02.06.2015 Views

Radiação Solar e Terrestre - Dca.ufcg.edu.br - Universidade Federal ...

Radiação Solar e Terrestre - Dca.ufcg.edu.br - Universidade Federal ...

Radiação Solar e Terrestre - Dca.ufcg.edu.br - Universidade Federal ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Universidade</strong> <strong>Federal</strong> de Campina Grande<<strong>br</strong> />

Centro de Tecnologia e Recursos Naturais<<strong>br</strong> />

Unidade Acadêmica de Ciências Atmosféricas<<strong>br</strong> />

Programa de Pós-Graduação em Meteorologia<<strong>br</strong> />

<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

(Parametrização de <strong>Radiação</strong>)<<strong>br</strong> />

Métodos de Modelagem Numérica


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

Afeta:<<strong>br</strong> />

Temperatura<<strong>br</strong> />

Concentração de gases<<strong>br</strong> />

Visibilidade<<strong>br</strong> />

Cores<<strong>br</strong> />

Organismos biológicos<<strong>br</strong> />

Pode ser:<<strong>br</strong> />

Refletida<<strong>br</strong> />

Espalhada<<strong>br</strong> />

Absorvida<<strong>br</strong> />

Refratada<<strong>br</strong> />

Dispersada<<strong>br</strong> />

Transmitida<<strong>br</strong> />

Quando um corpo emite mais radiação que absorve resfria<<strong>br</strong> />

Quando um corpo absorve mais radiação que emite aquece


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong>


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

Absorvida<<strong>br</strong> />

Emitida IR<<strong>br</strong> />

Déficit<<strong>br</strong> />

Déficit<<strong>br</strong> />

Transferida


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

λ<<strong>br</strong> />

c<<strong>br</strong> />

ν<<strong>br</strong> />

= Ep<<strong>br</strong> />

= hν =<<strong>br</strong> />

hc<<strong>br</strong> />

λ<<strong>br</strong> />

Velocidade da luz<<strong>br</strong> />

Constante de Planck<<strong>br</strong> />

c<<strong>br</strong> />

h<<strong>br</strong> />

=<<strong>br</strong> />

=<<strong>br</strong> />

2,9979 10<<strong>br</strong> />

-34<<strong>br</strong> />

6,6256 10<<strong>br</strong> />

ms −<<strong>br</strong> />

8 1<<strong>br</strong> />

Js


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

Corpo Negro<<strong>br</strong> />

Lei de Planck<<strong>br</strong> />

B<<strong>br</strong> />

λ,<<strong>br</strong> />

T<<strong>br</strong> />

=<<strong>br</strong> />

5<<strong>br</strong> />

λ<<strong>br</strong> />

2hc<<strong>br</strong> />

2<<strong>br</strong> />

⎡ ⎛ hc ⎞ ⎤<<strong>br</strong> />

⎢exp⎜<<strong>br</strong> />

⎟ − 1⎥<<strong>br</strong> />

⎣ ⎝λkT<<strong>br</strong> />

b ⎠ ⎦<<strong>br</strong> />

Constante de Boltzmann<<strong>br</strong> />

k = JK WsK<<strong>br</strong> />

b<<strong>br</strong> />

-23 −1 −1<<strong>br</strong> />

1, 38 10 ( )<<strong>br</strong> />

Tipo de superfície<<strong>br</strong> />

Emissividade<<strong>br</strong> />

Tipo de superfície<<strong>br</strong> />

Emissividade<<strong>br</strong> />

Água liquida<<strong>br</strong> />

Água liquida das nuvens<<strong>br</strong> />

Nuvens Cirrus<<strong>br</strong> />

Grama<<strong>br</strong> />

1,0<<strong>br</strong> />

0,25 - 1,0<<strong>br</strong> />

0,1 - 0,9<<strong>br</strong> />

0,9 - 0,95<<strong>br</strong> />

Solo<<strong>br</strong> />

Deserto<<strong>br</strong> />

Floresta<<strong>br</strong> />

Urbano<<strong>br</strong> />

0,9 - 0,98<<strong>br</strong> />

0,84 - 0,91<<strong>br</strong> />

0,95 - 0,97<<strong>br</strong> />

0,85 - 0,87<<strong>br</strong> />

e<<strong>br</strong> />

= ε B<<strong>br</strong> />

λ λ λ,T


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

Ângulo Sólido<<strong>br</strong> />

2<<strong>br</strong> />

s s s<<strong>br</strong> />

dΩ=<<strong>br</strong> />

dA<<strong>br</strong> />

r<<strong>br</strong> />

dA = ( r dθ )( r senθdφ)<<strong>br</strong> />

= r senθdθdφ<<strong>br</strong> />

dΩ=<<strong>br</strong> />

senθ dθdφ<<strong>br</strong> />

s<<strong>br</strong> />

2<<strong>br</strong> />

s<<strong>br</strong> />

2ππ<<strong>br</strong> />

Ω= ∫dΩ= ∫∫senθ dθdφ<<strong>br</strong> />

=<<strong>br</strong> />

0 0<<strong>br</strong> />

4π<<strong>br</strong> />

Radiância<<strong>br</strong> />

dE<<strong>br</strong> />

λ<<strong>br</strong> />

= IλdΩ E 4π<<strong>br</strong> />

I<<strong>br</strong> />

−2<<strong>br</strong> />

λ<<strong>br</strong> />

=<<strong>br</strong> />

λ Wm<<strong>br</strong> />

( µ m)


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

Iradiância espectral<<strong>br</strong> />

dF = I cos dΩ<<strong>br</strong> />

λ λ<<strong>br</strong> />

θ<<strong>br</strong> />

F = π I = π B<<strong>br</strong> />

λ λ λ,T<<strong>br</strong> />

λ <<strong>br</strong> />

p<<strong>br</strong> />

2897<<strong>br</strong> />

T( K)


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

Lei de Stefan-Boltzmann<<strong>br</strong> />

∞<<strong>br</strong> />

F π B dλ σ T<<strong>br</strong> />

= = ∫<<strong>br</strong> />

b λ,<<strong>br</strong> />

T B<<strong>br</strong> />

0<<strong>br</strong> />

σ<<strong>br</strong> />

B<<strong>br</strong> />

4 4<<strong>br</strong> />

2kBπ<<strong>br</strong> />

= = 5,67 10<<strong>br</strong> />

3 2<<strong>br</strong> />

15hc<<strong>br</strong> />

4<<strong>br</strong> />

Wm K<<strong>br</strong> />

−8 −2 −4<<strong>br</strong> />

Albedo a=SW /SW<<strong>br</strong> />

Tipo de superfície<<strong>br</strong> />

Albedo<<strong>br</strong> />

Tipo de superfície<<strong>br</strong> />

Albedo<<strong>br</strong> />

Água liquida<<strong>br</strong> />

Asfalto<<strong>br</strong> />

Nuvens<<strong>br</strong> />

Grama<<strong>br</strong> />

0,05 - 0,20<<strong>br</strong> />

0,05 - 0,20<<strong>br</strong> />

0,40 - 0,70<<strong>br</strong> />

0,16 – 0,26<<strong>br</strong> />

Solo<<strong>br</strong> />

Deserto<<strong>br</strong> />

Floresta<<strong>br</strong> />

Urbano<<strong>br</strong> />

0,05 - 0,20<<strong>br</strong> />

0,20 - 0,40<<strong>br</strong> />

0,10 - 0,25<<strong>br</strong> />

0,10 - 0,27


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

Absorção dos principais gases<<strong>br</strong> />

SW<<strong>br</strong> />

12<<strong>br</strong> />

SW<<strong>br</strong> />


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

Caminho Ótico, Espessura Ótica<<strong>br</strong> />

σ = σ + σ + ... + σn<<strong>br</strong> />

Coeficiente de extinção espectral de radiação 1, 2, ,<<strong>br</strong> />

λ λ λ λ<<strong>br</strong> />

dz = cos( θ ) dSb = µ<<strong>br</strong> />

sdSb<<strong>br</strong> />

µ = cos( θ )<<strong>br</strong> />

s<<strong>br</strong> />

b<<strong>br</strong> />

dτ =− σ dz =−σ µ dS<<strong>br</strong> />

λ λ λ<<strong>br</strong> />

s<<strong>br</strong> />

b<<strong>br</strong> />

τ = 0<<strong>br</strong> />

z = ∞ S b<<strong>br</strong> />

=∞<<strong>br</strong> />

z<<strong>br</strong> />

τλ = ∫σλdz<<strong>br</strong> />

= ∫σ λµ<<strong>br</strong> />

sdS<<strong>br</strong> />

∞<<strong>br</strong> />

s b<<strong>br</strong> />

∞<<strong>br</strong> />

b<<strong>br</strong> />

dz,<<strong>br</strong> />

dτ<<strong>br</strong> />

θ b<<strong>br</strong> />

τ = τ<<strong>br</strong> />

dS b<<strong>br</strong> />

z = 0 Sb<<strong>br</strong> />

= 0


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

Equação de transferência radiativa<<strong>br</strong> />

dI ( , )<<strong>br</strong> />

ν<<strong>br</strong> />

τ µ<<strong>br</strong> />

µ = Iν<<strong>br</strong> />

τ , µ −Bν<<strong>br</strong> />

T<<strong>br</strong> />

dτ<<strong>br</strong> />

Equação de aquecimento radiativo<<strong>br</strong> />

( ) ( )<<strong>br</strong> />

dI ( , )<<strong>br</strong> />

ν<<strong>br</strong> />

τ −µ<<strong>br</strong> />

− µ = Iν<<strong>br</strong> />

τ , −µ<<strong>br</strong> />

−Bν<<strong>br</strong> />

T<<strong>br</strong> />

dτ<<strong>br</strong> />

( ) ( )<<strong>br</strong> />

⎛∂T<<strong>br</strong> />

⎞ 1 ⎛dQ dQ ⎞ 1 ∂F<<strong>br</strong> />

⎜ ⎟ = ⎜ + ⎟ =<<strong>br</strong> />

⎝ ∂t ⎠ c ⎝ dt dt ⎠ c ∂z<<strong>br</strong> />

solar ar n<<strong>br</strong> />

r p p<<strong>br</strong> />

2<<strong>br</strong> />

Fn<<strong>br</strong> />

( Wm − )<<strong>br</strong> />

É o saldo de radiação


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong>


<strong>Radiação</strong> <strong>Solar</strong> e <strong>Terrestre</strong><<strong>br</strong> />

LACIS, A.A. HANSEN, J.E. Parametrization for to the absorption of <strong>Solar</strong> radiation<<strong>br</strong> />

in the earth’s atmosphere. Journal of the Atmospheric sciences. V. 31, January, 118-<<strong>br</strong> />

133. 1972. [Texto PDF ver link: Anexo-MNA-modulo03e ]<<strong>br</strong> />

SAVUARVI, H. Fast radiation parameterization schemes for mesoscale and shortrange<<strong>br</strong> />

forecast models. Journal of Applied Meteorology. V. 29. June. 436-447. 1990.<<strong>br</strong> />

[Texto PDF ver link: Anexo-MNA-modulo03f ]<<strong>br</strong> />

JACOBSON, M.Z. Fundamentals of atmospheric modeling. Cam<strong>br</strong>idge University<<strong>br</strong> />

Press. 1999.<<strong>br</strong> />

LIOU, KUO-NAN. An introduction to atmospheric radiation. Academic Press. 1980

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!