22.11.2012 Views

Cell-cell interactions in tumour progression - The University of Sydney

Cell-cell interactions in tumour progression - The University of Sydney

Cell-cell interactions in tumour progression - The University of Sydney

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pathology Discipl<strong>in</strong>e<br />

Honours Year Students<br />

Summary <strong>of</strong> Requirements


ENTRY REQUIREMENTS<br />

Must have a WAM <strong>of</strong> 65 or<br />

greater<br />

Must approach a supervisor<br />

obta<strong>in</strong> permission to<br />

undertake his/her Honours<br />

project


Why a WAM <strong>of</strong> 65 or greater?<br />

Faculty <strong>of</strong> Science rule that WAM must be >65<br />

<strong>The</strong> Faculty <strong>of</strong> Science may consider applicants <strong>in</strong> the<br />

range 63-65 on special application, with support from the<br />

Discipl<strong>in</strong>e<br />

WAM < 68 - difficult to achieve Honours 1<br />

<strong>The</strong> m<strong>in</strong>imum score for Honours I is 80<br />

Pathology constra<strong>in</strong>ed by Faculty <strong>of</strong> Science (average Honours<br />

marks <strong>in</strong> each Dept must not exceed average WAM + 10).<br />

NOTE: <strong>The</strong> current cut-<strong>of</strong>f for a post-graduate<br />

scholarship for a PhD is:<br />

WAM ~72/Hons ~82 (local students)


NOTE !<br />

It is NOT necessary to have completed<br />

<strong>Cell</strong> Pathology 3.


REQUIREMENTS OF CANDIDATES<br />

General<br />

Recommended students start by February 1st.<br />

Courses:<br />

Animal Handl<strong>in</strong>g Course.<br />

Radiation Safety Course.<br />

Laboratory Safety Course


REQUIREMENTS OF CANDIDATES<br />

Sem<strong>in</strong>ars<br />

Department Presentations:<br />

Project overview & research plan<br />

March (10 m<strong>in</strong>).<br />

F<strong>in</strong>al sem<strong>in</strong>ar<br />

November (20 m<strong>in</strong>)<br />

Weekly Research Techniques Sem<strong>in</strong>ars &<br />

Journal Club: - Semester 1<br />

Attendance at formal research sem<strong>in</strong>ars (x4).


REQUIREMENTS OF CANDIDATES<br />

Assessment<br />

Mark breakdown:<br />

Literature Review (May) 5%<br />

F<strong>in</strong>al Sem<strong>in</strong>ar (Nov) 10%<br />

<strong>The</strong>sis (Nov) 75%<br />

Coursework (Sem 1) 10%<br />

(Includ<strong>in</strong>g all aspects <strong>of</strong> sem<strong>in</strong>ar<br />

participation)


How to apply for Honours<br />

Step 1: Select a research project/s. Lists <strong>of</strong> projects are available at<br />

this session and at:<br />

Pathology Discipl<strong>in</strong>e website:<br />

http://sydney.edu.au/medic<strong>in</strong>e/pathology/students/honours/<strong>in</strong>dex.php<br />

Searchable database for Science Honours projects <strong>in</strong> the Faculty <strong>of</strong> Medic<strong>in</strong>e:<br />

http://sydney.edu.au/medic<strong>in</strong>e/future-students/honours/<strong>in</strong>dex.php<br />

Step 2: Discuss the research project with the supervisor/s and<br />

obta<strong>in</strong> permission to undertake the project/s<br />

Step 3: Submit application form to Pathology Discipl<strong>in</strong>e Front<br />

Office (Pathology Dept website)<br />

http://sydney.edu.au/medic<strong>in</strong>e/pathology/students/honours/<strong>in</strong>dex.php<br />

Step 4: Submit application form to Faculty <strong>of</strong> Science<br />

http://sydney.edu.au/science/fstudent/undergrad/course/honours/<strong>in</strong>dex.shtml


Pathology Honours Website


Searchable database for Science Honours<br />

projects <strong>in</strong> the Faculty <strong>of</strong> Medic<strong>in</strong>e<br />

http://sydney.edu.au/medic<strong>in</strong>e/future-students/honours/<strong>in</strong>dex.php


Students consider<strong>in</strong>g Medic<strong>in</strong>e<br />

or Dentistry<br />

It is possible and encouraged to defer<br />

admission <strong>in</strong>to Medic<strong>in</strong>e or Dentistry to<br />

undertake Honours (and later a PhD)


<strong>University</strong> <strong>of</strong> <strong>Sydney</strong><br />

Honours Merit Scholarships<br />

Awarded on the basis <strong>of</strong> academic merit and<br />

personal attributes such as leadership and<br />

creativity<br />

$6,000 for one year !<br />

Applications close early January<br />

http://www.usyd.edu.au/scholarships/prospective/honours.shtml


Marfan Syndrome (MFS)<br />

Hambly Lab<br />

Marfan syndrome (MFS) is an autosomal dom<strong>in</strong>ant <strong>in</strong>herited<br />

genetic connective tissue disease with the estimated<br />

<strong>in</strong>cidence <strong>of</strong> 1 / 3000 ~ 5000.<br />

MFS patients are extremely tall and slim with multi-system<br />

symptoms.<br />

Skeletal: long slim limbs and f<strong>in</strong>gers, scoliosis, pectus<br />

excavatum or car<strong>in</strong>atum and abnormal jo<strong>in</strong>t flexibility and<br />

so on.<br />

Ocular: ectopia lentis (most obvious symptom)<br />

Cardiovascular: mitral valve prolapse, ventricular<br />

dilatation and thoracic aortic aneurysm<br />

Possible pathogenesis<br />

MFS patients <strong>in</strong>herited an abnormal fibrill<strong>in</strong> mutation<br />

from their parents or may generate a new somatic<br />

mutation<br />

MFS patients produce abnormal fibrill<strong>in</strong>, compromis<strong>in</strong>g<br />

micr<strong>of</strong>ibril formation<br />

Fibrill<strong>in</strong>-1+ latent TGF-β → control TGF-β signall<strong>in</strong>g<br />

21 May 2012


Abnormal elasticity<br />

- STIFF WALL (echo)<br />

Abnormal fibrill<strong>in</strong><br />

Excessive wall stress<br />

dur<strong>in</strong>g heart pump<strong>in</strong>g<br />

Inflammation<br />

- cytok<strong>in</strong>es<br />

- MMPs<br />

Cystic Medial Necrosis<br />

Thoracic aortic aneurysm<br />

Failure <strong>of</strong> sequestration <strong>of</strong> TGF-β<br />

- Increased fibrosis<br />

- STIFF WALL (echo)<br />

21 May 2012


Plasma TGFβ and MMPs <strong>in</strong> Human Heritable Aortopathy<br />

600<br />

400<br />

200<br />

15<br />

10<br />

5<br />

0<br />

0<br />

TGFβ ng/ml x 10 NS<br />

Control Marfan MASS FTAD<br />

MMP3 (ng/ml)<br />

*<br />

Control Marfan MASS TAAD<br />

*<br />

600<br />

400<br />

200<br />

0<br />

150<br />

100<br />

50<br />

0<br />

MMP2 ng/ml<br />

*<br />

Control Marfan MASS FTAD<br />

MMP9 (ng/ml)<br />

Control Marfan MASS TAAD<br />

Lu et al unpublished data 2012<br />

*<br />

NS


Supervisor: Dr Danuta Kal<strong>in</strong>owski<br />

Co‐Supervisor: Pr<strong>of</strong> Des Richardson


Fe<br />

Oxidative Phosphorylation DNA Synthesis<br />

‐ Cancer <strong>cell</strong>s require higher levels <strong>of</strong> iron for proliferation and are<br />

more sensitive to iron depletion than normal <strong>cell</strong>s.


• <strong>The</strong>refore, drugs that can b<strong>in</strong>d iron (iron chelators)<br />

represent a novel chemotherapeutic treatment avenue.


Vehicle Control<br />

(15% Propylene<br />

glycol <strong>in</strong> Sal<strong>in</strong>e)<br />

Dp44mT<br />

(0.4 mg/kg)<br />

SK-Mel-28 Tumour Implants after 7 weeks <strong>of</strong> Treatment – IV <strong>in</strong>jection once a day


• This project will assess the anti‐cancer activity and<br />

the mechanisms <strong>of</strong> action <strong>of</strong> novel iron chelators<br />

developed <strong>in</strong> our group.<br />

‐ Structure‐Activity Relationships<br />

‐ Pharmacology<br />

‐ Routes <strong>of</strong> <strong>Cell</strong>ular Uptake<br />

‐ Selectivity <strong>in</strong> Target<strong>in</strong>g Cancer


Ascorbate<br />

Iron Metabolism & Chelation (IMC) Program<br />

Department <strong>of</strong> Pathology<br />

<strong>The</strong> <strong>University</strong> <strong>of</strong> <strong>Sydney</strong>


Iron (Fe) is an essential metal for all mammalian<br />

<strong>cell</strong>s<br />

Fe is required for oxygen transport, mitochondrial<br />

respiration, DNA synthesis, etc.<br />

Although necessary, Fe is potentially toxic to <strong>cell</strong>s<br />

and must be carefully delivered<br />

Almost all Fe <strong>in</strong> plasma is bound to the serum Fe<br />

transport prote<strong>in</strong>, transferr<strong>in</strong> (Tf)<br />

<strong>The</strong> Tf‐to‐<strong>cell</strong> cycle is the major Fe uptake route<br />

used by most <strong>cell</strong>s, and <strong>in</strong> particular dur<strong>in</strong>g red<br />

blood <strong>cell</strong> production<br />

<strong>The</strong> follow<strong>in</strong>g honours project exam<strong>in</strong>es some<br />

basic unanswered questions <strong>in</strong> <strong>cell</strong>ular Fe biology


Andrews N C Blood 2008;112:219-230


Transferr<strong>in</strong>-Fe<br />

complex<br />

<strong>Cell</strong><br />

Transferr<strong>in</strong><br />

without Fe<br />

•<strong>Cell</strong>s <strong>in</strong> the body take up<br />

almost all their iron (Fe)<br />

from the transferr<strong>in</strong> (Tf)-to<strong>cell</strong><br />

cycle<br />

•Vitam<strong>in</strong> C (ascorbate)<br />

stimulates this process by<br />

an unknown mechanism


•<strong>Cell</strong>s <strong>in</strong> the body take up<br />

almost all their iron (Fe)<br />

from the transferr<strong>in</strong> (Tf)-to<strong>cell</strong><br />

cycle<br />

•Vitam<strong>in</strong> C (ascorbate)<br />

stimulates this process by<br />

an unknown mechanism<br />

•<strong>The</strong> Tf-to-<strong>cell</strong> cycle can<br />

be regulated by hypoxia<strong>in</strong>ducible<br />

factors (HIFs)<br />

•Your project can<br />

exam<strong>in</strong>e how ascorbate<br />

regulates <strong>cell</strong> Fe uptake<br />

via HIFs.


Relevance to understand<strong>in</strong>g basic <strong>cell</strong>ular<br />

and systemic iron metabolism, which is<br />

central to a wide range <strong>of</strong> disease types.<br />

Relevance to cancer <strong>cell</strong> metabolism as the<br />

metabolic phenotype <strong>in</strong> cancer <strong>cell</strong>s is<br />

frequently associated with <strong>in</strong>creased<br />

expression <strong>of</strong> HIF1α and decreased <strong>cell</strong>ular<br />

ascorbate


Please contact either:<br />

Darius Lane<br />

darius.lane@sydney.edu.au<br />

Des Richardson<br />

d.richardson@sydney.edu.au


N<br />

Iro on<br />

N<br />

N NH<br />

DpC<br />

S<br />

N<br />

N (CH ) 2 5<br />

N<br />

HO O<br />

Me etaboolismm<br />

aand<br />

d<br />

Che C elat tion n PPro<br />

ograamm<br />

HHO<br />

ONO OUR RS S PRROOJE<br />

ECTTS<br />

Hea aded bby:<br />

Pr<strong>of</strong>es P ssor Des D Riicharddson<br />

H 2<br />

O<br />

H O<br />

N<br />

(CH2 ) 5<br />

N<br />

HO O<br />

DFO<br />

H<br />

N<br />

(CH ) 2 5<br />

N<br />

HO O


Iron is essential for f life and gr rowth. While it is well kno own that ironn<br />

deficiency ccan<br />

lead to annaemia<br />

it is geenerally<br />

not<br />

appreeciated<br />

that iron i is critica al for the grow wth <strong>of</strong> all <strong>cell</strong> ls, particularlly<br />

cancer <strong>cell</strong> lls. <strong>The</strong> Iron MMetabolism<br />

aand<br />

Chellation<br />

Progra am is concern ned with unde erstand<strong>in</strong>g the<br />

basic proceesses<br />

<strong>of</strong> how t<strong>tumour</strong><br />

<strong>cell</strong>s utilise and trransport<br />

iron.<br />

This knowledge will w lead to the<br />

developmen nt <strong>of</strong> therapie es that can seelectively<br />

starrve<br />

<strong>tumour</strong> ceells<br />

<strong>of</strong> iron annd<br />

<strong>in</strong>hibit<br />

theirr<br />

growth. In addition, a we are a study<strong>in</strong>g the t mechanis sms <strong>in</strong>volved <strong>in</strong> iron load<strong>in</strong>ng<br />

<strong>in</strong> the <strong>in</strong>hherited<br />

diseasees<br />

β-<br />

thalaassaemia<br />

and d Friedreich's s ataxia.<br />

1. Deevelopment<br />

t <strong>of</strong> New Iro on Chelators s as Novel Drugs D Aga<strong>in</strong>nst<br />

Cancer<br />

Primmary<br />

supervis sor: Pr<strong>of</strong>. Des<br />

Richardson;<br />

Co-supervi isors: Dr. Davvid<br />

Lovejoy, Dr. Danuta KKal<strong>in</strong>owski.<br />

This project will use u a comb<strong>in</strong>a ation <strong>of</strong> techn niques that are e implemented<br />

<strong>in</strong> chemistrry,<br />

biochhemistry,<br />

phy ysiology, mole ecular biology y and pharma acology to dessign<br />

and asseess<br />

the activityy<br />

<strong>of</strong> noovel<br />

drugs for r the treatmen nt <strong>of</strong> cancer. Your Y project will w be multi- faceted and wwill<br />

<strong>in</strong>volve<br />

groww<strong>in</strong>g<br />

human tu umour <strong>cell</strong>s <strong>in</strong> n tissue cultur re and assessi <strong>in</strong>g the effectss<br />

<strong>of</strong> chelators on gene<br />

expreession.<br />

This will w be done us<strong>in</strong>g u Western n analysis, RT T-PCR and mmicroarray<br />

anaalysis.<br />

<strong>The</strong> labb<br />

has cconsiderable<br />

experience e <strong>in</strong> these cutt<strong>in</strong>g g-edge techniq ques and you will be taughht<br />

the<br />

<strong>in</strong>triccacies<br />

<strong>of</strong> their r use. Feel fre ee to contact Dr. D David Lov vejoy (david. lovejoy@syddney.edu.au)<br />

and DDr.<br />

Danuta Kal<strong>in</strong>owski<br />

(da anutak@med. .usyd.edu.au) to have a chaat<br />

about whetther<br />

the projecct<br />

matches yoour<br />

<strong>in</strong>terests.<br />

2. Tra ansport <strong>of</strong> nitric n oxide <strong>in</strong> <strong>cell</strong>s andd<br />

its <strong>in</strong>teracttion<br />

with iroon<br />

conta a<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s<br />

<strong>in</strong> tumoour<br />

<strong>cell</strong>s<br />

Prima ary superviso or: Pr<strong>of</strong>. Des Richardson.<br />

Nitric oxide (NO) functions f as a natural iron chelator and is <strong>of</strong>ten secreeted<br />

by<br />

macro ophages to des stroy cancer c<strong>cell</strong>s.<br />

This prooject<br />

<strong>in</strong>volvess<br />

exam<strong>in</strong><strong>in</strong>g tthe<br />

method by y<br />

which NO is able to o <strong>in</strong>duce the ssecretion<br />

<strong>of</strong> irron<br />

from canccer<br />

<strong>cell</strong>s. Thiss<br />

project will<br />

use a comb<strong>in</strong>ation c <strong>of</strong> o techniquess<br />

that are usedd<br />

<strong>in</strong> biochemistry,<br />

physioloogy,<br />

<strong>cell</strong><br />

biolog gy, molecular biology and ppharmacologgy.<br />

Feel free too<br />

contact Pr<strong>of</strong>.<br />

Des<br />

Richar rdson (d.richa ardson@med. .usyd.edu.au) ) to have a chat<br />

about whetther<br />

the<br />

projec ct matches you ur <strong>in</strong>terests.<br />

3. Thhe<br />

Role <strong>of</strong> Iron I <strong>in</strong> the Pathogenesi<br />

P is <strong>of</strong> the Cri ippl<strong>in</strong>g Neurrodegeneraative<br />

Diseasee,<br />

Friedreichh's<br />

Ataxia<br />

Primmary<br />

supervis sor: Pr<strong>of</strong>. Des<br />

Richardson;<br />

Co-supervi isors: Dr. Micchael<br />

Huang, Dr. Yohan SSuryo<br />

Rahmannto.<br />

Frieddreich’s<br />

Ataxi ia is a neurod degenerative disease d cause by the accummulation<br />

<strong>of</strong> iroon<br />

<strong>in</strong> the enerrgy<br />

produuc<strong>in</strong>g<br />

macrop phages. This condition c <strong>of</strong>te en results <strong>in</strong> cardiac c hyperttrophy,<br />

muscuular<br />

atrophy aand<br />

earlyy<br />

death. <strong>The</strong> current c project t will exam<strong>in</strong> ne both the pat thophysiologgy<br />

<strong>of</strong> Friedreicch’s<br />

ataxia annd<br />

a<br />

potenntial<br />

new ther rapy that <strong>in</strong>vo olves iron chelation.<br />

This project will use u a comb<strong>in</strong>a ation <strong>of</strong> techn niques that are e used <strong>in</strong> biocchemistry,<br />

phyysiology,<br />

pharmmacology<br />

and d molecular biology. b Feel free f to contac ct Dr. Michaeel<br />

Huang<br />

(mihuuang@med.u<br />

usyd.edu.au) to t have a chat t about wheth her the projectt<br />

matches youur<br />

<strong>in</strong>terests.<br />

4. MMolecular<br />

Re egulation <strong>of</strong> f eIF3a <strong>in</strong> Cancer C <strong>Cell</strong> Motility M andd<br />

Invasion<br />

Primmary<br />

supervis sor: Pr<strong>of</strong>. Des<br />

Richardson;<br />

Co-supervi isors: Dr. Fedderica<br />

Saletta.<br />

eIF3a is the largest su ubunit <strong>of</strong> the eeukaryotic<br />

<strong>in</strong>iitiation<br />

factorr<br />

3 (eIF3) andd<br />

plays a role<br />

as a regu ulator <strong>of</strong> a sub bset <strong>of</strong> mRNAAs<br />

encod<strong>in</strong>g pprote<strong>in</strong>s<br />

<strong>in</strong>vollved<br />

<strong>in</strong> the <strong>cell</strong><br />

cycle, <strong>cell</strong><br />

prolifera ation and <strong>cell</strong> mobility. Thiis<br />

project aimms<br />

to identify new targets o<strong>of</strong><br />

eIF3a<br />

<strong>in</strong>volved d <strong>in</strong> enhanced cancer <strong>cell</strong> mmobility<br />

and i<strong>in</strong>vasion.<br />

A vaariety<br />

<strong>of</strong> techhniques<br />

will<br />

be used <strong>in</strong>clud<strong>in</strong>g: i cel ll culture, revverse-transcripptase-PCR<br />

annd<br />

quantitative<br />

PCR,<br />

Western blott<strong>in</strong>g, imm mun<strong>of</strong>luorescent<br />

sta<strong>in</strong><strong>in</strong>g, ggene<br />

knockdoown,<br />

drug treeatment<br />

etc.<br />

This study is impo ortant for und derstand<strong>in</strong>g th he pathologica al role <strong>of</strong> eIF33a<br />

<strong>in</strong> the exprression<br />

<strong>of</strong> mettastasis<br />

regulaators<br />

and for<br />

devellop<strong>in</strong>g<br />

novel therapeutics target<strong>in</strong>g t eIF3 3a and its dow wnstream signnal<strong>in</strong>g.<br />

Our sttudies<br />

are cruucial<br />

for deepeen<strong>in</strong>g<br />

our<br />

knowwledge<br />

about cancer <strong>cell</strong> bi iology and de evelop<strong>in</strong>g exp ploitable treatmments<br />

for canncer.<br />

Feel freee<br />

to contact DDr.<br />

Federica<br />

Salettta<br />

(fsaletta@med.usyd.edu<br />

u.au) to have a chat about whether w the pproject<br />

matchhes<br />

your <strong>in</strong>tereests.


5. Innvestigat<strong>in</strong>g<br />

g <strong>cell</strong>ular res sponse to iron-depletion<br />

by exam<strong>in</strong>n<strong>in</strong>g<br />

the miitogen-activated<br />

prote<strong>in</strong>n<br />

k<strong>in</strong>ases<br />

(MAAPK)<br />

signall l<strong>in</strong>g pathwa ay<br />

Primmary<br />

supervis sor: Pr<strong>of</strong>. Des<br />

Richardson;<br />

Co-supervi isors: Dr. Yu Yu.<br />

Iron-depletion<br />

ca an cause mmultiple<br />

effeccts<br />

<strong>in</strong>clud<strong>in</strong>gg<br />

<strong>in</strong>hibition <strong>of</strong> the iron n-<br />

IRON DEPLETION<br />

conta<strong>in</strong><strong>in</strong>g<br />

enzym me, ribonuclleotide<br />

reduuctase<br />

whichh<br />

is importaant<br />

for DNA A<br />

TTrx<br />

Trx<br />

synth hesis, <strong>cell</strong> cyc cle arrest andd<br />

apoptosis. RRecently,<br />

the rrole<br />

<strong>of</strong> signall<strong>in</strong>g<br />

pathways<br />

AASK1<br />

ASKK1-<br />

P<br />

<strong>in</strong> th he regulation <strong>of</strong> <strong>cell</strong>ular iroon<br />

metabolismm<br />

is becom<strong>in</strong>ng<br />

<strong>in</strong>creas<strong>in</strong>glly<br />

recognized d.<br />

<strong>The</strong> aim <strong>of</strong> this pr roject is to eluucidate<br />

the mmolecular<br />

signnall<strong>in</strong>g<br />

pathwaay<br />

<strong>in</strong>volved <strong>in</strong> n<br />

MKK4/7<br />

MKK3/6<br />

iron-depletion<br />

by y exam<strong>in</strong><strong>in</strong>gg<br />

the mitogeen-activated<br />

prote<strong>in</strong> k<strong>in</strong>aases<br />

(MAPK K)<br />

DUSPP<br />

1<br />

DDUSP<br />

1 signa all<strong>in</strong>g pathwa ay which funcctions<br />

to l<strong>in</strong>k extra<strong>cell</strong>ularr<br />

signals to regulate<br />

diverse<br />

DUSPP<br />

10<br />

DUSPP<br />

16<br />

JNK- P<br />

p38- P DDUSP<br />

10<br />

DDUSP<br />

16 <strong>cell</strong>u ular processes.<br />

<strong>The</strong> projeect<br />

will <strong>in</strong>vollve<br />

multiple techniques i<strong>in</strong>clud<strong>in</strong>g<br />

cel ll<br />

cultu ures, RNA tr ransfection, rreverse-transccriptional-PCCR,<br />

Western blott<strong>in</strong>g, cel ll<br />

p53- P<br />

ATF2- P proli iferation assa ays, etc. <strong>The</strong> rresults<br />

will bee<br />

vital for ouur<br />

understandi<strong>in</strong>g<br />

<strong>of</strong> <strong>cell</strong>ula ar<br />

signa all<strong>in</strong>g aspect ts <strong>of</strong> iron-deficiency<br />

and d the molecuular<br />

pharmacoology<br />

<strong>of</strong> iron n<br />

APOPTOSIS<br />

chela ation. Contac ct Dr. Yu Yuu<br />

(yuyu@medd.usyd.edu.auu)<br />

to have a cchat<br />

about the<br />

proje ect.<br />

HS<br />

HS<br />

S<br />

S<br />

6. Cancer<br />

<strong>The</strong>ra apeutics and<br />

Target<strong>in</strong>g g (Multi-Dru ug Resistannce)<br />

Primmary<br />

supervis sor: Dr. Patri ic Jansson; Co o-supervisor rs: Pr<strong>of</strong>. Des RRichardson.<br />

Multtidrug<br />

resistan nce (MDR) is a phenomeno on <strong>in</strong> which cancer c <strong>cell</strong>s arre<br />

resistant too<br />

the cytotoxicc<br />

effects <strong>of</strong> vaarious<br />

chemmotherapeutic<br />

agents. One major mechan nism by whic ch this occurss<br />

is through thhe<br />

over--expression<br />

<strong>of</strong><br />

ATP-dependent<br />

drug effl flux transporte ers such as thhe<br />

P-glycoprotte<strong>in</strong><br />

(Pgp) ) and multidrug<br />

resistance-associated<br />

pr rote<strong>in</strong> (MRP) ). <strong>The</strong> hypoxiia-<strong>in</strong>ducible<br />

fa factor<br />

(HIF)-1<br />

is a maste er transcriptio onal activator <strong>of</strong> oxygen-re egulated geness<br />

and HIF-1 iis<br />

consttitutively<br />

up regulated r <strong>in</strong> several<br />

tumou ur types under r hypoxic connditions<br />

and HHIF<br />

mighht<br />

thus be imp plicated <strong>in</strong> tum mour therapy resistance.<br />

This Honours proj ject will <strong>in</strong>vestigate<br />

wheth her iron chelat tion, HIF-1 acctivation,<br />

hyppoxia<br />

and PPgp<br />

is important<br />

for how novel n iron che elators overco ome drug resisstance.<br />

This project will use u a comb<strong>in</strong>a ation <strong>of</strong> cutt<strong>in</strong> ng-edge techn niques <strong>in</strong>cludi<strong>in</strong>g:<br />

<strong>cell</strong> cultuure,<br />

westeern<br />

blott<strong>in</strong>g, siRNA, s cytoto oxicity detect tion and fluor rescent/confoccal<br />

microscoppy<br />

etc. PPlease<br />

contact t Dr. Patric Ja ansson (patric c.jansson@sy ydney.edu.au) to discuss thhis<br />

projeect.<br />

7. Thhe<br />

Role <strong>of</strong> Melanotrans<br />

M sferr<strong>in</strong> <strong>in</strong> Melanoma M Growth G and Metastasis<br />

Primmary<br />

supervis sor: Dr. Yoha an Suryo Rah hmanto; Co-su upervisors: PPr<strong>of</strong>.<br />

Des Ricchardson,<br />

Dr. Yu Yu, Dr. ZZakl<strong>in</strong>a<br />

Kovaacevic.<br />

Melaanoma<br />

is the fourth f most co ommon cance er <strong>in</strong> NSW an nd Australia aand<br />

new<br />

Iron homeostasis /<br />

metabolism<br />

treatmments<br />

are urg gently required.<br />

Melanotran nsferr<strong>in</strong> (MTf f) is a molecuule<br />

that is<br />

highlly<br />

expressed <strong>in</strong> i melanoma (for review see<br />

Oncogene 26:6113-24) . <strong>The</strong><br />

Epithelial septal<br />

Angiogenesis<br />

MTf<br />

junction<br />

aim o<strong>of</strong><br />

this project t is to exam<strong>in</strong> ne the hypothe esis that MTf f plays roles <strong>in</strong>n<br />

<strong>cell</strong><br />

cyclee<br />

<strong>progression</strong>, , growth and melanoma m me etastasis. This<br />

is importantt<br />

as<br />

<strong>Cell</strong> prroliferation,<br />

migration and<br />

<strong>tumour</strong>igenesis<br />

melaanoma<br />

<strong>in</strong>ciden nce is <strong>in</strong>creasi <strong>in</strong>g worldwid de and metasta atic melanomma<br />

is<br />

almoost<br />

completely y resistant to every e known therapy. Laboratory<br />

technniques<br />

<strong>in</strong>volveed:<br />

animal haandl<strong>in</strong>g,<br />

mammmalian<br />

<strong>cell</strong><br />

cultuure,<br />

molecular r clon<strong>in</strong>g, <strong>cell</strong> l transfection, , RNA and pr rote<strong>in</strong> extractiion,<br />

RT-PCR,<br />

Western bloott<strong>in</strong>g,<br />

<strong>cell</strong> bioology<br />

assay<br />

and aanalysis,<br />

flow w cytometry an nd immunohi istochemistry.<br />

Contact Dr. Yohan Suryoo<br />

Rahmanto<br />

(yohaan.suryorahm<br />

manto@sydney y.edu.au) to have h a chat ab bout this projeect.<br />

8. MMolecular<br />

regulation<br />

<strong>of</strong> ERp29 <strong>in</strong> epithelial<br />

can ncer <strong>cell</strong> plaasticity<br />

Primmary<br />

supervis sor: Dr. Daoh hai Zhang; Co o-supervisor rs: Pr<strong>of</strong>. Des RRichardson<br />

Endooplasmic<br />

retic culum prote<strong>in</strong> n 29 (ERp29) is a novel mo olecule that <strong>in</strong>nduces<br />

epithelial-mesenchyymal<br />

reverse transition and d<br />

epithhelial<br />

<strong>cell</strong> mor rphogenesis. This T project aims a to understand<br />

the funcctions<br />

and moolecular<br />

mechhanisms<br />

<strong>of</strong> ERRp29<br />

<strong>in</strong><br />

estabblish<strong>in</strong>g<br />

epithe elial architect ture <strong>in</strong> cancer r <strong>cell</strong>s. A variety<br />

<strong>of</strong> techniqques<br />

that will be used <strong>in</strong>cluude<br />

<strong>cell</strong> cultuures,<br />

3-<br />

dimeensional<br />

<strong>cell</strong> system, s revers se-transcriptio onal-PCR, Western W blott<strong>in</strong>ng,<br />

immun<strong>of</strong>luuorescent<br />

stai<strong>in</strong><strong>in</strong>g,<br />

prote<strong>in</strong>n-prote<strong>in</strong><br />

<strong>in</strong>teraaction,<br />

gene knockdown, k etc e . This stud dy is importan nt for understaand<strong>in</strong>g<br />

the paathological<br />

fuunction<br />

<strong>of</strong> ERpp29<br />

as a<br />

noveel<br />

<strong>tumour</strong> supp pressive mole ecule and for develop<strong>in</strong>g novel n therapeuutics<br />

target<strong>in</strong>gg<br />

ERp29 and its downstreaam<br />

signal<strong>in</strong>g.<br />

1


9. Diissect<strong>in</strong>g<br />

the e role <strong>of</strong> NDR RG-1 <strong>in</strong> regu ulat<strong>in</strong>g endo oplasmic retiiculum<br />

stress<br />

and cancerr<br />

<strong>cell</strong> survivaal<br />

Primmary<br />

supervis sor: Dr. Daoh hai Zhang; Co o-supervisor rs: Pr<strong>of</strong>. Des RRichardson.<br />

N-myyc<br />

downstrea am regulated gene g 1 (NDRG G1) is a meta astasis suppressor<br />

that is<br />

<strong>in</strong>vollved<br />

<strong>in</strong> <strong>cell</strong> di ifferentiation, , carc<strong>in</strong>ogenesis,<br />

survival, and metastasis.<br />

It is sensittive<br />

to thee<br />

redox status s <strong>of</strong> the <strong>cell</strong>s and a the <strong>in</strong>trac <strong>cell</strong>ular calciu um concentrattion.<br />

Disruption<br />

<strong>of</strong> caalcium<br />

homeo ostasis with<strong>in</strong> endoplasmic reticulum (E ER) system is associated wiith<br />

the EER<br />

stress response<br />

that repr resents an ada aptive mechan nism supporti t<strong>in</strong>g survival aand<br />

chemmoresistance<br />

<strong>of</strong> o tumor <strong>cell</strong>s s. This project t aims to disse ect how NDRRG1<br />

expressioon<br />

moduulates<br />

ER stre ess and to und derstand the biological b con nsequences. TThis<br />

study willl<br />

use<br />

<strong>cell</strong> cculture,<br />

immu unoblott<strong>in</strong>g, gene g silenc<strong>in</strong>g g, <strong>cell</strong>-based functional f anaalysis,<br />

phospphatase<br />

assay y, drug treatm ment and <strong>cell</strong> apoptosis, a etc.<br />

Feel free to contact Dr.<br />

Daohhai<br />

Zhang (da aohai.zhang@ @sydney.edu.a au) to have a chat c about thiis<br />

project.<br />

10. HHow<br />

does vi itam<strong>in</strong> C (as scorbate) re egulate iron n uptake by <strong>cell</strong>s? <strong>The</strong> rrole<br />

<strong>of</strong> HIFss.<br />

Primmary<br />

supervis sor: Dr. Dariu us Lane; Co- supervisors: Pr<strong>of</strong>. Des Riichardson.<br />

Iron (Fe) is essen ntial for life and it has long l been re ecognised thaat<br />

vitam<strong>in</strong> C (ascorbate)- deficiency caauses<br />

anemia a.<br />

Normmally,<br />

circulat<strong>in</strong>g<br />

Fe is bou und to the Fe e-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>,<br />

transferrr<strong>in</strong><br />

(Tf), withh<br />

Tf-Fe uptakke<br />

be<strong>in</strong>g the mmajor<br />

route <strong>of</strong> o<br />

Fe uuptake<br />

by ma ammalian <strong>cell</strong>s.<br />

<strong>Cell</strong>ular hypoxia h (low w oxygen tenssion)<br />

stimulaates<br />

Tf-Fe upptake<br />

by up-rregulat<strong>in</strong>g<br />

the<br />

expreession<br />

<strong>of</strong> prote<strong>in</strong>s<br />

<strong>in</strong>volve ed <strong>in</strong> the classical<br />

Tf-to-ce ell cycle for FFe<br />

delivery ( (e.g., the Tf rreceptor;<br />

TfRR1).<br />

We have<br />

recenntly<br />

identified d that ascorb bate, which is s abundant <strong>in</strong> n vivo but typpically<br />

absent nt <strong>in</strong> standardd<br />

<strong>cell</strong> culture,<br />

dramatically y<br />

stimuulates<br />

Fe upta ake from Tf-F Fe, although th he molecular mechanism iis<br />

unknown.<br />

<strong>The</strong> aim <strong>of</strong> this project p is to determ<strong>in</strong>e d ho ow ascorbate <strong>in</strong>teracts i withh<br />

HIFs to reggulate<br />

<strong>cell</strong>ularr<br />

Fe uptake. TThis<br />

will have<br />

impoortant<br />

ramifica ations for the treatment <strong>of</strong> f diseases rang g<strong>in</strong>g from anaaemia<br />

to canccer.<br />

Feel free to contact Drr.<br />

Darius Lane<br />

(dariuus.lane@sydn<br />

ney.edu.au) to o have a chat about whethe er the project matches youur<br />

<strong>in</strong>terests.<br />

11. HHow<br />

do astr rocytes proc cess iron? Role R <strong>of</strong> GPI-l<strong>in</strong>ked<br />

Cp.<br />

Primmary<br />

supervis sor: Dr. Dariu us Lane; Cosupervisors: Pr<strong>of</strong>. Des Riichardson.<br />

<strong>The</strong> bbra<strong>in</strong><br />

has a high<br />

requirement<br />

for iron (Fe), ( which is s essential forr<br />

life, yet the mechanisms by which Fee<br />

enters and is<br />

proceessed<br />

by the bra<strong>in</strong> b rema<strong>in</strong>s s a mystery. With<strong>in</strong> W the bra a<strong>in</strong>, astrocytes<br />

(‘star-shapeed’<br />

glial <strong>cell</strong>s that are at leeast<br />

equivalen nt<br />

<strong>in</strong> nuumber<br />

to neur rones) are tho ought to be important i <strong>in</strong> process<strong>in</strong>g p annd<br />

re-distribuut<strong>in</strong>g<br />

Fe <strong>in</strong> thhe<br />

bra<strong>in</strong>. Astrrocytes<br />

extend d<br />

long processes that<br />

ensheathe the bra<strong>in</strong> cap pillaries and help to form m the BBB. Inntrigu<strong>in</strong>gly,<br />

thhe<br />

ends <strong>of</strong> thhese<br />

processes<br />

(i.e., the ‘end-feet t’) express a special s form <strong>of</strong> o the Fe oxid dis<strong>in</strong>g enzymme,<br />

ceruloplasmm<strong>in</strong><br />

(Cp). Thhis<br />

prote<strong>in</strong> is ttethered<br />

to the<br />

exterrnal<br />

surface <strong>of</strong> o the plasma membrane by b a glycopho osphatidyl<strong>in</strong>ossitol<br />

(GPI) annchor.<br />

<strong>The</strong> roole<br />

<strong>of</strong> astrocyyte<br />

GPI-l<strong>in</strong>ked d<br />

Cp iss<br />

unknown.<br />

<strong>The</strong> aim <strong>of</strong> this project p is to determ<strong>in</strong>e the<br />

role <strong>of</strong> GPI I-l<strong>in</strong>ked Cp <strong>in</strong>n<br />

astrocytic FFe<br />

process<strong>in</strong>gg.<br />

This will hhave<br />

importan nt<br />

ramiffications<br />

for the t understan nd<strong>in</strong>g and trea atment <strong>of</strong> neu urodegeneratiive<br />

diseases tthat<br />

are assocciated<br />

with abbnormal<br />

bra<strong>in</strong> n<br />

Fe metabolism, such as Alzheimer’s A<br />

and Park<strong>in</strong> nson’s diseaases.<br />

Feel free to coontact<br />

Dr. Darius Lane<br />

(dariuus.lane@sydn<br />

ney.edu.au) to o have a chat about whethe er the project matches youur<br />

<strong>in</strong>terests.<br />

12. EExam<strong>in</strong><strong>in</strong>g<br />

the t Molecul lar Mechanisms<br />

Beh<strong>in</strong>d d the Anti-TTumour<br />

Acttivity<br />

<strong>of</strong> NDDRG1<br />

<strong>in</strong> Panncreatic<br />

Cancer<br />

Primmary<br />

supervis sor: Pr<strong>of</strong>. Des<br />

Richardson;<br />

Co-supervi isor: Dr. Zakll<strong>in</strong>a<br />

Kovacevvic.<br />

Pancreatic<br />

cancer is a highly ag ggressive dise ease with a po oor response tto<br />

current<br />

theraapies.<br />

<strong>The</strong> metastasis<br />

suppr ressor N-myc c down-stream m regulated geene<br />

1 (NDRGG1)<br />

has bbeen<br />

shown to o effectively <strong>in</strong>hibit i pancre eatic cancer by y reduc<strong>in</strong>g prrimary<br />

tumouur<br />

growwth,<br />

metastasis s and angioge enesis.<br />

This project will <strong>in</strong>volve<br />

exami <strong>in</strong><strong>in</strong>g the mol lecular functio ons <strong>of</strong> NDRGG1<br />

to elucidatte<br />

the<br />

mechhanisms<br />

that are a <strong>in</strong>volved <strong>in</strong> i its anti-tum mour activity. Moreover, thhe<br />

project will<br />

also<br />

examm<strong>in</strong>e<br />

a novel class c <strong>of</strong> anti-cancer<br />

agents that are able to t markedly uup-regulate<br />

NDRRG1<br />

expressio on <strong>in</strong> cancer and a may be a potential new w therapeutic strategy for<br />

pancrreatic<br />

cancer treatment.<br />

A rannge<br />

<strong>of</strong> experim mental techni iques <strong>in</strong>clud<strong>in</strong> ng tissue cultu ure, western bblot<br />

analysis,<br />

immuunohistochem<br />

mistry and dru ug treatments will be performed.<br />

Feel frree<br />

to contact Dr.<br />

Zakli<strong>in</strong>a<br />

Kovacevic<br />

(zakl<strong>in</strong>a.kov vacevic@syd dney.edu.au) to t have a chatt<br />

about whethher<br />

the<br />

projeect<br />

matches yo our <strong>in</strong>terests.


2013 Honours Projects<br />

SYDNEY MEDICAL SCHOOL<br />

Neuropathology<br />

Dr Greg Sutherland and Pr<strong>of</strong> Jillian Kril<br />

Discipl<strong>in</strong>e <strong>of</strong> Pathology


Alcohol-related bra<strong>in</strong> damage<br />

and neurogenesis<br />

Sutherland et al. Submitted to Exp Neurol<br />

Fluorescent<br />

microscopy<br />

ARBD and Hepatic Encephalopathy<br />

Human bra<strong>in</strong> transcriptome<br />

2


Dementia<br />

Alzheimer's disease Frontotemporal dementia<br />

Sutherland and Kril. Ch 16, Neuroscience: Deal<strong>in</strong>g with Frontiers<br />

Masters CL, Kril JJ et al. Pathology 2011;43:93-102.<br />

Neuroglob<strong>in</strong>, PI3K/Akt<br />

signal<strong>in</strong>g and Alzheimer's<br />

disease<br />

3


2013 Honours Year Project:<br />

<strong>Cell</strong>-<strong>cell</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> <strong>tumour</strong> <strong>progression</strong><br />

Dermatology Research Labs, Blackburn Bldg<br />

Pr<strong>in</strong>cipal supervisor: Assoc. Pr<strong>of</strong>. Guy Lyons<br />

guy.lyons@sydney.edu.au<br />

Associate supervisors: Dr Cathy Payne<br />

Dr Vani Raviraj<br />

Pr<strong>of</strong>. Gary Halliday


<strong>Cell</strong>-<strong>cell</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> <strong>tumour</strong> <strong>progression</strong><br />

• Mutations cause two basic properties <strong>of</strong> cancer:<br />

• Uncontrolled proliferation<br />

• Spread from the site <strong>of</strong> orig<strong>in</strong><br />

• Tumours <strong>of</strong>ten conta<strong>in</strong> <strong>cell</strong>s that have different mutations<br />

i.e. they are dist<strong>in</strong>ct clones<br />

• This genetic diversity provides the opportunity for<br />

<strong><strong>in</strong>teractions</strong> to occur between clones<br />

• Clonal <strong><strong>in</strong>teractions</strong> might make <strong>tumour</strong>s more malignant<br />

BUT DO THEY?<br />

Aim: Create clones with dist<strong>in</strong>ct oncogenes and<br />

test their malignant behaviour alone and together


<strong>Cell</strong>-<strong>cell</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> <strong>tumour</strong> <strong>progression</strong><br />

Techniques used:<br />

1. Genetic eng<strong>in</strong>eer<strong>in</strong>g<br />

2. Genetic modification <strong>of</strong> cultured mammalian <strong>cell</strong>s<br />

3. Analysis <strong>of</strong> gene expression immunologically<br />

4. Fluorescence microscopy<br />

5. Small animal handl<strong>in</strong>g and bioimag<strong>in</strong>g


Eng<strong>in</strong>eer gene expression vectors<br />

Use molecular biological methods to make plasmid and viral<br />

vectors suitable for express<strong>in</strong>g genes <strong>in</strong> mammalian <strong>cell</strong>s


Make genetically modified human <strong>cell</strong> l<strong>in</strong>es<br />

Transfect the start<strong>in</strong>g non-malignant clone<br />

with candidate oncogenes<br />

Gene 1<br />

+<br />

RFP<br />

Clone 1 Clone 2<br />

Clones 1 and 2<br />

together<br />

Proliferation * Motility * Invasion * Tumour Growth


Live <strong>cell</strong> imag<strong>in</strong>g microscopy to measure<br />

<strong>cell</strong> motility


Live animal imag<strong>in</strong>g to measure<br />

<strong>tumour</strong> growth<br />

Paul Sou


2013 Honours Year Project:<br />

<strong>Cell</strong>-<strong>cell</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> <strong>tumour</strong> <strong>progression</strong><br />

Dermatology Research Labs, Blackburn Bldg<br />

Pr<strong>in</strong>cipal supervisor: Assoc. Pr<strong>of</strong>. Guy Lyons<br />

guy.lyons@sydney.edu.au<br />

Associate supervisors: Dr Cathy Payne<br />

Dr Vani Raviraj<br />

Pr<strong>of</strong>. Gary Halliday


Redef<strong>in</strong><strong>in</strong>g the role <strong>of</strong> monocytes/macrophages <strong>in</strong> vascular disease<br />

Are all macrophages <strong>in</strong> the plaque bad?<br />

Th<strong>in</strong> cap<br />

(mac MMPs)<br />

large<br />

necrotic core<br />

(mac foam <strong>cell</strong>s)<br />

the<br />

Heather Medbury, Vascular Biology Research Centre,<br />

Surgery, Westmead Hospital, Westmead<br />

Heart attack<br />

stroke


Classical activation M1 Alternatively activated M2( a, b, c...)<br />

CD86<br />

CD64 CD163<br />

Plaque <strong>in</strong>stability?<br />

M1:CD86 M2:CD163<br />

CD206 (MR)<br />

Athero‐protective?<br />

Macrophage marker, procollagen I, co‐expression mac marker & procollagen I, nuclei


Redef<strong>in</strong><strong>in</strong>g monocyte/macrophage role by address<strong>in</strong>g:<br />

SMC<br />

1. Site <strong>of</strong> transformation: (blood or plaque)<br />

MMP’s<br />

4. Fate <strong>of</strong> the <strong>cell</strong>:<br />

Proliferation, death, migration<br />

3. Function<br />

‐Foam <strong>cell</strong><br />

‐MMPs<br />

‐Collagen<br />

production<br />

2. Pathway <strong>of</strong> differentiation (<strong>in</strong>clud<strong>in</strong>g plasticity)<br />

EC


Dr Hilda Pickett<br />

hpickett@cmri.org.au<br />

Cancer Research Unit<br />

http://www.cmri.org.au


Telomere biology group<br />

Cancer <strong>cell</strong>s become<br />

immortal by activat<strong>in</strong>g<br />

the enzyme telomerase<br />

to replenish telomere<br />

loss dur<strong>in</strong>g <strong>cell</strong> division


Telomere ma<strong>in</strong>tenance mechanisms <strong>in</strong> cancer<br />

Projects available:<br />

1. Molecular changes associated with the alternative lengthen<strong>in</strong>g <strong>of</strong><br />

telomeres (ALT) mechanism <strong>of</strong> telomere ma<strong>in</strong>tenance<br />

2. <strong>The</strong> role <strong>of</strong> telomere rapid deletion <strong>in</strong> <strong>cell</strong> proliferation<br />

3. Functional analysis <strong>of</strong> s<strong>in</strong>gle nucleotide polymorphisms with<strong>in</strong> the TERT<br />

locus<br />

4. <strong>The</strong> role <strong>of</strong> non-cod<strong>in</strong>g RNAs <strong>in</strong> telomere ma<strong>in</strong>tenance mechanisms<br />

hpickett@cmri.org.au


Def<strong>in</strong><strong>in</strong>g the antigen presentation capacity <strong>of</strong> bra<strong>in</strong> endothelial <strong>cell</strong>s<br />

Primary supervisor: Dr Julie Wheway (julie.wheway@sydney.edu.au)<br />

Co‐supervisor: Pr<strong>of</strong> Georges Grau (georges.grau@sydney.edu.au)<br />

Techniques used will <strong>in</strong>clude <strong>cell</strong> culture, tripartite co‐culture assays, flow cytometry and fluorescence<br />

microscopy.<br />

pRBC<br />

“Pr<strong>of</strong>essional”<br />

APC<br />

Bra<strong>in</strong> endothelial <strong>cell</strong>s<br />

Immature<br />

T <strong>cell</strong><br />

?<br />

Activated<br />

T <strong>cell</strong>


Exam<strong>in</strong><strong>in</strong>g an immunomodulatory role for endothelial microparticles<br />

Primary supervisor: Dr Julie Wheway (julie.wheway@sydney.edu.au)<br />

Co‐supervisor: Pr<strong>of</strong> Georges Grau (georges.grau@sydney.edu.au)<br />

Techniques used will <strong>in</strong>clude <strong>cell</strong> culture, flow cytometry and fluorescence microscopy and western<br />

blott<strong>in</strong>g.<br />

pRBC<br />

Inflammation<br />

Bra<strong>in</strong> endothelial <strong>cell</strong>s<br />

Membrane surface<br />

shedd<strong>in</strong>g<br />

eMPs<br />

?<br />

Immature<br />

T <strong>cell</strong><br />

Activated<br />

T <strong>cell</strong>


Nature Genetics <strong>Cell</strong><br />

American Journal <strong>of</strong> Human Genetics<br />

Human Molecular Genetics<br />

Sports Illustrated 2010<br />

A gene for speed: the<br />

role <strong>of</strong> α-act<strong>in</strong><strong>in</strong>-3 <strong>in</strong> the<br />

regulation <strong>of</strong> skeletal<br />

muscle mass<br />

Supervisors: Pr<strong>of</strong>essor Kathryn<br />

North, Dr Kate Qu<strong>in</strong>lan and Dr<br />

Peter Houwel<strong>in</strong>g


WT KO<br />

kate.qu<strong>in</strong>lan@sydney.edu.au<br />

~ 1 billion people


Located <strong>in</strong> Westmead Millennium Institute<br />

Currently have 3 grants<br />

Supported by the Storr Trust<br />

Westmead pulls <strong>in</strong> 1/3 <strong>of</strong> NHMRC fund<strong>in</strong>g go<strong>in</strong>g to USYD<br />

My group is 10: 1 Postdoc, 4 PhD students, 4 RAs, 1 TA.<br />

Have 20 knock‐out mouse l<strong>in</strong>es available<br />

Look<strong>in</strong>g for students to do Honours and then a PhD<br />

New Build<strong>in</strong>g <strong>in</strong> March 2014


Does liver talk to fat??<br />

Eg:<br />

Adiponect<strong>in</strong><br />

TNF, IL6<br />

FABP4<br />

?????? BA<br />

Metabolic Studies us<strong>in</strong>g TGR5, FXR & Adiponect<strong>in</strong> KO mice


Does diet promote adipocytok<strong>in</strong>e changes?


Skills learned<br />

1. <strong>Cell</strong> based models<br />

2. Mouse based models.<br />

3. Biochemistry, histology.<br />

4. Human cohorts.<br />

lionel.hebbard@sydney.edu.au<br />

Phone: 02 9845 9132


Most common <strong>in</strong>herited<br />

disease present<strong>in</strong>g <strong>in</strong><br />

neurogenetics cl<strong>in</strong>ics<br />

Cl<strong>in</strong>ically and genetically heterogeneous<br />

disorder affect<strong>in</strong>g both the motor and<br />

sensory neurons <strong>of</strong> peripheral nervous<br />

system<br />

CHARCOT MARIE<br />

TOOTH DISEASE (CMT)<br />

50 Genes known to cause CMT<br />

<strong>The</strong> biological problem is the<br />

‘dy<strong>in</strong>g back’ <strong>of</strong> the nerve or<br />

axonal degeneration


Family Studies & L<strong>in</strong>kage Analysis<br />

Utilis<strong>in</strong>g Exome SequenceData<br />

Bio<strong>in</strong>formatics<br />

IDENTIFYING<br />

NEW GENES<br />

CAUSING<br />

MOTOR<br />

AND SENSORY<br />

NEURON DEATH<br />

International Track record<br />

State-<strong>of</strong>-the-art technology for<br />

variant validation<br />

High Resolution<br />

Melt (HRM)<br />

Well resourced lab – staff & students


Westmead Millennium Institute<br />

Dr Mark Douglas<br />

Hepatitis C Virus<br />

Pathogenesis Group<br />

for Medical Research


Hepatitis C Virus (HCV)<br />

› 3% <strong>of</strong> the world’s population (1% <strong>in</strong> Australia) is <strong>in</strong>fected with HCV<br />

› It is now the ma<strong>in</strong> cause <strong>of</strong> liver failure, liver transplant and liver cancer <strong>in</strong><br />

Australia, USA and UK<br />

› HCV causes more deaths than HIV <strong>in</strong> Australia and USA<br />

› It is now curable but current treatments are toxic and <strong>of</strong>ten fail, so new<br />

treatments are needed<br />

2


Metabolic Complications <strong>of</strong> Hepatitis C<br />

HCV <strong>in</strong>teracts with Host Lipid Metabolism<br />

› Steatosis (fatty liver) – HCV Genotype 3<br />

- Lipids essential for HCV replication<br />

- Virus circulates <strong>in</strong> serum with lipoprote<strong>in</strong>s<br />

- Block lipid synthesis <strong>in</strong>hibits HCV replication<br />

› Insul<strong>in</strong> resistance (diabetes) – Genotype 1<br />

- Faster <strong>progression</strong> to liver fibrosis,<br />

cirrhosis and liver cancer<br />

- Predicts non-response to antiviral treatment (<strong>in</strong>terferon,<br />

ribavir<strong>in</strong>)<br />

› Mechanisms are poorly understood<br />

3


PROJECT 1<br />

Treat<strong>in</strong>g hepatitis C virus with cannab<strong>in</strong>oid antagonists<br />

› Endocannab<strong>in</strong>oids are hormones related to cannabis that control lipid<br />

metabolism<br />

› CB1 is the ma<strong>in</strong> endocannab<strong>in</strong>oid receptor <strong>in</strong> the liver<br />

› CB1 expression is <strong>in</strong>creased <strong>in</strong> the livers <strong>of</strong> people with chronic hepatitis C<br />

- This likely contributes to steatosis and encourages virus replication<br />

› Drugs that block CB1 (CB1 antagonists) can <strong>in</strong>hibit HCV replication <strong>in</strong> <strong>cell</strong><br />

culture models.<br />

› This project explores the mechanism <strong>of</strong> this effect, and will hopefully lead<br />

to trials <strong>of</strong> CB1 antagonists <strong>in</strong> patients with Hepatitis C<br />

4


PROJECT 2<br />

Revers<strong>in</strong>g IFN refractor<strong>in</strong>ess to improve HCV treatment<br />

› <strong>The</strong> ma<strong>in</strong> treatment for HCV is <strong>in</strong>terferon (IFN) alpha<br />

- Over 50% <strong>of</strong> patients with HCV genotype 1 fail current IFN treatment<br />

› Patients who respond poorly to IFN have evidence <strong>of</strong> IFN pre-activation <strong>in</strong><br />

their liver, which <strong>in</strong>duces IFN refractor<strong>in</strong>ess and poor response to IFN<br />

› We have discovered novel prote<strong>in</strong>s that <strong>in</strong>hibit IFN signall<strong>in</strong>g <strong>in</strong> patients<br />

with hepatitis C <strong>in</strong>fection<br />

› We have shown that PPAR alpha agonists (anti-cholesterol drugs) can<br />

partially reverse IFN refractor<strong>in</strong>ess <strong>in</strong> HCV <strong>cell</strong> culture models<br />

› This project will explore the mechanisms <strong>of</strong> this effect, and will hopefully<br />

lead to trials <strong>of</strong> these drugs <strong>in</strong> patients with chronic Hepatitis C<br />

5


› Contac Mark Douglas<br />

› Mark.douglas@sydney.edu.au<br />

› Tel: 9845-7705<br />

6


Change<br />

Sensitive Resistance<br />

Supervisor:<br />

Dr. Patric J. Jansson<br />

Cancer <strong>The</strong>rapeutics and Target<strong>in</strong>g Group,<br />

Iron Metabolism and Chelation Program<br />

Problem<br />

Project: How to overcome MDR?


Supervisor: Paul K. Witt<strong>in</strong>g (Pathology)<br />

E-mail: pwitt<strong>in</strong>g@med.usyd.edu.au<br />

Phone: 9767-9103<br />

Discipl<strong>in</strong>e <strong>of</strong> Pathology<br />

<strong>University</strong> <strong>of</strong> <strong>Sydney</strong><br />

1


Redox Biology Lab<br />

• Research team comprises 1 PTE Postdoctoral<br />

Fellow, five Postgraduate students (3 x PhD and 2 x<br />

MPhil), one PTE Research assistant, and facility for<br />

a maximum <strong>of</strong> two Honours students (2013)<br />

Technical expertise<br />

• Field <strong>of</strong> redox biology coupled with monitor<strong>in</strong>g <strong>of</strong><br />

oxidative stress <strong>in</strong> develop<strong>in</strong>g vascular disease<br />

2


Animal study<br />

Research Projects<br />

• Title: Post translational changes to key cardiac prote<strong>in</strong>s <strong>in</strong> the<br />

hearts <strong>of</strong> diabetic rats after experimental heart attack<br />

<strong>Cell</strong>-based studies<br />

• Title: Achiev<strong>in</strong>g neuro-protection by <strong>in</strong>creas<strong>in</strong>g neuronal <strong>cell</strong><br />

content <strong>of</strong> neuroglob<strong>in</strong>.<br />

• Title: Snore-like vibrations stimulate a pro-<strong>in</strong>flammatory and<br />

prothrombotic state <strong>in</strong> endothelial <strong>cell</strong>s<br />

3


Model <strong>of</strong> experimental AMI <strong>in</strong> rats<br />

<strong>The</strong> left anterior descend<strong>in</strong>g<br />

(LAD) coronary artery is ligated<br />

to simulate AMI<br />

Blood flow is <strong>in</strong>hibited to this<br />

region <strong>of</strong> the myocardium for 30<br />

m<strong>in</strong> (ischemia).<br />

Release <strong>of</strong> the suture simulates<br />

tissue reperfusion.<br />

4


<strong>University</strong> <strong>of</strong> <strong>Sydney</strong><br />

Outcomes <strong>of</strong> sleep<br />

studies <strong>in</strong> <strong>in</strong>fants:<br />

Obstructive Sleep Apnea<br />

(OSA) & CPAP use.<br />

Dr Rita Machaalani & Pr<strong>of</strong> Karen Waters<br />

SIDS & Sleep Apnea Laboratory<br />

Side effect <strong>of</strong> OSA<br />

=daytime sleep<strong>in</strong>ess<br />

Treatment= (cont<strong>in</strong>uous positive<br />

airways pressure (CPAP) mach<strong>in</strong>e


Project title: Phospho‐regulation <strong>of</strong> centrosome prote<strong>in</strong>s <strong>in</strong> cancer <strong>cell</strong>s<br />

Supervisors: Dr Rose Boutros<br />

Dr Megan Chircop<br />

Laboratory: <strong>Cell</strong> Cycle Unit<br />

<strong>The</strong> Children’s Medical Research Institute<br />

Westmead<br />

<strong>The</strong> centrosome<br />

Structural prote<strong>in</strong>s: ‐, ‐, ‐tubul<strong>in</strong>s, Centr<strong>in</strong>s, Pericentr<strong>in</strong>, N<strong>in</strong>e<strong>in</strong>, Nucleophosm<strong>in</strong>, CP110,...<br />

Regulatory Prote<strong>in</strong>s: CDKs, Cdc25, PLK, Nek2, PP2A, 14‐3‐3, dyne<strong>in</strong>, dynact<strong>in</strong>, Mps1, ...


<strong>The</strong> Project<br />

A study <strong>in</strong> S. Cerevisiae revealed that the majority <strong>of</strong> yeast centrosome prote<strong>in</strong>s are<br />

phosphorylated at some stage dur<strong>in</strong>g <strong>cell</strong> division Keck et al. Science 332:1557, 2011<br />

Hypothesis: Phosphorylation <strong>of</strong> centrosome prote<strong>in</strong>s is important for normal<br />

centrosome function and <strong>cell</strong> division <strong>in</strong> human <strong>cell</strong>s.<br />

Misregulation <strong>of</strong> these can contribute to cancer.<br />

Aims: Investigate the role <strong>of</strong> prote<strong>in</strong> phosphorylation <strong>in</strong> regulat<strong>in</strong>g centrosome<br />

function <strong>in</strong> cancer<br />

‐ mutate phosphorylation sites by site‐directed mutagenesis<br />

‐ <strong>in</strong>troduce phosphorylation mutants <strong>in</strong>to <strong>cell</strong>s and screen for<br />

phenotypes us<strong>in</strong>g immun<strong>of</strong>luorescence microscopy


E‐cadher<strong>in</strong><br />

B‐caten<strong>in</strong><br />

Decipher<strong>in</strong>g the function <strong>of</strong> NDRG1<br />

Primary Tumour<br />

A number <strong>of</strong> molecular changes<br />

occur <strong>in</strong> the <strong>cell</strong> <strong>in</strong>clud<strong>in</strong>g:<br />

‐E‐cadher<strong>in</strong> is reduced<br />

‐B‐caten<strong>in</strong> is reduced<br />

<strong>The</strong>se molecules are crucial for<br />

<strong>cell</strong> adhesion and motility.<br />

E‐cadher<strong>in</strong><br />

B‐caten<strong>in</strong><br />

NDRG1<br />

Change <strong>in</strong> Morphology to<br />

become more <strong>in</strong>vasive<br />

NDRG1 can REVERSE this!<br />

Control NDRG1<br />

Control NDRG1<br />

NDRG1 restores the expression<br />

<strong>of</strong> crucial molecules that<br />

promote <strong>cell</strong> adhesion and<br />

<strong>in</strong>hibit <strong>cell</strong> motility.<br />

Cancer Metastasis<br />

HOW DOES<br />

NDRG1 DO<br />

THIS???<br />

Perhaps YOU will be<br />

able to f<strong>in</strong>d out!!!<br />

Contact:<br />

Dr. Zakl<strong>in</strong>a Kovacevic<br />

zakl<strong>in</strong>a.kovacevic@sydney.edu.au


2013 Honours Projects <strong>in</strong><br />

Cardiovascular & Hormonal Research Laboratory<br />

Susie Mihailidou - anastasia.mihailidou@sydney.edu.au<br />

Level 13,<br />

Koll<strong>in</strong>g Institute <strong>of</strong> Medical Research,<br />

Royal North Shore Hospital<br />

Honours student<br />

PhD student<br />

Medical student – Elective term<br />

2 Research Fellows<br />

Royal North<br />

Shore Hospital


Occlud<strong>in</strong>g branch <strong>of</strong> LAD<br />

2013 Honours Projects <strong>in</strong><br />

Cardiovascular & Hormonal Research Laboratory<br />

Susie Mihailidou - anastasia.mihailidou@sydney.edu.au<br />

Experimentally simulate a heart attack<br />

Reperfusion Injury<br />

Free radicals<br />

Stress-response<br />

Apoptosis<br />

Autophagy<br />

Non-ischemic areas<br />

Cardiac damage<br />

Royal North<br />

Shore Hospital<br />

Infarct<br />

area<br />

At- risk but viable


For 2013:<br />

• Regulation <strong>of</strong> aldosterone/m<strong>in</strong>eralocorticoid receptors <strong>in</strong> the heart<br />

• Glucagon-Like Peptide-1 agonists, reperfusion <strong>in</strong>jury and type 2 diabetes<br />

• Hyperglycemia Removes the Gender Gap Dur<strong>in</strong>g Experimental Myocardial<br />

Infarction<br />

2013 Honours Projects <strong>in</strong><br />

Cardiovascular & Hormonal Research Laboratory<br />

Susie Mihailidou - anastasia.mihailidou@sydney.edu.au<br />

Royal North<br />

Shore Hospital

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!