12.07.2015 Views

Heat Equation - Fisika Komputasi - Fisika Universitas Padjadjaran

Heat Equation - Fisika Komputasi - Fisika Universitas Padjadjaran

Heat Equation - Fisika Komputasi - Fisika Universitas Padjadjaran

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson Method<strong>Heat</strong> <strong>Equation</strong><strong>Fisika</strong> <strong>Komputasi</strong>Irwan Ary DharmawanJurusan <strong>Fisika</strong> <strong>Universitas</strong> <strong>Padjadjaran</strong>http://phys.unpad.ac.id/jurusan/staff/dharmawanemail : dharmawan@phys.unpad.ac.idIrwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>


<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson Method1 <strong>Heat</strong> <strong>Equation</strong>2 Boundary Value Problem3 Explicit Scheme4 Implicit Scheme5 Crank-Nicholson MethodIrwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>


<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson MethodMisalkan sebuah batang logam tipis satu dimensi dengan panjangL memenuhi persamaan berikut∂u∂t = k∂2 u∂x 2 (1)dengan u and k menyatakan suhu dan konduktivitas termal.Interpretasi secara fisis untuk persamaan ini bisa dilihat pada slide<strong>Fisika</strong> Matematika III.Irwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>


<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson MethodMasalah Syarat Batas∂u∂t = uk∂2 ∂x 2 + f(x, t), 0 x Lu(x,0) = f(x)u(0, t) = 0u(L, t) = 0dengan f(x, t) menyatakan sumber.Irwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>


<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson MethodPendekatan Forward Euler (Explicit Scheme) , untuk derivatifterhadap waktu∂u∂t ≃ u(n+1) i− u (n)i∆tuntuk derivatif terhadap koordinat spasial(2)∂ 2 u∂x 2 ≃ ku(n) i−1 − 2u(n) i+ u (n)i+1(∆x) 2 (3)Irwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>


<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson MethodExplicit Schemeu (n+1)i∆t− u (n)i= k u(n) i−1 − 2u(n) i+ u (n)i+1(∆x) 2 + f i (4)Dapat ditulis kembali menjadiu (n+1)i= u (n)i+ γ(u (n)i−1 − 2u(n) i+ u (n)i+1 ) + ∆tf i (5)denganγ = k ∆t∆x 2Irwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>


<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson MethodDengan analisis (PR) diperoleh bahwa syarat stabilitas untukmetoda ekplisit adalahatau∆t 0.5∆x2kγ 0.5Irwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>


<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson MethodPendekatan Backward Euler (Implicit Scheme) , untuk derivatifterhadap waktu∂u∂t ≃ u(n+1) i− u (n)i(6)∆tuntuk derivatif terhadap koordinat spasial∂ 2 u∂x 2 ≃ ku(n+1) i−1− 2u (n+1)i+ u (n+1)i+1(∆x) 2 (7)Irwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>


<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson MethodImplicit Schemeu (n+1)i∆t− u (n)i= k u(n+1) i−1− 2u (n+1)i+ u (n+1)i+1(∆x) 2 + f i (8)Dapat ditulis kembali menjadi−γu (n+1)i−1+ (1 + 2γ)u (n+1)i− γu (n+1)i+1= u (n)i+ ∆tf i (9)denganγ = k ∆t∆x 2Irwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>


<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson MethodDengan analisis (PR) diperoleh bahwa metoda implisit selalu stabiluntuk setiap ukuran ∆tIrwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>


<strong>Heat</strong> <strong>Equation</strong>Boundary Value ProblemExplicit SchemeImplicit SchemeCrank-Nicholson MethodMetoda ini diturunkan menggunakan Modified Euler Method dandapat dituliskan menjadiu (n+1)i∆t− u (n)i=k[2(∆x) 2 (u (n+1)i−1− 2u (n+1)i+ u (n+1)i+1)+ (u (n)i−1 − 2u(n) i+ u (n)i+1 ) + f i(10)Irwan Ary Dharmawan<strong>Heat</strong> <strong>Equation</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!