Views
1 week ago

Mis on aeg?

Tegemist on Maailmataju eriväljaandega, mille teemaks on ajas rändamine!

eksisteerimast. Kõlab

eksisteerimast. Kõlab ju loogiliselt, et “ajast väljumise” korral aega enam ei eksisteerigi. See avaldub näiteks siis, kui ületatakse valguse kiirus vaakumis, sest mida lähemale keha kiirus jõuab valguse kiirusele vaakumis, seda enam aeg aegleneb ja keha pikkus lüheneb. Kuid selline aegruumi piirkond on näiteks ka mustade aukude tsentrites. Taolises aegruumi piirkonnas olles ei allu inimene enam Universumi kosmoloogilisele paisumisele, sest Universumi paisumine avaldub kahe ruumipunkti vahelise kauguse suurenemisega ( see tähendab seda, et galaktikad eemalduvad üksteisest seda kiiremini, mida enam kaugemal nad üksteisest on ). Võimalikuks osutub ajas liikumine, mis on oma olemuselt ruumis liikumine, sest aeg ja ruum ei saa eksisteerida teineteisest lahus. Maailmataju ajas rändamise teooria kirjeldab inimese füüsikalist ajas liikumist. Näiteks inimene on võimeline liikuma ajas minevikku või tulevikku. Kõik füüsikalised kehad liiguvad ajas – tuleviku suunas. Ja seega on ajas rändamise teooria kogu Universumi ( füüsika ) eksisteerimise aluseks. Ajas rändamise teooria edasiarendused näitavad Universumi füüsikalist olemust. See seisneb selles, et Universumit ei ole tegelikult olemas, mis tuleb välja sellest, et Universum ise on ajatu. Ajas rändamise tehniline lahend õpetab looma reaalset ajas rändamist. Selle põhiliseks teesiks on see, et peale massi kõverdab aegruumi ka energia. See tuleb välja A. Einsteini erirelatiivsusteooria energia ja massi ekvivalentsuse printsiibist. Maailmataju ajas rändamise teooria osas on kirjeldatud inimese teoreetiline võimalus ajas rändamiseks, mida me ka eelnevalt lühidalt esitasime, et edaspidi mõista inimese tehnilist ajas rändamist. Kuid kogu järgnevas osas on kirjeldatud inimese tehniline võimalus reaalseks ajas rändamiseks, mida me ka järgnevalt lühidalt järjekorras esitame: 1. Inimene rändab ajas ainult siis ja veelkord ainult siis, kui ta satub hyperruumi ehk väljapoole aegruumi. „Seal“ on aegruum üldrelatiivsusteooria järgi kõverdunud lõpmatuseni ( ehk aeg on aeglenenud lõpmatuseni ja kahe ruumipunkti vaheline kaugus on lühenenud samuti lõpmatuseni ehk dt = ds = ∞ ). Selline aegruumi piirkond ( kus aegruumi eksisteerimine lakkab olemast ) eksisteerib näiteks mustade aukude tsentrites ja seetõttu võivad mustad augud olla nagu „väravateks“, mille kaudu on võimalik siseneda hyperruumi. 2. Üldrelatiivsusteooria järgi kõverdab aegruumi keha mass. Kuna erirelatiivsusteooria järgi on mass ja energia ekvivalentsed suurused valemis E = mc 2 , siis seega kõverdab aegruumi peale massi ka veel energia. 3. Elektri- ja magnetväljal ( ja seega elektromagnetväljal ) on olemas energia ( ning ka mass ja impulss ). See tähendab seda, et elektri- ja magnetvälja korral on energia kandjaks väli, mitte laengud. Laengud on lihtsalt välja tekitajateks. Seega suudavad need väljad kui energiaväljad kõverdada aegruumi nii nagu seda teevad kehade massid. Elektrijõu ja gravitatsioonijõu vahe on 5,27 * 10 -44 . Oluline on märkida seda, et elektromagnetväli ise ei ole tingitud aegruumi kõverdusest, kuid on võimeline mõjutama aegruumi struktuuri. 4. Elektrilaengu ( magnetlaenguid looduses ei eksisteeri ) mõju aegruumile kirjeldab üldrelatiivsusteoorias tuntud Reissner-Nordströmi meetriline matemaatika. 5. Mida suurem on kehal mass, seda rohkem see aegruumi kõverdab ja sama on tegelikult ka elektrilaenguga – s.t. mida suurem on kehal elektrilaeng ( ehk mida rohkem on väljal energiat ), seda enam kõverdab see aega ja ruumi. Kuid siin peab arvestama seda, et kui keha massi mõju aegruumi meetrikale on pöördvõrdeline raadiusega ehk kaugusega massist, siis keha elektrilaengu korral on see aga pöördvõrdeline kauguse ruuduga laengust. 6. Et inimene saaks reaalselt rännata ajas, peab ta selleks olema elektrostaatiliselt laetud, kuna elektrilaeng suudab mõjutada aegruumi kõverust. Elektrostaatilise laengu korral liiguvad laengud hõõrdejõu mõjul, kuid „elektrodünaamilise laengu“ korral liiguvad laengud tõmbe- 285

ja tõukejõudude ehk elektrivälja mõjul. See tähendab seda, et füüsikaline keha saab elektrilaengu hõõrdumise teel või elektrivälja mõjul ehk tõmbe- ja tõukejõudude kaudu. Näiteks elektrotehnikas kasutatav akumulaator ehk lihtsalt aku saab laetud elektrivoolu abil, mille korral liiguvad laengud tõmbe- ja tõukejõudude mõjul. Elektrostaatiline laeng tekib kehal hõõrdumise teel. 7. Kuna elektrilaeng suudab mõjutada aegruumi meetrikat, siis on võimalik elektromagnetilist vastastikmõju kasutades luua aegruumi tunnel, mis võimaldaks rännata ajas. Samasugust põhimõtet on viljelenud ka maailmakuulus teadlane Michio Kaku, kes on New Yorgi linnaülikooli füüsikaprofessor. „Tema idee hõlmab kaht kambrit, kusjuures kumbki sisaldab kaht omavahel paralleelselt metallplaati. Põhimõte on selles, et genereeritakse piisavalt võimas elektromagnetiline jõud, mis tekitab plaatide vahel tugeva elektrivälja. See on umbes nende superväljade tase, mida genereeris Tesla üle sajandi tagasi, kui ta püüdis tekitada kunstlikku välku, et elumajadele voolu anda. Aga on kindlasti huvitav meenutada, et Tesla kinnitusel koges ta mingit ajarännaku vormi esimeste katsete ajal sellise gigantse elektromagnetilise väljaga. Kaku ajamasina metallplaadid peavad võimaldama nii võimsat energiavälja, kui plaadid seda taluvad. Erinevate antigravitatsiooni katsete tarvis arendatud ülijuht võib saada võtmeks võimaldamaks küllalt tugevat energiavälja, mis avab ukse ajarännakule. Kui need tingimused on paigas, peab masin kõverdama aegruumi seadme läheduses sellisel moel, et tekib ussiauk, mis ühendab kaks külgnevat kambrit. Tulemus peaks olema sild läbi aegruumi, mida loodetavasti stabiliseerib eksootiline aine, mis saadakse Casimiri efektiga.“ ( Jenny Randles, lk. 125 – 126 ) 8. Aegruumi kõverdumiseks on vaja reaalselt väga suurt elektrilaengut, kuid keha elektrilaeng ei saa olla mistahes suur, sest siis hakkavad laengute vahel ilmnema tõukejõud, mis takistaksid aegruumi kõverdumist. Niisamuti ka keha elektrimahtuvus ei võimalda omada mistahes suurt laengut. Näiteks kondensaatoril ehk kahe erinimeliselt laetud pinna vahelises ruumis on elektrivälja energia väga väike ( samuti ka väljapotentsiaalid on väga väikesed ), kuid samas esinevad väga suured elektrilaengud ja väljatugevused. Näiteks kui kondensaatori mahtuvus on 0,6 mF ja selle laeng on 0,12 C, siis seega kondensaatoril on energia „kõigest“ 12 J. 9. Laengu elektrivälja energia ( laengu elektrivälja potentsiaali ) suurus sõltub küll laengu enda suurusest, kuid peale selle sõltub see laengute polarisatsiooni korral veel ka positiivse ja negatiivse laengu vahekaugusest. See tähendab seda, et positiivse ja negatiivse laengu vahel on väljal energia, mille suurus sõltub peale laengute enda suuruse ka veel nende vahekaugusest. Positiivse ja negatiivse laengu vaheline välja energia väheneb, kui nende laengute vahelist kaugust vähendada ( ja vähendada ka laengute enda arvväärtust ). 10. Kui laengu poolt tekitatava aegruumi lõkspinna kuju sõltub laengu välja ekvipotentsiaalpinna kujust, siis peab aegruumi lõkspinna tekkimine sõltuma ka välja ekvipotentsiaalpinna tiheduse suunast. Ekvipotentsiaalpinna tiheduse suund määrab ära selle, et millises suunas elektrivälja tugevus nõrgeneb või suureneb. Väljatugevus on seotud omakorda elektrijõuga. Elektrivälja tugevus on võrdne vastandmärgilise potentsiaali-gradiendiga: E = - gradφ. Skalaarse funktsiooni φ(x,y,z) gradiendi suund ühtib suunaga n, milles funktsioon kasvab kõige kiiremini. 11. Näiteks sfäärilise kujuga aegruumi lõkspind tekib elektriliselt laetud kera tsentrisse, mille korral elektrivälja potentsiaal φ ja seega välja ekvipotentsiaalpindade tihedus väheneb laetud kera pinnast eemaldumisel ( ehk kaugenemisel ). Kuid elektriliselt laetud kera võib olla ka selline, mille korral väheneb väljapotentsiaal φ ja seega välja ekvipotentsiaalpindade tihedus hoopis kera tsentri suunas. Sellisel juhul on tegemist vastupidise olukorraga, mille korral ei 286

  • Page 1 and 2:

    MAAILMATAJU ESITLEB: Mis

  • Page 3 and 4:

    „Inimese enda olemasolu on suurim

  • Page 5 and 6:

    Ajas rändamise teooria sissejuhata

  • Page 7 and 8:

    Üleval pool olev skeem-joonis sisa

  • Page 9 and 10:

    mõjutada aegruumi omadusi. Albert

  • Page 11 and 12:

    aega ja ruumi enam ei eksisteeri. A

  • Page 13 and 14:

    Resümee Käesolevas töös on esit

  • Page 15 and 16:

    Sissejuhatus Klassikaline mehaanika

  • Page 17 and 18:

    1 Ajas rändamise füüsikateooria

  • Page 19 and 20:

    neljas mõõde ongi ajaga seotud ju

  • Page 21 and 22:

    maailmast, sest selline aja ja ruum

  • Page 23 and 24:

    omavahel kontaktis. See tähendab s

  • Page 25 and 26:

    1.1.4.2 Universumi meetriline paisu

  • Page 27 and 28:

    Joonis 8 Mida kaugemale ilmaruumi n

  • Page 29 and 30:

    = Kui me kasutame selliseid Lorentz

  • Page 31 and 32:

    kaasnema ka ruumi teisenemine. See

  • Page 33 and 34:

    illusioon, mis ei pruugi näidata s

  • Page 35 and 36:

    c järgmiselt: +( ´ ´ = l on keha

  • Page 37 and 38:

    mis tegelikult näitabki seda, et t

  • Page 39 and 40:

    Eelnevat analüüsi võib lihtsusta

  • Page 41 and 42:

    = Tegemist on siis paisuva keraga e

  • Page 43 and 44:

    = Viimane saadud võrrand võrdub k

  • Page 45 and 46:

    = Selle kordaja y muutumispiirkond

  • Page 47 and 48:

    eksisteerimist. Väljaspool aegruum

  • Page 49 and 50:

    = ja seetõttu saame kinemaatilise

  • Page 51 and 52:

    Kõike eelnevat arvestades võib ki

  • Page 53 and 54:

    viime liikme teisele poole võrdusm

  • Page 55 and 56:

    milles = + = = + = + = = = Viimases

  • Page 57 and 58:

    ( = ja viime ühe liikme teisele po

  • Page 59 and 60:

    Järgnevalt hakkame väga põhjalik

  • Page 61 and 62:

    See tähendab seda, et Universumi p

  • Page 63 and 64:

    miski seda ei takista. Kui aga võr

  • Page 65 and 66:

    ja seega saame võrrandi kujuks jä

  • Page 67 and 68:

    = ( = ( ehk lühidalt võib selle v

  • Page 69 and 70:

    ja integreerime aja järgi, siis sa

  • Page 71 and 72:

    Aeg ja ruum kosmoloogias Eespool tu

  • Page 73 and 74:

    ainus erinevus seisnebki selles, et

  • Page 75 and 76:

    uumi teisenemine ruumi kontraktsioo

  • Page 77 and 78:

    Kiiruse v ruudu avaldis = tuleb vä

  • Page 79 and 80:

    = siis saame matemaatiliselt teisen

  • Page 81 and 82:

    Teepikkus ct võib olla valguse tee

  • Page 83 and 84:

    See tähendab seda, et kui keha m o

  • Page 85 and 86:

    Selline võrdus kehtib ka siis kui

  • Page 87 and 88:

    = = Viimases võrduses on t` nö. n

  • Page 89 and 90:

    = = Seetõttu võime raskuskiirendu

  • Page 91 and 92:

    Kui aga y = ∞, siis Universumi pa

  • Page 93 and 94:

    = = ( = + milles Hubble´i seadus o

  • Page 95 and 96:

    ehk milles tihedus on avaldatav = (

  • Page 97 and 98:

    näiteks gravitatsiooniline aja dil

  • Page 99 and 100:

    K 0 ( x,y,z ). Punkt K on kera pais

  • Page 101 and 102:

    Universumi ruumis, mistõttu on Uni

  • Page 103 and 104:

    Joonis 18 Universum ei paisu ruumis

  • Page 105 and 106:

    vana Universum paistab Universumi s

  • Page 107 and 108:

    Universumi Suur Pauk ja algsingulaa

  • Page 109 and 110:

    siis sellest tulenevalt saame Unive

  • Page 111 and 112:

    = Järgnevalt analüüsime saadud v

  • Page 113 and 114:

    Universumi paisumiskiirus oli minev

  • Page 115 and 116:

    = Null punkt asub kera tsentrist te

  • Page 117 and 118:

    = = = = ehk = milles peab kehtima v

  • Page 119 and 120:

    ja r on väiksem kui R, mis tavafü

  • Page 121 and 122:

    põhjustab Universumi paisumist ehk

  • Page 123 and 124:

    = = oleva raadiuste suhte on võima

  • Page 125 and 126:

    Arvestades eespool tuletatud seosei

  • Page 127 and 128:

    = = = milles p ongi Universumi rõh

  • Page 129 and 130:

    kalda suhtes nimetatakse aga absolu

  • Page 131 and 132:

    Kehad M ja m „ise“ kera pinnal

  • Page 133 and 134:

    ehk matemaatiliselt on seda võimal

  • Page 135 and 136:

    Keha M sfäärilised koordinaadid o

  • Page 137 and 138:

    toimub Universumis pidev liikumine

  • Page 139 and 140:

    koordinaate ruumis ja ajas, s.t. ne

  • Page 141 and 142:

    Joonis 17 Keha m liikus K suhtes ta

  • Page 143 and 144:

    Joonis 18 Keha m on K suhtes haihtu

  • Page 145 and 146:

    Joonis 19 Keha m on liikunud ajas t

  • Page 147 and 148:

    veel üks tõsiasi. Nimelt igasugun

  • Page 149 and 150:

    kujutada aegruumi koordinaatsüstee

  • Page 151 and 152:

    ehk = Tõstame viimase võrrandi m

  • Page 153 and 154:

    uumiteleportatsiooniks. 2. objekti

  • Page 155 and 156:

    Joonis 21 Inimese ajas liikumise su

  • Page 157 and 158:

    nulliga. Selle tõttu ei ole inimen

  • Page 159 and 160:

    aega ja ruumi enam ei eksisteeri. A

  • Page 161 and 162:

    Joonis 21 Aegruumi augu singulaarsu

  • Page 163 and 164:

    = + + ( + . Täpsemalt öeldes kirj

  • Page 165 and 166:

    siis tegelikult ( s.t. Universumist

  • Page 167 and 168:

    Liikumise suhtelisus Liikumine on s

  • Page 169 and 170:

    1.2 Relatiivsusteooria ajas rändam

  • Page 171 and 172:

    Joonis 25 K liigub K´ suhtes valgu

  • Page 173 and 174:

    = ja pikkuse kontraktsiooni valem =

  • Page 175 and 176:

    = = = Klassikalises mehaanikas defi

  • Page 177 and 178:

    saamegi pikkuse teisenemise avaldis

  • Page 179 and 180:

    Teepikkus ct võib olla valguse tee

  • Page 181 and 182:

    See tähendab seda, et kui keha m o

  • Page 183 and 184:

    = = + + + Kui aga v/c avaldis asend

  • Page 185 and 186:

    inertsiaalsüsteemi suhtes ühtlase

  • Page 187 and 188:

    = ( + = + või = ( = milles olev ko

  • Page 189 and 190:

    või = = Neid valemeid nimetatakse

  • Page 191 and 192:

    tähendab seda, et ühe vaatleja ja

  • Page 193 and 194:

    saame liikumiskiiruseks = Kuid koor

  • Page 195 and 196:

    = + + = + + = + + = + + = ( + ( + =

  • Page 197 and 198:

    Sellest tulenevalt saame y avaldada

  • Page 199 and 200:

    avaldis ainult matemaatilise defini

  • Page 201 and 202:

    = Ametlikus erirelatiivsusteooria g

  • Page 203 and 204:

    = tõestatakse ajas rändamise teoo

  • Page 205 and 206:

    milles m g = m. Täpsemate mõõtme

  • Page 207 and 208:

    Joonis 28 Tavaruum K liigub hyperru

  • Page 209 and 210:

    lähenedes aeg samuti aegleneb ja r

  • Page 211 and 212:

    = See tähendab seda, et kui = , si

  • Page 213 and 214:

    Kuid aja suhete omavahelise võrdus

  • Page 215 and 216:

    ja teepikkuse c väärtuseks saame

  • Page 217 and 218:

    = Saadud ruutjuure avaldis on matem

  • Page 219 and 220:

    korrutada mõlemad pooled valguse k

  • Page 221 and 222:

    Vastavalt üldrelatiivsusteooria ü

  • Page 223 and 224:

    ehk = milles = = Saadud viimase võ

  • Page 225 and 226:

    sfäärilistes koordinaatides: = +

  • Page 227 and 228:

    = ( + seega saame viimase võrrandi

  • Page 229 and 230:

    Geodeetilise joone meetrilise võrr

  • Page 231 and 232:

    = = = = = = Teades seda, et dt võr

  • Page 233 and 234:

    kuid seda ainult siis, kui lõpmatu

  • Page 235 and 236:

    meile tuntud Schwarzschildi raadius

  • Page 237 and 238:

    = Muutliku tähe pulseerimise perio

  • Page 239 and 240:

    = , kus = . Vektorid piirduvad ainu

  • Page 241 and 242:

    Joonis 31 Sfäärilised koordinaadi

  • Page 243 and 244:

    Koppel 1975, 123-127 ). Sfääri ra

  • Page 245 and 246: Tensor T kirjeldab seda, et kuidas
  • Page 247 and 248: ainult sellest väljas olles. Kvant
  • Page 249 and 250: 1.3.3 Matemaatiline analüüs kvant
  • Page 251 and 252: = saame seega viia järgmisele mate
  • Page 253 and 254: = + = = = milles teepikkus on võrd
  • Page 255 and 256: milles = . Kvandienergia E avaldise
  • Page 257 and 258: siis seega saame kvandienergia E av
  • Page 259 and 260: läbimisel, juhtub sama ka osakese
  • Page 261 and 262: = + = = Saadud avaldis võrdubki la
  • Page 263 and 264: Kui aga keha m on hyperruumi K´ su
  • Page 265 and 266: omaajas lõpmata suur, kuid välisv
  • Page 267 and 268: Keha liikumiskiirus v näitab, et k
  • Page 269 and 270: ehk = = = Vaakumis liikuva valgusla
  • Page 271 and 272: teleportreerub ja millisesse ajahet
  • Page 273 and 274: ( = = = Arvestades kompleksmuutuja
  • Page 275 and 276: väiksem. Tuuma sees võib arvestad
  • Page 277 and 278: Ψ = c 1 ψ 1 (1) + c 2 ψ 1 (2) .
  • Page 279 and 280: Asendame saadud seosed järgmisesse
  • Page 281 and 282: = + + on Laplace´i operaator kolme
  • Page 283 and 284: = milles n = 1,2,3, ... on vabaosak
  • Page 285 and 286: + = saamegi tuntud fotoefekti võrr
  • Page 287 and 288: korraga nii kahes kohas kui ka kahe
  • Page 289 and 290: Lainetel on palju seaduspärasusi,
  • Page 291 and 292: Kuna E = E, siis mc 2 = hf. Seega h
  • Page 293 and 294: nendine vektor, milles on olemas fu
  • Page 295: valguse võnkumise sagedus on umbes
  • Page 299 and 300: Gravitatsiooniväli ehk aegruumi k
  • Page 301 and 302: = Musta augu paokiirus ehk teine ko
  • Page 303 and 304: 1916. aastal leidis sellise lahendi
  • Page 305 and 306: Elektri- ja magnetväljal ( ja seeg
  • Page 307 and 308: kõverdunud lõpmatuseni. See tulen
  • Page 309 and 310: Analüüsime seda pisut. Sulgude av
  • Page 311 and 312: aadius. See saab väljenduda ainult
  • Page 313 and 314: kõverdunud ehk teisenenud lõpmatu
  • Page 315 and 316: ehk = = = Tuletame meelde, et välj
  • Page 317 and 318: annab vabade elektronide kontsentra
  • Page 319 and 320: Schwarzcshildi või Nordströmi raa
  • Page 321 and 322: = = ( ( Viimased kaks võrrandit on
  • Page 323 and 324: olemas negatiivne laeng ja vastupid
  • Page 325 and 326: potentsiaal φ kera pinnast eemaldu
  • Page 327 and 328: milles div = 4π ja mistahes kontuu
  • Page 329 and 330: = = Kuna = , siis saame viimase ava
  • Page 331 and 332: aegruumi lõkspinna mõõtmed ehk r
  • Page 333 and 334: võimalda katta mingi teise keha ko
  • Page 335 and 336: milles me näeme seda, et = . Matem
  • Page 337 and 338: Oluline on märkida seda, et pindal
  • Page 339 and 340: lõkspinna paksus on 10 -51 meetrit
  • Page 341 and 342: saame konstantse kiirusparameetri
  • Page 343 and 344: Tuleb mainida ka veel seda, et taan
  • Page 345 and 346: välja arvutada ka elektrilaengu q
  • Page 347 and 348:

    tähistab energia E elektrivälja e

  • Page 349 and 350:

    lõpmatuseni. Aegruumi lõpmatu kõ

  • Page 351 and 352:

    Joonis 4 Elektrofoormasinat võib e

  • Page 353 and 354:

    Joonis 8 Isolaatoriks sobib igasugu

  • Page 355 and 356:

    Joonis 42 Inimese kehal võivad tek

  • Page 357 and 358:

    Jenny Randles, kes dokumenteeris sa

  • Page 359 and 360:

    „Vapustatud missis Forman astus s

  • Page 361 and 362:

    „Kas nad olid ajas tagasi libisen

  • Page 363 and 364:

    https://www.youtube.com/watch?v=4qB

  • Page 365 and 366:

    süsteemide vahel eksisteerivad ain

  • Page 367 and 368:

    Joonis 47 Universumi paisumine kui

  • Page 369 and 370:

    fokuseerivad suure kujutise ekraani

  • Page 371 and 372:

    = + + + = + + + = = ( + + + = mille

  • Page 373 and 374:

    eksisteeri, kuid sellegipoolest on

  • Page 375 and 376:

    tekkimatu ja ka hävimatu. „Olema

  • Page 377 and 378:

    Tulemused Antud töö üldine tulem

  • Page 379:

    368

MAAILMATAJU 2016
Maailmataju 2018
Maailmataju
Kui kõver on banaan?
Maailmataju 1
Mis kasu on ärianalüüsist_Indrek Saul
E Mis on radoon?
Millal on õige aeg taimi mulda panna ja ümber istutada ...
Mis imeloom see saneerimisseadus on? - Sorainen
Erametsaomaniku PEFC Mis on metsa sertifitseerimine?
Emakakaelavähk on ennetatav ja ravitav
Kas Eesti kool on maailmahariduseks valmis? (Tõnis Lukas)
Kvaliteet on parim retsept! - Õhtuleht
Mis on kvantmõtlemine!
füüsika i
Mis on must kasvatus? - Haridus
Mis tunne on olla noor keemiaõpetaja (Andero Vaarik ... - Haridus
Mis on hallitus? - Terviseamet
Maksud – meilt või meie jaoks? Mis on maks? Võib öelda, et see on ...
OÜ “Meil ei ole veel nime!” Mis on meie äriplaani äri plaan:
Ajutised tätoveeringud on ohtlikud - Linnaleht
Mis on e-raamatupidamine
Mis on leksikograafia - Emakeele Selts
mis on etwinning? - European Schoolnet
„Kui pidu KorraldataKse, oN järeliKult seda ... - Keel ja Kirjandus
Nad on kui ühe suure pere lapsed - Tartu
YFR0011loeng_2 - Hot.ee
Mis värvi on inimene? - Emakeele Selts
1.Mis on ettevõtlus? - Maksu- ja Tolliamet