06.05.2013 Views

DACIA ELECTRA - ingineria-automobilului.ro

DACIA ELECTRA - ingineria-automobilului.ro

DACIA ELECTRA - ingineria-automobilului.ro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Simulation of Elastic P<strong>ro</strong>perties of Composite Prepreges<br />

with Applications in the Automotive Industry<br />

Simularea p<strong>ro</strong>prietăţilor elastice ale prepreg-urilor compozite<br />

cu aplicaţii în industria auto<br />

Ingineria Automobilului<br />

ete<strong>ro</strong>gene a dat o bună concordanţă între această<br />

abordare teoretică și datele experimentale.<br />

Cuvinte cheie: Prepreg-uri, Mediere,<br />

Omogenizare, Limită superioară, Limită inferioară,<br />

P<strong>ro</strong>prietăţi elastice.<br />

INTRODUCTION<br />

Th e objectives of the paper is to compute the<br />

upper and lower limits of the homogenized<br />

elastic coeffi cients for a common 27% fi bers volume<br />

fraction SMC based on a homogenization<br />

method described by Ene and Pasa [1] as well as<br />

ABSTRA CT<br />

some averaging methods of the Young and shear<br />

Th e paper presents some averaging methods to<br />

moduli of various SMCs with diff erent fi bers<br />

simulate the elastic p<strong>ro</strong>perties of prepregs like<br />

volume fractions. A Sheet Molding Compound<br />

Sheet Molding Compounds (SMCs) used in the<br />

(SMC) is a pre-impregnated material, chemi-<br />

automotive industry. Th e upper and lower limits<br />

cally thickened, manufactured as a continuous<br />

of the homogenized coeffi cients for a 27% fi bers<br />

mat of chopped glass fi bers, resin, fi ller and ad-<br />

volume fraction SMC have been computed. A<br />

ditives, f<strong>ro</strong>m which blanks can be cut and placed<br />

comparison between the upper and lower lim-<br />

into a press for hot press molding [2-8]. Due<br />

its of the homogenized elastic coeffi cients for a<br />

to the signifi cant anisot<strong>ro</strong>py and hete<strong>ro</strong>geneity<br />

27% fi bers volume fraction SMC and the experi-<br />

of most pre-impregnated composite materials,<br />

mental data is presented. Th e estimation model<br />

their elastic p<strong>ro</strong>perties may vary st<strong>ro</strong>ngly in a<br />

used as a homogenization method of these het-<br />

quite large range. Th e aim is to obtain a compute<strong>ro</strong>geneous<br />

composite materials, gave emphasis<br />

ing model, which takes into account the mic<strong>ro</strong>-<br />

to a good agreement between this theoretical<br />

structure and/or the local hete<strong>ro</strong>geneity of these<br />

app<strong>ro</strong>ach and experimental data.<br />

materials to simulate their elastic p<strong>ro</strong>perties.<br />

Key-words: Prepregs, Averaging,<br />

A HOMOGENIZATION METHOD<br />

Homogenization, Upper limit, Lower limit,<br />

We consider a domain Ω f<strong>ro</strong>m R<br />

Elastic p<strong>ro</strong>perties<br />

REZUMAT<br />

Lucrarea prezintă câteva metode de mediere<br />

pentru simularea p<strong>ro</strong>prietăţilor prepreg-urilor<br />

precum materialele compozite de tip Sheet<br />

Molding Compound (SMC) utilizate în industria<br />

auto. Au fost calculate limitele superioară și<br />

inferioară ale coefi cienţilor omogenizaţi, pentru<br />

un material de tip SMC cu 27% fracţiune volumică<br />

a fi brelor. Se prezintă o comparaţie între<br />

limitele superioară și inferioară a coefi cienţilor<br />

elastici omogenizaţi ai materialului SMC cu<br />

27% fracţiune volumică a fi brelor și datele experimentale.<br />

Modelul estimat utilizat ca metodă<br />

de omogenizare a acestor materiale compozite<br />

3 riodic structure containing inclusions, a (x) is<br />

ij<br />

a function of x. If the period’s dimensions are<br />

small in comparison with the dimensions of<br />

the whole domain then the solution u of the<br />

equation (1) can be equal with the solution<br />

suitable for a homogenized material, where the<br />

coeffi cients a are constants. In the R ij<br />

space, in x co- i<br />

ordinates, domain considered a SMC composite<br />

material, in which a so-called replacement matrix<br />

(resin and fi ller) represents the fi eld Y and 1<br />

the reinforcement occupies the fi eld Y seen as<br />

2<br />

a bundle of glass fi bers. Let us consider the following<br />

equation [1]:<br />

∂ ⎡ ∂u<br />

⎤<br />

f ( x)<br />

= − ⎢aij<br />

( x)<br />

⋅ ⎥;<br />

aij<br />

= a ji<br />

(1)<br />

∂xi<br />

⎢⎣<br />

∂x<br />

j ⎥⎦<br />

alternatively, writt en under the equivalent form:<br />

∂pi<br />

∂u<br />

f = − ; pi<br />

= aij<br />

⋅ .<br />

(2)<br />

∂xi<br />

∂x<br />

j<br />

In the case of SMC materials that present a pe-<br />

3 space of<br />

y coordinates, a parallelepiped with y i 0 sides is<br />

i<br />

considered, as well as parallelepipeds obtained<br />

by translation n y i 0<br />

i (n integer) in axes directions.<br />

i<br />

Th e functions can be defi ned [1]:<br />

η ⎛ x ⎞<br />

aij ( x)<br />

= aij<br />

⎜ ⎟<br />

(3)<br />

⎝η<br />

⎠<br />

where η is a real, positive parameter. Notice that<br />

the functions a (x) are ηY-periodical in variable<br />

ij<br />

x (ηY being the parallelepiped with ηy0 i sides).<br />

If the function f(x) is in Ω defi ned, the p<strong>ro</strong>blem<br />

at limit is [1]:<br />

⎡<br />

η<br />

∂ u ⎤<br />

η ∂<br />

η<br />

f ( x ) = − ⎢aij<br />

( x ) ⋅ ⎥,<br />

u = 0.<br />

(4)<br />

∂Ω<br />

∂xi<br />

⎢⎣<br />

∂x<br />

j ⎥⎦<br />

η<br />

p<br />

Similar with equation (2), the vector<br />

r<br />

defi nes<br />

the following elements [1]:<br />

η<br />

∂u<br />

.<br />

η η<br />

pi<br />

( x)<br />

= aij<br />

( x)<br />

⋅<br />

(5)<br />

∂x<br />

j<br />

For the function uη (x), an asymptotic development<br />

will be looking for, under the form [1]:<br />

uη<br />

( x ) = u0(<br />

x,<br />

y ) + η 1u1(<br />

x,<br />

y ) + η<br />

(6)<br />

u ( x,<br />

y ) ...; y x ,<br />

2 2 + η + =<br />

η<br />

where ui (x,y) are elements, Y-periodical in y variable.<br />

Th e derivatives of the functions ui (x,y) behave<br />

in the following manner [1]:<br />

(7)<br />

If the values of<br />

⎛ x ⎞<br />

u ⎜ x ⎟<br />

⎝ η ⎠<br />

i<br />

Horaţiu TEODORESCU-DRĂGHICESCU<br />

Transilvania University of Braşov,<br />

Department of Mechanics<br />

draghicescu.teodorescu@unitbv.<strong>ro</strong><br />

Khairul ALAM<br />

Ohio University,<br />

Russ College of Engineering and Technology,<br />

Center for Advanced Materials P<strong>ro</strong>cessing<br />

alam@ohio.edu<br />

Sorin VLASE<br />

Transilvania University of Braşov,<br />

Department of Mechanics<br />

svlase@unitbv.<strong>ro</strong><br />

,<br />

are compared in two homologous points P and 1<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!