong>g properties (chapter 7; this<br />

thesis), where the mechanisms <strong>of</strong> action <strong>in</strong>terfere with each other <strong>in</strong> an antagonistic<br />

fashion. In cl<strong>in</strong>ical <strong>in</strong>vestigations, some <strong>of</strong> the presented hybrid molecules, such as<br />

sotalol, nicor<strong>and</strong>il (fig. 30) <strong>and</strong> urapidil (fig. 50), have been shown to be very efficient<br />

for the treatment <strong>of</strong> certa<strong>in</strong> disorders. Surely, such encourag<strong>in</strong>g results will <strong>in</strong>crease<br />

the <strong>in</strong>terest <strong>in</strong> the development <strong>of</strong> hybrid drugs.<br />

73


Chapter 2<br />

References<br />

1 Aliens EJ, A general <strong>in</strong>troduction to the field <strong>of</strong> drug design, In: Drug design (Aliens<br />

EJ, ed), Academic Press, New York, volume 1, 1-270 (1971)<br />

2 Joslyn AF, Luchowski E, Triggle DJ, Dimeric 1,4-dihydropyrid<strong>in</strong>es as calcium channel<br />

antagonists, J Med Chem, 31,1489-1492 (1988)<br />

3 Aliens EJ, Stereochemical implications <strong>of</strong> hybrid <strong>and</strong> pseudo-hybrid drugs. Part III,<br />

Med Res Rev, 8, 309-320 (1988)<br />

4 Britta<strong>in</strong> RT, Levy GP, A review <strong>of</strong> the animal <strong>pharmacology</strong> <strong>of</strong> labetalol, a comb<strong>in</strong>ed<br />

alpha- <strong>and</strong> beta-adrenoceptor block<strong>in</strong>g drug, Br J Cl<strong>in</strong> Pharmacol, 3, Supplement<br />

(1976)<br />

5 Britta<strong>in</strong> RT, Drew GM, Levy GP, The alpha- <strong>and</strong> beta-adrenoceptor block<strong>in</strong>g potencies<br />

<strong>of</strong> labetalol <strong>and</strong> its <strong>in</strong>dividual stereoisomers <strong>in</strong> anaesthetized dogs <strong>and</strong> <strong>in</strong> isolated tissues,<br />

Br J Pharmacol, 77, 105-114 (1982)<br />

6 Sponer G, Bartsch W, Hooper RG, Drugs act<strong>in</strong>g on multiple receptors: p-blockers with<br />

additional properties, In: H<strong>and</strong>book <strong>of</strong> Experimental Pharmacology; Pharmacology <strong>of</strong><br />

antihypertensive therapeutics (Ganten D, Mulrow PJ, Eds), Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>,<br />

97, 131-226 (1990)<br />

7 Yamato E, Hirakura M, Sugasawa S, Synthesis <strong>of</strong> 6,7-dihydroxy-l,2,3,4-tetrahydro-<br />

isoqu<strong>in</strong>ol<strong>in</strong>e derivatives, Tetrahedron Suppl, 8,129-134 (1966)<br />

8 Markovich KM, Tantishaiyakul V, Hamada A, Miller DD, Romstedt KJ, Shams G,<br />

Sh<strong>in</strong> Y, Fraundorfer PF, Doyle K, Feller DR, Synthesis <strong>of</strong> halogenated trimetoqu<strong>in</strong>ol<br />

derivatives <strong>and</strong> evaluation <strong>of</strong> their P-agonist <strong>and</strong> thromboxane A 2 (TXA 2) antagonist<br />

activities, J Med Chem, 35, 466-479 (1992)<br />

9 Chenard BL, Shalaby IA, Koe BK, Ronau RT, Butler TW, Prochniak MA, Schmidt<br />

AW, Fox CB, Separation <strong>of</strong> a radrenergic <strong>and</strong> N-methyl-D-aspartate antagonist activity<br />

<strong>in</strong> a <strong>series</strong> <strong>of</strong> ifenprodil compounds, J Med Chem, 34, 3085-3090 (1991)<br />

10 Cooper K, Fray MJ, Parry MJ, Richardson K, Steele J, 1,4-Dihydropyrid<strong>in</strong>es as<br />

antagonists <strong>of</strong> platelet activat<strong>in</strong>g factor. 1. Synthesis <strong>and</strong> structure-activity relationships<br />

<strong>of</strong> 2-(4-heterocyclyl)phenyl derivatives, J Med Chem, 35, 3115-3129 (1992)<br />

11 Arrowsmith JE, Campbell SF, Cross PE, Stubbs JK, Burges RA, Gard<strong>in</strong>er DG,<br />

Blackburn KJ, Long act<strong>in</strong>g dihydropyrid<strong>in</strong>e Ca-antagonists.l. 2-alkoxymethyl<br />

derivatives <strong>in</strong>corporat<strong>in</strong>g basic substituents, J Med Chem, 29,1696-1702 (1986)<br />

12 Alker D, Campbell SF, Cross PE, Burges RA, Carter AJ, Gard<strong>in</strong>er DG, Long-act<strong>in</strong>g<br />

dihydropyrid<strong>in</strong>e calcium antagonists.5. Synthesis <strong>and</strong> structure-activity relationships for<br />

a <strong>series</strong> <strong>of</strong> 2-[[N-substituted-heterocyclyl)etfioxy]methyl]-l,4-dihydropyrid<strong>in</strong>e calcium<br />

antagonists, J Med Chem, 33, 1805-1811 (1990)<br />

13 Sunkel CE, Fau de Casa-Juana M, Cillero FJ, Priego JG, Pilar Ortega M, Synthesis,<br />

platelet aggregation <strong>in</strong>hibitory activity, <strong>and</strong> <strong>in</strong> vivo antithrombotic activity <strong>of</strong> new 1,4dihydropyrid<strong>in</strong>es,<br />

J Med Chem, 31, 1886-1890 (1988)<br />

14 Sunkel CE, Fau de Casa-Juana M, Santos L, Gomez MM, Villarroya M, Gonzalez-<br />

Morales MA, Priego JG, Pilar Ortega M, 4-Alkyl-l,4-dihydropyrid<strong>in</strong>e derivatives as<br />

specific PAF-acether antagonists, J Med Chem, 33, 3205-3210 (1990)<br />

74


Chapter 2<br />

15 Pilar Ortega M, Del Carmen Garcia M, Gijon MA, Fau de Casa-Juana M, Priego JG,<br />

Sanchez Crespo M, Sunkel C, 1,4-Dihydropyrid<strong>in</strong>es, a new class <strong>of</strong> platelet-activat<strong>in</strong>g<br />

factor receptor antagonists: <strong>in</strong> <strong>vitro</strong> pharmacologic studies, J Pharmacol Exp Ther, 255,<br />

28-33 (1990)<br />

16 Fern<strong>and</strong>ez-Gallardo S, Pilar Ortega M, Priego JG, Fau de Casa-Juana M, Sunkel C,<br />

Sanchez Crespo M, Pharmacological actions <strong>of</strong> PCA 4248, a new platelet-activat<strong>in</strong>g<br />

factor receptor antagonist: <strong>in</strong> vivo studies, J Pharmacol Exp Ther, 255, 34-39 (1990)<br />

17 Baldw<strong>in</strong> JJ, Hirschmann R, Engelhardt EL, Ponticello GS, Sweet CS, Scriab<strong>in</strong>e A,<br />

Approaches to vasodilat<strong>in</strong>g/P-adrenergic block<strong>in</strong>g agents: examples <strong>of</strong> the<br />

dihydrolutid<strong>in</strong>e type, J Med Chem, 24,628-631 (1981)<br />

18 Corsano S, Strappaghetti G, Ferr<strong>in</strong>i R, Sala R, Synthesis <strong>of</strong> compounds with a possible<br />

Ca-antagonistic <strong>and</strong> p-block<strong>in</strong>g activity, Arch Pharm (We<strong>in</strong>heim), 321, 731-734<br />

(1988)<br />

19 Laguerre M, Boyer C, Carpy A, Panconi E, Cognic F, Vaugien B, Antagonistes<br />

calciques.I. Remplacement du groupe dimethoxy-3,4-phenylethyle du verapamil, Eur J<br />

Med Chem, 25, 351-359 (1990)<br />

20 Willard AK, Smith RL, Cragoe EJ Jr, Potential diuretic-p-adrenergic block<strong>in</strong>g agents:<br />

<strong>synthesis</strong> <strong>of</strong> 3-[2-[( 1,1 -dimethylethyl)am<strong>in</strong>o]-1 -hydroxyethyl]-1,4-diox<strong>in</strong>o[2,3-g]<br />

qu<strong>in</strong>ol<strong>in</strong>es, J Org Chem, 46, 3846-3852 (1981)<br />

21 Gorlitzer K, Duwel W, 1,4-Dihydropyrid<strong>in</strong>e mit Etacrynsaure-Partialstruktur, Arch<br />

Pharm (We<strong>in</strong>he<strong>in</strong>), 325, 361-364 (1992)<br />

22 Billah MM, Chapman RW, Egan RW, Gilchrest H, Piw<strong>in</strong>ski JJ, Sherwood J, Siegel<br />

MI, West RE Jr., Kreutner W, Sch 37370: A potent, orally active, dual antagonist <strong>of</strong><br />

platelet activat<strong>in</strong>g factor <strong>and</strong> histam<strong>in</strong>e, J Pharmacol Exp Ther, 252,1090-1096 (1990)<br />

23 Piwisnki JJ, Wong JK, Green MJ, Ganguly AK, Billah MM, West RE Jr, Kreutner W,<br />

Dual antagonists <strong>of</strong> platelet activat<strong>in</strong>g factor <strong>and</strong> histam<strong>in</strong>e. Identification <strong>of</strong> structural<br />

requirements for dual activity <strong>of</strong> N-acyl-4-(5,6-dihydro-ll//-benzo[5,6[cyclohepta-<br />

[l,2-Z?]pyrid<strong>in</strong>-ll-ylidene)piperid<strong>in</strong>es, J Med Chem, 34, 457-461 (1991)<br />

24 Wong JK, Piw<strong>in</strong>ski JJ, Green MJ, Ganguly AK, Anthes JC, Billah MM, Dual<br />

antagonists <strong>of</strong> platelet activat<strong>in</strong>g factor <strong>and</strong> histam<strong>in</strong>e.2. Pyrid<strong>in</strong>e r<strong>in</strong>g substitution <strong>of</strong> Nacetyl-4-(8-chloro-5,6-dihydro-1<br />

l//-benzo[5,6]cyclohepta[ 1,2-b]pyrid<strong>in</strong>-11 -ylidene)<br />

piperid<strong>in</strong>es, Bioorg Med Chem Lett, 3,1073-1078 (1993)<br />

25 Ohshima E, Takami H, Harakawa H, Sato H, Obase H, Miki I, Ishii A, Ishii H, Sasaki<br />

Y, Ohmori K, Karasawa A, Kubo K, Dibenz[^e]oxep<strong>in</strong> derivatives: novel antiallergic<br />

agents possess<strong>in</strong>g thromboxane A 2 <strong>and</strong> histam<strong>in</strong>e Hi dual antagoniz<strong>in</strong>g activity. 1., J<br />

Med Chem, 36,417-420 (1993)<br />

26 Ohshima E, Kumazawa T, Takizawa H, Harakawa H, Sato H, Obase H, Oiji Y, Ishii<br />

H, Ohmori K, A new <strong>series</strong> <strong>of</strong> antiallergic agents. 1.Synthesis <strong>and</strong> activity <strong>of</strong> ll-(2am<strong>in</strong>oethyl)thio-6,ll-dihydrodibenz[fr,e]oxep<strong>in</strong><br />

derivatives, Chem Pharm Bull, 39,<br />

2724-2728 (1991)<br />

27 Carr AA, Meyer DR, Synthesis <strong>of</strong> terfenad<strong>in</strong>e, Arzneim-Forsch/Drug Res, 32, 1157-<br />

1159 (1982)<br />

75


Chapter 2<br />

28 K<strong>in</strong>solv<strong>in</strong>g CR, Munro NL, Carr AA, Separation <strong>of</strong> the CNS <strong>and</strong> Hi receptor effects <strong>of</strong><br />

antihistam<strong>in</strong>e agents, Pharmacologist, 15,221 (1973)<br />

29 Kannan MS, Davis C, Mode <strong>of</strong> action <strong>of</strong> calcium antagonists on responses to<br />

spasmogens <strong>and</strong> antigen challenge <strong>in</strong> human airway smooth muscle, Respir Physiol,<br />

74, 15-24 (1988)<br />

30 Foreman JC, Rihoux JP, The antiallergic activity <strong>of</strong> Hi histam<strong>in</strong>e receptor antagonists <strong>in</strong><br />

relation to their actions on cell calcium, In: Therapeutic <strong>in</strong>dex <strong>of</strong> antihistam<strong>in</strong>es (Church<br />

MK, Rihoux JP, Eds) Hogrefe&Huber Publ, Lewiston, pp23-46 (1992)<br />

31 Zhang MQ, Ter Laak AM, Timmerman H, Optical isomers <strong>of</strong> the Hi antihistam<strong>in</strong>e<br />

terfenad<strong>in</strong>e, Bioorg Med Chem Lett, 1, 387-390 (1991)<br />

32 Zhang MQ, Ter Laak AM, Timmerman H, Structure-activity relationships with<strong>in</strong> a<br />

<strong>series</strong> <strong>of</strong> analogues <strong>of</strong> the histam<strong>in</strong>e Hi antagonist terfenad<strong>in</strong>e, Eur J Med Chem, 28,<br />

165-173 (1993)<br />

33 Zhang MQ, Caldirola P, Leysen DC, Timmerman H, Novel stereoselective calcium<br />

channel lig<strong>and</strong>s <strong>of</strong> the diphenylalkylam<strong>in</strong>e-type, Bioorg Med Chem Lett, 2,1283-1288<br />

(1992)<br />

34 Zhang MQ, Timmerman H, Terfenad<strong>in</strong>e: a mixture <strong>of</strong> equipotent antihistam<strong>in</strong>e<br />

enantiomers without clear isomeric ballast', Pharm World Sci, 15,186-192 (1993)<br />

35 Walsh DA, Franzyshen SK, Yanni JM, Synthesis <strong>and</strong> antiallergy activity <strong>of</strong> 4-<br />

(diarylhydroxymethyl)-l-[3-(aryloxy)propyl]piperid<strong>in</strong>es <strong>and</strong> structurally related<br />

compounds, J Med Chem, 32, 105-118 (1989)<br />

36 Segawa Y, Omata T, Abe T, Tsuzuike N, Itokazu Y, Yoshida K, Ueda I, Effect <strong>of</strong> a<br />

non-steroidal anti-<strong>in</strong>flammatory comb<strong>in</strong>ation <strong>of</strong> a histam<strong>in</strong>e ^-antagonist <strong>and</strong><br />

<strong>in</strong>dometac<strong>in</strong> on gastroduodenal mucosal membrane <strong>in</strong> rat, Arzneim-Forsch/Drug Res,<br />

42, 1232-1235 (1992)<br />

37 Imai T, Fukuhara A, Ueda I, Otagiri M, An evaluation <strong>of</strong> an anti-<strong>in</strong>flammatoryhistam<strong>in</strong>e<br />

^-antagonist drug complex on gastric erosions <strong>in</strong> the rat, J Pharmacol Exp<br />

Ther, 265, 328-333 (1993)<br />

38 Segawa Y, Ohya O, Abe T, Omata T, Tsuzuike N, Itokazu Y, Tagashira E, Ueda I,<br />

Anti-<strong>in</strong>flammatory, analgesic, <strong>and</strong> antipyretic effects <strong>and</strong> gastro<strong>in</strong>test<strong>in</strong>al toxicity <strong>of</strong> the<br />

new anti-<strong>in</strong>flammatory drug N-{3-[3-(piperid<strong>in</strong>ylmethyl)phenoxy]propyl}-carbamoylmethylthio]ethyl<br />

l-(p-chlorobenzoyl) 5-methoxy-2-methyl-3-<strong>in</strong>dolylacetate, Arzneim-<br />

Forsch / Drug Res, 42, 954-958 (1992)<br />

39 Van Zwieten PA, Basic <strong>pharmacology</strong> <strong>of</strong> alpha-adrenoceptor antagonists <strong>and</strong> hybrid<br />

drugs, J Hypertension, 6(S2), S3-S11 (198$)<br />

40 Rahn KH, Pr<strong>in</strong>ciples <strong>in</strong> the comb<strong>in</strong>ation <strong>of</strong> antihypertensive drugs, In: H<strong>and</strong>book <strong>of</strong><br />

Experimental Pharmacology; Pharmacology <strong>of</strong> antihypertensive therapeutics, (Ganten<br />

D, Molrow PG, Eds), Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 93, 677-685 (1990)<br />

41 Lis R, Morgan TK Jr, Marisca AJ, Gomez RP, L<strong>in</strong>d JM, Davey DD, Phillips GB,<br />

Sullivan ME, Synthesis <strong>of</strong> novel (Aryloxy)propanolam<strong>in</strong>es <strong>and</strong> related compounds<br />

possess<strong>in</strong>g both class II <strong>and</strong> class III antiarrhytmic activity, J Med Chem, 33, 2883-<br />

2891 (1990)<br />

76


Chapter 2<br />

AI Morgan TK Jr, Lis R, Lumma WC Jr, Nickisch K, Wohl RA, Phillips GB, Gomez RP,<br />

Lampe JW, Di Meo S, Marisca AJ, Forest J, Synthesis <strong>and</strong> cardiac electrophysiological<br />

activity <strong>of</strong> N-substituted-4-(l//-imidazol-l-yl)benzamides-New selective class III<br />

agents, J Med Chem, 33, 1091-1097 (1990)<br />

43 Morgan TK Jr, Lis R, Lumma WC Jr, Wohl RA, Nickisch K, Phillips GB, L<strong>in</strong>d JM,<br />

Lampe JW, Di Meo S, Reiser J, Argentieri T, Sullivan ME, Cantor E, Synthesis <strong>and</strong><br />

pharmacological studies <strong>of</strong> N-[4-[2-hydroxy-3-[[2-[4-(l//-imidazol-l-yl)phenoxy]<br />

ethyl]am<strong>in</strong>o]propoxy]phenyl]methanesulfonamide, a novel antiarrhythmic agent with<br />

class II <strong>and</strong> class HI activities, J Med Chem, 33,1087-1090 (1990)<br />

44 Phillips GB, Morgan TK Jr, Lumma WC Jr, Gomez RP, L<strong>in</strong>d JM, Lis R, Argentieri T,<br />

Sullivan ME, Synthesis, cardiac electrophysiology, <strong>and</strong> ß-block<strong>in</strong>g activity <strong>of</strong> novel<br />

arylpiperaz<strong>in</strong>es with potential as class II/HI antiarrhythmic agents, J Med Chem, 35,<br />

743-750 (1992)<br />

45 Sterk GJ, Van der Werf JF, Timmerman H, Bron J, Novel 1,4-dihydropyrid<strong>in</strong>es,<br />

PCT/EP91/01442 (1991)<br />

46 Ogawa T, Nakazato A, Tsuchida K, Hatayama K, Synthesis <strong>and</strong> antihypertensive<br />

activities <strong>of</strong> new 1,4-dihydropyrid<strong>in</strong>e derivatives conta<strong>in</strong><strong>in</strong>g nitrooxyalkylester moieties<br />

at the 3- <strong>and</strong> 5-positions, Chem Pharm Bull, 41,1049-1054 (1993)<br />

47 Kawashima Y, Ogawa T, Kato M, Nakazato A, Tsuchida K, Hatayama K, Hirono S,<br />

Moriguchi I, Structure-activity study <strong>of</strong> antihypertensive 1,4-dihydropyrid<strong>in</strong>e<br />

derivatives hav<strong>in</strong>g nitrooxyalkyl moieties at the 3 <strong>and</strong> 5 positions, Chem Pharm Bull,<br />

41, 1060-1065 (1993)<br />

48 CD-349, Drugs <strong>of</strong> the future, 13, 610-612 (1988)<br />

49 Tsuchida K, Yamazaki R, Kaneko K, Aihara H, Effects <strong>of</strong> the new calcium antagonist<br />

2-nitratopropyl-3-nitratopropyl-2,6-chmethyl-4-(3-nitrophenyl)-l,4-dihydropyrid<strong>in</strong>e-<br />

3,5-dicarboxylate on cerebral circulation <strong>in</strong> dogs, Arzneim-Forsch / Drug Res, 37,<br />

1239-1243 (1987)<br />

50 Kawamura J, Gotoh F, Fukuuchi Y, Amano T, Tanaka K, Uematsu D, Suzuki N,<br />

Kobari M, Ohara K, Effects <strong>of</strong> the new calcium antagonist 2-nitratopropyl-3nitratopropyl-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylate<br />

on<br />

cerebral circulation <strong>in</strong> cats, Arzneim-Forsch / Drug Res, 38,221-224 (1988)<br />

51 Ogawa T, Matsumoto K, Yokoo C, Hatayama K, Kitamura K, Synthesis <strong>and</strong><br />

configurational assignment <strong>of</strong> methyl 3-nitrooxypropyl l,4-dihydro-2,6-dimethyl-4-(3nitrophenyl)pyrid<strong>in</strong>e-3,5-dicarboxylate,<br />

J Chem Soc Perk<strong>in</strong> Trans I, 525-528 (1993)<br />

52 Taira N, Nicor<strong>and</strong>il as a hybrid between nitrates^nd potassium channel activators, Am J<br />

Cardiol, 63, 18J-24J (1989)<br />

53 Okada Y, Yanagisawa T, Taira N, An analysis <strong>of</strong> the nitrate-like <strong>and</strong> K channel open<strong>in</strong>g<br />

actions <strong>of</strong> KRN2391 <strong>in</strong> can<strong>in</strong>e coronary arterial smooth muscle, Br J Pharmacol, 104,<br />

829-838 (1991)<br />

77


Chapter 2<br />

54 Uchida Y, Nakamura M, Shimizu S, Shirasawa Y, Fujii M, Vasoactive <strong>and</strong> ß-<br />

adrenoceptor block<strong>in</strong>g properties <strong>of</strong> 3,4-dihydro-8-(2-hydroxy-3-isopropylam<strong>in</strong>o)<br />

propoxy-3-nitroxy-2//-l-benzopyran (K-351), a new antihypertensive agent, Arch Int<br />

Pharmacodyn, 262, 132-149 (1983)<br />

55 Ohira A, Wada Y, Fujii M, Nakamura M, Kasuya Y, Hamada Y, Shigenobu K, Effects<br />

<strong>of</strong> nipradilol (K-351) on alpha-adrenoceptor mediated responses <strong>in</strong> various isolated<br />

tissues, Arch Int Pharmacodyn, 278, 61-71 (1985)<br />

56 Erhardt PW, In search <strong>of</strong> the digitalis replacement, J Med Chem, 30, 231-237 (1987)<br />

57 Van der Goot H, Bast A, Timmerman H, In: H<strong>and</strong>book <strong>of</strong> Experimental Pharmacology;<br />

Histam<strong>in</strong>e <strong>and</strong> histam<strong>in</strong>e antagonists, (Uvnäs B, ed) Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong><br />

Heidelberg, 97, 573-748 (1991)<br />

58 Felix SB, Buschauer A, Baumann G, Therapeutic value <strong>of</strong> ^-receptor stimulation <strong>in</strong><br />

congestive heart failure. Hemodynamic effects <strong>of</strong> BU-E-76, BU-E-75 <strong>and</strong> arpromid<strong>in</strong>e<br />

(BU-E-50) <strong>in</strong> comparison to impromid<strong>in</strong>e, Agents Actions Suppl, 33, 257-269 (1991)<br />

59 Glaß D, Tenor H, Bartel S, Krause E-G, Buschauer A, Synthesis <strong>and</strong> pharmacological<br />

evaluation <strong>of</strong> 4-(4-guanid<strong>in</strong>obenzoyl)-2-imidazolones <strong>and</strong> releated compounds, novel<br />

cardiotonics with comb<strong>in</strong>ed H2-agonistic <strong>and</strong> PDE III <strong>in</strong>hibitory activity, Arch Pharm<br />

(We<strong>in</strong>heim), 324, 669 (1991)<br />

60 Glaß D, Buschauer A, Tenor H, Bartel S, Will-Shabab L, Krause E-G, 4-(4-<br />

guanid<strong>in</strong>obenzoyl)-2-imidazolones <strong>and</strong> releated compounds, novel cardiotonics with<br />

comb<strong>in</strong>ed H2-agonistic <strong>and</strong> PDE III <strong>in</strong>hibitory activity, Poster presentation at: European<br />

Histam<strong>in</strong>e Research Society XXI annual meet<strong>in</strong>g, Malaga, Spa<strong>in</strong>, 13-17 May (1992)<br />

61 Shaffer JE, Grizzle MK, Anderson DK, Wheeler TN, J Pharmacol Exp Ther, 265,<br />

1105-1112(1993)<br />

62 Christiaans JAM, Chapter 7, this thesis<br />

63 Schickaneder H, Mörsdorf P, Busachauer A, Schunack W, Engler H, Verg<strong>in</strong> H,<br />

Ahrens K, 1,4-dihydropyrid<strong>in</strong>derivate, Verfahren zu ihrer Herstellung und diese<br />

Verb<strong>in</strong>dungen enthaltende Arzneimittel, DE 3621104 (1988)<br />

64 Taylor EM, Eden RJ, Fielden R, Owen DAA, Studies on the autonomic nervous system<br />

with SK&F92657, a new antihypertensive agent caus<strong>in</strong>g direct arterial vasodilatation<br />

<strong>and</strong> ß-adrenoceptor blockade, J Cardiovasc Pharmacol, 3, 355-368 (1981)<br />

65 Slater RA, Howson W, Swayne GTG, Taylor EM, Reavill DR, Design <strong>and</strong> <strong>synthesis</strong> <strong>of</strong><br />

a <strong>series</strong> <strong>of</strong> comb<strong>in</strong>ed vasodilator/ß-adrenoceptor antagonists based on 6-<br />

arylpyridaz<strong>in</strong>ones, J Med Chem, 31, 345-351 (1988)<br />

66 Swayne GTG, Owen DAA, Taylor EM, Eden RJ, Slater RA, Howson W, SK&F<br />

95018, a vasodilator/ß-adrenoceptor antagonist, Arch <strong>in</strong>t Pharmacodyn, 289, 251-266<br />

(1987)<br />

67 Baldw<strong>in</strong> JJ, Engelhardt EL, Hirschmann R, Lundell GF, Ponticello GS, Ludden CT,<br />

Sweet CS, Scriab<strong>in</strong>e A, Share NN, Hall R, ß-Adrenergic block<strong>in</strong>g agents with acute<br />

antihypertensive activity, J Med Chem, 22, 687-694 (1979)<br />

78


Chapter 2<br />

68 Baldw<strong>in</strong> JJ, Lurama WC Jr, Lundell GF, Ponticello GS, Raab AW, Engelhardt EL,<br />

Hirschmann R, Symbiotic approach to drug design: antihypertensive (J-adrenergic<br />

block<strong>in</strong>g agents, J Med Chem, 22, 1284-1290 (1979)<br />

69 Cecchetti V, Schiaffella F, Tabarr<strong>in</strong>i O, Zhou W, Fravol<strong>in</strong>i A, Goi A, Bruni G, Segre<br />

G, Symbiotic approach to drug design: N-[(4-chloro-3-sulfamoylbenzamido)ethyl]<br />

propanolam<strong>in</strong>e derivatives as p-adrenergic block<strong>in</strong>g agents with diuretic activity, Eur J<br />

Med Chem, 26, 381-386 (1991)<br />

70 Cecchetti V, Fravol<strong>in</strong>i A, Schiaffella F, Tabarr<strong>in</strong>i O, Bruni G, Segre G, ochlorobenzenesulfonamidic<br />

derivatives <strong>of</strong> (aryloxy)propanolam<strong>in</strong>es as p-block<strong>in</strong>g/<br />

diuretic agents, J Med Chem, 36, 157-161 (1993)<br />

71 Kau ST, Howe BB, Li H-Y, Smith LH, Keddie JR, Barlow JJ, Giles RE, Goldberg<br />

ME, ICI 147,798: a novel diuretic agent with beta adrenoceptor block<strong>in</strong>g activity, J<br />

Pharmacol Exp Ther, 242, 818-826 (1987)<br />

72 Bouley E, Teulon J-M, Cazes M, Cloarec A, Deghenghi R, [p-[(Thienylcarbonyl)<br />

am<strong>in</strong>o]phenoxy]propanolam<strong>in</strong>es derivatives as diuretic <strong>and</strong> (^-adrenergic receptor<br />

block<strong>in</strong>g agents, J Med Chem, 29,100-103 (1986)<br />

73 Allan G, Cambridge D, Hardy GW, Follenfant MJ, Ford A, Oliver PL, BW A575C, a<br />

novel antihypertensive agent with angiotens<strong>in</strong> convert<strong>in</strong>g enzyme <strong>in</strong>hibition <strong>and</strong> beta-<br />

block<strong>in</strong>g properties, J Hypertension, 4, S131-S133 (1986)<br />

74 Archibald JL, Bradley G, Opalko A, Ward TJ, White JC, Ennis C, Shepperson NB,<br />

Design <strong>of</strong> an antithrombotic-antihypertensive agent (Wy 27569). Synthesis <strong>and</strong><br />

evaluation <strong>of</strong> a <strong>series</strong> <strong>of</strong> 2-heteroaryl-substituted dihydropyrid<strong>in</strong>es, J Med Chem, 33,<br />

646-652 (1990)<br />

75 Ennis C, Granger SE, Middlefell VC, Philpot ME, Shepperson NB, Pharmacologic<br />

effects <strong>of</strong> Wy 27569: a comb<strong>in</strong>ed calcium channel blocker <strong>and</strong> thromboxane synthetase<br />

<strong>in</strong>hibitor, J Cardiovasc Pharmacol, 13, 511-519 (1989)<br />

76 Cozzi P, Carganico G, Fusar D, Grossoni M, Menich<strong>in</strong>cheri M, P<strong>in</strong>ciroli V, Tonani R,<br />

Vaghi F, Salvati P, Imidazol-l-yl <strong>and</strong> pyrid<strong>in</strong>-3-yl derivatives <strong>of</strong> 4-phenyl-1,4-<br />

dihydropyrid<strong>in</strong>es comb<strong>in</strong><strong>in</strong>g Ca 2+<br />

antagonism <strong>and</strong> thromboxane A2 synthase <strong>in</strong>hibition,<br />

J Med Chem, 36, 2964-2972 (1993)<br />

77 Amschler H, Eistetter K, Eltze M, Flockerzi D, Klemm K, Kolassa N, S<strong>and</strong>ers K,<br />

Schudt C, Ruediger WU, Chem Abstr, 106, 176183h (1987)<br />

78 Boer R, Grassegger A, Schudt C, Glossmann H, (+)-Niguldip<strong>in</strong>e b<strong>in</strong>ds with very high<br />

aff<strong>in</strong>ity to Ca 2+<br />

channels <strong>and</strong> to a subtype <strong>of</strong> oc^-adrenoceptors, Eur J Pharmacol-Mol<br />

Pharmacol, 172, 131-145 (1989)<br />

79 Eltze M, Boer R, S<strong>and</strong>ers KH, Boss H, Ulrich W-R, Flockerzi D, Stereoselective<br />

<strong>in</strong>hibition <strong>of</strong> thromboxane-<strong>in</strong>duced coronary vasoconstriction by 1,4-dihydropyrid<strong>in</strong>e<br />

calcium channel antagonists, Chirality, 2,233-240 (1990)<br />

80 Graziadei I, Zernig G, Boer R, Glossmann H, Stereoselective b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> niguldip<strong>in</strong>e<br />

enantiomers to ociA-adrenoceptors labeled with [ 3<br />

H]5-methyl-urapidil, Eur J Pharmacol-<br />

Mol Pharmacol, 172, 329-337 (1989)<br />

79


Chapter 2<br />

81 Meguro K, Aizawa M, Sohda T, Kawamatsu Y, Nagaoka A, New 1,4-dihydropyrid<strong>in</strong>e<br />

derivatives with potent <strong>and</strong> long-last<strong>in</strong>g antihypertensive effect, Chem Pharm Bull, 33,<br />

3787-3797 (1985)<br />

82 Kaj<strong>in</strong>o M, Wada Y, Nagai Y, Nagaoka A, Meguro K, Synthesis <strong>and</strong> biological activities<br />

<strong>of</strong> optical isomers <strong>of</strong> 2-(4-diphenylmethyl-l-piperaz<strong>in</strong>yl)ethyl methyl l,4-dihydro-2,6dimethyl-4-(3-nitrophenyl)-3,5-pyrid<strong>in</strong>edicarboxylate<br />

(manidip<strong>in</strong>e) dihydrochloride,<br />

Chem Pharm Bull, 37, 2225-2228 (1989)<br />

83 Marc<strong>in</strong>iak G, Delgado A, Leclerc G, Velly J, Decker N, Schwartz J, New 1,4dihydropyrid<strong>in</strong>e<br />

derivatives comb<strong>in</strong><strong>in</strong>g calcium antagonism <strong>and</strong> oc-adrenolytic<br />

properties, J Med Chem, 32, 1402-1407 (1989)<br />

84 Stanton HC, Rosenberger LB, Hanson RC, Flem<strong>in</strong>g JS, Po<strong>in</strong>dexter GS, Pharmacology<br />

<strong>of</strong> BMY 20064, a potent Ca 2+<br />

entry blocker <strong>and</strong> selective oti-adrenoceptor antagonist, J<br />

Cardiovasc Pharmacol, 11, 387-395 (1988)<br />

85 Lawson JE, Po<strong>in</strong>dexter GS, Owens DA, Cavanagh RL, Gogg<strong>in</strong>s GD, Sarmiento JG,<br />

Bleiberg BB, Weselcouch EO, Preparation <strong>and</strong> <strong>in</strong> <strong>vitro</strong> biological evaluation <strong>of</strong> the<br />

enantiomers <strong>of</strong> the dihydropyrid<strong>in</strong>e BMY 20014, a comb<strong>in</strong>ation calcium <strong>and</strong> 04adrenoceptor<br />

antagonist, Bioorg Med Chem Lett, 3,561-564 (1993)<br />

86 Van Zwieten PA, oc-Adrenoceptor antagonists, In: H<strong>and</strong>book Exp Pharmacol;<br />

Pharmacology <strong>of</strong> antihypertensive therapeutics, (Ganten D, Mulrow PJ, Eds) Spr<strong>in</strong>ger-<br />

Verlag, Berl<strong>in</strong>, 93, 105-129 (1990)<br />

87 Van Zwieten PA, Prichard BNC, Urapidil: an antihypertensive drug with multifactorial<br />

action, Ann Fr Anesth Reanim, 8,4-7 (1989)<br />

88 Van Zwieten PA, Hybrid or multifactorial drugs <strong>in</strong> antihypertensive treatment, J<br />

Hypertension, 8, 687-696 (1990)<br />

80


Chapter 3<br />

'2<br />

Chapter 3<br />

Organic nitrate esters as synthons for the <strong>synthesis</strong> <strong>of</strong> hybrid<br />

molecules comb<strong>in</strong><strong>in</strong>g histam<strong>in</strong>e H2-agonistic properties <strong>and</strong><br />

1 Introduction<br />

nitrovasodilation<br />

Among modern cardiovascular therapeutic agents the so-called nitrovasodilators,<br />

<strong>in</strong>troduced more then a century ago, are still <strong>of</strong> major importance 1<br />

. Nitrites, such as<br />

amyl nitrite (1, fig.l) described by Brunton 2<br />

, were the first drugs to be used as<br />

therapeutic agents for the treatment <strong>of</strong> ang<strong>in</strong>a pectoris. In 1879, Murrell 3<br />

<strong>in</strong>vestigated<br />

the biological actions <strong>of</strong> glyceryl tr<strong>in</strong>itrate (GTN; 2, fig. 1) <strong>and</strong> discovered that GTN<br />

could also be used to treat ang<strong>in</strong>a pectoris. A new organic nitrate, isosorbide d<strong>in</strong>itrate<br />

(ISDN; 4, fig. 2) discovered by Krantz et al. 4<br />

<strong>in</strong> 1940 <strong>in</strong>creased the <strong>in</strong>terest <strong>in</strong> these<br />

type <strong>of</strong> antiang<strong>in</strong>al drugs.<br />

0 2NO ON0 2<br />

1 2 3<br />

Figure 1: Amyl nitrite, glyceryl tr<strong>in</strong>itrate (GTN) <strong>and</strong> pentaerythreitol tetranitrate<br />

(PETN)<br />

Nitrovasodilators comprise chemically dist<strong>in</strong>ct types <strong>of</strong> vasodilators:<br />

- Organic nitrites are mono- or polyesters <strong>of</strong> nitrous acid, thus conta<strong>in</strong><strong>in</strong>g an<br />

R-0-N=0 structure moiety (amyl nitrite 1).<br />

- Organic nitrates are mono- or polyesters <strong>of</strong> nitric acid, conta<strong>in</strong><strong>in</strong>g an R-O-NO2<br />

structure moiety (GTN 2, <strong>and</strong> PETN 3 (fig. 1), ISDN 4 <strong>and</strong> its stereoisomers isoidide<br />

d<strong>in</strong>itrate (5; IIDN) <strong>and</strong> isomannide d<strong>in</strong>itrate (6; IMDN), <strong>and</strong> isosorbide-5mononitrate<br />

(7; IS-5-MN; fig. 2), CEDO 8811 8, CEDO 8816 9, CEDO 8956 10,<br />

<strong>and</strong> VUF 9059 11 (fig. 3). VUF 9059 11 is an <strong>in</strong>termediate prepared <strong>in</strong> a program to<br />

synthesize hybrid molecules comb<strong>in</strong><strong>in</strong>g histam<strong>in</strong>e ITragonistic properties with a<br />

nitrovasodilat<strong>in</strong>g action (see section 5 <strong>of</strong> this chapter).<br />

- Sodium nitroprusside (12; fig. 4) is a nitrovasodilator not belong<strong>in</strong>g to either one <strong>of</strong><br />

these two groups.<br />

4 ISDN 5 IIDN 6 IMDN 7 IS-5-MN<br />

Figure 2: Stereoisomers <strong>of</strong> isosorbide d<strong>in</strong>itrate <strong>and</strong> a mononitrate derivative<br />

81


Chapter 3<br />

0N0 2<br />

0 2NO-(CH 2) 6-ON0 2<br />

9 CEDO 8816<br />

0 2NO<br />

8 CEDO 8811 10 CEDO 8956<br />

ON0 2<br />

.0,<br />

'0<br />

11 VUF9059<br />

,0N0 2<br />

Figure 3: Recently developed organic nitrate esters 5<br />

(pharmacological data <strong>in</strong> table 1)<br />

CN<br />

Figure 4: Sodium nitroprusside (Na2[Fe(CN)sN0]<br />

2 Nitrovasodilators: mode <strong>of</strong> action<br />

12<br />

Nowadays, nitrovasodilators are cl<strong>in</strong>ically used as therapeutics for the treatment <strong>of</strong><br />

several forms <strong>of</strong> ang<strong>in</strong>a, silent myocardial ischemia (ischemia without ang<strong>in</strong>al pa<strong>in</strong>),<br />

myocardial <strong>in</strong>farction, <strong>and</strong> congestive heart failure 6<br />

' 7<br />

. In fact, nitrovasodilators were<br />

the first vasodilators used to produce hemodynamic improvement <strong>in</strong> patients with<br />

ventricular failure. The basic <strong>and</strong> cl<strong>in</strong>ical nitrate ester <strong>pharmacology</strong> has been<br />

reviewed by Ahlner et al. 8<br />

recently.<br />

Nitrate esters cause vasodilation, <strong>and</strong> <strong>in</strong> <strong>vitro</strong> studies revealed that the nitro<br />

compounds are more effective as relaxant agents for venous tissue than for arterial<br />

tissue. Venodilation reduces the pre-load <strong>of</strong> the heart, result<strong>in</strong>g <strong>in</strong> a decreased oxygen<br />

dem<strong>and</strong>, thus improv<strong>in</strong>g the imbalance between myocardial oxygen dem<strong>and</strong> <strong>and</strong><br />

supply engendered by myocardial ischemia.<br />

Endothelium cells <strong>of</strong> <strong>in</strong>tact vessel wall release a substance called endothelium-derived<br />

relax<strong>in</strong>g factor (EDRF) upon stimulation by specific mediators, such as histam<strong>in</strong>e,<br />

seroton<strong>in</strong>, acetylchol<strong>in</strong>e <strong>and</strong> bradyk<strong>in</strong><strong>in</strong>, result<strong>in</strong>g <strong>in</strong> vasodilation. This EDRF<br />

substance has been identified as nitric oxide (NO) 9<br />

' 10<br />

, <strong>and</strong> circulates <strong>in</strong> the blood as<br />

an S-nitroso adduct <strong>of</strong> serum album<strong>in</strong> 11<br />

. NO is formed from arg<strong>in</strong><strong>in</strong>e on dem<strong>and</strong> by<br />

the action <strong>of</strong> NO-synthase (NOS). There appear to be at least three is<strong>of</strong>orms <strong>of</strong> NO<br />

synthase, the so-called <strong>in</strong>ducible NOS (iNOS), neuronal NOS (nNOS) <strong>and</strong> endothelial<br />

NOS (eNOS). The action <strong>of</strong> NOS has recently been reviewed by D<strong>in</strong>erman et al. 12<br />

.<br />

Endogenous NO can stimulate the enzyme guanylate cyclase to produce cytosolic<br />

cyclic guanos<strong>in</strong>e-S'^'-monophosphate (cGMP). The rise <strong>of</strong> cGMP <strong>in</strong>creases the<br />

NO<br />

NC— CN<br />

82<br />

NH 2


Chapter 3<br />

phosphorylation <strong>of</strong> contractile prote<strong>in</strong>s by cGMP-dependent prote<strong>in</strong> k<strong>in</strong>ases,<br />

result<strong>in</strong>g <strong>in</strong> vasodilation 13<br />

.<br />

Nitrovasodilators are able to cause vasodilation even when the endothelial cell layer<br />

<strong>of</strong> vessels have been damaged. They generate nitric oxide <strong>and</strong>/or S-nitrosothiols,<br />

which subsequently activate the guanylate cyclase. This activation process is<br />

sulfhydryl-dependent <strong>and</strong> proceeds via an enzymatic process, <strong>in</strong>volv<strong>in</strong>g glutathione<br />

S-transferase <strong>and</strong> probably cytochrome P450 14<br />

or via a non-enzymatic process which<br />

appears to require glutathione or a closely related thiol, such as cyste<strong>in</strong>e, eventually<br />

result<strong>in</strong>g <strong>in</strong> vasodilation 15<br />

.<br />

Despite their common biochemical <strong>and</strong> physiological mechanism <strong>of</strong> action,<br />

nitrovasodilators have substantially different pharmacological <strong>and</strong> pharmacok<strong>in</strong>etic<br />

pr<strong>of</strong>iles. An <strong>of</strong>ten observed phenomenon <strong>of</strong> nitrovasodilators is the apparent lack <strong>of</strong><br />

correlation between the <strong>in</strong> <strong>vitro</strong> relaxant effects <strong>and</strong> their relative <strong>in</strong> vivo potency.<br />

This apparent lack <strong>of</strong> correlation might be ascribed to different pharmacok<strong>in</strong>etic<br />

behaviour <strong>of</strong> the nitrovasodilators 16<br />

. Tzeng et al. 17<br />

suggested that competitive<br />

metabolism <strong>of</strong> nitrovasodilators <strong>in</strong> the systemic circulation versus that <strong>in</strong> the<br />

vasculature partially accounts for the narrow range <strong>of</strong> <strong>in</strong> vivo potency. Both the<br />

chemical structure <strong>of</strong> the nitrovasodilator <strong>and</strong> its formulation determ<strong>in</strong>e<br />

pharmacok<strong>in</strong>etic processes <strong>and</strong> therefore, the onset <strong>and</strong> duration <strong>of</strong> action <strong>and</strong> nitrate<br />

tolerance.<br />

Tolerance to drugs exist when, after repeated adm<strong>in</strong>istration, <strong>in</strong>creas<strong>in</strong>g doses <strong>of</strong> the<br />

drugs are required to ma<strong>in</strong>ta<strong>in</strong> the same pharmacological effect. The mechanism <strong>of</strong><br />

action responsible for the observed nitrate ester tolerance is unknown yet. Nitrate<br />

tolerance probably accounts to critical sulfhydryl co-factors, both <strong>of</strong> enzymatic <strong>and</strong><br />

non-enzymatic orig<strong>in</strong>. Thus, the mechanism <strong>of</strong> action to release nitric oxide might be<br />

responsible for nitrate tolerance, as organic nitrate esters showed a greater tendency<br />

towards tolerance development than nitrite esters, such as amyl nitrite, <strong>and</strong> sodium<br />

nitroprusside 18<br />

. Both nitrite esters <strong>and</strong> sodium nitroprusside directly release NO, thus ,<br />

not requir<strong>in</strong>g (non)enzymatic biotransformation.<br />

3 Hybrid molecules conta<strong>in</strong><strong>in</strong>g a nitrate ester moiety<br />

A special type <strong>of</strong> nitrovasodilators comprises nicor<strong>and</strong>il 13, nipradilol 14 (racemic<br />

mixture), CD-349 15 (racemic mixture) <strong>and</strong> the compounds CEDO 20-068 16 <strong>and</strong><br />

CEDO 20-074 17, which all are hybrid molecules conta<strong>in</strong><strong>in</strong>g a nitrate ester function<br />

(fig. 5).<br />

The nitrovasodilators nicor<strong>and</strong>il, nipradilol, ancf CD-349 have been described <strong>in</strong><br />

chapter 2; they possess additional activities such as K +<br />

-channel activat<strong>in</strong>g, (3adrenergic<br />

block<strong>in</strong>g <strong>and</strong> calcium channel block<strong>in</strong>g activities, respectively. For a<br />

review on the therapeutic efficacy <strong>of</strong> nicor<strong>and</strong>il <strong>in</strong> ang<strong>in</strong>a pectoris, we refer to<br />

Frampton et al. 19<br />

.<br />

CEDO 20-068 <strong>and</strong> CEDO 20-074 conta<strong>in</strong> a 1,4-dihydropyrid<strong>in</strong>e structure 20<br />

, like CD-<br />

349, a structure moiety well known from the antihypertensive calcium channel<br />

blockers.<br />

83


Chapter 3<br />

HXOOC<br />

16 CEDO 20-068 17 CEDO 20-074<br />

Figure 5: Hybrid molecules conta<strong>in</strong><strong>in</strong>g a nitrate ester function<br />

ONOo<br />

The nitrate ester with a thiazolid<strong>in</strong>e backbone CEDO 20-006 21<br />

18 (racemic mixture;<br />

fig. 6) is not a hybrid molecule, but a prodrug. In vivo, the thiazolid<strong>in</strong>e structure is<br />

either enzymatically or non-enzymatically hydrolyzed, afford<strong>in</strong>g thiol derivatives (fig.<br />

6). The thiol derivatives might be beneficial <strong>in</strong> avoid<strong>in</strong>g nitrate ester tolerance, which<br />

is thought to be a result <strong>of</strong> thiol depletion (see section 2 <strong>of</strong> this chapter).<br />

COOH<br />

ONOP<br />

18 CEDO 20-006<br />

X<br />

COOH<br />

HoO<br />

HS NH 2<br />

COOH o<br />

Figure 6: CEDO 20-006, a prodrug exist<strong>in</strong>g <strong>of</strong> a thiazolid<strong>in</strong>e moiety (hydrolysis<br />

depicted on the right) <strong>and</strong> nitrate ester function<br />

84


Chapter 3<br />

In table 1, the <strong>in</strong> <strong>vitro</strong> <strong>and</strong> <strong>in</strong> vivo activities <strong>of</strong> some nitrate esters are shown. All<br />

vasodilat<strong>in</strong>g activities <strong>of</strong> the nitrate esters are <strong>in</strong> <strong>vitro</strong> determ<strong>in</strong>ed on phenylephr<strong>in</strong>e<strong>in</strong>duced<br />

contractions <strong>in</strong> rat aorta. The decrease <strong>in</strong> diastolic arterial blood pressure,<br />

measured <strong>in</strong> vivo, <strong>in</strong>dicates the potency <strong>of</strong> vasodilat<strong>in</strong>g action. The 1,4dihydropyrid<strong>in</strong>es<br />

bear<strong>in</strong>g a nitrate ester function, CEDO 20-068, CEDO 20-074 <strong>and</strong><br />

CD-349 were evaluated on KCl-<strong>in</strong>duced contractions. The synergistic mechanisms <strong>of</strong><br />

action <strong>of</strong> 1,4-dihydropyrid<strong>in</strong>es <strong>and</strong> nitrate esters make it impossible to evaluate their<br />

<strong>in</strong>dividual vasodilat<strong>in</strong>g activities. Therefore, the presented <strong>in</strong> <strong>vitro</strong> activity <strong>of</strong> these<br />

compounds results from both pharmacophoric groups.<br />

Table 1 : In vivo <strong>and</strong> <strong>in</strong> <strong>vitro</strong> activities <strong>of</strong> some nitrate esters<br />

compound <strong>in</strong> <strong>vitro</strong> <strong>in</strong> vivo reference<br />

CEDO 8811 8 8.6 a<br />

CEDO 8816 9 7.7 a<br />

CEDO 8956 10 8.8 a<br />

VUF 9059 11 6.5 a<br />

CEDO 20-068 16 8.0 b<br />

CEDO 20-074 17 8.2 b<br />

CEDO 20-006 18 8.1 a<br />

ISDN 3 6.3 a<br />

GTN 2 8.1 a<br />

nicor<strong>and</strong>il 13 6.9 a<br />

nifedip<strong>in</strong>e e<br />

pECso decrease DAP d<br />

8.7 b<br />

++ 5<br />

+++ 5<br />

+++ 5<br />

not tested<br />

++++ 20<br />

++++ 20<br />

+++ 21<br />

+++ 5<br />

+++ 5<br />

+++ 5<br />

+++ 20<br />

CD-349 15 9.0° - 22<br />

a Inhibition <strong>of</strong> phenylephr<strong>in</strong>e (10~ 7<br />

M) <strong>in</strong>duced contractions on rat aorta<br />

b Inhibition <strong>of</strong>KCl (50 mM) <strong>in</strong>duced contractions on rat aorta<br />

c Inhibition <strong>of</strong>KCl (62.5 mM) <strong>in</strong>duced contractions on can<strong>in</strong>e basilar artery<br />

d Relative<br />

rabbit<br />

decrease <strong>of</strong> diastolic arterial blood pressure (DAP) <strong>in</strong> anesthetized<br />

e Nifedip<strong>in</strong>e is a 1,4-dihydropyrid<strong>in</strong>e calcium channel blocker<br />

As mentioned before the lipophilicity <strong>of</strong> nitrate esters is important for their<br />

bioactivation because the isoenzyme guanylate cyclase is located <strong>in</strong> the cytoplasm.<br />

An example <strong>of</strong> a designed lipophilic compound is KF 14124 (fig. 7), an isoidide<br />

d<strong>in</strong>itrate derivative <strong>in</strong> which a lipophilic substituted piperaz<strong>in</strong>e r<strong>in</strong>g was <strong>in</strong>troduced<br />

to <strong>in</strong>crease the solubility <strong>of</strong> the compound 23<br />

. Isoidide d<strong>in</strong>itrate (IIDN) was chosen<br />

because it appeared to be the most active stereoisomer among the dianhydrohexitol<br />

d<strong>in</strong>itrates, such as ISDN, <strong>and</strong> isomannide d<strong>in</strong>itrate (IMDN).<br />

85


Chapter 3<br />

Figure 7: KF 14124<br />

KF 14124 is a clear example <strong>of</strong> a prodrug. The phenylthiopropyl moiety <strong>of</strong> the<br />

molecule can be considered as a structure moiety contribut<strong>in</strong>g to the lipophilicity.<br />

The vasodilat<strong>in</strong>g activity is caused by the metabolization <strong>of</strong> the nitrate ester to nitric<br />

oxide, like <strong>in</strong> all nitrate esters. Although KF 14124 has proven to be an orally-active,<br />

nitrate-type vasodilator <strong>and</strong> showed a more potent antiarrhythmic activity than<br />

nicor<strong>and</strong>il, it causes several side effects, such as central nervous system depression 23<br />

.<br />

4 Hybrid molecules comb<strong>in</strong><strong>in</strong>g histam<strong>in</strong>e H2-agonistic <strong>and</strong> nitrovasodilat<strong>in</strong>g<br />

properties<br />

4.1 Introduction<br />

Histam<strong>in</strong>e H2-agonists possess positive <strong>in</strong>otropic <strong>and</strong> chronotropic activities.<br />

Histam<strong>in</strong>e 20 (fig. 8), the natural lig<strong>and</strong>, is a non selective histam<strong>in</strong>e H2-agonist as it is<br />

also the lig<strong>and</strong> for histam<strong>in</strong>e Hi- <strong>and</strong> H3-receptors. Impromid<strong>in</strong>e 24<br />

21 (fig. 8) is a<br />

potent histam<strong>in</strong>e H2-agonist (pD2 = 7.8; on gu<strong>in</strong>ea pig spontaneously beat<strong>in</strong>g right<br />

atrium) <strong>and</strong> is also a histam<strong>in</strong>e H3-antagonist (pIQ = 7.2; rat cortex).<br />

Prelim<strong>in</strong>ary <strong>in</strong>vestigations <strong>of</strong> the effects <strong>of</strong> impromid<strong>in</strong>e <strong>in</strong> patients with severe<br />

congestive heart failure have revealed the possible cl<strong>in</strong>ical value <strong>of</strong> histam<strong>in</strong>e H2agonists<br />

25<br />

. Despite the beneficial vasodilat<strong>in</strong>g <strong>and</strong> positive <strong>in</strong>otropic properties <strong>of</strong><br />

impromid<strong>in</strong>e, it will not be <strong>in</strong>troduced as a drug for the treatment <strong>of</strong> congestive heart<br />

failure, because <strong>of</strong> its stimulation <strong>of</strong> gastric acid secretion.<br />

Initiated by the positive hemodynamic <strong>and</strong> cardiac stimulant effects exhibited by<br />

impromid<strong>in</strong>e 26<br />

, newer histam<strong>in</strong>e H2-agonists have been synthesized (reviewed by Van<br />

der Goot et al. 27<br />

). Among them belong the moderately active phenoxy derivative 28<br />

<strong>of</strong><br />

impromid<strong>in</strong>e 22 (fig. 8), VUF 8401 29<br />

23 (fig. 8) <strong>and</strong> the potent histam<strong>in</strong>e H2-agonist arpromid<strong>in</strong>e 30<br />

24 (racemic mixture; fig. 8). Both <strong>in</strong> <strong>vitro</strong> <strong>and</strong> <strong>in</strong> vivo studies with<br />

arpromid<strong>in</strong>e showed that it has more potent vasodilator <strong>and</strong> <strong>in</strong>otropic properties,<br />

while exert<strong>in</strong>g less chronotropic <strong>and</strong> arrhythmogenic actions than impromid<strong>in</strong>e. The<br />

improved hemodynamic pr<strong>of</strong>ile <strong>of</strong> arpromid<strong>in</strong>e, compared to impromid<strong>in</strong>e, makes this<br />

compound more suitable as a potential drug for the treatment <strong>of</strong> congestive heart<br />

failure 31<br />

.<br />

86


Figure 8: Lig<strong>and</strong>s for the histam<strong>in</strong>e ^-receptors<br />

Chapter 3<br />

Table 2: Histam<strong>in</strong>e H2-agonistic (pD2) <strong>and</strong> Hi-antagonistic (pA2) activities <strong>of</strong> a<br />

number <strong>of</strong> impromod<strong>in</strong>e analogues (see fig. 8)<br />

compound pD 2<br />

a<br />

i.a. b<br />

C<br />

PA 2<br />

reference<br />

impromid<strong>in</strong>e 21 7.8 1.0 5.5 24<br />

22 6.0 1.0 6.2 28<br />

VUF 8401 23 6.0 1.0 6^5 29<br />

arpromid<strong>in</strong>e 24 8.0 1.0 7.7 30<br />

histam<strong>in</strong>e 20 6.1 1.0 agonist<br />

a Measured at gu<strong>in</strong>ea pig right atrium<br />

b Intr<strong>in</strong>sic activity relative to histam<strong>in</strong>e<br />

c Measured at gu<strong>in</strong>ea pig ileum<br />

87


Chapter 3<br />

The imidazolylpropylguanid<strong>in</strong>e moiety <strong>of</strong> impromid<strong>in</strong>e 21 is believed to be<br />

responsible for the histam<strong>in</strong>e H2-receptor stimulat<strong>in</strong>g activity, while the methylimidazole<br />

moiety contributes to aff<strong>in</strong>ity. Replacement <strong>of</strong> the methylimidazole moiety<br />

<strong>of</strong> impromid<strong>in</strong>e by structural moieties conta<strong>in</strong><strong>in</strong>g a nitrate ester affords therefore<br />

hybrid molecules with potential histam<strong>in</strong>e H2-agonistic properties <strong>and</strong><br />

nitrovasodilat<strong>in</strong>g effects.<br />

4.2 Synthesis <strong>of</strong> the proposed hybrid molecules<br />

The general structure <strong>of</strong> the proposed hybrid molecules is shown <strong>in</strong> figure 9.<br />

Figure 9: General hybrid structure<br />

The hybrid molecules are constructed <strong>of</strong> two build<strong>in</strong>g blocks which are both am<strong>in</strong>es<br />

(synthon A <strong>and</strong> B), l<strong>in</strong>ked to each other via a guanid<strong>in</strong>e structure (G) (fig. 10).<br />

synthon A<br />

(CH 2) m-NH 2<br />

,ON0 2<br />

NH<br />

NH<br />

X NHo N = /<br />

synthon B ©<br />

synthon A synthon B<br />

synthon A<br />

-0-1<br />

synthon B<br />

Figure 10: Schematic diagram to obta<strong>in</strong> the hybrid molecule<br />

(synthon A-G-synthon B)<br />

The route proceed<strong>in</strong>g via the (synthon A + G) complex (fig. 10) has been chosen,<br />

because coupl<strong>in</strong>g <strong>of</strong> an am<strong>in</strong>e to the (G + synthon B) complex proceeds <strong>in</strong> very low<br />

yields.<br />

Synthon A conta<strong>in</strong>s an am<strong>in</strong>e function <strong>and</strong> a nitrate ester; its synthetic pathway is<br />

given <strong>in</strong> scheme 1.<br />

88


Chapter 3<br />

Nitrate esters can be obta<strong>in</strong>ed <strong>in</strong> many different synthetic ways, such as:<br />

- reaction <strong>of</strong> alcohols with nitric acid <strong>in</strong> acetic anhydride 32<br />

.<br />

- reaction <strong>of</strong> alcohols with nitronium salts, such as nitronium tetrafluoroborate 33<br />

- 34<br />

or<br />

via transfer nitration <strong>of</strong> alcohols with N-nitrocollid<strong>in</strong>ium tetrafluoroborate 35<br />

.<br />

- alkylhalides can be converted <strong>in</strong>to the correspond<strong>in</strong>g nitrate esters by mercuryassisted<br />

substitution reaction us<strong>in</strong>g mercury(I) nitrate [Hg(N03>] or mercury(II)<br />

nitrate[Hg(N03) 2] 36<br />

' 37<br />

- reaction <strong>of</strong> alcohols with thionyl chloride nitrate [SOCl(N03)] or thionyl nitrate<br />

[SO(N03) 2] 38<br />

.<br />

We have nitrated the alcohols with a mixture <strong>of</strong> nitric acid <strong>and</strong> acetic anhydride,<br />

because <strong>in</strong> this way the nitrate esters are easily obta<strong>in</strong>ed with high yields.<br />

Scheme 1: Synthesis route <strong>of</strong> nitrate ester E (synthon A; VUF 9059; m = 3)<br />

The co-substituted-alkoxybenzene derivatives C are obta<strong>in</strong>ed by reaction <strong>of</strong> 2-(2hydroxyethoxy)phenol<br />

A with N-(co-bromoalkyl)phthalimides B. The phthalimido<br />

group is removed with hydraz<strong>in</strong>e hydrate afford<strong>in</strong>g the co-am<strong>in</strong>oalkoxybenzene<br />

derivatives D. The hydroxy group is converted <strong>in</strong>to a nitrate ester E, us<strong>in</strong>g a mixture<br />

<strong>of</strong> acetic anhydride <strong>and</strong> nitric acid. The other possibility is to <strong>in</strong>troduce the nitrate<br />

ester <strong>in</strong> an earlier stage <strong>of</strong> the <strong>synthesis</strong> route shown <strong>in</strong> scheme 1. The derivative C<br />

can be nitrated afford<strong>in</strong>g compound F. However, removal <strong>of</strong> the phthalimido group<br />

with hydraz<strong>in</strong>e hydrate will result <strong>in</strong> the loss <strong>of</strong> the nitrate ester, lead<strong>in</strong>g to compound<br />

D. Hydraz<strong>in</strong>es are described as effectively agents to remove nitrate ester groups 39<br />

.<br />

Therefore, route C-D-E is chosen to obta<strong>in</strong> nitrate ester E.<br />

The next step <strong>in</strong> the <strong>synthesis</strong> <strong>of</strong> the proposed hybrid molecules is the coupl<strong>in</strong>g <strong>of</strong> the<br />

guanidyl group to synthon A.<br />

89


Chapter 3<br />

To <strong>in</strong>troduce the guanid<strong>in</strong>o function, several routes can be applied as is <strong>in</strong>dicated <strong>in</strong><br />

scheme 2.<br />

Scheme 2: Synthesis route to afford the hybrid molecules, <strong>in</strong>troduction <strong>of</strong> a<br />

guanid<strong>in</strong>o function<br />

In route 1 (scheme 2), the <strong>in</strong>troduction <strong>of</strong> the guanid<strong>in</strong>e function is accomplished by<br />

reaction <strong>of</strong> dimethyl N-cyanodithiocarbonimidate or diphenyl N-cyanocarbonimidate<br />

G (the Z groups <strong>in</strong> scheme 2 represent leav<strong>in</strong>g groups) with a primary am<strong>in</strong>e E from<br />

scheme 1 afford<strong>in</strong>g H. The next step <strong>in</strong>volves the addition <strong>of</strong> am<strong>in</strong>opropylimidazole I,<br />

under the same reaction conditions as for addition <strong>of</strong> the first am<strong>in</strong>e E, result<strong>in</strong>g <strong>in</strong> the<br />

cyanoguanid<strong>in</strong>e derivative J. The cyano group can be removed by acid hydrolysis.<br />

However, it appeared that this route cannot be applied to afford the guanid<strong>in</strong>e K,<br />

because <strong>of</strong> the <strong>in</strong>stability <strong>of</strong> the ethers under the acidic conditions.<br />

In route 2a (scheme 2), the am<strong>in</strong>e E is reacted with benzoyl isothiocyanate L to give<br />

the thiourea derivatives M. However, the removal <strong>of</strong> the benzoyl group, to afford the<br />

isothiourea derivatives N, is performed under basic conditions (route 2a; scheme 2)<br />

90


Chapter 3<br />

result<strong>in</strong>g <strong>in</strong> the loss <strong>of</strong> the nitrate ester function. To avoid basic hydrolysis, ammonium<br />

isothiocyanate P was used, <strong>in</strong> stead <strong>of</strong> benzoyl isothiocyanate L, to afford the<br />

thiourea derivatives N (route 2b; scheme 2). However, this reaction gave a mixture <strong>of</strong><br />

large amounts <strong>of</strong> unidentified compounds.<br />

In the proposed total <strong>synthesis</strong> scheme (scheme 1), it is impossible to <strong>in</strong>troduce nitrate<br />

esters <strong>in</strong> the f<strong>in</strong>al stage <strong>of</strong> the <strong>synthesis</strong> route (synthon A-G-synthon B). Despite the<br />

many ways to obta<strong>in</strong> nitrate esters, none <strong>of</strong> the mentioned nitrat<strong>in</strong>g agents can afford<br />

the proposed hybrid molecules, as they lead to nitration <strong>of</strong> the imidazole moiety<br />

<strong>and</strong>/or the guanid<strong>in</strong>o moiety 40<br />

* 41<br />

.<br />

5 Conclusion<br />

This chapter reveals that the proposed hybrid molecules cannot be synthesized<br />

accord<strong>in</strong>g to the presented reaction schemes. Replacement <strong>of</strong> the eo-[(2-<br />

nitroxyethoxy)substituted-phenoxy]alkylammonium nitrates (synthon A; fig. 9) by<br />

structure moieties which are stabile under acidic conditions <strong>and</strong> do not require<br />

alkal<strong>in</strong>e conditions, may provide a route to hybrid molecules with comb<strong>in</strong>ed<br />

histam<strong>in</strong>e H2-agonistie <strong>and</strong> nitrovasodilat<strong>in</strong>g properties, prov<strong>in</strong>g the potential benefit<br />

<strong>in</strong> treatment <strong>of</strong> certa<strong>in</strong> cardiovascular disorders.<br />

Experimental method to obta<strong>in</strong> VUF 9059<br />

N-{3-[2-(2-hydroxyethoxy)phenoxy]propyl}phthalimide<br />

0.2 mol 2-(2-hydroxyethoxy)phenol <strong>and</strong> 1 equivalent sodium are disolved <strong>in</strong> 500 ml<br />

ethanol <strong>and</strong> stirred at room temperature. After 1 hr, 1 equivalent N-(3-bromopropyl)<br />

phthalimide was added <strong>and</strong> the reaction mixture was refluxed 2 days under nitrogen<br />

atmosphere. The crude reaction mixture was filtered <strong>and</strong> the solvent concentrated.<br />

The product was crystallized from ethanol.<br />

Yield: 81%; m.p. 114.1-115.6°C<br />

!<br />

H-NMR (CDC13): 2.04-2.28 ppm (m, 2H, C-C// 2-C), 3.95-4.09 ppm (m, 8H, 0-C// 2-C-<br />

C-N, 0-C-C-C// 2-N, <strong>and</strong> 0-C// 2-C// 2-0), 6.90 ppm (s, 4H, 4x phthalimide-//), 7.70-<br />

7.83 (m, 4H, 4x phenyl-//).<br />

3-[2-(2-hydroxyethoxy)phenoxy]propylam<strong>in</strong>e<br />

0.1 mol N-{ 3-[2-(2-hydroxyethoxy)phenoxy]propyl}phthalimide was refluxed 15<br />

m<strong>in</strong>utes with 4 equivalents hydraz<strong>in</strong>e hydrate <strong>in</strong> methanol. The crude reaction<br />

mixture was filtered. The solvent was evaporated ^nd the residue was disolved <strong>in</strong> hot<br />

ethyl acetate <strong>and</strong> filtered. The solvent was evaporated, obta<strong>in</strong><strong>in</strong>g 3-[2-(2-<br />

hydroxyethoxy)phenoxy]propylam<strong>in</strong>e as an oil.<br />

Yield: 86%; m.p. oil<br />

^-NMR (DMSO-d 6): 1.94-2.13 ppm (m, 2H, C-C// 2-C), 2.55-2.70 ppm (m, 2H, O-C-<br />

C-C// 2-N), 3.75-4,05 ppm (m, 6H, 0-C// 2-C-C-N <strong>and</strong> 0-C// 2-C// 2-0), 6.80-7.05 ppm<br />

(m, 2H, 2x phenyl-//), 7.45-7.79 ppm (m, 2H, 2x phenyl-//).<br />

91


Chapter 3<br />

3-[2-(2-nitroxyethoxy)phenoxy]propylammonium nitrate VUF 9059<br />

At 0°C, 2 equivalents <strong>of</strong> a 1/1 molar mixture <strong>of</strong> nitric acid <strong>and</strong> acetic anhydride are<br />

added dropwise to a solution <strong>of</strong> 20 mmol 3-[2-(2-hydroxyethoxy)phenoxy]propylam<strong>in</strong>e<br />

<strong>in</strong> 80 ml ethyl acetate/acetic acid (1/7 v/v) <strong>and</strong> stirred 1 hr at 0°C. The<br />

crude reaction mixture was poured <strong>in</strong>to ether <strong>and</strong> filtered. The residue was<br />

crystallized from methanol/ether.<br />

Yield: 89%; m.p.93.3-93.9°C<br />

*H-NMR (DMSO-d 6): 1.96-2.15 ppm (m, 2H, C-C// 2-C), 2.90-3.10 ppm (m, 2H, O-C-<br />

C-C// 2-N), 4.08-4.32 ppm (m, 4H, 2x 0-C// 2-), 4.85-5.03 ppm (m, 2H, -C// 2-ON0 2),<br />

6.89-7.08 ppm (m, 2H, 2x phenyl-//), 7.65-7.85 ppm (m, 3.8H, 2x phenyl-// <strong>and</strong><br />

N// 3<br />

+<br />

).<br />

References<br />

1 Lichtlen PR, Wirkungsmechanismus der Nitrate; St<strong>and</strong> 1988, Z Kardiol, 78 (S2), 3-10<br />

(1989)<br />

2 Brunton TL, On the use <strong>of</strong> nitrite <strong>of</strong> amyl <strong>in</strong> ang<strong>in</strong>a pectoris, Lancet, 2,97-98 (1867)<br />

3 Murrell W, Nitroglycer<strong>in</strong> as a remedy for ang<strong>in</strong>a pectoris, Lancet, I, 80-81, 225-227<br />

(1879)<br />

4 Krantz JC, Carr CJ, Forman SE, Cone N, Alkylnitrates IV: A contribution to the<br />

mechanism <strong>of</strong> action <strong>of</strong> organic nitrates, J Pharmacol Exp Ther, 70, 323 (1940)<br />

5 Bron J, Sterk GJ, Van der Werf JF, Timmerman H, Pharmaceutical composition hav<strong>in</strong>g<br />

relax<strong>in</strong>g activity which conta<strong>in</strong>s a nitrate ester active substance, US 407,355 (1989)<br />

6 Maseri A, A review <strong>of</strong> nitrate therapy <strong>in</strong> stable ang<strong>in</strong>a, variant ang<strong>in</strong>a, unstable ang<strong>in</strong>a<br />

<strong>and</strong> myocardial <strong>in</strong>farction, Z Kardiol, 74 (S4), 1-3 (1985)<br />

7 Mason DT, Awan NA, DeMaria AN, Lee G, Amsterdam EM, Cardiocirculatory effects<br />

<strong>of</strong> nitrates <strong>in</strong> the treatment <strong>of</strong> cl<strong>in</strong>ical congestive heart failure, In: Nitrate: Wirkung auf<br />

Herz und Kreislauf (Rudolph W, Schrey A, Eds) Urban&Schwarzenberg, München,<br />

pp 206-216 (1980)<br />

8 Ahlner J, Andersson RGG, Torfgärd K, Axelsson KL, Organic nitrate esters: cl<strong>in</strong>ical<br />

use <strong>and</strong> mechanisms <strong>of</strong> actions, Pharmacol Rev, 43, 351-423 (1991)<br />

9 Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G, Endothelium-derived<br />

relax<strong>in</strong>g factor produced <strong>and</strong> released from artery <strong>and</strong> ve<strong>in</strong> is nitric oxide, Proc Natl<br />

Acad Sei USA, 84, 9265-9269 (1987)<br />

10 Palmer RMJ, Ferrige AG, Moncada S, Nitric oxide release accounts for the biological<br />

activity <strong>of</strong> endothelium-derived relax<strong>in</strong>g factor, Nature, 327, 524-526 (1987)<br />

11 Stamler JS, Jaraki O, Osborne J, Simon DL, Keaney J, Vita J, S<strong>in</strong>gal D, Valeri CR,<br />

Loscalzo J, Nitric oxide circulates <strong>in</strong> mammalian plasma primarily as an S-nitrosoadduct<br />

<strong>of</strong> serum album<strong>in</strong>, Proc Natl Acad Sei USA, 89,7674-7677 (1992)<br />

12 D<strong>in</strong>erman JL, Lowenste<strong>in</strong> CJ, Snyder SH, Molecular mechanisms <strong>of</strong> nitric oxide<br />

regulation; potential relevance to cardiovascular disease, Circ Res, 73,217-222 (1993)<br />

13 Kreye VAW, H<strong>of</strong>mann F, Villhauer I, Mode <strong>of</strong> action <strong>of</strong> nitrates at the cellular level, Z<br />

Kardiol, 75 (S3), 16-19 (1986)<br />

92


Chapter 3<br />

14 Yeates RA, Possible mechanisms <strong>of</strong> activation <strong>of</strong> soluble guanylate cyclase by organic<br />

nitrates, Arzneim-Forsch/Drug Res, 42, 1314-1317 (1992)<br />

15 Harrison DG, Bates JN, The nitrovasodilators; new ideas about old drugs, Circ, 87,<br />

1461-1467 (1993)<br />

16 Fung H-L, Do nitrates differ ?, Br J Cl<strong>in</strong> Pharmac, 34, 5S-9S (1992)<br />

17 Tzeng T-B, Fung H-L, Relationships between pharmacok<strong>in</strong>etics <strong>and</strong> vasodilatory<br />

potencies <strong>of</strong> isomeric organic mononitrates (MNs), Pharmaceut Res, 7, S232 (1990)<br />

18 Noack E, Mechanisms <strong>of</strong> nitrate tolerance-<strong>in</strong>fluence <strong>of</strong> the metabolic activation<br />

pathways, Z Kardiol, 79 (S3), 51-55 (1990)<br />

19 Frampton J, Buckley MM, Fitton A, Nicor<strong>and</strong>il: A review <strong>of</strong> its <strong>pharmacology</strong> <strong>and</strong><br />

therapeutic efficacy <strong>in</strong> ang<strong>in</strong>a pectoris, Drugs, 44,625-655 (1992)<br />

20 Sterk GJ, Van der Werf JF, Timmerman H, Bron J, Novel 1,4-dihydropyrid<strong>in</strong>e<br />

derivatives, PCT/EP91/01442 (1991)<br />

21 Bron J, Sterk GJ, Van der Werf JF, Timmerman H, Thiazolid<strong>in</strong> derivatives,<br />

PCT/EP91/01663 (1991)<br />

22 Tsuchida l£, Yamazaki R, Kaneko K, Aihara H, Effects <strong>of</strong> the calcium antagonist 2nitratopropyl-3-nitratopropyl-2,6-dimethyl-4-(3-nitrophenyl)-l,4-dihydropyrid<strong>in</strong>e-3,5dicarboxylate<br />

on cerebral circulation <strong>in</strong> dogs, Arzneim-Forsch/Drug Res, 37, 1239-<br />

1243 (1987)<br />

23 Hayashi H, Ikeda J, Kuroda T, Kubo K, Sano T, Suzuki F, l,4:3,6-Dianhydrohexitol<br />

nitrate derivatives. 1. Synthesis <strong>and</strong> antiang<strong>in</strong>al activity <strong>of</strong> alkylpiperaz<strong>in</strong>e derivatives,<br />

Chem Pharm Bull, 41, 1091-1099 (1993)<br />

24 Durant GJ, Duncan WAM, Ganell<strong>in</strong> CR, Parsons ME, Blakemore RC, Rasmussen AC,<br />

Impromid<strong>in</strong>e (SK&F 92676) is a very potent <strong>and</strong> specific agonist for histam<strong>in</strong>e H 2receptors,<br />

Nature, 276, 403-405 (1978)<br />

25 Baumann G, Permanetter B, Wirtzfeld A, Possible value <strong>of</strong> H 2-receptor agonists for the<br />

treatment <strong>of</strong> catechol-am<strong>in</strong>e <strong>in</strong>sensitive congestive heart failure, Pharmacol Ther, 24,<br />

165-177 (1984)<br />

26 Felix SB, Buschauer A, Baumann G, Therapeutic value <strong>of</strong> H 2-receptor stimulation <strong>in</strong><br />

congestive heart failure. Hemodynamic effects <strong>of</strong> BU-E-76, BU-E-75 <strong>and</strong> arpromid<strong>in</strong>e<br />

(BU-E-50) <strong>in</strong> comparison to impromid<strong>in</strong>e, Agents Actions Suppl, 33, 257-269 (1991)<br />

27 Van der Goot H, Bast A, Timmerman H, Structural requirements for histam<strong>in</strong>e H 2<br />

agonists <strong>and</strong> H 2 antagonists, In: H<strong>and</strong>book <strong>of</strong> Experimental Pharmacology: Histam<strong>in</strong>e<br />

<strong>and</strong> histam<strong>in</strong>e antagonists (Uvnas B, Ed), Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong> Heidelberg, 97,<br />

573-748 (1991)<br />

28 Buschauer A, Phenoxy- <strong>and</strong> phenylthioalkylguanid<strong>in</strong>es: <strong>synthesis</strong> <strong>and</strong> <strong>in</strong> <strong>vitro</strong><br />

<strong>pharmacology</strong>, Eur J Med Chem, 23, 1-6 (1988)<br />

29 Sterk GJ, Koper J, Van der Goot H, Timmerman H, Studies on histam<strong>in</strong>ergic<br />

compounds VIII. A new <strong>series</strong> <strong>of</strong> compounds show<strong>in</strong>g Hi-antagonistic <strong>and</strong> H 2agonistic<br />

properties; <strong>synthesis</strong>, <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>and</strong> structure-activity<br />

relationships, Eur J Med Chem, 22, 491-498 (1987)<br />

93


Chapter 3<br />

30 Buschauer A, Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> arpromid<strong>in</strong>e <strong>and</strong> related phenyl<br />

(pyridylalkyl) guanid<strong>in</strong>es, a potential new class <strong>of</strong> positive <strong>in</strong>otropic drugs, J Med<br />

Chem, 32, 1963-1970 (1989)<br />

31 Baumann G, Buschauer A, Felix S, Hemodynamic pr<strong>of</strong>ile <strong>of</strong> arpromid<strong>in</strong>e <strong>and</strong> its F2-<br />

substituted derivatives <strong>in</strong> comparison to impromid<strong>in</strong>e <strong>in</strong> congestive heart failure, Agents<br />

actions: Special Conference Issue, C329-C332 (1992)<br />

32 Snatzke G, Laurent H, Wiechert R, Circulardichroismus-XXXII: Cotton-effect von<br />

Nitryloxy-steroiden, Tetrahedron, 25, 761-769 (1969)<br />

33 Oläh G, Noszkö L, Kuhn S, Szelke M, Darstellung von Nitrosam<strong>in</strong>en, Alkylnitriten<br />

und Alkylnitraten mit Nitrosyl- bzw. Nitryl-tetrafluoro-borat, Chem Ber, 89, 2374-<br />

2377 (1956)<br />

34 Kuhn SJ, Nitronium salts: 1 New methods for the preparation <strong>of</strong> NC>2 +<br />

BF4", N02 +<br />

PFÖ~,<br />

+<br />

N02 AsF6-, Can J Chem, 40, 1660-1663 (1962)<br />

35 Olah GA, Narang SC, Pearson RL, Cupas CA, Synthetic methods <strong>and</strong> reactions; 48.<br />

Convenient <strong>and</strong> safe preparation <strong>of</strong> alkyl nitrates (polynitrates) via transfer nitration <strong>of</strong><br />

alcohols (polyols) with N-nitrocollid<strong>in</strong>ium tetrafluoroborate, Synthesis, 452-453 (1978)<br />

36 Fieser LF, Von Doer<strong>in</strong>g WE, Aromatic-aliphatic nitro compounds. III. The Ponzio<br />

reaction; 2,4,6-tr<strong>in</strong>itrobenzyl nitrate, J Am Chem Soc, 68,2252-2253 (1946)<br />

37 McKillop A, Ford ME, Mercury-assisted solvolyses <strong>of</strong> alkyl halides: simple procedures<br />

for the preparation <strong>of</strong> nitrate esters, acetate esters, alcohols <strong>and</strong> ethers, Tetrahedron, 30,<br />

2467-2475 (1974)<br />

38 Hakimelahi GH, Sharghi H, Zarr<strong>in</strong>mayeh H, Khalafi-Nezhad A, The <strong>synthesis</strong> <strong>and</strong><br />

application <strong>of</strong> novel nitrat<strong>in</strong>g <strong>and</strong> nitrosat<strong>in</strong>g agents, Helv Chim Acta, 67, 906-915<br />

(1984)<br />

39 Boschan R, Merrow RT, Van Dolah RW, The chemistry <strong>of</strong> nitrate esters, Chem Rev,<br />

55, 485-510 (1955)<br />

40 Grimmett MR, Nitrogen heterocyclic molecules, part 2. Azoles <strong>and</strong> benzazoles, In:<br />

MTP Int Rev Sei: Heterocyclic compounds (Sch<strong>of</strong>eld K, ed) Butterworths, London,<br />

volume 4, pp 55-88 (1973)<br />

41 Seidenfaden W, Pawellek D, Methoden zur Herstellung und Umw<strong>and</strong>lung von<br />

aromatischen Nitroverb<strong>in</strong>dungen, In: Methoden der Organischen Chemie (Houben-<br />

Weyl), Georg Thieme Verlag, Stuttgart, volume 10(1), pp 463-889 (1971)<br />

94


Chapter 4<br />

Chapter 4<br />

2 +<br />

L-type voltage-operated Ca -channels:<br />

molecular biology, lig<strong>and</strong>s, molecular structure, <strong>and</strong> molecular<br />

<strong>pharmacology</strong><br />

1 Introduction<br />

Ion channels are prote<strong>in</strong>s embedded <strong>in</strong> the cell membrane that form pores through<br />

which passive ion movement takes place selectively. There are two categories <strong>of</strong> ion<br />

channels:<br />

1) channels that are regulated by electrical signals. They are called voltage-operated<br />

channels (VOCs).<br />

2) channels that are regulated by lig<strong>and</strong>-receptor <strong>in</strong>teractions. They are called<br />

receptor-operated channels (ROCs).<br />

Ion channels <strong>of</strong> several dist<strong>in</strong>ct types exist <strong>and</strong> therefore these two classes can be<br />

further subclassified. Ion channels may be considered as receptors. However, to be<br />

considered as pharmacological receptors, ion channels have to fulfil certa<strong>in</strong><br />

requirements, <strong>in</strong>clud<strong>in</strong>g the existence <strong>of</strong> endogenous lig<strong>and</strong>s for the receptor. In the<br />

last decade much evidence has been obta<strong>in</strong>ed to prove that these channels may be<br />

considered as receptors <strong>in</strong>deed.<br />

2 Classification <strong>of</strong> the voltage-operated calcium channels<br />

There are several different types <strong>of</strong> calcium channels. Based upon electrochemical,<br />

pharmacological, <strong>and</strong> physiological properties these types are called L, T, N, <strong>and</strong> Ptype<br />

calcium channels 1<br />

.<br />

T-type channels<br />

T-type channels are low voltage activated channels <strong>and</strong> have a transient (T from<br />

Transient) duration <strong>of</strong> open<strong>in</strong>g due to rapid <strong>in</strong>activation. They are found <strong>in</strong> several<br />

tissues <strong>in</strong>clud<strong>in</strong>g SA <strong>and</strong> AV nodes <strong>and</strong> <strong>in</strong> neurones from a variety <strong>of</strong> bra<strong>in</strong> areas.<br />

L-type channels<br />

L-type channels are found <strong>in</strong> the heart, smooth muscle <strong>and</strong> neurones <strong>of</strong> the central<br />

nervous system, but they predom<strong>in</strong>ate <strong>in</strong> the cardiovascular system, where they are<br />

important for the regulation <strong>of</strong> the excitation-contraction coupl<strong>in</strong>g. High voltage<br />

activation <strong>of</strong> the channel produces a long last<strong>in</strong>g open<strong>in</strong>g (L for Long last<strong>in</strong>g). These<br />

type <strong>of</strong> channels are highly sensitive to calcium channel blockers, like the DHPs. The<br />

peptide co-agatox<strong>in</strong> IIIA (co-aga-IIIA) is a neurotox<strong>in</strong> isolated from venom <strong>of</strong> a spider<br />

which blocks L- <strong>and</strong> N-type channels <strong>in</strong> neurones (see next section) <strong>and</strong> L-type<br />

channels <strong>in</strong> myocardial cells, with high aff<strong>in</strong>ity, mak<strong>in</strong>g it useful <strong>in</strong> studies to<br />

determ<strong>in</strong>e <strong>and</strong> differentiate dist<strong>in</strong>ct types <strong>of</strong> Ca 2+<br />

-current <strong>in</strong> myocardial cells<br />

conta<strong>in</strong><strong>in</strong>g both L- <strong>and</strong> T-type channels 2<br />

.<br />

95


Chapter 4<br />

To date, the L-type channel is the most extensively characterized Ca 2+<br />

-channel. This<br />

characterization revealed that there are functional differences among Ca 2+<br />

-channels<br />

<strong>in</strong> different tissue, reflect<strong>in</strong>g differences <strong>in</strong> the structure <strong>of</strong> the receptor prote<strong>in</strong>.<br />

N-type channels<br />

N-type channels are high voltage activated <strong>and</strong> the time constant for activation is <strong>in</strong><br />

between the values <strong>of</strong> L- <strong>and</strong> T-type channels (N <strong>of</strong> Neuronal). They are only found<br />

<strong>in</strong> peripheral neurones (nerve cells) <strong>and</strong> may play a role <strong>in</strong> neurotransmitter release.<br />

Despite the diversity <strong>of</strong> neuronal calcium channels, it is difficult to dist<strong>in</strong>guish N-type<br />

channels from L-type channels both present <strong>in</strong> neurones, because the DHPs are not<br />

only highly sensitive to L-type channels but also affect N-type channels 3<br />

. Both L<strong>and</strong><br />

N-type current can be blocked with co-conotox<strong>in</strong> (co-CgTx), isolated from the<br />

venom <strong>of</strong> a snail.<br />

P-type channels<br />

P-type channels are also high voltage activated <strong>and</strong> are located <strong>in</strong> Purk<strong>in</strong>je cells <strong>of</strong><br />

the cerebellum (P for Purk<strong>in</strong>je). These channels are sensitive to a fraction <strong>of</strong> a<br />

neurotox<strong>in</strong>, called FTX, isolated from the venom <strong>of</strong> a spider 4<br />

. Unfortunately, the<br />

complete structure <strong>of</strong> FTX has not yet been elucidated.<br />

3 Molecular structure <strong>of</strong> calcium channels<br />

3.1 Molecular structure <strong>of</strong> the L-type voltage-dependent calcium channels<br />

Tanabe et al. 5<br />

were the first report<strong>in</strong>g to have deduced the complete structure <strong>of</strong> the<br />

L-type voltage-dependent Ca 2+<br />

-channel from rabbit skeletal muscle us<strong>in</strong>g a<br />

comb<strong>in</strong>ation <strong>of</strong> prote<strong>in</strong> chemistry <strong>and</strong> complementary DNA clon<strong>in</strong>g experiments. This<br />

channel is a hetero-oligomeric structure consist<strong>in</strong>g <strong>of</strong> four subunits a h a 2, p, <strong>and</strong> y.<br />

In recent years, a fifth subunit, designated as the 8 subunit was discovered (fig. 1).<br />

Ca 2+<br />

Figure 1 : L-type calcium channel subunit structure<br />

In Table 1 the relative molecular masses <strong>of</strong> the subunits are depicted as described <strong>in</strong><br />

literature.<br />

The hydrophobic nature <strong>of</strong> the oci subunit allows it to span the membrane. The rabbit<br />

skeletal oci subunit prote<strong>in</strong> structure possesses four repeat<strong>in</strong>g hydrophobic<br />

96


Chapter 4<br />

homologous doma<strong>in</strong>s surround<strong>in</strong>g a central pore. Each doma<strong>in</strong> conta<strong>in</strong>s six<br />

transmembrane spann<strong>in</strong>g segments. The oci subunit forms the pore <strong>of</strong> the calcium<br />

channel 6<br />

. Modifications <strong>of</strong> the pore prote<strong>in</strong>s resulted <strong>in</strong> altered permeation properties.<br />

In this way, it was possible to elucidate that the discrim<strong>in</strong>atory properties are<br />

determ<strong>in</strong>ed by ion b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ity <strong>and</strong> by ion-ion electrostatic <strong>in</strong>teractions 7<br />

.<br />

So far the primary structures <strong>of</strong> the ai subunits <strong>of</strong> the L-type Ca 2+<br />

-channels have<br />

been elucidated for skeletal <strong>and</strong> cardiac muscle, aorta, lung, <strong>and</strong> bra<strong>in</strong> 8<br />

. They exhibit<br />

small differences <strong>in</strong> am<strong>in</strong>o acid sequence between the different muscle types (e.g.,<br />

there is ± 95 % homology between cardiac <strong>and</strong> aortic ai subunits, while the cardiac,<br />

aortic <strong>and</strong> bra<strong>in</strong> cci subunits are 65-75 % homologous to skeletal muscle ai subunits).<br />

Differences <strong>in</strong> ai subunit structures are also shown <strong>in</strong> Table 1, where the cci subunit<br />

<strong>of</strong> rabbit heart is larger than that <strong>of</strong> skeletal muscle (195 versus 165 kD) which may<br />

arise from different encoded genes or from alternative splic<strong>in</strong>g 9<br />

.<br />

The ai subunit is the largest calcium channel prote<strong>in</strong> subunit which carries the<br />

b<strong>in</strong>d<strong>in</strong>g sites <strong>of</strong> the three major classes <strong>of</strong> calcium channel blockers. Therefore, the<br />

subtle differences <strong>in</strong> am<strong>in</strong>o acid composition could contribute to the tissue specificity<br />

<strong>of</strong> the calcium channel blockers.<br />

The a 2 subunit, like the 8 <strong>and</strong> y subunits, is heavily glycosylated <strong>and</strong> is slightly smaller<br />

than the a x subunit. Their precise function is unknown yet.<br />

The p subunit is hydrophilic <strong>and</strong> is located at the <strong>in</strong>tracellular surface. As for the a x<br />

subunit, also subtle differences <strong>in</strong> am<strong>in</strong>o acid sequence <strong>of</strong> the p subunit demonstrate<br />

the existence <strong>of</strong> multiple is<strong>of</strong>orms <strong>in</strong> heart, skeletal, smooth muscle <strong>and</strong> bra<strong>in</strong>. It is<br />

thought that the P subunit is able to regulate the sensitivity to DHP modulation <strong>and</strong><br />

gat<strong>in</strong>g properties <strong>of</strong> the channel, by acceleration <strong>of</strong> the gat<strong>in</strong>g activation <strong>and</strong><br />

<strong>in</strong>activation k<strong>in</strong>etics.<br />

The P <strong>and</strong> a x subunits can be phosphorylated. $ {-adrenoceptor stimulation <strong>in</strong><br />

cardiac <strong>and</strong> skeletal muscle cells activates cAMP-dependent k<strong>in</strong>ases, which<br />

phosphorylate the aj <strong>and</strong> P subunits, result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>crease the Ca 2+<br />

-<strong>in</strong>flux through<br />

VOCs. However, it is unknown whether the a l<br />

or p subunit regulates the open<br />

probability <strong>of</strong> the ion channel upon phosphorylation. Phosphorylation <strong>of</strong> the<br />

subunits by prote<strong>in</strong> k<strong>in</strong>ases rises the question if this is restricted to p-adrenoceptors<br />

or that also other cAMP elevat<strong>in</strong>g lig<strong>and</strong>-receptor <strong>in</strong>teractions are capable to do so.<br />

Until now only speculations <strong>and</strong> no clear evidence has appeared whether histam<strong>in</strong>e<br />

H 2-receptor stimulation can modulate the L-type VOCs.<br />

The y subunit is a glycosylated transmembrane unit. The specific role <strong>of</strong> the y subunit<br />

is unknown. However, the fact that there is no evidence for the presence <strong>of</strong> y-like<br />

mRNA <strong>in</strong> other than skeletal muscle, may suggest that the y subunit is a skeletal<br />

muscle specific component which may contribute to the large amount <strong>of</strong> L-type<br />

voltage-dependent calcium channels <strong>in</strong> skeletal muscle 10<br />

.<br />

The 8 subunit is covalently l<strong>in</strong>ked to the oc 2 subunit via disulfide bridges. The precise<br />

function is unknown yet.<br />

97


Chapter 4<br />

Transmembrane fold<strong>in</strong>g models <strong>of</strong> the subunits <strong>and</strong> coexpression <strong>of</strong> the a x<br />

subunit<br />

from L-type calcium channels with several other subunits have been briefly reviewed<br />

by Catterall 11<br />

. Experiments with mouse cells deficient <strong>of</strong> oc2, p, y<strong>and</strong> 8 subunits<br />

demonstrated that the a x<br />

subunit itself is able to produce calcium currents.<br />

Coexpression <strong>of</strong> the a x subunit with the P subunit generated an almost normalized<br />

calcium current. It is thought that the p subunit is able to <strong>in</strong>crease the number <strong>of</strong><br />

b<strong>in</strong>d<strong>in</strong>g sites <strong>of</strong> the calcium channel blockers (CCBs). Coexpression <strong>of</strong> comb<strong>in</strong>ed o^,<br />

a2, <strong>and</strong> p subunits further improved the ability <strong>of</strong> the cell l<strong>in</strong>es to express Ca 2+<br />

-<br />

currents. Not surpris<strong>in</strong>gly, coexpression <strong>of</strong> the a t subunit with the other subunits<br />

clearly demonstrated that the comb<strong>in</strong>ation <strong>of</strong> all subunits is crucial for modulation <strong>of</strong><br />

the gat<strong>in</strong>g properties <strong>of</strong> the channel <strong>and</strong> for the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> CCBs 12<br />

' 13<br />

.<br />

Table 1: Relative molecular mass <strong>of</strong> the subunits <strong>of</strong> rabbit skeletal muscle L-type<br />

Ca 2+<br />

-channels.<br />

M r<br />

subunit M r ref.5 Href.77 M.ref.108 M.ref.18 M r ref.9<br />

170 145-175 155-175 212 * heart 195 heart<br />

175 skeletal 165 skeletal<br />

212 #<br />

a 2 140 135-150 143 140 140<br />

P 55 55 55 54 55<br />

Y 33 33 30 30 32<br />

8 - 24-29 27 27 32<br />

Molecular mass <strong>in</strong> kD<br />

& The rabbit skeletal muscle a\ subunit conta<strong>in</strong>s 1.873 am<strong>in</strong>o acids with a calculated<br />

relative molecular mass (M r) <strong>of</strong> 212 kD. This differs from the experimental deduced M r <strong>of</strong><br />

170 kD which is ascribed to proteolytic modification <strong>in</strong> vivo or dur<strong>in</strong>g the prote<strong>in</strong><br />

purification or even could be <strong>in</strong>herent to the <strong>in</strong>accuracy <strong>of</strong> the analytical method.<br />

* The a¡ subunit <strong>of</strong> skeletal muscle is very similar to that <strong>of</strong> the a¡ subunit <strong>of</strong> the heart,<br />

except it lacks 320 am<strong>in</strong>o acids located at the C-term<strong>in</strong>al end<br />

3.2 Structural homology between the N- <strong>and</strong> L-type calcium channels<br />

Witcher et al. 14<br />

purified the N-type channel from rat CNS <strong>and</strong> elucidated the several<br />

subunits <strong>and</strong> revealed that this channel conta<strong>in</strong>s four subunits with a relative<br />

molecular mass <strong>of</strong> 230 kD (ocj), 160 kD (oc 28; <strong>in</strong> reduced form 140 kD for oc 2), 57 kD<br />

(p) <strong>and</strong> a 95 kD glycoprote<strong>in</strong> subunit not further specified. The subunit composition<br />

<strong>of</strong> the N-type channel is comparable to but dist<strong>in</strong>ct from the L-type channel. Whereas<br />

the


Chapter 4<br />

channel, which is suggested to be the P-type channel. Although, there are many<br />

similarities between the BI channel <strong>and</strong> P-type channel, there also exist substantial<br />

differences which do not allow to identify them as identical channels 16<br />

.<br />

3.3 Structural homology between different ion channels<br />

Na +<br />

-, K +<br />

-, Ca 2+<br />

-channels are all voltage-operated ion channels belong<strong>in</strong>g to a<br />

structurally homologous family 17<br />

. The similarities <strong>of</strong> the membrane spann<strong>in</strong>g segments<br />

among the three types <strong>of</strong> ion channels may expla<strong>in</strong> the aff<strong>in</strong>ity <strong>of</strong> some drugs to more<br />

than one ion channel. For example, the a { subunit <strong>of</strong> L-type voltage-dependent<br />

calcium channel is highly homologous (55 %) to the correspond<strong>in</strong>g a subunit <strong>of</strong> the<br />

sodium channel.<br />

The displayed homology <strong>of</strong> the three ion channels <strong>in</strong>dicate that the voltagedependent<br />

ion channels orig<strong>in</strong>ate from a common ancestor which is believed to be<br />

the K +<br />

-channel 18<br />

.<br />

4 Lig<strong>and</strong>s for the L-type voltage-operated calcium channel<br />

The lig<strong>and</strong>s for the L-type voltage-operated calcium channels exist <strong>of</strong> both channel<br />

blockers <strong>and</strong> activators. Only a few endogenous lig<strong>and</strong>s have been reported; most <strong>of</strong><br />

the active compounds are <strong>of</strong> exogenous nature.<br />

4.1 Calcium channel blockers<br />

There exist a great variety <strong>of</strong> compounds which are able to modulate the function <strong>of</strong><br />

L-type voltage-operated calcium channels. In this tangle <strong>of</strong> heterogeneous chemical<br />

structures, five classes can be dist<strong>in</strong>guished which each <strong>in</strong>teracts with <strong>in</strong>dividual<br />

b<strong>in</strong>d<strong>in</strong>g sites (Table 2). Three major classes <strong>of</strong> calcium channel blockers currently <strong>in</strong><br />

cl<strong>in</strong>ical use are: phenylalkylam<strong>in</strong>es (PAAs), benzothiazep<strong>in</strong>es (BTAs), <strong>and</strong><br />

dihydropyrid<strong>in</strong>es (DHPs). They exhibit differences <strong>in</strong> negative <strong>in</strong>otropic <strong>and</strong><br />

chronotropic activity. These differences are related to a certa<strong>in</strong> cardiovascular<br />

selectivity. The cardiac actions (antiarrhythmic) <strong>of</strong> these agents <strong>in</strong>crease from DHPs,<br />

via BTAs to PAAs. The differences <strong>in</strong> relative potencies exerted on vascular smooth<br />

muscle <strong>and</strong> the heart determ<strong>in</strong>e their use <strong>in</strong> treatment <strong>of</strong> specific cardiovascular<br />

disorders.<br />

Often a fourth class <strong>of</strong> compounds is added to this classification namely the<br />

diphenylbutylpiperid<strong>in</strong>es (DPBPs); these derivatives are also L-type calcium channel<br />

blockers <strong>and</strong> they possess aff<strong>in</strong>ity for a fourth "b<strong>in</strong>d<strong>in</strong>g site <strong>of</strong> calcium channels. A<br />

fifth class conta<strong>in</strong>s all other compounds which are not chemically related to each<br />

other but are able to modulate the calcium <strong>in</strong>flux through the calcium channels.<br />

Compounds belong<strong>in</strong>g to this class <strong>in</strong>teract with not specified b<strong>in</strong>d<strong>in</strong>g sites at the<br />

calcium channel, which are dist<strong>in</strong>ct from the PAA, BTA, DHP or DPBP b<strong>in</strong>d<strong>in</strong>g sites.<br />

99


Chapter 4<br />

Table 2: Classification <strong>of</strong> L-type voltage-operated calcium channel blockers<br />

1 phenylalkylam<strong>in</strong>es (PAAs)<br />

2 benzothiazep<strong>in</strong>es (BTAs)<br />

3 dihydropyrid<strong>in</strong>es (DHPs)<br />

4 diphenylbutylpiperid<strong>in</strong>es (DPBPs)<br />

5 miscellaneous selective <strong>and</strong> non selective compounds<br />

4.1.1 Phenylalkylam<strong>in</strong>es (PAAs)<br />

The st<strong>and</strong>ard example <strong>of</strong> the PAAs is verapamil 1 (fig. 2). In 1962 it was shown by<br />

Appel 19<br />

that verapamil exerts a calcium channel block<strong>in</strong>g activity, which made this<br />

compound extremely suitable for treat<strong>in</strong>g certa<strong>in</strong> cardiovascular diseases. Although<br />

verapamil was the first calcium channel blocker with therapeutic value, only a few<br />

examples <strong>of</strong> verapamil analogues have been reported <strong>in</strong> literature. Gallopamil (D600)<br />

2, devapamil 3, ludopamil 4, anipamil 5 <strong>and</strong> thiapamil 6 belong to the scanty examples<br />

<strong>of</strong> verapamil analogues. The (S)-(-)-isomers <strong>of</strong> verapamil <strong>and</strong> its analogues are more<br />

potent vasodilators <strong>and</strong> have higher negative <strong>in</strong>otropic effects than the (R)-(+)isomers<br />

(table 3). The (R)-(+)-isomers <strong>of</strong> verapamil, gallopamil <strong>and</strong> devapamil (D888)<br />

have a higher vascular over myocardial selectivity, but are less potent vasodilators<br />

than the (S)-(-)-isomers 20<br />

.<br />

The aff<strong>in</strong>ity <strong>of</strong> (S)-emopamil 7 for the verapamil b<strong>in</strong>d<strong>in</strong>g sites <strong>in</strong> rat cortex membranes<br />

is the same as for gallopamil <strong>and</strong> verapamil. The <strong>in</strong> <strong>vitro</strong> calcium channel block<strong>in</strong>g<br />

activity is one magnitude less than that <strong>of</strong> verapamil <strong>and</strong> gallopamil 21<br />

.<br />

1 R 1<br />

2 R1<br />

3 R,<br />

4 R1<br />

H, R 2 = CH 30, R 3 = CH3O verapamil (D365)<br />

CH3O, R 2 = CH3O, R 3 = CH3O gallopamil (D600)<br />

H, R 2 = CH3O, R 3 = H devapamil<br />

CH3O, R 2 = Na, R3 =H ludopamil<br />

Figure 2: Phenylalkylam<strong>in</strong>es<br />

5 anipamil<br />

The calcium channel blockers belong<strong>in</strong>g to the class <strong>of</strong> PAAs also exhibit anti-<br />

serotonergic (5-HT2) properties. This antiserotonergic activity could be beneficial <strong>in</strong><br />

the treatment <strong>of</strong> cerebrovascular disorders. (S)-Emopamil has a high aff<strong>in</strong>ity for the<br />

seroton<strong>in</strong> (5-HT 2) receptor. Although emopamil shows no stereoselectivity <strong>in</strong> calcium<br />

100


Chapter 4<br />

channel block<strong>in</strong>g activity <strong>in</strong> <strong>in</strong> <strong>vitro</strong> studies or for the verapamil b<strong>in</strong>d<strong>in</strong>g site, the (S)enantiomer<br />

<strong>of</strong> emopamil has an aff<strong>in</strong>ity for the seroton<strong>in</strong> receptor (5-HT2) which is<br />

dist<strong>in</strong>ctly higher than that <strong>of</strong> the (R)-enantiomer (table 3). Therefore, (S)-emopamil<br />

appears to be a potential drug for the treatment <strong>of</strong> cerebrovascular disorders 21<br />

.<br />

Table 3: Calcium channel block<strong>in</strong>g (CCB), negative <strong>in</strong>otropic <strong>and</strong> serotonergic<br />

CCB <strong>in</strong>otropy 5-HT 2<br />

compound pIC 5 0 pEC 5 0 pEC 5 0<br />

(±)-verapamil (D365) 6.85 a<br />

(S)<br />

7.62 b<br />

(R) 6.66 b<br />

(±)-gallopamil (D600) 7.36 a<br />

5.96<br />

(S) 7.74 b 7.52 à<br />

(R) 6.36 b<br />

(D888)devapamil (S) 8.70 b<br />

(R) 6.41 b<br />

emopamil (S)<br />

c 1<br />

6.57<br />

c 2<br />

, 5.46 e 7.38 ci<br />

6.72 «a, 5.91 e 7.37<br />

5.52


Chapter 4<br />

Variations <strong>of</strong> the substituent on the quaternary carbon atom from methyl to n-<br />

dodecyl, branched alkyl or a benzyl moiety revealed that the optimum <strong>in</strong> calcium<br />

channel block<strong>in</strong>g activity is present <strong>in</strong> the isopropyl substituent 27<br />

.<br />

Table 4: Calcium channel block<strong>in</strong>g (CCB) <strong>and</strong> oc-adrenergic block<strong>in</strong>g activities <strong>of</strong><br />

verapamil analogues 27<br />

m n Ri R 2 pA 2(CCB) pA 2(cc)<br />

3 2 H 2-OCH 3 6.59 8.42<br />

3 2 Me 2-OCH3 7.20 7.04<br />

3 3 Me 2-OCHj 8.05 5.79<br />

3 3 Me 3-OCH3 9.00<br />

3 2 Me 3,5-diOCH 3 10.20<br />

verapamil 7.88 5.79<br />

CCB: pA 2 values <strong>in</strong> the K+-depolarized gu<strong>in</strong>ea pig taenia coli<br />

a: pA 2 values <strong>in</strong> rabbit thoracic aorta<br />

4.1.2 Benzothiazep<strong>in</strong>es (BTAs)<br />

Chemically considered, the compounds referred to as benzothiazep<strong>in</strong>es are more<br />

properly described as benzothiazep<strong>in</strong>ones. Diltiazem 8 (fig. 4) is the most important<br />

drug <strong>of</strong> the benzothiazep<strong>in</strong>ones <strong>and</strong> selectively blocks calcium entry through the Ltype<br />

calcium channels 28<br />

. Diltiazem has two asymmetric carbon atoms, the (2S,3S)isomer<br />

is the most active CCB. Diltiazem is cl<strong>in</strong>ically used as an antihypertensive<br />

drug. The rather short duration <strong>of</strong> action <strong>of</strong> diltiazem urged the development <strong>of</strong><br />

agents with improved cardiovascular activity, such as TA-3090 9 (fig. 4) 29<br />

. TA-3090<br />

is a more potent antihypertensive agent <strong>in</strong> animals than diltiazem <strong>and</strong> is now subject<br />

to cl<strong>in</strong>ical <strong>in</strong>vestigations.<br />

8 diltiazem 9 TA-3090 (R = 8-C1)<br />

Figure 4: Benzothiazep<strong>in</strong>e analogues<br />

102<br />

10 SQ 32,910 (R = 6-CF3)


Chapter 4<br />

Structural modifications on the benzothiazep<strong>in</strong>one r<strong>in</strong>g system revealed that the<br />

sulfur atom is not essential for its antihypertensive activity or antagonism <strong>of</strong><br />

[ 3<br />

H]diltiazem b<strong>in</strong>d<strong>in</strong>g <strong>in</strong> gu<strong>in</strong>ea pig skeletal muscle membrane preparations, as is<br />

demonstrated by compounds <strong>in</strong> which the sulfur atom is replaced by an oxygen atom<br />

(benzoxazep<strong>in</strong>one), a nitrogen atom (benzodiazep<strong>in</strong>one) or a methylene group<br />

(benzazep<strong>in</strong>one) 30<br />

. The benzazep<strong>in</strong>one SQ 32,910 10 (fig. 4) is a potent calcium<br />

channel blocker <strong>in</strong> <strong>vitro</strong> (table 5) <strong>and</strong> exhibits antihypertensive activity <strong>in</strong> vivo 31<br />

.<br />

Table 5: Calcium channel block<strong>in</strong>g activities <strong>of</strong> diltiazem <strong>and</strong> analogues 303<br />

compound pICso<br />

diltiazem 6.68 / 6.42 a<br />

TA-3090 5.11<br />

SQ 32,910 6.62<br />

a) Van Meel et al. 22<br />

,<br />

pICso In rabbit aorta strips contracted by KC1<br />

4.13 Dihydropyrid<strong>in</strong>es (DHPs)<br />

The DHPs are the most extensively studied class <strong>of</strong> L-type voltage-operated calcium<br />

channel blockers. Ever s<strong>in</strong>ce Vater et al. 32<br />

established that the coronary dilator<br />

nifedip<strong>in</strong>e (fig. 5) exhibited a calcium channel block<strong>in</strong>g activity <strong>and</strong> was selective for<br />

smooth muscle over cardiac muscle, large numbers <strong>of</strong> analogues have been<br />

synthesized. An <strong>in</strong>trigu<strong>in</strong>g review <strong>of</strong> the first twenty years <strong>of</strong> research at the Bayer<br />

company by Bossert et al. 33<br />

shows the long way via more than 2000 compounds to<br />

the extremely successful drug nifedip<strong>in</strong>e. The field <strong>of</strong> DHPs appealed many other<br />

research groups as can be seen <strong>in</strong> this review <strong>in</strong> which more than 50 <strong>in</strong>dustrial<br />

companies are cited which are or have been work<strong>in</strong>g on DHPs.<br />

The first structural alterations on DHPs were conf<strong>in</strong>ed to m<strong>in</strong>or modifications <strong>in</strong> the<br />

small alkyl substituents <strong>of</strong> the ester functions result<strong>in</strong>g <strong>in</strong> compounds with only small<br />

differences <strong>in</strong> their pharmacological pr<strong>of</strong>ile (fig. 5). Little by little, more structural<br />

changes were realized. The <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest proceeded from certa<strong>in</strong> limitations <strong>in</strong><br />

therapeutic use <strong>of</strong> the so-called first generation DHPs. Despite the ability <strong>of</strong> the first<br />

generation DHPs to lower blood pressure, these drugs exhibited a negative <strong>in</strong>otropic<br />

effect on cardiac function <strong>and</strong> they have a short duration <strong>of</strong> action. The <strong>in</strong>itial<br />

<strong>in</strong>crease <strong>of</strong> heart rate <strong>of</strong>ten observed with DHPs, seems to be due to a sympathetic<br />

reflex caused by the decrease <strong>in</strong> blood pressure; it is <strong>of</strong> a temporary nature. Compared<br />

with PAAs <strong>and</strong> BTAs, DHPs have a higher selectivity for vascular tissues than for<br />

cardiac tissues. Generally, DHPs are more effective <strong>in</strong> hypertensive animals <strong>and</strong><br />

humans than <strong>in</strong> normotensive ones, which might suggest that the nature <strong>of</strong> the<br />

voltage-operated Ca 2+<br />

-channels is altered <strong>in</strong> hypertension.<br />

103


Chapter 4<br />

F^OOC COOR 2<br />

compound Ri R 2<br />

nifedip<strong>in</strong>e (Bay a 1040) Me Me 2-N0 2<br />

nitrendip<strong>in</strong>e (Bay e 5009) Me Et 3-NO2<br />

nimodip<strong>in</strong>e (Bay e 9736) iPr CH 2CH 2OCH 3 3-N0 2<br />

niludip<strong>in</strong>e (Bay a 7168) CH 2CH 20-iPr CH 2CH 20-iPr 3-N0 2<br />

nisoldip<strong>in</strong>e (Bay k 5552) Me<br />

felodip<strong>in</strong>e Me<br />

riodip<strong>in</strong>e Me<br />

isradip<strong>in</strong>e Me<br />

(PN 200-110)<br />

sec-butyl<br />

Et<br />

Me<br />

iPr<br />

2-N0 2<br />

2,3-diCl<br />

2-OCF3<br />

phenyl-Ca"^ \<br />

pheny!-C 2 ^ '<br />

darodip<strong>in</strong>e Et Et phenyl-C 3 ^ \<br />

phenyl-C 2 ^ N'<br />

oxodip<strong>in</strong>e Me Et phenyl-C 3*<br />

phenyl-C 2*<br />

Figure 5: 1,4-Dihydropyrid<strong>in</strong>es with ma<strong>in</strong>ly small esters <strong>and</strong> various 4-phenyl<br />

substituents<br />

104<br />

>


Chapter 4<br />

Table 6: Calcium channel block<strong>in</strong>g (pICso; determ<strong>in</strong>ed on aorta) <strong>and</strong> negative<br />

<strong>in</strong>otropic activities (pECso; determ<strong>in</strong>ed on papillary muscle) <strong>of</strong> DHPs from<br />

figure 5<br />

a<br />

d<br />

8<br />

j<br />

I<br />

m<br />

compound<br />

nifedip<strong>in</strong>e<br />

nitrendip<strong>in</strong>e<br />

nimodip<strong>in</strong>e (±)<br />

nimodip<strong>in</strong>e (-)<br />

nimodip<strong>in</strong>e (+)<br />

niludip<strong>in</strong>e<br />

nisoldip<strong>in</strong>e<br />

felodip<strong>in</strong>e<br />

isradip<strong>in</strong>e (+)<br />

isradip<strong>in</strong>e (+)<br />

isradip<strong>in</strong>e (-)<br />

oxodip<strong>in</strong>e<br />

nicardip<strong>in</strong>e<br />

elgodip<strong>in</strong>e<br />

Kazdaetal. 34<br />

Boyd et al 36<br />

Wibo et al 38<br />

Tamargoet al. 46<br />

pICso<br />

8.09*.f rabbit<br />

8.72 1<br />

8.77* rat<br />

8.35* rabbit<br />

8.24 h<br />

8.53 f<br />

gu<strong>in</strong>ea pig<br />

rabbit<br />

rabbit<br />

8.52h rabbit<br />

9.63 e<br />

7.80 h<br />

8.86 e<br />

7.89 f<br />

rat<br />

rabbit<br />

rat<br />

rabbit<br />

8.62» rabbit<br />

10.158 rat<br />

12.1 k<br />

rat<br />

9.20 m<br />

8.64 1<br />

rabbit<br />

10.038 rat<br />

7.918 rat<br />

gu<strong>in</strong>ea pig<br />

b Rodenkirchen et al? 5<br />

e Godfra<strong>in</strong>d et al. 37<br />

h Towart et al 39<br />

k Hagiwara et al. 4<br />

&<br />

Inglesi et al 41<br />

data from gu<strong>in</strong>ea pig taenia coli<br />

Mellemkjaer et al 42<br />

data from rabbit coronary artery<br />

pEC 5p<br />

7.66 a<br />

/7.22i gu<strong>in</strong>ea pig<br />

6.43 b<br />

cat<br />

7.32d rabbit<br />

6.12b Cat<br />

6.24 d<br />

5.89 b<br />

5.96 d<br />

7.19 a<br />

5.70 b<br />

7.10 d<br />

rabbit<br />

cat<br />

rabbit<br />

cat<br />

gu<strong>in</strong>ea pig<br />

5.3 C<br />

rabbit<br />

rat<br />

8.12J gu<strong>in</strong>ea pig<br />

5.76 d<br />

rabbit<br />

8.6QJ gu<strong>in</strong>ea pig<br />

c Edgar 35<br />

ƒ Van Meel et al? 2<br />

i Christiaans et al. 56<br />

The break-through <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g the duration <strong>of</strong> action <strong>and</strong> lower<strong>in</strong>g <strong>of</strong> the negative<br />

<strong>in</strong>otropic <strong>and</strong> chronotropic activities came with nicardip<strong>in</strong>e (fig. 6; table 6 <strong>and</strong> 7)<br />

bear<strong>in</strong>g a large ester substituent <strong>and</strong> show<strong>in</strong>g less cardiodepressant effects than<br />

nifedip<strong>in</strong>e 43<br />

. Introduction <strong>of</strong> larger ester substituents, <strong>in</strong>stead <strong>of</strong> a lower alkyl ester, at<br />

105


Chapter 4<br />

the C 3 or C 5 position <strong>of</strong> the DHP r<strong>in</strong>g is accompanied by a longer duration <strong>of</strong><br />

antihypertensive action, which is believed to result from <strong>in</strong>creased lipophilicity.<br />

Azidop<strong>in</strong>e 44<br />

(fig. 6) proceeded from the <strong>in</strong>vestigation which led to nicardip<strong>in</strong>e, <strong>and</strong> is<br />

used <strong>in</strong> photoaff<strong>in</strong>ity labell<strong>in</strong>g / b<strong>in</strong>d<strong>in</strong>g studies to locate the L-type voltage-operated<br />

calcium channels <strong>in</strong> several tissues.<br />

In figure 6, a selection <strong>of</strong> the DHPs bear<strong>in</strong>g a large ester substituent is presented.<br />

These compounds are developed to obta<strong>in</strong> drugs with even more vascular selectivity<br />

than cardiac selectivity. In table 7, the <strong>in</strong> <strong>vitro</strong> relative calcium channel block<strong>in</strong>g<br />

activities (determ<strong>in</strong>ed on rabbit aorta strips contracted by K +<br />

) <strong>of</strong> the compounds <strong>in</strong><br />

figure 6, are presented.<br />

Benidip<strong>in</strong>e (KW-3049; fig. 6) exhibits a potent <strong>and</strong> long-last<strong>in</strong>g antihypertensive<br />

effect <strong>in</strong> spontaneously hypertensive rats <strong>and</strong> shows slow onset k<strong>in</strong>etics. Benidip<strong>in</strong>e<br />

has two asymmetric carbon atoms. It appeared that the enantiomer with the (S,S)configuration<br />

possesses the most potent <strong>and</strong> long last<strong>in</strong>g antihypertensive effect.<br />

This is <strong>in</strong> agreement with nicardip<strong>in</strong>e, where the (S)-enantiomer (C4 carbon atom <strong>of</strong><br />

the 1,4-DHP r<strong>in</strong>g) also shows stronger antihypertensive effects than the (R)enantiomer<br />

45<br />

.<br />

Elgodip<strong>in</strong>e (IQB-875; fig. 6; table 6) has a potent arterial vasodilator action <strong>in</strong><br />

anaesthetised dogs. This action results <strong>in</strong> a reduction <strong>of</strong> systemic blood pressure <strong>and</strong><br />

improved left ventricular systolic performance due to a reduction <strong>of</strong> the afterload.<br />

Although elgodip<strong>in</strong>e displays a 100-fold higher vascular than myocardial potency, it<br />

still has a marked negative <strong>in</strong>otropic <strong>and</strong> negative chronotropic activity. The decrease<br />

<strong>in</strong> contractile force is more evident than the reduction <strong>in</strong> contractile rate. Elgodip<strong>in</strong>e,<br />

oxodip<strong>in</strong>e <strong>and</strong> nifedip<strong>in</strong>e are as negative <strong>in</strong>otropic agents, determ<strong>in</strong>ed on gu<strong>in</strong>ea pig<br />

right atria, equipotent namely IC 5 0 = 5 x 10 9<br />

M. However, elgodip<strong>in</strong>e has a more<br />

potent negative chronotropic activity than oxodip<strong>in</strong>e or nifedip<strong>in</strong>e; IC 5 0 = 2.5 x 10~ 8<br />

M, 7 x 10' 7<br />

M, 2 x 10" 6<br />

M, respectively. The negative <strong>in</strong>otropic <strong>and</strong> chronotropic<br />

activities displayed by these three DHPs makes them unsuitable for the treatment <strong>of</strong><br />

cardiovascular disorders, such as congestive heart failure 46<br />

.<br />

TC-81 (fig. 6) is a strong antihypertensive agent with slow onset k<strong>in</strong>etics <strong>and</strong> longlast<strong>in</strong>g<br />

antihypertensive effect, especially after oral adm<strong>in</strong>istration 47<br />

* 48<br />

. The<br />

antihypertensive potency is approximately 3 times higher than that <strong>of</strong> nifedip<strong>in</strong>e or<br />

nicardip<strong>in</strong>e. The duration <strong>of</strong> the antihypertensive effect <strong>of</strong> TC-81 is twice as long as<br />

that <strong>of</strong> nicardip<strong>in</strong>e. Both TC-81 <strong>and</strong> nicardip<strong>in</strong>e demonstrate a negative chronotropic<br />

effect on isolated gu<strong>in</strong>ea pig right atria, but ^hese effects appear at about 100-fold<br />

higher concentrations as compared with the relax<strong>in</strong>g effects on K +<br />

-<strong>in</strong>duced<br />

contractile responses <strong>of</strong> isolated rat aorta.<br />

Pranid<strong>in</strong>e (OPC-13340, carry<strong>in</strong>g a 3-phenyl-2(E)-propenyl ester function; fig. 6)<br />

exerts an antihypertensive effect <strong>in</strong> both normotensive <strong>and</strong> hypertensive rats <strong>and</strong><br />

dogs 49<br />

. The equipotent antihypertensive action <strong>of</strong> pranid<strong>in</strong>e <strong>and</strong> TC-81 after oral<br />

adm<strong>in</strong>istration is stronger than that <strong>of</strong> nifedip<strong>in</strong>e or nicardip<strong>in</strong>e. The duration <strong>of</strong> the<br />

antihypertensive action is longer than that <strong>of</strong> nifedip<strong>in</strong>e <strong>and</strong> nicardip<strong>in</strong>e. Its<br />

pharmacological action <strong>and</strong> potency is equal to that <strong>of</strong> TC-81.<br />

106


RiOOC COORo<br />

compound R\ R 2<br />

nicardip<strong>in</strong>e Me CH 2CH 2<br />

azidop<strong>in</strong>e Et - CH 2CB<br />

benidip<strong>in</strong>e Me<br />

(KW-3049)<br />

elgodip<strong>in</strong>e iPr<br />

(IQB-875)<br />

TC-81<br />

Me<br />

pranid<strong>in</strong>e Me<br />

(OPC-13340)<br />

CV-159 Me<br />

— CH 2CH 2<br />

— CH<br />

-CH<br />

-(CH 2) (<br />

N— NH<br />

Figure 6: 1,4-Dihydropyrid<strong>in</strong>es with large ester substituents<br />

107<br />

3-N0 2<br />

2-CF3<br />

3-N0 2<br />

Chapter 4<br />

phenyl G<br />

phenyl C• ><br />

2<br />

2-F-5-N02<br />

3-NO2<br />

3-NO2


Chapter 4<br />

CV-159 (fig. 6) shows a similar <strong>in</strong>crease <strong>in</strong> coronary flow, aortic flow <strong>and</strong> heart rate<br />

<strong>and</strong> decrease <strong>in</strong> mean blood pressure as nicardip<strong>in</strong>e after <strong>in</strong>travenous adm<strong>in</strong>istration<br />

<strong>in</strong> anaesthetized open-chest dogs 50<br />

. However, CV-159 has a slower onset <strong>of</strong><br />

activation k<strong>in</strong>etics <strong>and</strong> a longer duration <strong>of</strong> antihypertensive action than nicardip<strong>in</strong>e.<br />

CV-159 has a slight negative <strong>in</strong>otropic <strong>and</strong> chronotropic which is absent with<br />

nicardip<strong>in</strong>e.<br />

Table 7: Relative calcium channel block<strong>in</strong>g potencies <strong>of</strong> DHPs from figure 6<br />

compound relative potency reference<br />

nicardip<strong>in</strong>e +++ 51<br />

benidip<strong>in</strong>e (S,S) +++ 45<br />

(R,R) ++ 45<br />

(S,R)/(R,S) + 45<br />

elgodip<strong>in</strong>e ++ 46<br />

TC-81 +++ 47<br />

pranid<strong>in</strong>e +++ 51<br />

CV-159 ++ 50<br />

The search for both more vascular selective <strong>and</strong> long-last<strong>in</strong>g drugs has led to other<br />

changes than presented so far. Orig<strong>in</strong>ally, structure-activity relationship studies on<br />

DHPs suggested that lower alkyl substituents were preferred at the 2-position on the<br />

1,4-DHPr<strong>in</strong>g.<br />

Amlodip<strong>in</strong>e (fig. 7) was the first compound demonstrat<strong>in</strong>g that extended substituents<br />

bear<strong>in</strong>g a basic functionality, l<strong>in</strong>ked via an ether oxygen atom to the 2-methyl group<br />

on the DHP r<strong>in</strong>g are well tolerated (fig. 7). It appeared that amlodip<strong>in</strong>e has an aff<strong>in</strong>ity<br />

for the DHP b<strong>in</strong>d<strong>in</strong>g site similar to that <strong>of</strong> nifedip<strong>in</strong>e, but exhibited a slower onset <strong>and</strong><br />

<strong>of</strong>fset k<strong>in</strong>etics <strong>and</strong> a longer duration <strong>of</strong> action. Although the enantiomer with the<br />

absolute (R)-(-)-configuration was designated to be the most active enantiomer 52<br />

,<br />

Goldmann et al. 53<br />

repeated the separation <strong>of</strong> the racemic mixture <strong>and</strong> found out that a<br />

serious mistake was made <strong>in</strong> the determ<strong>in</strong>ation <strong>of</strong> the absolute configuration. They<br />

established that the enantiomer with the (S)-(-)-configuration is the most active<br />

calcium channel blocker.<br />

S<strong>in</strong>ce the discovery <strong>of</strong> amlodip<strong>in</strong>e, more examples <strong>of</strong> DHPs with substituted higher<br />

alkyl cha<strong>in</strong>s, carry<strong>in</strong>g a basic function, have been <strong>in</strong>troduced. To the amlodip<strong>in</strong>e<br />

analogues belong SI 1568 <strong>and</strong> the thio-bioisosteres tiamdip<strong>in</strong>e 54<br />

<strong>and</strong> VUF 4731 55<br />

<strong>and</strong> its analogues 56<br />

(fig. 7).<br />

The racemic mixture <strong>of</strong> compound SI 1568 (fig. 7) was separated <strong>in</strong>to its enantiomers.<br />

In <strong>vitro</strong> calcium channel block<strong>in</strong>g studies revealed that (-)-Sl 1568 was 300 more<br />

potent than (+)-S11568 (table 8). (-)-S 11568 displays aff<strong>in</strong>ities similar to that <strong>of</strong><br />

nifedip<strong>in</strong>e <strong>and</strong> racemic compound (±)-S11568 for the DHP b<strong>in</strong>d<strong>in</strong>g site, determ<strong>in</strong>ed<br />

on rat heart microsomes, whereas it is 17-fold more potent than the (+)-S11568<br />

108


Chapter 4<br />

enantiomer.(-)-S11568 <strong>in</strong>hibits L-type Ca 2+<br />

-current <strong>in</strong> whole-cell patch clamp studies<br />

<strong>in</strong> both gu<strong>in</strong>ea pig ventricular myocytes <strong>and</strong> <strong>in</strong> the so-called A7r5 rat aortic smooth<br />

muscle cell l<strong>in</strong>e 30-fold more potent than (+)-Sl 1568 57<br />

. In vivo studies revealed that<br />

(-)-S 11568 has a higher selectivity for cardiac tissue than for vascular smooth muscle<br />

<strong>and</strong>, thus not hav<strong>in</strong>g the selectivity required for an antihypertensive agent 58<br />

.<br />

The presence <strong>of</strong> a basic moiety <strong>in</strong> amlodip<strong>in</strong>e is not an absolute requirement for either<br />

calcium channel block<strong>in</strong>g activity or selectivity for vascular tissue over the heart. This<br />

is demonstrated by a number <strong>of</strong> compounds <strong>in</strong> which the primary am<strong>in</strong>o group is<br />

replaced by polar functionalities such as amides (BBR-2160, NB-818, UK-51,656;<br />

fig.7) or by a number <strong>of</strong> five- <strong>and</strong> six-membered nonbasic polar heterocycles (UK-<br />

52,831, UK-55,444, UK-56,593; fig. 7).<br />

In table 8 the <strong>in</strong> <strong>vitro</strong> vascular calcium channel block<strong>in</strong>g activities <strong>and</strong> the negative<br />

<strong>in</strong>otropic activities on cardiac tissue <strong>of</strong> a number <strong>of</strong> amlodip<strong>in</strong>e analogues are<br />

presented. The biological activities demonstrate the tolerance <strong>of</strong> nonbasic<br />

substituents <strong>in</strong> calcium channel block<strong>in</strong>g activity <strong>and</strong> vascular selectivity.<br />

Table 8: Calcium channel block<strong>in</strong>g activities (pEC 50) <strong>and</strong> negative <strong>in</strong>otropic<br />

activities (pIC 25) <strong>of</strong> a number <strong>of</strong> amlodip<strong>in</strong>e analogues (fig. 6)<br />

compound PEC 5 0 pic 2 5 ref.<br />

(±)-amlodip<strong>in</strong>e 8.1 a 7.2 52<br />

(-)-amlodip<strong>in</strong>e 8.7 a nt 52<br />

(+)-amlodip<strong>in</strong>e 5.8 a nt 52<br />

(-)-S 11568 8.7 b nt 59<br />

(+)-S11568 6.9 b nt 59<br />

UK-51,656 8.4 a 7.1 60<br />

UK-52,831 8.2 a 6.3 61<br />

UK-55,444 8.1 a 6.5 62<br />

UK-56,593 8.8 a 6.7 63<br />

VUF4731 8.4 a nt 55<br />

BBR 2160 9.7 a 6.4* 65<br />

(±)-tiamdip<strong>in</strong>e 7.2C nt 64<br />

(-)-tiamdip<strong>in</strong>e 7.5C N<br />

(+)-tiamdip<strong>in</strong>e<br />

5.4C<br />

pEC$o-' Negative logarithm <strong>of</strong> the concentration required to <strong>in</strong>hibit 50% <strong>of</strong> K +<br />

<strong>in</strong>duced contraction <strong>in</strong> rat: a) aorta, b) mesenteric artery, c) tail artery<br />

-depolarization<br />

PIC25: Negative logarithm <strong>of</strong> the concentration required to depress contraction by 25% <strong>of</strong><br />

Langendorjf (gu<strong>in</strong>ea pig) heart<br />

nt: Not tested<br />

*: PIC50 <strong>in</strong> stead <strong>of</strong>plC2s<br />

109


Chapter 4<br />

F^OOC.<br />

H,CT N<br />

compound Ri R 2 Z X R 3<br />

amlodip<strong>in</strong>e CH 3 C 2H 5 2-C1 0 CH2CH2-NH2<br />

S-11568 CH3 C 2H 5 2,3-diCl 0 CH2CH20CH2CH2-NH2<br />

UK-51,656 CH3 C 2H 5 2-C1 0<br />

0<br />

UK-52,831 CH 3 C2H5 2,3-diCl 0<br />

UK-55,444 CH 3 C 2H 5 2,3-diCl O<br />

UK-56,593 CH 3 C 2H 5 2,3-diCl O<br />

NB-818 CH 3 i-C 3H 7 2,3-diCl O<br />

tiamdip<strong>in</strong>e CH 3 C 2H 5 3-N0 2<br />

BBR-2160 CH 3 C 2H 5 3-N0 2 S<br />

CHJCHJ'^<br />

N JL<br />

V<br />

— ^ ^ N H 2<br />

N—N<br />

CH 2CH 2. J*. \ ^<br />

N N NH 2<br />

H H<br />

C H 2C H 2<br />

Y<br />

X<br />

CH 2CH 2' ^»<br />

CH 2CH 2<br />

O<br />

X<br />

NH 2<br />

./^^w<br />

N N<br />

NH 2<br />

1<br />

I A<br />

; S S :<br />

CH2CH2-NH2<br />

O<br />

^^OH<br />

VUF4731 C2H5 C2H5 3-NO2 S<br />

(CH2) 6-NH2 Figure 7: DHPs with various substituents on the 2-position<br />

dihydropyrid<strong>in</strong>e r<strong>in</strong>g<br />

<strong>of</strong> the 1,4-<br />

110<br />

H


Chapter 4<br />

The cardiovascular activities <strong>of</strong> BBR-2160 have been determ<strong>in</strong>ed by Germ<strong>in</strong>i et al 65<br />

.<br />

In their test system, the relaxant effect <strong>of</strong> BBR-2160 (pECso = 9.72) on KMnduced<br />

contractions on rat aorta appeared to be about 74 <strong>and</strong> 21 times more potent than<br />

nifedip<strong>in</strong>e (pECso = 7.85) <strong>and</strong> amlodip<strong>in</strong>e(pEC5o = 8.40), respectively. The negative<br />

<strong>in</strong>otropic effects determ<strong>in</strong>ed on gu<strong>in</strong>ea pig atria were equal for all three compounds.<br />

The vasoselectivity is expressed as the ratio between the EC 5 0/IC 5 0 values on atria<br />

(negative <strong>in</strong>otropic activity) <strong>and</strong> aorta. In this respect, BBR 2160 is 16 <strong>and</strong> 188 times<br />

more selective than amlodip<strong>in</strong>e <strong>and</strong> nifedip<strong>in</strong>e, respectively. However, if the ratio<br />

between the negative chronotropic activity <strong>and</strong> the vasorelax<strong>in</strong>g effect (determ<strong>in</strong>ed<br />

on rat aorta) is considered, then BBR 2160 is not more vasoselective than amlodip<strong>in</strong>e<br />

(the negative <strong>in</strong>otropic activity <strong>of</strong> BBR 2160 is 23 times more potent than<br />

amlodip<strong>in</strong>e).<br />

In a number <strong>of</strong> tiamdip<strong>in</strong>e analogues <strong>and</strong> BBR-2160 analogues with a benzyl group<br />

next to the formamido function, thus <strong>in</strong>troduc<strong>in</strong>g an extra chiral center, it appeared<br />

that the chiral center <strong>in</strong> the 1,4-DHP r<strong>in</strong>g is determ<strong>in</strong>ant with regard to the chiral<br />

center <strong>in</strong> the substituent on the 2-position on the 1,4-DHP r<strong>in</strong>g. Like most DHP<br />

calcium channel blockers, the enantiomer with the R-configuration at the C 4-carbon<br />

atom <strong>of</strong> the 1,4-DHP r<strong>in</strong>g, is more active than the enantiomer with the S-<br />

configuration 66<br />

.<br />

Lacidip<strong>in</strong>e is the first commercially available DHP derivative bear<strong>in</strong>g a large lipophilic<br />

alkyl substituent at the ortho-position on the 4-phenyl r<strong>in</strong>g.<br />

Lacidip<strong>in</strong>e exerts a long-last<strong>in</strong>g <strong>in</strong>hibition<br />

on K +<br />

-depolarization-<strong>in</strong>duced contractions<br />

<strong>of</strong> vascular preparations <strong>in</strong> <strong>vitro</strong>, <strong>and</strong> a<br />

long-last<strong>in</strong>g antihypertensive action <strong>in</strong><br />

vivo. The PIC50 values determ<strong>in</strong>ed on K +<br />

-<br />

depolarization <strong>in</strong>duced contraction <strong>in</strong><br />

isolated rat aorta for lacidip<strong>in</strong>e <strong>and</strong><br />

nitrendip<strong>in</strong>e are 10.10 <strong>and</strong> 10.52,<br />

respectively 67<br />

.<br />

This lipophilic compound crosses the<br />

blood bra<strong>in</strong> barrier <strong>and</strong>, therefore, is<br />

believed to be suitable for the treatment <strong>of</strong><br />

cerebrovascular diseases 67<br />

.<br />

4.2 Calcium channel activators (CCAs)<br />

H 3COOC<br />

CH=CH-COO(CH 3) 3<br />

COOCH3<br />

'CH A<br />

11 lacidip<strong>in</strong>e<br />

Among the DHPs, both potent activators <strong>and</strong> blockers <strong>of</strong> calcium channels are<br />

present. The CCAs are able to stimulate Ca 2+<br />

-<strong>in</strong>flux through the L-type voltage-<br />

operated calcium channel. The calcium channel activators are structurally related to<br />

the DHP calcium channel blockers. A peculiar phenomenon is observed among some<br />

racemic DHPs. While one <strong>of</strong> the enantiomers exerts a calcium channel block<strong>in</strong>g<br />

111


Chapter 4<br />

activity, the other enantiomer is capable to activate the calcium channel. This<br />

important aspect that with<strong>in</strong> a s<strong>in</strong>gle class <strong>of</strong> compounds both activators <strong>and</strong><br />

<strong>in</strong>hibitors can be found, led to extended structure-activity relationship studies.<br />

Nowadays, Bay k 8644 12 68<br />

, which produces positive <strong>in</strong>otropic <strong>and</strong> vasoconstrictor<br />

effects, is the most used calcium channel activator <strong>in</strong> pharmacochemical research.<br />

Other compounds show<strong>in</strong>g comparable features are PN 202-791 13 <strong>and</strong> the lactone<br />

CGP 28-392 14. From both PN 202-791 ® <strong>and</strong> Bay k 864470, the enantiomer with the<br />

(S)-configuration <strong>of</strong> the chiral compound is the activator while the enantiomer with<br />

the (R)-configuration is a calcium channel blocker.<br />

12 (S)-(-)-Bay k 8644 13 (S)-(+)-PN-202-791<br />

H H<br />

14 CGP 28-392 15 FPL 64176<br />

Figure 8: Calcium channel activators<br />

The benzoylpyrrole derivative FPL 64176 15 is a new nondihydropyrid<strong>in</strong>e type <strong>of</strong><br />

7 1<br />

CCA . It produces similar contractile responses on cardiac <strong>and</strong> vascular smooth<br />

muscle as (S)-(-)-Bay k 8644 <strong>and</strong> (S)-(+)-PN 202-791. However, these contractile<br />

responses are noncompetitively antagonized by compounds belong<strong>in</strong>g to the classes<br />

<strong>of</strong> PA As, BTAs or DHPs. The different mechanism <strong>and</strong> site <strong>of</strong> action <strong>of</strong> FPL 64176<br />

demonstrate that the allosteric b<strong>in</strong>d<strong>in</strong>g site on the a rsubunit <strong>of</strong> the calcium channel<br />

prote<strong>in</strong> is dist<strong>in</strong>ct from the one known for CCBs <strong>and</strong> CCAs 72<br />

. Moreover, <strong>in</strong> <strong>vitro</strong> (S)-<br />

Bay k 8644 acts as a potent <strong>in</strong>hibitor <strong>of</strong> FPL 64176-<strong>in</strong>duced contractile responses <strong>in</strong><br />

112


Chapter 4<br />

rat tail artery 73<br />

. Also <strong>in</strong> vivo experiments suggest that (S)-Bay k 8644 exerts a<br />

negative allosteric <strong>in</strong>teraction on FPL 64176 b<strong>in</strong>d<strong>in</strong>g sites 74<br />

.<br />

Until now, there exists no cl<strong>in</strong>ical application for calcium channel activators.<br />

4.3 Calcium channel blockers with additional biological activities<br />

Besides vasodilat<strong>in</strong>g properties, most <strong>of</strong> the described DHPs <strong>of</strong>ten exhibit negative<br />

<strong>in</strong>otropic <strong>and</strong> chronotropic activities at the myocard. This is very <strong>of</strong>ten elicited by<br />

reflex tachycardia. One possibility to suppress the negative actions on the heart is to<br />

add a positive <strong>in</strong>otropic or chronotropic action. Traditionally, this was accomplished<br />

by drug comb<strong>in</strong>ation therapy. The other possibility is to comb<strong>in</strong>e the additional<br />

actions <strong>in</strong> one molecule afford<strong>in</strong>g so-called hybrid molecules. An example <strong>of</strong> useful<br />

hybrid molecules are the a x <strong>and</strong> p x adrenoceptor blockers, used <strong>in</strong> comb<strong>in</strong>ed drug<br />

therapy for the treatment <strong>of</strong> cardiovascular diseases <strong>and</strong> therefore the idea emerged<br />

to add their action to the calcium channel blockers.<br />

Many comb<strong>in</strong>ations to form hybrid molecules have been carried out. In figure 9 only<br />

two examples <strong>of</strong> hybrid molecules with a DHP moiety are shown, especially because<br />

they have been described <strong>in</strong> detail <strong>in</strong> chapter 2.<br />

16 manidip<strong>in</strong>e (CV-4093) 17 CD -349<br />

Figure 9: Two examples <strong>of</strong> calcium channel block<strong>in</strong>g hybrid molecules<br />

Manidip<strong>in</strong>e (CV-4093; fig. 9) 16 is a long-act<strong>in</strong>g 1,4-DHP with a piperaz<strong>in</strong>e moiety at<br />

the ester position 75<br />

. This piperaz<strong>in</strong>e moiety is <strong>of</strong>ten present <strong>in</strong> oc radrenoceptor<br />

blockers <strong>and</strong> vasodilators, such as flunariz<strong>in</strong>e. CD-349 (fig. 9) 17 is a 1,4-DHP with<br />

nitrate ester groups 76<br />

. Nitrate esters (like nitroglycer<strong>in</strong> <strong>and</strong> nicor<strong>and</strong>il) are potent<br />

vasodilators used for the treatment <strong>of</strong> ang<strong>in</strong>a pectoris. Although elgodip<strong>in</strong>e (fig. 6) is<br />

classified as a DHP calcium channel blocker, ifc has to be considered as a hybrid<br />

molecule, because it has a structure moiety which resembles to verapamil.<br />

Evidently, comb<strong>in</strong>ations <strong>of</strong> antihypertensive drugs, antiang<strong>in</strong>al drugs, <strong>and</strong><br />

cardiotonics can afford hybrid molecules with improved therapeutic value.<br />

4.4 Endogenous lig<strong>and</strong>s<br />

Although the calcium channel activators <strong>and</strong> blockers discussed so far are all<br />

exogenous lig<strong>and</strong>s, recently several putative endogenous lig<strong>and</strong>s have been<br />

reported 77<br />

. However <strong>in</strong> most cases the chemical structure <strong>of</strong> the newly isolated<br />

113


Chapter 4<br />

endogenous lipid <strong>and</strong> peptidic fractions have not been elucidated yet. By screen<strong>in</strong>g<br />

methods it was found that hepar<strong>in</strong> <strong>and</strong> certa<strong>in</strong> arachidonic acid derivatives are able to<br />

modify DHP b<strong>in</strong>d<strong>in</strong>g or the L-type calcium current 78<br />

. Johnson et al. 79<br />

have isolated a<br />

lipid-soluble bra<strong>in</strong> fraction that noncompetitively <strong>in</strong>hibits DHP b<strong>in</strong>d<strong>in</strong>g to rat cortex<br />

membranes <strong>and</strong> elucidated the chemical structure <strong>of</strong> the fraction. The structure, Narachidonic<br />

acid-2-hydroxy-ethylamide, was confirmed by comparison <strong>of</strong> this<br />

substance with the synthetically obta<strong>in</strong>ed compound.<br />

The few examples <strong>of</strong> endogenous lig<strong>and</strong>s <strong>in</strong>dicate that we are just at the start <strong>of</strong> a<br />

search for new lig<strong>and</strong>s. Potent endogenous lig<strong>and</strong>s could help to better underst<strong>and</strong><br />

<strong>and</strong> further elucidate calcium channel function<strong>in</strong>g. F<strong>in</strong>ally, the existence <strong>of</strong> these<br />

endogenous lig<strong>and</strong>s fulfil to the criteria for voltage-operated calcium channels to be<br />

regarded as receptors.<br />

4.5 Diphenvlbutvlpiperid<strong>in</strong>es (DPBPs)<br />

The diphenylbutylpiperid<strong>in</strong>es, structurally related with the diphenylalkylam<strong>in</strong>e-type<br />

calcium channel blockers, are believed to def<strong>in</strong>e a fourth site <strong>of</strong> action <strong>of</strong> CCBs, this<br />

class <strong>in</strong>cludes both selective <strong>and</strong> non-selective compounds 80<br />

. This class will not be<br />

discussed here, because this subject has extensively described by Caldirola 81<br />

' 82<br />

.<br />

4.6 Miscellaneous selective <strong>and</strong> non-selective compounds<br />

A number <strong>of</strong> compounds with selective or non-selective calcium channel block<strong>in</strong>g<br />

activity have been described <strong>in</strong> several reviews 83<br />

* 84<br />

' 85<br />

. Although compounds is this<br />

group exhibit a large variety <strong>in</strong> chemical structure, <strong>in</strong> several <strong>of</strong> them moieties are<br />

present which could be considered as pharmacophores for calcium channel block<strong>in</strong>g<br />

activity (for <strong>in</strong>stance, some compounds bear the (2-[3,4-dimethoxyphenyl]ethyl)am<strong>in</strong>o<br />

substituent identified <strong>in</strong> verapamil).<br />

Recently some potent <strong>and</strong> selective CCBs have been discovered which could<br />

contribute to further def<strong>in</strong>e novel sites <strong>of</strong> action on calcium channels. Among them<br />

are HOE 166 86<br />

18 <strong>and</strong> fant<strong>of</strong>arone (SR 33557) 87<br />

19 (fig. 10).<br />

18 HOE 166 19 fant<strong>of</strong>arone (SR 33557)<br />

Figure 10: Novel compounds believed to def<strong>in</strong>e additional classes <strong>of</strong> CCBs.<br />

114


Chapter 4<br />

The compound HOE 166 18 (fig. 10), both competitively <strong>and</strong> non-competitively<br />

<strong>in</strong>hibits classical CCB b<strong>in</strong>d<strong>in</strong>g to muscle membranes with high aff<strong>in</strong>ity (K d= 0.25 nM)<br />

<strong>and</strong> blocks L-type Ca 2+<br />

-channel <strong>in</strong> smooth muscle cells 88<br />

.<br />

The calcium channel blocker fant<strong>of</strong>arone 19 (fig. 10) is an <strong>in</strong>hibitor <strong>of</strong> K +<br />

-<br />

depolarization-<strong>in</strong>duced contractions <strong>in</strong> rat aorta <strong>in</strong> <strong>vitro</strong> with an IC 5 0 value <strong>of</strong> 5.6 nM<br />

<strong>and</strong> <strong>in</strong>hibits [ 3<br />

H]-(±)-nitrendip<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g with a K { value <strong>of</strong> 0.19 nM. Fant<strong>of</strong>arone<br />

has a dist<strong>in</strong>ct b<strong>in</strong>d<strong>in</strong>g site on the 04-subunit <strong>of</strong> the L-type calcium channel prote<strong>in</strong><br />

<strong>and</strong> exerts a negative allosteric <strong>in</strong>teraction on DHPs, BTAs <strong>and</strong> PAAs. The <strong>in</strong>doliz<strong>in</strong>e<br />

group <strong>in</strong> fant<strong>of</strong>arone is not essential for its calcium channel block<strong>in</strong>g activity as was<br />

demonstrated by compounds <strong>in</strong> which the <strong>in</strong>doliz<strong>in</strong>e group was replaced by an<br />

<strong>in</strong>dole group which afforded even more potent calcium channel blockers 89<br />

.<br />

5 Structure activity relationships <strong>and</strong> stereoselectivity <strong>of</strong> CCBs<br />

In 1984 Meyer 90<br />

reviewed the structure-activity relationship (SAR) studies on<br />

verapamil 1 (fig. 2) <strong>and</strong> diltiazem 8 (fig. 4) analogues; s<strong>in</strong>ce then relatively few<br />

progress seems to have been made.<br />

SAR studies on verapamil analogues have revealed that very few structural<br />

modifications on verapamil are allowed. Verapamil has many rotational degrees <strong>of</strong><br />

freedom <strong>and</strong> all attempts to restrict the molecular flexibility with rigid analogues have<br />

resulted <strong>in</strong> a drastic decrease <strong>of</strong> calcium channel block<strong>in</strong>g activity 91<br />

.<br />

The basic am<strong>in</strong>oalkyl substituent at the Nx substituent <strong>of</strong> the seven-membered r<strong>in</strong>g<br />

<strong>and</strong> the C4-phenyl moiety are believed to constitute the two pharmacophoric groups<br />

<strong>of</strong> SQ 32,910 10 (fig. 4), a diltiazem analogue. The suggestion made by Banish et al. 92<br />

that the seven-membered r<strong>in</strong>g only acts as a spacer between the two pharmacophoric<br />

groups was confirmed by conformational^ rigid diltiazem analogues conta<strong>in</strong><strong>in</strong>g a<br />

bicyclic framework, show<strong>in</strong>g similar calcium channel block<strong>in</strong>g activities as diltiazem.<br />

The dihydropyrid<strong>in</strong>es <strong>in</strong>clude both calcium channel blockers <strong>and</strong> activators <strong>and</strong>,<br />

therefore, it is not surpris<strong>in</strong>g that the structure-activity relationships <strong>of</strong> these<br />

compounds belong to the most extensively studied.<br />

Both qualitative <strong>and</strong> quantitative structure-activity <strong>in</strong>vestigations have been carried<br />

out by Loev et al. 93<br />

based on <strong>in</strong> <strong>vitro</strong> obta<strong>in</strong>ed hypotensive data, <strong>and</strong> by<br />

Rodenkirchen et al. 94<br />

based on <strong>in</strong> <strong>vitro</strong> cardiac muscle experiments. For a number <strong>of</strong><br />

ethyl 2,6-dimethyl-l,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylates<br />

requirements are def<strong>in</strong>ed:<br />

the basic structural<br />

1) the 1,4-DHP r<strong>in</strong>g is essential (oxidation to pyrid<strong>in</strong>es affords <strong>in</strong>active compounds)<br />

2) the presence <strong>of</strong> N rH is essential (alkylation reduces activity)<br />

3) activity <strong>in</strong>creases with substitution at C 4-carbon atom <strong>in</strong> the sequence <strong>of</strong> H < Me <<br />

cycloalkyl < heterocycle < phenyl < substituted phenyl<br />

4) substituents <strong>in</strong> the 4-phenyl r<strong>in</strong>g are preferred <strong>in</strong> the sequence ortho > meta »<br />

para<br />

5) ester groups <strong>in</strong> the C 3 <strong>and</strong> C 5 position are important<br />

115


Chapter 4<br />

Although <strong>in</strong> the past 15 years a number <strong>of</strong> DHPs appeared which do not completely<br />

imply with the def<strong>in</strong>ed structural requirements, the proposed general model still<br />

st<strong>and</strong>s today.<br />

An excellent description <strong>of</strong> the important role <strong>of</strong> chirality <strong>and</strong> conformation <strong>in</strong><br />

calcium channel modulation is given by Goldmann <strong>and</strong> StoltefuB 95<br />

. Therefore the role<br />

<strong>of</strong> chirality <strong>and</strong> conformation will be briefly discussed <strong>in</strong> the follow<strong>in</strong>g section.<br />

Chirality is an important property for drug-receptor <strong>in</strong>teractions for both calcium<br />

channel activators <strong>and</strong> blockers. Among them, compounds are found <strong>in</strong> which one <strong>of</strong><br />

the enantiomers is more potent than the other enantiomer, or even exhibits a reverse<br />

action. Differences <strong>in</strong> steric <strong>and</strong> electronic properties between the C3 <strong>and</strong> C5 substituents <strong>in</strong>crease the stereoselectivity <strong>of</strong> DHP <strong>in</strong>teractions 96<br />

. Replacement <strong>of</strong> the<br />

C3-carboxyalkyl group by hydrogen results <strong>in</strong> a decrease <strong>in</strong> activity for both<br />

activators <strong>and</strong> blockers 97<br />

. Holtje 98<br />

suggested that the activator/blocker behaviour is<br />

controlled by substituents on the C5-position, whereas phenyl r<strong>in</strong>g substituents<br />

determ<strong>in</strong>e the negative <strong>in</strong>otropic activity, as was shown by Rodenkirchen et al. 94<br />

Tissue selectivity is determ<strong>in</strong>ed by the ester substituents. The ester groups are<br />

thought to fit <strong>in</strong>to specific lipophilic pockets <strong>in</strong> the DHP receptor, <strong>and</strong> their<br />

differences <strong>in</strong> volume, shape <strong>and</strong> lipophilic character determ<strong>in</strong>e the tissue<br />

selectivity 99<br />

.<br />

The N rH group <strong>of</strong> the DHP r<strong>in</strong>g is important for activity <strong>and</strong> is believed to be<br />

necessary for hydrogen bond<strong>in</strong>g <strong>in</strong>teractions to an acceptor group <strong>of</strong> the calcium<br />

channel. By replacement <strong>of</strong> the am<strong>in</strong>e proton by an alkyl group or oxidation to a<br />

pyrid<strong>in</strong>e r<strong>in</strong>g, the calcium channel block<strong>in</strong>g activity is reduced dramatically 99<br />

.<br />

The 1,4-DHPs like nifedip<strong>in</strong>e <strong>and</strong> nitrendip<strong>in</strong>e possess rotational freedom between the<br />

4-phenyl r<strong>in</strong>g <strong>and</strong> the 1,4-DHP r<strong>in</strong>g, <strong>and</strong> both ester substituents.<br />

X-ray crystallographic methods <strong>and</strong> quantum chemical calculations on 1,4-DHPs have<br />

revealed a molecular structure which most properly can be described <strong>in</strong> nautical<br />

terms. The crystallographic studies <strong>in</strong>dicated that the 1,4-DHP r<strong>in</strong>g adopts a flattened<br />

boat conformation <strong>and</strong> the N ratom is def<strong>in</strong>ed as the stern position <strong>and</strong> the C 4-atom<br />

as the bow position <strong>in</strong> the boat conformation. A boat conformation implies that the 4phenyl<br />

r<strong>in</strong>g can be orientated either <strong>in</strong> a pseudo axial or a pseudo equatorial position.<br />

The crystallographic data demonstrate that the 4-phenyl r<strong>in</strong>g is orientated <strong>in</strong> a<br />

pseudo axial conformation at the bow <strong>and</strong> lies close to the N rC 4 vertical bisect<strong>in</strong>g<br />

plane <strong>of</strong> the 1,4-DHP r<strong>in</strong>g (coplanar to the N rC 4 vertical plane <strong>of</strong> the 1,4-DHP r<strong>in</strong>g).<br />

Ortho substituents on the 4-phenyl r<strong>in</strong>g <strong>of</strong> nifedip<strong>in</strong>e derivatives are all positioned<br />

towards the C 4-hydrogen atom <strong>of</strong> the 1,4-DHP r<strong>in</strong>g (synperiplanar position), as was<br />

determ<strong>in</strong>ed by the nuclear Overhauser enhancement method 100<br />

. The synperiplanar<br />

position is most probably also adopted by meta-substituted 4-phenyl r<strong>in</strong>gs (fig. 11).<br />

The carboxylic esters play an important role <strong>in</strong> tissue selectivity <strong>and</strong> this selectivity is<br />

thought to be achieved by the orientation <strong>and</strong> the lipophilicity <strong>of</strong> the ester<br />

substituents.<br />

116


Figure 11: Molecular structure <strong>of</strong> alkyl 2,6-dimethyl-4-(substituted-phenyl)-l,4-<br />

RO<br />

dihydropyrid<strong>in</strong>e-3,5-dicarboxylates<br />

Chapter 4<br />

The position <strong>of</strong> each ester group can be orientated either <strong>in</strong> a synperiplanar (sp or cis)<br />

or an antiperiplanar (ap or trans) conformation with regard to the adjo<strong>in</strong><strong>in</strong>g carboncarbon<br />

double bond <strong>in</strong> the 1,4-DHP r<strong>in</strong>g (fig 12). X-ray crystallographic experiments<br />

revealed that DHPs with an ortho-substituent on the 4-phenyl r<strong>in</strong>g prefer the sp/sp<br />

conformation for their ester groups, while meta or para-substituted 4-phenyl-1,4-<br />

DHPs prefer the ap/sp conformation.<br />

H H H<br />

ap / ap ap / sp sp / sp<br />

Figure 12: Possible orientations <strong>of</strong> the esters groups on the 1,4-DHP r<strong>in</strong>g<br />

No ap/ap ester conformations have yet been discovered 101<br />

. The ester groups form<br />

hydrogen bonds only to their keto oxygen atoms. An ortho substituent at the 4phenyl<br />

r<strong>in</strong>g shields the outer or bowsprit side <strong>of</strong> the DHP molecule, thus prevent<strong>in</strong>g<br />

hydrogen bond formation to the ester group <strong>in</strong> the ap-conformation.<br />

In the f<strong>in</strong>al part <strong>of</strong> this section, exceptions on the structural requirements are<br />

discussed <strong>and</strong> provided with some examples.<br />

The first requirement, the presence <strong>of</strong> the 1,4-DHP r<strong>in</strong>g is not confirmed by some 1,4-<br />

DHP mimetics, as is demonstrated by 3-substituted-l,2,3,4-tetrahydropyrimid<strong>in</strong>es 102<br />

.<br />

Among the 1,2,3,4-tetrahydropyrimid<strong>in</strong>es potent calcium channel blockers, such as<br />

117


Chapter 4<br />

SQ 32,321 20103 <strong>and</strong> SQ 32,547 21*04 (fig. n ; tabie 9), exist with long-last<strong>in</strong>g<br />

antihypertensive action. At the N3-atom <strong>of</strong> these 1,2,3,4-tetrahydropyrimid<strong>in</strong>es a wide<br />

variety <strong>of</strong> substituents (alkyl, acyl, carbamate) are tolerated <strong>in</strong> <strong>vitro</strong>, while at the C5 position the isopropyl ester is preferred. However, <strong>in</strong> vivo the tolerance <strong>of</strong> several N3 substituents is restricted due to rapid metabolization to <strong>in</strong>active compounds 105<br />

.<br />

20 SQ 32,321 21 SQ 32,547<br />

Figure 13: 1,2,3,4-Tetrahydropyrimid<strong>in</strong>es as potent 1,4-dihydropyrid<strong>in</strong>e mimetics<br />

Table 9: Calcium channel block<strong>in</strong>g activities (pICso) <strong>of</strong> the enantiomers <strong>of</strong> SQ 32,321<br />

<strong>and</strong> SQ 32,547 determ<strong>in</strong>ed on rabbit aorta<br />

(R)-SQ32,321 (S)-SQ32,321 (R)-SQ32,547 (S)-SQ32,547 nitrendip<strong>in</strong>e<br />

pIC 5o 8.07 5 142 7JJ2 5 193 9.00<br />

It is proposed that substituents on the N 3-atom <strong>of</strong> the 1,2,3,4-tetrahydropyrimid<strong>in</strong>es<br />

exert a nonspecific effect, not directly participat<strong>in</strong>g <strong>in</strong> receptor b<strong>in</strong>d<strong>in</strong>g. The<br />

suggestion that only one alkylcarbonyl moiety is required <strong>in</strong> receptor b<strong>in</strong>d<strong>in</strong>g is<br />

confirmed by the DHP analogues SM-6586 22 <strong>and</strong> S-312-d 23 (fig. 14).<br />

H<br />

22 SM-6586 23 S-312-d<br />

Figure 14: 1,4-DHPs with only one alkylcarbonyl moiety<br />

SM-6586 22 (fig. 14) demonstrates that the <strong>in</strong>troduction <strong>of</strong> a 1,2,4-oxadiazolyl group<br />

at the 3-position on the 1,4-DHP r<strong>in</strong>g <strong>in</strong>stead <strong>of</strong> a simple alkylcarbonyl moiety can<br />

afford CCBs with longer duration <strong>of</strong> antihypertensive action. The (+)-enantiomer <strong>of</strong><br />

118


Chapter 4<br />

SM-6586 was a more potent calcium channel blocker than the (-)-enantiomer (table<br />

10). Like the DHPs with large alkylcarbonyl moieties, it is believed that the <strong>in</strong>creased<br />

lipophilicity <strong>of</strong> SM-6586 contributes to the longer duration <strong>of</strong> action 106<br />

.<br />

Table 10: Calcium channel block<strong>in</strong>g activities (pA2) <strong>of</strong> the enantiomers <strong>of</strong> SM-6586<br />

determ<strong>in</strong>ed on rat aorta<br />

(±)-SM-6586 (+)-SM-6586 (-)-SM-6586 nicardip<strong>in</strong>e nitrendip<strong>in</strong>e<br />

pA 2 9.76 10.06 8A6 9L80 10.19<br />

The dihydrothienopyrid<strong>in</strong>e S-312-d 23 (fig. 14) bears a thiophene r<strong>in</strong>g <strong>in</strong>stead <strong>of</strong> an<br />

alkylcarbonyl moiety <strong>and</strong> exhibits slightly more potent vasodilat<strong>in</strong>g properties than<br />

nifedip<strong>in</strong>e <strong>and</strong> nicardip<strong>in</strong>e. The enantiomer with the (S)-(+)-configuration is more<br />

1 0 7<br />

potent than the (R)-(-)-enantiomer (table ll) . The (S)-enantiomers <strong>of</strong> most <strong>of</strong> the<br />

known DHP calcium channel blockers are more potent than the (R)-enantiomers.<br />

Often exceptions to this behaviour are caused by errors <strong>in</strong> the determ<strong>in</strong>ation <strong>of</strong> the<br />

exact configuration 53<br />

' 95<br />

.<br />

Table 11: Calcium channel block<strong>in</strong>g activities (pICso) <strong>of</strong> the enantiomers <strong>of</strong> S-312-d<br />

determ<strong>in</strong>ed on rabbit femoral artery<br />

(S)-(+)-S-312-d (R)-(-)-S-312-d<br />

pIC 5o 9.28 7.96<br />

6 B<strong>in</strong>d<strong>in</strong>g sites <strong>of</strong> the L-type voltage-operated calcium channel lig<strong>and</strong>s<br />

The b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s <strong>of</strong> the three major classes <strong>of</strong> CCBs have recently been<br />

established <strong>and</strong> are all located at the a x subunit <strong>of</strong> the L-type calcium channel<br />

prote<strong>in</strong>. The DHP <strong>and</strong> PAA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s on skeletal muscle L-type calcium<br />

channels were localized with fluorescent sensitive DHPs <strong>and</strong> PA As. After purification<br />

<strong>of</strong> these b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s <strong>and</strong> antibody mapp<strong>in</strong>g techniques these doma<strong>in</strong>s were<br />

identified. It appeared that the PAA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> is located at am<strong>in</strong>o acid residues<br />

at the <strong>in</strong>tracellular side near the cytoplasmic open<strong>in</strong>g <strong>of</strong> the channel 108<br />

. The DHP<br />

b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> has been found at am<strong>in</strong>o acid residues at the extracellular side close<br />

to the extracellular mouth <strong>of</strong> the channel pore 109<br />

* 110<br />

.<br />

The location <strong>of</strong> the BTA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> has been located with the quaternary<br />

analogue (SQ 32,428) <strong>of</strong> the diltiazem like benzazep<strong>in</strong>e SQ 32,910 10. SQ 32,428<br />

blocks the L-type calcium channel <strong>in</strong> A7r5 cell l<strong>in</strong>es only after extracellular <strong>and</strong> not<br />

after <strong>in</strong>tracellular application. Therefore, the conclusion has been drawn that the<br />

benzothiazep<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> is located near the extracellular side <strong>of</strong> the calcium<br />

channel pore 111<br />

.<br />

The PAAs <strong>and</strong> DHPs allosterically <strong>in</strong>fluence each others b<strong>in</strong>d<strong>in</strong>g, which can be<br />

expla<strong>in</strong>ed by their b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s, found on the same polypeptide transmembrane<br />

119


Chapter 4<br />

spann<strong>in</strong>g segment <strong>of</strong> the channel. In particularly, PAAs are l<strong>in</strong>ked <strong>in</strong> a negative<br />

allosteric manner to the DHPs, which means that they decrease the number <strong>of</strong> b<strong>in</strong>d<strong>in</strong>g<br />

sites <strong>of</strong> the DHPs. The benzothiazep<strong>in</strong>es are l<strong>in</strong>ked <strong>in</strong> a positively allosteric way, <strong>and</strong><br />

therefore <strong>in</strong>crease the number <strong>of</strong> b<strong>in</strong>d<strong>in</strong>g sites for DHPs. In figure 15 an allosteric<br />

model <strong>of</strong> the drug b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s <strong>of</strong> L-type channels is depicted, also show<strong>in</strong>g the<br />

fourth proposed class <strong>of</strong> CCBs, the diphenylbutylpiperid<strong>in</strong>es <strong>and</strong> the CCBs HOE 166<br />

<strong>and</strong> fant<strong>of</strong>arone.<br />

BTA = benzothiazep<strong>in</strong>es<br />

DHP =<br />

1,4-dihydropyrid<strong>in</strong>es<br />

(conta<strong>in</strong><strong>in</strong>g both calcium<br />

channel blockers <strong>and</strong><br />

activators)<br />

PAA =<br />

phenylalkylam<strong>in</strong>es<br />

SR =<br />

fant<strong>of</strong>arone (SR 33557)<br />

DPBP =<br />

diphenylbutylpiperid<strong>in</strong>es<br />

Figure 15: Allosteric <strong>in</strong>teractions between several calcium channel blockers [(-) =<br />

negative; (+) = positive]<br />

The allosteric <strong>in</strong>teractions between DHPs <strong>and</strong> BTAs are temperature-dependent. At<br />

low temperature (0°C), BTAs <strong>and</strong> DHPs <strong>in</strong>hibit each others b<strong>in</strong>d<strong>in</strong>g, at higher<br />

temperature (37°C) BTAs <strong>and</strong> DHPs exert a positive allosteric <strong>in</strong>teraction at each<br />

others b<strong>in</strong>d<strong>in</strong>g 83<br />

.<br />

7 State <strong>of</strong> the calcium channel<br />

The "modulated receptor hypothesis", orig<strong>in</strong>ally proposed to expla<strong>in</strong> blockade <strong>of</strong><br />

Na +<br />

-channels, has also been applied for Ca 2+<br />

-channels 112<br />

. This hypothesis propounds<br />

that b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> a drug to a site located with<strong>in</strong> the channel is modulated by the socalled<br />

activation state <strong>of</strong> the channel, determ<strong>in</strong>ed by, <strong>in</strong>ter alia, the membrane<br />

potential, <strong>and</strong> implicates different aff<strong>in</strong>ities <strong>and</strong> different structure-activity<br />

relationships <strong>of</strong> a drug for the dist<strong>in</strong>ct channel states. Electrophysiological studies to<br />

characterize the calcium channel revealed that the calcium channel can exist <strong>in</strong> three<br />

dist<strong>in</strong>ct states called the closed, <strong>in</strong>activated (or rest<strong>in</strong>g), <strong>and</strong> open state. Under normal<br />

physiological conditions without the presence <strong>of</strong> calcium channel modulators, the<br />

120


Chapter 4<br />

<strong>in</strong>activated (rest<strong>in</strong>g) state is the naturally occurr<strong>in</strong>g channel state. Each channel state<br />

has a different mode <strong>of</strong> gat<strong>in</strong>g behaviour, orig<strong>in</strong>ally postulated by Hess et al. 113<br />

. In<br />

s<strong>in</strong>gle channel current experiments three different modes were def<strong>in</strong>ed.<br />

In mode 0, no channel open<strong>in</strong>gs are recorded <strong>and</strong> the channels fails to open <strong>in</strong><br />

response to depolarization<br />

In mode 1, short open<strong>in</strong>gs <strong>of</strong> the channel are recorded<br />

In mode 2, long-last<strong>in</strong>g open<strong>in</strong>gs <strong>and</strong> very short clos<strong>in</strong>gs are recorded. This mode<br />

can only seldom be observed <strong>in</strong> the absence <strong>of</strong> drugs<br />

CLOSED<br />

mode 0<br />

INACTIVATED<br />

(RESTING)<br />

mode 1<br />

OPEN<br />

mode 2<br />

Figure 16: Calcium channel states accord<strong>in</strong>g to the "modulated receptor hypothesis"<br />

The open<strong>in</strong>g probability (P 0) <strong>of</strong> the calcium channel varies from closed (P Q = 0) to<br />

open (P 0 = 1). CCBs modify the open<strong>in</strong>g probability <strong>of</strong> the channel by favour<strong>in</strong>g<br />

mode 0 behaviour <strong>of</strong> gat<strong>in</strong>g, while the CCAs <strong>in</strong>crease Ca 2+<br />

-currents by promot<strong>in</strong>g the<br />

long channel open<strong>in</strong>gs (mode 2).<br />

In conclusion, although <strong>in</strong>tensive <strong>in</strong>formation on calcium channel modulators has<br />

become available, several questions rema<strong>in</strong> to be answered. Biochemical methods<br />

such as site-directed mutagenesis <strong>and</strong> aff<strong>in</strong>ity label<strong>in</strong>g methods can contribute to<br />

underst<strong>and</strong> the structure-activity relationships <strong>of</strong> calcium channel modulators. Based<br />

on the known prote<strong>in</strong> structure <strong>and</strong> the aff<strong>in</strong>ities for the different k<strong>in</strong>ds <strong>of</strong> isolated<br />

b<strong>in</strong>d<strong>in</strong>g sites, it would be challeng<strong>in</strong>g to design better tissue selective <strong>and</strong> cl<strong>in</strong>ically<br />

efficacious drugs <strong>in</strong> the treatment <strong>of</strong> cardiovascular diseases, as well as several other<br />

vascular diseases.<br />

References N<br />

1 Spedd<strong>in</strong>g M, Paoletti R, Classification <strong>of</strong> calcium channels <strong>and</strong> the sites <strong>of</strong> action <strong>of</strong><br />

drugs modify<strong>in</strong>g channel function, Pharmacol.Rev., 44, 363-376 (1992)<br />

2 Cohen CJ, Ertel EA, McHardy Smith M, Venema VJ, Adams ME, Leibowitz MD, High<br />

aff<strong>in</strong>ity <strong>of</strong> myocardial L-type calcium channels by the spider tox<strong>in</strong> co-aga-tox<strong>in</strong> IIIA:<br />

advantages over 1,4-dihydropyrid<strong>in</strong>es, Mol.PharmacoL, 42, 947-951 (1992)<br />

3 Saccomano NA, Ganong AH, Diversity <strong>of</strong> neuronal calcium channels, Ann.Rep.<br />

Med.Chem., 26, 33-42 (1991)<br />

121


Chapter 4<br />

4 Bertol<strong>in</strong>o M, Ll<strong>in</strong>as RR, The central role <strong>of</strong> voltage-activated <strong>and</strong> receptor-operated<br />

calcium channels <strong>in</strong> neuronal cells, Ann.Rev.Pharmacol.Toxicol., 32, 399-421 (1992)<br />

5 Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima<br />

M, Matsuo H, Hirose T, Numa S, Primary structure <strong>of</strong> the receptor for calcium channel<br />

blockers from skeletal muscle, Nature, 328, 313-318 (1987)<br />

6 Grove A, Tomich JM, Montal M, A molecular bluepr<strong>in</strong>t for the pore-form<strong>in</strong>g structure<br />

<strong>of</strong> voltage-gated calcium channels, Proc.Natl.Acad.Sci.USA, 88,6418-6422 (1991)<br />

7 Tang S, Mikala G, Bah<strong>in</strong>ski A, Yatani A, Varadi G, Schwartz A, Molecular localization<br />

<strong>of</strong> ion selectivity sites with<strong>in</strong> the pore <strong>of</strong> a human L-type cardiac calcium channel,<br />

J.Biol.Chem., 268, 13026-13029 (1993)<br />

8 Slish DF, Schultz D, Schwartz A, Molecular biology <strong>of</strong> the calcium antagonist receptor,<br />

Hypertension, 19, 19-24 (1992)<br />

9 Krizanova O, Diebold R, Lory P, Schwartz A, Molecular aspects <strong>and</strong> diversity <strong>of</strong><br />

voltage-dependent calcium channels, Circ, 87, VII-44-VII-48 (1993)<br />

10 Lacerda AE, Kim HS, Ruth P, Perez-Reyes E, Flockerzi V, H<strong>of</strong>mann F, Birnbaumer<br />

L, Brown AM, Normalization <strong>of</strong> current k<strong>in</strong>etics by <strong>in</strong>teraction between the ai <strong>and</strong> p<br />

subunits <strong>of</strong> the skeletal muscle dihydropyrid<strong>in</strong>e-sensitive Ca 2+<br />

channel, Nature, 352,<br />

527-530 (1991)<br />

11 Catterall WA, Functional subunit structure <strong>of</strong> voltage-gated calcium channels, Science,<br />

253, 1499-1500 (1991)<br />

12 Varadi G, Lory P, Schultz D, Varadi M, Schwartz A, Acceleration <strong>of</strong> activation <strong>and</strong><br />

<strong>in</strong>activation by the p subunit <strong>of</strong> the skeletal muscle calcium channel, Nature, 352,159-<br />

162 (1991)<br />

13 S<strong>in</strong>ger D, Biel M, Lotan I, Flockerzi V, H<strong>of</strong>mann F, Dascal N, The roles <strong>of</strong> the<br />

subunits <strong>in</strong> the function <strong>of</strong> the calcium channel, Science, 253,1553-1556 (1991)<br />

14 Witcher DR, De Waard M, Sakamoto J, Franz<strong>in</strong>i-Armstrong C, Pragnell M, Kahl SD,<br />

Campbell KP, Subunit identification <strong>and</strong> reconstitution <strong>of</strong> the N-type Ca 2+<br />

channel<br />

complex purified from bra<strong>in</strong>, Science, 261, 486-489 (1993)<br />

15 Mori Y, Friedrich T, Kim M-S, Mikami A, Nakai J, Ruth P, Bosse E, H<strong>of</strong>mann F,<br />

Flockerzi V, Furuichi T, Mikoshiba K, Imoto K, Tanabe T, Numa S, Primary structure<br />

<strong>and</strong> functional expression from complementary DNA <strong>of</strong> a bra<strong>in</strong> calcium channel,<br />

Nature, 350, 389-402 (1991)<br />

16 Tsien RW, Ell<strong>in</strong>or PT, Home WA, Molecular diversity <strong>of</strong> voltage-dependent Ca 2+<br />

channels, Trends Pharm.Sci., 12, 349-354 (1991)<br />

17 Triggle DJ, Langs DA, Lig<strong>and</strong> gated <strong>and</strong> vSltage-gated ion channels, Ann.Rep.Med.<br />

Chem., 25, 225-234 (1990)<br />

18 Katz AM, Molecular basis <strong>of</strong> calcium channel blockade, Am.J.Cardiol., 69, 17E-22E<br />

(1992)<br />

19 Appel W, a-Isopropyl-a-[N-methyl-N-homoveratryl)-Y-am<strong>in</strong>opropyl]-3,4-dimethoxyphenylacetonitril,<br />

se<strong>in</strong> Nachweis <strong>in</strong> biologischen Material und se<strong>in</strong> Verhalten im Blut,<br />

Arzneim.-Forsch./Drug Res., 12, 562-566 (1962)<br />

122


Chapter 4<br />

20 van Amsterdam F.T.M, Zaagsma J, Stereoisomers <strong>of</strong> calcium antagonists discrim<strong>in</strong>ate<br />

between coronary vascular <strong>and</strong> myocardial sites, Naunyn Schmiedeberg Arch.<br />

Pharmacol., 337, 213-219 (1988)<br />

21 H<strong>of</strong>mann HP, Raschack M, Unger L, (S)-emopamil, A novel calcium <strong>and</strong> seroton<strong>in</strong><br />

antagonist for the treatment <strong>of</strong> cerebrovascular disorders, Arzneim.-Forsch./Drug Res.,<br />

39, 304-308 (1989)<br />

22 Van Meel JCA, Towart R, Kazda S, Timmermans PBMWM, Van Zieten PA,<br />

Correlation between the <strong>in</strong>hibitory activities <strong>of</strong> calcium entry blockers on vascular<br />

smooth muscle contraction <strong>in</strong> <strong>vitro</strong> after K+-depolarisation <strong>and</strong> <strong>in</strong> vivo after a 2adrenoceptor<br />

stimulation, Naunyn-Schmied.Arch.Pharmacol., 322, 34-37 (1983)<br />

23 Nawrath H, Raschack M, Effects <strong>of</strong> (-)-desmethoxyverapamil on heart <strong>and</strong> vascular<br />

smooth muscle, J.Pharmacol.Exp.Ther., 242, 1090-1097 (1987)<br />

24 Ludwig C, Nawrath H, Effects <strong>of</strong> D-600 <strong>and</strong> its optical isomers on force <strong>of</strong> contraction<br />

<strong>in</strong> cat papillary muscles <strong>and</strong> gu<strong>in</strong>ea-pig auticles, Br.J.Pharmacol., 59,411-417 (1977)<br />

25 Mannhold R, Ste<strong>in</strong>er R, Haas W, Kaufmann R, Investigations on the structure-activity<br />

relationships <strong>of</strong> verapamil, Naunyn-Schmied.Arch.Pharmacol., 302, 217-226 (1978)<br />

26 Mitani K, Yoshida T, Morikawa K, Iwanaga Y, Kosh<strong>in</strong>aka E, Kato H, Ito Y, Novel<br />

phenoxyalkylam<strong>in</strong>e derivatives. 1. Synthesis <strong>and</strong> pharmacological activities <strong>of</strong> ocisopropyl-a-[(phenoxyalkyl)am<strong>in</strong>o]-benzeneacetonitrile<br />

derivatives, Chem.Phar.BulL,<br />

36, 367-372 (1988)<br />

27 Mitani K, Yoshida T, Sakurai S, Morikawa K, Iwanaga Y, Kosh<strong>in</strong>aka E, Kato H, Ito<br />

Y, Novel phenoxyalkylam<strong>in</strong>e derivatives.2. Synthesis <strong>and</strong> Ca 2+<br />

-antagonistic activities<br />

<strong>of</strong> a-alkyl-a-[(phenoxypropylam<strong>in</strong>o)propyl]-benzeneacetonitrile derivatives, Chem.<br />

Phar.Bull., 36, 373-385 (1988)<br />

28 Kugita H, Inoue H, Dcezaki M, Konda M, Takeo S, Synthesis <strong>of</strong> 1,5-benzothiazep<strong>in</strong>e<br />

derivatives.3., Chem.Pharm.Bull., 19, 595-602 (1974)<br />

29 Narita H, Murata S, Yabana H, Kikkawa K, Sugawara Y, Nagao T, Long-last<strong>in</strong>g<br />

hypotensive <strong>and</strong> antihypertensive effects <strong>of</strong> a new 1,5-benzothiazep<strong>in</strong>e calcium<br />

antagonist <strong>in</strong> hypertensive rats <strong>and</strong> renal hypertensive dogs, Arzneim.-Forsch./Drug<br />

Res., 38, 515-520 (1988)<br />

30 a) Floyd DM, Kimball SD, Krapcho J, Das J, Turk CF, Moqu<strong>in</strong> RV, Lago MW, Duff<br />

KJ, Lee VG, White RE, Ridgewell RE, Morel<strong>and</strong> S, Britta<strong>in</strong> RJ, Norm<strong>and</strong><strong>in</strong> DE,<br />

Hedberg SA, Cuc<strong>in</strong>otta GG, Benzap<strong>in</strong>one calcium channel blockers.2. Structureactivity<br />

<strong>and</strong> drug metabolism studies lead<strong>in</strong>g to potent antihypertensive agents.<br />

Comparison with benzothiazep<strong>in</strong>ones, J.Med.Chem., 35, 756-772 (1992)<br />

b) Kimball SD, Floyd DM, Das J, Hunt JT, Krapcho J, Rovnyak G, Duff KJ, Lee VG,<br />

Moqu<strong>in</strong> RV, Turk CF, Hedberg SA, Morel<strong>and</strong> S, Britta<strong>in</strong> RJ, McMullen DM,<br />

Norm<strong>and</strong><strong>in</strong> DE, Cuc<strong>in</strong>otta GG, Benzazep<strong>in</strong>one calcium channel blockers.4. Structureactivity<br />

overview <strong>and</strong> <strong>in</strong>tracellular b<strong>in</strong>d<strong>in</strong>g site, J.Med.Chem., 35,780-793 (1992)<br />

31 Das J, Floyd DM, Kimball SD, Duff KJ, Vu TC, Lago MW, Moqu<strong>in</strong> RV, Lee VG,<br />

Gougoutas JZ, Malley MF, Morel<strong>and</strong> S, Britta<strong>in</strong> RJ, Hedberg SA, Cuc<strong>in</strong>otta GG,<br />

123


Chapter 4<br />

Benzazap<strong>in</strong>one calcium channel blockers.3. Synthesis <strong>and</strong> structure-activity studies <strong>of</strong><br />

3-alkylbenzazep<strong>in</strong>ones, J.Med.Chem., 35, 773-780 (1992)<br />

32 Vater W, Kroneberg G, H<strong>of</strong>fmeister F, Kaller H, Meng K, Oberdorf A, Puis W,<br />

SchloBmann K, Stoepel K, Zur Pharmakologie von 4-(2-nitrophenyl)-2,6-dimethyll,4-dihydropyrid<strong>in</strong>-3,5-dicarbonsauredimethylester<br />

(Nifedip<strong>in</strong>e, Bay a 1040), Arzneim.<br />

-Forsch./Drug Res., 22, 1-14 (1972)<br />

33 Bossert F, Vater W, 1,4-Dihydropyrid<strong>in</strong>es; a basis for develop<strong>in</strong>g new drugs, Med.<br />

Chem.Rev., 9, 291-324 (1989)<br />

34 Kazda S, Garth<strong>of</strong>f B, Meyer H, SchloBmann K, Stoepel K, Towart R, Vater W,<br />

Weh<strong>in</strong>ger E, Pharmacology <strong>of</strong> a new calcium antagonistic compound, isobutyl methyl<br />

l,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyrid<strong>in</strong>edicarboxylate (Nisoldip<strong>in</strong>e,<br />

Bay k 5552), Arzneim.-Forsch./Drug Res., 30, 2144-2162 (1980)<br />

35 Edgar B, Industrial drug research: Development <strong>of</strong> Ca-antagonistic vasodilators, Quant.<br />

Sruct.-Act.Relat, 11, 228-231 (1992)<br />

36 Boyd RA, Giacom<strong>in</strong>i JC, Wong FM, Nelson WL, Giacom<strong>in</strong>i KM, Comparison <strong>of</strong><br />

b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ities <strong>and</strong> negative <strong>in</strong>otropic potencies <strong>of</strong> the 1,4-dihydropyrid<strong>in</strong>e calcium<br />

channel blockers <strong>in</strong> rabbit myocardium, J.Pharmacol.Exp.Ther., 243, 118-125 (1987)<br />

37 Godfra<strong>in</strong>d T, Wibo M, Egleme C, Wauquaire J, The <strong>in</strong>teraction <strong>of</strong> nimodip<strong>in</strong>e with<br />

calcium channels <strong>in</strong> rat isolated aorta <strong>and</strong> <strong>in</strong> human neuroblastoma cells, In: Nimodip<strong>in</strong>e.<br />

Pharmacological <strong>and</strong> cl<strong>in</strong>ical properties, (Betz E, Deck K, H<strong>of</strong>fmeister F, Eds.),<br />

Schattauer Verlag, New York, pp 217-228 (1985)<br />

38 Wibo M, DeRoth L, Godfra<strong>in</strong>d T, Pharmacologic relevance <strong>of</strong> dihydropyrid<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g<br />

sites <strong>in</strong> membranes from rat aorta: k<strong>in</strong>etic <strong>and</strong> equilibrium studies, Circ.Res., 62, 91-96<br />

(1988)<br />

39 Towart R, Weh<strong>in</strong>ger E, Meyer H, Kazda S, The effects <strong>of</strong> nimodip<strong>in</strong>e, its optical<br />

isomers <strong>and</strong> metabolites on isolated vascular smooth muscle, Arzneim.-Forsch./Drug<br />

Res., 32, 338-346 (1982)<br />

40 Hagiwara S, Mitsui M, Karaki H, Effects <strong>of</strong> felodip<strong>in</strong>e, nifedip<strong>in</strong>e <strong>and</strong> verapamil on<br />

cytosolic Ca 2+<br />

<strong>and</strong> contraction <strong>in</strong> vascular smooth muscle, Eur.J.Pharmacol, 234,1-7<br />

(1993)<br />

41 Inglesi M, Nicola M, Magnetti S, Synthesis <strong>of</strong> a new class <strong>of</strong> 1,4-dihydropyrid<strong>in</strong>es<br />

hav<strong>in</strong>g a hydroxamic ester group <strong>in</strong> position 3 with a potential calcium antagonistic<br />

activity, II Farmaco, 45, 1327-1341 (1990)<br />

42 Mellemkjaer S, Bang L, Nielsen-Kudsk F, Isradip<strong>in</strong>e dynamics <strong>and</strong> k<strong>in</strong>etics <strong>in</strong> the<br />

isolated rabbit heart, Br.J.Pharmacol., 104, 434P (1991)<br />

43 Takenaka T, Usuda S, Nomura T, Maneo H, Sado T, Vasodilator pr<strong>of</strong>ile <strong>of</strong> a new 1,4dihydropyrid<strong>in</strong>e,<br />

2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylic<br />

acid 3-[2-(N-benzyl-N-methylam<strong>in</strong>o)]ethyl ester 5-methyl ester hydrochloride (YC-93),<br />

Arzneim.-Forsch./Drug Res., 26, 2172-2178 (1976)<br />

44 Ferry DR, Rombusch M, Goll A, Glossmann H, Photoaff<strong>in</strong>ity labell<strong>in</strong>g <strong>of</strong> Ca 2+<br />

channels with [ 3<br />

H]azidop<strong>in</strong>e, FEBS Lett., 169, 112-118 (1984)<br />

124


Chapter 4<br />

45 Muto K, Kuroda T, Kawato H, Karasawa A, Kubo K, Nakamizo N, Synthesis <strong>and</strong><br />

pharmacological activity <strong>of</strong> stereoisomers <strong>of</strong> l,4-dihydro-2,6-dimethyl-4-(3-<br />

nitrophenyl)-3,5-pyrid<strong>in</strong>e-dicarboxylic acid methyl l-(phenylmethyl)-3-piperid<strong>in</strong>yl<br />

ester, Arzneim.-Forsch./Drug Res., 38, 1662-1665 (1988)<br />

46 Tamargo J, Lopez-Sendon J, Delpon E, Gonzalez-Morales M, de Miguel E,<br />

Cardiovascular effects <strong>of</strong> the new dihydropyrid<strong>in</strong>e derivative elgodip<strong>in</strong>e, Arzneim.-<br />

Forsch./Drug Res., 41, 895-900 (1991)<br />

47 Okamiya Y, Kishimoto T, Sunakawa K, Aoki K, Tanabe T, Takeshita T, Naruchi T,<br />

Antihypertensive effect <strong>of</strong> the new calcium antagonist (±)-3-(benzylmethylam<strong>in</strong>o)-2,2-<br />

dimethylpropylmethyl-4-(2-fluoro-5-nitropheny1)-1,4-dihydro-2,6-dimethyl-3,5-pyrid- <strong>in</strong>edicarboxylate hydrochloride <strong>in</strong> rats, Arzneim.-Forsch./Drug Res., 42,9-16 (1992)<br />

48 Okamiya Y, KishimotoT, Sunakawa K, Aoki K, Tanabe T, Takeshita T, Naruchi T,<br />

Antihypertensive effect <strong>of</strong> the new dihydropyrid<strong>in</strong>e calcium antagonist (±)-3-<br />

(benzylmethylam<strong>in</strong>o)-2,2-dimethylpropyl methyl 4-(2-fluoro-5-nitrophenyl)-1,4-<br />

dihydro-2,6-dimethyl-3,5-pyrid<strong>in</strong>edicarboxylate hydrochloride <strong>in</strong> dogs, Arzneim.-<br />

Forsch./Drug Res., 42, 513-518 (1992)<br />

49 a) Nakayama N, Ikezono K, Mori T, Yamashita S, Nakayama S, Tanaka Y, Hosokawa<br />

T, M<strong>in</strong>ami Y, Masutani K, Yamamura Y, Yabuuchi Y, Antihypertensive activity <strong>of</strong><br />

OPC-13340, a new potent <strong>and</strong> long-act<strong>in</strong>g dihydropyrid<strong>in</strong>e calcium antagonist, <strong>in</strong> rats,<br />

J.CardiovascPharmacol., 15, 836-844 (1990)<br />

b) Mori T, Nakayama N, Ohura M, Ikezono K, K<strong>in</strong>oshita S, Kamata M, Hosokawa T,<br />

Yamashita S, Yabuuchi Y, Cardiovascular effects <strong>of</strong> OPC-13340, a potent, long-act<strong>in</strong>g<br />

1,4-dihydropyrid<strong>in</strong>e calcium channel blocker, <strong>in</strong> dogs, Arch.<strong>in</strong>t.Pharmacodyn, 321,<br />

41-56 (1993)<br />

50 Imai H, Matsui K, Ochi S, Nakazawa M, Nakagawa Y, Imai S, Effects <strong>of</strong> the new<br />

dihydropyrid<strong>in</strong>e derivative 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyrid<strong>in</strong>e-<br />

dicarboxylic acid methyl 6-(5-phenyl-3-pyrazolyloxy)hexyl ester on the cardio-<br />

hemodynamics <strong>and</strong> the energy metabolism <strong>of</strong> ischemic myocardium, Arzneim.-Forsch./<br />

Drug Res., 37, 1348-1352 (1987)<br />

51 Nakayama N, Ikezono K, Fujio N, Sasabe H, Kitaura K, Tamada S, Shirafuji T,<br />

Yabuuchi Y, OPC-13340, a new potent <strong>and</strong> long-last<strong>in</strong>g calcium antagonist,<br />

CardiovascDrug Rev., 9, 147-157 (1991)<br />

52 Arrowsmith JE, Campbell SF, Cross PE, Stubbs JK, Burges RA, Gard<strong>in</strong>er DG,<br />

Blackburn KJ, Long act<strong>in</strong>g dihydropyrid<strong>in</strong>e Ca-antagonists.l. 2-alkoxymethyl deriva­<br />

tives <strong>in</strong>corporat<strong>in</strong>g basic substituents, J.Med.dhem., 29,1696-1702 (1986)<br />

53 Goldmann S, StoltefuB J, Bom L, Determ<strong>in</strong>ation <strong>of</strong> the absolute configuration <strong>of</strong> the<br />

active amlodip<strong>in</strong>e enantiomer as (-)-S: a correction, J.Med.Chem., 35, 3341-3344<br />

(1992)<br />

54 G<strong>and</strong>olfi AC, Frigerio M, Sp<strong>in</strong>elli S, T<strong>of</strong>anetti O, Tognella S, Pharmaceutically active<br />

2-thiomethyl-substituted-l,4-dihydropyrid<strong>in</strong>es, patent WO 87/00836 (1987)<br />

55 Christiaans JAM, this thesis chapter 7<br />

125


Chapter 4<br />

56 Christiaans JAM, W<strong>in</strong>dhorst AD, Groenenberg PM, Van der Goot H, Timmerman,<br />

Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> new 1,4-dihydropyrid<strong>in</strong>es.l. 2-(co-am<strong>in</strong>oalkylthio)methyl-1,4-dihydropyrid<strong>in</strong>es<br />

as potent calcium channel blockers., Eur.J.Med.<br />

Chem., Eur.J.Med.Chem., 28, 859-867 (1993)<br />

57 R<strong>and</strong>le JCR, Lombet A, Nagel N, Abraham C, Aptel H, Peglion J-L, Renaud J-F, Ca 2+<br />

channel <strong>in</strong>hibition by a new dihydropyrid<strong>in</strong>e derivative, SI 1568, <strong>and</strong> its enantiomers<br />

S12967 <strong>and</strong> S12968, Eur.J.Pharmacol., 190, 85-96 (1990)<br />

58 Makki T, Lartaud I, Bray-des Boscs L, Capdeville-Atk<strong>in</strong>son C, Chillon J-M, H<strong>of</strong>fman<br />

M, Nicolas J-P, Atk<strong>in</strong>son J, Haemodynamic effects <strong>of</strong> a new dihydropyrid<strong>in</strong>e calcium<br />

entry blocker, S-12968-(-), <strong>in</strong> a rat model <strong>of</strong> cardiovascular calcium overload,<br />

BrJ.Pharmacol, 106, 79-84 (1992)<br />

59 Prieto D, Mulvany MJ, Nyborg NCB, (+)-S-12967 <strong>and</strong> (-)-S12968: 1,4-dihydro<br />

pyrid<strong>in</strong>e stereoisomers with calcium channel agonistic <strong>and</strong> antagonistic properties <strong>in</strong> rat<br />

resistance arteries, BrJ.Pharmacol., 103, 1703-1708 (1991)<br />

60 Alker D, Campbell SF, Cross PE, Burges RA, Carter AJ, Gard<strong>in</strong>er DG, Long act<strong>in</strong>g<br />

dihydropyrid<strong>in</strong>e Ca-antagonists.4. Synthesis <strong>and</strong> structure-activity relationships for a<br />

<strong>series</strong> <strong>of</strong> basic <strong>and</strong> non-basic derivatives <strong>of</strong> 2- [(2-am<strong>in</strong>oethoxy)methyl]- 1,4-dihydro<br />

pyrid<strong>in</strong>e Ca-antagonists, J.Med.Chem., 33, 585-591 (1990)<br />

61 Arrowsmith JE, Campbell SF, Cross PE, Burges RA, Gard<strong>in</strong>er DG, Long act<strong>in</strong>g<br />

dihydropyrid<strong>in</strong>e Ca-antagonists.2. 2-[2-am<strong>in</strong>oheterocycloethoxy]methyl derivatives,<br />

J.Med.Chem., 32, 562-568 (1989)<br />

62 Alker D, Campbell SF, Cross PE, Burges RA, Carter AJ, Gard<strong>in</strong>er DG, Long act<strong>in</strong>g<br />

dihydropyrid<strong>in</strong>e Ca-antagonists.5. Synthesis <strong>and</strong> SAR for a <strong>series</strong> <strong>of</strong> 2-[[N-substituted-<br />

(heterocyclyl)ethoxy]methyl]-l,4-dihydropyrid<strong>in</strong>e Ca-antagonists, J.Med.Chem., 33,<br />

1805-1811(1990)<br />

63 Alker D, Campbell SF, Cross PE, Burges RA, Carter AJ, Gard<strong>in</strong>er DG, Long act<strong>in</strong>g<br />

dihydropyrid<strong>in</strong>e Ca-antagonists.3. Synthesis <strong>and</strong> structure-activity relationships for a<br />

<strong>series</strong> <strong>of</strong> 2-[(heterocyclyl methoxy)methyl]-l,4-dihydropyrid<strong>in</strong>es, J.Med.Chem., 32,<br />

2381-2388 (1989)<br />

64 Kwon YW, Zhong Q, Wei XY, Zheng W, Triggle DJ, The <strong>in</strong>teractions <strong>of</strong> 1,4-dihydropyrid<strong>in</strong>es<br />

bear<strong>in</strong>g a 2-(2-am<strong>in</strong>oethylthio)methyl substituent at voltage-dependent Ca 2+<br />

channels <strong>of</strong> smooth muscle, cardiac muscle <strong>and</strong> neuronal tissues, Naunyn-Schmied.<br />

Arch.Pharmacol., 341, 128-136 (1990)<br />

65 Germ<strong>in</strong>i M, Passoni A, Casciarri I, Bosetti P, Piazzoni L, Cazzulani P, G<strong>and</strong>olfi CA,<br />

T<strong>of</strong>anetti O, Ceserani R, Cardiovascular activities <strong>of</strong> the new potent <strong>and</strong> long-last<strong>in</strong>g<br />

antihypertensive calcium entry blocker (±)-3-ethyl, 5-methyl, 2-{[2-(formylam<strong>in</strong>o)ethyl]thiomethyl}<br />

-6-methyl-4-(3-nitrophenyl)-1,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylate,<br />

Arzneim.-Forsch./Drug Res., 42, 1-8 (1992)<br />

66 Galletti F, Zheng W, Gopalakrishnan M, Rutledge A, Triggle DJ, Interactions <strong>of</strong><br />

analogs <strong>of</strong> the 1,4-dihydropyrid<strong>in</strong>e tiamdip<strong>in</strong>e <strong>in</strong> cardiac <strong>and</strong> smooth muscle, Eur.J.<br />

Pharmacol., 195, 125-129 (1991)<br />

126


Chapter 4<br />

67 Gaviraghi G, Lacidip<strong>in</strong>e, a new 1,4-dihydropyrid<strong>in</strong>e calcium channel antagonist<br />

possess<strong>in</strong>g a potent <strong>and</strong> long last<strong>in</strong>g antihypertensive activity, In: Trends <strong>in</strong> Medic<strong>in</strong>al<br />

Chemistry (Van der Goot H, Domany G, Pallos L, Timmerman H, eds) Elsevier<br />

Science Publishers BV, Amsterdam, p 675-690 (1988)<br />

68 Schramm M, Thomas G, Towart R, Franckowiak G, Novel dihydropyrid<strong>in</strong>es with<br />

positive <strong>in</strong>otropic action through activation <strong>of</strong> Ca 2+<br />

channels, Nature, 303, 535-537<br />

(1983)<br />

69 Kongsamut S, Kamp TJ, Miller RJ, Sangu<strong>in</strong>etti MC, Calcium channel agonist <strong>and</strong><br />

antagonist effects <strong>of</strong> the stereoisomers <strong>of</strong> the dihydropyrid<strong>in</strong>e 202-791, Biochem.<br />

Biophys.Res.Comm., 130, 141-148 (1985)<br />

70 Franckowiak G, Bechem M, Schramm M, Thomas G, The optical isomers <strong>of</strong> the 1,4dihydropyrid<strong>in</strong>e<br />

Bay k 8644 show opposite effects on calcium channels,<br />

EurJ.Pharmacol, 144, 223-226 (1985)<br />

71 McKechnie K, Kill<strong>in</strong>gback PG, Naya I, OConner SE, Smith GW, Wattam DG, Wells<br />

E, Whitehead YM, Williams GE, Calcium channel activator properties <strong>in</strong> a novel nondihydropyrid<strong>in</strong>e,<br />

FPL 64176, Br.J.Pharmacol., 98, 673P (1989)<br />

72 Zheng W, Rampe D, Triggle DJ, Pharmacological, radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g, <strong>and</strong> electrophysiological<br />

characteristics <strong>of</strong> FPL 64176, a novel nondihydropyrid<strong>in</strong>e Ca 2+<br />

channel<br />

activator, <strong>in</strong> cardiac <strong>and</strong> vascular preparations, Mol.Pharmacol.,40,734-741 (1991)<br />

73 Rampe D, Dage RC, Functional <strong>in</strong>teractions between two Ca 2+<br />

channel activators, (S)-<br />

Bay k 8644 <strong>and</strong> FPL 64176, <strong>in</strong> smooth muscle, Mol.Pharmacol.,41, 599-602 (1992)<br />

74 Rampe D, Anderson B, Rapien-Pryor V, Li T, Dage RC, Comparison <strong>of</strong> the <strong>in</strong> <strong>vitro</strong><br />

<strong>and</strong> <strong>in</strong> vivo cardiovascular effects <strong>of</strong> two structurally dist<strong>in</strong>ct Ca 2+<br />

channel activators,<br />

Bay k 8644 <strong>and</strong> FPL 64176, J.Pharmacol.Exp.Ther.,265, 1125-1130 (1993)<br />

75 Meguro K, Aizawa M, Sohda T, Kawamatsu Y, Nagaoka A, New 1,4-dihydropyrid<strong>in</strong>e<br />

derivatives with potent <strong>and</strong> long-last<strong>in</strong>g hypotensive effect, Chem.Pharm.Bull., 33,<br />

3787-3797 (1985)<br />

76 a) Hatayama K, Nakazato A, Ogawa T, Ito S, Sawada J, Taisho Pharmaceutical<br />

Co,Ltd, Jap.Pat. 58-185 562 (1983)<br />

b) Ogawa T, Nakazato A, Tsuchida K, Hatayama K, Synthesis <strong>and</strong> antihypertensive<br />

activities <strong>of</strong> new 1,4-dihydropyrid<strong>in</strong>e derivatives conta<strong>in</strong><strong>in</strong>g nitrooxyalkylester moieties<br />

at the 3- <strong>and</strong> 5-positions, Chem.Pharm.Bull., 41, 1049-1054 (1993)<br />

77 Zemig G, Cl<strong>in</strong>ical future for Ca 2+<br />

antagonists looks more promis<strong>in</strong>g, Trends Pharm.<br />

Sci., 12, 439-442 (1992)<br />

78 Knaus H-G, Scheffauer F, Roman<strong>in</strong> C, Sch<strong>in</strong>dler H-G, Glossmann H, Hepar<strong>in</strong> b<strong>in</strong>ds<br />

with high aff<strong>in</strong>ity to voltage-dependent L-type Ca 2+<br />

channels, J.Biol.Chem., 265,<br />

11156-11166 (1990)<br />

79 Johnson DE, Heald SL, Dally RD, Janis RA, Isolation, identification <strong>and</strong> <strong>synthesis</strong> <strong>of</strong><br />

an endogenous arachidonic amide that <strong>in</strong>hibits calcium channel antagonist 1,4-dihydropyrid<strong>in</strong>e<br />

b<strong>in</strong>d<strong>in</strong>g, Prostagl<strong>and</strong><strong>in</strong>s Leukotrienes <strong>and</strong> Essential Fatty Acids, 48, 429-437<br />

(1993)<br />

127


Chapter 4<br />

80 Janis RA, Triggle DJ, New developments <strong>in</strong> Ca 2+<br />

channel antagonists, J.Med.Chem.,<br />

26, 775-785 (1983)<br />

81 Caldirola MP, Diphenylalkylam<strong>in</strong>es: modulators <strong>of</strong> calcium <strong>and</strong> calmodul<strong>in</strong>, Thesis,<br />

Vrije Universiteit, Amsterdam (1992)<br />

82 Caldirola P, Z<strong>and</strong>berg P, Mannhold R, Timmerman H, New prenylam<strong>in</strong>e analogues:<br />

<strong>in</strong>vestigations <strong>of</strong> their <strong>in</strong>fluence on calcium-dependent biological systems,<br />

Eur.J.Med.Chem., 28, 555-568 (1993)<br />

83 Godfra<strong>in</strong>d T, Miller R, Wibo M, Calcium antagonism <strong>and</strong> calcium entry blockade,<br />

PharmacoLRev., 38, 321-417 (1986)<br />

84 Janis RA, Silver PJ, Triggle DJ, Drug action <strong>and</strong> cellular calcium regulation, Adv.Drug<br />

Res., 16, 309-591 (1987)<br />

85 Hosey MM, Lazdunski M, Calcium channels: molecular <strong>pharmacology</strong>, structure <strong>and</strong><br />

regulation, J.Membrane Biol., 104, 81-105 (1988)<br />

86 Rampe D, Triggle DJ, New lig<strong>and</strong>s for L-type Ca 2+<br />

channels, Trends Pharm.Sei., 11,<br />

112-115(1990)<br />

87 Nok<strong>in</strong> P, Cl<strong>in</strong>et M, Polster P, Beaufort P, Meysmans L, Gougat J, Châtela<strong>in</strong> P, SR<br />

33557, a novel calcium-antagonist: <strong>in</strong>teraction with [ 3<br />

H]-(±)-nitrendip<strong>in</strong>e <strong>and</strong> [ 3<br />

H]-(-)desmethoxy-verapamil<br />

b<strong>in</strong>d<strong>in</strong>g sites <strong>in</strong> cerebral membranes, Naunyn-Schmied.Arch.<br />

Pharmacol., 339, 31-36 (1989)<br />

88 Qar J, Barhan<strong>in</strong> J, Romey G, Hann<strong>in</strong>g R, Lerch U, Oekonomopulos R, Urbach H,<br />

Lazdunski M, A novel high aff<strong>in</strong>ity class <strong>of</strong> Ca 2+<br />

channel blockers, Mol .Pharmacol.,<br />

33, 363-369 (1988)<br />

89 Gub<strong>in</strong> J, de Vogelaer H, Inion H, Houben C, Luchetti J, Mahaux J, Rosseeis G, Peiren<br />

M, Cl<strong>in</strong>et M, Polster P, Châtela<strong>in</strong> P, Novel heterocyclic analogues <strong>of</strong> the new potent<br />

class <strong>of</strong> calcium entry blockers: l-[[4-(am<strong>in</strong>oalkoxy)phenyl]sulfonyl]<strong>in</strong>doliz<strong>in</strong>es,<br />

J.Med.Chem., 36, 1425-1433 (1993)<br />

90 Meyer H, Structural/Activity Relationships <strong>in</strong> calcium channel antagonists, In: Calcium<br />

antagonists <strong>and</strong> cardiovascular disease, (Opie LH, ed) Raven Press, New York, 165-<br />

173 (1984)<br />

91 Dei S, Novella Romanelli M, Scapecchi S, Teodori E, Gualtieri F, Chiar<strong>in</strong>i A, Voigt W,<br />

Lemo<strong>in</strong>e H, Verapamil analogues with restricted molecular flexibility: <strong>synthesis</strong> <strong>and</strong><br />

pharmacological evaluation <strong>of</strong> the four isomers <strong>of</strong> a-[l-[3-[iV-[l-[2-(3,4-dimethoxyphenyl)ethyl]]-N-methylam<strong>in</strong>o]cyclohexyl]]-a-isopropyl-3,4-dimethoxybenzene-acetonitrile,<br />

J.Med.Chem., 36, 439-445 (1993)<br />

92 Barrish JC, Spergel SH, Morel<strong>and</strong> S, Hedbei^ SA, The <strong>synthesis</strong> <strong>of</strong> a conformationally<br />

rigid calcium channel blocker, Bioorg.Med.Chem.Lett., 2,95-98 (1992)<br />

93 Loev B, Goodman MM, Snader KM, Tedeschi R, Macko E, 'Hantzsch-type"<br />

dihydropyrid<strong>in</strong>e hypotensive agents, J.Med.Chem., 17,956-965 (1974)<br />

94 Rodenkirchen R, Bayer R, Ste<strong>in</strong>er R, Bossert F, Meyer H, Möller E, Structure-activity<br />

studies on nifedip<strong>in</strong>e <strong>in</strong> isolated cardiac muscle, Naunyn-Schmied.Arch.Pharmacol.,<br />

310, 69-78 (1979)<br />

128


Chapter 4<br />

95 Goldmann S, Stoltefuß J, 1,4-dihydropyrid<strong>in</strong>e: E<strong>in</strong>fluß von Chiralität und<br />

Konformation auf die Calcium-antagonistische und -agonistische Wirkung,<br />

Angew.Chem., 103, 1587-1605 (1991)<br />

96 Höltje H-D, Marrer S, A molecular graphics study on structure-action relationships <strong>of</strong><br />

calcium-antagonistic 1,4-dihydropyrid<strong>in</strong>es, J.Comp.-Aided Mol.Design, 1, 23-30<br />

(1987)<br />

97 Zheng W, Stoltefuss J, Goldmann S, Triggle DJ, Pharmacologic <strong>and</strong> radiolig<strong>and</strong><br />

b<strong>in</strong>d<strong>in</strong>g studies <strong>of</strong> 1,4-dihydropyrid<strong>in</strong>es <strong>in</strong> rat cardiac <strong>and</strong> vascular preparations:<br />

Stereoselectivity <strong>and</strong> voltage dependence <strong>of</strong> antagonist <strong>and</strong> activator <strong>in</strong>teractions,<br />

MoLPharm. 41, 535-541 (1992)<br />

98 Höltje H-D, Molecular modell<strong>in</strong>g studies on 1,4-dihydropyrid<strong>in</strong>es act<strong>in</strong>g at the Cachannel,<br />

Quant.Struct-ActRelat., 11, 224-227 (1992)<br />

99 Langs DA, Kwon YW, Strong PD, Triggle DJ, Molecular level model for the<br />

agonist/antagonist selectivity <strong>of</strong> the 1,4-dihydropyrid<strong>in</strong>e calcium channel receptor,<br />

J.Comp.-Aided Mol.Design, 5, 95-106 (1991)<br />

100 Rovnyak G, Andersen N, Gougoutas J, Hedberg A, Kimball SD, Malley M, Morel<strong>and</strong><br />

S, Porubcan M, Pudzianowski A, Active conformation <strong>of</strong> 1,4-dihydropyrid<strong>in</strong>e calcium<br />

entry blockers. Effect <strong>of</strong> size <strong>of</strong> 2-aryl substituent on rotameric equilibria <strong>and</strong> receptor<br />

b<strong>in</strong>d<strong>in</strong>g, J.Med.Chem., 34, 2521-2524 (1991)<br />

101 Langs DA, Strong PD, Triggle DJ, Receptor model for the molecular basis <strong>of</strong> tissue<br />

selectivity <strong>of</strong> 1,4-dihydropyrid<strong>in</strong>e calcium channel drugs, J.Comp.-Aided Mol.Design,<br />

4, 215-230 (1990)<br />

102 Atwal KS, Rovnyak GC, Schwartz J, Morel<strong>and</strong> S, Hedberg A, Gougoutas JZ, Malley<br />

MF, Floyd DM, Dihydropyrimid<strong>in</strong>e calcium channel blockers: 2-heterosubstituted 4aryl-l,4-dihydro-6-methyl-5-pyrimid<strong>in</strong>ecarboxylic<br />

acid esters as potent mimics <strong>of</strong><br />

dihydropyrid<strong>in</strong>es, J.Med.Chem., 33, 1510-1515 (1990)<br />

103 Atwal KS, Swanson BN, Unger SE, Floyd DM, Morel<strong>and</strong> S, Hedberg A, O'Reilly<br />

BC, Dihydropyrimid<strong>in</strong>e calcium channel blockers.3. 3-carbamoy 1-4-ary 1-1,2,3,4tetrahydro-6-methyl-5-pyrimid<strong>in</strong>ecarboxylic<br />

acid esters as orally effective antihypertensive<br />

agents, J.Med.Chem., 34, 806-811 (1991)<br />

104 Atwal KS, Rovnyak GC, Kimball SD, Floyd DM, Morel<strong>and</strong> S, Swanson BN, Hedberg<br />

A, Swanson BN, Unger SE, O'Reilly BC, Schwartz J, Smillie KM, Dihydropyrimid<strong>in</strong>e<br />

calcium channel blockers as potent mimics <strong>of</strong> dihydropyrid<strong>in</strong>es, Poster presentation,<br />

Xlth International Symposium on Medic<strong>in</strong>al Chemistry, Jerusalem, Israel, 1990<br />

105 Atwal KS, Rovnyak GC, Kimball SD, Floyd DM, Morel<strong>and</strong> S, Swanson BN,<br />

Gougoutas JZ, Schwartz J, Smillie KM, Malley MF, Dihydropyrimid<strong>in</strong>e calcium<br />

channel blockers.2. 3-substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimid<strong>in</strong>ecarboxylic<br />

acid esters as potent mimics <strong>of</strong> dihydropyrid<strong>in</strong>es, J.Med.Chem., 33, 2629-2635 (1990)<br />

106 K<strong>in</strong>ami J, Qu Y-L, Tsuchihashi H, Nagatomo T, Maniwa T, Miyagishi A, Assessment<br />

<strong>of</strong> Ca 2+<br />

-antagonistic effects <strong>of</strong> SM-6568 <strong>and</strong> its isomers, novel 1,4-dihydropyrid<strong>in</strong>e<br />

derivatives by radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g assay, Japan.J.Pharmacol., 58, 75-78 (1992)<br />

129


Chapter 4<br />

107 a) Adachi I, Yamamori T, Hiramatsu Y, Sakai K, Mihara S-I, Kawakami M, Masui M,<br />

Uno O, Ueda M, Studies on dihydropyrid<strong>in</strong>es. 3. Synthesis <strong>of</strong> 4,7-dihydrothieno[2,3-<br />

&]-pyrid<strong>in</strong>es with vasodilator <strong>and</strong> antihypertensive activities, Chem.Pharm.Bull., 36,<br />

4389-4402 (1988)<br />

b) Shimizu T, Kawabata T, Nakamura M, Protective effect <strong>of</strong> a novel calcium blocker,<br />

S-312-d, on ischemic acute renal failure <strong>in</strong> rat, J.Pharm.Exp.Ther., 255, 484-490<br />

(1990)<br />

108 Striessnig J, Glossmann H, Catterall WA, Identification <strong>of</strong> a phenylalkylam<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g<br />

region with<strong>in</strong> the oti subunit <strong>of</strong> skeletal muscle Ca 2+<br />

channels, Proc.Natl.Acad.Sci.<br />

USA, 87, 9108-9112 (1990)<br />

109 Striessnig J, Glossmann H, L-type calcium channels <strong>and</strong> calcium channel lig<strong>and</strong>s, In:<br />

Trends <strong>in</strong> receptor research, (Angeli P, Gul<strong>in</strong>i U, Quaglia W, eds) Elsevier Science<br />

Publishers BV, Amsterdam, 333-343 (1992)<br />

110 Catterall WA, Striessnig J, Receptor sites for Ca 2+<br />

channel antagonists, Trends Pharm.<br />

Sci., 13, 256-262 (1992)<br />

111 Her<strong>in</strong>g S, Savchenko A, Striib<strong>in</strong>g C, Lakitsch M, Striessnig J, Extracellular localization<br />

<strong>of</strong> the benzodiazep<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> <strong>of</strong> L-type Ca 2+<br />

channels, Mol.Pharmacol., 43,<br />

820-826 (1993)<br />

112 Sangu<strong>in</strong>etti MC, Kass RS, Voltage-dependent block <strong>of</strong> calcium channel current <strong>in</strong> the<br />

calf cardiac Purk<strong>in</strong>je fiber by dihydropyrid<strong>in</strong>e calcium channel antagonists, Circ.Res.,<br />

55, 336-348 (1984)<br />

113 Hess P, Lansmann JB, Tsien RW, Different modes <strong>of</strong> Ca channel gat<strong>in</strong>g behaviour<br />

favoured by dihydropyrid<strong>in</strong>e Ca agonists <strong>and</strong> antagonists, Nature, 331, 538-544<br />

(1984)<br />

130


Chapter 5<br />

Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> a <strong>series</strong> <strong>of</strong> new<br />

1,4-dihydropyrid<strong>in</strong>es. 1.<br />

Diethyl 2-(co-am<strong>in</strong>oalkylthio)methyl-2,6-dimethyl-4-<br />

[(substituted)phenyl]-l,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylates<br />

as potent calcium channel blockers 1<br />

Chapter 5<br />

1 Introduction<br />

The 1,4-dihydropyrid<strong>in</strong>e (DHP) calcium channel blockers are important drugs <strong>in</strong><br />

antiang<strong>in</strong>al <strong>and</strong> antihypertensive therapy [1-51 because <strong>of</strong> their vasodilator<br />

properties. Nifedip<strong>in</strong>e 1 [6], nitrendip<strong>in</strong>e 2 [7], nimodip<strong>in</strong>e 3 [8] <strong>and</strong> nicardip<strong>in</strong>e 4 [9]<br />

represent the classical 1,4-dihydropyrid<strong>in</strong>es <strong>and</strong> exert their pharmacologic activity by<br />

<strong>in</strong>teraction with specific receptors present on L-type voltage-dependent calcium<br />

channels. 1,4-DHPs block calcium entry through slow calcium channels result<strong>in</strong>g <strong>in</strong><br />

vasodilation <strong>and</strong> hence reduce vascular resistance. Coronary dilatation <strong>in</strong>creases the<br />

oxygen <strong>and</strong> nutrients supply to the heart. Peripheral vasodilatation lowers the<br />

oxygen dem<strong>and</strong> <strong>of</strong> the heart through a reduction <strong>in</strong> cardiac work <strong>and</strong> also accounts<br />

for the antihypertensive properties <strong>of</strong> these drugs.<br />

H H<br />

1 nifedip<strong>in</strong>e 2 nitrendip<strong>in</strong>e Ri = CH 3, R 2 = C2H5<br />

3 nimodip<strong>in</strong>e Ri = CH(CH 3) 2, R2 = CH 2CH 2OCH 3<br />

4 nicardip<strong>in</strong>e Ri = CH 3, R 2 = CH 2CH 2N(CH 3)CH 2C 6H 5<br />

Systematic modifications <strong>of</strong> the 2-position <strong>of</strong> the DHP r<strong>in</strong>g have been performed to<br />

<strong>in</strong>crease the rather disadvantageous short duration <strong>of</strong> action <strong>and</strong> to improve the<br />

bioavailability <strong>of</strong> the classical DHPs, result<strong>in</strong>g <strong>in</strong> amlodip<strong>in</strong>e 5 [10] <strong>and</strong> its derivatives<br />

<strong>and</strong> their thio-bioisosters such as tiamdip<strong>in</strong>e 6 [11,12]. Amlodip<strong>in</strong>e, presently under<br />

cl<strong>in</strong>ical <strong>in</strong>vestigation for treatment <strong>of</strong> ang<strong>in</strong>a pectoris <strong>and</strong> hypertension, was the first<br />

compound demonstrat<strong>in</strong>g that extended 2-substituents bear<strong>in</strong>g a basic functionality<br />

were well tolerated at the DHP-receptor. Amlodip<strong>in</strong>e has an aff<strong>in</strong>ity for the 1,4-DHP<br />

b<strong>in</strong>d<strong>in</strong>g site comparable to that <strong>of</strong> nifedip<strong>in</strong>e, but has a longer duration <strong>of</strong> action <strong>and</strong><br />

1 Eur. J.Med.Chem., 28, 859-867 (1993)<br />

131


Chapters<br />

slower onset <strong>and</strong> <strong>of</strong>fset k<strong>in</strong>etics. These k<strong>in</strong>etic effects <strong>of</strong> amlodip<strong>in</strong>e/tiamdip<strong>in</strong>e<br />

derivatives have to be ascribed to additional <strong>in</strong>teraction with the b<strong>in</strong>d<strong>in</strong>g site <strong>of</strong> the<br />

L-type calcium channel due to an ionic <strong>in</strong>teraction between the protonated am<strong>in</strong>o<br />

function <strong>and</strong> the negatively charged phosphate group <strong>of</strong> a phospholipid [13,14].<br />

5 amlodip<strong>in</strong>e 6 tiamdip<strong>in</strong>e<br />

N0 2<br />

COOC 2H 5<br />

CH2 -<br />

S-CH2"CH2"NH2 Our objective was to determ<strong>in</strong>e whether DHPs with identical ester groups are as<br />

potent as the correspond<strong>in</strong>g DHPs with non-identical ester groups. Furthermore the<br />

<strong>in</strong>fluence <strong>of</strong> variation <strong>of</strong> the co-am<strong>in</strong>oalkyl cha<strong>in</strong> length <strong>in</strong> tiamdip<strong>in</strong>e analogues on<br />

the calcium channel block<strong>in</strong>g activity was exam<strong>in</strong>ed.<br />

2 Chemistry<br />

In general, the <strong>synthesis</strong> <strong>of</strong> 2-substituted dihydropyrid<strong>in</strong>es shown <strong>in</strong> table 1 can be<br />

accomplished by several modifications <strong>of</strong> the classical three component Hantzsch<br />

reaction shown <strong>in</strong> scheme 1.<br />

Thus, condensation <strong>of</strong> a benzaldehyde 7 with an alkyl 3-am<strong>in</strong>ocrotonate 9 <strong>and</strong> a<br />

substituted p-keto ester 8 can afford the title compounds (method A). The substituted<br />

keto esters are obta<strong>in</strong>ed by reaction <strong>of</strong> a suitable sodium thiolate with the enolate <strong>of</strong><br />

alkyl 4-chloroacetoacetate. When alkyl 4-chloroacetoacetate, condensed with<br />

cysteam<strong>in</strong>e or a longer co-mercaptoalkylam<strong>in</strong>es, are used <strong>in</strong> the Hantzsch condensation<br />

reaction, the am<strong>in</strong>e function (method A; R3 conta<strong>in</strong>s an am<strong>in</strong>e function) has to<br />

be prevented from participation <strong>in</strong> the condensation reaction with a benzaldehyde.<br />

For that reason the am<strong>in</strong>e function must be protected by first transform<strong>in</strong>g it <strong>in</strong>to a<br />

phthalimide group.<br />

Accord<strong>in</strong>g to Po<strong>in</strong>tdexter et al. [15] tiamdip<strong>in</strong>e analogues can also be obta<strong>in</strong>ed via a<br />

metalation methodology (method B). Metalation <strong>of</strong> DHPs 11 with two equivalents <strong>of</strong><br />

n-butyllithium afforded dilithio species 12. The cysteam<strong>in</strong>e precursor E was used as<br />

an electrophile to give the tiamdip<strong>in</strong>e analogues 13 [16].<br />

The third way to accomplish the <strong>synthesis</strong> <strong>of</strong> the tiamdip<strong>in</strong>e analogues proceeds via<br />

the reaction <strong>of</strong> 2-halomethyl-l,4-dihydropyrid<strong>in</strong>es with sodium thiolate derivatives.<br />

Several methods have been described to afford the 2-halomethyl-l,4-dihydropyrid<strong>in</strong>es<br />

14 (method C). Young et al. [17] reported that reaction <strong>of</strong> 1,4-dihydropyrid<strong>in</strong>es<br />

11 with pyrid<strong>in</strong>ium bromide perbromide gives unstable brom<strong>in</strong>ated species.<br />

132


Chapters


Chapters<br />

Alker <strong>and</strong> Swanson [18] used this method to react these 2-bromomethyl-l,4-dihydropyrid<strong>in</strong>es<br />

<strong>in</strong> situ with a range <strong>of</strong> nucleophiles. As expected, reaction <strong>of</strong> DHPs 11 with<br />

different 3- <strong>and</strong> 5-esters with pyrid<strong>in</strong>ium bromide perbromide followed by <strong>in</strong> situ<br />

reaction with nucleophiles give mixtures <strong>of</strong> the two possible isomeric 2- <strong>and</strong> 6bromomethyl-l,4-dihydropyrid<strong>in</strong>es.<br />

For this reason Alker <strong>and</strong> Denton [19] developed<br />

an alternative synthetic route <strong>in</strong> which 2-hydroxymethyl-l,4-dihydropyrid<strong>in</strong>es 15 are<br />

chlor<strong>in</strong>ated by reaction with thionyl chloride <strong>and</strong> imidazole <strong>in</strong> THF. Cho et al. [20]<br />

performed the chlor<strong>in</strong>ation <strong>of</strong> 2-hydroxymethyl-l,4-dihydropyrid<strong>in</strong>es by reflux<strong>in</strong>g <strong>in</strong><br />

phosphorus oxychloride. A major disadvantage <strong>of</strong> this method is the long <strong>and</strong><br />

complex reaction route to obta<strong>in</strong> the 2-hydroxymethyl-l,4-dihydropyrid<strong>in</strong>es.<br />

Cupka et al. [21] reported the <strong>synthesis</strong> <strong>of</strong> 2-chloromethyl-l,4-dihydropyrid<strong>in</strong>es by<br />

reaction <strong>of</strong> equimolar amounts <strong>of</strong> alkyl 4-chloroacetoacetate, alkyl 3-am<strong>in</strong>ocrotonate<br />

<strong>and</strong> a benzaldehyde <strong>in</strong> reflux<strong>in</strong>g methanol. On the other h<strong>and</strong>, several authors<br />

describe reactions <strong>in</strong> which 2-halomethyl-l,4-dihydropyrid<strong>in</strong>es 17 are refluxed <strong>in</strong><br />

alcohol to afford 4-aryl-2-methyl-5-oxo-l,4,5,7-tetrahydro-furo[3,4b]pyrid<strong>in</strong>e-3carboxylates<br />

18 (scheme 2) [17,22,23].<br />

Scheme II<br />

H<br />

18<br />

Our choice <strong>of</strong> <strong>synthesis</strong> was method A based on the easy preparation <strong>of</strong> 2chloromethyl-l,4-dihydropyrid<strong>in</strong>es<br />

us<strong>in</strong>g ethyl 4-chloroacetoacetate accord<strong>in</strong>g to<br />

Archibald et al. [24]. However, <strong>in</strong> the work-up procedures before acid treatment we<br />

discovered a product which structure was identified as a 2-chloromethylene-l,2,3,4tetrahydropyrid<strong>in</strong>e<br />

16. These exoisomers <strong>of</strong> DHPs were firstly described by Frigerio et<br />

al. [25]. The *H-NMR <strong>and</strong> 13<br />

C-NMR spectra <strong>of</strong> the exoisomers 16 clearly differed<br />

134


Chapters<br />

from the 1,4-DHPs 17. In table I the *H-NMR <strong>and</strong> 13<br />

C-NMR data <strong>of</strong> the 4-(2,3dichlorophenyl)<br />

<strong>and</strong> 4-(2-nitrophenyl)-1,4-DHPs are shown.<br />

Compounds 16a (Z = 2,3-diCl; R = Et) <strong>and</strong> 16b (Z = 2-NO2 ; R = Et) reveal a s<strong>in</strong>glet<br />

<strong>in</strong> *H-NMR (3.45 <strong>and</strong> 3.60 ppm resp.) with an <strong>in</strong>tegral <strong>of</strong> one proton. This signal is<br />

coupled to an sp 3<br />

carbon atom signal <strong>in</strong> 13<br />

C-NMR (at 45.9 <strong>and</strong> 46.7 ppm resp.)<br />

<strong>in</strong>dicat<strong>in</strong>g a proton connected to carbon C3. Both structures also have s<strong>in</strong>glet signals<br />

<strong>in</strong> iH-NMR (5.45 <strong>and</strong> 5.58 ppm resp.) each hav<strong>in</strong>g an <strong>in</strong>tegral <strong>of</strong> one proton. These<br />

signals are each coupled to an sp 2<br />

carbon atom signal <strong>in</strong> 13<br />

C-NMR (at 97.4 <strong>and</strong> 98.2<br />

ppm resp.) <strong>in</strong>dicat<strong>in</strong>g that these signals are orig<strong>in</strong>ated from the exocyclic carbon atom<br />

<strong>and</strong> the proton <strong>in</strong> the 2-chloromethylene group. The NMR spectra <strong>of</strong> the<br />

correspond<strong>in</strong>g compounds 17a <strong>and</strong> 17b lack the signals from the proton <strong>and</strong> the sp 3<br />

carbon atom at position 3. Both structures 17 give signals <strong>of</strong> an AB-system to be<br />

ascribed to the protons on an sp 3<br />

carbon atom <strong>of</strong> the 2-chloromethyl group. The<br />

NMR <strong>of</strong> the lacton 18 lacks signals from one ethyl ester group, <strong>in</strong>stead methylene<br />

signals <strong>in</strong> the *H-NMR <strong>and</strong> 13<br />

C-NMR from the lacton r<strong>in</strong>g appear.<br />

The exoisomers 16 are quite stable <strong>in</strong> pyrid<strong>in</strong>e or methanol solutions while they<br />

isomerize to the endoisomers 17 <strong>in</strong> acidic alcohol.<br />

All attempts to synthesize the 2-chloromethyl-4-(2-chlorophenyl)-l,4-DHP 17 (with<br />

Z = 2-C1 ; R =Et) failed <strong>and</strong> only the correspond<strong>in</strong>g lacton 18 could be isolated<br />

(scheme 2).<br />

The <strong>synthesis</strong> <strong>of</strong> N-[co-mercaptoalkyl]phthalimides was performed accord<strong>in</strong>g to an<br />

improved method <strong>of</strong> Gabriel et al. [26]. In situ reaction <strong>of</strong> the thiolate anions <strong>of</strong> N-[comercaptoalkyl]phthalimides<br />

with the 2-chloromethyl-1,4-dihydropyrid<strong>in</strong>es 19<br />

afforded the correspond<strong>in</strong>g thioethers 20. Subsequent hydraz<strong>in</strong>olysis <strong>of</strong> the<br />

phthalimides 20 gave the tiamdip<strong>in</strong>e analogues 21 shown <strong>in</strong> table II (scheme 3).<br />

Scheme HI<br />

H H<br />

N<br />

H<br />

21<br />

135


Table I: Chemical shifts <strong>of</strong> characteristic protons [ l<br />

H] <strong>and</strong> carbon atoms [ 13<br />

C] determ<strong>in</strong>ed with HH-cosy <strong>and</strong> CH-cosy NMR experiments <strong>in</strong><br />

DMSO-d6 <strong>of</strong> DHPs accord<strong>in</strong>g to scheme 2<br />

Z = 2,3-diCl ; R = Et Z = 2-NO2; R = Et<br />

16a 17a 18a 16b 17b 18b<br />

J<br />

H-NMR pyrid<strong>in</strong>e-CH2-Cl - 4.76 <strong>and</strong> 4.85 (AB, - - 4.67 <strong>and</strong> 4.75 (AB, -<br />

13<br />

C-NMR<br />

J ab=13.3 Hz, 2H) Jab=13.1Hz, 2H)<br />

CH2-lacton - - 4.83 (s,2H) - - 4.84 (s,2H)<br />

pyrid<strong>in</strong>e=CH-Cl 5.45 (s, 1H) - 5.58 (s, 1H) -<br />

pyrid<strong>in</strong>e-H3 3.45 (bs, 1H) - - 3.60 (bs, 1H) / -<br />

pyrid<strong>in</strong>e-KLt 4.97 (bs, 1H) 5.54 (s, 1H) 5.3 (s, 1H) 4.79 (bs,lH) 5.68 (s, 1H) 5.63 (s, 1H)<br />

CH3-CH2-O 1.01 <strong>and</strong> 1.15 (2x 1.21 (m,6H) 0.95 (t, J=7.1 0.93 <strong>and</strong> 1.15 (2x 1.09 (m, 6H) 0.89 (t, J=7.2<br />

t, J=7.6 Hz, 6H) Hz, 3H) t, J=7.1 Hz, 6H) Hz, 3H)<br />

CH3-CH2-O 3.89 <strong>and</strong> 4.12 (2x 4.12 (m,4H) 3.85 (q, J=7.1 3.81 <strong>and</strong> 4.13 (2x 3.96 (m, 4H) 3.86 (q, J=7.2<br />

q, J=7.6 Hz, 4H) Hz, 2H) q, J=7.1 Hz, 4H) Hz, 2H)<br />

pyrid<strong>in</strong>e-CH2-Cl - 39.46 - - 39.5 -<br />

CH2-I acton - - 65.0 - - 65.0<br />

pyrid<strong>in</strong>e=CH-Cl 97.4 - - 98.2 - -<br />

pyrid<strong>in</strong>e-C3/Cs 45.9 <strong>and</strong> 95.6 101.0 <strong>and</strong> 103.6 100.0 <strong>and</strong> 102.3 46.7 <strong>and</strong> 96.5 101.0 <strong>and</strong> 103.6 99.9 <strong>and</strong> 102.2<br />

pyrid<strong>in</strong>e-C4 36.4 38.40 35.2 35.5 33.6 31.6


3 Pharmacology<br />

Chapter 5<br />

3.1 In <strong>vitro</strong> calcium channel block<strong>in</strong>g activities<br />

Male Wistar rats (200-250g, Harlan C.P.B., Zeist, The Netherl<strong>and</strong>s) were killed by<br />

decapitation. The thorax was opened <strong>and</strong> thymus, lungs <strong>and</strong> oesophagus were<br />

removed. Next the heart was taken at the apex <strong>and</strong> removed together with the<br />

thoracial aorta, by gently cutt<strong>in</strong>g the latter from the sp<strong>in</strong>e up to the diaphragm <strong>and</strong><br />

placed <strong>in</strong> Krebs R<strong>in</strong>ger solution (composition [mM]: NaCl 118.5, KC14.74, MgSCU<br />

1.18, KH 2P0 4 1.18, CaCb 2.5, NaHC0 3 25 <strong>and</strong> glucose 10) at room temperature. The<br />

aorta was prepared free from heart <strong>and</strong> adher<strong>in</strong>g tissue. After removal <strong>of</strong> the aortic<br />

arch, the aorta was spirally cut by gently unw<strong>in</strong>d<strong>in</strong>g it from a horizontally placed<br />

metal bar. Thus 3 to 4 strips per animal were obta<strong>in</strong>ed. Strips <strong>of</strong> aortic tissue (length:<br />

1-1.5 cm; width: 1-2 mm) were placed (us<strong>in</strong>g silk thread, Perma-H<strong>and</strong> 0.7 metric,<br />

Ethicon, Nordestedt, Germany) <strong>in</strong> an organ bath (20 ml; Krebs R<strong>in</strong>ger medium<br />

bubbled with O2/CO2 (95/5%) at 37°C. A rest<strong>in</strong>g tension <strong>of</strong> 0.5 g was applied <strong>and</strong><br />

the aortic strips were equilibrated dur<strong>in</strong>g 100 m<strong>in</strong>utes <strong>and</strong> placed <strong>in</strong> fresh buffer<br />

solution every 20 m<strong>in</strong>utes. Next the strips were isotonically contracted by a<br />

modificated buffer solution (composition [mM]: NaCl 73.2, KC1 50, MgSCU 1.18,<br />

KH2PO4 1.18, CaCh 1.25, NaHCC>3 25 <strong>and</strong> glucose 10). Concentration-response<br />

curves <strong>of</strong> tiamdip<strong>in</strong>e analogues were provoked to determ<strong>in</strong>e pICso values.<br />

Measurements <strong>of</strong> <strong>in</strong>hibition were started 15 m<strong>in</strong>utes after depolarisation. Additional<br />

<strong>in</strong>creas<strong>in</strong>g doses to generate dose-response curves were given every 45 m<strong>in</strong>utes.<br />

3.2 Dihydropyrid<strong>in</strong>e receptor b<strong>in</strong>d<strong>in</strong>g assay<br />

The cortices from the rats were isolated <strong>and</strong> homogenised <strong>in</strong> ice-cold Tris HC1 buffer<br />

(50 mM pH 7.4 at 0°C) <strong>in</strong> a ratio <strong>of</strong> 1:3 (v/v). The homogenate was centrifuged<br />

(48,000 g for 10 m<strong>in</strong>utes) which was repeated three times with resuspension <strong>of</strong> the<br />

pellet <strong>in</strong> the buffer <strong>and</strong> stored <strong>in</strong> liquid nitrogen until required.<br />

B<strong>in</strong>d<strong>in</strong>g experiments were performed under sodium light because <strong>of</strong> the photolability<br />

<strong>of</strong> [ 3<br />

H]nitrendip<strong>in</strong>e.<br />

All b<strong>in</strong>d<strong>in</strong>g assays were carried out accord<strong>in</strong>g to Boer et al. [27] by add<strong>in</strong>g <strong>in</strong> each<br />

<strong>in</strong>cubation tube 200 [il <strong>of</strong> Tris Buffer (50 mM, pH 7.4, 0°C); 100 |il rat bra<strong>in</strong><br />

membrane suspension (170 |Xg prote<strong>in</strong>/ml); <strong>in</strong>cubated for 60 m<strong>in</strong>utes at 37°C with<br />

100 |il <strong>of</strong> 1 nM [ 3<br />

H]-nitrendip<strong>in</strong>e solution, <strong>and</strong> 100 pi <strong>of</strong> the drug concentration for a<br />

f<strong>in</strong>al volume <strong>of</strong> 0.5 ml. The f<strong>in</strong>al DMSO concentration never exceeded 1% (v/v)<br />

which did not affect the b<strong>in</strong>d<strong>in</strong>g. The <strong>in</strong>cubation was stopped with 4 ml ice-cold Tris<br />

HC1 buffer filtered under reduced pressure onto Whatman GF/C filters <strong>and</strong> washed<br />

twice with 4 ml ice-cold buffer us<strong>in</strong>g a Br<strong>and</strong>el filtration apparatus. The radioactivity<br />

was counted after addition <strong>of</strong> 5 ml sc<strong>in</strong>tillation liquid (Optiphase HiSafe-3) to the<br />

filter, by liquid sc<strong>in</strong>tillation spectrometry (Packard 1900 CA tri-card liquid sc<strong>in</strong>tillation<br />

counter) at an efficiency <strong>of</strong> approximately 55%.<br />

137


Chapters<br />

Saturation analysis at equilibrium was performed by <strong>in</strong>cubat<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>g<br />

concentrations <strong>of</strong> [ 3<br />

H]nitrendip<strong>in</strong>e up to 2 nM with 50 pi <strong>of</strong> purified prote<strong>in</strong> <strong>and</strong> Tris-<br />

HC1 buffer (pH 7.4,37°C) for a total volume <strong>of</strong> 0.25 ml.<br />

Non-specific b<strong>in</strong>d<strong>in</strong>g was determ<strong>in</strong>ed <strong>in</strong> presence <strong>of</strong> 1 pM nifedip<strong>in</strong>e. Specific<br />

b<strong>in</strong>d<strong>in</strong>g was determ<strong>in</strong>ed by subtract<strong>in</strong>g the non-specific b<strong>in</strong>d<strong>in</strong>g from the total<br />

b<strong>in</strong>d<strong>in</strong>g. Equilibrium dissociation constant (Kd) 0.75 nM <strong>of</strong> the labelled compound<br />

<strong>and</strong> the maximal b<strong>in</strong>d<strong>in</strong>g (B m a x) <strong>of</strong> 270 fmol/mg prote<strong>in</strong> were determ<strong>in</strong>ed with the<br />

non-l<strong>in</strong>ear fitt<strong>in</strong>g program LIGAND 4.1 [28].<br />

4 Results <strong>and</strong> Discussion<br />

In <strong>vitro</strong> vascular calcium antagonistic activity (expressed as pICso) was assessed as<br />

the concentration <strong>of</strong> the compound required to <strong>in</strong>hibit the K +<br />

-depolarisation <strong>in</strong>duced<br />

(50 mmol/1) contractile responses <strong>in</strong> rat aorta strips by 50%. All compounds, tested as<br />

racemic mixtures, caused complete <strong>in</strong>hibition <strong>of</strong> contractile responses as verified by<br />

addition <strong>of</strong> 1 mM papaver<strong>in</strong>e. As reported earlier, the development <strong>of</strong> antagonism <strong>of</strong><br />

amlodip<strong>in</strong>e <strong>and</strong> tiamdip<strong>in</strong>e analogues occurred slowly <strong>and</strong> did not reach equilibrium<br />

after 2 hours [29]. Because additional <strong>in</strong>creas<strong>in</strong>g doses to generate dose-response<br />

curves were given every 45 m<strong>in</strong>utes, no complete equilibrium was reached <strong>and</strong> this<br />

can lead to underestimated calcium <strong>in</strong>hibitory activities.<br />

The <strong>in</strong>fluence <strong>of</strong> substituents <strong>in</strong> the 4-phenyl r<strong>in</strong>g <strong>of</strong> the compounds with an (2am<strong>in</strong>oethylthio)methyl<br />

side cha<strong>in</strong> on the 2-position <strong>of</strong> the 1,4-dihydropyrid<strong>in</strong>e on the<br />

calcium channel block<strong>in</strong>g activity is rather small (table II). Compounds with a nitro<br />

substituent <strong>in</strong> the 4-phenyl r<strong>in</strong>g <strong>and</strong> with m = 2 (VUF 4574 <strong>and</strong> VUF 9055) are<br />

almost as potent as amlodip<strong>in</strong>e 4 <strong>and</strong> slightly more active than those compounds<br />

possess<strong>in</strong>g 2,3-dichloro substituents (VUF 9158) or no substituent at all (VUF 9056).<br />

The DHP with a 3-nitro substituent <strong>in</strong> the 4-phenyl r<strong>in</strong>g was chosen to explore the<br />

<strong>in</strong>fluence <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g (co-am<strong>in</strong>oalkylthio)methyl side cha<strong>in</strong> length. There is no<br />

difference <strong>in</strong> calcium channel block<strong>in</strong>g activity when the alkyl cha<strong>in</strong> length is<br />

<strong>in</strong>creased from a ethyl cha<strong>in</strong> to a pentyl cha<strong>in</strong>.<br />

The phenomenon <strong>of</strong> unaltered potency with chang<strong>in</strong>g alkylcha<strong>in</strong> length is not shared<br />

for compounds VUF 9158 <strong>and</strong> VUF 4621. Increas<strong>in</strong>g the alkylcha<strong>in</strong> length from ethyl<br />

to propyl results <strong>in</strong> a decrease <strong>in</strong> calcium channel block<strong>in</strong>g activity. VUF 9109, <strong>in</strong><br />

which the am<strong>in</strong>e function is replaced by a phthalimide group, is less active than the<br />

correspond<strong>in</strong>g compound VUF 9055 with a primary am<strong>in</strong>e group.<br />

Alker <strong>and</strong> Denton [12] compared two 4-(2-chlorophenyl)-l,4-dihydropyrid<strong>in</strong>es<br />

bear<strong>in</strong>g identical (Me/Me) or different este* substitution (Me/Et). The calcium<br />

<strong>in</strong>hibitory potencies <strong>of</strong> both compounds aga<strong>in</strong>st K +<br />

-depolarisation <strong>in</strong>duced responses<br />

<strong>in</strong> rat aorta strips were almost equal. The DHPs with non-identical esters were tested<br />

as racemic mixtures.<br />

Kwon et al. [29] <strong>in</strong>vestigated the <strong>in</strong>fluence <strong>of</strong> substitution on the phenyl group <strong>in</strong> 2-<br />

(2-am<strong>in</strong>oethylthio)methyl-3-carboethoxy-5-carbomethoxy-4-phenyl-l,4-dihydropyrid<strong>in</strong>es<br />

on their calcium <strong>in</strong>hibitory potencies aga<strong>in</strong>st K +<br />

-depolarisation <strong>in</strong>duced<br />

responses <strong>in</strong> rat tail artery. In their <strong>series</strong>, the DHP with Z = H (table II) seemed to be<br />

138


Chapter 5<br />

Table II. Calcium block<strong>in</strong>g activities <strong>and</strong> radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ities <strong>of</strong> tiamdip<strong>in</strong>e<br />

analogues<br />

compound Z m R1/R2 pIC 5o # rat tissue pKd*<br />

VUF9056 H 2 Et/Et 7.27 1 0.08 aorta 8.57 + 0.10<br />

VUF4574 2-N0 2 2 Et/Et 8.02 ± 0.07 aorta 8.58 ±0.12<br />

VUF9158 2,3-diCl 2 Et/Et 7.47 ± 0.03 aorta 8.37 10.10<br />

VUF4621 2,3-diCl 3 Et/Et 6.77 ± 0.06 aorta 8.0010.12<br />

VUF 9055 3-NO2 2 Et/Et 7.96 ± 0.07 aorta 8.61 10.06<br />

VUF9108 3-NO2 3 Et/Et 7.82 ± 0.04 aorta 8.43 i 0.05<br />

VUF 9159 3-NO2 5 Et/Et 7.9610.12 aorta 8.55 i 0.08<br />

VUF 9109* 3-NO2 2 Et/Et 6.64 + 0.11 aorta not tested<br />

2-Cl<br />

2-C1 2<br />

nifedip<strong>in</strong>e<br />

2 Me/Me<br />

Et/Me<br />

7.8"<br />

7.6 a<br />

8.77 1 0.08<br />

8.4 a<br />

/8.9 b<br />

aorta<br />

aorta<br />

amlodip<strong>in</strong>e aorta<br />

2-NO2 2 Et/Me<br />

H 2 Et/Me<br />

7.08 d<br />

7.45 d<br />

aorta 8.7010.14<br />

8.44 c<br />

N tail artery 7.25 dl<br />

/7.74 d2<br />

/8.12 c<br />

tail artery 7.44 dl<br />

/7.68 d2<br />

/8.01 c<br />

5 3-NO2 2 Et/Me 7.18<br />

# AH values are means 1 s.d. for 3 <strong>in</strong>dependent observations<br />

$ All values are means 1 s.d. for 6 to 9 <strong>in</strong>dependent observations. All radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g<br />

aff<strong>in</strong>ities (pKd) were determ<strong>in</strong>ed on isolated rat cortex membranes<br />

* Am<strong>in</strong>e protected as a phthalimid<br />

a Alkeretal. [12] b Godfra<strong>in</strong>d [33] c Wibo et al. [34]<br />

d Kwon et al. [29] PIC50 data calculated from IC50 values.<br />

dl/d2/d3 data expressed as pKj dl Rat bra<strong>in</strong>; d2 Rat heart; d3 Gu<strong>in</strong>ea pig ileum<br />

d<br />

tail artery 7.70 dl<br />

/8.03 d2<br />

/8.44 (<br />

139


Chapters<br />

the most potent calcium channel <strong>in</strong>hibitor compared to the 2- or 3-nitrophenyl<br />

substituted DHP. In the case <strong>of</strong> 3-nitrophenyl substituted DHP, the <strong>in</strong>dividual<br />

enantiomers were exam<strong>in</strong>ed.<br />

In table III the <strong>in</strong>hibitory potencies <strong>of</strong> three different racemic DHPs <strong>and</strong> their<br />

enantiomers are given. Each racemate <strong>and</strong> its enantiomeric pair were tested on the<br />

same tissue. Although the pairs <strong>of</strong> DHPs were tested on different tissues, all (-)enantiomers<br />

are 100 till 1000 fold more active than their (+)-enantiomers.<br />

Table III. In <strong>vitro</strong> <strong>in</strong>hibitory effect <strong>of</strong> racemates <strong>and</strong> their enantiomers on<br />

K +<br />

-<strong>in</strong>duced contractions on different tissues expressed as pICso values<br />

compound tissue racemate (-)-enantiomer (+)-enantiomer ref.<br />

nimodip<strong>in</strong>e rabbit aorta 8.24 8.52 7.80 [30)<br />

tiamdip<strong>in</strong>e rat tail artery 7.19 7.51 5.35 [29]<br />

amlodip<strong>in</strong>e rat aorta 8.10 8.70 5.80 [31]<br />

All data are taken from literature <strong>and</strong> were calculated from IC50 values<br />

In table IV the organ dependency <strong>of</strong> nifedip<strong>in</strong>e for its calcium channel block<strong>in</strong>g<br />

activity is given. On all three different smooth muscle preparations the calcium<br />

<strong>in</strong>hibitory potency <strong>of</strong> nifedip<strong>in</strong>e varies only with<strong>in</strong> a small range (pICso = 8.1 - 8.8).<br />

Therefore, the calcium <strong>in</strong>hibitory potencies <strong>of</strong> the tiamdip<strong>in</strong>e analogues tested on rat<br />

aorta strips <strong>and</strong> rat tail artery might be regarded as equipotent. In table II the<br />

tiamdip<strong>in</strong>e analogues with identical esters appeared to be as potent as the tiamdip<strong>in</strong>e<br />

analogues with different esters, although it has to be realized that they were tested on<br />

different smooth muscle preparations.<br />

Table IV. In <strong>vitro</strong> calcium <strong>in</strong>hibitory activities <strong>of</strong> nifedip<strong>in</strong>e aga<strong>in</strong>st<br />

K +<br />

-depolarisation <strong>in</strong>duced contractions on different tissues<br />

tissue pICso ref.<br />

rabbit aorta 8.09 + 0.12 (95% C.L) [32]<br />

rat aorta 8.77 ± 0.08<br />

8.40 - 8.88 [12;33]<br />

rat tail artery 8.17 ±0.17 (95% C.L.) [29]<br />

95% confidence limit. Number <strong>of</strong> observations are 4 to 6<br />

All data are taken from literature <strong>and</strong> were calculated from IC50 values<br />

140


Chapter 5<br />

Radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ities <strong>of</strong> the tiamdip<strong>in</strong>e analogues (pK^), determ<strong>in</strong>ed by<br />

displacement <strong>of</strong> [ 3<br />

H]nitrendip<strong>in</strong>e from rat cortex membranes, exhibit similar b<strong>in</strong>d<strong>in</strong>g<br />

aff<strong>in</strong>ities <strong>and</strong> are almost equal to that <strong>of</strong> nifedip<strong>in</strong>e 1 (table II). The differences<br />

between the pICso values (determ<strong>in</strong>ed on rat aorta) <strong>and</strong> pIQ values (determ<strong>in</strong>ed on<br />

rat cortex membranes) might be caused by the possible underestimated calcium<br />

channel block<strong>in</strong>g activities or might be expla<strong>in</strong>ed by organ specificity. Thus, Kwon et<br />

al. [29] determ<strong>in</strong>ed the aff<strong>in</strong>ities on rat bra<strong>in</strong>, rat heart <strong>and</strong> gu<strong>in</strong>ea-pig ileum<br />

membranes <strong>and</strong> found an <strong>in</strong>crease <strong>in</strong> their pKi values.<br />

Additional <strong>in</strong>teraction <strong>of</strong> the protonated am<strong>in</strong>oalkyl side cha<strong>in</strong> <strong>of</strong> amlodip<strong>in</strong>e <strong>and</strong><br />

tiamdip<strong>in</strong>e analogues with the 1,4-DHP b<strong>in</strong>d<strong>in</strong>g site might lead to a conformation <strong>in</strong><br />

which the 4-phenyl r<strong>in</strong>g is displaced from the b<strong>in</strong>d<strong>in</strong>g site, seen for nifedip<strong>in</strong>e <strong>and</strong><br />

related 1,4-DHPs. This conformation dim<strong>in</strong>ishes the contribution <strong>of</strong> 4-phenyl r<strong>in</strong>g<br />

substituents <strong>in</strong> the mode <strong>of</strong> <strong>in</strong>teraction with the 1,4-dihydropyrid<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g site. This<br />

expla<strong>in</strong>s why VUF 9109, without a primary am<strong>in</strong>oalkyl group, does b<strong>in</strong>d to a lesser<br />

extent than the DHPs with a free am<strong>in</strong>e group which under physiological conditions<br />

can be protonated.<br />

5 Conclusions<br />

All tiamdip<strong>in</strong>e analogues discussed are potent <strong>in</strong>hibitors <strong>of</strong> K +<br />

-depolarisation <strong>in</strong>duced<br />

contractions <strong>in</strong> isolated rat aorta. This activity is relatively <strong>in</strong>dependent <strong>of</strong> the nature<br />

<strong>of</strong> the substituent <strong>in</strong> the 4-phenyl r<strong>in</strong>g. It can be concluded that identical or nonidentical<br />

ester substitution does not play a major role for potency. Furthermore,<br />

concern<strong>in</strong>g the 4-(3-nitrophenyl)-l,4-dihydropyrid<strong>in</strong>es, calcium channel block<strong>in</strong>g<br />

activities are susta<strong>in</strong>ed with <strong>in</strong>creas<strong>in</strong>g alkylcha<strong>in</strong> length (m = 2-5; Table II).<br />

The rather small numbers <strong>of</strong> compounds <strong>and</strong> especially the narrow activity range do<br />

not permit to quantify the structure activity relationships <strong>of</strong> the presented 1,4dihy<br />

dropyrid<strong>in</strong>es.<br />

Experimental protocols<br />

If <strong>in</strong>dicated crude reaction products were purified by flash chromatography on<br />

silicagel (J.T.Baker 70242). Melt<strong>in</strong>g po<strong>in</strong>ts were determ<strong>in</strong>ed on a Mettler FP 52 with<br />

microscope. !H-NMR <strong>and</strong> 13<br />

C-NMR-spectra were recorded on a Bruker AC 200. The<br />

chemical shifts are <strong>in</strong> ppm relative to tetramethylsilane. Mass spectra were determ<strong>in</strong>ed<br />

on a Mat 90 (F<strong>in</strong>nigan Mat) mass spectrometer with Fast Atom Bombardment<br />

ionisation (matrix: glycerol + ammonium acetate, thioglycerol or 3-nitrobenzylalcohol,<br />

Ion Tech saddlefield gun, 8 keV Xenon with xenon ioncurrent 0.2 mA). All<br />

compounds gave the expected (M+H) +<br />

<strong>and</strong> to a lesser extend (M-H)" peaks<br />

(negative ions). Furthermore the purity <strong>of</strong> the compounds were checked by th<strong>in</strong> layer<br />

chromatography (Merck silica gel 60, F254 0.25 mm).<br />

141


Chapters<br />

General synthetic procedure<br />

2~chloromethyl-3£-dicarboethoxy-6-methyl-4-(substitutedp<br />

pyrid<strong>in</strong>e<br />

0.1 mol 3-nitrobenzaldehyde, 0.1 mol ethyl 4-chloroacetoacetate, 6.6 mmol benzyl-<br />

am<strong>in</strong>e <strong>and</strong> 6.6 mmol acetic acid were stirred for 24 hours <strong>in</strong> 2-propanol at room<br />

temperature. Then 0.1 mol ethyl 3-am<strong>in</strong>ocrotonate was added <strong>and</strong> the reaction<br />

mixture was stirred for another 24 hours at room temperature. Then 5 ml concentrated<br />

hydrochloric acid was added <strong>and</strong> stirr<strong>in</strong>g was cont<strong>in</strong>ued for 2 hours. The precipitate<br />

was filtered <strong>of</strong>f <strong>and</strong> the filtrate was evaporated. The residue was dissolved <strong>in</strong> ethyl<br />

acetate <strong>and</strong> diethyl ether was added until no further precipitation occurred. The solid<br />

material was filtered <strong>of</strong>f, the filtrate was evaporated <strong>and</strong> the residue was crystallised<br />

from methanol.<br />

2-chloromethyl-3,5-dicarboethoxy-6-methyl-4-(3-nitrophenyl)-l ,4-dihydropyrid<strong>in</strong>e<br />

Yield 58%, melt<strong>in</strong>g po<strong>in</strong>t 120.2-121.1°C.<br />

1H-NMR (DMSO-d 6): 1.10 ppm (t, J = 6.6 Hz, 6H, 2x CH3-CH2-O), 2.40 ppm (s, 3H,<br />

pyrid<strong>in</strong>e-CH3), 4.12 ppm (m, 4H, 2x CH3-CH2-O), 4.90 ppm (AB, Jab = 13.2 Hz, 2H,<br />

pyrid<strong>in</strong>e-CH2-Cl), 5.14 ppm (s, 1H, pyrid<strong>in</strong>e-ILO, 6.68 ppm (s, 1H, pyrid<strong>in</strong>e-NH), 7.63<br />

ppm (t, J = 7.3 Hz, 1H, phenyl-Hs), 7.74 ppm (d, J = 7.3 Hz, 1H, phenyl-H 6>), 8.05 ppm<br />

(d, / = 7.3 Hz, 1H, phenyl-aO, 8.14 ppm (s, J = 7.3 Hz, 1H, phenyl-Hb).<br />

13C-NMR (DMSO-d 6): 13.58 <strong>and</strong> 13.76 ppm (2x £H 3-CH 2-0), 17.99 ppm (pyrid<strong>in</strong>e-<br />

£H 3), 38.96 (pyrid<strong>in</strong>e^), 39.41 ppm (pyrid<strong>in</strong>e-£H 2-Cl), 59.15 <strong>and</strong> 59.70 ppm (2x<br />

CH 3-£H 2-0), 100.55 <strong>and</strong> 102.80 ppm (pyrid<strong>in</strong>e^ <strong>and</strong> £5), 121.12 <strong>and</strong> 121.75 <strong>and</strong><br />

129.42 <strong>and</strong> 133.97 ppm (phenyl-^, £4, £5 <strong>and</strong> £5), 144.35 <strong>and</strong> 146.22 <strong>and</strong> 147.26<br />

<strong>and</strong> 149.12 ppm (phenyl-£i <strong>and</strong> £3 <strong>and</strong> pyrid<strong>in</strong>e-C? <strong>and</strong> £5), 165.12 <strong>and</strong> 165.99 ppm<br />

(2x carbonyl-£).<br />

2-chloromethyl-3,5-dicarboethoxy-6-methyl-4-(phenyl)-l,4-dihydropyrid<strong>in</strong>e<br />

Yield 48%, melt<strong>in</strong>g po<strong>in</strong>t 111.7-112.3°C.<br />

1H-NMR (DMSO-d 6): 1.14 ppm (m, 6H, 2x CH3-CH2-O), 2.31 ppm (s, 3H, pyrid<strong>in</strong>e-<br />

CH 3), 3.95-4.11 ppm (m, 4H, 2x CH 3-CH2-0), 4.72 <strong>and</strong> 4.82 ppm (AB, Jab = 10.7 Hz,<br />

2H, pyrid<strong>in</strong>e-CHb-Cl), 4.95 ppm (s, 1H, pyrid<strong>in</strong>e-IJO, 7.11-7.22 ppm (m, 5H, 5x phenyl-<br />

H), 9.25 ppm (s, 1H, pyrid<strong>in</strong>e-NH).<br />

13C-NMR (DMSO-d 6): 13.68 <strong>and</strong> 13.86 ppm (2x £H 3-CH 2-0), 17.91 ppm (pyrid<strong>in</strong>e-<br />

£H 3), 38.67 (pyrid<strong>in</strong>e^), 39.61 ppm (pyrid<strong>in</strong>e-£H 2-Cl), 58.91 <strong>and</strong> 59.47 ppm (2x<br />

CH 3-£H 2-0), 101.30 <strong>and</strong> 103.84 ppm (pyridhte-Os <strong>and</strong> £5), 125.95 ppm (phenyl-£ 4),<br />

127.15 <strong>and</strong> 127.72 ppm (phenyl-^, £ 3, £5 <strong>and</strong> £5), 143.25 <strong>and</strong> 145.22 <strong>and</strong> 147.07<br />

ppm (phenyl-£i <strong>and</strong> pyrid<strong>in</strong>e-Co <strong>and</strong> £5), 165.61 <strong>and</strong> 166.43 ppm (2x carbonyl-£).<br />

2-chloromethyl-3,5-dicarboethoxy-6-methyl-4-(2-nitrophenyl)-l ,4-dihydropyrid<strong>in</strong>e<br />

Yield 60%, melt<strong>in</strong>g po<strong>in</strong>t 99.8-100.4°C<br />

1H-NMR (DMSO-d 6): 1.07-1.11 ppm (m, 6H, 2x CH 3-CH 2-0), 2.27 ppm (s, 3H,<br />

pyrid<strong>in</strong>e-CEb), 3.80-4.15 ppm (m, 4H, 2x CH 3-CH2-0), 4.67 <strong>and</strong> 4.75 ppm (AB, Jab =<br />

142


Chapters<br />

13.1 Hz, 2H, pyrid<strong>in</strong>e-CHb-Cl), 5.67 ppm (s, 1H, pyrid<strong>in</strong>e-^), 7.32-7.83 ppm (m, 4H,<br />

4x Phenyl-H), 9.38 ppm (s, 1H, pyrid<strong>in</strong>e-NH).<br />

13<br />

C-NMR (DMSO-d6): 13.51 <strong>and</strong> 13.67 ppm (2x £H 3-CH 2-0), 18.02 ppm (pyrid<strong>in</strong>e-<br />

£H 3), 33.62 ppm (pyrid<strong>in</strong>e-£ 4), 39.50 ppm (pyrid<strong>in</strong>e-£H 2-Cl), 59.05 <strong>and</strong> 59.65 ppm<br />

(2x CH 3-£H 2-0), 101.02 <strong>and</strong> 103 .58 ppm (pyrid<strong>in</strong>e-£ 3 <strong>and</strong> £5), 123.54 <strong>and</strong> 127.38<br />

<strong>and</strong> 130.49 <strong>and</strong> 133.13 ppm (phenyl-£ 3, £ 4, £5 <strong>and</strong> £ 6), 141.29 <strong>and</strong> 143.94 ppm<br />

(phenyl-£i <strong>and</strong> £2), 146.80 <strong>and</strong> 146.82 ppm (pyrid<strong>in</strong>e-C^ <strong>and</strong> £ 6), 156.32 <strong>and</strong> 166.04<br />

ppm (2x carbonyl-£).<br />

2-chloromethyl-3,5-dicarboethoxy-4-(2,3-dichlorophenyl)-6-methyl-l ,4-dihydro-<br />

pyrid<strong>in</strong>e<br />

Yield 52%, melt<strong>in</strong>g po<strong>in</strong>t 135.4-136.6°C. Mass spectrum (Electron Impact (70eV);<br />

3 5<br />

3 7<br />

mass <strong>of</strong> Ci9H 2 0 Cl 2 ClNO4 mass calculated = 433.043, mass found = 433.044<br />

±0.003).<br />

1H-NMR (DMSO-d 6): 1.21 ppm (m, 6H, 2x CH 3-CH 2-0), 2.33 ppm (s, 3H, pyrid<strong>in</strong>e-<br />

CH 3), 4.06-4.18 ppm (m, 4H, 2x CH^CIfc-O), 4.76 <strong>and</strong> 4.85 ppm (AB, JAB = 13.3 Hz,<br />

2H, pyrid<strong>in</strong>e-CEb-Cl), 5.54 ppm (s, 1H, pyrid<strong>in</strong>e-EU), 6.95 ppm (br s, 1H, pyrid<strong>in</strong>e-NH),<br />

7.05-7.38 ppm (m, 3H, 3x phenyl-H).<br />

i 3<br />

C-NMR (DMSO-d6): 13.74 <strong>and</strong> 13.84 ppm (2x £H 3-CH 2-0), 18.58 ppm (pyrid<strong>in</strong>e-<br />

£H 3), 38.40 ppm (pyrid<strong>in</strong>e-£ 4), 39.46 ppm (pyrid<strong>in</strong>e-£H2-Cl), 58.43 <strong>and</strong> 60.66 ppm<br />

(2x CH 3-£H 2-0), 100.98 <strong>and</strong> 103.56 ppm (pyrid<strong>in</strong>e-£ 3 <strong>and</strong> £5), 126.83 <strong>and</strong> 127.70<br />

<strong>and</strong> 128.66 ppm (phenyl-£ 4, £5 <strong>and</strong> £ 6), 131.29 <strong>and</strong> 131.60 ppm (phenyl-C^ <strong>and</strong> £ 3),<br />

145.63 <strong>and</strong>l47.88 <strong>and</strong> 150.35 ppm (phenyl-£i <strong>and</strong> pyrid<strong>in</strong>e-^ <strong>and</strong> £6), 150.35<br />

(phenyl-£i), 169.17 ppm (2x carbonyl ester-Q.<br />

Method a. 2-(2-am<strong>in</strong>oethylthio)methyl-3£-dicarboethoxy-6-methyl-4-[(substituted)<br />

phenyl]-1,4-dihydropyrid<strong>in</strong>e fumarate<br />

4 ml 5M NaOH solution <strong>in</strong> water was added to 10 mmol cysteam<strong>in</strong>e.HCl <strong>in</strong> ethanol.<br />

To this solution, 10 mmol 2-chloromethyl-3,5-dicarboethoxy-6-methyl-4-[(substi-<br />

tuted)phenyl]-l,4-dihydropyrid<strong>in</strong>e <strong>in</strong> 10 ml ethanol/dimethoxyethane (5:1) was added<br />

dropwise at -15°C. After stirr<strong>in</strong>g for 15 m<strong>in</strong>utes at -15°C the reaction mixture was<br />

slowly heated until room temperature. The solution was brought to pH = 4.5 with<br />

acetic acid. After evaporation <strong>of</strong> the solvent, the reaction mixture was dissolved <strong>in</strong><br />

water <strong>and</strong> washed with diethyl ether (3 x 30 ml). The water layer was made basic<br />

with a sodium bicarbonate solution <strong>and</strong> washed 5 times with 50 ml ethyl<br />

acetate/diethyl ether (1:1). The comb<strong>in</strong>ed organkMayers were dried with MgS0 4 <strong>and</strong><br />

the solvent evaporated. The free base was dissolved <strong>in</strong> ethyl acetate at 40°C. Then<br />

fumaric acid <strong>in</strong> methanol 60°C was added. The product was obta<strong>in</strong>ed after cool<strong>in</strong>g.<br />

2-(2-am<strong>in</strong>oethylthio)methyl-3 f5-dicarboethoxy-6-methyl-4-(3-nitrophenyl)-l F4dihydropyrid<strong>in</strong>e<br />

fumarate VUF 9055<br />

Yield 24%, melt<strong>in</strong>g po<strong>in</strong>t 151.4-152.8°C. Mass spectrum (matrix = glycerol +<br />

ammoniumacetate) (FAB+) 450 [M+HJ+, (FAB) 448 [M-H]-.<br />

143


Chapter 5<br />

1H-NMR (DMSO-d 6):1.02-1.23 ppm (m, 6H, 2x CH 3-CH 2-0), 2.23 ppm (s, 3H,<br />

pyrid<strong>in</strong>e-Qfc), 2.82 ppm (br s, 2H, Qfc), 3.00 ppm (br s, 2H, CH2), 3.73-4.12 ppm (m,<br />

6H, pyrid<strong>in</strong>e-CH2-S <strong>and</strong> 2x CH 3-CH 2-0), 4.98 ppm (s, 1H, pyrid<strong>in</strong>e-H 4), 6.47 ppm (s,<br />

2H, fumaric acid), 7.47-7.71 ppm (m, 2H, 2x phenyl-H), 7.93-8.07 ppm (m, 2H, 2x<br />

phenyl-H), 7.47-8.67 (br s, 2H, NH9J, 9.48 ppm (br s, 0.8 H, pyrid<strong>in</strong>e-NH).<br />

13C-NMR (DMSO-d 6): 13.65 <strong>and</strong> 13.80 ppm (2x £H 3-CH 2-0), 17.94 ppm (pyrid<strong>in</strong>e-<br />

£H 3), 28.46 <strong>and</strong> 29.59 ppm (S-£H 2-CH 2-N <strong>and</strong> S-CH 2-CH 2-N), 38.49 ppm (pyrid<strong>in</strong>e-<br />

CH 2-S), 38.96 ppm (pyrid<strong>in</strong>e-£ 4), 59.08 <strong>and</strong> 59.39 ppm (2x CH 3-£H 2-0), 100.77 <strong>and</strong><br />

101.11 ppm (pyrid<strong>in</strong>e-£ 3 <strong>and</strong> £5), 120.98 <strong>and</strong> 121.72 <strong>and</strong> 129.37 <strong>and</strong> 133.98 ppm<br />

(phenyl-C2, C 4, £5 <strong>and</strong> £5), 135.03 ppm (2x £H fumaric acid), 146.29 <strong>and</strong> 147.21 <strong>and</strong><br />

147.86 <strong>and</strong> 149.69 ppm (phenyl-£i <strong>and</strong> £5 <strong>and</strong> pyrid<strong>in</strong>e-^ <strong>and</strong> £5), 165.80 <strong>and</strong><br />

166.15 ppm (2x carbonyl ester-£), 168.13 (2x carbonyl-£ fumaric acid).<br />

2-(2-am<strong>in</strong>oethylthio)methyl-3,5-dicarboethoxy-6-methyl-4-phenyl-l ,4-dihydro-<br />

pyrid<strong>in</strong>e fumarate VUF 9056<br />

Yield 50%, melt<strong>in</strong>g po<strong>in</strong>t 120.5-123.0°C. Mass spectrum (matrix = glycerol +<br />

ammoniumacetate) (FAB+) 405 [M+H] +<br />

, (FAB+) 403 [M-H]+.<br />

*H-NMR (DMSO-d 6): 1.15 ppm (t, J = 6.6 Hz, 6H, 2x CH3-CH9.-O), 2.29 (s, 3H,<br />

pyrid<strong>in</strong>e-CH 3), 2.80 ppm (t, J = 7.3 Hz, 2H, S-CH 2-CH 2-N), 3.02 ppm (t, J = 7.3 Hz,<br />

2H, S-CH 2-CH2-N), 3.88 ppm (s, 2H, pyrid<strong>in</strong>e-CIfc-S), 3.99 ppm (q, J = 6.6 Hz, 4H, 2x<br />

CH3-CE1-O), 4.90 ppm (s, 1H, pyrid<strong>in</strong>e-BO, 6.52 ppm (s, 2H, fumaric acid), 7.05-7.30<br />

ppm (m, 5H, 5x phenyl-H), 9.33 ppm (br s, 0.8 H, pyrid<strong>in</strong>e-NH).<br />

13C-NMR (DMSO-d 6): 13.75 <strong>and</strong> 13.89 ppm (2x £H 3-CH 2-0), 17.89 ppm (pyrid<strong>in</strong>e-<br />

£H 3), 28.48 <strong>and</strong> 29.68 ppm (S-£H 2-CH 2-N <strong>and</strong> S-CH 2-£H 2-N), 38.46 ppm (pyrid<strong>in</strong>e-<br />

£H 2-S), 38.60 ppm (pyrid<strong>in</strong>e-£ 4), 58.84 <strong>and</strong> 59.16 ppm (2x CH 3-£H 2-0), 101.54 <strong>and</strong><br />

102.15 ppm (pyrid<strong>in</strong>e £3 <strong>and</strong> £5), 125.78 ppm (phenyl-£ 4), 127.10 <strong>and</strong> 127.65 ppm<br />

(phenyl-£2, £3, £5 <strong>and</strong> £5), 135.00 ppm (2x £H fumaric acid), 145.27 <strong>and</strong> 146.58 <strong>and</strong><br />

147.56 ppm (phenyl-£i <strong>and</strong> pyrid<strong>in</strong>e-C? <strong>and</strong> C^), 166.24 <strong>and</strong> 166.56 ppm (2x<br />

carbonyl ester-£), 168.03 (2x carbonyl-£ fumaric acid).<br />

2-(2-am<strong>in</strong>oethylthio)methyl-3£-dicarboethoxy-6-methyl-4-(^<br />

dihydropyrid<strong>in</strong>e fumarate VUF 4574<br />

Yield 67%, melt<strong>in</strong>g po<strong>in</strong>t 101.7-102.0°C. Mass spectrum (matrix = glycerol +<br />

ammoniumacetate) (FAB+) 450 [M+H]+, (FAB) 448 [M-H]-.<br />

!H-NMR (DMSO-d 6): 1.02-1.33 ppm (m, 6H, 2x CH 3-CH 2-0), 2.29 (s, 3H, pyrid<strong>in</strong>e-<br />

CH 3), 2.77 <strong>and</strong> 2.98 ppm (m, 4H, S-CH 2-CH^N <strong>and</strong> S-CH^CIfc-N), 3.78-4.08 ppm<br />

(m, 6H, pyrid<strong>in</strong>e-CH9-S <strong>and</strong> 2x CH^-CH9-Q), 5.65 ppm (s, 1H, pyrid<strong>in</strong>e-EU), 6.48 ppm<br />

(s, 2H, fumaric acid), 7.33-7.79 ppm (m, 4H, 4x phenyl-H), 9.50 ppm (br s, 0.7 H,<br />

pyrid<strong>in</strong>e-NH).<br />

144


2-(2-am<strong>in</strong>oethylthio)methyl-3,5-dicarboethoxy-4-(2,3-dichlorophenyl)-6-methyl-<br />

1,4-dihydropyrid<strong>in</strong>e fumarate VUF 9158<br />

Chapters<br />

Yield 57%, melt<strong>in</strong>g po<strong>in</strong>t 147.6-150.3°C. Mass spectrum (Electron Impact (70eV);<br />

mass <strong>of</strong> C2iH26 35<br />

Cl2N204S: mass calculated = 472.099, mass found = 472.100<br />

±0.003).<br />

*H-NMR (DMSO-d 6): 1.01-1.24 ppm (m, 6H, 2x CH 3-CH 2-0), 2.26 ppm (s, 3H,<br />

pyrid<strong>in</strong>e-CH3), 2.80 ppm (t, J = 6.6 Hz, 2H, Cfib), 3.00 ppm (t, J = 6.6 Hz, 2H, Clfc),<br />

3.80 <strong>and</strong> 3.91 ppm (AB, JAB = 13.3 Hz, 2H, pyrid<strong>in</strong>e-CIfc-S), 3.90-4.15 ppm (m, 4H,<br />

2x CH3-CH2-O), 5.35 ppm (s, 1H, pyrid<strong>in</strong>e-!^), 6.62 ppm (s, 2H, 2x CH fumaric acid),<br />

7.08-7.48 ppm (m, 3H, 3x phenyl-H), 9.30 ppm (br s, 1H, pyrid<strong>in</strong>e-NH).<br />

!3C-NMR (DMSO-d 6): 13.80 <strong>and</strong> 13.89 ppm (2x CH3-CH2-O), 17.86 ppm (pyrid<strong>in</strong>e-<br />

CH 3), 28.90 <strong>and</strong> 29.56 ppm (S-£H 2-CH 2-N <strong>and</strong> S-CH 2-CH 2-N), 37.65 ppm (pyrid<strong>in</strong>e-<br />

£4), 38.50 (pyrid<strong>in</strong>e-£H 2-S), 58.83 <strong>and</strong> 59.20 ppm (2x CH 3-£H 2-0), 101.20 <strong>and</strong><br />

101.86 ppm (pyrid<strong>in</strong>e £3 <strong>and</strong> £5), 127.80 <strong>and</strong> 128.0 <strong>and</strong> 129.15 ppm (phenyl-£ 4, £5<br />

<strong>and</strong> £5), 131.17 ppm (phenyl-£2 <strong>and</strong> £3), 135.04 ppm (2x £H fumaric acid), 145.72<br />

<strong>and</strong> 146.53 ppm (pyrid<strong>in</strong>e^ <strong>and</strong> £5), 148.44 (phenyl-£i), 166.09 <strong>and</strong> 166.31 ppm<br />

(2x carbonyl ester-£), 167.98 ppm (2x carbonyl-£ from fumaric acid).<br />

Method b. In situ preparation <strong>of</strong> 2-(2-am<strong>in</strong>oalkylthio)methyl-3 J5-dicarboethoxy-6-<br />

methyl-4-[(substituted)phenyl]-l ,4-dihydropyrid<strong>in</strong>e fumarate<br />

2 ml 10M NaOH solution <strong>in</strong> water was added dropwise to a solution <strong>of</strong> 20 mmol<br />

NaSH <strong>and</strong> 20 mmol N-(co-bromoalkyl)phthalimide <strong>in</strong> 75 ml DMSO . After stirr<strong>in</strong>g for 4<br />

hours, 20 mmol <strong>of</strong> 2-chloromethyl-3,5-dicarboethoxy-6-methyl-4-[(substituted)<br />

phenyl]-1,4-dihydropyrid<strong>in</strong>e <strong>in</strong> 50 ml DMSO was added dropwise. The reaction<br />

mixture was stirred 1 day at room temperature. The reaction mixture was poured <strong>in</strong>to<br />

water <strong>and</strong> extracted with ethyl acetate. The comb<strong>in</strong>ed organic layers were dried with<br />

MgS04 <strong>and</strong> the solvent evaporated. The crude reaction mixture was dissolved <strong>in</strong> 150<br />

ml ethanol <strong>and</strong> 3 equivalents <strong>of</strong> hydraz<strong>in</strong>e monohydrate was added. After reflux<strong>in</strong>g<br />

for 3 hours, the reaction mixture was cooled, filtered <strong>and</strong> evaporated. The residue was<br />

dissolved <strong>in</strong> dichloromethane <strong>and</strong> extracted with 1 M NaOH. The organic layer was<br />

evaporated <strong>and</strong> the residue dissolved <strong>in</strong> ethanol/water (5:1) <strong>and</strong> acidified with acetic<br />

acid. After evaporation <strong>of</strong> the solvent the residue was dissolved <strong>in</strong> water <strong>and</strong> washed<br />

with diethyl ether (3 x 40 ml). The water layer was made basic with a sodium<br />

bicarbonate solution <strong>and</strong> extracted with ethyl acetate. The comb<strong>in</strong>ed organic layers<br />

were dried with MgS04 <strong>and</strong> the solvent evaporated. The free base was dissolved <strong>in</strong><br />

ethyl acetate at 40°C. Then fumaric acid <strong>in</strong> methanol 60°C was added. The product<br />

was obta<strong>in</strong>ed after cool<strong>in</strong>g. Accord<strong>in</strong>g to this method the follow<strong>in</strong>g compounds were<br />

prepared.<br />

2-(3-am<strong>in</strong>opropylthio)methyl-3,5-dicarboethoxy-6-methyl-4-(3-nitrophenyl)-l ,4-<br />

dihydropyrid<strong>in</strong>e fumarate VUF 9108<br />

Yield 54%, melt<strong>in</strong>g po<strong>in</strong>t 124.3-127.2°C. Mass spectrum (matrix = glycerol +<br />

ammoniumacetate) (FAB+) 464 [M+H]+, (FAB) 462 [M-H]-.<br />

145


Chapters<br />

1H-NMR (DMSO-d 6): 1.07-1.27 ppm (m, 6H, CH 3-CH 2-0), 1.77-1.96 ppm (m, 2H, C-<br />

CH2-C), 2.32 ppm (s, 3H, pyrid<strong>in</strong>e-CH 3), 2.47-2.72 (m, 5.9 H, CJfc + DMSO), 2.85<br />

ppm (t, J = 6.6 Hz, 2H, CH2), 3.69-4.12 ppm (m, 6H, pyrid<strong>in</strong>e-CH2-S <strong>and</strong> 2x CH 3-CH 2-<br />

O), 5.01 (s, 1H, pyrid<strong>in</strong>e-EU), 6.48 ppm (s, 2H, fumaric acid), 7.50-7.70 ppm (m, 2H, 2x<br />

phenyl-H), 7.93-8.10 ppm (m, 2H, 2x phenyl-H), 8.51-9.67 ppm ( br s, 2H, NH2), 9.47<br />

ppm (s, 1H, pyrid<strong>in</strong>e-NH).<br />

2-(5-am<strong>in</strong>opentylthio)methyl-3,5-dicarboethoxy-6-methyl-4-(3-nifr^<br />

dihydropyrid<strong>in</strong>e fumarate VUF 9159<br />

Yield 69%, melt<strong>in</strong>g po<strong>in</strong>t 100.6-102.5°C. Mass spectrum (matrix = glycerol +<br />

ammoniumacetate) (FAB+) 492 [M+HJ+, (FAB) 490 [M-H]\<br />

*H-NMR (DMSO-d6): 1.10-1.18 ppm (m, 6H, 2x CH3-CH2-O), 1.21-1.30 ppm (m, 2H,<br />

C-C-CFb-C-C), 1.48 ppm (m, 4H, C-CH2-C-C-C <strong>and</strong> C-C-C-CJfc-C), 2.31 ppm (s, 3H,<br />

pyrid<strong>in</strong>e-CIfc), 2.45-2.52 ppm (m, 2H, CEb), 2.72 ppm (t, / = 7.35 Hz, 2H, Clfc), 3.73<br />

<strong>and</strong> 4.07 ppm (AB, JAB = 13.1 Hz, 2H, pyrid<strong>in</strong>e-CKb-S), 3.99 ppm (m, 4H, 2x CH3. CEh-O), 5.00 ppm (s, 1H, pyrid<strong>in</strong>e-ELO, 6.44 ppm (s, 2H, fumaric acid), 7.51-8.01 ppm<br />

(m, 4H, 4x phenyl-H), 9.42 ppm (br s, 1H, pyrid<strong>in</strong>e-NH).<br />

2-(3-am<strong>in</strong>opropylthio)methyl-3,5-dicarboethoxy-4-(2,3-dichloro^<br />

1,4-dihydropyrid<strong>in</strong>e fumarate VUF 4621<br />

Yield 35%, melt<strong>in</strong>g po<strong>in</strong>t 127.9-129.3°C. Mass spectrum (matrix = thioglycerol)<br />

(FAB+) 487 [M+H]+, (FAB-) 485 [M-H]-.<br />

1H-NMR (DMSO-d 6): 1.10 ppm (t, J = 6.6 Hz, 6H, Clfe-CH^O), 1.83 ppm (m, 2H, C-<br />

Ofc-C), 2.27 ppm (s, 3H, pyrid<strong>in</strong>e-CIfe), 2.60 (m, 2 H, S-CH 2-C-C-N), 3.20 ppm (m,<br />

2H, S-C-C-CH2-N), 3.74 <strong>and</strong> 3.92 ppm (AB, JAB = 12.9 Hz, 2H, pyrid<strong>in</strong>e-CH 2-S), 3.98<br />

ppm (m, 4H, 2x CHvCTb-O). 5.36 (s, 1H, pyrid<strong>in</strong>e-jHU), 6.46 ppm (s, 2H, fumaric acid),<br />

7.22-7.41 ppm (m, 3H, 3x phenyl-H), 9.39 ppm (s, 1H, pyrid<strong>in</strong>e-NH).<br />

13C-NMR (DMSO-d 6): 13.91 ppm (2x CH 3-CH 2-0), 17.93 ppm (pyrid<strong>in</strong>e-CH 3), 27.31<br />

<strong>and</strong> 28.07 <strong>and</strong> 29.61 ppm (S-CH 2-CH 2-CH 2-N), 58.80 <strong>and</strong> 59.15 ppm (2x CH 3-CH 2-<br />

O), 100.97 <strong>and</strong> 102.11 ppm (pyrid<strong>in</strong>e-C 3 <strong>and</strong> £5), 127.41 <strong>and</strong> 128.04 <strong>and</strong> 129.22 ppm<br />

(phenyl-£4, £5 <strong>and</strong> Qs), 131.15 ppm (phenyl-C? <strong>and</strong> £3), 135.13 ppm (2x £H fumaric<br />

acid), 145.78 <strong>and</strong> 146.65 ppm (pyrid<strong>in</strong>e-^ <strong>and</strong> £5), 148.55 (phenyl-£i), 166.34 ppm<br />

(2x carbonyl ester-£), 168.19 ppm (2x carbonyl-£ from fumaric acid).<br />

References<br />

1 Bossert F, Vater W, Med Res Rev, 9,29f-324 (1989)<br />

2 Buhler FR, Hulthen UL, Kiowski W, Muller FB, Bolli PJ, J Cardiovasc<br />

Pharmacol, 4, S350(1982)<br />

3 Stone PH, Antman EM, Muller JE, Braunwald E, Ann Intern Med, 93, 886-904<br />

(1980)<br />

4 Fleckenste<strong>in</strong> A, In: Calcium antagonism <strong>in</strong> heart <strong>and</strong> smooth muscle. John<br />

Wiley <strong>and</strong> Sons, New York (1983)<br />

146


Chapters<br />

5 Katz AM, In: Calcium antagonism <strong>and</strong> cardiovascular disease ( Opie LH, ed)<br />

Raven Press, New York, 53-66 (1984)<br />

6 Vater W, Kroneberg G, H<strong>of</strong>fmeister F, Kaller H, Meng K, Oberdorf A, Puls W,<br />

Schloßmann K, Stoepel K, Arzneim-Forsch / Drug Res, 22,1-14 (1972)<br />

7 Stoepel K, Heise A, Kazda S, Arzneim-Forsch / Drug Res, 31, 2056-2061 (1981)<br />

8 Kazda S, Neuser V, Schloßmann K, H<strong>of</strong>fmeister F, Arch Pharmacol Suppl, 29S,<br />

R16 (1976)<br />

9 Takenaka T, Usuda S, Nomura T, Maeno H, Sado T, Arzneim-Forsch / Drug Res,<br />

26, 2172-2178 (1976)<br />

10 Arrow smith JE, Campbell SF, Cross PE, Stubbs JK, Burges RA, Gard<strong>in</strong>er DG,<br />

Blackburn KJ, J Med Chem, 29,1696-1702 (1986)<br />

11 G<strong>and</strong>olfi AC, Frigerio M, Sp<strong>in</strong>elli S, T<strong>of</strong>anetti O, Tognella S, PCT/EP86/00445<br />

(1987)<br />

12 Alker D, Burges A, Campbell SF, Carter AJ, Cross PE, Gard<strong>in</strong>er DG, Humphrey<br />

MJ, Stopher DA, J Chem Soc Perk<strong>in</strong> Trans, 2,1137-1140 (1992)<br />

13 Chester DW, Herbette LG, Mason RP, Joslyn AF, TriggleDJ, Koppel DE,<br />

Biophys J, 52,1021-1030 (1985)<br />

14 Mason RP, Chester DW, Gonye GE, Herbette LG, Biophys J, 53, 348a (1988)<br />

15 Po<strong>in</strong>dexter GS, Foley MA, Licause JF, Tetrahedron Lett, 30, 3393-3396 (1989)<br />

16 Djuric S, Venit J, Magnus P, Tetrahedron Lett, 22,1787-1790 (1981)<br />

17 Young SD, Synthesis, 617-618 (1984)<br />

18 Alker D, Swanson AG, Tetrahedron Lett, 31,1479-1482 (1990)<br />

19 Alker D, Denton SM, Tetrahedron, 46, 3693-3702 (1990)<br />

20 Cho H, Ueda M, Mizuno A, Ishihara T, Aisaka K, Noguchi T, Chem Pharm Bull,<br />

37,2117-2121 (1989)<br />

21 Cupka P, Svetlik J, Synthetic Commun, 16, 529-534 (1986)<br />

22 Görlitzer K, Schmidt E, Arch Pharmacol, 324,359-361 (1991)<br />

23 Görlitzer K, Schmidt E, Arch Pharmacol, 324, 879-886 (1991)<br />

24 Archibald JL, Bradley G, Opalko A, Ward TJ, White JC, Ennis C, Shepperson<br />

NB, J Med Chem, 33, 646-652 (1990)<br />

25 Frigerio M, Zaliani A, Riva C, Palmisano G, Pilati T, G<strong>and</strong>olfi CA, Tetrahedron<br />

Lett, 29, 6335-6338 (1988)<br />

26 Gabriel S, Lauer WE, Chem Ber, 23,87-88 (1890)<br />

27 Boer R, Grassegger A, Schudt C, Glossmann H, Eur J Pharmacol, 172,131-145<br />

(1989)<br />

28 Munson PJ, Rodbard D, Anal Biochem, 107, 220-239 (1980)<br />

29 Kwon YW, Zhong Q, Wei XY, Zheng W, Triggle DJ, Arch Pharmacol, 341,128-<br />

136 (1990)<br />

30 Towart R, Weh<strong>in</strong>ger E, Meyer H, Kazda S, Arzneim-Forsch / Drug Res, 32,<br />

338-346 (1982)<br />

31 Alker D, Campbell SF, Cross PE, J Med Chem, 34,19-24 (1991)<br />

32 Towart R, Weh<strong>in</strong>ger E, Meyer H, Arch Pharmacol, 317,183-185 (1981)<br />

33 Godfra<strong>in</strong>d T, J Pharmacol Exp Ther, 224, 443-450 (1983)<br />

147


Chapter 5<br />

34 Wibo M, DeRoth L, Godfra<strong>in</strong>d T, Cire Res, 62, 91-96 (1988)<br />

148


Chapter 6<br />

Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> a <strong>series</strong> <strong>of</strong> new 1,4dihydropyrid<strong>in</strong>es.<br />

2.<br />

Diethyl 4-[2-(co-am<strong>in</strong>oalkoxy)phenyl]-2,6-dimethyl-l,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylates<br />

<strong>and</strong> their correspond<strong>in</strong>g<br />

isothioureas as tools for determ<strong>in</strong><strong>in</strong>g structure-activity<br />

relationships 1<br />

Chapter 6<br />

1 Introduction<br />

The <strong>in</strong>troduction <strong>of</strong> 4-aryl-l,4-dihydropyrid<strong>in</strong>es (DHPs) with highly potent Ca 2+<br />

-<br />

channel block<strong>in</strong>g activity led to a new direction <strong>in</strong> cardiovascular therapy. The Ca 2+<br />

-<br />

channel blockers are now well established <strong>in</strong> the treatment <strong>of</strong> ang<strong>in</strong>a pectoris,<br />

hypertension, certa<strong>in</strong> cardiac arrhythmias <strong>and</strong> peripheral vascular disorders [1-5]. The<br />

1,4-dihydropyrid<strong>in</strong>e Ca 2+<br />

2 +<br />

-channel blockers <strong>in</strong>hibit the <strong>in</strong>flux <strong>of</strong> extracellular Ca via<br />

L-type potential-dependent calcium channels <strong>and</strong> reduce vascular resistance.<br />

Although nifedip<strong>in</strong>e 1 [6] <strong>and</strong> nicardip<strong>in</strong>e 2 [7] are widely used cl<strong>in</strong>ically, their rather<br />

short duration <strong>of</strong> action is disadvantageous. For that reason several DHPs have been<br />

synthesized <strong>in</strong> which variations <strong>in</strong> phenyl substitution were performed or<br />

modifications <strong>of</strong> ester substituents on the 3- <strong>and</strong> 5-position on the 1,4dihydropyrid<strong>in</strong>e<br />

r<strong>in</strong>g were carried out. [for reviews see 8-11].<br />

H H<br />

1 nifedip<strong>in</strong>e 2 nicardip<strong>in</strong>e<br />

Qualitative <strong>and</strong> quantitative structure-activity <strong>in</strong>vestigations have been carried out<br />

by Loev et al. (antihypertensive action <strong>in</strong> anaesthetised animals) [12] <strong>and</strong><br />

Rodenkirchen et al. (negative <strong>in</strong>otropic activity 5n isolated, isotonically contracted<br />

cat papillary muscle) [13]. In both studies the most potent DHPs carry an orthosubstituent<br />

<strong>in</strong> the 4-phenyl r<strong>in</strong>g. Derivatives with meta or para substituents are less<br />

active. In the case <strong>of</strong> 4-aryl-substituted dihydropyrid<strong>in</strong>es the biological activity<br />

depends ma<strong>in</strong>ly on steric <strong>in</strong>fluences <strong>and</strong> appears generally to be <strong>in</strong>dependent <strong>of</strong> the<br />

electronic properties <strong>of</strong> the substituents.<br />

EurJ.Med.Chem., 28, 935-941 (1993)<br />

149


Chapter 6<br />

For lacidip<strong>in</strong>e 3 <strong>and</strong> analogues it has been found that <strong>in</strong>creas<strong>in</strong>g steric bulk <strong>and</strong><br />

lipophilicity <strong>of</strong> the ortho-substituent on the 4-phenyl r<strong>in</strong>g <strong>of</strong> the 1,4-DHP enhances<br />

the <strong>in</strong> vivo calcium channel block<strong>in</strong>g activity [14]. The lacidip<strong>in</strong>e analogue without a<br />

c<strong>in</strong>namoyl ester is more than 700 times less active then lacidip<strong>in</strong>e. By <strong>in</strong>creas<strong>in</strong>g the<br />

lipophilicity <strong>of</strong> the c<strong>in</strong>namoyl ester <strong>of</strong> lacidip<strong>in</strong>e analogues, the <strong>in</strong> <strong>vitro</strong> calcium<br />

channel block<strong>in</strong>g activity decreases while the duration <strong>of</strong> action <strong>in</strong>creases [15].<br />

Systematic modifications at the 2-position <strong>of</strong> the DHP r<strong>in</strong>g have been performed to<br />

<strong>in</strong>crease the rather short duration <strong>of</strong> action <strong>and</strong> to improve the bioavailability <strong>of</strong> the<br />

classical DHPs, result<strong>in</strong>g <strong>in</strong> amlodip<strong>in</strong>e 4 [16] <strong>and</strong> its derivatives <strong>and</strong> their thiobioisosters<br />

such as VUF 9159 5 [17] <strong>and</strong> tiamdip<strong>in</strong>e 6 [18]. These latter DHPs<br />

demonstrate that extended 2-substituents bear<strong>in</strong>g a basic functionality are well<br />

tolerated at the receptor.<br />

5 tiamdip<strong>in</strong>e 6 VUF 9159<br />

Calcium channel block<strong>in</strong>g activity <strong>of</strong> l,4-t)HPs is thought to be achieved by<br />

<strong>in</strong>teraction with specific receptors present on the L-type voltage dependent calcium<br />

channels. A major role for contribution to b<strong>in</strong>d<strong>in</strong>g to these receptors is played by the<br />

4-phenyl r<strong>in</strong>g <strong>of</strong> the 1,4-DHPs. Thus, substituents on the 4-phenyl r<strong>in</strong>g <strong>of</strong> nifedip<strong>in</strong>e<br />

analogues significantly <strong>in</strong>fluence the aff<strong>in</strong>ity to the receptor. Amlodip<strong>in</strong>e <strong>and</strong><br />

tiamdip<strong>in</strong>e analogues possess a basic side cha<strong>in</strong> at the 2-position on the 1,4-DHP r<strong>in</strong>g.<br />

It has been suggested that this protonated side cha<strong>in</strong> is trapped <strong>in</strong> the membrane <strong>and</strong><br />

the preferred conformation forces the phenyl r<strong>in</strong>g to move from the position adopted<br />

150


Chapter 6<br />

by nifedip<strong>in</strong>e analogues <strong>in</strong> such a way that the contribution <strong>of</strong> the 4-phenyl r<strong>in</strong>g<br />

substituents to b<strong>in</strong>d<strong>in</strong>g is reduced [19,20]. This then could expla<strong>in</strong> the rather small<br />

<strong>in</strong>fluence <strong>of</strong> the substituents on the 4-phenyl r<strong>in</strong>g <strong>of</strong> amlodip<strong>in</strong>e <strong>and</strong> tiamdip<strong>in</strong>e<br />

analogues on their pharmacologic potencies. In the present study we therefore<br />

established whether substituents <strong>of</strong> the 0-(CH 2) m-R type (with m = 5, 6 or 10 <strong>and</strong> R<br />

= NH 2 or thiourea or thiouronium bromide) at the ortho-position <strong>of</strong> the phenyl r<strong>in</strong>g<br />

are tolerated. The choice <strong>of</strong> identical ester substitution at the 3- <strong>and</strong> 5-position on the<br />

1,4-dihydropyrid<strong>in</strong>e r<strong>in</strong>g has been made because <strong>of</strong> earlier results obta<strong>in</strong>ed show<strong>in</strong>g<br />

that these DHPs were equally active as different ester substituted DHPs [17] <strong>and</strong> to<br />

avoid stereochemical complications.<br />

2 Chemistry<br />

The compounds listed <strong>in</strong> Table I were prepared by a general method illustrated <strong>in</strong><br />

Scheme 1.<br />

2-(co-substituted-alkoxy)benzaldehydes 9 were available by reaction <strong>of</strong> 2-hydroxybenzaldehyde<br />

with N-(co-bromoalkyl)phthalimides. The N-(co-bromoalkyl)phthalimides<br />

were synthesized accord<strong>in</strong>g to So<strong>in</strong>e et al. [21]. Hantzsch type condensation<br />

<strong>of</strong> a substituted benzaldehyde 9 with ethyl acetoacetate 7 <strong>and</strong> ethyl 3am<strong>in</strong>ocrotonate<br />

8 afforded 4-[2-(o)-phthalimidoalkoxy)phenyl]-l,4-dihydropyrid<strong>in</strong>es<br />

10. Subsequent hydraz<strong>in</strong>olysis <strong>of</strong> the phthalimides with hydraz<strong>in</strong>e monohydrate gave<br />

the 4-[2-((D-am<strong>in</strong>oalkoxy)phenyl]-l,4-dihydropyrid<strong>in</strong>es 11. The correspond<strong>in</strong>g<br />

thiourea analogues 13 were obta<strong>in</strong>ed via reaction <strong>of</strong> the am<strong>in</strong>o function <strong>of</strong> 11 with<br />

benzoyl isothiocyanate 12 [22] <strong>and</strong> subsequent basic hydrolysis. Reaction <strong>of</strong> the<br />

thioureas analogues 7 with ethyl bromide gave the thiouronium compounds 14.<br />

3 Pharmacology<br />

Calcium channel block<strong>in</strong>g activities were determ<strong>in</strong>ed <strong>in</strong> <strong>vitro</strong> on the rat aorta <strong>and</strong><br />

dihydropyrid<strong>in</strong>e receptor b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ities were determ<strong>in</strong>ed on isolated rat cortex as<br />

previously described by Christiaans et al. [17]. The calcium channel block<strong>in</strong>g<br />

activities (expressed as pIC50) were assessed as the concentration required to <strong>in</strong>hibit<br />

the K +<br />

-depolarisation <strong>in</strong>duced (50 mM) contractile responses <strong>in</strong> rat aorta strips by<br />

50%. Concentration-response curves were utilised to determ<strong>in</strong>e PIC50 values.<br />

The dihydropyrid<strong>in</strong>e receptor b<strong>in</strong>d<strong>in</strong>g assay was performed on rat cortex microsomes<br />

which were <strong>in</strong>cubated with [ 3<br />

H]nitrendip<strong>in</strong>e <strong>and</strong> various concentrations <strong>of</strong> the<br />

compounds at 37°C for 60 m<strong>in</strong>utes. The <strong>in</strong>cubations were carried out accord<strong>in</strong>g to<br />

Boer et al. [23] <strong>in</strong> such a way that the f<strong>in</strong>al DMSO concentration never exceeded 1%<br />

(v/v), a concentration which did not affect the b<strong>in</strong>d<strong>in</strong>g. The equilibrium dissociation<br />

constant (Kd) <strong>of</strong> the labelled compound <strong>and</strong> the maximal b<strong>in</strong>d<strong>in</strong>g (B m a x) were<br />

determ<strong>in</strong>ed with the non-l<strong>in</strong>ear fitt<strong>in</strong>g program LIGAND 4.1 [24] be<strong>in</strong>g 0.75 nM <strong>and</strong><br />

270 fmol/mg prote<strong>in</strong> respectively.<br />

151


Chapter 6


Chapter 6<br />

4 Results <strong>and</strong> discussion<br />

All compounds described <strong>in</strong> this paper show <strong>in</strong> <strong>vitro</strong> calcium channel block<strong>in</strong>g<br />

activity with<strong>in</strong> 5 m<strong>in</strong>utes but do not reach complete equilibrium with<strong>in</strong> 45 m<strong>in</strong>utes.<br />

This is <strong>in</strong> accordance with diethyl 2-(5-am<strong>in</strong>opentylthiomethyl)-6-methyl-4-(3nitrophenyl)-l,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylate<br />

(VUF 9159) <strong>and</strong> related<br />

compounds, described by Christiaans et al. [17]. Complete <strong>in</strong>hibition <strong>of</strong> contractile<br />

responses was obta<strong>in</strong>ed for all compounds as was verified by addition <strong>of</strong> 1 mM<br />

papaver<strong>in</strong>e.<br />

In Table I the <strong>in</strong>fluence <strong>of</strong> the variations <strong>in</strong> the co-am<strong>in</strong>oalkoxy cha<strong>in</strong> length at the<br />

ortho position <strong>of</strong> the 4-phenyl r<strong>in</strong>g on calcium channel block<strong>in</strong>g activity show a small<br />

range <strong>of</strong> potencies. Compounds with co-am<strong>in</strong>oalkoxy substituents at the meta<br />

position <strong>of</strong> the 4-phenyl r<strong>in</strong>g are not active at all (data not shown [26]).<br />

Convert<strong>in</strong>g the am<strong>in</strong>e function <strong>of</strong> the co-am<strong>in</strong>oalkoxy substituent <strong>in</strong>to thiourea<br />

affords species which are not protonated under physiological conditions. These<br />

compounds (VUF 4622 <strong>and</strong> VUF 4671) are as active as the correspond<strong>in</strong>g am<strong>in</strong>es<br />

(VUF 4599 <strong>and</strong> VUF 4600). Even, <strong>in</strong>troduction <strong>of</strong> an isothiouronium bromide, a polar<br />

group, does not alter the calcium channel block<strong>in</strong>g activities (VUF 4623 <strong>and</strong> VUF<br />

4624). Although, as mentioned by Loev et al. [12] <strong>and</strong> Rodenkirchen et al. [13], the<br />

calcium channel block<strong>in</strong>g activities <strong>of</strong> 4-aryl-substituted-l,4-dihydropyrid<strong>in</strong>es<br />

depend ma<strong>in</strong>ly on steric <strong>in</strong>fluences, no such <strong>in</strong>dications can be found for the<br />

compounds described <strong>in</strong> this paper.<br />

Table I shows that there is a difference between pIC 5 0 values <strong>and</strong> pK d values. This<br />

difference can orig<strong>in</strong>ate from the lipophilic character <strong>of</strong> the ortho-phenyl<br />

substituents.<br />

Spamp<strong>in</strong>ato et al. [27] <strong>in</strong>vestigated the role <strong>of</strong> lipophilicity <strong>of</strong> lacidip<strong>in</strong>e on its calcium<br />

channel block<strong>in</strong>g activities. The potency <strong>of</strong> lacidip<strong>in</strong>e as a calcium channel blocker<br />

showed not to be directly related to the amount <strong>of</strong> drug locked <strong>in</strong> the cell, <strong>in</strong>dicat<strong>in</strong>g<br />

that lacidip<strong>in</strong>e b<strong>in</strong>ds to the lipid bilayer <strong>of</strong> the cell membrane <strong>and</strong> then diffuses<br />

towards a specific b<strong>in</strong>d<strong>in</strong>g site. This shows a similarity to the blockade <strong>of</strong> Na +<br />

-<br />

channels by local anaesthetics. The drug receptor for local anaesthetics is situated <strong>in</strong><br />

the sodium channel <strong>and</strong> lig<strong>and</strong>s reach the receptor via the membrane phase<br />

(hydrophobic pathway) or via the channel (hydrophilic pathway). The DHP receptor<br />

is located with<strong>in</strong> the calcium channel <strong>in</strong> the lipid bilayer near the external end <strong>of</strong> the<br />

channel [28,29]. In the three compartment receptor model <strong>of</strong> Gaviraghi [14] (Figure<br />

1) the dihydropyrid<strong>in</strong>e receptor is seen as a prote<strong>in</strong> compartment surrounded by a<br />

lipid compartment. Drugs <strong>in</strong> the aqueous compartment stay <strong>in</strong> contact with both lipid<br />

<strong>and</strong> prote<strong>in</strong> compartments. Increase <strong>of</strong> the lipophilicity <strong>of</strong> a dihydropyrid<strong>in</strong>e can<br />

<strong>in</strong>crease the aff<strong>in</strong>ity for the lipid compartment from which it is slowly released to the<br />

prote<strong>in</strong> compartment. Increas<strong>in</strong>g the aff<strong>in</strong>ity <strong>of</strong> dihydropyrid<strong>in</strong>es for the receptor<br />

enhances the potency but does not affect the duration <strong>of</strong> action [15].<br />

153


Chapter 6<br />

Table I: Calcium block<strong>in</strong>g activities <strong>and</strong> radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ities <strong>of</strong> diethyl<br />

2,6-dimethyl-4-[2-(co-substituted-alkoxy)phenyl]-l,4-dihydro-pyrid<strong>in</strong>e-<br />

3,5-dicarboxy lates<br />

H<br />

compound R m pICso* rat tissue pKd*<br />

VUF4587 H 5 6.61 ± 0.08 aorta 6.83 ± 0.08<br />

VUF4599 H 6 6.42 ± 0.04 aorta 7.02 ± 0.05<br />

VUF4600 H 10 6.35 ± 0.20 aorta 7.30 ± 0.06<br />

VUF4622 C(S)NH 2 5 6.44 ±0.13 aorta 7.00 ± 0.07<br />

VUF4671 C(S)NH 2 6 6.39 ± 0.09 aorta 7.09 ± 0.09<br />

VUF4623 C(NH)SEt HBr 5 6.31 ±0.10 aorta 7.27 ±0.15<br />

VUF4624 C(NH)SEt HBr 6 6.34 ±0.11 aorta 7.70 ±0.11<br />

1 nifedip<strong>in</strong>e 8.77 ± 0.08 aorta 8.70 ±0.14<br />

4 amlodip<strong>in</strong>e 8.1 A aorta -<br />

5 VUF9159 7.96 + 0.07 aorta 8.55 ±0.03<br />

pICso Concentration required to produce 50% <strong>of</strong> its <strong>in</strong>hibitory effect<br />

* All values are means ± s.d. for 3 <strong>in</strong>dependent observations<br />

# All values are means ± s.d. for 6-9 <strong>in</strong>dependent observations.<br />

All radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ities (pKd) were determ<strong>in</strong>ed on isolated rat<br />

cortex membranes<br />

a Alkeretal. [25]<br />

154


lipid compartment prote<strong>in</strong> compartment<br />

proximate lipid<br />

water<br />

aqueous compartment<br />

Figure 1: Three compartment receptor model (from ref. 14)<br />

receptor<br />

Chapter 6<br />

By modify<strong>in</strong>g the lipophilicity <strong>of</strong> dihydropyrid<strong>in</strong>es the competition for b<strong>in</strong>d<strong>in</strong>g to the<br />

prote<strong>in</strong> compartment or to the lipid compartment is <strong>in</strong>fluenced. Dihydropyrid<strong>in</strong>es with<br />

a slow onset <strong>of</strong> action <strong>and</strong> a long duration <strong>of</strong> effect are thought to compete strongly<br />

for the lipid compartment <strong>in</strong> respect to the receptor compartment when delivered by<br />

the aqueous compartment.<br />

In accordance with the results obta<strong>in</strong>ed on calcium channel block<strong>in</strong>g activities also a<br />

narrow potency range is found <strong>in</strong> aff<strong>in</strong>ity for the b<strong>in</strong>d<strong>in</strong>g site <strong>of</strong> the L-type calcium<br />

channel. All pK d values are slightly higher then the correspond<strong>in</strong>g PIC50 values. The<br />

phenomenon <strong>of</strong> differences <strong>in</strong> pK d values <strong>and</strong> pIC 5 0 values is also observed by Kwon<br />

et al. [301. A possible explanation for these differences may be that the calcium<br />

channel block<strong>in</strong>g activities <strong>and</strong> the aff<strong>in</strong>ities are determ<strong>in</strong>ed on different organs.<br />

5 Conclusions<br />

The present diethyl 2,6-dimethyl-4-[2-(co-substituted-alkoxy)phenyl]-l,4-dihydro-<br />

pyrid<strong>in</strong>e-3,5-dicarboxylates are moderate <strong>in</strong>hibitors <strong>of</strong> K +<br />

-depolarisation <strong>in</strong>duced<br />

contractile responses <strong>in</strong> rat aorta strips. Increas<strong>in</strong>g the co-am<strong>in</strong>oalkoxy cha<strong>in</strong> length<br />

from pentoxy to decyloxy does not enhance calcium channel block<strong>in</strong>g activity. Even<br />

replacement <strong>of</strong> the am<strong>in</strong>o function by a thiouronium bromide does not alter the<br />

calcium channel block<strong>in</strong>g activity. It is found that calcium channel block<strong>in</strong>g activity<br />

is <strong>in</strong>dependent on steric <strong>in</strong>fluences <strong>of</strong> the diethyl 2,6-dimethyl-4-[2-(co-substituted-<br />

alkoxy)phenyl]-l,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxsylates.<br />

There seems to be a tendency that with <strong>in</strong>creas<strong>in</strong>g alkyl cha<strong>in</strong> length the differences<br />

between PIC50 values <strong>and</strong> pK d values become more substantial. By <strong>in</strong>creas<strong>in</strong>g the<br />

alkyl cha<strong>in</strong> length, the lipophilicity <strong>of</strong> the dihydropyrid<strong>in</strong>es is <strong>in</strong>creased. Accord<strong>in</strong>g to<br />

the three compartment receptor model the dihydropyrid<strong>in</strong>es with higher lipophilicity<br />

show a higher aff<strong>in</strong>ity for the lipid compartment <strong>and</strong> therefore <strong>in</strong> <strong>vitro</strong> a lower<br />

potency. This then could expla<strong>in</strong> the more substantial differences between pIC 5Q<br />

values <strong>and</strong> pK d values.<br />

155


Chapter 6<br />

The narrow activity range does not permit to quantitate the structure-activity<br />

relationships <strong>of</strong> these novel 1,4-dihydropyrid<strong>in</strong>e derivatives.<br />

6 Experimental protocols<br />

If <strong>in</strong>dicated, crude reaction products were purified by flash chromatography on<br />

silicagel (J.T.Baker 70242). Melt<strong>in</strong>g po<strong>in</strong>ts were determ<strong>in</strong>ed on a Mettler FP 52 with<br />

microscope. *H-NMR <strong>and</strong> 13<br />

C-NMR spectra were recorded on a Bruker AC 200. The<br />

chemical shifts are <strong>in</strong> ppm relative to tetramethylsilane. Mass spectra were determ<strong>in</strong>ed<br />

on a Mat 90 (F<strong>in</strong>nigan Mat) mass spectrometer with Fast Atom Bombardment<br />

ionisation (matrix: thioglycerol, Ion Tech saddlefield gun, 8 keV Xenon with xenon<br />

ioncurrent 0.2 mA). Furthermore the purity <strong>of</strong> the compounds was checked by th<strong>in</strong><br />

layer chromatography (Merck silica gel 60, F254 0.25 mm). Nifedip<strong>in</strong>e was obta<strong>in</strong>ed<br />

from Sigma Chemical Company. [ 3<br />

H]nitrendip<strong>in</strong>e (73 Ci/mmol) was purchased from<br />

Du Pont de Nemours (The Netherl<strong>and</strong>s).<br />

General synthetic procedure<br />

2-[co-(phthalimido)alkoxy]benzaldehyde<br />

50 mmol <strong>of</strong> the appropriate N-(co-bromoalkyl)phthalimide, 50 mmol salicylaldehyde<br />

<strong>and</strong> 50 mmol potassium carbonate were stirred <strong>in</strong> 50 ml DMF for 5 hours at 110°C<br />

under nitrogen. After cool<strong>in</strong>g to room temperature, the reaction mixture was filtered.<br />

The filtrate was evaporated <strong>and</strong> the residue was crystallized from methanol.<br />

2-[5-(phthalimido)pentoxy]benzaldehyde<br />

Yield 100%, melt<strong>in</strong>g po<strong>in</strong>t 92.1-93.8°C.<br />

*H-NMR (CDC1 3): 1.57 ppm (m, 2H, C-C-CH 2-C-C), 1.77 <strong>and</strong> 1.90 ppm (m, 4H, O-C-<br />

CH2-C-CH2-C-N), 3.73 ppm (t, / = 7.0 Hz, 2H, 0-C-C-C-C-CH 2-N), 4.07 ppm (t, J =<br />

6.3 Hz, 2H, O-CH2-C-C-C-C-N), 6.92-7.04 ppm (m, 2H, 2x phenyl-H), 7.46-7.58 ppm<br />

(m, 1H, phenyl-H), 7.69-7.88 ppm (m, 5H, 4x phthalimide-H <strong>and</strong> lx phenyl-H), 10.47<br />

ppm(s,lH,-HC=0).<br />

2-[6-(phthalimido)hexyloxy]benzaldehyde<br />

Yield 85%, melt<strong>in</strong>g po<strong>in</strong>t 85.7-86.6°C.<br />

*H-NMR (CDCI3): 1.25-2.04 ppm (m, 8H, 0-C-(CH 2) 4-C-N), 3.74 ppm (t, J = 7.1 Hz,<br />

2H, 0-(C) 5-CH 2-N), 4.07 ppm (t, / = 6.3 Hz, 0-CH 2-(C) 5-N), 6.92-7.05 ppm (m, 2H, 2x<br />

phenyl-H), 7.47-7.57 ppm (m, 1H, phenyl-H), 7.71-7.84 ppm (m, 5H, 4x phthalimide-H<br />

<strong>and</strong> phenyl-H), 10.50 ppm (s, 1H, -HC=0).<br />

2-[10-(phthalimido)decyloxy]benzaldehyde<br />

Yield 75%, melt<strong>in</strong>g po<strong>in</strong>t 65.0-67.1°C.<br />

*H-NMR (CDCI3): 1.10-1.58 ppm (m, 12H, 0-C-C-(CH 2) 6-C-C-N), 1.58-1.77 ppm (m,<br />

2H, 0-(C) 8-CH 2-C-N), 1.77-1.94 ppm (m, 2H, 0-C-CH 2-(C) 8-N), 3.68 ppm (t, J = 7.0<br />

Hz, 2H, 0-(C) 9-CH 2-N), 4.05 ppm (t, J = 6.2 Hz, 0-CH 2-(C) 9-N), 6.93-7.06 ppm (m, 2H,<br />

2x phenyl-H), 7.44-7.61 ppm (m, 1H, phenyl-H), 7.61-7.77 ppm (m, 2H, 2x<br />

156


Chapter 6<br />

phthalimide-H), 7.77-7.80 ppm (m, 3H, phenyl-H <strong>and</strong> 2x phthalimide-H), 10.50 ppm (s,<br />

1H, -HC=0).<br />

Diethyl 2,6-dimethyl-4-{2-[co-(phthalimido)alkoxy]phenyl}-1 f4-dihydro-pyrid<strong>in</strong>e-<br />

3,5-dicarboxylate<br />

1 equivalent <strong>of</strong> the appropriate 2-[co-(phthalimido)alkoxy]benzaldehyde, 1 equivalent<br />

ethyl acetoacetate <strong>and</strong> 0.06 equivalents <strong>of</strong> glacial acetic acid <strong>and</strong> benzylam<strong>in</strong>e were<br />

refluxed <strong>in</strong> absolute ethanol (2 1/mol) under nitrogen. After 3 hours, 1 equivalent <strong>of</strong><br />

ethyl am<strong>in</strong>ocrotonate was added <strong>and</strong> reflux<strong>in</strong>g was cont<strong>in</strong>ued overnight. After<br />

cool<strong>in</strong>g to room temperature, the solvent was evaporated <strong>and</strong> the residue was<br />

crystallized from 2-propanol.<br />

Diethyl 2 t6-dimethyl-4-{2-[5-(phthalimido)pentoxy]phenyl}-l,4-dihydro-pyrid<strong>in</strong>e-<br />

3 f5-dicarboxylate<br />

Yield 43%, melt<strong>in</strong>g po<strong>in</strong>t 140:4-141.4°C.<br />

^-NMR(CDCI3): 1.16ppm(t,/= 7.2Hz, 6H, 2x CH 3-CH 2-0), 1.46-1.58ppm (m,2H,<br />

C-C-CH 2-C-C), 1.70-1.88 ppm (m, 4H, 0-C-CH 2-C-CH 2-C-N), 2.28 ppm (s, 6H, 2x<br />

pyrid<strong>in</strong>e-CH 3), 3.66-3.78 ppm (m, 2H, 0-C-C-C-C-CH 2-N), 3.88 ppm (t, J = 6.65 Hz,<br />

2H, 0-CH 2-C-C-C-C-N), 4.00 ppm (q, / = 7.2 Hz, 4H, 2x CH 3-CH 2-0), 5.15 ppm (s,<br />

1H, pyrid<strong>in</strong>e-!^), 6.13 ppm (s, 1H, pyrid<strong>in</strong>e-NH), 6.69-6.82 ppm (m, 2H, 2x phenyl-H),<br />

7.07 ppm (d, ƒ = 7.5 Hz, 1H, phenyl-H), 7.21 ppm (d, J = 7.5 Hz, 1H, phenyl-H), 7.70-<br />

7.73 ppm (m, 2H, 2x phthalimide-H), 7.81-7.87 ppm (m, 2H, 2x phthalimide-H).<br />

Diethyl 2 f6-dimethyl-4-{2-[6-(phthalimido)hexoxy]phenyl}'14-dihydro-pyrid<strong>in</strong>e-<br />

3 ,5-dicarboxylate<br />

Yield 50%, melt<strong>in</strong>g po<strong>in</strong>t 131.2-133.3°C.<br />

^-NMR (CDC1 3): 1.16 ppm (t,J=7.1Hz, 6H, 2x CH 3-CH 2-0), 1.44-1.84 ppm (m, 8H,<br />

0-C-(CH 2) 4-C-N), 2.27 ppm (s, 6H, 2x pyrid<strong>in</strong>e-CH 3), 3.72 ppm (t, / = 7.1 Hz, 2H, O-<br />

(C) 5-CH 2-N), 3.87 ppm (t, / = 6.8 Hz, 2H, 0-CH 2-(C) 5-N), 4.01 ppm (q, J = 7.1 Hz, 4H,<br />

2x CH 3-CH 2-0), 5.16 ppm (s, 1H, pyrid<strong>in</strong>e-^), 6.12 ppm (bs, 1H, pyrid<strong>in</strong>e-NH), 6.70-<br />

6.83 ppm (m, 2H, 2x phenyl-H), 7.01-7.10 ppm (m, 1H, phenyl-H), 7.19-7.27 ppm (m,<br />

1H, phenyl-H), 7.69-7.74 ppm (m, 2H, 2x phthalimide-H), 7.83-7.87 ppm (m, 2H, 2x<br />

phthalimide-H).<br />

Diethyl 2f6-dimethyl-4-{2-[10-(phthalimido)deoxy]phenyl}-l,4-dihydro-pyrid<strong>in</strong>e- 3,5-dicarboxylate<br />

s<br />

Yield 60%, melt<strong>in</strong>g po<strong>in</strong>t 125.5-128.0°C.<br />

^-NMR (CDC13): 1.17 ppm (t, / = 7.2 Hz, 6H, 2x CH3-CH2-0), 1.22-1.88 ppm (m,<br />

16H, 0-C-(CH 2) 8-C-N), 2.29 ppm (s, 6H, 2x pyrid<strong>in</strong>e-CH 3), 3.60-3.73 ppm (m, 2H, O-<br />

(C) 9-CH 2-N), 3.90 ppm (t, / = 6.7 Hz, 2H, 0-CH 2-(C) 9-N), 4.04 ppm (q, / = 7.2 Hz, 4H,<br />

2x CH 3-CH 2-0), 5.20 ppm (s, 1H, pyrid<strong>in</strong>e-E*), 5.65 ppm (s, 1H, pyrid<strong>in</strong>e-NH), 6.70-<br />

6.83 ppm (m, 2H, 2x phenyl-H), 7.01-7.10 ppm (m, 1H, phenyl-H), 7.21-7.29 ppm (m,<br />

157


Chapter 6<br />

1H, phenyl-H), 7.65-7.78 ppm (m, 2H, 2x phthalimide-H), 7.78-7.90 ppm (m, 2H, 2x<br />

phthalimide-H).<br />

Diethyl 4-[2-(Gham<strong>in</strong>oalkoxy)phenyl]-2,6-dimethyl-l,4-dihydropyrid<strong>in</strong>e-3,5-<br />

dicarboxylate<br />

45 mmol phthalimide <strong>and</strong> 3 equivalents hydraz<strong>in</strong>e monohydrate were refluxed <strong>in</strong> 300<br />

ml ethanol for 6 hours. After cool<strong>in</strong>g to room temperature the reaction mixture was<br />

filtered <strong>and</strong> the solvent evaporated. The residue was dissolved <strong>in</strong> dichloromethane<br />

<strong>and</strong> extracted with 1 M NaOH. The organic layer was evaporated <strong>and</strong> the residue<br />

dissolved <strong>in</strong> ethanol/water (5:1) <strong>and</strong> acidified with acetic acid. After evaporation <strong>of</strong><br />

the solvent the residue was dissolved <strong>in</strong> water <strong>and</strong> washed with diethyl ether (3 x 50<br />

ml). The water layer was made basic with sodium bicarbonate solution <strong>and</strong> extracted<br />

with ethyl acetate. The comb<strong>in</strong>ed organic layers were dried with MgS04 <strong>and</strong> the<br />

solvent evaporated. The free base was obta<strong>in</strong>ed as a solid.<br />

Diethyl 4-[2-(5-am<strong>in</strong>opentoxy)phenyl]-2,6-dimethyl-l ,4-dihydropyrid<strong>in</strong>e-3 >5dicarboxylate<br />

VUF 4587<br />

Yield 77%, melt<strong>in</strong>g po<strong>in</strong>t 146.8-147.1°C, Mass spectrum (FAB +<br />

) 431 [M+H] +<br />

, (FAB")<br />

429 [M-H]\<br />

*H-NMR (CDC13): 1.16 ppm (t, / = 7.12 Hz, 6H, 2x CH3-CH2-0), 1.58-1.76 ppm (m,<br />

6H, 0-C-CH2-CH2-CH2-C-N), 2.25 ppm (s, 6H, 2x pyrid<strong>in</strong>e-CH3), 2.81 ppm (t, J = 5.7<br />

Hz, 2H, 0-(C) 4-CH2-N), 3.85-3.92 ppm (m, 2H, 0-CH2-(C) 4-N), 4.01 ppm (q, J = 7.12<br />

Hz, 4H, 2x CH rCH 2-0), 5.14 ppm (s, 1H, pyrid<strong>in</strong>e-K*), 6.68-6.79 ppm (m, 2H, 2x<br />

phenyl-H), 7.01-7.09 ppm (m, 1H, phenyl-H), 7.19-7.26 ppm (m, 1H, phenyl-H), 7.58<br />

ppm (s, 1H, pyrid<strong>in</strong>e-NH).<br />

Diethyl 4-[2-(6-am<strong>in</strong>ohexoxy)phenyl]-2,6-dimethyl-l ,4-dihydropyrid<strong>in</strong>e-3,5dicarboxylate<br />

VUF 4599<br />

Yield 73%, melt<strong>in</strong>g po<strong>in</strong>t 113.9-116.8°C, Mass spectrum (FAB +<br />

) 445 [M+H] +<br />

, (FAB")<br />

443 [M-H]-.<br />

*H-NMR (CDC1 3): 1.15 ppm (t, ƒ = 7.1 Hz, 6H, 2x CH 3-CH 2-0), 1.44-1.81 ppm (m, 8H,<br />

0-C-(CH 2) 4-C-N), 2.27 ppm (s, 6H, 2x pyrid<strong>in</strong>e-CH 3), 2.68-2.76 ppm (m, 2H, 0-(C) 5-<br />

CH 2-N), 3.89 ppm (t, / = 6.6 Hz,, 2H, 0-CH 2-(C) 5-N), 4.02 ppm (q, / = 7.1 Hz, 4H, 2x<br />

CH 3-CH 2-0), 5.19 ppm (s, 1H, pyrid<strong>in</strong>e-HU), 5.85 ppm (bs, 1H, pyrid<strong>in</strong>e-NH) 6.72-6.83<br />

ppm (m, 2H, 2x phenyl-H), 7.01-7.07 ppm (m, 1H, lx phenyl-H), 7.19-7.25 ppm (m, 1H,<br />

lx phenyl-H).<br />

Diethyl 4-[2-(10-am<strong>in</strong>odecoxy)phenyl]~2,6-dimethyl-l,4-dihydropyrid<strong>in</strong>e-3,5dicarboxylate<br />

VUF 4600<br />

Yield 72%, melt<strong>in</strong>g po<strong>in</strong>t 117.5-119.2°C, Mass spectrum (FAB +<br />

) 501 [M+H] +<br />

, (FAB -<br />

)<br />

499 [M-H]".<br />

158


Chapter 6<br />

^-NMR (CDCI3): 1.18 ppm (t,J = 7.2 Hz, 6H, 2x CH 3-CH 2-0), 1.22-1.88 ppm (m,<br />

16H, 0-C-(CH 2) 8-C-N), 2.26 ppm (s, 6H, 2x pyrid<strong>in</strong>e-CH 3), 3.61-3.72 ppm (m, 2H, O-<br />

(C) 9-CH 2-N), 3.89 ppm (t, J = 6.7 Hz, 2H, 0-CH 2-(C) 9-N), 4.04 ppm (q, J = 7.2 Hz, 4H,<br />

2x CH 3-CH 2-0), 5.19 ppm (s, 1H, pyrid<strong>in</strong>e-ÊU), 5.82 ppm (s, 1H, pyrid<strong>in</strong>e-NH), 6.69-<br />

6.83 ppm (m, 2H, 2x phenyl-H), 7.01-7.08 ppm (m, 1H, phenyl-H), 7.25-7.33 ppm (m,<br />

1H, phenyl-H).<br />

N-benzoyl-N'-{(û-[2-(3,5-dicarboethoxy-2,6-dimethyl-l ,4-dihydropyrid<strong>in</strong>-4-yl)<br />

phenoxy]alkyl}thiourea<br />

A solution <strong>of</strong> 30 mmol <strong>of</strong> a suitable 3,5-dicarboethoxy-2,6-dimethyl-4-[2-(cû-am<strong>in</strong>o-<br />

alkoxy)phenyl]-l,4-dihydropyrid<strong>in</strong>e <strong>in</strong> 150 ml dichloromethane was added dropwise<br />

to a solution <strong>of</strong> an equimolar amount <strong>of</strong> benzoyl isothiocyanate [22] <strong>in</strong> 150 ml<br />

dichloromethane followed by stirr<strong>in</strong>g for 4 hours. Then the solvent was evaporated<br />

<strong>and</strong> the residue was purified by column chromatography, us<strong>in</strong>g dichloromethane/<br />

ethyl acetate 9:1 as eluent.<br />

N-benzoyl-N' -{5-[2-(3,5-dicarboethoxy-2,6-dimethyl-l ,4-dihydropyrid<strong>in</strong>-4-yl)<br />

phenoxyjpentyl}thiourea<br />

Yield 51%, melt<strong>in</strong>g po<strong>in</strong>t 143.2-145.7°C.<br />

^-NMR (CDCI3): 1.16 ppm (t, ƒ = 7.15 Hz, 6H, 2x CH 3-CH 2-0), 1.45-1.59 ppm (m,<br />

2H, 0-C-C-CH 2-C-C-N), 1.77-1.91 ppm (m, 4H, 0-C-CH 2-C-CH 2-C-N), 2.27 ppm (s,<br />

6H, 2x pyrid<strong>in</strong>e-CH 3), 3.67-3.76 ppm (m, 2H, 0-(C) 4-CH 2-N), 3.91 ppm (t, J = 6.53 Hz,<br />

2H, 0-CH 2-(C) 4-N), 4.00 ppm (q, J = 7.15 Hz, 4H, 2x CH 3-CH 2-0), 5.18 ppm (s, 1H,<br />

pyrid<strong>in</strong>e-^), 5.99 ppm (s, 1H, pyrid<strong>in</strong>e-NH), 6.74-6.81 ppm (m, 2H, 2x phenyl-H),<br />

7.01-7.08 ppm (m, 1H, phenyl-H), 7.21-7.29 ppm (m, 1H, phenyl-H), 7.58-7.73 ppm (m,<br />

3H, 3x benzoyl-H), 7.81-7.92 ppm (m, 2H, 2x benzoyl-H), 9.04 ppm (bs, 1H, -C(S)-NH-<br />

C(O)-), 10.83 ppm (t, J = 4.9 Hz, 1H, C-C-C-NH-C(S)-).<br />

N-benzoyl-N'-{6-[2-(3,5-dicarboethoxy-2,6-dimethyl-l ,4-dihydropyrid<strong>in</strong>-4-yl)<br />

phenoxy ]hexyl} thiourea<br />

Yield 85%, melt<strong>in</strong>g po<strong>in</strong>t 154.2-157.2°C.<br />

^-NMR (CDC1 3): 1.16 ppm (t, / = 7.1 Hz, 6H, 2x CH 3-CH 2-0), 1.44-1.59 ppm (m, 4H,<br />

0-C-C-CH 2-CH 2-C-C-N), 1.71-1.90 ppm (m, 4H, 0-C-CH 2-C-C-CH 2-C-N), 2.28 ppm<br />

(s, 6H, 2x pyrid<strong>in</strong>e-CH 3), 3.68-3.77 ppm (m, 2H, 0-(C) 5-CH 2-N), 3.91 ppm (t, / = 6.6<br />

Hz, 2H, 0-CH 2-(C) 5-N), 4.02 ppm (q, J = 7.1 Hz, 4H, 2x CH 3-CH 2-0), 5.18 ppm (s, 1H,<br />

pyrid<strong>in</strong>e-ILj), 5.83 ppm (bs, 1H, pyrid<strong>in</strong>e-NH), 6.70-6.83 ppm (m, 2H, 2x phenyl-H),<br />

7.02-7.08 ppm (m, 1H, phenyl-H), 7.19-7.25 ppm (m, 1H, phenyl-H), 7.49-7.86 ppm (m,<br />

5H, 5x benzoyl-H), 9.00 ppm (bs, 1H, -C(S)-NH-C(0)-), 10.78 ppm (t, 1H, C-C-C-NH-<br />

C(S)-NH-C(0)-).<br />

159


Chapter 6<br />

N-{co-[2-(3,5-dicarboethoxy-2 t6-dimethyl~l ,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy]alkyl}<br />

thiourea<br />

5 mmol K2CO3 <strong>in</strong> 20 ml water was added to a solution <strong>of</strong> 5 mmol <strong>of</strong> a suitable N-<br />

benzoyl-N'- {co- [2-(3,5-dicarboethoxy-2,6-dimethyl-1,4-dihydropyrid<strong>in</strong>-4yl)phenoxy]<br />

alkyl}thiourea <strong>in</strong> 60 ml ethanol. The reaction mixture was refluxed for 4 hours. Then<br />

50 ml water was added <strong>and</strong> the ethanol was evaporated. The water layer was<br />

extracted three times with 50 ml ethyl acetate <strong>and</strong> the organic layer was dried with<br />

MgS0 4 <strong>and</strong> subsequently evaporated.<br />

N-{5-[2-(3 £-dicarboethoxy-2,6-dimethyl-l ,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy]pentyl}<br />

thiourea VUF 4622<br />

Yield 92%, melt<strong>in</strong>g po<strong>in</strong>t 65.6-66.0°C, Mass spectrum (FAB +<br />

) 490 [M+H] +<br />

, (FAB)<br />

488 [M-H]\<br />

*H-NMR (CDCI3): 1.18 ppm (t, ƒ = 7.1 Hz, 6H, 2x CH 3-CH 2-0), 1.50-1.75 ppm (m, 6H,<br />

0-C-(CH 2) 3-C-N), 2.24 ppm (s, 6H, 2x pyrid<strong>in</strong>e-CH 3), 3.17 <strong>and</strong> 3.55 ppm (m, 2H, O-<br />

(C) 4-CH 2-N), 3.97-4.21 ppm (m, 6H, 2x CH 3-CH 2-0 <strong>and</strong> 0-CH 2-(C) 4-N), 5.18 ppm (s,<br />

1H, pyrid<strong>in</strong>e-]!*), 6.15 ppm (s, 1H, pyrid<strong>in</strong>e-NH), 6.52 ppm (bs, 1H, NH), 6.71-6.86 ppm<br />

(m, 2H, 2x phenyl-H), 7.05-7.30 ppm (m, 3H, 2x phenyl-H <strong>and</strong> NH).<br />

N-{6-[2-(3 £-dicarboethoxy-2,6-dimethyl-l ,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy]hexyl}<br />

thiourea VUF 4671<br />

Yield 60%, melt<strong>in</strong>g po<strong>in</strong>t 175.6-175.8°C, Mass spectrum (FAB +<br />

) 504 [M+H] +<br />

, (FAB"<br />

) 502 [M-H]-.<br />

^-NMR (DMSO-d 6) 1.07 ppm (t, J = 7.0 Hz, 6H, 2x CH 3-CH 2-0), 1.39-1.71 ppm (m,<br />

8H, 0-C-(CH 2) 4-C-N), 2.18 ppm (s, 6H, 2x pyrid<strong>in</strong>e-CH 3), 3.03 <strong>and</strong> 3.33 ppm (m, 2H,<br />

0-(C) rCH 2-N), 3.86-3.97 ppm (m, 6H, 2x CH 3-CH 2-0 <strong>and</strong> 0-CH 2-(C) 5-N), 5.09 ppm<br />

(s, 1H, pyrid<strong>in</strong>e-EO, 6.71-7.09 ppm (m, 5H, 4x phenyl-H <strong>and</strong> NH), 7.55 ppm (bs,lH,<br />

NH), 8.61 ppm (s, 1H, pyrid<strong>in</strong>e-NH).<br />

N-{co-[2-(3 f5'dicarboethoxy-2 f6-dimethyl-l,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy^ alkylj-<br />

S-ethyl isothiourea hydrobromide<br />

A suitable N- {co- [2-(3,5-dicarboethoxy-2,6-dimethyl-1,4-dihydropyrid<strong>in</strong>-4-yl)phen-<br />

oxy]alkyl}thiourea was dissolved <strong>in</strong> 75 ml absolute ethanol; 3 equivalents ethyl<br />

bromide were added <strong>and</strong> the reaction mixture was stirred for 8 hours at 60°C under<br />

nitrogen. Then the solvent was evaporated <strong>and</strong> the residue was washed with 30 ml<br />

diethyl ether.<br />

N-{5-[2-(3,5-dicarboethoxy-2,6-dimethyl-l t4-dihydropyrid<strong>in</strong>-4-yl)phenoxy] heptyl}<br />

-S-ethyl isothiourea hydrobromide VUF 4623<br />

The product was crystallized from ethanol.<br />

Yield 66%, melt<strong>in</strong>g po<strong>in</strong>t 155.2-156.4°C, Mass spectrum (FAB +<br />

) 518 [M+H] +<br />

, (FAB")<br />

596/598 [M+Br]\<br />

160<br />

x


Chapter 6<br />

*H-NMR (DMSO-d6): 1.07 ppm (t, / = 7.0 Hz, 6H, 2x CH3-CH2-0), 1.26 ppm (t, J =<br />

7.3 Hz, 3H, CH3-CH2-S), 1.37-1.48 ppm (m, 2H, 0-C-C-CH2-C-C-N), 1.67-1.80 ppm (m,<br />

4H, 0-C-CH2-C-CH2-C-N), 2.20 ppm (s, 6H, 2x pyrid<strong>in</strong>e-CH3), 3.22 ppm (q, J = 7.3<br />

Hz, 2H, CH3-CH2-S), 3.32-3.41 ppm (m, 2H, 0-(C) 4-CH2-N), 3.84-3.97 ppm (m, 6H, 2x<br />

CH3-CH2-0 <strong>and</strong> 0-CH2-(C) 4-N), 5.09 ppm (s, 1H, pyrid<strong>in</strong>e-!^), 6.72-6.86 ppm (m, 2H,<br />

2x phenyl-H), 7.02-7.09 ppm (m, 2H, 2x phenyl-H), 8.70 ppm (bs, 1H, pyrid<strong>in</strong>e-NH),<br />

+<br />

9.18 ppm (bs, 2H, -C-N-C(SEt)-NH2 .Br), 9.57 ppm (m, 1H, -C-NH-C(NH)-SEt).<br />

N-{6-[2-(3,5-dicarboethoxy-2,6-dimethyl-l,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy] hexylj-<br />

S-ethyl isothiourea hydrobromide VUF 4624<br />

The product was crystallized from ethanol.<br />

Yield 69%, melt<strong>in</strong>g po<strong>in</strong>t 154.0-154.3°C, Mass spectrum (FAB +<br />

) 532 [M+Hf, (FAB")<br />

610/612 [M+Br]-.<br />

*H-NMR (DMSO-d 6): 1.07 ppm (t, J = 7.1 Hz, 6H, 2x CH 3-CH 2-0), 1.26 ppm (t, / =<br />

7.3 Hz, 3H, CH 3-CH 2-S), 1.39-1.48 ppm (m, 4H, 0-C-C-CH 2-CH 2-C-C-N), 1.55-1.64<br />

ppm (m, 2H, 0-(C) 4-CH 2-C-N), 1.70-1.82 ppm (m, 2H, 0-C-CH 2-(C) 4-N), 2.19 ppm (s,<br />

6H, 2x pyrid<strong>in</strong>e-CH 3), 3.22 ppm (q, J = 7.3 Hz, 2H, CH 3-CH 2-S), 3.29-3.37 ppm (m,<br />

2H, 0-(C) 5-CH 2-N), 3.79-3.86 ppm (m, 2H, 0-CH 2-(C) 5-N), 3.91 ppm (q, J = 7.1 Hz,<br />

4H, 2x CH 3-CH 2-0), 5.10 ppm (s, 1H, pyrid<strong>in</strong>e-I^), 6.71-6.82 ppm (m, 2H, 2x phenyl-<br />

H), 7.01-7.08 ppm (m, 2H, 2x phenyl-H), 8.68 ppm (bs, 1H, pyrid<strong>in</strong>e-NH), 9.15 ppm (bs,<br />

2H, -C-N-C(SEt)-NH 2+*Br), 9.57 ppm (bs, 1H, -C-NH-C(NH)-SEt).<br />

^-NMR (CD 3OD-d 4): 1.14 ppm (t, / = 7.1 Hz, 6H, 2x CH 3-CH 2-0), 1.36 ppm (t, / =<br />

7.3 Hz, 3H, CH 3-CH 2-S), 1.48-1.55 ppm (m, 4H, 0-C-C-CH 2-CH 2-C-C-N), 1.70-1.79<br />

ppm (m, 2H, 0-(C) 4-CH 2-C-N), 1.82-1.91 ppm (m, 2H, 0-C-CH 2-(C) 4-N), 2.24 ppm (s,<br />

6H, 2x pyrid<strong>in</strong>e-CH 3), 3.19 ppm (q, J = 7.3 Hz, 2H, CH 3-CH 2-S), 3.39 ppm (t, / = 7.1<br />

Hz, 2H, 0-(C) 5-CH 2-N), 3.90-4.04 ppm (m, 6H, 2x CH 3-CH 2-0 <strong>and</strong> 0-CH 2-(C) 5-N),<br />

5.16 ppm (s, 1H, pyrid<strong>in</strong>e-H*), 6.75-6.84 ppm (m, 2H, 2x phenyl-H), 7.02-7.17 ppm (m,<br />

2H, 2x phenyl-H), 8.25 ppm (bs, 1H, pyrid<strong>in</strong>e-NH).<br />

references<br />

1 Godfra<strong>in</strong>d T, Miller R, Wibo M, Pharmacol Rev, 38, 321-416 (1986)<br />

2 Van Zwieten PA, Am J Cardiol, 64, 1171-1211 (1989)<br />

n d<br />

3 Opie LH, In: Cl<strong>in</strong>ical use <strong>of</strong> calcium channel antagonist drugs (2 ed) Kluwer Acad<br />

Publ, London (1990)<br />

4 Naylor WG, Biochem Pharmacol, 43, 39-46 (1992)<br />

5 Van Zwieten PA, Pfaffendorf M, J Hypertension, 11, S3-S11 (1993)<br />

6 Vater W, Kroneberg G, H<strong>of</strong>fmeister F, Kaller H, Meng K, Oberdorf A, Puls W,<br />

Schloßmann K, Stoepel K, Arzneim-Forsch/Drug Res, 22,1-14 (1972)<br />

7 Takenaka T, Usuda S, Nomura T, Maeno H, Sado T, Arzneim Forsch /Drug Res, 26,<br />

2172-2178 (1976)<br />

8 Weh<strong>in</strong>ger E, In: Structure <strong>and</strong> physiology <strong>of</strong> the slow <strong>in</strong>ward calcium channel (Venter<br />

JC, Triggle DJ, eds) Alan R Liss Inc, New York, 1-28 (1987)<br />

161


Chapter 6<br />

9 Triggle DJ, Janis RA, In: Structure <strong>and</strong> physiology <strong>of</strong> the slow <strong>in</strong>ward calcium channel<br />

(Venter JC, Triggle DJ, eds) Alan R Liss Inc, New York, 29-50 (1987)<br />

10 Bossen F, Vater W, Med Res Rev, 9, 291-324 (1989)<br />

11 Goldmann S, Stoltefuß J, Angew Chem, 103, 1587-1605 (1991)<br />

12 Loev B, Goodman MM, Snader KM, Tedeschi R, Macko E, J Med Chem, 17, 956-<br />

965 (1978)<br />

13 Rodenkirchen R, Bayer R, Ste<strong>in</strong>er R, Bossen F, Meyer H, Möller E, Arch Pharmacol,<br />

310, 69-78 (1979)<br />

14 Gaviraghi G, In: Trends <strong>in</strong> Medic<strong>in</strong>al Chemistry 1988 (Van der Goot H, Domäny G,<br />

Pallos L, Timmerman H, eds) Elsevier Science Publishers BV, Amsterdam, 675-690<br />

(1989)<br />

15 Feriani A, Gaviraghi G, In: QSAR: Rational approaches to the design <strong>of</strong> bioactive<br />

compounds (Silipo C, Vittoria A, eds) Elsevier Science Publishers BV, Amsterdam,<br />

427-430 (1991)<br />

16 Arrowsmith JE, Campbell SF, Cross PE, Stubbs JK, Burges RA, Gard<strong>in</strong>er DG,<br />

Blackburn KJ, J Med Chem, 29, 1696-1702 (1986)<br />

17 Christiaans JAM, W<strong>in</strong>dhorst AD, Groenenberg PM, Van der Goot H, Timmerman H,<br />

Eur J Med Chem, 28, 859-867 (1993)<br />

18 G<strong>and</strong>olfi AC, Frigerio M, Sp<strong>in</strong>elli S, T<strong>of</strong>anetti O, Tognella S, WO 87/00836 (1987)<br />

19 Chester DW, Herbette LG, Mason RP, Joslyn AF, Triggle DJ, Koppel DE, Biophys J,<br />

52, 1021-1030 (1985)<br />

20 Mason RP, Chester DW, Gonye GE, Herbette LG, Biophys J, 53, 348a (1988)<br />

21 So<strong>in</strong>e TO, Buchdahl MR, Org Synth, 4,120-124 (1963)<br />

22 Bögemann M, Petersen S, Schultz O-E, Söll H, Houben Weyl, Methods Org Chem, 9,<br />

879 (1955)<br />

23 Boer R, Grassegger A, Schudt C, Glossmann H, Eur J Pharmacol, 172, 131-145<br />

(1989)<br />

24 Munson PJ, Rodbard D, Anal Biochem, 107, 220-239 (1980)<br />

25 Alker D, Burges A, Campbell SF, Carter AJ, Cross PE, Gard<strong>in</strong>er DG, Humphrey MJ,<br />

Stopher DA, J Chem Soc Perk<strong>in</strong> Trans, 2, 1137-1140 (1992)<br />

26 Sterk GJ, personnel communications<br />

27 Spamp<strong>in</strong>ato S, Bachetti T, Carboni L, Ratti E, Van Amsterdam FThM, Ferri S, Eur J<br />

Pharmacol - Mol Pharmacol, 244,139-144 (1993)<br />

28 Kass RS, Arena JP, J Gen Physiol, 93, 1109-1127 (1989)<br />

29 Valdivia H, Coronado R, Biophys J, 53, 555a (1988)<br />

30 Kwon YW, Zhong Q, Wei XY, Zheng W, Triggle DJ, Arch Pharmacol, 341, 128-136<br />

(1990)<br />

162


Chapter 7<br />

Chapter 7<br />

Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> a <strong>series</strong> <strong>of</strong> hybrid<br />

molecules possess<strong>in</strong>g 1,4-dihydropyrid<strong>in</strong>e calcium channel block<strong>in</strong>g<br />

activity <strong>and</strong> histam<strong>in</strong>e H 2-agonistic properties<br />

1 Introduction<br />

The 1,4-dihydropyrid<strong>in</strong>e-type Ca 2+<br />

-channel blockers (DHPs) have allowed a new<br />

direction <strong>in</strong> therapy <strong>of</strong> several cardiovascular disorders. Several DHP Ca 2+<br />

-channel<br />

blockers are now well established <strong>in</strong> antiang<strong>in</strong>al <strong>and</strong> antihypertensive therapy, as<br />

well as <strong>in</strong> the treatment <strong>of</strong> certa<strong>in</strong> cardiac arrhythmias <strong>and</strong> peripheral vascular<br />

disorders 1<br />

' 2<br />

' 3<br />

' 4<br />

* 5<br />

. DHPs cause vasodilation by <strong>in</strong>hibit<strong>in</strong>g the <strong>in</strong>flux <strong>of</strong> extracellular<br />

2 +<br />

Ca<br />

<strong>in</strong>to the cell through slow calcium channels, but also decrease ventricular<br />

contractility by the same mechanism. Although nifedip<strong>in</strong>e 1 <strong>and</strong> nicardip<strong>in</strong>e 2 are<br />

widely used cl<strong>in</strong>ically, the rather short duration <strong>of</strong> action <strong>of</strong> this type <strong>of</strong> drugs is<br />

disadvantageous. Examples <strong>of</strong> the second generation DHPs, such as amlodip<strong>in</strong>e 6<br />

3<br />

<strong>and</strong> tiamdip<strong>in</strong>e 7<br />

4, <strong>of</strong>fer a different pharmacok<strong>in</strong>etic pr<strong>of</strong>ile: longer plasma half-life<br />

<strong>and</strong> 100% oral availability. These pharmacok<strong>in</strong>etic properties apparently are<br />

responsible for longer duration <strong>of</strong> action <strong>and</strong> the ma<strong>in</strong>tenance <strong>of</strong> a susta<strong>in</strong>ed<br />

antihypertensive effect by once-a-day adm<strong>in</strong>istration 8<br />

.<br />

One <strong>of</strong> the mechanisms controll<strong>in</strong>g myocardial contractility proceeds via the<br />

sympathetic nervous system. In congestive heart failure (CHF) the myocardial<br />

<strong>in</strong>otropic contractility is disturbed due to <strong>in</strong>creased levels <strong>of</strong> circulat<strong>in</strong>g<br />

catecholam<strong>in</strong>es, <strong>in</strong>itiated by the sympathetic nervous system. Prolonged exposure <strong>of</strong><br />

the heart to excessive levels <strong>of</strong> endogenous catecholam<strong>in</strong>es, <strong>in</strong> turn, results <strong>in</strong> a<br />

decreased number <strong>and</strong> sensitivity <strong>of</strong> myocardial (3radrenoceptors 9<br />

.<br />

Although the heart becomes less sensitive to catecholam<strong>in</strong>e stimulation, other<br />

mechanisms are able to <strong>in</strong>crease cardiac contractility. One <strong>of</strong> the mechanisms<br />

proceeds via histam<strong>in</strong>e H2-receptors. Stimulation <strong>of</strong> the myocardial histam<strong>in</strong>e H2 receptor activates an adenylate cyclase system which, analogous to stimulation <strong>of</strong> the<br />

p adrenoceptor adenylate cyclase system, results <strong>in</strong> stimulation <strong>of</strong> myocardial<br />

contractility 10<br />

. The histam<strong>in</strong>e H2-agonist impromid<strong>in</strong>e 5 is 48 times more potent than<br />

the natural agonist histam<strong>in</strong>e 6 on the spontaneously beat<strong>in</strong>g gu<strong>in</strong>ea pig right<br />

atrium 11<br />

. In human papillary muscle impromid<strong>in</strong>e appears to be equally effective as<br />

the pragonist isoproterenol <strong>in</strong> stimulat<strong>in</strong>g the myocardial adenylate cyclase system 12<br />

.<br />

Baumann et al. 13<br />

have demonstrated that <strong>in</strong> vivo impromid<strong>in</strong>e exhibits a positive<br />

<strong>in</strong>otropic effect <strong>in</strong> humans, result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>creased cardiac output. Simultaneously, a<br />

decrease <strong>in</strong> both systemic arterial blood pressure <strong>and</strong> vascular resistance is <strong>in</strong>duced,<br />

while the heart rate rema<strong>in</strong>s constant. Unfortunately, impromid<strong>in</strong>e is a potent<br />

stimulator <strong>of</strong> gastric acid secretion <strong>and</strong> like other cardiac stimulants may cause<br />

arrhythmias. More recently, new histam<strong>in</strong>e H2-agonists have been developed, which<br />

163


Chapter 7<br />

seem to have a more beneficial hemodynamic pr<strong>of</strong>ile <strong>and</strong> be<strong>in</strong>g less arrhythmogenic<br />

than impromid<strong>in</strong>e 14<br />

.<br />

1 nifedip<strong>in</strong>e 2 nicardip<strong>in</strong>e<br />

3 amlodip<strong>in</strong>e 4 tiamdip<strong>in</strong>e<br />

Figure 1: 1,4-Dihydropyrid<strong>in</strong>e-type calcium channel blockers<br />

The imidazolylpropylguanid<strong>in</strong>e structure <strong>of</strong> impromid<strong>in</strong>e is believed to be responsible<br />

for the histam<strong>in</strong>e H2-agonistic activity, while the methylimidazole group contributes<br />

aff<strong>in</strong>ity. This concept is confirmed by Sterk et al. (VUF 8405 15<br />

7; VUF 8401 16<br />

8) <strong>and</strong><br />

Buschauer 17<br />

(arpromid<strong>in</strong>e 9; BU-E-76 10), by replac<strong>in</strong>g the methylimidazole group<br />

by lipophilic mono or diaryl structural moieties <strong>and</strong>/or heterocycles, afford<strong>in</strong>g<br />

compounds which are more potent than impromid<strong>in</strong>e <strong>and</strong> have less stimulatory<br />

effects on gastric acid secretion. Arpromid<strong>in</strong>e <strong>and</strong> BU-E-76 are guanid<strong>in</strong>e type<br />

histam<strong>in</strong>e H2-agonists with additional histam<strong>in</strong>e Hrantagonistic properties due to the<br />

pharmacophoric moiety resembl<strong>in</strong>g pheniram<strong>in</strong>e-like histam<strong>in</strong>e Hrantagonists. In<br />

vivo, <strong>in</strong> gu<strong>in</strong>ea pigs, BU-E-76 is more potent <strong>in</strong> reduc<strong>in</strong>g cardiac pre- <strong>and</strong> afterload<br />

<strong>and</strong> enhanc<strong>in</strong>g cardiac output <strong>and</strong> stroke volume, than arpromid<strong>in</strong>e or impromid<strong>in</strong>e.<br />

Furthermore, BU-E-76 <strong>and</strong> arpromid<strong>in</strong>e affect the chronotropy <strong>and</strong> cardiac rhythm<br />

less than impromid<strong>in</strong>e. Therefore, BU-E-76 might be suitable for the treatment <strong>of</strong><br />

patients suffer<strong>in</strong>g from severe heart failure 18<br />

.<br />

Comb<strong>in</strong>ation <strong>of</strong> positive <strong>in</strong>otropic <strong>and</strong> vasodilator effects <strong>in</strong>to one drug might be<br />

beneficial <strong>in</strong> the treatment <strong>of</strong> congestive heart failure, if the improved cardiac<br />

performance is achieved <strong>in</strong>dependently from the pradrenergic system 19<br />

.<br />

164


5 Impromid<strong>in</strong>e<br />

R 2<br />

9 Arpromid<strong>in</strong>e R 1 = F, R 2 = H<br />

10 BU-E-76 R t = H, R 2 = F<br />

Figure 2: Histam<strong>in</strong>e H 2-agonists<br />

Chapter 7<br />

The goal <strong>of</strong> our project was to design DHPs which reta<strong>in</strong> calcium channel block<strong>in</strong>g<br />

activity <strong>and</strong>, <strong>in</strong> addition, possess cardiotonic activity to compensate for negative<br />

<strong>in</strong>otropic actions associated with DHP calcium channel blockers. Such dual activities<br />

<strong>in</strong> a s<strong>in</strong>gle molecule might <strong>of</strong>fer some novel <strong>and</strong> attractive research tools. Our<br />

objective might be reached by comb<strong>in</strong><strong>in</strong>g <strong>in</strong> one molecule a 1,4-DHP, which<br />

possesses a vasodilator property <strong>and</strong> a negative <strong>in</strong>otropic action, with a histam<strong>in</strong>e H 2agonist<br />

hav<strong>in</strong>g a positive <strong>in</strong>otropic activity. Th£ structural modifications carried out<br />

on impromid<strong>in</strong>e demonstrate than a certa<strong>in</strong> tolerance exists about replac<strong>in</strong>g the<br />

methylimidazole by lipophilic H 2-nonspecific structures [for reviews see 14,20,21,22]<br />

Because <strong>of</strong> this tolerance, we decided to replace the H 2-nonspecific structural moiety<br />

by 1,4-dihydropyrid<strong>in</strong>es, <strong>in</strong>troduc<strong>in</strong>g potential vasodilat<strong>in</strong>g properties.<br />

Based on our previous results regard<strong>in</strong>g the activity <strong>of</strong> thio-bioisosteres <strong>of</strong><br />

amlodip<strong>in</strong>e (Chapter 5; this thesis), we decided to synthesize several types <strong>of</strong> hybridmolecules<br />

(A <strong>and</strong> B; figure 3) by comb<strong>in</strong><strong>in</strong>g histam<strong>in</strong>e H 2-agonists <strong>and</strong> 1,4-dihydropyrid<strong>in</strong>e-type<br />

calcium channel blockers, follow<strong>in</strong>g an idea proposed by Schickaneder<br />

165


Chapter 7<br />

et al. 23<br />

(type C; figure 3). In type A hybrid-molecules the histam<strong>in</strong>e H2-agonistic part<br />

is coupled via an alkylthiomethyl cha<strong>in</strong> to the 2-position <strong>of</strong> the DHP. In type B<br />

hybrid-molecules the histam<strong>in</strong>e H2-agonistic part is coupled via an alkoxy cha<strong>in</strong> to<br />

the 4-phenyl r<strong>in</strong>g <strong>of</strong> the DHP. In type C hybrid molecules the histam<strong>in</strong>e H2-agonistic moiety is coupled via an ester to the 1,4-DHP (Schickaneder et al. 23<br />

).<br />

H<br />

Figure 3: Hybrid molecules comb<strong>in</strong><strong>in</strong>g calcium channel block<strong>in</strong>g activity <strong>and</strong><br />

histam<strong>in</strong>e H 2-agonistic activity<br />

Hybrid molecules <strong>of</strong> type A seem to be the most promis<strong>in</strong>g hybrid molecules as they<br />

comb<strong>in</strong>e a histam<strong>in</strong>e H 2-agonistic activity with calcium channel blockers <strong>of</strong> the<br />

second generation. Amlodip<strong>in</strong>e 3 <strong>and</strong> tiamdip<strong>in</strong>e 4 are examples <strong>of</strong> the second<br />

generation calcium channel blockers, hav<strong>in</strong>g a longer-duration <strong>of</strong> action than first<br />

166


Chapter 7<br />

generation calcium channel blockers, such as nifedip<strong>in</strong>e 1. Especially because type A<br />

hybrid molecules <strong>in</strong>corporate the tiamdip<strong>in</strong>e structural moiety, these hybrid molecules<br />

could <strong>of</strong>fer a more beneficial pharmacok<strong>in</strong>etic pr<strong>of</strong>ile than type C hybrid molecules.<br />

2 Chemistry<br />

The general synthetic routes <strong>of</strong> type A <strong>and</strong> B hybrid molecules are given <strong>in</strong> schemes 1<br />

<strong>and</strong> 2. The syntheses <strong>of</strong> the primary am<strong>in</strong>es 11a are carried out as previously<br />

described (Chapter 5; this thesis). Accord<strong>in</strong>g to scheme 1, the appropriate primary<br />

am<strong>in</strong>e 11a is treated with diphenyl N-cyanocarbonimidate 12 <strong>in</strong> diethyl ether or<br />

methylenechloride to afford the N-cyanoisoureas 13. Subsequent reaction <strong>of</strong> the Ncyanoisoureas<br />

13 with 3-(lH-imidazol-4-yl)propylam<strong>in</strong>e 14 gives the Ncyanoguanid<strong>in</strong>es<br />

15 <strong>in</strong> only poor yields (10-22%). Acid hydrolysis with 1 M HC1 to<br />

obta<strong>in</strong> the guanid<strong>in</strong>es 16 fails because <strong>of</strong> hydrolysis <strong>of</strong> the thioether function <strong>and</strong>/or<br />

ester functions <strong>of</strong> the 1,4-dihydropyrid<strong>in</strong>es. Therefore, we have developed a new<br />

synthetic approach to achieve the proposed hybrid molecules.<br />

Scheme 1<br />

The synthetic route <strong>in</strong> scheme 2 appears to be more convenient to obta<strong>in</strong> the<br />

guanid<strong>in</strong>es 16. The diethyl 2,6-dimethyl-4-[2-(co-am<strong>in</strong>oalkoxy)phenyl]-l,4dihydropyrid<strong>in</strong>e-3,5-dicarboxylates<br />

lib used as DHP build<strong>in</strong>g blocks <strong>in</strong> type B<br />

hybrid-molecules are synthesized accord<strong>in</strong>g to the previously described procedure<br />

167


Chapter 7<br />

(Chapter 6; this thesis). Reaction <strong>of</strong> the appropriate primary am<strong>in</strong>es 11a or lib with<br />

benzoyl isothiocyanate 17 provides the benzoylisothiourea derivatives 18.<br />

Subsequent alkal<strong>in</strong>e hydrolysis <strong>of</strong> the benzoylthiourea derivatives <strong>and</strong> direct<br />

alkylation with ethyl bromide, without isolation <strong>of</strong> 19, give the isothiourea<br />

hydrobromides 20. Condensation <strong>of</strong> 20 with 3-(l//-imidazol-4-yl)propylam<strong>in</strong>e 14<br />

gives the guanid<strong>in</strong>es 16.<br />

Scheme 2<br />

3 Pharmacology<br />

3.1 In <strong>vitro</strong> calcium channel block<strong>in</strong>g activities <strong>and</strong> PHP receptor b<strong>in</strong>d<strong>in</strong>g assay<br />

In <strong>vitro</strong> calcium channel block<strong>in</strong>g activities <strong>and</strong> radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g studies were<br />

carried out as previously described (Chapter 5; this thesis). In this method calcium<br />

channel block<strong>in</strong>g activities are determ<strong>in</strong>ed on tat aorta strips <strong>and</strong> are assessed as the<br />

concentration required to <strong>in</strong>hibit the K +<br />

-depolarization <strong>in</strong>duced (50 mM) contractile<br />

responses by 50%.<br />

The DHP receptor aff<strong>in</strong>ities are determ<strong>in</strong>ed on isolated rat cortex by [ 3<br />

H]nitrendip<strong>in</strong>e<br />

displacement studies 24<br />

. The equilibrium dissociation constant (Kd = 0.75 nM) <strong>of</strong> the<br />

labelled compound <strong>and</strong> the maximal b<strong>in</strong>d<strong>in</strong>g (B m a x = 270 fmol/mg prote<strong>in</strong>) are<br />

determ<strong>in</strong>ed with the non-l<strong>in</strong>ear fitt<strong>in</strong>g program LIGAND 4.1 25<br />

.<br />

168


3.2 In <strong>vitro</strong> histam<strong>in</strong>e Ho-agonistic activities<br />

Chapter 7<br />

Male gu<strong>in</strong>ea pigs ( 300-350 g) are killed by a blow on the head. The spontaneously<br />

beat<strong>in</strong>g right atria are removed, attached to a tissue holder (load 0.5g) connected to<br />

Grass 79D isometric equipment, placed <strong>in</strong> a 20 ml organ bath with Krebs buffer <strong>and</strong><br />

bubbled with oxygen conta<strong>in</strong><strong>in</strong>g 5% CO2 at 37 °C. The bath fluid conta<strong>in</strong>s 117.5<br />

mM NaCl, 5.6 mM KC1,1.18 mM MgS0 4, 2.5 mM CaCl 2,1.28 mM NaH 2P0 4,2.5 mM<br />

NaHCC>3 <strong>and</strong> 5.5 mM glucose, giv<strong>in</strong>g a pH <strong>of</strong> 7.4. The <strong>in</strong>otropy is measured on the<br />

isolated gu<strong>in</strong>ea pig papillary muscle <strong>and</strong> is also performed on a Grass 79D isometric<br />

apparatus (load 0.5 g), us<strong>in</strong>g the same Krebs buffer as described for the determ<strong>in</strong>ation<br />

<strong>of</strong> the chronotropic actions. The papillary muscle is electrically stimulated with a<br />

squarewave stimulator with a frequency <strong>of</strong> 3 Hz <strong>and</strong> a duration <strong>of</strong> 0.5 ms.<br />

3.3 In <strong>vitro</strong> histam<strong>in</strong>e H 2-receptor aff<strong>in</strong>ity measured bv radiolig<strong>and</strong> displacement<br />

Male gu<strong>in</strong>ea pigs ( 300-350 g) are killed by a blow on the head. The cerebral cortices<br />

are isolated <strong>and</strong> put <strong>in</strong>to 10 ml sodium phosphate buffer (50 mM, pH 7.4). The<br />

cortices are cooled on ice <strong>and</strong> homogenized with a polytron (two times dur<strong>in</strong>g 15<br />

seconds at 8000 rpm). The homogenate is centrifuged for 1 m<strong>in</strong>ute at 260 g. The<br />

supernatant is removed <strong>and</strong> centrifugated for 30 m<strong>in</strong>utes at 20,000 g. The pellets are<br />

resuspended <strong>in</strong> 3 ml sodium phosphate buffer (50 mM pH 7.4) for each cortex. The<br />

prote<strong>in</strong> concentration is determ<strong>in</strong>ed by addition <strong>of</strong> 20 pi membrane suspension to 1<br />

ml Merck-Biorad reagens (5 times diluted with nanopure water). Absorption is<br />

determ<strong>in</strong>ed at 595 nm. The prote<strong>in</strong> concentration is determ<strong>in</strong>ed with bov<strong>in</strong>e serum<br />

album<strong>in</strong> as st<strong>and</strong>ard. The concentration <strong>of</strong> the membrane suspension is adjusted to 1<br />

mg/ml <strong>and</strong> the suspension is kept at -80°C until usage.<br />

The <strong>in</strong>cubations are performed <strong>in</strong> polypropylene tubes dur<strong>in</strong>g 2 hours at 25°C.<br />

Incubations are carried out with 100 (ig prote<strong>in</strong> <strong>and</strong> with a 0.4 nM concentration <strong>of</strong><br />

[ 125<br />

I]iodoam<strong>in</strong>opotentid<strong>in</strong>e (synthesized accord<strong>in</strong>g to literature 26<br />

) with a total<br />

volume <strong>of</strong> 400 pi. As <strong>in</strong>cubation medium, a sodium phosphate buffer (50 mM, pH 7.4)<br />

with 1% bov<strong>in</strong>e gelat<strong>in</strong>e (f<strong>in</strong>al concentration) is added <strong>in</strong> order to prevent absorption<br />

<strong>of</strong> [ 125<br />

I]iodoam<strong>in</strong>opotentid<strong>in</strong>e. The <strong>in</strong>cubation is stopped by addition <strong>of</strong> 4 ml ice-cold<br />

buffer (sodium phosphate buffer 20 mM, conta<strong>in</strong><strong>in</strong>g 0.1% bov<strong>in</strong>e serum album<strong>in</strong> to<br />

prevent filter b<strong>in</strong>d<strong>in</strong>g). The membranes are filtered through Whatman GF/B filters,<br />

which are soaked for 3 hours <strong>in</strong> a 0.3% polyethyleneim<strong>in</strong>e solution <strong>in</strong> sodium<br />

phosphate buffer (50 mM, pH = 7.4), <strong>and</strong> washed twice with 4 ml ice-cold buffer<br />

us<strong>in</strong>g a Br<strong>and</strong>el filtration apparatus. The filters are isolated <strong>and</strong> the radioactivity is<br />

determ<strong>in</strong>ed with a LKB Wallace 1282 compugamma S universal gamma counter at an<br />

efficiency <strong>of</strong> approximately 60%.<br />

Non-specific b<strong>in</strong>d<strong>in</strong>g is determ<strong>in</strong>ed <strong>in</strong> presence <strong>of</strong> 10 |iM ranitid<strong>in</strong>e. Specific b<strong>in</strong>d<strong>in</strong>g<br />

is obta<strong>in</strong>ed by subtract<strong>in</strong>g the non-specific b<strong>in</strong>d<strong>in</strong>g from the total b<strong>in</strong>d<strong>in</strong>g. The<br />

equilibrium dissociation constant (Kd = 0.23 nM) <strong>of</strong> the labelled compound <strong>and</strong> the<br />

maximal b<strong>in</strong>d<strong>in</strong>g (B m a x = 83 fmol/mg prote<strong>in</strong>) are determ<strong>in</strong>ed with the non-l<strong>in</strong>ear<br />

fitt<strong>in</strong>g program LIGAND 4.1 25<br />

.<br />

169


Chapter 7<br />

4 Results <strong>and</strong> Discussion<br />

In <strong>vitro</strong> calcium channel block<strong>in</strong>g activities are assessed as the concentration required<br />

to <strong>in</strong>hibit the K +<br />

-depolarization <strong>in</strong>duced (50 mM) contractile responses <strong>in</strong> rat aorta<br />

strips by 50%, <strong>and</strong> are expressed as pIC 5 0 values. All compounds are tested as<br />

racemic mixtures <strong>and</strong> display a complete <strong>in</strong>hibition <strong>of</strong> contractile responses as is<br />

verified by addition <strong>of</strong> 1 mM papaver<strong>in</strong>e. As reported <strong>in</strong> chapter 5 (this thesis), the<br />

onset <strong>of</strong> calcium channel block<strong>in</strong>g activity <strong>of</strong> VUF 9159 (table I) <strong>and</strong> its analogues<br />

occurs slowly <strong>and</strong> does not reach equilibrium with<strong>in</strong> 1 hour. Additional <strong>in</strong>creas<strong>in</strong>g<br />

doses <strong>of</strong> the 1,4-DHP derivatives to generate dose-response curves are given every<br />

45 m<strong>in</strong>utes, so no complete equilibrium was reached, which could lead to<br />

underestimated values for the calcium channel block<strong>in</strong>g activities.<br />

4.1 Calcium channel block<strong>in</strong>g activities <strong>and</strong> aff<strong>in</strong>ities <strong>of</strong> type A hybrid molecules<br />

In table I, the calcium channel block<strong>in</strong>g activities <strong>and</strong> aff<strong>in</strong>ities <strong>of</strong> the tiamdip<strong>in</strong>e<br />

analogues are shown. The calcium channel block<strong>in</strong>g activity <strong>of</strong> tiamdip<strong>in</strong>e is not<br />

presented <strong>in</strong> table I because the pharmacological data reported by Kwon et al. 8<br />

are<br />

determ<strong>in</strong>ed on a different tissue (rat tail artery).<br />

Table I: Calcium block<strong>in</strong>g activities <strong>and</strong> aff<strong>in</strong>ities <strong>of</strong> a <strong>series</strong> <strong>of</strong> tiamdip<strong>in</strong>e analogues<br />

compound Z m PIC 50<br />

H<br />

#<br />

pK d*<br />

VUF 9056 H 2 7.27 ± 0.08 8.57 ±0.10<br />

VUF 9158 2,3-diCI 2 7.47 ± 0.03 8.37 ±0.10<br />

VUF 9055 3-N0 2 2 7.96 ± 0.07 8.61 ± 0.06<br />

VUF 9108 3-N0 2 3 7.82-± 0.04 8.43 ± 0.05<br />

VUF 9159 3-N0 2 5 7.96 ±0.12 8.55 ± 0.08<br />

VUF 4731 3-N0 2 6 7.85 ± 0.02 8.41 ±0.15<br />

1 nifedip<strong>in</strong>e 8.77 ± 0.08 8.70 ±0.14<br />

# All pICso values are means ± s.d. for 3 <strong>in</strong>dependent observations, determ<strong>in</strong>ed on rat aorta<br />

strips<br />

$ All aff<strong>in</strong>ities (pKd) were determ<strong>in</strong>ed on isolated rat cortex membranes, <strong>and</strong> are means ± s.d.<br />

for 6 to 9 <strong>in</strong>dependent observations.<br />

170


Chapter 7<br />

As reported previously <strong>in</strong> chapter 5 (this thesis), 1,4-DHPs with a nitro substituent on<br />

the 4-phenyl r<strong>in</strong>g are more potent than those compounds possess<strong>in</strong>g a 2,3-dichloro<br />

substituent (VUF 9158; table I) or no substituent at all (VUF 9056; table I). Increas<strong>in</strong>g<br />

the length <strong>of</strong> the 2-(co-am<strong>in</strong>oalkylthio)methyl side cha<strong>in</strong> on the 2-position on the 1,4-<br />

DHP r<strong>in</strong>g from an ethyl cha<strong>in</strong> to a hexyl cha<strong>in</strong> does not affect calcium channel<br />

block<strong>in</strong>g activity.<br />

Aff<strong>in</strong>ities <strong>of</strong> the tiamdip<strong>in</strong>e analogues (pK d) determ<strong>in</strong>ed by displacement <strong>of</strong><br />

[ 3<br />

H]nitrendip<strong>in</strong>e from rat cortex membranes differ from the pICso values possibly<br />

because <strong>of</strong> underestimated calcium channel block<strong>in</strong>g activities. Although tissue<br />

specificity cannot be ruled out, the established pK d value <strong>of</strong> nifedip<strong>in</strong>e is <strong>in</strong> good<br />

correlation with its pIC 50 value.<br />

In table II, the calcium channel block<strong>in</strong>g activities <strong>and</strong> aff<strong>in</strong>ities <strong>of</strong> a <strong>series</strong> <strong>of</strong> type A<br />

hybrid molecules, conta<strong>in</strong><strong>in</strong>g a histam<strong>in</strong>e H 2-agonistic structural moiety, are given.<br />

With<strong>in</strong> both <strong>series</strong> <strong>of</strong> type A hybrid molecules <strong>and</strong> 2-(co-am<strong>in</strong>oalkylthio)methyl-l,4-<br />

DHPs, the 1,4-DHP derivatives without a substituent <strong>in</strong> the phenyl r<strong>in</strong>g (VUF 4752;<br />

table II <strong>and</strong> VUF 9056; table I, respectively) are the least active calcium channel<br />

blockers. The 2-(co-am<strong>in</strong>oalkylthio)methyl-1,4-DHP derivative with a hexyl cha<strong>in</strong><br />

(VUF 4731; table I) is equally potent as the DHP derivatives with an ethyl, propyl,<br />

<strong>and</strong> pentyl cha<strong>in</strong> (table I), while <strong>in</strong> the <strong>series</strong> <strong>of</strong> type A hybrid molecules VUF 4575<br />

(table II), with a hexyl cha<strong>in</strong>, is the most potent calcium channel blocker (functional<br />

studies). The aff<strong>in</strong>ity <strong>of</strong> the orig<strong>in</strong>al 1,4-DHP derivative VUF 4731 is similar to that <strong>of</strong><br />

the type A hybrid molecule VUF 4575.<br />

Compar<strong>in</strong>g the activities <strong>of</strong> the hybrid molecules <strong>of</strong> table II with the orig<strong>in</strong>al DHPs <strong>of</strong><br />

table I, it is strik<strong>in</strong>g that all hybrid molecules are less potent than the 2-(coam<strong>in</strong>oalkylthio)methyl-l,4-DHPs.<br />

However, the difference <strong>in</strong> potency varies<br />

remarkably among the orig<strong>in</strong>al 1,4-DHPs <strong>of</strong> table I <strong>and</strong> the type A hybrid molecules<br />

(table II). VUF 9055 is a 45 times more potent calcium channel blocker <strong>in</strong> functional<br />

studies than VUF 9065, while VUF 9158 is only approximately 4 times more potent<br />

than VUF 9160, as is demonstrated <strong>in</strong> table III. This big difference <strong>in</strong> potency is not<br />

shared by the aff<strong>in</strong>ities established <strong>in</strong> radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g studies; <strong>in</strong> these tests VUF<br />

9056 is 8 times more potent than VUF 4572, while VUF 4731 is equally potent as<br />

VUF 4575.<br />

A remarkable phenomenon is observed among the 4-(3-nitrophenyl)-1,4-DHP<br />

derivatives. Increas<strong>in</strong>g the alkyl cha<strong>in</strong> length from an ethyl cha<strong>in</strong> to a hexyl cha<strong>in</strong><br />

results <strong>in</strong> a decrease <strong>of</strong> the difference between calcium channel block<strong>in</strong>g activity <strong>of</strong><br />

the 2-(co-am<strong>in</strong>oalkylthio)methyl-1,4-DHPs <strong>and</strong> the hybrid molecules. The differences<br />

between the aff<strong>in</strong>ities nearly rema<strong>in</strong> the same. Obviously, the underestimation <strong>of</strong> the<br />

activities differ among the several 1,4-DHPs.<br />

171


Chapter 7<br />

Table II: Histam<strong>in</strong>e H 2-agonistic activities (chronotropic activity), calcium channel<br />

block<strong>in</strong>g activities <strong>and</strong> aff<strong>in</strong>ities <strong>of</strong> type A hybrid molecules<br />

VUF Z m pEC 50<br />

histam<strong>in</strong>e H2-agonism Ca 2+<br />

-entry block<strong>in</strong>g activity<br />

functional b<strong>in</strong>d<strong>in</strong>g functional b<strong>in</strong>d<strong>in</strong>g<br />

a<br />

C) d<br />

> i.a. PKdb) PIC pK 50<br />

d ><br />

4572 H 2 nma - 6.19 ±0.23 6.26 ± 0.03 7.67 ± 0.05<br />

9160 2,3-diCI 2 nma - 5.51 ± 0.04 6.85 ± 0.07 7.97 ± 0.04<br />

9065 3-N0 2 2 nma - 5.82 ± 0.29 6.30 ± 0.07 8.46 ± 0.03<br />

4570 3-N0 2 3 nma - 5.77 ± 0.05 6.37 ± 0.02 8.15±0.10<br />

4573 3-N0 2 5 6.28 ±0.13 0.6 5.93 ± 0.09 6.54 ± 0.06 8.07 ± 0.07<br />

4575 3-N0 2 6 6.38 ±0.14 0.9 6.04 ± 0.02 7.16 ±0.05 8.39 ±0.10<br />

histam<strong>in</strong>e 6.06 ±0.13 1.0 4.64 ± 0.35<br />

impromid<strong>in</strong>e 7.63 ± 0.06 1.0 6.97 ±0.07<br />

ranitid<strong>in</strong>e * - - 7.12 ± 0.11<br />

iodoam<strong>in</strong>opotentid<strong>in</strong>e * - - 9.52 ± 0.03<br />

a) All values are means ± s.d. for 3 to 50 <strong>in</strong>dependent observations, determ<strong>in</strong>ed on<br />

isolated spontaneously beat<strong>in</strong>g gu<strong>in</strong>ea pig right atrium<br />

b) All values are means ± s.d. for 3 to 6 <strong>in</strong>dependent observations. All aff<strong>in</strong>ities (pKd) were determ<strong>in</strong>ed on isolated gu<strong>in</strong>ea pig cortex membranes, [ 125<br />

I]iodoam<strong>in</strong>opotentid<strong>in</strong>e<br />

was used as hot lig<strong>and</strong><br />

c) All values are means ± s.d. for 3 to 4 <strong>in</strong>dependent observations, determ<strong>in</strong>ed on rat aorta<br />

strips<br />

d) All values are means ± s.d. for 5 to 9 <strong>in</strong>dependent observations. All aff<strong>in</strong>ities (pK^)<br />

were determ<strong>in</strong>ed on isolated rat cortex membranes, [ 3<br />

H]nitrendip<strong>in</strong>e was used as hot<br />

lig<strong>and</strong>.<br />

nma No measurable activity due to negative <strong>in</strong>otropic activity <strong>of</strong> the DHPs<br />

i.a Intr<strong>in</strong>sic activity relative to histam<strong>in</strong>e<br />

* Histam<strong>in</strong>e H2-antagonist 172


Chapter 7<br />

Table III: Relative calcium channel block<strong>in</strong>g potencies (CCB) <strong>and</strong> aff<strong>in</strong>ities (CC-A)<br />

<strong>of</strong> the DHPs from table I compared with the correspond<strong>in</strong>g hybrid<br />

molecules <strong>of</strong> table II<br />

DHP / hybrid CCB rel. act. CC-A rel. aff.<br />

VUF 9056 / VUF 4572 10 8<br />

VUF 9158 /VUF 9160 4 2.5<br />

VUF 9055 / VUF 9065 45 1.4<br />

VUF 9108/VUF 4570 28 1.9<br />

VUF 9159/VUF 4573 26 3<br />

VUF 4731 / VUF 4575 4.9 1<br />

CCB rel. act. Relative calcium channel block<strong>in</strong>g activity <strong>of</strong> a<br />

DHP from table I over the correspond<strong>in</strong>g hybrid molecule<br />

CC-A rel. aff. Relative aff<strong>in</strong>ity <strong>of</strong> a DHP from table I over the correspond<strong>in</strong>g<br />

hybrid molecule<br />

4.2 Histam<strong>in</strong>e H 2-agonistic activity <strong>and</strong> H 2-receptor aff<strong>in</strong>ity <strong>of</strong> type A hybrid<br />

molecules<br />

In table II the histam<strong>in</strong>e H 2-agonistic activities <strong>and</strong> aff<strong>in</strong>ities <strong>of</strong> type A hybrid<br />

molecules <strong>and</strong> some histam<strong>in</strong>e H 2-agonists <strong>and</strong> H 2-antagonists are shown.<br />

Remarkable <strong>in</strong> table II is that some hybrid molecules do not display any activity,<br />

which can be expla<strong>in</strong>ed as follows. Concentration-response curves (CR-curves) <strong>of</strong><br />

type A hybrid derivatives on isolated spontaneously beat<strong>in</strong>g gu<strong>in</strong>ea pig right atria<br />

reveal an abnormal pattern. Normally, histam<strong>in</strong>e H 2-agonists show a concentrationdependent<br />

<strong>in</strong>crease <strong>in</strong> heart rate (positive chronotropy) <strong>of</strong> the isolated gu<strong>in</strong>ea pig<br />

right atria. However, the positive chronotropic activity could not always be detected<br />

because <strong>of</strong> an occurr<strong>in</strong>g negative <strong>in</strong>otropic <strong>and</strong> chronotropic effect, which seem to<br />

produce a complete st<strong>and</strong>still <strong>of</strong> spontaneously beat<strong>in</strong>g right atria. The negative<br />

<strong>in</strong>otropic <strong>and</strong> chronotropic effects occurr<strong>in</strong>g with CR-curves <strong>of</strong> the hybrid molecules<br />

are due to the 1,4-DHP structural moiety. It is known that 1,4-DHPs exert a negative<br />

<strong>in</strong>otropic <strong>and</strong> chronotropic action, as is shown <strong>in</strong> table IV. The heart rate <strong>of</strong> some the<br />

right atria could be partially restored by noradrenal<strong>in</strong>e or histam<strong>in</strong>e stimulation, but<br />

this was only <strong>of</strong> a temporary nature.<br />

Table IV: Negative <strong>in</strong>otropic <strong>and</strong> chronotropic activities <strong>of</strong> nifedip<strong>in</strong>e <strong>and</strong><br />

nisoldip<strong>in</strong>e, determ<strong>in</strong>ed on gu<strong>in</strong>ea pig papillary muscle <strong>and</strong> gu<strong>in</strong>ea pig right<br />

atrium, respectively (calculated from EC 5 0 values from Kazda et al. 27<br />

)<br />

nifedip<strong>in</strong>e 1 nisoidip<strong>in</strong>e<br />

negative <strong>in</strong>otropy; pEC 5 0 7.35 ± 0.35 7.30 ± 0.21<br />

negative chronotropy; pEC 5 0 7.66 ± 0.24 7.19 ± 0.43<br />

Nisoldip<strong>in</strong>e has a sec-butyl ester at the 3-position on the 1,4-DHP r<strong>in</strong>g <strong>in</strong>stead <strong>of</strong> a<br />

methyl ester, as <strong>in</strong> nifedip<strong>in</strong>e<br />

173


Chapter 7<br />

By <strong>in</strong>creas<strong>in</strong>g the alkyl cha<strong>in</strong> length <strong>of</strong> the type A hybrid molecules, carry<strong>in</strong>g a 3nitrophenyl<br />

substituent on the 4-position on the 1,4-DHP r<strong>in</strong>g, one gets molecules<br />

which show a chronotropic activity exhibited by the histam<strong>in</strong>e H2-agonistic structural moiety (table II). Obviously, the histam<strong>in</strong>e H2-agonistic effects can<br />

overcome the effects exerted by the 1,4-DHP calcium channel blockers. Although<br />

VUF 4573 <strong>and</strong> VUF 4575 have a higher chronotropic activity than histam<strong>in</strong>e, it<br />

rema<strong>in</strong>s unclear whether the histam<strong>in</strong>ergic effects are <strong>in</strong>creased or that the negative<br />

<strong>in</strong>otropic <strong>and</strong> chronotropic effects <strong>of</strong> the 1,4-DHP structural moiety are decreased.<br />

Comparison <strong>of</strong> the histam<strong>in</strong>e H2-agonistic activities <strong>of</strong> the type A hybrid molecules<br />

with impromid<strong>in</strong>e shows that VUF 4573 <strong>and</strong> VUF 4575 are moderate histam<strong>in</strong>e H2 agonists. Although VUF 4573 <strong>and</strong> VUF 4575 have an <strong>in</strong>tr<strong>in</strong>sic activity relative to<br />

histam<strong>in</strong>e <strong>of</strong> 0.6 <strong>and</strong> 0.9, respectively, this does not necessarily <strong>in</strong>dicate that these<br />

two compounds are partial agonists as was verified by addition <strong>of</strong> 10 5<br />

M histam<strong>in</strong>e at<br />

the end <strong>of</strong> the CR-curves <strong>of</strong> VUF 4573 <strong>and</strong> VUF 4575, which did not lead to the<br />

<strong>in</strong>itial maximal contractile force produced <strong>in</strong> control experiments.<br />

VUF 4573 was also pharmacologically tested on the gu<strong>in</strong>ea pig left atrium (used <strong>in</strong><br />

pharmacological studies to demonstrate histam<strong>in</strong>e Hi-activity), but was devoid <strong>of</strong> any<br />

effect, demonstrat<strong>in</strong>g that VUF 4573 has no histam<strong>in</strong>e Hractivity. In figure 4 the CR-curves <strong>of</strong> nifedip<strong>in</strong>e, histam<strong>in</strong>e <strong>and</strong> <strong>of</strong> a 1/1 molar mixture <strong>of</strong><br />

nifedip<strong>in</strong>e/histam<strong>in</strong>e are shown. Addition <strong>of</strong> 10~ 6<br />

M isoprenal<strong>in</strong>e is unable to restore<br />

any response at the end <strong>of</strong> the CR-curve <strong>of</strong> nifedip<strong>in</strong>e.<br />

Figure 4: Inotropic activity <strong>of</strong> histam<strong>in</strong>e (HA), nifedip<strong>in</strong>e (nif), <strong>and</strong> a 1/1 molar<br />

mixture <strong>of</strong> histam<strong>in</strong>e/nifedip<strong>in</strong>e on the electrically stimulated gu<strong>in</strong>ea pig<br />

papillary muscle<br />

<strong>in</strong>otropic<br />

activity (%)<br />

100 i<br />

50 -<br />

o -<br />

-50-<br />

-100<br />

-9 -8 -7 -6 -5 -4<br />

log cone [M]<br />

174<br />

•0.<br />

•ft<br />

histam<strong>in</strong>e<br />

nifedip<strong>in</strong>e<br />

HA/nif 1/1


Chapter 7<br />

Figure 4 nicely demonstrates the idea beh<strong>in</strong>d hybrid molecules. While nifedip<strong>in</strong>e<br />

affects <strong>in</strong>otropic activity at much lower concentrations than histam<strong>in</strong>e, a 1/1 molar<br />

mixture <strong>of</strong> nifedip<strong>in</strong>e/histam<strong>in</strong>e has no overall effect on <strong>in</strong>otropic activity. Thus<br />

comb<strong>in</strong>ation <strong>of</strong> the two compounds <strong>in</strong> a 1/1 molar ratio, to mimic the fixed 1/1 molar<br />

ratio <strong>in</strong> hybrid molecules, does not simply result <strong>in</strong> summ<strong>in</strong>g up <strong>of</strong> the two dist<strong>in</strong>ct<br />

CR-curves.<br />

Inotropic activities <strong>of</strong> the histam<strong>in</strong>e H 2-agonistic activities <strong>of</strong> type A hybrid molecules<br />

are also measured on the electrically stimulated gu<strong>in</strong>ea pig papillary muscle. As<br />

already discussed <strong>in</strong> the section on chronotropic activity, the negative <strong>in</strong>otropic<br />

activity <strong>of</strong> the 1,4-DHP structural moiety h<strong>in</strong>ders the determ<strong>in</strong>ation <strong>of</strong> the positive<br />

<strong>in</strong>otropic actions exhibited by the histam<strong>in</strong>e H 2-agonistic structural moiety.<br />

In table V, the positive <strong>in</strong>otropic activities <strong>of</strong> type A hybrid molecules are shown.<br />

Determ<strong>in</strong>ation <strong>of</strong> the positive <strong>in</strong>otropic activity was only possible for VUF 4573 (VUF<br />

4575 was not tested). The explanation <strong>of</strong> the poor <strong>in</strong>tr<strong>in</strong>sic activity <strong>of</strong> VUF 4573<br />

relative to histam<strong>in</strong>e is the same as was discussed for the poor <strong>in</strong>tr<strong>in</strong>sic activities <strong>in</strong> the<br />

section <strong>of</strong> chronotropic studies. When the CR-curve <strong>of</strong> VUF 4573 is determ<strong>in</strong>ed <strong>in</strong><br />

presence <strong>of</strong> 1 |iM cimetid<strong>in</strong>e (a histam<strong>in</strong>e H 2-antagonist; pA 2 = 6.1), the CR-curve is<br />

shifted to the right (higher concentration), confirm<strong>in</strong>g that the exhibited effect is a<br />

histam<strong>in</strong>e H 2-effect.<br />

By adjust<strong>in</strong>g the experimental procedure, it is possible to avoid the problems<br />

exhibited by the DHP structural moiety. At the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> each CR-curve, 1 |iM<br />

Bay k 8644 (a DHP-type calcium channel activator) is added. Bay k 8644 has a<br />

positive <strong>in</strong>otropic <strong>and</strong> chronotropic activity, thus the <strong>in</strong>itial contractile force <strong>and</strong> beat<br />

frequency is <strong>in</strong>creased. At the same time the effects orig<strong>in</strong>at<strong>in</strong>g from the DHP<br />

structural moiety <strong>of</strong> the hybrid molecules are suppressed by Bay k 8644. So, by<br />

neutraliz<strong>in</strong>g the calcium block<strong>in</strong>g effect, it is possible to determ<strong>in</strong>e the <strong>in</strong>otropic<br />

activities <strong>of</strong> a number <strong>of</strong> type A hybrid molecules.<br />

Table V demonstrates that the most active type A hybrid molecules, VUF 4573 <strong>and</strong><br />

VUF 4575, are both full agonists as they have about the same <strong>in</strong>tr<strong>in</strong>sic activity as<br />

histam<strong>in</strong>e <strong>and</strong> impromid<strong>in</strong>e. The <strong>in</strong>otropic activities (as pECso) <strong>of</strong> the hybrid<br />

molecules are lower than that <strong>of</strong> histam<strong>in</strong>e or impromid<strong>in</strong>e. VUF 4573 exhibits a<br />

positive <strong>in</strong>otropic activity with or without Bay k 8644. It seems that the alkyl cha<strong>in</strong><br />

length reaches a po<strong>in</strong>t where the overall <strong>in</strong>otropic activity is positive <strong>of</strong> nature. VUF<br />

4573 <strong>and</strong> VUF 4575 are equally active <strong>in</strong> the pharmacological assay <strong>in</strong> which Bay k<br />

8644 is adm<strong>in</strong>istered.<br />

s<br />

Although it is tenable to assume that the <strong>in</strong>creased <strong>in</strong>otropic activity <strong>of</strong> histam<strong>in</strong>e <strong>in</strong><br />

presence <strong>of</strong> Bay k 8644 might be expla<strong>in</strong>ed by an improved availability <strong>of</strong><br />

<strong>in</strong>tracellular calcium for the contractile process, this property is not observed for<br />

impromid<strong>in</strong>e (table V).<br />

175


Chapter 7<br />

Table V: Histam<strong>in</strong>e H 2-agonistic activités on the electrically stimulated gu<strong>in</strong>ea pig<br />

papillary muscle (<strong>in</strong>otropic activity)<br />

VUF Z m PEC 50 i.a.<br />

<strong>in</strong> presence <strong>of</strong><br />

1 nM Bay k 8644<br />

pEC 50# i.a.#<br />

4572 H 2 nt 5.73 ± 0.30 1.0<br />

9160 2,3-diCI 2 nt -


Chapter 7<br />

block<strong>in</strong>g activities are caused by the histam<strong>in</strong>e H 2-agonistic activity. However, this<br />

assumption is <strong>in</strong> contrast with the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> Tenner et al. 28<br />

, who have <strong>in</strong>vestigated<br />

the <strong>in</strong>fluence <strong>of</strong> histam<strong>in</strong>e H 2-agonists on rabbit aorta strips. In rabbit aortic strips<br />

contracted by 60 mM KC1, no significant relaxation is produced by histam<strong>in</strong>e or the<br />

histam<strong>in</strong>e H 2-agonists impromid<strong>in</strong>e <strong>and</strong> dimaprit. This is confirmed <strong>in</strong> our experiments<br />

<strong>in</strong> which impromid<strong>in</strong>e did not affect the KCl-<strong>in</strong>duced contractions <strong>in</strong> rat aorta strips<br />

(data not shown). The aff<strong>in</strong>ities <strong>of</strong> the hybrid molecules VUF 4612 <strong>and</strong> VUF 4730 are<br />

equally potent as the aff<strong>in</strong>ities <strong>of</strong> the non hybrid molecules (table VI), <strong>in</strong>dicat<strong>in</strong>g that<br />

the histam<strong>in</strong>e H 2-agonistic structural moiety does not affect the conformation<br />

adopted by the DHP structure to b<strong>in</strong>d to its receptor. We do not have an explanation<br />

for the differences <strong>in</strong> the observed <strong>in</strong> <strong>vitro</strong> calcium channel block<strong>in</strong>g activities<br />

(functional studies) <strong>and</strong> the aff<strong>in</strong>ities (radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g studies) <strong>of</strong> VUF 4612 <strong>and</strong><br />

VUF 4730.<br />

Table VI: Calcium channel block<strong>in</strong>g activities (pICso) <strong>and</strong> aff<strong>in</strong>ities (pIQ) <strong>of</strong> a <strong>series</strong><br />

<strong>of</strong> diethyl 2,6-dimethyl-4-[2-(co-substituted-alkoxy)phenyl]-l,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylates<br />

R<br />

NH 2<br />

NHC(S)NH 2<br />

NHC(NH)SEt<br />

ipg<br />

H 5C 2OOC<br />

H 3C<br />

0-(CH 2) m-R<br />

COOC 2H 5<br />

m = 5 m = 6<br />

* *<br />

compound pICso pK/ compound pICso* pK/<br />

VUF 4587 6.61 +0.08 6.83 + 0.08<br />

VUF 4622 6.44 ±0.13 7.00 ±0.07<br />

VUF 4623 6.31 ±0.10 7.27 ±0.15<br />

VUF 4612 5.58 ±0.16 7.52 ±0.11<br />

nifedip<strong>in</strong>e 8.77 ±0.08 8.70 ±0.14<br />

VUF 4599 6.42 + 0.04 7.02 ±0.05<br />

VUF 4671 6.39 ±0.09 7.09 ±0.09<br />

VUF 4624 6.34 ±0.11 7.70 ±0.11<br />

VUF 4730 5.39 ±0.11 7.42 ±0.17<br />

* All values are means ± s.d. for 3 <strong>in</strong>dependent observations<br />

# All values are means ± s.d. for 5-9 <strong>in</strong>dependent observations.<br />

All aff<strong>in</strong>ities (pKd) were determ<strong>in</strong>ed on isolated rat cortex membranes<br />

ipg Imidazolylpropylguanid<strong>in</strong>e structural moiety<br />

NH<br />

H H<br />

177


Chapter 7<br />

The aff<strong>in</strong>ities <strong>of</strong> the compounds shown <strong>in</strong> table VI are only marg<strong>in</strong>ally affected by the<br />

nature <strong>of</strong> the substituents. Compounds with an isothiourea or a guanid<strong>in</strong>o group<br />

have a little higher aff<strong>in</strong>ity than the derivatives with a thiourea or a primary am<strong>in</strong>e<br />

function. The higher aff<strong>in</strong>ity <strong>of</strong> the derivatives with an isothiourea or a guanid<strong>in</strong>o<br />

function might be ascribed to additional <strong>in</strong>teraction with the b<strong>in</strong>d<strong>in</strong>g site <strong>of</strong> the Ltype<br />

calcium channel due to an ionic <strong>in</strong>teraction between the protonated isothiourea<br />

or guanid<strong>in</strong>o group <strong>and</strong> the negatively charged phosphate group <strong>of</strong> a phospholipid.<br />

However, this would not expla<strong>in</strong> the lower calcium channel block<strong>in</strong>g activities (pICso<br />

values). Although compounds with a primary am<strong>in</strong>e function should obey to the<br />

same additional <strong>in</strong>teraction described for isothiourea <strong>and</strong> guanid<strong>in</strong>o functions, the<br />

aff<strong>in</strong>ities <strong>of</strong> the 1,4-DHPs with a primary am<strong>in</strong>e group are as active as the derivatives<br />

with a thiourea function (not protonated at physiological pH).<br />

In table VII the calcium channel block<strong>in</strong>g activity <strong>and</strong> aff<strong>in</strong>ity <strong>of</strong> the hybrid molecule<br />

with a propyl cha<strong>in</strong> (VUF 4588) demonstrates that <strong>in</strong>creas<strong>in</strong>g the alkyl cha<strong>in</strong> length<br />

<strong>of</strong> the 2-(co-substituted-alkoxy)phenyl hybrid molecules from propyl to hexyl results<br />

<strong>in</strong> a decrease <strong>of</strong> calcium channel block<strong>in</strong>g activity, while the aff<strong>in</strong>ity slightly<br />

<strong>in</strong>creases. We have no explanation for this phenomenon.<br />

Table W: Histam<strong>in</strong>e H 2-agonistic activity (chronotropic activity), calcium channel<br />

block<strong>in</strong>g activities <strong>and</strong> aff<strong>in</strong>ities <strong>of</strong> a <strong>series</strong> <strong>of</strong> type B hybrid structures<br />

VUF m pEC 50<br />

histam<strong>in</strong>e H2-agonism<br />

functional b<strong>in</strong>d<strong>in</strong>g<br />

a<br />

b<br />

c<br />

> i.a. pKd > plC50 ><br />

Ca 2+<br />

-entry block<strong>in</strong>g activity<br />

functional b<strong>in</strong>d<strong>in</strong>g<br />

pKc b)<br />

4588 3 na - 5.76 ±0.15 5.88 ±0.14 7.03 ±0.14<br />

4612 5 na - 5.96 ± 0.22 5.58 ±0.16 7.52 ±0.11<br />

4730 6 6.20 ± 0.06 0.75 6.69 ±0.15 5.39 ±0.11 7.42 ±0.17<br />

pECso Concentration required to produce 50% <strong>of</strong> its maximal contractile effect<br />

pICso Concentration required to produce 50% <strong>of</strong> its <strong>in</strong>hibitory effect<br />

na Not active<br />

a) All values are means ± s.d. for 3 to 4 <strong>in</strong>dependent observations<br />

b) All values are means ± s.d. for 5 to 9 <strong>in</strong>dependent observations<br />

c) All values are means ± s.d. for 3 to 4 <strong>in</strong>dependent observations<br />

178


Chapter 7<br />

4.4 Histam<strong>in</strong>e H ragonistic activity <strong>and</strong> H 2-receptor aff<strong>in</strong>ity <strong>of</strong> type B hybrid<br />

molecules<br />

The only type B hybrid molecule hav<strong>in</strong>g a positive chronotropic activity is VUF<br />

4730, possess<strong>in</strong>g a hexyl cha<strong>in</strong>. The hybrid molecules with a propyl or a pentyl cha<strong>in</strong><br />

show no activity (table VII). However, all three type B hybrid molecules do have an<br />

aff<strong>in</strong>ity for the histam<strong>in</strong>e H rreceptor. The <strong>in</strong>activity <strong>of</strong> VUF 4588 <strong>and</strong> VUF 4612 is<br />

most likely due to the calcium channel block<strong>in</strong>g activity <strong>of</strong> the hybrid molecule.<br />

Increas<strong>in</strong>g the alkyl cha<strong>in</strong> length, from a propyl to a hexyl cha<strong>in</strong>, decreases calcium<br />

channel block<strong>in</strong>g activity, while <strong>in</strong>creas<strong>in</strong>g histam<strong>in</strong>e H 2-agonistic activity.<br />

VUF 4730 is also the only type B hybrid molecule hav<strong>in</strong>g a positive <strong>in</strong>otropic action.<br />

The <strong>in</strong>otropic activities <strong>of</strong> VUF 4588 <strong>and</strong> VUF 4612 are not determ<strong>in</strong>ed <strong>in</strong> absence <strong>of</strong><br />

1 pM Bay k 8644 because they already did not demonstrate any activity <strong>in</strong> the<br />

pharmacological system, which conta<strong>in</strong>ed Bay k 8644 (table VIII).<br />

Table VIII: Histam<strong>in</strong>e H 2-agonistic activity (<strong>in</strong>otropic activity) <strong>of</strong> type B hybrid<br />

molecules on the electrically stimulated gu<strong>in</strong>ea pig papillary muscle<br />

VUF QD2 i.a. pEC 5 0 * i.a.<br />

4588 not tested - not active<br />

4612 not tested - not active<br />

4730 5.63 + 0.23 1.0 5.86 ±0.05 1.0<br />

* In presence <strong>of</strong> 1 pM Bay k 8644, <strong>in</strong> order to neutralize the negative <strong>in</strong>otropic activities <strong>of</strong><br />

the DHP structural moieties, all number <strong>of</strong> experiments = 2<br />

There is no statistical difference <strong>in</strong> <strong>in</strong>otropic activities <strong>of</strong> VUF 4730 <strong>in</strong> absence or<br />

presence <strong>of</strong> the calcium channel activator Bay k 8644.<br />

In the <strong>series</strong> <strong>of</strong> tiamdip<strong>in</strong>e analogues it has been shown that <strong>in</strong>creas<strong>in</strong>g the alkyl<br />

cha<strong>in</strong> length on the 2-position on the 1,4-DHP r<strong>in</strong>g from ethyl to hexyl only<br />

marg<strong>in</strong>ally affects the potent calcium channel block<strong>in</strong>g activities <strong>and</strong> aff<strong>in</strong>ities.<br />

In the <strong>series</strong> <strong>of</strong> type A hybrid molecules the aff<strong>in</strong>ities for the DHP b<strong>in</strong>d<strong>in</strong>g site are<br />

almost equal to the aff<strong>in</strong>ities <strong>of</strong> the tiamdip<strong>in</strong>e analogues. However, the <strong>in</strong> <strong>vitro</strong><br />

calcium channel block<strong>in</strong>g activities <strong>of</strong> type A hybrid molecules are lower than those<br />

<strong>of</strong> the tiamdip<strong>in</strong>e analogues. The decrease <strong>in</strong> calcium channel block<strong>in</strong>g activity must<br />

be ascribed to the unfavourable bulky structural moiety <strong>and</strong> not to any histam<strong>in</strong>e H 2effect.<br />

By <strong>in</strong>creas<strong>in</strong>g the alkyl cha<strong>in</strong> length from ethyl to hexyl <strong>in</strong> type A hybrid<br />

molecules, the calcium channel block<strong>in</strong>g activities <strong>in</strong>creases. The <strong>in</strong>creased flexibility<br />

<strong>of</strong> the hybrid molecule with an extended alkyl cha<strong>in</strong> makes it possible for the DHP<br />

structure to adopt a conformation which allows the DHP structural moiety to <strong>in</strong>teract<br />

with the DHP b<strong>in</strong>d<strong>in</strong>g site. At the same time, <strong>in</strong>creas<strong>in</strong>g the alkyl cha<strong>in</strong> length <strong>of</strong> type<br />

A hybrid molecules leads to an overall moderate positive chronotropic <strong>and</strong> <strong>in</strong>otropic<br />

activity.<br />

179


Chapter 7<br />

The histam<strong>in</strong>e H 2 chronotropic <strong>and</strong> <strong>in</strong>otropic activities <strong>of</strong> type A hybrid molecules<br />

with an ethyl cha<strong>in</strong> length cannot be determ<strong>in</strong>ed because <strong>of</strong> the negative <strong>in</strong>otropic<br />

<strong>and</strong> chronotropic effects exhibited by the DHP structural moiety. This complicated<br />

attribution on overall <strong>in</strong>otropic activity makes it impossible to verify the contribution<br />

<strong>of</strong> phenyl r<strong>in</strong>g substituents, as described by Rodenkirchen et al. 29<br />

. They<br />

demonstrated that <strong>in</strong> a <strong>series</strong> <strong>of</strong> nifedip<strong>in</strong>e analogues, the negative <strong>in</strong>otropic activity<br />

on cat papillary muscle ma<strong>in</strong>ly depends on steric <strong>and</strong> lipophilic substituent properties<br />

for aryl derivatives <strong>and</strong>/or on the steric nature <strong>of</strong> the ester substituents. Bulky ester<br />

substituents decrease the negative <strong>in</strong>otropic activities <strong>in</strong> cat papillary muscle. In<br />

general the negative <strong>in</strong>otropic activity <strong>of</strong> phenyl substituted DHP derivatives<br />

decrease <strong>in</strong> the order <strong>of</strong> ortho > meta > para substitution. These structure-activity<br />

relationship studies are confirmed by Boyd et al. 30<br />

, who used rabbit papillary muscle.<br />

The <strong>in</strong> <strong>vitro</strong> <strong>and</strong> <strong>in</strong> vivo <strong>pharmacology</strong> <strong>of</strong> a <strong>series</strong> <strong>of</strong> felodip<strong>in</strong>e (ethyl methyl 4-(2,3dichlorophenyl)-2,6-dimethyl-l,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylate)<br />

analogues with<br />

different ester groups <strong>in</strong> 3- <strong>and</strong> 5-position on the DHP r<strong>in</strong>g have been evaluated on<br />

rat papillary muscle <strong>and</strong> portal ve<strong>in</strong>, lead<strong>in</strong>g to the conclusion that the DHP effector<br />

site <strong>in</strong> vascular smooth muscle must be structurally different from the DHP effector<br />

site <strong>in</strong> cardiac tissue 31<br />

.<br />

Type B hybrid molecules have much lower calcium channel block<strong>in</strong>g activities than<br />

type A hybrid molecules. The explanation <strong>of</strong> the lower calcium channel block<strong>in</strong>g<br />

activities can be reduced to the discussion on the structure activity relationship <strong>of</strong> the<br />

tiamdip<strong>in</strong>e analogues from table I <strong>and</strong> the 4-(co-substituted-alkoxy)phenyl DHPs from<br />

table VI. In general, calcium channel block<strong>in</strong>g activity decreases for 4-(substitutedphenyl)-l,4-DHPs<br />

<strong>in</strong> the order <strong>of</strong> ortho > meta > para substitution, <strong>and</strong> this effect<br />

becomes more pronounced when the substituent becomes bulkier. This might expla<strong>in</strong><br />

the reduction <strong>of</strong> calcium channel block<strong>in</strong>g activity <strong>of</strong> type B hybrid molecules with<br />

<strong>in</strong>creas<strong>in</strong>g alkyl substituents on the 4-phenyl r<strong>in</strong>g, although this is not confirmed by<br />

the radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g studies.<br />

In a patent concern<strong>in</strong>g a <strong>series</strong> <strong>of</strong> type C hybrid molecules, Schickaneder et al. 24<br />

have<br />

claimed that the compound with a hexyl cha<strong>in</strong>, a methyl ester, <strong>and</strong> a 3-nitro<br />

substituent on the 4-phenyl, is a potent histam<strong>in</strong>e H2-agonist (pD2 = 7.4) <strong>and</strong> calcium<br />

channel blocker (pA2 = 7.0). Unfortunately, no pharmacological methods are<br />

described, mak<strong>in</strong>g it impossible to compare the activities <strong>of</strong> type C hybrid molecules<br />

with those <strong>of</strong> type A <strong>and</strong> B hybrid molecules. Furthermore, it is not clear whether the<br />

authors <strong>of</strong> type C hybrid molecules have encountered the same problems <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g the <strong>in</strong>dividual actions <strong>of</strong> the two pliarmacophoric groups.<br />

5 Conclusion<br />

Of the proposed type A <strong>and</strong> B hybrid molecules comb<strong>in</strong><strong>in</strong>g histam<strong>in</strong>e H2-agonistic properties <strong>and</strong> calcium channel block<strong>in</strong>g activities, the type A hybrid molecule VUF<br />

4575 is the most promiss<strong>in</strong>g compound which could provide <strong>in</strong>terest<strong>in</strong>g leads <strong>in</strong> the<br />

treatment <strong>of</strong> myocardial heart failure or some hypertensive disorders, because it<br />

comb<strong>in</strong>es good <strong>in</strong> <strong>vitro</strong> Ca 2+<br />

-block<strong>in</strong>g action <strong>and</strong> an overall positive <strong>in</strong>otropic <strong>and</strong><br />

180


Chapter 7<br />

chronotropic activity <strong>in</strong> one molecule. VUF 4573 has a nearly equivalent histam<strong>in</strong>e<br />

H2-agonistic potency as VUF 4575, but has a lower calcium channel block<strong>in</strong>g<br />

activity. Introduction <strong>of</strong> an imidazolylpropylguanid<strong>in</strong>e structure on the 4-phenyl r<strong>in</strong>g<br />

on the DHP structural moiety (type B hybrid molecules) affords VUF 4730 which<br />

exhibits both overall positive chronotropic <strong>and</strong> <strong>in</strong>otropic activity, but is less<br />

<strong>in</strong>terest<strong>in</strong>g than VUF 4575 or VUF 4573 because it has a lower calcium channel<br />

block<strong>in</strong>g activity.<br />

Experimental protocols<br />

If <strong>in</strong>dicated crude reaction products were purified by flash chromatography on<br />

silicagel (J.T.Baker 70242). Melt<strong>in</strong>g po<strong>in</strong>ts were determ<strong>in</strong>ed on a Mettler FP 52 with<br />

microscope. !H-NMR <strong>and</strong> 13<br />

C-NMR-spectra were recorded on a Bruker AC 200. The<br />

chemical shifts are <strong>in</strong> ppm relative to tetramethylsilane. 13<br />

C-NMR-spectra were<br />

verified by CH-cosy NMR experiments. Mass spectra were determ<strong>in</strong>ed on a Mat 90<br />

(F<strong>in</strong>nigan Mat) mass spectrometer with Fast Atom Bombardment ionisation (matrix:<br />

glycerol + ammonium acetate, thioglycerol or 3-nitrobenzylalcohol, Ion Tech<br />

saddlefield gun, 8 keV Xenon with xenon ioncurrent 0.2 mA). All compounds gave<br />

the expected (M+H)+ <strong>and</strong> to a lesser extend (M-H) -<br />

peaks (negative ions).<br />

Furthermore the purity <strong>of</strong> the compounds was checked by th<strong>in</strong> layer chromatography<br />

(Merck silica gel 60, F254 0.25 mm).<br />

General synthetic procedure<br />

Diethyl 2-[(6-am<strong>in</strong>ohexyl)thiomethyl]-6~methyl-4-(3-nitrophenyl)-l^<br />

pyrid<strong>in</strong>e-3 yS-dicarboxylate fumarate VUF 4731<br />

VUF 4731 was synthesized accord<strong>in</strong>g to VUF 9159 as decribed previously <strong>in</strong> chapter<br />

5 (this thesis).<br />

Yield = 24% (start<strong>in</strong>g from diethyl 2-chloromethyl-6-methyl-4-(3-nitrophenyl)-l,4-<br />

dihydropyrid<strong>in</strong>e-3,5-dicarboxylate); melt<strong>in</strong>g po<strong>in</strong>t = 98.4-100.1°C.<br />

Mass spectrum, glycerol + ammonium acetate as matrix (FAB +<br />

) 506 [M+H} +<br />

, (FAB)<br />

504 [M-H]".<br />

^-NMR (DMSO-d 6): 1.11-1.65 ppm (m, 14H, 2x C// 3-CH 2-0 <strong>and</strong> S-C-(C// 2) 4-C-N),<br />

2.32 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.44-2.56 ppm (m, 2H, C// 2), 2.73-2.78 ppm (m, 2H,<br />

C// 2), 3.70 <strong>and</strong> 4.09 ppm (AB, = 13.1 Hz, 2H, pyrid<strong>in</strong>e-C// 2-S), 3.98-4.05 ppm (m,<br />

4H, 2x CH 3-O/ 2-0), 5.01 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 6.48 ppm (s, 2H, fumaric acid-C//),<br />

7.52-8.02 ppm (m, 6.5H, 4x phenyl-// <strong>and</strong> N// 2), 9.36 ppm (bs, 1H, pyrid<strong>in</strong>e-N//).<br />

13<br />

C-NMR (DMSO-d6): 13.73 <strong>and</strong> 13.83 ppm (q, 2x CH 3-CH 2-0), 18.00 ppm (q,<br />

pyrid<strong>in</strong>e-CH 3), 25.20 <strong>and</strong> 26.74 <strong>and</strong> 27.57 <strong>and</strong> 28.87 <strong>and</strong> 29.14 <strong>and</strong> 30.85 ppm (t, S-<br />

(CH 2) 6-N), 38.28 ppm (t, pyrid<strong>in</strong>e-CH 2-S), 39.06 ppm (d, pyrid<strong>in</strong>e-C 4), 59.05 <strong>and</strong><br />

59.33 ppm (t, 2x CH 3-CH 2-0), 100.26 <strong>and</strong> 101.36 ppm (s, pyrid<strong>in</strong>e-C 3 <strong>and</strong> C 5), 120.99<br />

<strong>and</strong> 121.66 <strong>and</strong> 129.30 <strong>and</strong> 133.93 ppm (d, 4x phenyl-CH [C 2, C 4, C 5, C 6]), 134.98<br />

ppm (d, fumaric acid CH), 146.53 <strong>and</strong> 147.25 <strong>and</strong> 147.69 <strong>and</strong> 149.74 ppm (s, phenyl-<br />

C x <strong>and</strong> C 3 <strong>and</strong> pyrid<strong>in</strong>e-C 2 <strong>and</strong> C 6), 165.92 <strong>and</strong> 166.15 ppm (s, 2x carbonyl-C),<br />

167.91 ppm (s, 2x carbonyl-C fumaric acid).<br />

181


Chapter 7<br />

N-benzoyl-N'-{cth[3,5-diethoxycarbonyl-l ,4-dihydro-6-methyl~4-(substitutedphenyl)-pyrid<strong>in</strong>-2~yl]methylthio}alkylthiourea<br />

Under nitrogen atmosphere at 0°C 20 mmol benzoyl isothiocyanate <strong>in</strong> 150 ml<br />

dichloromethane was added dropwise to a solution <strong>of</strong> 20 mmol diethyl 2-(coam<strong>in</strong>oalkyl)thiomethyl-6-methyl-4-(substituted-phenyl)-1,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylate<br />

<strong>in</strong> 150 ml dichloromethane. Stirr<strong>in</strong>g was cont<strong>in</strong>ued for 2 hours while the<br />

temperature was raised until room temperature. The reaction mixture was evaporated<br />

<strong>and</strong> the residue was washed four times with 50 ml diethyl ether.<br />

N-benzoyl-N'-{2-[(3J-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-phenylpyrid<strong>in</strong>-2yl)methylthio]<br />

ethyl} thiourea<br />

Yield = 82%; melt<strong>in</strong>g po<strong>in</strong>t = 52.8-54.1 °C.<br />

The product was purified by column chromatography, us<strong>in</strong>g petroleum ether 60-<br />

80°C/ethyl acetate 3:2 as eluent (R f = 0.5).<br />

^-NMR (CDC1 3): 1.15-1.28 ppm (m, 6H, 2x C// 3-CH 2-0), 2.39 ppm (s, 3H, pyrid<strong>in</strong>e-<br />

C// 3), 2.79-2.88 ppm (m, 2H, S-C// 2-C-N), 3.89-3.96 ppm (m, 2H, S-C-C// 2-N), 4.02-<br />

4.18 ppm (m, 6H, pyrid<strong>in</strong>e-C// 2-S <strong>and</strong> 2x CH 3-C// 2-0), 5.02 ppm (s, 1H, pyrid<strong>in</strong>e-// 4),<br />

6.74 ppm (s, 1H, pyrid<strong>in</strong>e-N//), 7.10-7.90 ppm (m, 10H, 5x benzoyl-// <strong>and</strong> 5x phenyl-<br />

//), 9.03 ppm (bs, 1H, -C(S)-N//-C(0)-), 11.01 ppm (bs, 1H, S-C-C-N//-).<br />

N-benzoyl-N'-{2-{[4-(2J-dichlorophenyl)-3,5-diethoxycarbonyl-l ,4-dihydro-6methylpyrid<strong>in</strong>-2-y<br />

I] methylthio} ethyl} thiourea<br />

Yield = 65 %; melt<strong>in</strong>g po<strong>in</strong>t = 54.5-55.6 °C.<br />

The product was purified by column chromatography, us<strong>in</strong>g petroleum ether 60-<br />

80°C/ethyl acetate 2:1 as eluent (R f = 0.5).<br />

*H-NMR (CDC1 3): 1.14-1.29 ppm (m, 6H, 2x C// 3-CH 2-0), 2.37 ppm (s, 3H, pyrid<strong>in</strong>e-<br />

C// 3), 2.88 ppm (t, / = 6.7 Hz, 2H, S-C// 2-C-N), 3.91-4.15 ppm (m, 8H, S-C-C// 2-N <strong>and</strong><br />

pyrid<strong>in</strong>e-C// 2-S <strong>and</strong> 2x CH 3-C// 2-0), 5.51 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 6.81 ppm (s, 1H,<br />

pyrid<strong>in</strong>e-N//), 7.06-7.08 ppm (m, 1H, phenyl-//), 7.22-8.08 ppm (m, 7H, 5x benzoyl-//<br />

<strong>and</strong> 2x phenyl-//), 9.06 ppm (bs, 1H, -C(S)-N//-C(0)-), 11.03 ppm (bs, 1H, S-C-C-N//-).<br />

N-benzoyl-N'-{2-{[3£-diethoxycarbonyl-l ,4-dihydro-6>-methyl-4-(3-nitrophenyl)pyrid<strong>in</strong>-2-yl]methylthio}ethyl}thiourea<br />

Yield = 91%; melt<strong>in</strong>g po<strong>in</strong>t = 56.0-57.8 °C.<br />

The product was purified by column chromatography, us<strong>in</strong>g petroleum ether 60-<br />

80°C/ethyl acetate 2:1 as eluent (Rf = 0.3; diethyl ether as eluent).<br />

!<br />

H-NMR (CDC13): 1.17-1.30 ppm (m, 6H, 2x C// 3-CH2-0), 2.40 ppm (s, 3H, pyrid<strong>in</strong>e-<br />

C// 3), 2.87 ppm (t, J = 7.3 Hz, 2H, S-C// 2-C-N), 3.85-4.22 ppm (m, 8H, S-C-C// 2-N <strong>and</strong><br />

pyrid<strong>in</strong>e-C// 2-S <strong>and</strong> 2x CH3-C// 2-0), 5.10 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 7.03 ppm (s, 1H,<br />

pyrid<strong>in</strong>e-N//), 7.28-7.81 ppm (m, 7H, 5x benzoyl-// <strong>and</strong> 2x phenyl-//), 8.00-8.03 ppm<br />

(m, 1H, phenyl-//), 8.10 ppm (bs, 1H, phenyl-// 2), 9.04 ppm (bs, 1H, -C(S)-N//-C(0)-),<br />

11.03 ppm (bs, 1H, S-C-C-N//-).<br />

182


Chapter 7<br />

N-benzoyl-N'-{3-{[3,5-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(3-nitrophenyl)pyrid<strong>in</strong>-2-yl]methylthio}<br />

propyl) thiourea<br />

Yield = 65% (obta<strong>in</strong>ed as an oil).<br />

The product was purified by column chromatography, us<strong>in</strong>g ethyl acetate/<br />

dichloromethane 5:1 as eluent (Rf = 0.8).<br />

iH-NMR (CDC1 3): 1.11-1.25 ppm (m, 6H, 2x C// 3-CH 2-0), 1.83-1.87 ppm (m, 2H, C-<br />

C// 2-C), 2.25 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.47-2.54 ppm (m, 2H, S-C// 2-C-C-N), 3.58-<br />

3.67 ppm (m, 2H, S-C-C-GF/ 2-N), 3.82-4.15 ppm (m, 6H, pyrid<strong>in</strong>e-C// 2-S <strong>and</strong> 2x CH 3-<br />

CH 2-0\ 5.03 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 7.04 ppm (s, 1H, pyrid<strong>in</strong>e-N//), 7.23-7.58 ppm<br />

(m, 5H, 3x benzoyl-// <strong>and</strong> 2x phenyl-//), 7.62-7.74 ppm (m, 2H, 2x benzoyl-//), 7.83-<br />

7.86 ppm (m, 1H, phenyl-//), 8.00 ppm (s, 1H, phenyl-// 2), 9.13 ppm (bs, 0.9H, -C(S)-<br />

N//-C(0)-), 10.77 ppm (bs, 0.9H, S-C-C-C-N//-).<br />

N-benzoyl-N'-{5-{[3,5-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(3-nitrophenyl)'<br />

pyrid<strong>in</strong>-2-yl]methylthio}pentyl}thiourea<br />

Yield = 83 % (obta<strong>in</strong>ed as an oil).<br />

The product was purified by column chromatography, us<strong>in</strong>g ethyl acetate/<br />

dichloromethane 1:1 as eluent (Rf = 0.9).<br />

^-NMR (CDC1 3): 1.22 ppm (t, / = 7.1 Hz, 3H, C// 3-CH 2-0), 1.23 ppm (t, J = 7.1 Hz,<br />

3H, C// 3-CH 2-0), 1.40-1.52 ppm (m, 2H, C-C-C// 2-C-C), 1.60-1.75 ppm (m, 4H, S-C-<br />

C// 2-C-C// 2-C-N), 2.41 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.51 ppm (t, / = 7.1 Hz, 2H, S-C// 2-<br />

(C) 4-N), 3.65 ppm (t, / = 6.8 Hz, 2H, S-(C) 4-C// 2-N), 3.98 <strong>and</strong> 4.17 ppm (AB, 7 A B =<br />

14.8 Hz, 2H, pyrid<strong>in</strong>e-C// 2-S), 3.92-4.08 ppm (m, 4H, 2x CH 3-C// 2-0), 5.14 ppm (s, 1H,<br />

pyrid<strong>in</strong>e-// 4), 7.10 ppm (s, 1H, pyrid<strong>in</strong>e-N//), 7.35-7.39 ppm (m, 1H, phenyl-//), 7.43-<br />

7.86 ppm (m, 6H, 5x benzoyl-// <strong>and</strong> phenyl-//), 8.00-8.03 ppm (m, 1H, phenyl-//),<br />

8.11-8.16 ppm (m, 1H, phenyl-// 2), 9.12 ppm (bs, 1H, -C(S)-N//-C(0)-), 10.78 ppm (bs,<br />

1H, S-(C) 5-N//-).<br />

N-benzoyl-N'-{6-{[3,5-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(3-nitrophenyl)~<br />

pyrid<strong>in</strong>-2-yl]methylthio}hexyl}thiourea<br />

Yield = 61 % (obta<strong>in</strong>ed as an oil).<br />

The product was purified by column chromatography, us<strong>in</strong>g ethyl acetate/<br />

dichloromethane 1:1 as eluent (Rf = 0.8).<br />

^-NMR (CDC1 3): 1.13-1.58 ppm (m, 14H, 2x C// 3-CH 2-0 <strong>and</strong> S-C-(C// 2) 4-C-N), 2.31<br />

ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.44-2.55 ppm (m, 2H, S-C// 2-(C) 5-N), 3.63-3.71 ppm (m,<br />

2H, S-(C) 5-C// 2-N), 3.93-4.04 ppm (m, 6H, pyridkie-C// 2-S <strong>and</strong> 2x CH 3-C// 2-0), 5.02<br />

ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 7.07 ppm (s, 1H, pyrid<strong>in</strong>e-N//), 7.25-7.83 ppm (m, 7H, 5x<br />

benzoyl-// <strong>and</strong> 2x phenyl-//), 8.00-8.04 ppm (m, 1H, phenyl-//), 8.09 ppm (bs, 1H,<br />

phenyl-// 2), 9.07 ppm (bs, 1H, -C(S)-N//-C(0)-), 10.75 ppm (bs, 0.9H, S-(C) 5-N//-).<br />

183


Chapter 7<br />

N-{co-{[3 ^-diethoxycarbonyl-1 t4-dihydro-6-methyl-4-(substituted-phenyl)-pyrid<strong>in</strong>-<br />

2-yl]methylthio} alky 1}-S-ethylisothiourea HBr<br />

10 mmol K 2C0 3 <strong>in</strong> 40 ml water was added to a solution <strong>of</strong> 10 mmol N-benzoyl-N'-{(Q-<br />

{[3,5-diethoxycarbonyl-1,4-dihydro-6-methyl-4-(substituted-phenyl)-pyrid<strong>in</strong>-2-yl]<br />

methylthio }alkyl} thiourea <strong>in</strong> 135 ml ethanol. The reaction mixture was refluxed for<br />

45 m<strong>in</strong>utes. Then the reaction mixture was diluted with 270 ml water <strong>and</strong> 6 times<br />

extracted with 50 ml dichloromethane. The organic layer was dried <strong>and</strong> evaporated.<br />

The residue was dissolved <strong>in</strong> 110 ml ethanol <strong>and</strong> 0.1 mol ethyl bromide was added.<br />

The reaction mixture was stirred overnight followed by 3 hours reflux<strong>in</strong>g. The<br />

solvent was evaporated <strong>and</strong> the residue was washed 5 times with 100 ml hot diethyl<br />

ether.<br />

N-{2-[(3,5-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-phenylpyrid<strong>in</strong>-2-yl)<br />

methylthio]ethyl} -S-ethylisothiourea HBr<br />

Yield = 57% (obta<strong>in</strong>ed as an oil).<br />

The product was purified by column chromatography, us<strong>in</strong>g ethyl acetate/methanol<br />

4:1 as eluent (Rf = 0.6).<br />

!<br />

H-NMR (DMSO-d6): 1.13 ppm (t, J = 7.0 Hz, 6H, 2x C// 3-CH2-0), 1.26 ppm (t, J =<br />

7.3 Hz, 3H, S-CH 2-C// 3), 2.28 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.69-2.80 ppm (m, 2H, S-<br />

C// 2-C-N), 3.19 ppm (q, J = 7.3 Hz, 2H, S-C// 2-CH 3), 3.45-3.54 ppm (m, 2H, S-C-C// 2-<br />

N), 3.83-4.06 ppm (m, 6H, pyrid<strong>in</strong>e-C// 2-S <strong>and</strong> 2x CH 3-C// 2-0), 4.89 ppm (s, 1H,<br />

pyrid<strong>in</strong>e-// 4), 7.10-7.26 ppm (m, 5H, 5x phenyl-//), 8.97 ppm (s, 1H, pyrid<strong>in</strong>e-N//), 9.26<br />

ppm (bs, 2H, 2x N//).<br />

N-{2-{[3 t5-diethoxycarbonyl-l f4-dihydro-6-methyl-4-(2,3-dichlorophenyl)-pyrid<strong>in</strong>-<br />

2-y I] methylthio}ethyl}-S-ethylisothiourea HBr<br />

Yield = 56%; melt<strong>in</strong>g po<strong>in</strong>t = 84.1-85.3 °C.<br />

The product was purified by column chromatography, us<strong>in</strong>g ethyl acetate/methanol<br />

1:1 as eluent (R f = 0.7).<br />

^-NMR (CDC1 3): 1.15-1.22 ppm (m, 6H, 2x C// 3-CH 2-0), 1.41 ppm (t,J = 7.4Hz, 3H,<br />

S-CH 2-C// 3), 2.42 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.80-2.87 ppm (m, 2H, S-C// 2-C-N),<br />

3.38-3.57 ppm (m, 4H, S-C-C// 2-N <strong>and</strong> S-C// 2-CH 3), 3.97-4.12 ppm (m, 6H, pyrid<strong>in</strong>e-<br />

C// 2-S <strong>and</strong> 2x CH 3-C// 2-0), 5.48 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 7.03-7.36 ppm (m, 3H, 3x<br />

phenyl-//), 7.71-8.15 ppm (bs, 1.4H, N//), 8.91 ppm (bs, 0.7H, NH), 9.50 ppm (bs, 1H, S-<br />

C-C-N//-).<br />

N-{2-{[3 £-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(3-nitrophenyl)-pyrid<strong>in</strong>-2-yl]<br />

methylthio} ethyl}-S-ethylisothiourea HBr VUF 9113<br />

Yield = 90%; melt<strong>in</strong>g po<strong>in</strong>t = 73.2-74.1°C.<br />

!<br />

H-NMR (CDCI3): 1.12-1.28 ppm (m, 6H, 2x C// 3-CH2-0), 1.39 ppm (t, J = 7.3 Hz, 3H,<br />

S-CH 2-C// 3), 2.45 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.78-2.83 ppm (m, 2H, S-C// 2-C-N), 3.36<br />

ppm (q, J = 7.3 Hz, 3H, S-C// 2-CH 3), 3.88-4.33 ppm (m, 8H, S-C-C// 2-N <strong>and</strong> pyrid<strong>in</strong>e-<br />

CH 2-S <strong>and</strong> 2x CH 3-C// 2-0), 5.10 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 7.39-7.42 ppm (m, 1H,<br />

184


Chapter 7<br />

phenyl-// 5), 7.63-7.67 ppm (m, 1H, phenyl-// 6 or H 4), 7.95 ppm (bs, 1H, pyrid<strong>in</strong>e-N//),<br />

8.00-8.03 ppm (m, 1H, phenyl-// 4 or H 6), 8.30 ppm (bs, 1H, NH), 8.49-8.84 ppm (bs,<br />

1.4H, N/7), 8.93 ppm (s, 0.9H, NH), 9.51 ppm (bs, 0.6H, S-C-C-N//-).<br />

N-{3-{[3 ^-diethoxycarbonyl-1 t4-dihydro-6-methyl-4-(3-nitrophenyl)-pyrid<strong>in</strong>-2-yl]<br />

methylthio}propyl}-S-ethylisothiourea HBr VUF 9110<br />

Yield = 66%; melt<strong>in</strong>g po<strong>in</strong>t = 65.6-67.9°C.<br />

The product was purified by column chromatography, us<strong>in</strong>g ethyl acetate/methanol<br />

7:3 as eluent (Rf = 0.6).<br />

!<br />

H-NMR (CDC13): 1.00-1.49 ppm (m, 9H, 2x C// 3-CH2-0 <strong>and</strong> S-CH2-C// 3), 1.77-1.85<br />

ppm (m, 2H, C-C// 2-C), 2.33 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.58-2.66 ppm (m, 2H, S-C// 2-<br />

C-C-N), 3.12-3.57 ppm (m, 4H, S-C-C-C// 2-N <strong>and</strong> S-C// 2-CH3), 3.78-4.17 ppm (m, 6H,<br />

pyrid<strong>in</strong>e-C// 2-S <strong>and</strong> 2x CH3-C// 2-0), 5.00 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 7.38 ppm (bs, 1H,<br />

phenyl-//), 7.60 ppm (bs, 1H, phenyl-//), 7.90-7.93 ppm (m, 1H, phenyl-//), 8.01-8.03<br />

ppm (m, 1H, phenyl-//), 8.27-8.65 ppm (m, 1.9H, pyrid<strong>in</strong>e-N// <strong>and</strong> N//), 9.26 ppm (bs,<br />

1H, S-(C) 5-N//-).<br />

N-{5-{[3£-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(3-nitrophenyl)-pyridm^<br />

methylthiojpentyl} -S-ethylisothiourea HBr<br />

Yield = 75%; melt<strong>in</strong>g po<strong>in</strong>t = < 38°C (hygroscopic).<br />

The product was purified by column chromatography, us<strong>in</strong>g petroleum ether 60-<br />

80°C/ethyl acetate 7:3 as eluent (Rf = 0.7).<br />

^-NMR (CDC13): 1.23 ppm (t, / = 7.1 Hz, 3H, C// 3-CH2-0), 1.24 ppm (t, / = 7.0 Hz,<br />

3H, C// 3-CH2-0), 1.43-1.62 ppm (m, 9H, C-C// 2-C// 2-C// 2-C <strong>and</strong> S-CH2-C// 3), 2.44<br />

ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.55 ppm (t, / = 6.7 Hz, 2H, S-C// 2-(C) 4-N), 3.30-3.41 ppm<br />

(m, 4H, S-(C) 4-C// 2-N <strong>and</strong> S-C// 2-CH3), 3.95 <strong>and</strong> 4.18 ppm (AB, JAB = 75./ Hz, 2H,<br />

pyrid<strong>in</strong>e-C// 2-S), 4.01-4.12 ppm (m, 4H, 2x CH3-C// 2-0), 5.12 ppm (s, 1H, pyrid<strong>in</strong>e-// 4),<br />

7.40 ppm (bs, 1H, phenyl-//), 7.66-7.68 ppm (m, 1H, phenyl-//), 8.00-8.02 ppm (m, 1H,<br />

phenyl-//), 8.11-8.14 ppm (m, 1H, phenyl-// 2), 8.35-8.73 ppm (bs, 2H, pyrid<strong>in</strong>e-N// <strong>and</strong><br />

NH), 9.20 ppm (bs, 1H, S-(C) 5-N//-).<br />

N-{6-{[3 f5-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(3-nitrophenyl)-pyrid<strong>in</strong>-2-yl]<br />

methylthiojhexyl}-S-ethylisothiourea HBr<br />

Yield = 68% obta<strong>in</strong>ed as an oil (very hygroscopic).<br />

The product was purified by column chromatography, us<strong>in</strong>g petroleum ether 60-<br />

80°C/ethyl acetate 7:3 as eluent. N<br />

^-NMR (CDC1 3): 1.13-1.24 ppm (m, 6H, 2x C// 3-CH 2-0), 1.39-1.76 ppm (m, 11H, S-<br />

C-(C// 2) 4-C-N <strong>and</strong> S-CH 2-C// 3), 2.36 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.49-2.55 ppm (m,<br />

2H, S-C// 2-(C) 5-N), 3.27-3.44 ppm (m, 4H, S-(C) 5-C// 2-N <strong>and</strong> S-C// 2-CH 3), 3.88-4.22<br />

ppm (m, 6H, pyrid<strong>in</strong>e-C// 2-S <strong>and</strong> 2x CH 3-C// 2-0), 5.07 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 7.40<br />

ppm (bs, 1H, phenyl-//), 7.63-7.65 ppm (m, 1H, phenyl-//), 7.98 ppm (bs, 1H, phenyl-<br />

H), 8.05-8.08 ppm (m, 1H, phenyl-//), 8.41-8.81 ppm (m, 2.1H, pyrid<strong>in</strong>e-N// <strong>and</strong> NH),<br />

9.37 ppm (m, 1H, S-(C) 6-N//-).<br />

185


Chapter 7<br />

N-{(D-{[3J-diethoxycarbonyl"l,4-dihydro-6-methyl-4-(su^<br />

2-yl]methylthio}alkyl}'N'-[3-(imidazol-4(5)-yl)propyl]guanid<strong>in</strong>e 2HBr<br />

5 mmol 4(5)-(3-am<strong>in</strong>opropyl)imidazole <strong>and</strong> 5 mmol N-{co-{[3,5-diethoxycarbonyl-l,4-<br />

dihydro-6-methyl-4-(substituted-pheny l)-pyrid<strong>in</strong>-2-yl)methylthio]} alkyl} -S-ethyliso-<br />

thiourea were refluxed <strong>in</strong> 150 ml pyrid<strong>in</strong>e dur<strong>in</strong>g 72 hours. Then the pyrid<strong>in</strong>e was<br />

evaporated <strong>and</strong> the residue was 3 times coevaporated with ethanol. Then the residue<br />

was crystallized from ethyl acetate <strong>and</strong> the precipitate was filtered <strong>of</strong>f. The filtrate<br />

was purified by column chromatography, us<strong>in</strong>g ethyl acetate/ethanol 4:1 as eluent.<br />

The obta<strong>in</strong>ed fractions were crystallized from ethyl acetate/methanol <strong>and</strong> the<br />

precipitate was filtered <strong>of</strong>f. The product was obta<strong>in</strong>ed as a foam by evaporat<strong>in</strong>g the<br />

solvent.<br />

N-{[2-(3 yS-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-phenylpyrid<strong>in</strong>-2-yl)<br />

methylthioJethylJ-N'-p-fimidazol^fSyyOpropylJguanid<strong>in</strong>e 2HBr VUF 4572<br />

Yield = 17%; melt<strong>in</strong>g po<strong>in</strong>t = < 30°C; Mass spectrum, thioglycerol as matrix (FAB +<br />

)<br />

555 [M+HF,(FAB)553 [M-H]\<br />

*H-NMR (DMSO-d 6): 1.05-1.20 ppm (m, 6H, O/ 3-CH 2-0), 1.66-1.78 ppm (m, 5H, N-C-<br />

C// 2-C-imidazole <strong>and</strong> O/ 3-C00), 2.30 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.47-2.53 ppm (m,<br />

2H, N-C-C-C// 2-imidazole), 2.69 ppm (t, / = 6.9 Hz, 2H, S-0/ 2-C-N), 3.12 <strong>and</strong> 3.44<br />

ppm (m, 4H, S-C-C// 2-N <strong>and</strong> N-C// 2-C-C-imidazole), 3.81 <strong>and</strong> 4.07 ppm (AB, J A B =<br />

13.8 Hz, 2H, pyrid<strong>in</strong>e-C// 2-S), 3.93-4.04 ppm (m, 4H, 2x CH 3-C// 2-0), 4.88 ppm (s, 1H,<br />

pyrid<strong>in</strong>e-// 4), 6.75 ppm (bs, 1H, imidazole-//), 7.02-7.28 ppm (m, 5H, 5x phenyl-//),<br />

7.52 ppm (bs 1H, imidazole-//).<br />

N-{2-{[3,5-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(2,3-dichlorophenyl)-pyrid<strong>in</strong>-<br />

2-yl]methylthio}ethy\}-W-l3-(imidazolA(5)-y^ 2HBr VUF 9160<br />

Yield = 24%; melt<strong>in</strong>g po<strong>in</strong>t = 97.9-101.1°C; Mass spectrum, glycerol+ammonium<br />

acetate as matrix (FAB+) 625 [M+H] +<br />

, (FAB) 623 [M-H]\<br />

!<br />

H-NMR (DMSO-d6): 1.08 ppm (t, J = 7.1 Hz, 6H, 2x C// 3-CH2-0), 1.67-1.77 ppm (m,<br />

2H, N-C-C// 2-C-imidazole), 1.82 ppm (s, 3H, O/ 3-C00), 2.30 ppm (s, 3H, pyrid<strong>in</strong>e-<br />

C// 3), 2.47-2.53 ppm (m, 2H, N-C-C-C// 2-imidazole), 2.61-2.69 ppm (m, 2H, S-C// 2-C-<br />

N), 3.10 <strong>and</strong> 3.30 ppm (m, 4H, S-(C) 4-C// 2-N <strong>and</strong> N-C// 2-C-C-imidazole), 3.88 <strong>and</strong><br />

4.04 ppm (AB, J AB<br />

= 13.3 Hz, 2H, pyrid<strong>in</strong>e-C// 2-S), 3.91-4.03 ppm (m, 4H, 2x CH 3-<br />

CH 2-0), 5.35 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 6.77 ppm (bs, 1H, imidazole-//), 7.21-7.42 ppm<br />

(m, 3H, 3x phenyl-//), 7.54 ppm (bs, 1H, imidazole-//), 7.90 ppm (bs, 0.6H, NH), 9.36<br />

ppm(bs,0.6H,N//).<br />

N-{2-{[3 £-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(3-nitrophenyl)-pyrid<strong>in</strong>-2-<br />

yl]methylthio}ethyl}-N f<br />

-[3-(imidazol-4(5)-yl)propyl]guanM^ 2HBr VUF 9065<br />

Yield = 21%; melt<strong>in</strong>g po<strong>in</strong>t = 76.5-77.1°C; Mass spectrum, glycerol+ammonium<br />

acetate as matrix (FAB +<br />

) 600 [M+H] +<br />

, (FAB) 598 [M-H]\ 678/680 [M+Br]\<br />

^-NMR (DMSO-d 6): 1.00-1.13 ppm (m, 6H, C// 3-CH 2-0), 1.46-1.87 ppm (m, 2H, N-C-<br />

C// 2-C-imidazole), 2.32 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.45-2.52 ppm (m, 4H, S-C// 2-C-N<br />

186


Chapter 7<br />

<strong>and</strong> N-C-C-C// 2-imidazole), 2.70 <strong>and</strong> 3.20 ppm (m, 4H, S-C-C// 2-N <strong>and</strong> N-C// 2-C-Cimidazole),<br />

3.92 <strong>and</strong> 4.18 ppm (AB, / A B = 13.2 Hz, 2H, pyrid<strong>in</strong>e-C// 2-S), 3.97-4.12<br />

ppm (m, 4H, 2x CH 3-C// 2-0), 4.98 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 6.82 ppm (bs, 1H,<br />

imidazole-//), 7.40-7.73 ppm (m, 6H, 3x phenyl-// <strong>and</strong> 3x NH), 7.87 ppm (bs, 0.7H,<br />

pyrid<strong>in</strong>e-N//), 8.01-8.06 ppm (m, 2H, imidazole-// <strong>and</strong> phenyl-//), 9.30 ppm (bs, 0.7H,<br />

imidazole-N//).<br />

N-{3-{[3 £-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(3-nitrophenyl)-pyrid<strong>in</strong>-2-yl]<br />

methylthio}propyl}-N'-[3-(imidazol-4(5 )-yl)propyl] guanid<strong>in</strong>e 2HBr VUF 4570<br />

Yield = 20 %; melt<strong>in</strong>g po<strong>in</strong>t = 87.3-88.2°C; Mass spectrum, thioglycerol as matrix<br />

(FAB +<br />

) 614 [M+H] +<br />

, (FAB") 612 [M-H]", 692/694 [M+Br]\<br />

J<br />

H-NMR (DMSO-d6): 1.12 ppm (t, J = 7.0 Hz, 3H, C// 3-CH2-0), 1.14 ppm (t, J = 7.0<br />

Hz, 3H, C// 3-CH2-0), 1.68-1.83 ppm (m, 4H, S-C-C// 2-C-N <strong>and</strong> N-C-C// 2-C-imidazole),<br />

2.32 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.50-2.63 ppm (m, 4H, S-C// 2-C-C-N <strong>and</strong> N-C-C-<br />

C// 2-imidazole), 3.11-3.24 ppm (m, 4H, S-C-C-C// 2-N <strong>and</strong> N-C// 2-C-C-imidazole),<br />

3.89 <strong>and</strong> 4.08 ppm (AB, 7 A B = 13.0 Hz, 2H, pyrid<strong>in</strong>e-C// 2-S), 3.93-4.06 ppm (m, 4H,<br />

2x CH3-C// 2-0), 5.00 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 6.85 ppm (s, 1H, imidazole-//), 7.52-<br />

7.65 ppm (m, 6.75H, 3x phenyl-// <strong>and</strong> 3.75x NH), 8.02-8.11 ppm (m, 2H, imidazole-//<br />

<strong>and</strong> phenyl-//), 9.25 ppm (bs, 1H, NH).<br />

13<br />

C-NMR (DMSO-d6): 13.73 <strong>and</strong> 13.84 ppm (q, 2x CH 3-CH 2-0), 18.03 ppm (q,<br />

pyrid<strong>in</strong>e-CH3), 22.94 <strong>and</strong> 28.19 ppm (t, S-CH2-C-C-N <strong>and</strong> N-C-C-CH2-imidazole), 28.54 <strong>and</strong> 29.43 ppm (t, S-C-CH2-C-N <strong>and</strong> N-C-CH2-C-imidazole), 39.05 ppm (d,<br />

pyrid<strong>in</strong>e-C4), 39.77 <strong>and</strong> 40.16 (t, S-C-C-CH2-N <strong>and</strong> N-CH2-C-C-imidazole), 55.77<br />

ppm (t, pyrid<strong>in</strong>e-CH2-S), 59.08 <strong>and</strong> 59.40 ppm (t, 2x CH3-CH2-0), 100.49 <strong>and</strong> 101.34<br />

ppm (s, pyrid<strong>in</strong>e-C3 <strong>and</strong> C5), 115.55 <strong>and</strong> 121.68 (d, 2x imidazole-CH), 121.04 <strong>and</strong><br />

129.41 <strong>and</strong> 133.96 <strong>and</strong> 134.02 ppm (d, 4x phenyl-CH [C2, C4, C5, C6]), 136.04 ppm (s,<br />

imidazole-C), 146.40 <strong>and</strong> 147.21 <strong>and</strong> 147.67 <strong>and</strong> 149.71 ppm (s, phenyl-C^ <strong>and</strong> C3 <strong>and</strong> pyrid<strong>in</strong>e-C2 <strong>and</strong> C6), 155.56 ppm (s, guanid<strong>in</strong>e-C), 165.87 <strong>and</strong> 166.13 ppm (s, 2x<br />

carbonyl-C).<br />

N-{5-{[3,5-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(3-nitrophenyl)-pyrid<strong>in</strong>-2-yl]<br />

methylthio}pentyl}-N'-[3-(imidazol-4(5)-yl)propyl]guanid<strong>in</strong>e 2HBr VUF 4573<br />

Yield = 33%; melt<strong>in</strong>g po<strong>in</strong>t = < 40°C (hygroscopic); Mass spectrum, thioglycerol as<br />

matrix (FAB +<br />

) 642 [M+H] +<br />

, (FAB") 640 [M-H]", 720/722 [M+Br]\<br />

!H-NMR (DMSO-d6): 1.11 ppm (t, J = 7.1 Hz, 3H, C// 3-CH2-0), 1.13 ppm (t, / = 7.1<br />

Hz, 3H, C// 3-CH2-0), 1.20-1.29 ppm (m, 2H, C-C


Chapter 7<br />

13<br />

C-NMR (DMSO-d6): 13.73 <strong>and</strong> 13.82 ppm (q, 2x CH 3-CH rO), 18.00 ppm (q,<br />

pyrid<strong>in</strong>e-CH3), 22.59 ppm (t, C-C-CH2-imidazole), 25.18 ppm (t, C-C-CH2-C-C), 27.99<br />

ppm (t, C-CH2-C-imidazole), 28.68 <strong>and</strong> 29.48 ppm (t, C-CH2-C-CH2-C), 30.91 ppm (t,<br />

S-CH2-(C) 4-N), 39.04 ppm (d, pyrid<strong>in</strong>e-C4), 40.07 <strong>and</strong> 40.55 ppm (t, 2x -CH2-N), 56.08 ppm (t, pyrid<strong>in</strong>e-CH2-S), 59.07 <strong>and</strong> 59.36 ppm (t, 2x CH3-CH2-0), 100.03 <strong>and</strong><br />

101.39 ppm (s, pyrid<strong>in</strong>e-C3 <strong>and</strong> C5), 115.49 ppm (d, imidazole-CH), 121.00 ppm (d,<br />

imidazole-CH), 121.65 <strong>and</strong> 129.35 <strong>and</strong> 133.91 <strong>and</strong> 134.17 ppm (d, 4x phenyl-CH [C2, C4, C5, C6]), 136.20 ppm (s, imidazole-C), 146.44 <strong>and</strong> 147.25 <strong>and</strong> 147.64 <strong>and</strong> 149.70<br />

ppm (s, phenyl-Ci <strong>and</strong> C 3 <strong>and</strong> pyrid<strong>in</strong>e-C2 <strong>and</strong> C6), 155.49 ppm (s, guanid<strong>in</strong>e-C),<br />

165.91 <strong>and</strong> 166.13 ppm (s, 2x carbonyl-C).<br />

N-{6-{[3 J-diethoxycarbonyl-l ,4-dihydro-6-methyl-4-(3-nitrophenyl)-pyrid<strong>in</strong>-2-yl]<br />

methylthio}hexyl}-N^3-(imidazol-4(5)-yl)propyl]guanid<strong>in</strong>e 2HBr VUF 4575<br />

Yield = 27%; melt<strong>in</strong>g po<strong>in</strong>t = < 40°C (hygroscopic); Mass spectrum, 3-nitrobenzyl<br />

alcohol as matrix (FAB +<br />

) 656 [M+H] +<br />

, (FAB) 654 [M-H]% 734/736 [M+Br]\<br />

iH-NMR (DMSO-d6): 1.13 ppm (t, / = 7.7 7/z, 3H, C// 3-CH2-0), 1.14 ppm (t, / = 7.7<br />

7/z, 3H, C// 3-CH2-0), 1.224.44 ppm (m, 8H, S-C-(C// 2) 4-C-N), 1.46-1.57 ppm (m, 2H,<br />

N-C-C// 2-C-imidazole), 2.32 ppm (s, 3H, pyrid<strong>in</strong>e-C// 3), 2.48-2.58 ppm (m, 4H, S-C// 2-<br />

(C) 5-N <strong>and</strong> N-C-C-C// 2-imidazole), 3.08-3.27 ppm (m, 4H, S-(C) 5-C// 2-N <strong>and</strong> N-C// 2-<br />

C-C-imidazole), 3.64 <strong>and</strong> 4.02 ppm (AB, JAB = 13.2 Hz, 2H, pyrid<strong>in</strong>e-C// 2-S), 3.87-<br />

4.00 ppm (m, 4H, 2x CH3-C// 2-0), 5.01 ppm (s, 1H, pyrid<strong>in</strong>e-/74), 6.85 ppm (s, 1H,<br />

imidazole-//), 7.46-7.63 ppm (m, 7H, 3x phenyl-// <strong>and</strong> 4x N//), 8.02-8.11 ppm (m, 2H,<br />

imidazole-// <strong>and</strong> phenyl-//), 9.20 ppm (bs, 1H, N//).<br />

N-{G)-{[2-(3,5-diethoxycarbonyl~2,6-dimethyl-l y4-dihydropyr\d<strong>in</strong>-4-yl)phenoxy]}alkyl}-N'-[3-(imidazol-4(5)-yl)propyl]guanid<strong>in</strong>e<br />

2HBr<br />

The N- {co- {[2-(3,5-diethoxycarbonyl-2,6-dimethyl-1,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy]}alkyl}-N'-[3-(imidazol-4(5)-yl)propyl]guanid<strong>in</strong>e<br />

hydrobromide derivatives<br />

were synthesized accord<strong>in</strong>g to the procedure described for the N-fco-{[3,5-diethoxycarbonyl-1,4-dihydro-6-methyl-4-(substituted-phenyl)-pyrid<strong>in</strong>-2-yl]methylthio}<br />

alkyl}<br />

- N'-[3-(imidazol-4(5)-yl)propyl]guanid<strong>in</strong>e hydrobromide derivatives, start<strong>in</strong>g from the<br />

N- {co- {[2-(3,5-diethoxycarbonyl-2,6-dimethyl-1,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy]} -<br />

alkyl}-S-ethylisothiourea hydrobromide derivatives described <strong>in</strong> chapter 6 (this<br />

thesis).<br />

N-{3-{[2-(3 £~diethoxycarbonyl-2 fi-dimethyM ,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy]}<br />

propyl}-N'-[3-(imidazol-4(5)-yl)propyl]guanid<strong>in</strong>e 2HBr VUF 4588<br />

Yield = 17%; melt<strong>in</strong>g po<strong>in</strong>t = 103.0-104.3°C; Mass spectrum, thioglycerol as matrix<br />

(FAB +<br />

) 553 [M+H] +<br />

, (FAB') 551 [M-H]% 631/633 [M+Br]\<br />

!H-NMR (DMSO-d6): 1.01-1.13 ppm (m, 6H, 2x C// 3-CH2-0), 1.79-1.97 ppm (m, 4H,<br />

0-C-C// 2-C-N <strong>and</strong> N-C-C// 2-C-imidazole), 2.22 ppm (s, 6H, 2x pyrid<strong>in</strong>e-C// 3), 2.59<br />

ppm (t, 2H, N-C-C-C// 2-imidazole), 3.22-3.36 ppm (m, 4H, 0-C-C-C// 2-N <strong>and</strong> N-C// 2-<br />

C-C-imidazole), 3.92-4.05 ppm (m, 6H, 2x CH3-C// 2-0 <strong>and</strong> 0-C// 2-C-C-N), 5.14 ppm<br />

188


Chapter 7<br />

(s, 1H, pyrid<strong>in</strong>e-// 4), 6.74-7.11 ppm (m, 5H, 4x phenyl-// <strong>and</strong> NH), 7.54-7.70 ppm (m,<br />

5H, imidazole-// [/ = 0.95 Hz] <strong>and</strong> 4x NH), 8.76 ppm (s, 1H, imidazole-//).<br />

N-{5-{[2-(3 ^-diethoxycarbonyl-2,6-dimethyl-l ,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy]}-<br />

pentyl}-N'-[3-(imidazol-4(5)-yl)propyl]guanid<strong>in</strong>e 2HBr VUF 4612<br />

Yield = 28%; melt<strong>in</strong>g po<strong>in</strong>t = 91.8-93.3°C; Mass spectrum, 3-nitrobenzyl alcohol as<br />

matrix (FAB +<br />

) 581 [M+H] +<br />

, (FAB) 579 [M-H]-, 659/661 [M+Br]-.<br />

^-NMR (CD3OD): 1.10-.21 ppm (m, 6H, 2x C// 3-CH2-0), 1.56-2.00 ppm (m, 8H, O-C-<br />

(C// 2) 3-C-N <strong>and</strong> N-C-C// 2-C-imidazole), 2.24 ppm (s, 6H, 2x pyrid<strong>in</strong>e-C// 3), 2.71 ppm<br />

(t, J = 7.5 Hz, 2H, N^C-C-C// 2-imidazole), 3.26 ppm (2 x t, each J = 7.0 Hz, 4H, O-<br />

(C) 4-C// 2-N <strong>and</strong> N-C// 2-C-C-imidazole), 3.90-4.04 ppm (m, 6H, 2x CH3-C// 2-0 <strong>and</strong> O-<br />

C// 2-(C) 4-N), 5.16 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 6.71-6.84 ppm (m, 2H, 2x phenyl-//), 7.02-<br />

7.16 ppm (m, 3H, 2x phenyl-// <strong>and</strong> 1 x imidazole-//), 7.99 ppm (s, 1H, imidazole-//).<br />

N-{6-{[2-(3 ^-diethoxycarbonyl-2,6-dimethyl-l ,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy]}hexyl}-N<br />

f<br />

-[3-(imidazol-4(5)-yl)propyl]guanid<strong>in</strong>e 2HBr VUF 4730<br />

Yield = 21%; melt<strong>in</strong>g po<strong>in</strong>t = 83.1-85.3°C; Mass spectrum, 3-nitrobenzyl alcohol as<br />

matrix (FAB +<br />

) 595 [M+H] +<br />

, (FAB) 593 [M-H]-, 673/675 [M+Br]-.<br />

!H-NMR (CD3OD): 1.10-1.17 ppm (m, 6H, 2x C// 3-CH2-0), 1.45-1.97 ppm (m, 10H, O-<br />

C-(C// 2) 4-C-N <strong>and</strong> N-C-C// 2-C-imidazole), 2.23 ppm (s, 6H, 2x pyrid<strong>in</strong>e-C// 3), 2.65<br />

ppm (t, / = 7.3 Hz, 2H, N-C-C-C// 2-imidazole), 3.23 ppm (2 x t, each J = 7.0 Hz, 4H,<br />

0-(C) 5-C// 2-N <strong>and</strong> N-C// 2-C-C-imidazole), 3.89-4.04 ppm (m, 6H, 2x CH3-C// 2-0 <strong>and</strong><br />

0-C// 2-(C) 5-N), 5.16 ppm (s, 1H, pyrid<strong>in</strong>e-// 4), 6.71-6.84 ppm (m, 3H, 2x phenyl-// <strong>and</strong><br />

1 x imidazole-//), 7.01-7.17 ppm (m, 2H, 2x phenyl-//), 7.59 ppm (d, J =1.0 Hz,\U,<br />

imidazole-//).<br />

References<br />

1 Godfra<strong>in</strong>d T, Miller R, Wibo M, Pharmacol Rev, 38, 321-416 (1986)<br />

2 Van Zwieten PA, Am J Cardiol, 64,1171-1211 (1989)<br />

3 Opie LH, In: Cl<strong>in</strong>ical use <strong>of</strong> calcium channel antagonist drugs (2nd ed) Kluwer Acad<br />

Publ, London (1990)<br />

4 Naylor WG, Biochem Pharmacol, 43, 39-46 (1992)<br />

5 Van Zwieten PA, Pfaffendorf M, J Hypertension, 11, S3-S11 (1993)<br />

6 Arrowsmith JE, Campbell SF, Cross PE, Stubbs JK, Burges RA, Gard<strong>in</strong>er DG,<br />

Blackburn KJ, J Med Chem, 29, 1696-1702 (t986)<br />

7 G<strong>and</strong>olfi AC, Frigerio M, Sp<strong>in</strong>elli S, T<strong>of</strong>anetti O, Tognella S, PCT/EP86/00445 (1987)<br />

8 Kwon YW, Zhong Q, Wei XY, Zheng W, Triggle DJ, Arch Pharmacol, 341, 128-136<br />

(1990)<br />

9 Bristow HR, G<strong>in</strong>sburg R, M<strong>in</strong>obe WBS, Cybicciotti RS, Sageman WS, Lurie K,<br />

Bill<strong>in</strong>gham ME, Harrison DG, St<strong>in</strong>son EB, New Engl J Med, 307, 205-211 (1982)<br />

10 Baumann G, Buschauer A, Permanetter B, Schunack W, Inn Mediz, 15, 30-38 (1988)<br />

189


Chapter 7<br />

11 Durant GJ, Duncan WAM, Ganell<strong>in</strong> CR, Parsons ME, Blakemore RC, Rasmussen AC,<br />

Nature, 276, 403-405 (1978)<br />

12 Permanetter B, Baumann G, Dörner J, Schunack W, Blömer H, Agents Actions, 16,<br />

215-218 (1985)<br />

13 Baumann G, Permanetter B, Wirtzfeld A, Pharmacol Ther, 24,165-177 (1984)<br />

14 Van der Goot H, Bast A, Timmerman H, In: H<strong>and</strong>book <strong>of</strong> Experimental Pharmacology;<br />

histam<strong>in</strong>e <strong>and</strong> histam<strong>in</strong>e antagonists (Uvnäs B, Ed) Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong> Heidelberg,<br />

Volume 97, pp 573-748 (1991)<br />

15 Sterk GJ, Van der Goot H, Timmerman H, Eur J Med Chem, 21, 305-309 (1986)<br />

16 Sterk GJ, Koper J, Van der Goot H, Timmerman H, Eur J Med Chem, 22, 491-498<br />

(1987)<br />

17 Buschauer A, J Med Chem, 32, 1963-1970 (1989)<br />

18 Baumann G, Buschauer A, Felix S, In: Agents & Actions, Special Conference Issue,<br />

Birkhäuser Verlag, Basel, 329-332 (1992)<br />

19 Felix SB, Buschauer A, Baumann G, Agents Actions Suppl, 33,257-269 (1991)<br />

20 Buschauer A, Baumann G, Agents Actions Suppl, 33,231-256 (1991)<br />

21 Ganell<strong>in</strong> CR, In: The Histam<strong>in</strong>e receptor, Pharmacochemistry <strong>of</strong> Hi <strong>and</strong> H 2 receptors<br />

(Schwartz J-C, Haas HL, eds) Wiley-Liss, New York, 1-56 (1992)<br />

22 Hill SJ, Pharmacol Rev, 42, 45-83 (1990)<br />

23 Schickaneder H, Mörsdorf P, Buschauer A, Schunack W, Engler H, Verg<strong>in</strong> H, Ahrens<br />

KH, EP 0 250 725 Al (1986)<br />

24 Bast A, Leurs R, Timmerman H, Drugs, 33 (Suppl 2), 67-74 (1987)<br />

25 Munson PJ, Rodbard D, Anal Biochem, 107, 220-239 (1980)<br />

26 Ruat M Traiffort E, Bouthenet ML, Schwartz JC, Hirschfeld J, Buschauer A, Schunack<br />

W, Proc Natl Acad Sei USA, 87,1658-1662 (1990)<br />

27 Kazda S, Garth<strong>of</strong>f B, Meyer H, Schloßmann K, Stoepel K, Towart R, Vater W,<br />

Weh<strong>in</strong>ger E, Arzneim Forsch/Drug Res, 30, 2144-2164 (1980)<br />

28 Tenner TE Jr, McCully JP, Eur J Pharmacol, 73, 293-300 (1981)<br />

29 Rodenkirchen R, Bayer R, Ste<strong>in</strong>er R, Bossen F, Meyer H, Möller E, Naunyn-Schmied<br />

Arch Pharmacol, 310, 69-78 (1979)<br />

30 Boyd RA, Giacom<strong>in</strong>i JC, Wong FM, Nelson WL, Giacom<strong>in</strong>i KM, J Pharmacol Exp<br />

Ther, 243, 118-125 (1987)<br />

31 Edgar B, Quant Struct-Act Relat, 11,228-231 (1992)<br />

190


Chapter 8<br />

Chapter 8<br />

A new <strong>series</strong> <strong>of</strong> dimaprit analogues with histam<strong>in</strong>e H2-agonistic<br />

<strong>and</strong> Hi-antagonistic activities<br />

1 Introduction<br />

The cl<strong>in</strong>ical use <strong>of</strong> compounds active on the histam<strong>in</strong>e ^-receptor is ma<strong>in</strong>ly restricted<br />

to histam<strong>in</strong>e ^-antagonists, which are useful <strong>in</strong> the treatment <strong>of</strong> peptic ulcers.<br />

However, some efforts have been made with histam<strong>in</strong>e H2-agonists <strong>in</strong> the treatment <strong>of</strong><br />

patients with catecholam<strong>in</strong>e-<strong>in</strong>sensitive congestive heart failure 1<br />

* 2<br />

.<br />

Histam<strong>in</strong>e H2-agonists can be divided <strong>in</strong> three structural classes: histam<strong>in</strong>e analogues,<br />

dimaprit, <strong>and</strong> impromid<strong>in</strong>e 3<br />

<strong>and</strong> its analogues 4<br />

(reviewed by Van der Goot et al. 5<br />

).<br />

Histam<strong>in</strong>e 1 <strong>and</strong> dimaprit 2 (fig. 1) show both moderate histam<strong>in</strong>e H2-agonistic<br />

activity (pD2 = 6.10 <strong>and</strong> 5.95, respectively, at gu<strong>in</strong>ea pig right atrium). Impromid<strong>in</strong>e 3<br />

(fig. 1) <strong>and</strong> its analogues VUF 8532 4b <strong>and</strong> the racemic arpromid<strong>in</strong>e 5 (fig. 1) are<br />

potent histam<strong>in</strong>e H2-agonists (pD2 = 7.80, 7.70 <strong>and</strong> 8.01, respectively, at gu<strong>in</strong>ea pig<br />

right atrium). Furthermore, the hybrid molecules VUF 8532 4b <strong>and</strong> arpromid<strong>in</strong>e 5<br />

have also a histam<strong>in</strong>e Hi-antagonistic activity (pA2 = 6.30 <strong>and</strong> 7.65 at gu<strong>in</strong>ea pig<br />

ileum, respectively). At the histam<strong>in</strong>e H3-receptor impromid<strong>in</strong>e turned out to be a<br />

potent antagonist 6<br />

(pA2 = 7.2; histam<strong>in</strong>e release, rat cortex) as well.<br />

Figure 1: Histam<strong>in</strong>e H 2-agonists<br />

191


Chapter 8<br />

Dimaprit 3 (fig. 1) is an agonist for the histam<strong>in</strong>e H2-receptor 7<br />

(pD2 = 5.7 on the<br />

gu<strong>in</strong>ea pig right atrium), while it is an antagonist for the histam<strong>in</strong>e H3-receptor 6<br />

(pA2 = 5.5; histam<strong>in</strong>e release rat cortex). Structure-activity relationship studies on dimaprit,<br />

S-[3-(N,N-dimethylam<strong>in</strong>o)propyl]isothiourea, revealed that the dimethylam<strong>in</strong>o group<br />

has the same function as the am<strong>in</strong>o group <strong>of</strong> histam<strong>in</strong>e, while the isothiourea group <strong>of</strong><br />

dimaprit <strong>and</strong> the imidazole group are regarded bioisosteric for the histam<strong>in</strong>e H2 agonist 8<br />

.<br />

Two models have been proposed for the mechanism <strong>of</strong> action <strong>of</strong> the monocation <strong>of</strong><br />

dimaprit, which is the active species. The first model (the so-called N-fit) implies that<br />

the amid<strong>in</strong>o group <strong>of</strong> dimaprit participates <strong>in</strong> tautomerism or bifunctional acceptordonor<br />

hydrogen bond<strong>in</strong>g 8<br />

, analogous to the activation mechanism described for<br />

histam<strong>in</strong>e at the H2-receptor 9<br />

. The second model (the so-called S-fit) suggests that the<br />

acceptor-donor hydrogen bond<strong>in</strong>g <strong>of</strong> dimaprit is provided by the sulfur atom <strong>and</strong> by<br />

a proton <strong>of</strong> the amid<strong>in</strong>o group 10<br />

. Quantum chemical calculations have suggested that<br />

1 !<br />

the S-fit conformation is the most favourable for <strong>in</strong>teraction with the Hrreceptor » 12<br />

.<br />

Furthermore, similar calculations on 2-am<strong>in</strong>o-5-(2-am<strong>in</strong>oethyl)thiazole 13<br />

6 (fig. 2)<br />

revealed that this compound can be considered as a r<strong>in</strong>g-closed dimaprit<br />

analogue 14<br />

* 15<br />

. Indeed, several substituted 2-am<strong>in</strong>othiazole derivatives have been<br />

shown to be active at the histam<strong>in</strong>e H2-receptor, <strong>of</strong> which amtham<strong>in</strong>e 16<br />

7 (fig. 2) is<br />

the most potent H2-agonist <strong>in</strong> this <strong>series</strong> (pD2 = 6.30; gu<strong>in</strong>ea pig right atrium).<br />

H 2N<br />

Figure 2: Substituted 2-am<strong>in</strong>o-5-(2-am<strong>in</strong>oethyl)thiazole derivatives<br />

There are several compounds which show that tautomerism is not <strong>in</strong>volved <strong>in</strong><br />

stimulation <strong>of</strong> the histam<strong>in</strong>e H2-receptor. Eriks et al. 17<br />

have developed a new<br />

activation model for the histam<strong>in</strong>e H2-receptor, which expla<strong>in</strong>s the activities <strong>of</strong> all<br />

known tautomeric <strong>and</strong> nontautomeric H2-agonists. In their model, protonation <strong>of</strong> the<br />

double-bonded nitrogen atom <strong>of</strong> heterocyclic r<strong>in</strong>gs <strong>in</strong>duces a positive charge, which<br />

is distributed over the r<strong>in</strong>g. The distribution <strong>of</strong> the positive charge enables an ionic<br />

<strong>in</strong>teraction <strong>of</strong> the heterocyclic r<strong>in</strong>g with a negatively charged receptor site. For the<br />

mechanism <strong>of</strong> action <strong>of</strong> thiazoles, which cannot undergo tautomerism because <strong>of</strong> the<br />

<strong>in</strong>ability to protonate the partially positively charged sulfur atom, an other<br />

explanation has been proposed 17<br />

.<br />

In impromid<strong>in</strong>e, the 3-[4(5)-imidazolyl]propylguanid<strong>in</strong>e moiety is important for<br />

trigger<strong>in</strong>g the histam<strong>in</strong>e H 2-receptor. Replacement <strong>of</strong> the 3-[4(5)-imidazolyl]propyl<br />

192


Chapter 8<br />

structural moiety <strong>of</strong> impromid<strong>in</strong>e by a number <strong>of</strong> substituted 3-(5-thiazolyl)propyl<br />

moieties afforded N'-substituted-N-[3-(5-thiazolyl)]propylguanid<strong>in</strong>es 18<br />

as potent<br />

histam<strong>in</strong>e H2-agonists, such as VUF 8960 8 (fig. 2; pD 2 = 7.30; gu<strong>in</strong>ea pig right<br />

atrium).<br />

2 A literature survey <strong>of</strong> structure activity relationship studies on dimaprit<br />

A number <strong>of</strong> structural modifications have been carried out on dimaprit 19<br />

. Variations<br />

<strong>in</strong> the alkylene cha<strong>in</strong> length <strong>of</strong> dimaprit or alkylation <strong>of</strong> the amid<strong>in</strong>o group drastically<br />

reduces the histam<strong>in</strong>e H2-agonistic activity 20<br />

' 21<br />

.<br />

Replacement <strong>of</strong> the dimethylam<strong>in</strong>o fragment <strong>of</strong> dimaprit by an isothiourea group<br />

affords a <strong>series</strong> <strong>of</strong> alkylenediisothioureas (fig. 3), which are weak H 2-agonists.<br />

R—N N—R<br />

H 2N NH 2<br />

Figure 3: Alkylenediisothioureas (m = 2 to 8; R = H, CH 3, N0 2, C6H5)<br />

In the <strong>series</strong> <strong>of</strong> unsubstituted alkylenediisothioureas (fig. 3; table 1), the compound<br />

with an ethylene cha<strong>in</strong> VUF 8332 (fig. 3; R = H, m = 2) is an almost full, but weak<br />

histam<strong>in</strong>e H2-agonist (pD2 = 3.8; a = 0.9; gu<strong>in</strong>ea pig right atrium) <strong>and</strong> has a histam<strong>in</strong>e<br />

H3-antagonistic activity 24<br />

(pA2 = 6; histam<strong>in</strong>e release, rat cortex). Increas<strong>in</strong>g the<br />

alkylene cha<strong>in</strong> from ethylene to octylene reduces the weak H2-agonistic activity <strong>and</strong><br />

<strong>in</strong>tr<strong>in</strong>sic activity. In fact, compounds with an alkylene cha<strong>in</strong> length exceed<strong>in</strong>g<br />

pentylene turned out to be weak H2-antagonists. Furthermore, N,N'-disubstituteddiisothioureas<br />

(the substituents are methyl, nitro, or phenyl groups) are devoid <strong>of</strong> H2 agonistic activity 22<br />

.<br />

In a <strong>series</strong> <strong>of</strong> the co-guanid<strong>in</strong>oalkylisothioureas (fig. 4; table 1) compounds with m = 2,<br />

3 or 4 have a weak partial H2-agonistic activity at the gu<strong>in</strong>ea pig right atrium. Besides<br />

VUF 8430 (m = 2) is a partial histam<strong>in</strong>e H3-agonist (pD2 = 5.9, a = 0.5). Elongation <strong>of</strong><br />

the alkylene cha<strong>in</strong> to m = 5 <strong>and</strong> 6 results <strong>in</strong> a strong <strong>in</strong>crease <strong>in</strong> H2-agonistic activity<br />

with the highest <strong>in</strong>tr<strong>in</strong>sic activity found for VUF 8433 23<br />

(table 1).<br />

HN NH<br />

H 2N NH 2<br />

Figure 4: co-Guanid<strong>in</strong>oalkylisothioureas (m = 2 to 6)<br />

193


Chapter 8<br />

Table 1: Histam<strong>in</strong>ergic activities <strong>of</strong> a <strong>series</strong> <strong>of</strong> alkylenediisothioureas <strong>and</strong> co-<br />

guanid<strong>in</strong>oalkylisothioureas 22<br />

' 23<br />

.<br />

compound m a<br />

HN NH<br />

y-S-(CH 2) m-S—^<br />

H 2N NH 2<br />

a<br />

H 2<br />

pD2 b<br />

H 2<br />

pA2 C<br />

H 3<br />

pA2 VUF 8332 2 0.9 3.8


Chapter 8<br />

All compounds except VUF 8422 are full agonists (table 2) <strong>and</strong> their higher histam<strong>in</strong>e<br />

H2-agonistic activity compared to the activities <strong>of</strong> the alkylenediisothioureas (fig. 3)<br />

or co-guanid<strong>in</strong>oalkylisothioureas (fig. 4) is expla<strong>in</strong>ed by postulat<strong>in</strong>g an extra b<strong>in</strong>d<strong>in</strong>g<br />

site, analogous to impromid<strong>in</strong>e, on the histam<strong>in</strong>e H 2-receptor.<br />

Table 2: Histam<strong>in</strong>e H 2-agonistic activity at gu<strong>in</strong>ea pig right atrium <strong>of</strong> a <strong>series</strong> <strong>of</strong><br />

N,N'-bis((0-isothioureidoalkyl)guanid<strong>in</strong>es 19<br />

HoN<br />

NH<br />

II ^<br />

y~S-(CH 2) m N ^ N (CH 2) p-S—^<br />

compound m P pD 2 a<br />

VUF 8420 3 3 5.7 1<br />

VUF 8421 3 4 6.5 1<br />

VUF 8424 3 5 5.0 1<br />

VUF 8425 4 4 5.8 1<br />

VUF 8423 4 5 5.7 1<br />

VUF 8422 5 5 a 0<br />

dimaprit 5.7 1<br />

a: VUF 4822 is a weak histam<strong>in</strong>e H 2-antagonist (pA 2 = 4.6)<br />

VUF 4821 is the most potent N,N'-bis(isothioureidoalkyl)guanid<strong>in</strong>e derivative <strong>in</strong> this<br />

<strong>series</strong> <strong>and</strong> it is concluded that the isothiourea group attached to the propylene cha<strong>in</strong><br />

<strong>in</strong> VUF 8421 mimics the methylimidazole group <strong>of</strong> impromid<strong>in</strong>e, while the<br />

butylisothiourea moiety <strong>of</strong> VUF 8421 mimics the propylimidazole group 19<br />

.<br />

The f<strong>in</strong>d<strong>in</strong>gs that 2-am<strong>in</strong>o-5-(2-am<strong>in</strong>oethyl)thiazoles can be considered as r<strong>in</strong>g closed<br />

dimaprit analogues <strong>and</strong> that substituted 2-am<strong>in</strong>o-5-(3-am<strong>in</strong>opropyl)thiazoles can<br />

replace the 3-[4(5)-imidazolyl]propylam<strong>in</strong>e structural moiety, comb<strong>in</strong>ed with the<br />

histam<strong>in</strong>e H 2-agonistic activities <strong>of</strong> N,N'-bis(isothioureidoalkyl)guanid<strong>in</strong>es, arose the<br />

question whether the alkylisothiourea structural moiety <strong>of</strong> dimaprit can replace the<br />

propylimidazole or propylthiazole structural moieties <strong>of</strong> impromid<strong>in</strong>e <strong>and</strong> <strong>of</strong> 4b (fig. 1)<br />

/ 8 (fig. 2).<br />

Based on our literature survey, we decided to synthesize a <strong>series</strong> <strong>of</strong> N,N'-substituted<br />

guanid<strong>in</strong>es with a 2-[(5-methylimidazol-4-yl)methylthio]ethyl 9 or a 3,3-diphenylpropyl<br />

moiety 10 <strong>and</strong> a dimaprit structural moiety (fig. 6).<br />

195


Chapter 8<br />

Figure 6: Putative histam<strong>in</strong>e H2-agonists <strong>in</strong>corporat<strong>in</strong>g impromid<strong>in</strong>e <strong>and</strong> dimaprit or<br />

3,3-diphenylpropylam<strong>in</strong>e <strong>and</strong> dimaprit structural moieties<br />

3 General synthetic method<br />

A scheme for the <strong>synthesis</strong> <strong>of</strong> compounds 9 <strong>and</strong> 10 is given <strong>in</strong> figure 7. The primary<br />

am<strong>in</strong>es 2-[(5-methylimidazol-4-yl)methylthio]ethylam<strong>in</strong>e al or 3,3-diphenylpropylam<strong>in</strong>e<br />

a2 are converted <strong>in</strong>to the S-methylisothiourea b by reaction with dimethyl Ncyanoim<strong>in</strong>odithiocarbonate,<br />

accord<strong>in</strong>g to literature 25<br />

. Condensation <strong>of</strong> b with a<br />

suitable am<strong>in</strong>oalcohol affords the cyanoguanid<strong>in</strong>es c. F<strong>in</strong>ally reaction <strong>of</strong> the<br />

cyanoguanid<strong>in</strong>es c with thiourea <strong>in</strong> hydrobromic acid gives the N-(co-isothioureidoalkyl)guanid<strong>in</strong>es<br />

d.<br />

CH A<br />

N ^ S-CH2"CH2~<br />

NH<br />

a1 (R)<br />

R— NH 2<br />

a1 / a2<br />

NH<br />

+<br />

CH2"CH2"<br />

a2 (R)<br />

.CN<br />

.CN<br />

N CH 2CI 2 M<br />

A " R<br />

"NSCH3<br />

H 3CS^ SCH, H b<br />

N H<br />

H 2N


4 Pharmacology<br />

Chapter 8<br />

4.1 Histam<strong>in</strong>e Hb-agonistic activities <strong>and</strong> aff<strong>in</strong>ities<br />

Histam<strong>in</strong>e H2-agonistic activities are determ<strong>in</strong>ed as positive chronotropic activities on<br />

the spontaneously beat<strong>in</strong>g gu<strong>in</strong>ea pig right atrium; radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g studies were<br />

performed on gu<strong>in</strong>ea pig cerebral cortex membranes, us<strong>in</strong>g [ 125<br />

I]iodoam<strong>in</strong>opotentid<strong>in</strong>e<br />

as the hot lig<strong>and</strong>, as previously described (chapter 7; this thesis).<br />

4.2 Histam<strong>in</strong>e Hi-antagonistic activities<br />

Histam<strong>in</strong>e Hi-antagonistic activities are determ<strong>in</strong>ed at the gu<strong>in</strong>ea pig ileum with<br />

histam<strong>in</strong>e as agonist (pD2 = 6.95 ± 0.07), as described by Emmett et al. 26<br />

.<br />

5 Results <strong>and</strong> discussion<br />

5.1 Attempts to synthesize compounds 9<br />

The <strong>synthesis</strong> route to obta<strong>in</strong> the <strong>series</strong> <strong>of</strong> compounds with the general structure 9<br />

(fig. 6) proceeds via the N-cyano-N'-[co-hydroxyalkyll-N"-[2-[(5-methyl-l//-imidazol-<br />

4-yl)methyl]thio]ethyllguanid<strong>in</strong>e <strong>in</strong>termediates (c; fig. 7), which are readily prepared<br />

<strong>in</strong> high yields from N-cyano-S-methyl-N ,<br />

-[2-[(5-methyl-l//-imidazol-4-yl)methyllthiol<br />

ethyl]isothiourea (b; fig. 7) <strong>and</strong> the appropriate co-hydroxyalkylam<strong>in</strong>e. The next step<br />

concerns the <strong>in</strong>troduction <strong>of</strong> thiourea <strong>and</strong> the hydrolysis <strong>of</strong> the cyano group to<br />

obta<strong>in</strong> the isothioureas (d; fig. 7, see also scheme 1; fig 8). The reaction was carried<br />

out with 2 equivalents <strong>of</strong> thiourea at 100 °C <strong>and</strong> at 20°C <strong>in</strong> 48% HBr. Under both<br />

reaction conditions the thioether is hydrolyzed, result<strong>in</strong>g <strong>in</strong> a 5-methyl-4hydroxymethylimidazole<br />

fragment, as was shown by ^-NMR. These f<strong>in</strong>d<strong>in</strong>gs forced<br />

us to look for other synthetic routes as shown <strong>in</strong> figure 8 (scheme 2).<br />

In figure 8 (scheme 2), a protective group is <strong>in</strong>troduced at the NH-goup <strong>of</strong> imidazole<br />

by trityl choride (step 1). The protected imidazole derivative is purified by column<br />

chromatography (eluens dichloromethane/ethyl acetate/triethylam<strong>in</strong>e 4/1/0.5 v/v/v).<br />

The trityl group is partially removed dur<strong>in</strong>g column chromatography, if triethylam<strong>in</strong>e<br />

is not added to the eluens. The coupl<strong>in</strong>g <strong>of</strong> am<strong>in</strong>opropanol to the tritylated imidazole<br />

moiety <strong>and</strong> subsequent purification by column chromatography affords the N-cyano-<br />

N'-(3-hydroxypropyl)-N"- {2- [(5-methyl-1 -tritylimidazol-4-yl)methylthio]ethyl} -<br />

guanid<strong>in</strong>e 11 <strong>in</strong> 50% yield. At this stage <strong>of</strong> the reaction scheme, we have tried three<br />

different methods to obta<strong>in</strong> the isothiourea derivative with the general structure 9<br />

(fig. 6).<br />

In step 3 (fig. 8), we tried to tosylate the hydroxyl group <strong>of</strong> 11; however, tosyl<br />

chloride rather replaced the trityl group from the imidazole moiety. Therefore this<br />

method cannot afford compound 9. In step 4 (fig. 8), brom<strong>in</strong>ation <strong>of</strong> the alcohol 11<br />

with phosphorus tribromide results <strong>in</strong> the removal <strong>of</strong> the trityl group. The third route<br />

(step 5; fig. 8) is performed accord<strong>in</strong>g to the so-called Mitsunobu reaction 27<br />

, us<strong>in</strong>g<br />

triphenylphosph<strong>in</strong>e <strong>and</strong> diisopropyl azodicarboxylate to prepare thioethers start<strong>in</strong>g<br />

from an alcohol <strong>and</strong> thiourea.<br />

197


Chapter 8<br />

scheme 1<br />

1- NH<br />

scheme 2<br />

CH 3<br />

NH<br />

step 3<br />

TosCI<br />

(C 2H 5) 3N<br />

CH2CI2<br />

compounds 9<br />

H H<br />

.N N ><br />

T<br />

*CN<br />

H step 1<br />

,N ,SCH 3 T r C|<br />

Y<br />

I<br />

H 2N NH 2<br />

'(CH 2) m-OH compounds 9<br />

Tr-N<br />

48% HBr<br />

(C 2H 5) 3N \ = N<br />

^CN CH 2CI 2<br />

H H<br />

step 4<br />

PBr 3<br />

CH2CI2<br />

x a) thiourea<br />

b) 1 N HC!<br />

compounds 9<br />

step 2<br />

H 2N-(CH 2) m-OH<br />

H<br />

.N^.SCHg<br />

T<br />

N<br />

CN<br />

step 5<br />

(C 6H 5) 3P / thiourea<br />

iPr0 2CN=NC0 2iPr<br />

<strong>in</strong> DME<br />

X<br />

1 N HCI<br />

compounds 9<br />

Figure 8: Alternative synthetic routes to obta<strong>in</strong> compounds with the general<br />

structure 9<br />

After addition <strong>of</strong> the reagents <strong>in</strong> dimethoxyethane (shown <strong>in</strong> step 5) the yellow<br />

colour <strong>of</strong> diisopropyl azodicarboxylate vanished. Th<strong>in</strong> layer chromatography<br />

<strong>in</strong>dicated that triphenylphosph<strong>in</strong>e had disappeared. After work<strong>in</strong>g up <strong>of</strong> the reaction<br />

mixture, however, ^-NMR <strong>and</strong> 13<br />

C-NMR have shown that the hydroxyl group<br />

present <strong>in</strong> compound 11 is still <strong>in</strong>tact. No signals <strong>of</strong> thiourea or isothiourea were<br />

observed <strong>in</strong> NMR. Also, when n-butanol is used <strong>in</strong>stead <strong>of</strong> the alcohol 11, no reaction<br />

with thiourea is observed. Therefore, we have to conclude that the Mitsunobu<br />

reaction is not <strong>of</strong> any use for the <strong>synthesis</strong> <strong>of</strong> isothioureas, such as compounds 9<br />

(fig.6).<br />

5.2 Synthesis <strong>of</strong> compounds 10<br />

Because <strong>of</strong> the difficulties we encountered <strong>in</strong> the syntheses <strong>of</strong> the <strong>series</strong> <strong>of</strong><br />

compounds with the general structure 9, we decided to prove the validity <strong>of</strong> our idea<br />

that the imidazolylpropyl structural moiety <strong>in</strong> impromid<strong>in</strong>e-like histam<strong>in</strong>e F^-agonists<br />

can be replaced by isothioureidoalkyl structural moieties, by synthesiz<strong>in</strong>g analogues<br />

198


Chapter 8<br />

<strong>of</strong> the 3,3-diphenylpropylam<strong>in</strong>e bear<strong>in</strong>g histam<strong>in</strong>e H 2-agonists 4b (fig. 1) <strong>and</strong> 8<br />

(fig.2). These hybrid molecules with general structure 10 (fig. 6) are easily obta<strong>in</strong>ed.<br />

Despite that the 3,3-diphenylpropylam<strong>in</strong>e structural moiety is not optimal for<br />

histam<strong>in</strong>e Hi-antagonistic activity, the obta<strong>in</strong>ed hybrid molecules suit very well as<br />

model compounds to verify whether the o-isothioureidoethyl moieties display<br />

histam<strong>in</strong>e H2-agonistic activity. The <strong>synthesis</strong> <strong>of</strong> the compound with an isothioureidoethyl<br />

moiety did not succeed. By reaction <strong>of</strong> N-cyano-N'-(3,3-diphenylpropyl)-<br />

N"-(2-hydroxyethyl)guanid<strong>in</strong>e with thiourea <strong>in</strong> 48% HBr, we could only isolate the<br />

hydrobromic salt <strong>of</strong> 3,3-diphenyl propylam<strong>in</strong>e.<br />

5.3 Activities <strong>of</strong> compounds 10 <strong>and</strong> qualitative structure-activity relationships<br />

In table 3 the histam<strong>in</strong>ergic activities <strong>of</strong> a number <strong>of</strong> dimaprit analogues comb<strong>in</strong><strong>in</strong>g<br />

3,3-diphenylpropylam<strong>in</strong>e structural moieties (general structure 10; fig. 6) are given.<br />

Structure-activity relationship studies on histam<strong>in</strong>e <strong>and</strong> dimaprit analogues reveal<br />

that the optimal alkylene cha<strong>in</strong> length between the am<strong>in</strong>o group <strong>and</strong> the group<br />

responsible for proton-accept<strong>in</strong>g/electrostatic <strong>in</strong>teraction, amounts to two methylene<br />

groups <strong>in</strong> histam<strong>in</strong>e <strong>and</strong> three methylene groups <strong>in</strong> dimaprit. In impromid<strong>in</strong>e, the<br />

optimal alkylene cha<strong>in</strong> length between the guanid<strong>in</strong>o group <strong>and</strong> the imidazole group<br />

is three methylene groups. The impromid<strong>in</strong>e analogues with an ethylene or butylene<br />

cha<strong>in</strong> are 25 <strong>and</strong> 58 times less active histam<strong>in</strong>e H2-agonists than impromid<strong>in</strong>e 25<br />

. So, <strong>in</strong><br />

impromid<strong>in</strong>e the optimal alkylene cha<strong>in</strong> length is one methylene group longer than <strong>in</strong><br />

histam<strong>in</strong>e.<br />

Sterk 19<br />

has suggested that <strong>in</strong> the <strong>series</strong> <strong>of</strong> N,N'-bis(co-isothioureidoalkyl)guanid<strong>in</strong>es<br />

(fig. 5), the isothiourea group <strong>of</strong> VUF 8421 attached to the butylene cha<strong>in</strong> is ma<strong>in</strong>ly<br />

responsible for the <strong>in</strong>teraction with hydrogen bond<strong>in</strong>g / electrostatic <strong>in</strong>teraction<br />

regions, while the isothiourea group attached to the propylene cha<strong>in</strong> <strong>in</strong>teracts with<br />

an extra b<strong>in</strong>d<strong>in</strong>g site. However, on closer <strong>in</strong>spection <strong>of</strong> the activities <strong>of</strong> the N,N'bis(co-isothioureidoalkyl)guanid<strong>in</strong>es<br />

(fig. 5; table 2), it is shown that there are no<br />

differences <strong>in</strong> activity between VUF 8420 (with two propylene cha<strong>in</strong>s), VUF 8425<br />

(with two butylene cha<strong>in</strong>s) <strong>and</strong> VUF 8423 (<strong>in</strong> which the pentylene cha<strong>in</strong> contributes<br />

to the activity <strong>and</strong> the propylene cha<strong>in</strong> to the aff<strong>in</strong>ity). Elongation <strong>of</strong> the alkylene<br />

cha<strong>in</strong>, attached to the isothiourea moiety responsible for the activity, from propylene<br />

to pentylene (p = 3-5, fig. 5) marg<strong>in</strong>ally affects the histam<strong>in</strong>e H2-agonistic activity <strong>in</strong><br />

case the other alkylene cha<strong>in</strong>, attached to the isothiourea group responsible for the<br />

aff<strong>in</strong>ity, is varied from propylene to butylene. Apparently with VUF 8422 the<br />

structural limits for the histam<strong>in</strong>e H2-agonistic activity on the gu<strong>in</strong>ea pig right atrium<br />

are reached.<br />

In the <strong>series</strong> <strong>of</strong> N-(3,3-diphenylpropyl)-N ,<br />

-(co-isothioureidoalkyl)guanid<strong>in</strong>es 10 (fig. 6)<br />

a similar structure-activity relationship is observed as for the N,N'-bis(co-isothioureido<br />

alkyl)guanid<strong>in</strong>es. Increas<strong>in</strong>g the alkylene cha<strong>in</strong> length from propylene to hexylene<br />

decreases the histam<strong>in</strong>e H2-agonistic activity <strong>and</strong> <strong>in</strong>tr<strong>in</strong>sic activity. Moreover, VUF<br />

4642 is a partial agonist with Hi-antagonistic properties. Furthermore, VUF 4643 is a<br />

199


Chapter 8<br />

^-antagonist, which can be expla<strong>in</strong>ed by the same reasons as described for VUF<br />

8422. However, <strong>in</strong> the <strong>series</strong> <strong>of</strong> N-(3,3-diphenylpropyl)-N'-((0-isothioureidoalkyl)<br />

guanid<strong>in</strong>es VUF 4640 with a propylene cha<strong>in</strong> is the most potent H2-agonist, which is<br />

<strong>in</strong> disagreement with the f<strong>in</strong>d<strong>in</strong>gs for the N,N'-bis(co-isothioureido alkyl)guanid<strong>in</strong>es, <strong>in</strong><br />

which VUF 8421 with a butylene cha<strong>in</strong> is the most active compound.<br />

Table 3: Histam<strong>in</strong>e H 2-agonistic/H rantagonistic activities <strong>and</strong> H 2-receptor aff<strong>in</strong>ities<br />

H 2- activity Hi-antagonism<br />

compound pD 2 a pK d pA 2 r f<br />

histam<strong>in</strong>e 1 6.14 ±0.04 1 4.16 ±0.08 3<br />

4.64 ± 0.35 b<br />

dimaprit 2 5.67 + 0.12 1 4.58 ±0.11 3<br />

ref<br />

c 17<br />

impromid<strong>in</strong>e 3 7.80 1 7.89 ±0.15 5.47 3<br />

VUF 8527 4a 5.6 ±0.1 0.9 nt 6.2 ±0.2<br />

VUF 8532 4b 7.7 ±0.1 1 nt 6.3 ±0.2 28<br />

arpromid<strong>in</strong>e 5 8.01 1 nr 7.65 29<br />

VUF 9149 6 5.53 ±0.10 1 4.82 ±0.10 3<br />

amtham<strong>in</strong>e 7 6.30 ± 0.04 1 5.30 ± 0.08 3<br />

17<br />

na 18<br />

na 18<br />

VUF 8960 8 7.30 ± 0.04 1 nt nt 18<br />

VUF 4640 m = 3 6.71 ±0.16 1 5.66 ±0.14 b 6.69 ±0.14 0.82<br />

VUF 4641 m = 4 6.02 ± 0.25 1 5.41 ± 0.05 b 6.25 ± 0.44 0.52<br />

VUF 4642 m = 5 6.24 ±0.10 0.7 6.42 ± 0.32 b 6.82 ± 0.24 0.81<br />

5.91 ± 0.08d 0.7<br />

VUF 4643 m = 6 antagonist e<br />

0 5.98 ±0.31 b 6.38 ± 0.36 0.81<br />

x [ 3<br />

H]tiotid<strong>in</strong>e as hot lig<strong>and</strong><br />

b: [ 125<br />

I]iodoam<strong>in</strong>opotentid<strong>in</strong>e as hot lig<strong>and</strong><br />

N<br />

c:<br />

d:<br />

e:<br />

f:<br />

Histam<strong>in</strong>e is an agonist; pD2 = 6.95 ± 0.07<br />

pD2 determ<strong>in</strong>ed on electrically stimulated gu<strong>in</strong>ea pig papillary muscle. This compound<br />

also shows histam<strong>in</strong>e H2-antagonistic activity; pA2 = 6.56 ± 0.22 (papillary muscle)<br />

Histam<strong>in</strong>e H2-antagonist; pA2 = 5.75 ± 0.21 on gu<strong>in</strong>ea pig right atrium <strong>and</strong><br />

pA2 = 5.45 ± 0.16 on gu<strong>in</strong>ea pig papillary muscle<br />

r = slope <strong>of</strong> Schild plot<br />

nt: Not tested<br />

nr: Not reported<br />

na: Not active up to 10" 4<br />

M<br />

200


Chapter 8<br />

Based on the observations that for N-(3,3-diphenylpropyl)-N'-{co-[imidazol-4(5)yl]alkyl}guanid<strong>in</strong>es,<br />

the compounds with a propylene cha<strong>in</strong> (VUF 8532 4b; fig. 1) is<br />

more potent than the compound with an ethylene cha<strong>in</strong> (VUF 8527 4a; fig. 1), pD 2 =<br />

7.7 <strong>and</strong> 5.6, respectively, <strong>and</strong> on a similar structure-activity relationship observed for<br />

impromid<strong>in</strong>e analogues, it is expected that the optimal alkylene cha<strong>in</strong> <strong>in</strong> the <strong>series</strong> <strong>of</strong><br />

N-(3,3-diphenylpropyl)-N ,<br />

-(co-isothioureidoalkyl)guanid<strong>in</strong>es should be a butylene<br />

cha<strong>in</strong>.<br />

The histam<strong>in</strong>e Hi-antagonistic activities with<strong>in</strong> the <strong>series</strong> <strong>of</strong> presented N-(3,3diphenylpropyl)-N'-(o)-isothioureidoalkyl)guanid<strong>in</strong>es<br />

are all similar. We cannot<br />

expla<strong>in</strong> the deviation <strong>of</strong> unity <strong>of</strong> the slope <strong>in</strong> the Schild plot for VUF 4641. Variations<br />

<strong>in</strong> the isothioureidoalkylene cha<strong>in</strong> length does not affect the histam<strong>in</strong>e Hiantagonistic<br />

activities, which is <strong>in</strong> agreement with the VUF 8532 4b <strong>and</strong> VUF 8527<br />

4a (pA 2 = 6.3 <strong>and</strong> 6.2, respectively).<br />

6 Conclusion<br />

The histam<strong>in</strong>e H 2-agonistic activities with<strong>in</strong> the <strong>series</strong> <strong>of</strong> N-(3,3-diphenylpropyl)-N'-<br />

(co-isothioureidoalkyl)guanid<strong>in</strong>es confirm that 2-am<strong>in</strong>o-5-(2-am<strong>in</strong>oethyl)thiazole<br />

derivatives can be considered as substituted dimaprit analogues. Replacement <strong>of</strong> the<br />

3-(5-thiazolyl)propyl or 3-[4(5)-imidazolyl]propyl moiety <strong>in</strong> impromid<strong>in</strong>e analogues,<br />

such as VUF 8960 <strong>and</strong> VUF 8532, by a co-isothioureidoalkylene moiety, affords<br />

substituted dimaprit analogues which are more potent histam<strong>in</strong>e H 2-agonists than<br />

dimaprit. Compared with VUF 8960 <strong>and</strong> VUF 8532, the presented N-(3,3diphenylpropyl)-N'-(co-isothioureidoalkyl)guanid<strong>in</strong>es<br />

have a lower H 2-agonistic<br />

activity, which is <strong>in</strong> agreement with the activities <strong>of</strong> the parent histam<strong>in</strong>e H 2-agonists<br />

amtham<strong>in</strong>e, histam<strong>in</strong>e, <strong>and</strong> dimaprit, respectively. In the <strong>series</strong> <strong>of</strong> the present<br />

compounds, the H 2-agonistic activity decreases with elongation <strong>of</strong> the coisothioureidoalkylene<br />

cha<strong>in</strong>. VUF 4640 (propylene cha<strong>in</strong>) is the most potent H 2agonist<br />

<strong>in</strong> the presented <strong>series</strong> <strong>of</strong> N-(3,3-diphenylpropyl)-N'-((0-isothioureidoalkyl)guanid<strong>in</strong>es,<br />

while VUF 4643 (hexylene cha<strong>in</strong>) is a weak H 2-antagonist.<br />

Obviously, elongation <strong>of</strong> the co-isothioureidoalkylene cha<strong>in</strong> does not affect the<br />

histam<strong>in</strong>e H rantagonistic activities <strong>of</strong> the present compounds.<br />

Experimental protocols<br />

If <strong>in</strong>dicated crude reaction products were purified by flash chromatography on<br />

silicagel (J.T.Baker 70242). Melt<strong>in</strong>g po<strong>in</strong>ts were determ<strong>in</strong>ed on a Mettler FP 52 with<br />

microscope. !<br />

H-NMR spectra were recorded on s<br />

a Bruker AC 200 <strong>and</strong> were verified<br />

by HH-cosy NMR experiments. The chemical shifts are <strong>in</strong> ppm relative to<br />

tetramethylsilane. Mass spectra were determ<strong>in</strong>ed on a Mat 90 (F<strong>in</strong>nigan Mat) mass<br />

spectrometer with Fast Atom Bombardment ionisation (matrix: thioglycerol, Ion Tech<br />

saddlefield gun, 8 keV Xenon with xenon ioncurrent 0.2 mA). All VUF compounds<br />

gave the expected (M+H) +<br />

<strong>and</strong> (M+H+ - HS-C(NH)NH2) +<br />

peaks.<br />

201


Chapter 8<br />

General synthetic method<br />

N-cyano-N'-(3,3-diphenylpropyl)-S-methylisothiourea<br />

A solution <strong>of</strong> 50 mmol 3,3-diphenylpropylam<strong>in</strong>e <strong>in</strong> 100 ml dichloromethane was<br />

added slowly to a stirred solution <strong>of</strong> 1 equivalent dimethyl N-cyanodithiocarbon<br />

imidate <strong>in</strong> 50 ml dichloromethane. After complete addition, the reaction mixture was<br />

stirred for an additional 30 m<strong>in</strong>. Addition <strong>of</strong> diethyl ether gave a precipitate, which<br />

was filtered <strong>of</strong>f, washed with diethyl ether <strong>and</strong> dried.<br />

Yield: 94 %, m.p.: 187-189°C.<br />

iH-NMR (DMSO-d 6): 2.22-2.47 ppm (m, 2H, C-C// 2-C), 2.52 ppm (s, 3H, S-CH 3)<br />

3.17-3.23 ppm (m , 2H, CH 2-N), 4.00 ppm (t, J = 7.8 Hz, 1H, -C//-C-C-N), 7.14-7.33<br />

ppm (m, 10H, lOx phenyl-//), 8.31 ppm (bs, 1H, NH).<br />

NC// 2-C// 2-C-OH), 2.20-2.38 ppm (m,<br />

2H, C-C// 2-C-N), 3.00-3.21 ppm (m , 4H, 2x -CH 2-N), 3.48-3.55 ppm (m, 2H, -CH 2-<br />

OH), 3.91 ppm (t, J = 7.7 Hz, 1H, -C//-C-C-N), 5.96 ppm (bs, 1H, NH), 6.08 ppm (bs,<br />

1H, NH), 7.09-7.31 ppm (m, 10H, lOx phenyl-//).<br />

N-cyano-N'-(3,3-diphenylpropyl)-N"-(5-hydroxypentyl)guanid<strong>in</strong>e<br />

Yield: 100 %, m.p.: oil.<br />

202


Chapter 8<br />

iH-NMR (CDCI3): 1.28-1.50 ppm (m, 6H, N-C-C// 2-C// 2-C// 2-C-OH), 2.24-2.35 ppm<br />

(m, 2H, C-C// 2-C-N), 2.94-3.05 ppm (m, 2H, -CH 2-N), 3.10-3.23 ppm (m, 2H, -CH 2-N),<br />

3.51-3.57 ppm (m, 2H, -C// 2-OH), 3.94 ppm (t, J = 7.8 Hz, 1H, -C//-C-C-N), 5.58 ppm<br />

(t,J = 5 Hz, 1H, NH), 5.64 ppm (t,J = 5 Hz, 1H, NH), 7.10-7.29 ppm (m, 10H, lOx<br />

phenyl-//).<br />

N-cyano-N'-(3,3-diphenylpropyl)-N"-(6-hydroxyhexyl)guanid<strong>in</strong>e<br />

Yield: 95 %, m.p.: oil.<br />

iH-NMR (CDCI3): 1.18-1.29 ppm (m, 4H, N-C-C-C// 2-C// 2-C-C-OH), 1.45-1.51 ppm<br />

(m, 4H, N-C-C// 2-C-C-C// 2-C-OH), 2.23-2.34 ppm (m, 2H, C-C// 2-C-N), 2.95-3.05<br />

ppm (m, 2H, -C// 2-N), 3.06-3.19 ppm (m, 2H, -C// 2-N), 3.48-3.55 ppm (m, 2H, -CH 2-<br />

OH), 3.94 ppm (t, J = 7.8 Hz, 1H, -C//-C-C-N), 5.63 ppm (t, J = 5 Hz, 1H, NH), 5.79<br />

ppm (t, J = 5 Hz, 1H, NH), 7.08-7.28 ppm (m, 10H, lOx phenyl-//).<br />

N-(3,3-diphenylpropyl)-N'-(co-isothioureidoalkyl)guanid<strong>in</strong>e<br />

N-cyano-N'-(3,3-diphenylpropyl)-N"-(co-hydroxyalkyl) guanid<strong>in</strong>e <strong>and</strong> 2 equivalents<br />

<strong>of</strong> thiourea were added to 50 ml 48% HBr. The resultant solution was refluxed<br />

overnight <strong>and</strong> subsequently evaporated. The compounds were obta<strong>in</strong>ed as<br />

dihydrobromic acid salts. The compounds were purified as picrates. The first four<br />

recrystallizations were carried out <strong>in</strong> the presence <strong>of</strong> an excess <strong>of</strong> picric acid. F<strong>in</strong>al<br />

recrystallizations were carried out <strong>in</strong> methanol/water (3 to 6 times).<br />

N-(3,3-diphenylpropyl)-N'-(2-isothioureidoethyl)guanid<strong>in</strong>e<br />

The <strong>synthesis</strong> <strong>of</strong> this compound did not succeed.<br />

N-(3,3-diphenylpropyl)-N'-(3-isothioureidopropyl)guanid<strong>in</strong>e hydrobromide<br />

monopicrate VUF 4640<br />

Yield: 33%, m.p.: 154-158°C.<br />

Mass spectrum: (FAB+) 370 (M+H)+, 294 (M+H - HSC(NH)NH2) +<br />

.<br />

iH-NMR (DMSO-d 6): 1.72-1.84 ppm (m, 2H, N-C-C// 2-C-S), 2.18-2.32 ppm (m, 2H, C-<br />

C// 2-C-N), 2.90-3.24 ppm (m , 6H, 2x -CH 2-N <strong>and</strong> -CH 2-S), 3.99 ppm (t, J = 7.7 Hz,<br />

1H, -C//-C-C-N), 7.17-7.33 ppm (m, 12H, lOx phenyl-// <strong>and</strong> 2x NH), 7.59 ppm (bs, 1H,<br />

NH), 8.61 ppm (s, 2H, 2x -CH- picric acid), 8.92-9.10 (m, 2H, NH 2).<br />

N-(3,3-diphenylpropyl)-N'-(4-isothioureidobutyl)guanid<strong>in</strong>e hydrobromide<br />

monopicrate VUF 4641 >><br />

Yield: 21%, m.p.: 169-177°C.<br />

Mass spectrum: (FAB+) 384 (M+H)+, 308 (M+H - HSC(NH)NH2) +<br />

.<br />

iH-NMR (DMSO-d 6): 1.85-1.90 ppm (m, 4H, N-C-C// 2-C// 2-C-S), 2.24-2.36 ppm (m,<br />

2H, C-C// 2-C-N), 3.10-3.28ppm (m , 6H, 2x -C// 2-N <strong>and</strong> -CH 2-S), 4.01 ppm (t, / = 7.7<br />

Hz, 1H, -C//-C-C-N), 7.01-7.21 ppm (m, 2H, 2x NH), 7.25-7.36 ppm (m, 10H, lOx<br />

phenyl-//), 8.62 ppm (s, 2H, 2x -CH- picric acid).<br />

203


Chapter 8<br />

N-(3,3-diphenylpropyl)-N'-(5-isothioureidopentyl)guanid<strong>in</strong>e<br />

Yield: 18%, m.p.: 69-72°C.<br />

dipicrate VUF 4642<br />

Mass spectrum: (FAB+) 398 (M+H) +<br />

, 322 (M+H - HSC(NH)NH2) +<br />

.<br />

iH-NMR (acetone-d6): 1.55-1.84 ppm (m, 6H, N-C-C// 2-C// 2-C// 2-C-S), 2.42-2.53<br />

ppm (m, 2H, C-C// 2-C-N), 2.95-3.38ppm (m , 6H, 2x -C// 2-N <strong>and</strong> -C// 2-S), 4.08 ppm (t,<br />

J = 8Hz, 1H, -C//-C-C-N), 7.12-7.35 ppm (m, 12H, lOx phenyl-// <strong>and</strong> 2x N//), 8.63<br />

ppm (bs, 1H, NH), 8.77 ppm (s, 4H, 4x -CH- dipicrate).<br />

N-(3,3-diphenylpropyl)-N'-(6-isothioureidohexyl)guanid<strong>in</strong>e hydrobromide<br />

monopicrate VUF 4643<br />

Yield: 13%, m.p.: 74-76°C.<br />

Mass spectrum: (FAB+) 412 (M+H)+, 336 (M+H - HSC(NH)NH 2)+.<br />

iH-NMR (DMSO-d 6): 1.37-1.92 ppm (m, 8H, N-C-C// 2-C// 2-C// 2-C// 2-C-S), 2.42-2.49<br />

ppm (m, 2H, C-C// 2-C-N), 3.26-3.59ppm (m , 6H, 2x -C// 2-N <strong>and</strong> -C// 2-S), 4.09 ppm (t,<br />

J = 8Hz, 1H, -C//-C-C-N), 7.15-7.29 ppm (m, 12H, lOx phenyl-// <strong>and</strong> 2x NH), 8.72<br />

ppm (s, 2H, 2x -CH- picric acid).<br />

References<br />

1 Felix SB, Buschauer A, Baumann G, Agents Actions Suppl, 33, 257-269 (1991)<br />

2 Baumann G, Buschauer A, Felix SB, In: Agents Actions Special Conference Issue,<br />

Birkhauser Verlag, Basel, 329-332 (1992)<br />

3 Durant GJ, Duncan WAM, Ganell<strong>in</strong> CR, Parsons ME, Blakemore RC, Rasmussen AC,<br />

Nature, 276, 403-405 (1978)<br />

4 a) Sterk GJ, Van der Goot H, Timmerman H, PCT/W087 07,891<br />

b) Buschauer A, Schickaneder H, Schunack W, Szelenyi I, Ahrens KH, German Pat<br />

Appl, DE 3528214 AÍ (1987)<br />

c) Buschauer A, Schickaneder H, Mörsdorf P, Schunack W, Baumann G, Ahrens KH,<br />

German Pat Appl, DE 3631334 AÍ (1988)<br />

5 Van der Goot H, Bast A, Timmerman H, In: H<strong>and</strong>book <strong>of</strong> Experimental Pharmacology;<br />

histam<strong>in</strong>e <strong>and</strong> histam<strong>in</strong>e antagonists, Volume 97, 573-748 (1991)<br />

6 Airang JM, Schwartz JC, Schunack W, Eur J Pharmacol, 117, 109-114 (1985)<br />

7 Parsons ME, Owen DAA, Ganell<strong>in</strong> CR, Durant GJ, Agents Actions, 7, 31-37 (1977)<br />

8 Durant GJ, Ganell<strong>in</strong> CR, Parsons ME, Agents Actions, 7, 39-43 (1977)<br />

9 We<strong>in</strong>ste<strong>in</strong> H, Chou D, Johnson CL, Kang S, Green JP, Mol Pharmacol, 12, 738-745<br />

(1976)<br />

10 Green JP, Johnson CL, We<strong>in</strong>ste<strong>in</strong> H, In: Psycho<strong>pharmacology</strong>; a generation <strong>of</strong><br />

progress (Lipton MA, Di Mascio A, Killam KF, Eds), Raven Press, New York, pp<br />

319-322 (1978)<br />

11 Donné-Op den Kelder GM, Haaksma EEJ, Timmerman H, In: Trends <strong>in</strong> Medic<strong>in</strong>al<br />

Chemistry 1988 (Van der Goot H, Domany G, Pallos L, Timmerman H, Eds),<br />

Elsevier, Amsterdam, pp 365-392 (1989)<br />

12 Haaksma EEJ, Donné-Op den Kelder GM, Timmerman H, Agents Actions Suppl, 33,<br />

315-3324(1991)<br />

204


Chapter 8<br />

13 Vitali T, Impicciatore M, Plazzi PV, Bordi F, II Farmaco Ed Sci, 41, 483-498 (1986)<br />

14 Impicciatore M, Mor<strong>in</strong>i G, Chiavar<strong>in</strong>i M, Borocelli E, Bordi F, Plazzi PV, Vitali T,<br />

Agents Actions, 20, 262-264 (1987)<br />

15 Haaksma EEJ, PhD Thesis, Vrije Universiteit, Amsterdam (1991)<br />

16 Eriks JC, Sterk GJ, Van der Goot H, Timmerman H, J Med Chem, 35, 3239-3246<br />

(1992)<br />

17 Eriks JC, Van der Goot H, Timmerman H, Mol Pharmacol, 44, 886-894 (1993)<br />

18 Eriks JC, Sterk GJ, Van der Aar EM, Van Acker SABE, Van der Goot H, Timmerman<br />

H, Agents Actions Suppl, 33, 301-314 (1991)<br />

19 Sterk GJ, PhD Thesis, Vrije Universiteit, Amsterdam (1987)<br />

20 Blakemore RC, Ganell<strong>in</strong> CR, Leigh BK, Parsons ME, Price CA, Smith IR, Tertiuk W,<br />

Agents Actions, 19, 18-25 (1986)<br />

21 Sterk GJ, Van der Goot H, Timmerman H, Eur J Med Chem-Chim Ther, 19, 545-550<br />

(1984)<br />

22 Sterk GJ, Van der Goot H, Timmerman H, Agents Actions, 18, 137-140 (1986)<br />

23 Sterk GJ, Van der Goot H, Timmerman H, Arch Pharm (We<strong>in</strong>heim), 319, 1057-1064<br />

(1986)<br />

24 Van der Werf JF, Bast A, Bijloo GJ, Van der Vliet A, Timmerman H, Eur J Pharmacol,<br />

138, 199-204 (1987)<br />

25 Durant GJ, Ganell<strong>in</strong> CR, Hills DW, Miles PD, Parsons ME, Pepper ES, White GR, J<br />

Med Chem, 28, 1414-1422 (1985)<br />

26 Emmett JC, Durant GJ, Ganell<strong>in</strong> CR, Roe AM, Turner JL, J Med Chem, 25, 1168-<br />

1174(1982)<br />

27 Mitsunobu O, Wada M, Sano T, J Am Chem Soc, 94, 679 (1972)<br />

28 Sterk GJ, Koper J, Van der Goot H, Timmerman H, Eur J Med Chem, 22, 491-498<br />

(1987)<br />

29 Buschauer A, Baumann G, Agents Actions Suppl, 33,231-256 (1991)<br />

205


206


Summary<br />

The <strong>in</strong>vestigations described <strong>in</strong> this thesis were aimed at the development <strong>of</strong> hybrid<br />

molecules useful for the treatment <strong>of</strong> certa<strong>in</strong> cardiovascular diseases.<br />

In chapter 1 the causes <strong>of</strong> cardiovascular diseases <strong>and</strong> their pharmacotherapeutic<br />

treatment are briefly reviewed. The function <strong>of</strong> the heart <strong>and</strong> the circulatory system<br />

are described, as well as the effects <strong>of</strong> several cardiovascular drugs, such as<br />

antiarrhythmics, antiang<strong>in</strong>als, cardiotonics, <strong>and</strong> antihypertensives. In the last part <strong>of</strong><br />

chapter 1 the prospects for s<strong>in</strong>gle drug therapy <strong>and</strong> comb<strong>in</strong>ation drug therapy are<br />

evaluated for the treatment <strong>of</strong> certa<strong>in</strong> cardiovascular disorders. In those cases <strong>in</strong><br />

which treatment with a s<strong>in</strong>gle drug cannot adequately control the illness or <strong>in</strong> cases<br />

<strong>in</strong> which the use <strong>of</strong> a therapeutic agent alone is limited by its side effects, comb<strong>in</strong>ation<br />

drug therapy is feasible. Comb<strong>in</strong>ation drug therapy can be achieved by concomitant<br />

drug adm<strong>in</strong>istration or by so-called hybrid molecules.<br />

A classification <strong>of</strong> hybrid molecules, which comb<strong>in</strong>e more than one pharmacological<br />

property <strong>in</strong> one s<strong>in</strong>gle molecule, is given <strong>in</strong> chapter 2. Although <strong>in</strong> literature several<br />

chiral compounds are designated as hybrid molecules, it cannot be ruled out that<br />

some <strong>of</strong> the chiral compounds have to be considered as so-called pseudo-hybrids, as<br />

long as their stereoisomers have not been isolated <strong>and</strong> pharmacologically evaluated.<br />

We have conf<strong>in</strong>ed the explanation <strong>of</strong> the pr<strong>in</strong>ciple <strong>of</strong> hybrid molecules ma<strong>in</strong>ly to<br />

cardiovascular drugs <strong>and</strong> some anti-<strong>in</strong>flammatory <strong>and</strong> antiallergic agents.<br />

Furthermore, the advantage <strong>of</strong> hybrid molecules over fixed-ratio comb<strong>in</strong>ation <strong>of</strong><br />

drugs is considered.<br />

In chapter 3, hybrid molecules comb<strong>in</strong><strong>in</strong>g the vasodilat<strong>in</strong>g properties <strong>of</strong> nitrate esters<br />

<strong>and</strong> the positive <strong>in</strong>otropic actions <strong>of</strong> histam<strong>in</strong>e H2-agonists are described. Based on<br />

known histam<strong>in</strong>e H2-agonists hybrid molecules <strong>in</strong>corporat<strong>in</strong>g a nitrate ester function<br />

have been proposed. Despite the unsuccessful achievements to obta<strong>in</strong> the proposed<br />

hybrid molecules, the orig<strong>in</strong>al idea still provides <strong>in</strong>terest<strong>in</strong>g thoughts to develop<br />

cardiotonics with nitrovasodilat<strong>in</strong>g properties, as such compounds are <strong>of</strong> potential<br />

benefit <strong>in</strong> treatment <strong>of</strong> certa<strong>in</strong> cardiovascular disorders.<br />

Calcium channel blockers are used as antiarrhythmic, antiang<strong>in</strong>al, <strong>and</strong><br />

antihypertensive agents. In chapter 4 the molecular biology, <strong>pharmacology</strong>, <strong>and</strong><br />

structure <strong>of</strong> L-type voltage-operated calcium channels, responsible for the regulation<br />

<strong>of</strong> the excitation-contraction coupl<strong>in</strong>g process <strong>in</strong> the cardiovascular system are<br />

discussed. There are several dist<strong>in</strong>ct classes <strong>of</strong> calcium channel blockers such as the<br />

phenylalkylam<strong>in</strong>es, benzothiazep<strong>in</strong>es, <strong>and</strong> N<br />

1,4-dihydropyrid<strong>in</strong>es. The 1,4dihydropyrid<strong>in</strong>e-type<br />

calcium channel blockers, <strong>in</strong> particular amlodip<strong>in</strong>e-like<br />

compounds, <strong>of</strong>fer possibilities to <strong>in</strong>troduce a histam<strong>in</strong>e H2-agonistic structural moiety,<br />

afford<strong>in</strong>g so-called hybrid molecules.<br />

In chapter 5 <strong>and</strong> 7 some thio-bioisosters <strong>of</strong> amlodip<strong>in</strong>e derivatives are presented. The<br />

potent <strong>in</strong> <strong>vitro</strong> calcium channel block<strong>in</strong>g activities <strong>and</strong> aff<strong>in</strong>ities <strong>of</strong> a <strong>series</strong> <strong>of</strong> diethyl<br />

2-(co-am<strong>in</strong>oalkylthio)methyl-2,6-dimethyl-4-[(substituted)phenyl]-l,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylates<br />

presented <strong>in</strong> these two chapters are not affected by <strong>in</strong>creas<strong>in</strong>g<br />

207


the alkyl cha<strong>in</strong> length on the 2-position <strong>of</strong> the 1,4-dihydropyrid<strong>in</strong>e r<strong>in</strong>g from ethyl to<br />

hexyl <strong>of</strong> 3-nitrophenyl substituted 1,4-dihydropyrid<strong>in</strong>es.<br />

The same is true for the diethyl 4-[2-(co-am<strong>in</strong>oalkoxy)phenyl]-2,6-dimethyl-l,4dihydropyrid<strong>in</strong>e-3,5-dicarboxylates<br />

<strong>and</strong> their correspond<strong>in</strong>g thiourea <strong>and</strong> isothiourea<br />

derivatives. Increas<strong>in</strong>g the alkoxy cha<strong>in</strong> length from pentoxy to decoxy does not<br />

affect the calcium channel block<strong>in</strong>g activities or aff<strong>in</strong>ities. Furthermore, the <strong>series</strong> <strong>of</strong><br />

1,4-dihydropyrid<strong>in</strong>e derivatives shown <strong>in</strong> chapter 6 are less active calcium channel<br />

blockers than those presented <strong>in</strong> chapter 5, <strong>in</strong>dicat<strong>in</strong>g that substitution <strong>of</strong> the phenyl<br />

r<strong>in</strong>g by large alkyl substituents is unfavourable.<br />

The 1,4-dihydropyrid<strong>in</strong>es discussed <strong>in</strong> chapters 5 <strong>and</strong> 6 served as synthons to obta<strong>in</strong><br />

hybrid molecules possess<strong>in</strong>g 1,4-dihydropyrid<strong>in</strong>e calcium channel block<strong>in</strong>g activity<br />

<strong>and</strong> histam<strong>in</strong>e H2-agonistic properties, thus comb<strong>in</strong><strong>in</strong>g antihypertensive activity <strong>and</strong><br />

positive <strong>in</strong>otropic effects. Most calcium channel blockers exert a disadvantageous<br />

negative <strong>in</strong>otropic effect. By <strong>in</strong>troduction <strong>of</strong> a histam<strong>in</strong>e H2-agonistic structural<br />

moiety the negative <strong>in</strong>otropic effects <strong>of</strong> the calcium channel blockers can be<br />

compensated. Based on the two different <strong>series</strong> <strong>of</strong> 1,4-dihydropyrid<strong>in</strong>es presented <strong>in</strong><br />

chapters 5 <strong>and</strong> 6, two types <strong>of</strong> hybrid molecules are synthesized. In general the<br />

hybrid molecules based on the 1,4-dihydropyrid<strong>in</strong>es presented <strong>in</strong> chapter 5 are more<br />

active than the hybrid molecules based 1,4-dihydropyrid<strong>in</strong>es presented <strong>in</strong> chapter 6.<br />

Of the <strong>series</strong> <strong>of</strong> describeded N-{co-{3,5-diethoxycarbonyl-l,4-dihydro-6-methyl-4-<br />

(substituted-phenyl)-pyrid<strong>in</strong>-2-yl]methylthio}alkyl-N'-[3-(imidazol-4(5)-yl]propylguanid<strong>in</strong>es,<br />

the hybrid molecule with a hexyl cha<strong>in</strong> is the most promis<strong>in</strong>g compound<br />

which could provide <strong>in</strong>terest<strong>in</strong>g leads <strong>in</strong> the treatment <strong>of</strong> myocardial heart failure or<br />

some hypertensive disorders, because it comb<strong>in</strong>es good <strong>in</strong> <strong>vitro</strong> Ca 2+<br />

-channel<br />

block<strong>in</strong>g action <strong>and</strong> an overall positive <strong>in</strong>otropic <strong>and</strong> chronotropic activity <strong>in</strong> one<br />

molecule. From the <strong>series</strong> <strong>of</strong> presented N-{co-{[2-(3,5-diethoxycarbonyl-2,6-methyll,4-dihydropyrid<strong>in</strong>-4-yl)phenoxy]}alkyl}-N<br />

,<br />

-[3-(imidazol-4(5)-yl]propyl]guanid<strong>in</strong>es,<br />

only the hybrid molecule with a hexoxy cha<strong>in</strong> shows some positive <strong>in</strong>otropic action.,<br />

However, the calcium channel block<strong>in</strong>g activity <strong>of</strong> these compounds is low.<br />

In chapter 8 a <strong>series</strong> <strong>of</strong> dimaprit analogues with histam<strong>in</strong>e H2-agonistic <strong>and</strong> histam<strong>in</strong>e<br />

Hi-antagonistic activities reveal that large substituents, such as a diphenylalkylguanid<strong>in</strong>e<br />

structural moiety, on the am<strong>in</strong>o function <strong>of</strong> dimaprit, S-[3-(N,Ndimethylam<strong>in</strong>o)propyl]isothiourea,<br />

are allowed. Furthermore, these hybrid molecules<br />

confirm that the histam<strong>in</strong>e H2-agonistic 2-am<strong>in</strong>o-5-(2-am<strong>in</strong>oethyl)thiazole derivatives<br />

can be considered as r<strong>in</strong>g closed dimaprit analogues.<br />

In conclusion, a number <strong>of</strong> hybrid molecules presented <strong>in</strong> this thesis have shown that<br />

these type <strong>of</strong> compounds could give beneficial effects <strong>in</strong> the treatment certa<strong>in</strong><br />

cardiovascular diseases; however, their design <strong>and</strong> <strong>synthesis</strong> requires patience <strong>and</strong><br />

time, <strong>and</strong> last but not least a thorough knowledge <strong>of</strong> their structure-activity<br />

relationships is needed.<br />

208


Samenvatt<strong>in</strong>g<br />

Het <strong>in</strong> dit proefschrift beschreven onderzoek was gericht op de ontwikkel<strong>in</strong>g van<br />

hybride moleculen die gebruikt kunnen worden <strong>in</strong> de beh<strong>and</strong>el<strong>in</strong>g van bepaalde<br />

cardiovasculaire a<strong>and</strong>oen<strong>in</strong>gen.<br />

In ho<strong>of</strong>dstuk 1 worden de oorzaken van de cardiovasculaire a<strong>and</strong>oen<strong>in</strong>gen<br />

beschreven naast hun pharmacotherapeutische beh<strong>and</strong>el<strong>in</strong>g. De functie van het hart<br />

en het bloedvatenstelsel worden beschreven, alsmede de effecten van verschillende<br />

cardiovasculaire geneesmiddelen, zoals antiarrhythmica, antiang<strong>in</strong>euze middelen,<br />

cardiotonica en antihypertensiva. In het laatste gedeelte van dit ho<strong>of</strong>dstuk worden<br />

de vooruitzichten van mono medicijn therapie en comb<strong>in</strong>atie medicijn therapie voor<br />

de beh<strong>and</strong>el<strong>in</strong>g van verschillende cardiovasculaire a<strong>and</strong>oen<strong>in</strong>gen met elkaar<br />

vergeleken. In die gevallen waarbij beh<strong>and</strong>el<strong>in</strong>g van een ziekte met een enkel<br />

medicijn niet adekwaat is, <strong>of</strong> <strong>in</strong> gevallen waar<strong>in</strong> het gebruik van een medicijn wordt<br />

beperkt door bijwerk<strong>in</strong>gen, kan comb<strong>in</strong>atie therapie uitkomst bieden. Comb<strong>in</strong>atie<br />

therapie kan worden bereikt door gebruik te maken van gelijktijdige toedien<strong>in</strong>gen<br />

van de afzonderlijke actieve st<strong>of</strong>fen, al dan niet <strong>in</strong> een preparaat, <strong>of</strong> door gebruik te<br />

maken van zogenaamde hybride verb<strong>in</strong>d<strong>in</strong>gen.<br />

Een beschrijv<strong>in</strong>g van hybride verb<strong>in</strong>d<strong>in</strong>gen wordt gegeven <strong>in</strong> ho<strong>of</strong>dstuk 2. Hoewel<br />

er <strong>in</strong> de literatuur veel verb<strong>in</strong>d<strong>in</strong>gen worden beschreven die worden beschouwd als<br />

hybride verb<strong>in</strong>d<strong>in</strong>gen, betreft het <strong>in</strong> de meeste gevallen chirale verb<strong>in</strong>d<strong>in</strong>gen. Zolang<br />

de verschillende enantiomeren niet afzonderlijk farmacologisch worden onderzocht,<br />

kan men niet uitsluiten dat het hierbij eigenlijk om zogenaamde pseudo-hybride<br />

verb<strong>in</strong>d<strong>in</strong>gen gaat. Het pr<strong>in</strong>cipe van hybride verb<strong>in</strong>d<strong>in</strong>gen wordt uitgelegd aan de<br />

h<strong>and</strong> van cardiovasculaire verb<strong>in</strong>d<strong>in</strong>gen en een aantal anti<strong>in</strong>flammatoire en<br />

anitallergische verb<strong>in</strong>d<strong>in</strong>gen.<br />

In ho<strong>of</strong>dstuk 3 worden hybride moleculen beschreven waar<strong>in</strong> de vaatverwijdende<br />

activiteiten van nitraat esters en de positief <strong>in</strong>otrope werk<strong>in</strong>g van histam<strong>in</strong>e H2agonistische<br />

worden gecomb<strong>in</strong>eerd <strong>in</strong> één molecuul. In het eerste gedeelte van het<br />

ho<strong>of</strong>dstuk wordt een kort overzicht gegeven van de besta<strong>and</strong>e nitraat esters en hun<br />

werk<strong>in</strong>g. Tevens wordt het verschijnsel van nitraat ester tolerantie kort toegelicht.<br />

Aan de h<strong>and</strong> van bekende histam<strong>in</strong>e H2-agonistische structuren zijn hybride<br />

moleculen ontworpen die tevens een nitraat ester functie bevatten. Ondanks de niet<br />

succesvole pog<strong>in</strong>gen om de gewenste hybride moleculen te verkrijgen, betekent dit<br />

zeker niet dat het orig<strong>in</strong>ele idee niet kan leiden tot verb<strong>in</strong>d<strong>in</strong>gen die een<br />

vaatverwijdende activiteit comb<strong>in</strong>eren met een positief <strong>in</strong>otrope werk<strong>in</strong>g en daardoor<br />

geschikt kunnen zijn voor de beh<strong>and</strong>el<strong>in</strong>g van bepaalde cardiovasculaire<br />

a<strong>and</strong>oen<strong>in</strong>gen.<br />

Calcium kanaal blokkers worden gebruikt als antiarrhythmica, antiang<strong>in</strong>euze<br />

middelen en als antihypertensiva. In ho<strong>of</strong>stuk 4 wordt een overzicht gegeven van de<br />

moleculaire biologie, farmacologie en de moleculaire structuur van de calcium<br />

kanalen. Bovendien wordt er een kort overzicht gegeven van de lig<strong>and</strong>en voor de<br />

calcium kanalen. Een speciaal type calcium kanalen zijn de zogenaamde L-type<br />

209


potentiaal-gereguleerde calcium kanalen die verantwoordelijk zijn voor het excitatiecontractie<br />

koppel<strong>in</strong>gsproces <strong>in</strong> het cardiovasculaire systeem.<br />

Er zijn verschillende typen calcium kanaal blokkers zoals de fenylalkylam<strong>in</strong>es, de<br />

benzothiazep<strong>in</strong>es en de 1,4-dihydropyrid<strong>in</strong>es. De 1,4-dihydropyrid<strong>in</strong>e-achtige<br />

calcium kanaal blokkers, <strong>in</strong> het bijzonder amlodip<strong>in</strong>e-achtigen, bieden goede<br />

aanknop<strong>in</strong>gspunten om histam<strong>in</strong>e H2-agonistische structuureenheden <strong>in</strong> te voeren,<br />

zodanig dat hybride moleculen worden verkregen.<br />

In de ho<strong>of</strong>dstukken 5 en 7 worden een aantal thio-bioisosteren van amlodip<strong>in</strong>e<br />

derivaten beschreven. De hoge <strong>in</strong> <strong>vitro</strong> calcium kanaal blokkerende activiteiten en<br />

aff<strong>in</strong>iteiten <strong>in</strong> de serie van diethyl 2-(co-am<strong>in</strong>oalkylthio)methyl-2,6-dimethyl-4-<br />

[(gesubstitueerd)fenyl]-1,4-dihydropyrid<strong>in</strong>e-3,5-dicarboxylaten worden niet<br />

beïnvloed door verleng<strong>in</strong>g van de alkyl keten op de 2-plaats van de 1,4-dihydropyrid<strong>in</strong>e<br />

r<strong>in</strong>g van ethyl naar hexyl <strong>in</strong> 3-nitr<strong>of</strong>enyl gesubstitueerde 1,4-dihydropyrid<strong>in</strong>e<br />

derivaten.<br />

Het zelfde fenomeen bij keten verleng<strong>in</strong>g wordt ook waargenomen voor een serie<br />

van diethyl 4-[2-(co-am<strong>in</strong>oalkoxy)fenyll-2,6-dimethyl-l,4-dihydropyrid<strong>in</strong>e-3,5dicarboxylaten<br />

en de overeenkomstige thioureum en isothioureum derivaten.<br />

Verleng<strong>in</strong>g van de alkoxy keten van pentoxy naar decoxy be<strong>in</strong>vloedt de calcium<br />

kanaal blokkerende activiteiten en aff<strong>in</strong>iteiten niet. Verder zijn dit type verb<strong>in</strong>d<strong>in</strong>gen<br />

m<strong>in</strong>der actief dan die beschreven <strong>in</strong> ho<strong>of</strong>dstuk 5. Hieruit blijkt dat substitutie van de<br />

fenyl r<strong>in</strong>g door grote substituenten niet bijdraagt tot verhog<strong>in</strong>g van de activiteiten.<br />

De 1,4-dihydropyrid<strong>in</strong>es beschreven <strong>in</strong> de ho<strong>of</strong>dstukken 5 en 6 dienden als synthons<br />

voor de synthese van hybride moleculen die calcium kanaal blokkerende en<br />

histam<strong>in</strong>e H2-agonistische eigenschappen bezitten; aldus worden bloeddruk<br />

verlagende en positief <strong>in</strong>otrope effecten gecomb<strong>in</strong>eerd <strong>in</strong> één molecuul. Door het<br />

<strong>in</strong>voeren van een histam<strong>in</strong>e H2-agonistische structuur worden de negatief <strong>in</strong>otrope<br />

effecten van de calcium kanaal blokkers gecompenseerd. Gebaseerd op de twee<br />

typen calcium kanaal blokkers beschreven <strong>in</strong> de ho<strong>of</strong>dstukken 5 en 6 werden twee<br />

verschillende soorten hybride moleculen gepresenteerd. In het algemeen zijn de<br />

hybride verb<strong>in</strong>d<strong>in</strong>gen gebaseerd op de 1,4-dihydropyrid<strong>in</strong>es uit ho<strong>of</strong>dstuk 5 actiever<br />

dan die welke gebaseerd zijn op de 1,4-dihydropyrid<strong>in</strong>es uit ho<strong>of</strong>dstuk 6. Uit de serie<br />

van de N-{co-[3,5-diethoxycarbonyl-1,4-dihydro-6-methyl-4-(gesubstitueerd-fenyl)pyrid<strong>in</strong>-2-yl]methylthio}alkyl-N'-[3-(imidazol-4(5)-yl]propylguanid<strong>in</strong>es<br />

is het<br />

hybride molecuul met een hexyl keten de meest veel belovende verb<strong>in</strong>d<strong>in</strong>g om een<br />

bijdrage te leveren aan de therapie van een <strong>in</strong>sufficiënt hart en sommige vormen van<br />

hypertensie, daar deze verb<strong>in</strong>d<strong>in</strong>g <strong>in</strong> één molecuul een hoge <strong>in</strong> <strong>vitro</strong> calcium kanaal<br />

blokkerende werk<strong>in</strong>g comb<strong>in</strong>eert met een positieve <strong>in</strong>otrope en chronotrope<br />

werk<strong>in</strong>g. Uit de serie van N-{co-{[2-(3,5-diethoxycarbonyl-2,6-methyl-l,4dihydropyrid<strong>in</strong>-4-yl)fenoxy]}-alkyl}-N<br />

,<br />

-[3-(imidazol-4(5)-yl]propyl]guanid<strong>in</strong>es<br />

vertoont alleen het hybride molecuul met een hexoxy keten een positieve <strong>in</strong>otrope<br />

werk<strong>in</strong>g. De calcium kanaal blokkerende werk<strong>in</strong>g is echter vrij laag.<br />

In ho<strong>of</strong>dstuk 8 wordt een serie dimaprit analoga met een histam<strong>in</strong>e H2-agonistische<br />

en histam<strong>in</strong>e Hi-antagonistische werk<strong>in</strong>g beschreven; er is gevonden dat grote<br />

210


substituenten, zoals een difenylalkylguanid<strong>in</strong>e eenheid, aan de am<strong>in</strong>o groep van<br />

dimaprit, S-[3-(N,N-dimethylam<strong>in</strong>o)propyl]isothioureum, zijn toegestaan. Bovendien<br />

bevestigen deze hybride moleculen dat de histam<strong>in</strong>e H2-agonistische 2-am<strong>in</strong>o-5-(2am<strong>in</strong>oethyl)thiazolen<br />

kunnen worden beschouwd als r<strong>in</strong>g gesloten dimaprit analoga.<br />

Kort samengevat worden er <strong>in</strong> dit proefschrift een aantal hybride verb<strong>in</strong>d<strong>in</strong>gen<br />

gepresenteerd waarmee wordt aangetoond dat dit type verb<strong>in</strong>d<strong>in</strong>gen een aantal<br />

voordelen kan bieden <strong>in</strong> de beh<strong>and</strong>el<strong>in</strong>g van bepaalde cardiovasculaire<br />

a<strong>and</strong>oen<strong>in</strong>gen ten opzichte van mono <strong>of</strong> comb<strong>in</strong>atie therapie. Het ontwerp en de<br />

synthese van hybride verb<strong>in</strong>d<strong>in</strong>gen vergt echter veel geduld en niet <strong>in</strong> de laatste<br />

plaats een gedegen kennis van de structuur-activiteit relaties van de verb<strong>in</strong>d<strong>in</strong>gen.<br />

211


List <strong>of</strong> publications<br />

J.A.M. Christiaans, A.D. W<strong>in</strong>dhorst, P.M. Groenenberg, H. van der Goot, H.<br />

Timmerman<br />

Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> new 1,4-dihydropyrid<strong>in</strong>es. 1.<br />

2-(co-Am<strong>in</strong>oalkylthiomethyl)-1,4-dihydropyrid<strong>in</strong>es as potent calcium channel blockers<br />

EurJ.Med.Chem., 28, 859-867 (1993)<br />

J.A.M. Christiaans, H. van der Goot, H. Timmerman<br />

Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> a <strong>series</strong> <strong>of</strong> new 1,4-dihydropyrid<strong>in</strong>es. 2.<br />

Diethyl 4-[2-(co-am<strong>in</strong>oalkoxy)phenyl]-2,6-dimethyl-l,4-dihydropyrid<strong>in</strong>e-3,5dicarboxylates<br />

<strong>and</strong> their correspond<strong>in</strong>g isothioureas as tools for determ<strong>in</strong><strong>in</strong>g<br />

structure-acticity relationships<br />

EurJ.Med.Chem., 28, 935-941 (1993)<br />

J.A.M. Christiaans, A.D. W<strong>in</strong>dhorst, H. van der Goot, H. Timmerman<br />

Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> a <strong>series</strong> <strong>of</strong> hybrid molecules possess<strong>in</strong>g 1,4dihydropyrid<strong>in</strong>e<br />

calcium channel block<strong>in</strong>g activity <strong>and</strong> histam<strong>in</strong>e H2-agonistic<br />

properties<br />

submitted<br />

J.A.M. Christiaans, H. Timmerman<br />

Hybrid molecules: comb<strong>in</strong>ation <strong>of</strong> more than one pharmacological property <strong>in</strong> one<br />

s<strong>in</strong>gle molecule<br />

<strong>in</strong> preparation<br />

J.A.M. Christiaans, W.M.P.B. Menge, H. van der Goot, H. Timmerman<br />

Synthesis <strong>and</strong> <strong>in</strong> <strong>vitro</strong> <strong>pharmacology</strong> <strong>of</strong> a <strong>series</strong> <strong>of</strong> dimaprit analogues with histam<strong>in</strong>e<br />

H2-agonistic <strong>and</strong> histam<strong>in</strong>e Hi-antagonistic activities]<br />

<strong>in</strong> preparation<br />

213


Curriculum Vitae<br />

Johannes Antonius Maria Christiaans was born <strong>in</strong> 1963 on August 17* at Boxmeer,<br />

The Netherl<strong>and</strong>s.<br />

He graduated from secondary school (HAVO) <strong>in</strong> 1981 <strong>and</strong> from high school (VWO) <strong>in</strong><br />

1983 at the Hertog-Jan College at Valkenswaard. In the same year he entered the<br />

Faculty <strong>of</strong> Chemistry <strong>of</strong> the Rijksuniversiteit at Utrecht.<br />

After study<strong>in</strong>g Chemistry with Bio-organic Chemistry as pr<strong>in</strong>cipal subject (under the<br />

supervision <strong>of</strong> Pr<strong>of</strong>. Dr. J.F.G. Vliegenthart <strong>and</strong> Pr<strong>of</strong>. Dr. J.P. Kamerl<strong>in</strong>g; Synthesis <strong>of</strong><br />

polysaccharides) <strong>and</strong> Biochemistry <strong>and</strong> Bio-organic Chemistry as subsidiary subject,<br />

he acquired his M.Sc. <strong>in</strong> Chemistry <strong>in</strong> 1988.<br />

Form March 15* 1989 he worked as a scientific research assistant at the Department<br />

<strong>of</strong> Pharmacochemistry <strong>of</strong> the Leiden/Amsterdam Center for Drug Research at the Vrije<br />

Universiteit at Amsterdam. The project was f<strong>in</strong>ancially supported by Byk-Cedona<br />

Nederl<strong>and</strong> B.V.<br />

215


Dankwoord / Acknowledgements<br />

Graag wil ik een aantal mensen bedanken die op de een <strong>of</strong> <strong>and</strong>ere manier een<br />

bijdrage hebben geleverd aan het gereed komen van dit proefschrift.<br />

Allereerst wil ik mijn familie en <strong>in</strong> het bijzonder mijn ouders bedanken voor hun<br />

morele steun <strong>in</strong> de niet altijd even soepel verlopen periode.<br />

Mijn Promotor Pr<strong>of</strong>. Dr. Henk Timmerman voor het <strong>in</strong> mij gestelde vertrouwen dat dit<br />

proefschrift tot een goed e<strong>in</strong>de zou komen. Onze korte maar krachtige besprek<strong>in</strong>gen<br />

zorgden ervoor dat we duidelijk voor ogen hadden wat er moest gebeuren. Ondanks<br />

je vaak overvolle agenda verbaasde je mij keer op keer met de ongelo<strong>of</strong>lijke snelheid<br />

waarmee je mijn manuscripten gelezen en gecorrigeerd hebt.<br />

Dr. Henk van der Goot bedank ik voor het bijspr<strong>in</strong>gen en het stimuleren van het<br />

uitwerken van mijn ideëen en het secuur doornemen van mijn artikelen en dit<br />

proefschrift.<br />

Pr<strong>of</strong>.Dr. W. Schunack, Ich danke Ihnen recht herzlich daß Sie als Referent<br />

aufgetreten s<strong>in</strong>d. Die Art und Weise wie Sie <strong>in</strong> so kurzer Zeit me<strong>in</strong>e Thesis gründlich<br />

überarbeitet haben, weiß Ich sehr zu schätzen.<br />

Pr<strong>of</strong>. Dr. S. Balt, U wil ik bedanken voor de snelle en correcte wijze waarop U als<br />

derde lezer dit proefschrift hebt gelezen.<br />

De ho<strong>of</strong>dvak studenten Bert W<strong>in</strong>dhorst, Paul Groenenberg en de bijvak student Eric<br />

Stork ben ik erkentelijk voor hun bijdrage aan de synthese van een aantal<br />

verb<strong>in</strong>d<strong>in</strong>gen. Verder bedank ik Hans-Peter Voss voor het belangeloos begeleiden<br />

van Bert W<strong>in</strong>dhorst die zijn bijvak moleculaire farmacologie volledig toespitste op<br />

het uitzoeken en toepassen van geschikte test systemen.<br />

De medewerkers van Byk "Cedona" Nederl<strong>and</strong> B.V., Geertjan Sterk, Jan van der Werf<br />

en Meta Veerman bedank ik voor het mij bijbrengen en ondersteunen van de<br />

farmacologische test systemen. Jan Bron bedank ik voor het beschikbaar stellen van<br />

literatuur voor het tot st<strong>and</strong> komen van het ho<strong>of</strong>dstuk betreffende hybride<br />

moleculen.<br />

Patrizia Caldirola, thank you for your assistance <strong>in</strong> carry<strong>in</strong>g out radiolig<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g<br />

studies.<br />

Wiro Menge, bedankt voor de uitgebreide pog<strong>in</strong>gen om toch nog de gewenste<br />

ontbrekende verb<strong>in</strong>d<strong>in</strong>gen uit ho<strong>of</strong>dstuk 8 <strong>in</strong> h<strong>and</strong>en te krijgen.<br />

Roel Voll<strong>in</strong>ga, bedankt voor het ter beschikk<strong>in</strong>g stellen van de portie "api". Ik ben blij<br />

dat jij <strong>in</strong> het kader van jou onderzoek een gehele nieuwe doeltreffende manier hebt<br />

ontwikkeld om deze verb<strong>in</strong>d<strong>in</strong>g eenvoudig te synthetiseren. Door jou had ik tevens<br />

een snelle manier om <strong>in</strong> contact te komen met de netwerk beheerder Nico Bakker.<br />

Nico bedankt voor het op tijd ter beschikk<strong>in</strong>g stellen van MS Word en voor het<br />

oplossen van de problemen die ontstonden <strong>of</strong> gecreëerd werden door dit proefschrift<br />

<strong>in</strong> times 13 te schrijven.<br />

Niet alleen alle medewerkers van de Synthese&Design groep, maar ook de personen<br />

van de afdel<strong>in</strong>gen Moleculaire Farmacologie en Moleculaire Toxicologie bedank ik<br />

217


voor de prettige sociale contacten tijdens borrels en de helaas opgeheven<br />

gezamelijke k<strong>of</strong>fie pauzes.<br />

Niet <strong>in</strong> het m<strong>in</strong>st bedank ik iedereen die <strong>in</strong> de afgelopen periode geslaagde pog<strong>in</strong>gen<br />

heeft ondernomen om mijn a<strong>and</strong>acht niet alleen op dit proefschrift te vestigen. De<br />

vele uren die zijn doorgebracht op cultureel gebied zoals theaters, bioscopen en<br />

musea <strong>of</strong> op sportief gebied zoals tennis, squash en zwemmen hebben uitermate<br />

bijgedragen aan de prettige sfeer die ik de afgelopen periode op de VU en daar buiten<br />

heb meegemaakt.<br />

218

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!