31.08.2018 Views

Eduardo Kausel-Fundamental solutions in elastodynamics_ a compendium-Cambridge University Press (2006)

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

11.3 Legendre polynomials 189<br />

1.0<br />

P2<br />

P<br />

0.5<br />

3<br />

P P 5 4<br />

0<br />

-0.5<br />

P 2<br />

-1.0<br />

0 0.2 0.4 0.6 0.8 1.0<br />

1<br />

π φ<br />

Figure 11.3: Legendre polynomials.<br />

The functions j m satisfy j m (0) = δ m0 , that is, they vanish at the orig<strong>in</strong> except for j 0 . Also,<br />

the y m functions are s<strong>in</strong>gular at z = 0. More generally,<br />

( ) 1<br />

j m (z) = (−z) m d m ( (<br />

s<strong>in</strong> z 1<br />

= (−z) m d 1 d ···( )))<br />

1 d s<strong>in</strong> z<br />

, m = 0, 1, 2,...<br />

z dz z<br />

z dz z dz z dz z<br />

(11.25)<br />

( ) 1<br />

y m (z) =−(−z) m d m<br />

cos z<br />

z dz z<br />

(11.26)<br />

11.2.3 Recurrence relations<br />

s m (z) = any of the spherical Bessel functions<br />

2m + 1<br />

s m (z) = s m−1 (z) + s m+1 (z)<br />

z<br />

(11.27)<br />

(2m + 1) ds m(z)<br />

= ms m−1 (z) − (m + 1) s m+1 (z)<br />

dz<br />

(11.28)<br />

11.3 Legendre polynomials<br />

11.3.1 Differential equation<br />

(1 − x 2 ) d2 y dy<br />

− 2x + m(m + 1)y = 0, m = 0, 1, 2,..., |x| ≤ 1 (11.29)<br />

dx2 dx<br />

For non-negative <strong>in</strong>teger m, the solution to this equation is y = c 1 P m + c 2 Q m , with c 1 , c 2<br />

be<strong>in</strong>g arbitrary constants, and P m (x) the Legendre polynomial of order m. The second<br />

solution Q m (x) to the Legendre differential equation is used much less often. In most<br />

applications, x = cos φ. The trigonometric form of the differential equation is<br />

d 2 P m<br />

dφ 2<br />

+ cot φ dP m<br />

dφ + m(m + 1) P m = 0 (11.30)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!