12.03.2015 Views

Tegangan termal - Universitas Brawijaya

Tegangan termal - Universitas Brawijaya

Tegangan termal - Universitas Brawijaya

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fakultas Teknik<br />

Jurusan Teknik Sipil<br />

<strong>Universitas</strong> <strong>Brawijaya</strong> Malang


Perubahan temperatur ekspansi (+) atau kontraksi (-) bahan <br />

tegangan dan regangan<br />

t<br />

. t . t 1<br />

t0<br />

Dimana :<br />

ε t = regangan <strong>termal</strong><br />

α = koefisien ekspansi <strong>termal</strong> (1 / 0 C)<br />

Δt = t 1 - t 0 (perubahan temperatur)<br />

t 0 = temperatur awal ( 0 C)<br />

t 1 = temperatur akhir ( 0 C)<br />

t<br />

L<br />

L<br />

L<br />

.<br />

.<br />

t.<br />

L<br />

t


Regangan <strong>termal</strong> terjadi bila struktur dalam keadaan tak terkekang<br />

Bila struktur diberi kekangan:<br />

Batang tidak bisa meregang, sehingga timbul tegangan <strong>termal</strong><br />

t 1<br />

t<br />

E.<br />

t<br />

0<br />

Sehingga:<br />

t<br />

E. t t<br />

Dalam melakukan analisis struktur statis tak tentu akibat perubahan<br />

temperatur diperlukan :<br />

‣ persamaan keseimbangan<br />

‣ persamaan keserasian, hubungan temperatur peralihan dan<br />

hubungan gaya peralihan<br />

1<br />

0


Pada temperatur 37ºC letak rel-rel sebuah jalan kereta api berjarak 8<br />

mm satu sama lainnya. Panjang rel adalah 18 m, α = 12.10 -6 tiap<br />

derajat celcius dan E = 2.150.000 kg/cm 2 . Pada temperatur berapakah<br />

rel-rel tersebut akan berimpit satu sama lainnya ?<br />

t<br />

1<br />

L<br />

t<br />

t<br />

3<br />

. t.<br />

L<br />

L<br />

. L<br />

0<br />

37<br />

C<br />

0<br />

C<br />

t<br />

1<br />

3<br />

0<br />

0,8<br />

6<br />

12.10 .1800<br />

t<br />

C<br />

0<br />

40<br />

Jadi rel-rel akan berimpit satu sama lain pada temperatur 40 C.<br />

0<br />

C


Contoh :<br />

Sebuah batang dengan panjang L terletak diantara dua tumpuan<br />

jepit. Jika temperatur batang ini ditingkatkan sebesar Δt, berapa besar<br />

tegangan <strong>termal</strong> (σ t ) yang timbul pada batang tersebut? (batang<br />

dianggap isotropis, homogen dan elastis linier)<br />

Batang prismatis yang<br />

terjepit pada kedua<br />

ujungnya


Dengan adanya peningkatan temperatur, maka akan terjadi pertambahan<br />

panjang batang. Pertambahan ini ditahan kedua tumpuan A dan B, sehingga<br />

timbul reaksi R A dan R B .<br />

I. Persamaan keseimbangan<br />

ΣH = 0 ; R A – R B = 0<br />

(persamaan mengandung dua anu ‘! Struktur statis tak tentu)<br />

II.<br />

Persamaan keserasian<br />

Berhubung tumpuan tidak bergerak, maka perubahan panjang<br />

batang sama dengan nol.


Menentukan perubahan panjang batang<br />

Potong tumpuan di B<br />

I. Apabila hanya perubahan temperatur yang bekerja pada batang,<br />

maka perpanjangan batang = ΔL B<br />

II. Apabila hanya R B yang bekerja, maka batang akan memendek<br />

sebesar δ B . Jadi perubahan panjang neto δ AB = ΔL B - δ B .<br />

Sehingga persamaan keserasian menjadi :<br />

δ AB = ΔL B - δ B = 0<br />

III. Hubungan peralihan<br />

- Pertambahan panjang batang akibat perubahan temperatur<br />

ditentukan dengan hubungan temperatur peralihan<br />

L B<br />

( t)<br />

L<br />

- Pengurangan panjang batang akibat gaya R B ditentukan<br />

berdasarkan hubungan gaya peralihan :<br />

B<br />

R B<br />

. L<br />

E.<br />

A


tekan<br />

E<br />

t<br />

A<br />

A<br />

E<br />

t<br />

A<br />

R<br />

A<br />

R<br />

R<br />

R<br />

A<br />

E<br />

t<br />

R<br />

L<br />

t<br />

A<br />

E<br />

L<br />

R<br />

A<br />

E<br />

L<br />

R<br />

L<br />

t<br />

L<br />

B<br />

A<br />

t<br />

B<br />

A<br />

B<br />

B<br />

B<br />

B<br />

.<br />

-<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

0<br />

.<br />

.<br />

.


Contoh :<br />

Sebuah tabung tembaga yang panjangnya 300 mm dengan luas<br />

penampang 2000 mm² diletakkan antara 2 buah tutup yang<br />

terbuat dari invar (seperti pada gambar). Empat baut baja<br />

berukuran 22 mm secara simetris disusun sejajar dengan<br />

sumbu tabung yang dieratkan.


Hitung tegangan dalam tabung bila suhu susunan tersebut naik dari 15ºC<br />

menjadi 70ºC.<br />

Diketahui :<br />

E cu = 120 G Pa<br />

E s = 200 G Pa<br />

α cu = 0,000016 per C<br />

α s = 0,000012 per C<br />

Jika deformasi aksial yang terjadi pada tabung haruslah sama<br />

dengan deformasi aksial yang terjadi pada baut, maka tabung<br />

tembaga akan terdorong kembali sedang baut tertarik keluar<br />

sehingga deformasi keduanya menjadi sama. Gaya tekan P cu<br />

dalam tabung tembaga sama dengan gaya tarik P s dalam baut<br />

baja.


a. Persamaan Keseimbangan<br />

V<br />

0<br />

Ps Pcu<br />

0<br />

P<br />

s<br />

P<br />

cu<br />

P<br />

b. Persamaan Keserasian<br />

1. Apabila hanya perubahan temperatur yang bekerja pada tabung<br />

dan baut, maka perpanjangan pada :<br />

a. tabung = δ cu<br />

b. baut = δ s<br />

2. Apabila hanya P yang bekerja, maka tabung akan memendek<br />

dan baut memanjang sebesar δcu dan δs sehingga perubahan<br />

panjang keseluruhan :<br />

-<br />

-<br />

Tabung<br />

Baut<br />

:<br />

:<br />

cu<br />

s<br />

s<br />

t<br />

cu<br />

t<br />

–<br />

s<br />

p<br />

cu<br />

p<br />

cu<br />

s


c. Hubungan Peralihan<br />

Pertambahan panjang akibat perubahan temperatur<br />

-<br />

-<br />

Tabung<br />

Baut<br />

:<br />

:<br />

cu<br />

s<br />

s<br />

cu<br />

t<br />

t<br />

L<br />

s<br />

L<br />

cu<br />

Pengurangan / penambahan panjang akibat gaya P<br />

Tabung<br />

Baut<br />

CU<br />

:<br />

:<br />

S<br />

CU<br />

S<br />

P<br />

A<br />

dan L<br />

s<br />

s<br />

cu<br />

P<br />

E<br />

cu<br />

cu<br />

. L<br />

. E<br />

s<br />

s<br />

. L<br />

. A<br />

L<br />

s<br />

cu<br />

cu


3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

3<br />

9<br />

6<br />

2<br />

6<br />

9<br />

0,00022x 72.960.000.10<br />

544<br />

72.960.000.10<br />

204<br />

72.960.000.10<br />

304<br />

304.000.10<br />

240.000.10<br />

0,00022<br />

380 .200.10<br />

4<br />

0,00066<br />

120.2000.10<br />

0,00088<br />

.200.10<br />

10<br />

.22<br />

.<br />

4<br />

1<br />

4<br />

55<br />

0,000012<br />

10<br />

. 2000<br />

120.10<br />

55<br />

0,000016<br />

.<br />

.<br />

.<br />

.<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

P<br />

E<br />

A<br />

L<br />

P<br />

L<br />

t<br />

A<br />

E<br />

L<br />

P<br />

L<br />

t<br />

S<br />

CU<br />

S<br />

cu<br />

s<br />

s<br />

s<br />

s<br />

s<br />

cu<br />

cu<br />

cu<br />

cu<br />

cu<br />

cu


P<br />

16051200<br />

29.505,88N<br />

544<br />

P 29.506 29.506.10<br />

A 2.000<br />

2<br />

m 2.000<br />

6<br />

10<br />

6<br />

14,753. 10 N<br />

2<br />

m<br />

14,753MPa<br />

6<br />

Gaya :<br />

• Mili newton = 1 mN = 0,001 N<br />

• Newton<br />

• Kilo newton = 1 KN = 1000 N<br />

<strong>Tegangan</strong> :<br />

• Kilo pascal = 1 Kpa = 1000 Pa<br />

• Mega pascal = 1 Mpa = 10 6 Pa<br />

• Giga pascal = 1 Gpa = 10 9 Pa


A little knowledge that<br />

acts is worth infinitely<br />

more than much<br />

knowledge that is idle.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!