Aufrufe
vor 4 Jahren

additive 02.2020

04 Post-Processing

04 Post-Processing Insgesamt wurde die Wirksamkeit der Gleitschlifftechnik auf den inneren Kanaloberflächen ohne Änderung der Kanalform bestätigt. Die Analysen zeigten, dass die behandelten Oberflächen frei von Spritzern und losen Pulvern waren. Mit allen drei Verfahren wurde eine Verbesserung der Rauheitswerte in den innenliegenden Kanälen erzielt, wobei das chemisch unterstützte Gleitschleifen sowohl vom Ergebnis als auch dem Zeitaufwand am effektivsten war. Vollautomatische Bearbeitung in einer Maschine Durchgeführt wurden die Untersuchungen auf einer Weiterentwicklung des Anlagentyps M3 von AM Solutions. Dabei handelt es sich um eine Marke der Rösler- Gruppe, die sich unter anderem auf das Post Processing 3D-gedruckter Teile spezialisiert hat und entsprechende Maschinenlösungen anbietet. Diese decken vom Auspacken, Entpulvern, Entfernen von Stützstrukturen, Homogenisieren bzw. Glätten der Oberfläche, (Hochglanz-)Polieren und der Oberflächenvorbereitung, z. B. für eine nachfolgende Beschichtung, das gesamte Spektrum der Nachbearbeitung additiv gefertigter Teile ab. Die Weiterentwicklung der bestehenden M3-Anlage ermöglicht es, zukünftig nicht nur Innenkanäle effektiv und gezielt zu bearbeiten, sondern sie ist gleichzeitig das erste vollautomatisierte System für die prozesssichere Bearbeitung additiv gefertigter Bauteile ohne manuellen Aufwand. Das Teilehandling für die Ein- und Ausgabe der Bauteile kann mit einem Roboterarm ebenfalls automatisiert werden. Die genau angepasste Dosierung von Schleifmedium und Compound in die Anlage erfolgt automatisch über ein Befüllsystem ebenso wie der Start des Prozesses. Angepasst an die Oberflächenanforderungen können mehrere Schleif- und Polierprozesse nacheinander geschaltet durchgeführt werden. Nach der automatischen Entleerung der Verfahrensmittel aus dem Arbeitsbehälter wird das Bauteil ausgespannt. Falls erforderlich, kann optional ein Reinigungs- und Trockenprozess ebenfalls automatisiert erfolgen. Das Teilehandling dafür lässt sich ebenso wie für die Übergabe an den nachfolgenden Prozess automatisieren. Die Anlagensteuerung ermöglicht, mehrere teilespezifische Bearbeitungsprogramme zu hinterlegen. Die an unterschiedliche Teile angepassten Prozessparameter werden einfach mit einem Tastendruck oder einer Werkstückerkennung ausgewählt. Die automatisierte Nachbearbeitung additiv gefertigter Bauteile – auch in schwer zugänglichen Werkstückbereichen, die bisher nicht oder nur mit einem sehr hohen manuellen Aufwand bearbeitet werden konnten – ermöglicht erhebliche Zeit- und Kosteneinsparungen und führt somit zu einer deutlich erhöhten Wirtschaftlichkeit. ■ Rösler Oberflächentechnik GmbH www.rosler.com Endgültige Rauheitswerte Bei allen drei Bearbeitungsansätzen sind die endgültigen Rauheitswerte in vertikaler und horizontaler Richtung des Innenkanals sehr ähnlich. Bild: Rösler Italiana 56 additive April 2020

Forschung05 Zehn Millionen Voxel pro Sekunde KIT: Schnellster hochpräziser 3D-Drucker 3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. ■■■■■■ Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter große Gitterstruktur mit Details bis in den Mikrometermaßstab gedruckt, die mehr als 300 Milliarden Voxel enthält. (Ein Voxel ist das dreidimensionale Analogon des Pixels im 2D-Druck). „Mit dem Druck dieses Metamaterials schlagen wir den Rekord, der bei 3D-gedruckten Flugzeug - flügeln erreicht wurde, um Längen – ein neuer Weltrekord“, erklärt Professor Martin Wegener, Sprecher des Exzellenzclusters „3D Matter Made to Order“ (3DMM2O), in dessen Rahmen das System entwickelt wurde. Hochpräzise filigrane Strukturen Bei dieser Art von 3D-Druck durchfährt der Lichtfleck eines Lasers computergesteuert einen flüssigen Fotolack. Nur das Material im Brennpunkt des Lasers wird dabei belichtet und ausgehärtet. „Die Brennpunkte entsprechen den Düsen beim Tintenstrahldrucker, mit dem Unterschied, dass sie dreidimensional arbeiten“, sagt Vincent Hahn, Erstautor der Publikation. So entstehen hochpräzise filigrane Strukturen für verschiedene Einsatzbereiche wie Optik und Photonik, Materialwissenschaften, Biotechnologie oder Sicherheitstechnik. Das Metamaterial, das mit dem neuen System gedruckt wurde, besteht aus einer komplexen dreidimensionalen Gitterstruktur im Mikrometermaßstab. Bild: Vincent Hahn, KIT Typischerweise konnte man bisher mit einem einzigen Laserlichtfleck einige Hundert Tausend Voxel pro Sekunde erzeugen. Er war damit fast hundertmal langsamer als grafische Tintenstrahldrucker. Dieser Umstand hat bislang viele Anwendungen behindert. Wissenschaftlerinnen und Wissenschaftler des KIT und der Queensland University of Technology (QUT) in Brisbane/ Australien haben nun innerhalb des Exzellenzclusters 3DMM2O ein neues System entwickelt. Laserstrahl wird in neun Teilstrahlen aufgeteilt Mit einer speziellen Optik wird der Laserstrahl in neun Teilstrahlen aufgeteilt, die jeweils in einen Brennpunkt gebündelt werden. Alle neun Teilstrahlen können parallel verwendet und inzwischen, dank verbesserter elektronischer Ansteuerung, auch deutlich schneller als zuvor präzise verfahren werden. Mit einigen weiteren technischen Verbesserungen kommen die Forscher im 3D-Druck so auf Druckgeschwindigkeiten von etwa zehn Millionen Voxel pro Sekunde und sind damit nun gleichauf mit grafischen 2D-Tintenstrahldruckern. Dennoch geht die Forschung und Entwicklung am KIT mit Hochdruck weiter. „Schließlich will man mit 3D-Druckern nicht nur das Pendant eines Blattes, sondern dicke Bücher ausdrucken“, so Hahn. Hierzu seien insbesondere auch Fortschritte in der Chemie erforderlich, beispielsweise müssten empfindlichere Fotolacke entwickelt werden, um mit der gleichen Laserleistung noch mehr Brennpunkte erzeugen zu können. ■ Karlsruher Institut für Technologie (KIT) www.materials.kit.edu/index.php additive April 2020 57