16.12.2012 Views

Microsystèmes Magnétiques Mag-MEMS - Solutions Cades

Microsystèmes Magnétiques Mag-MEMS - Solutions Cades

Microsystèmes Magnétiques Mag-MEMS - Solutions Cades

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Work is in progress in collaboration with ONERA and<br />

Silmach to integrate a high-efficiency Si-machined planar<br />

turbine into the prototype, which will use combustion gases<br />

from a low-temperature burner.<br />

Other µ-generator projects include Allen's team at<br />

Georgiatech [68] for high-power levels, as well as Holmes's at<br />

Imperial College London [69] for low-power.<br />

Optics<br />

Deformable mirror for astronomy and ophthalmology<br />

Ground-based telescopes suffer from atmospheric<br />

turbulences which perturb the quality of the light arriving from<br />

space. Astronomers use adaptive optics in order to correct the<br />

wavefront of oncoming light. In this context, a first prototype<br />

of electromagnetic miniature (ø 50 mm) deformable mirror<br />

was developed, using micro-technologies available at IEMN in<br />

Lille and LPMO in Besançon [70].<br />

The first mirrors were composed of a thin polymer<br />

membrane (2 to 5 µm) onto which was glued a matrix of<br />

permanent µ-magnets, and of an array of planar µ-coils on a ø<br />

50 mm substrate facing the membrane. The second generation<br />

of mirrors uses 10 µm thick Si membranes developed at LETI,<br />

and mechanically wound coils.<br />

The behavior of the mirror allows deformations of up to<br />

100 µm with currents in the range 1~3 A. Good linearity of the<br />

deformation is observed up to 200 Hz, and best-flat down to a<br />

few nm is achieved. The devices are now commercialised by<br />

Imagine-Optics and Imagine-eyes, for both astronomy and<br />

ophthalmology applications [71]. <strong>Mag</strong>netic actuation allows<br />

for smaller pixels and more compact mirrors with huge<br />

dynamics and fast response.<br />

Other <strong>Mag</strong>-MOEMS<br />

Many other optical <strong>Mag</strong>-<strong>MEMS</strong> can be found in the<br />

literature. Most of them are magnetically activated mirrors for<br />

scanners and fiber optic switching [72-74].<br />

Other potential applications<br />

We have described here only the <strong>Mag</strong>-<strong>MEMS</strong> developed<br />

in Grenoble. Within the last decade, a great number of articles<br />

have been published describing many prototypes of <strong>Mag</strong>-<br />

<strong>MEMS</strong> with applications in a wide range of domains. The<br />

reader is encouraged to explore in depth and width the many<br />

excellent journals and conference proceedings, among which<br />

the following ones are noteworthy:<br />

• Journals: Journal of Micro Electro-Mechanical<br />

Systems (J<strong>MEMS</strong>), Journal of Microsystems and<br />

Microtechnology, Sensors and Actuators A<br />

• Conferences: <strong>MEMS</strong>, Actuator, Transducers,<br />

Intermag, MME, EMSA, Mecatronics<br />

Power supplies, control, cooling<br />

While electrostatic actuators use ‘high’ voltages and low<br />

currents, <strong>Mag</strong>-<strong>MEMS</strong> require ‘high’ currents and low<br />

voltages. Current pulses, if used, need faster control. Hence,<br />

final performances highly rely on working conditions and<br />

development of appropriate integrated supplies and coolers.<br />

Also, for µ-sources, specifically dedicated power-electronics is<br />

required in order to make use of the often low-voltage,<br />

sometimes erratic energy and power levels produced by µgenerators.<br />

Recent work on a converter for the above<br />

mentioned µ-turbo-generator has yielded excellent results [67].<br />

REMERCIEMENTS<br />

Les <strong>Mag</strong>-<strong>MEMS</strong> présentés ici sont le fruit de nos<br />

fructueuses collaborations principalement avec l'Institut Néel<br />

(CNRS) et le CEA/LETI à Grenoble, et désormais au sein de<br />

MINATEC. Ces projets sont financés par la DGA, le CNRS, le<br />

Ministère de la Recherche et la Région entre autres.<br />

REFERENCES<br />

<strong>Mag</strong>-<strong>MEMS</strong> and scaling laws<br />

[1] Microactionneurs electromagnétiques - MAGMAS, éd. O. Cugat,<br />

Hermès/Lavoisier (2002), ISBN 2-7462-0449-5<br />

[2] Édition révisée et en Anglais de [1]: <strong>Mag</strong>netic Microsystems <strong>Mag</strong>-<br />

<strong>MEMS</strong>, éd. G. Reyne, J. Delamare & O. Cugat, ISTE (à paraître, 2008)<br />

ISBN: 9781905209811<br />

[3] O. Cugat, J. Delamare and G. Reyne, MAGnetic Micro-Actuator &<br />

Systems MAGMAS, IEEE Trans. <strong>Mag</strong>netics, 39-6 (2003) pp.3608-3612.<br />

[4] G. Reyne, J. Delamare and O. Cugat, <strong>Mag</strong>netic µ-actuators (<strong>Mag</strong>-<br />

<strong>MEMS</strong>), Encyclopedia of Materials: Science and Technology Update<br />

Online (EMSAT), Elsevier 2004, ISBN: 0-08-043152-6<br />

[5] O. Cugat, G. Reyne, J. Delamare, H. Rostaing, Novel magnetic µactuators<br />

and systems (MAGMAS) using permanent magnets, Sensors<br />

and Actuators A 129 (2006) pp. 265–269<br />

[6] Section B in <strong>Mag</strong>netic Nanostructures in Modern Technology, éds. B.<br />

Azzerboni, G. Asti, L. Pareti & M. Ghidini (2007) ISBN:<br />

9781402063367<br />

[7] R.P. Feynman, There’s plenty of room at the bottom, (American Phys.<br />

Soc. 26/12/ 1959), reprint J. <strong>MEMS</strong>, 1-1 (1992) pp. 60-66<br />

[8] R.P. Feynman, Infinitesimal machinery, (Jet Propulsion Lab., 23 rd Feb.<br />

1983), J. of <strong>MEMS</strong>, 2 (1993) pp. 4-14<br />

[9] B. Wagner and W. Benecke, <strong>Mag</strong>netically driven µ-actuators: design<br />

considerations. Microsystem Technologies 838 Springer Verlag Ed., 1990<br />

[10] H. Guckel et al , Fabrication and testing of the planar magnetic<br />

micromotor. J. Micromech. Microeng. 1 (1991) pp. 135-138<br />

[11] W. Trimmer, Microrobots and micromechanical systems, Sensors &<br />

Actuators A19-3 (1989) pp. 267-287<br />

[12] D.K. MacKay and R.D. Findlay, An examination of the scaling<br />

properties of electric micro-motors and their magnetic duals, IEE 5th<br />

International Conference on Electrical Machines and Drives, London,<br />

U.K., 11-13 Sept. 1991, pp. 170-174<br />

[13] I.J. Busch-Vishniac, The case for magnetically-driven micro-actuators,<br />

Sensors & Actuators A33 (1992) pp. 207-220.<br />

[14] M. Jufer, Size limits and characteristic influence of electro-magnetic<br />

actuators. Proc. 4 th International Conference on New Actuators (1994)<br />

pp. 390-393<br />

[15] W. Benecke, Scaling behavior of µ-actuators, Actuator, Bremen,<br />

Gemany (1994), pp. 19-24<br />

[16] H. Guckel, Progress in electromagnetic actuators, Actuator, Germany<br />

(1996) pp. 45-48<br />

[17] Z. Nami, C. Ahn, and M.G. Allen, An energy-based design criterion for<br />

magnetic micro-actuators. J. Micromech. Microeng. 6 (1996) pp.337-344<br />

[18] J.H. Fluitman and H. Guckel, Micro-actuator principles, Actuator,<br />

Bremen, Germany (1996) pp. 23-28<br />

[19] A. Kruusing, Actuators with permanent magnets having variable in<br />

space orientation of magnetization. Sens & Act A101 (2002) pp.168-174<br />

[20] G. Reyne, J. Delamare et al., Chapter 1 in [1, 2].<br />

[21] J. Delamare, G. Reyne et al., Chapter 2 in [1, 2].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!