31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

138 Integral transform method<br />

(cont<strong>in</strong>ued)<br />

⎡<br />

⎤<br />

0 · −(λ + 3µ)<br />

+ ⎣ · 0 · ⎦<br />

1 ∂<br />

R<br />

2(λ + 2µ) · 0<br />

2 s<strong>in</strong> φ ∂θ<br />

⎡<br />

⎤<br />

⎡<br />

⎤<br />

0 · ·<br />

+ ⎣ · 0 −(λ + 3µ) ⎦<br />

cot φ 0 −(λ + 3µ) ·<br />

∂<br />

R<br />

· λ + 3µ 0<br />

2 s<strong>in</strong> φ ∂θ + ⎣ · 0 · ⎦ cot φ<br />

R<br />

· · 0<br />

2<br />

⎡ ⎤<br />

⎡<br />

⎤ ⎫<br />

0 · ·<br />

0 · ·<br />

+ ⎣ · −λ · ⎦<br />

1<br />

· · µ<br />

R 2 s<strong>in</strong> 2 φ + ⎣ · −2µ · ⎦ cot2 φ ⎬<br />

R<br />

· · −2µ<br />

2 ⎭ u (9.69)<br />

This rather complicated look<strong>in</strong>g system of differential equations can also be solved by<br />

means of transforms, except that because each spherical surface is f<strong>in</strong>ite <strong>in</strong> size, we employ<br />

series <strong>solutions</strong> <strong>in</strong> place of the <strong>in</strong>tegrals of the previous sections. However, <strong>in</strong>stead of<br />

attempt<strong>in</strong>g to re-derive the relevant equations <strong>in</strong> the transformed doma<strong>in</strong> for this case,<br />

we shall simply rely on the results already obta<strong>in</strong>ed <strong>in</strong> Section 8.10. Thus, the solution of<br />

this equation follows along the follow<strong>in</strong>g formal steps (the matrices <strong>in</strong>volved are def<strong>in</strong>ed<br />

<strong>in</strong> Section 8.10, and tabulated <strong>in</strong> Section 10.4):<br />

1) Express the source <strong>in</strong> terms of spherical harmonics:<br />

∫ π<br />

˜b mn (R,ω) = J −1 s<strong>in</strong> φ L n m<br />

0<br />

∫ 2π<br />

0<br />

T n b(R,φ,θ,ω) dθ dφ (9.70)<br />

which admits the formal <strong>in</strong>version<br />

∞∑ m∑<br />

b = T n L n ˜b m mn (9.71)<br />

m=0 n=0<br />

2) For each m, n, and ω, obta<strong>in</strong> the solution ũ mn (R) <strong>in</strong> the frequency–wavenumber doma<strong>in</strong><br />

by solv<strong>in</strong>g the one-dimensional system of equations <strong>in</strong> the radial coord<strong>in</strong>ate R.<br />

3) Obta<strong>in</strong> the solution <strong>in</strong> the space doma<strong>in</strong> from the series solution<br />

u(R,φ,θ,ω) =<br />

∞∑ m∑<br />

T n L n mũmn (9.72)<br />

m=0 n=0<br />

which aga<strong>in</strong> admits the formal <strong>in</strong>version<br />

∫ π<br />

ũ mn (R,ω) = J −1 s<strong>in</strong> φ L m n<br />

0<br />

∫ 2π<br />

0<br />

T n u(R,φ,θ,ω) dθ dφ (9.73)<br />

The proof of these <strong>in</strong>version formulas is obta<strong>in</strong>ed by consider<strong>in</strong>g the orthogonality properties<br />

of Fourier series <strong>in</strong> the azimuth and of the spheroidal matrix <strong>in</strong> co-latitude, namely,<br />

∫ 2π<br />

0<br />

T n T j dθ = πδ (nj) (1 + δ n0 δ j0 ) (9.74)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!