30.12.2014 Views

Download

Download

Download

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

DERET FOURIER<br />

(Jean Baptiste Joseph Fourier ahli matematika dan fisika Prancis)<br />

• Fungsi dengan periode T = 2π (T = 2π /ω, ω = 1)<br />

f<br />

( x)<br />

=<br />

∞ ∑<br />

n=<br />

1<br />

( a cos nx + b nx)<br />

a0 +<br />

n<br />

n<br />

sin<br />

Koefisien<br />

deret<br />

Fourier :<br />

a<br />

a<br />

0<br />

n<br />

=<br />

=<br />

1<br />

2π<br />

1<br />

π<br />

π<br />

∫<br />

−π<br />

π<br />

∫<br />

−π<br />

f ( x)<br />

dx<br />

f ( x)cosnxdx<br />

n<br />

= 1,2, L<br />

b<br />

n<br />

=<br />

1<br />

π<br />

π<br />

∫<br />

−π<br />

f<br />

( x)sin<br />

nxdx<br />

n<br />

= 1,2, L<br />

Matematika Teknik II<br />

( Ir. I Nyoman Setiawan, MT)<br />

1


Bentuk lain dalam penulisan deret Fourier<br />

f<br />

( x)<br />

=<br />

1<br />

2<br />

∞ ∑<br />

n=<br />

1<br />

( a cos nx + b nx)<br />

a0 +<br />

n<br />

n<br />

sin<br />

a<br />

0<br />

=<br />

1<br />

π<br />

π<br />

∫<br />

−π<br />

f<br />

( x)<br />

dx<br />

Koefisien<br />

deret Fourier :<br />

a<br />

b<br />

n<br />

n<br />

1<br />

=<br />

π<br />

1<br />

=<br />

π<br />

π<br />

∫<br />

−π<br />

π<br />

∫<br />

−π<br />

f ( x)cosnxdx<br />

f ( x)sin<br />

nxdx<br />

n = 1,2, L<br />

n = 1,2, L<br />

Matematika Teknik II<br />

( Ir. I Nyoman Setiawan, MT)<br />

2


Contoh :<br />

⎧−<br />

k jika −π<br />

< x < 0<br />

f ( x)<br />

= ⎨<br />

dan f ( x + 2π<br />

) = f ( x)<br />

⎩ k jika 0 < x < π<br />

Matematika Teknik II<br />

( Ir. I Nyoman Setiawan, MT)<br />

3


Penyelesaian :<br />

a<br />

0<br />

1<br />

2π<br />

π<br />

( x)<br />

dx =<br />

1 ⎡<br />

⎢<br />

2π<br />

⎣<br />

0<br />

1 ⎡<br />

= ⎢ −<br />

2π<br />

⎣<br />

( −k)<br />

dx +<br />

= ∫ f ∫ ∫<br />

−π<br />

−π<br />

π<br />

0<br />

⎤<br />

kdx⎥<br />

⎦<br />

0 π ⎤<br />

kx + kx ⎥<br />

− π 0⎦<br />

=<br />

0<br />

a n<br />

π<br />

0<br />

1<br />

1 ⎡<br />

= ∫ f ( x)cosnxdx=<br />

⎢ ∫(<br />

−k)cosnxdx<br />

+<br />

π<br />

π<br />

∫<br />

−π<br />

⎣−π<br />

0<br />

1 ⎡ sin nx 0<br />

= ⎢ − k +<br />

π ⎣ n − π<br />

π<br />

⎤<br />

k cosnxdx⎥<br />

⎦<br />

sin nx<br />

k<br />

n<br />

π ⎤<br />

⎥ =<br />

0⎦<br />

0<br />

Matematika Teknik II<br />

( Ir. I Nyoman Setiawan, MT)<br />

4


Penyelesaian :<br />

b n<br />

=<br />

π<br />

0<br />

π<br />

1<br />

1 ⎡<br />

⎤<br />

b n<br />

= ∫ f ( x)sin<br />

nxdx=<br />

⎢ ∫(<br />

−k)sin<br />

nxdx + ∫k<br />

sin nxdx⎥<br />

π<br />

π<br />

−π<br />

⎣−π<br />

0 ⎦<br />

1 ⎡ cosnx<br />

0 cosnx<br />

π ⎤<br />

= ⎢ k − k ⎥<br />

π ⎣ n − π n 0⎦<br />

k<br />

2k<br />

( cos0<br />

− cos( −nπ<br />

) − cos nπ<br />

+ cos0) = ( 1−<br />

cos nπ<br />

)<br />

nπ<br />

f ( x)<br />

f ( x)<br />

=<br />

∞<br />

= ∑<br />

n=<br />

1<br />

2k<br />

nπ<br />

4k<br />

⎛<br />

⎜sin<br />

x<br />

π ⎝<br />

( 1−<br />

cosnπ<br />

)<br />

+<br />

1<br />

sin 3x<br />

3<br />

+<br />

1<br />

sin 5x<br />

5<br />

+<br />

1<br />

7<br />

nπ<br />

⎞<br />

sin 7x<br />

+ L⎟<br />

⎠<br />

Matematika Teknik II<br />

( Ir. I Nyoman Setiawan, MT)<br />

5


DERET FOURIER T = 2L<br />

• Fungsi dengan periode T = 2L ( T = 2π /ω, L= π /ω)<br />

f<br />

( x)<br />

Koefisien<br />

deret<br />

Fourier :<br />

=<br />

∞ ⎛ nπx<br />

a + ∑ 0 ⎜an<br />

cos + bn<br />

sin<br />

n=<br />

1⎝<br />

L<br />

a<br />

a<br />

b<br />

0<br />

n<br />

n<br />

=<br />

=<br />

=<br />

1<br />

2L<br />

1<br />

L<br />

1<br />

L<br />

L<br />

∫<br />

−L<br />

L<br />

∫<br />

−L<br />

L<br />

∫<br />

−L<br />

f ( x)<br />

dx<br />

f ( x)cos<br />

f ( x)sin<br />

nπx<br />

dx<br />

L<br />

nπx<br />

L<br />

dx<br />

nπx<br />

L<br />

⎞<br />

⎟<br />

⎠<br />

n = 1,2, L<br />

n = 1,2, L<br />

Matematika Teknik II<br />

( Ir. I Nyoman Setiawan, MT)<br />

6


Contoh :<br />

f<br />

⎧0<br />

jika − 2 < x < −1<br />

⎪<br />

( x)<br />

= ⎨k<br />

jika −1<br />

< x < 1 T = 2L<br />

= 4, L = 2<br />

⎪<br />

⎩0<br />

jika 1 < x < 2<br />

Matematika Teknik II<br />

( Ir. I Nyoman Setiawan, MT)<br />

7


Matematika Teknik II<br />

( Ir. I Nyoman Setiawan, MT)<br />

8<br />

Penyelesaian :<br />

2<br />

1<br />

1<br />

4<br />

1<br />

4<br />

1<br />

)<br />

(<br />

4<br />

1<br />

1<br />

1<br />

2<br />

2<br />

0<br />

k<br />

kx<br />

kdx<br />

dx<br />

x<br />

f<br />

a =<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

=<br />

= ∫<br />

∫<br />

−<br />

−<br />

L ,L<br />

3,7,11<br />

,<br />

2<br />

1,5,9,<br />

,<br />

2<br />

0,<br />

2<br />

sin<br />

2<br />

1<br />

1<br />

2<br />

sin<br />

2<br />

1<br />

2<br />

cos<br />

2<br />

1<br />

2<br />

)cos<br />

(<br />

2<br />

1<br />

1<br />

1<br />

2<br />

2<br />

=<br />

= −<br />

=<br />

=<br />

=<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

−<br />

=<br />

⎥<br />

⎦<br />

⎤<br />

⎢<br />

⎣<br />

⎡<br />

=<br />

= ∫<br />

∫<br />

−<br />

−<br />

n<br />

jika<br />

n<br />

k<br />

a<br />

n<br />

jika<br />

n<br />

k<br />

a<br />

genap<br />

n<br />

jika<br />

a<br />

n<br />

n<br />

k<br />

x<br />

n<br />

n<br />

k<br />

dx<br />

x<br />

n<br />

k<br />

dx<br />

x<br />

n<br />

x<br />

f<br />

a<br />

n<br />

n<br />

n<br />

n<br />

π<br />

π<br />

π<br />

π<br />

π<br />

π<br />

π


Penyelesaian :<br />

b n<br />

1<br />

2<br />

2<br />

−2<br />

nπx<br />

1 ⎡<br />

f ( x)sin<br />

dx = ⎢<br />

2 2 ⎣<br />

= ∫<br />

∫<br />

1<br />

−1<br />

k sin<br />

nπx<br />

2<br />

⎤<br />

dx⎥<br />

⎦<br />

=<br />

1<br />

2<br />

⎡<br />

⎢<br />

⎣<br />

k<br />

n<br />

cos<br />

nπx<br />

2<br />

1 ⎤<br />

⎥<br />

−1⎦<br />

=<br />

0,<br />

untuk<br />

n=<br />

1,2,3,L<br />

f<br />

f<br />

( x)<br />

( x)<br />

∞ = a + ∑ 0<br />

=<br />

=<br />

k<br />

2<br />

+<br />

n<br />

1<br />

2k<br />

π<br />

a<br />

⎛<br />

⎜<br />

⎝<br />

n<br />

nπ<br />

cos x<br />

2<br />

π<br />

cos x<br />

2<br />

−<br />

1<br />

3<br />

cos<br />

3π<br />

x<br />

2<br />

+<br />

1<br />

5<br />

cos<br />

5π<br />

x<br />

2<br />

⎞<br />

− + L⎟<br />

⎠<br />

Matematika Teknik II<br />

( Ir. I Nyoman Setiawan, MT)<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!