31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

10.2 Stiffness matrix method <strong>in</strong> Cartesian coord<strong>in</strong>ates 145<br />

Table 10.1. Stiffness matrices, Cartesian coord<strong>in</strong>ates, plane stra<strong>in</strong><br />

√<br />

√<br />

kp = k 2 − (ω/α) 2 , ks = k 2 − (ω/β) 2<br />

Note 1: In the first Riemann sheet, Im(kp) ≥ 0, Im(kp) ≥ 0, and Re(ks) ≥ 0, Im(ks) ≥ 0,<br />

whether or not the medium has material damp<strong>in</strong>g (attenuation), that is, the products<br />

kp, ks are complex numbers <strong>in</strong> the first quadrant, no matter what the sign of k should<br />

be. Thus, the numbers p, s themselves are <strong>in</strong> the first quadrant if k > 0, and <strong>in</strong> the<br />

third if k < 0. If material (hysteretic) damp<strong>in</strong>g is present, the complex wavenumbers<br />

for P and S waves are of the form<br />

ω<br />

α c<br />

= ω α<br />

(<br />

1 − i ξ P sgn(ω)<br />

)<br />

,<br />

ω<br />

β c<br />

= ω β<br />

(<br />

)<br />

1 − i ξ S sgn(ω)<br />

<strong>in</strong> which α c ,β c are the complex wave velocities. This is based on the (very close)<br />

approximation<br />

√ √<br />

µc µ<br />

(<br />

)<br />

√<br />

β c =<br />

ρ = 1 µ<br />

1 + 2i ξ S sgn(ω) ≈<br />

ρ<br />

1 − i ξ S sgn(ω) ρ<br />

and a similar expression for α c . These approximations greatly simplify exponential<br />

terms such as<br />

(<br />

exp − iωx ) (<br />

= exp − iωx ) (<br />

exp − ξ )<br />

Sωx<br />

, ξ S = 1/(2Q S ), Q S = quality factor<br />

β c β<br />

β<br />

Note 2: Given k, all SH and SV-P elements exhibit complex-conjugate symmetry with<br />

respect to ±ω. Given ω, the SV-P elements are checkerboard symmetric and<br />

antisymmetric with respect to ±k.<br />

1) SH waves<br />

Layer<br />

Half-space<br />

{ }<br />

coth ksh −1/ s<strong>in</strong>h ksh<br />

K = ksµ<br />

K = ksµ k > 0, ω>0<br />

−1/ s<strong>in</strong>h ksh coth ksh<br />

{ }<br />

coth kh −1/ s<strong>in</strong>h kh<br />

K = kµ<br />

K = kµ k > 0, ω= 0<br />

−1/ s<strong>in</strong>h kh coth kh<br />

{ }<br />

cot S −1/ s<strong>in</strong> <br />

K = ρβω<br />

S<br />

, S = ωh K = i ωρβ k = 0, ω>0<br />

−1/ s<strong>in</strong> S cot S β<br />

K = µ { } 1 −1<br />

K = 0 k = 0, ω= 0<br />

h −1 1<br />

2) SV-P waves<br />

Note: The horizontal–vertical coupl<strong>in</strong>g terms <strong>in</strong> the matrices for SV-P waves given here<br />

have opposite sign from those <strong>in</strong> <strong>Kausel</strong> and Röesset (footnote 6). This is the result of<br />

a deliberate change here <strong>in</strong> the sign of the imag<strong>in</strong>ary factor applied to the vertical<br />

components. Also, we replace r <strong>in</strong> said reference by p, to avoid confusion with the<br />

radius or range.<br />

{ }<br />

K11 K<br />

K =<br />

12<br />

K 21 K 22<br />

(cont<strong>in</strong>ued )

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!