12.07.2015 Views

Îmbinări metalice disimilare obţinute prin sudarea prin difuzie

Îmbinări metalice disimilare obţinute prin sudarea prin difuzie

Îmbinări metalice disimilare obţinute prin sudarea prin difuzie

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

%mbin@ri <strong>metalice</strong> <strong>disimilare</strong> ob]inute <strong>prin</strong> <strong>sudarea</strong> <strong>prin</strong><strong>difuzie</strong>Dissimilar metallic junctions obtained by solid diffusionwelding techniqueDr. ing. Violeta Tsakiris, Prof. dr. fiz. Wilhelm Kappel, Dr. ing. Georgeta Alecu, drd. fiz. Diana Cirstea,drd. fiz. Lucia Leonat, Dr. ing. Gimi R^mbuInstitutul Na]ional de Cercetare }i Dezvoltare pentru Inginerie Electric@ - Cercet@ri Avansate ICPE-CA(INCDIE ICPE-CA), Bucure}tiE-mail: violeta.tsakiris@icpe-ca.roRezumatSunt prezentate rezultatele cercetãrilor experimentale privind obþinerea unor cuple <strong>metalice</strong> <strong>disimilare</strong>, cum ar fi Cu-Fe/Al, Ni-Al ºi FeCoV-Cu-Ti, <strong>prin</strong> utilizarea tehnologiei de sudare <strong>prin</strong> <strong>difuzie</strong> în fazã solidã.Joncþiunile obþinute sunt caracterizate la interfaþã din punct de vedere al caracteristicilor microstructurale, mecaniceºi electrice. Prezenþa la interfaþã a unor compuºi intermetalici cum ar fi Al 2 Cu, Al 3 Ni 2 , Ti 2 Cu 3 , s-a evidenþiat <strong>prin</strong>microscopie electronicã ºi difracþie de raze X.Sunt de asemenea, prezentaþi parametrii optimi de sudare <strong>prin</strong> <strong>difuzie</strong> (temperatura, timp de menþinere, presiune,atmosferã, modul de pregãtire al suprafeþelor de îmbinat) ºi posibilitãþile de aplicare ale joncþiunilor realizate înindustriile electrotehnicã ºi electricã sau în domeniul stomatologic.AbstractThe experimental research results on the obtaining of some metallic dissimilar couples such as Cu-Fe/Al, Ni-Al andFeCoV-Cu-Ti by using solid state diffusion welding technique are presented.The obtained junctions were characterized at the interface from the microstructural, mechanical and electricalcharacteristics point of view. The presence of intermetallic compounds such as Al 2 Cu, Al 3 Ni 2 and Ti 2 Cu 3 at the interfacewas evidenciated by using electronic microscopy and X-ray diffraction.The optimum solid diffusion welding parameters (temperature, maintaining time, pressure, atmosphere, surfacepreparation) and the possibilities of junctions application in the electro-technical and electrical industries or in thestomatology field are also, outlined.1. IntroducereDezvoltarea de noi materiale cu caracteristici specifice acondus la cerinþe mari in ceea ce priveºte tehnologiile defabricaþie ºi <strong>prin</strong> urmare, a procedeelor de îmbinare.Tehnologia sudãrii <strong>prin</strong> <strong>difuzie</strong> lãrgeºte domeniul procedeelorde îmbinare datoritã posibilitãþilor combinaþiilor demateriale. Aceasta tehnologie este esenþialã când, din motivetehnologice sau datoritã caracteristicilor de material, nupot fi aplicate alte tehnologii competitive de îmbinare.Sudura <strong>prin</strong> <strong>difuzie</strong> reprezintã un proces <strong>prin</strong> care se obþineo joncþiune între douã materiale similare sau <strong>disimilare</strong>.Are loc în fazã solidã cu creºterea temperaturii <strong>prin</strong> procesede <strong>difuzie</strong> ale materialelor de îmbinat în zona de <strong>difuzie</strong>.Rezultatul este o zonã de <strong>difuzie</strong> care defineºte rezistenþajoncþiunii [1]. În prima etapã a procesului de sudare <strong>prin</strong><strong>difuzie</strong>, deformarea plasticã a asperitãþilor de la suprafaþãare loc <strong>prin</strong> deformare plasticã ºi fluaj. În a doua etapã areloc difuzia atomilor de la limitele de grãunþi spre goluri, întimp ce, în etapa a treia, se produce difuzia atomicã volumicãcãtre goluri. Procesul de sudare <strong>prin</strong> <strong>difuzie</strong> se considerãîncheiat atunci când, în urma aplicãrii unei presiuni ºi aunei temperaturi la o interfaþã, pentru o anumitã perioadãde timp, cavitãþile de la suprafeþele materialelor de îmbinatse închid complet [2].SUDURA , XXII - 1/20121. IntroductionThe development of new materials with specific characteristicsleads to high demands in terms of manufacturingtechnologies and therefore, of joining processes. Diffusionwelding technology expands the area of joining processesthrough the possibilities to combine different materials.This technology is essential when, for technological reasonsor because of material characteristics other competitivejoining technologies can not be applied. Diffusion weldingis a process for obtaining a junction between two similar ordissimilar materials. It occurs in a solid phase with increasingthe temperature through diffusion processes of thecombined materials in the diffusion area. The result is adiffusion zone that defines the junction resistance [1]. Inthe first stage of diffusion welding, plastic deformation ofthe surface roughness occurs by plastic deformation andcreep. In the second stage diffusion of atoms occurs fromgrain boundaries toward voids, while in the third stage,atomic volume diffusion occurs toward voids. Diffusionwelding process is considered complete when, after applyingpressure and temperature at an interface for a certain periodof time, the cavities of the surfaces of both materials closecompletely [2].Theoretically, all metals can be joined by diffusion due to29


Din punct de vedere teoretic, toate metalele pot fi îmbinate<strong>prin</strong> <strong>difuzie</strong> datoritã deformabilitãþii lor plastice. Catemperaturã de îmbinare se considera 0,5...0,9 dintemperatura de topire a metalelor de îmbinat [1]. Metalelesunt mai potrivite pentru <strong>sudarea</strong> <strong>prin</strong> <strong>difuzie</strong> decâtceramicile fragile sau materialele silicioase, datoritãcondutivitãþii ºi ductilitãþii lor, care asigurã o deformareplasticã localã mai bunã a stratului de la suprafaþã, îndomeniul micro.Metalele Al si Cu au conductivitate termicã ºi electricã buneºi prezintã o buna capacitate de turnare ºi prelucrabilitate.În special, aceste metale au rezistenþa mare la coroziune.Din cauza acestor considerente, aceste metale au fostutilizate în industria chimicã, alimentarã, de automobile,electrotehnicã, la sisteme ale echipamentelor cu gaz, precumºi sub formã de bare tubulare umplute ºi folii [3]. Autoriilucrãrii [3] au cercetat realizarea cuplelor <strong>metalice</strong> de Al-Cu<strong>prin</strong> metoda sudãrii <strong>prin</strong> <strong>difuzie</strong> ºi <strong>prin</strong> metoda sudãrii <strong>prin</strong>fricþiune. În timpul procesului de sudare s-au formatcompuºii intermetalici Al 2 Cu, AlCu, Al 4 Cu 9 care au un efectimportant asupra proprietãþilor mecanice.Diagrama de echilibru fazic Fe-Cu conþine o reacþie peritecticãîn partea bogatã în Fe, figura1 [4].Pentru acest sistem, datoritã unei linii lichidus plate, seaºteaptã sã existe o nemiscibilitate a fazei lichide metastabile,în topiturile subrãcite, fapt confirmat ºi experimental,[5, 6]. Aceste metale prezintã o solubilitate foarte micã, fiindpractic nemiscibile, fiecare metal cristalizând într-o reþeabine definitã: CVC pentru Fe ºi CFC pentru Cu.Autorii lucrãrilor [7] ºi [8], au studiat materialele compozitemicro-laminate NiAl/Ni pentru aplicaþii structurale detemperaturã înaltã ºi blindaje. Compozitele micro-laminateNiAl/Ni au fost fabricate <strong>prin</strong> îmbinare <strong>prin</strong> <strong>difuzie</strong>, sintezãde reacþie ºi post-tratament termic a multistraturilor alternativede Ni/Al. Analiza termicã diferenþialã a aratat faptulcã reacþia dintre Al si Ni începe cu nucleerea ºi creºtereaNiAl 3 la interfaþa Ni/Al, urmatã de dezvoltarea <strong>prin</strong> <strong>difuzie</strong>a compuºilor Ni 2 Al 3 la interfaþa Ni/NiAl 3 . Dupã tratamentultermic cu presiune aplicatã, produºii de reacþie s-au30Figura 1. Diagrama de faz@ Fe-Cu [4]Figure 1. Equilibrium phase diagram of Fe-Cu [4]their plastic deformability. As joining temperature isconsidered 0.5….0.9 of melting temperature of the bondingmetals [1]. Metals are more suitable for diffusion weldingthan brittle ceramics or silicon materials, because of theirconductivity and ductility, which provides better local plasticdeformation of the surface layer in the micrometer range.Al and Cu have good electrical and thermal conductivityand good casting and processability capacity. In particular,these metals have high corrosion resistance. Because ofthese considerations, these metals have been used forchemicals, food industry, automotive and electro-technicalindustry, gas equipments systems but also as filled tubularbars and sheets [3]. Authors of paper [3] have investigatedthe realization of Al-Cu metallic junctions by diffusionwelding method and friction welding method. During thewelding process, Al 2 Cu, AlCu, Al 4 Cu 9 intermetalliccompounds were formed, which have an important effecton the mechanical properties.Equilibrium phase diagram of Fe-Cu contains a peritecticreaction the Fe rich area, Figure 1, [4].For this system because of a flat liquidus line, an immiscibilityof the metastable liquid phase is expected in thecooled melts and this fact is confirmed experimentally [5,6]. These metals have very low solubility, practicallybeing immiscible, each metal crystallizingwith a well defined network structure: CCV for Feand FCC for Cu.The authors of [7] and [8] papers had studied themicro-laminated composites of NiAl / Ni for hightemperature structural applications and armors.NiAl / Ni micro-laminated composites wereproduced by diffusion bonding, reaction synthesisand post-heat treatment of the alternative multilayersof Ni / Al. Differential thermal analysisshowed that the reaction between Al and Ni startswith the NiAl 3 nucleation and growth at the Ni/Alinterface, followed by diffusion development ofNi 2 Al 3 compounds at the Ni/NiAl 3 interface. Afterheat treatment while applying pressure, thereaction products were transformed into NiAl andNi 3 Al with better resistance at high temperature.The literature 9 - 12, contains data on obtainingjunctions between Ti/Ti alloys and austeniticsteels, showing the formation of the Fe 2 Ti, FeTi,Fe 2 Ti 4 O, c, l and TiC fragile intermetallic phasesin the diffusion zone, due to limited solubility ofFe and Ti with temperature. The difference inthermal expansion coefficients between Ti andaustenitic steel is responsible for junction residualtensions. For this reason it is recommended touse appropriate intermediate materials that could minimizethe formation of brittle intermetallic compounds and wouldalso lead to an increase in the resistance properties ofdiffusion welded junction.In this paper, research results of Cu-Fe, Cu-Al, Al-Ni-Cu-Tiand FeCoV dissimilar metallic components performed byusing diffusion welding technique, with potentialapplications in the electro-technical/electrical industry anddentistry, are presented.2. ExperimentalIn the experiments to achieve dissimilar metal junctions ofCu-Fe, Cu-Al, Al-Ni-Cu-Ti and FeCoV by diffusion welding, thefollowing metals were selected [13, 14]:· iron plates of ARMCO type, containing C below 0.02%;· electrolytical Cu plates of 99.9% purity;SUDURA , XXII - 1/2012


transformat în NiAl ºi Ni 3 Al cu rezistenþa mai mare latemperaturã ridicatã.În literatura de specialitate 9 - 12, existã date referitoare laobþinerea joncþiunilor dintre Ti/ aliaje de Ti ºi oþeluri austenitice,raportandu-se formarea fazelor inter<strong>metalice</strong> fragilede tip Fe 2 Ti, FeTi, Fe 2 Ti 4 O, c, l ºi TiC în zona de <strong>difuzie</strong>,datoritã solubilitãþii limitate a Fe ºi Ti în funcþie de temperaturã.Datoritã diferenþei dintre coeficienþii de dilataretermicã ai Ti ºi oþelului austenitic, în zona de îmbinare apartensiuni reziduale. Din acest motiv, este indicat sã se utilizezemateriale intermediare corespunzãtoare care ar putea minimizaformarea compuºilor fragili intermetalici ºi în plus, arconduce ºi la o creºtere a proprietãþilor de rezistenþã ajoncþiunii sudate <strong>prin</strong> <strong>difuzie</strong>.În lucrarea de faþã, sunt prezentate rezultatele cercetãrilorpentru realizarea unor componente <strong>metalice</strong> <strong>disimilare</strong> Cu-Fe, Cu-Al, Al-Ni ºi FeCoV-Cu-Ti, <strong>prin</strong> tehnica sudãrii <strong>prin</strong><strong>difuzie</strong>, cu posibile aplicaþii în industria electro-tehnicã/electricã ºi stomatologicã.2. ExperimentãriÎn vederea experimentãrilor pentru realizarea joncþiunilor<strong>metalice</strong> <strong>disimilare</strong> Cu-Fe, Cu-Al, Al-Ni ºi FeCoV-Cu-Ti, <strong>prin</strong>sudare <strong>prin</strong> <strong>difuzie</strong>, au fost selectate metalele [13, 14]:· plãcuþe de Fe tip ARMCO cu un conþinut de C sub 0,02%;· plãcuþe de Cu electrolitic de puritate 99,9 %;· plãcuþe de Al (marca 6060) de puritate 98,724%; Mn=0,03%;Si=0,463%; Cr=0,011%; Cu=0,034%; Ti=0,012%; Fe = 0,219%;Zn=0,047%; Mg=0,46%.· plãcuþe de Ni electrolitic (marca 28102) de puritate 99,97%;C=0,005%; Cu=0,001%; P=0,0002%; S=0,0005%; Co=0,0003%;Fe= 0,003%; Pb=0,0001%; Zn=0,0005%.· discuri din aliaj Fe-Co-V cu 48%Co ºi 2%V; folie de Cu(99,95%); Ti comercial pur.Plãcile de Ni electrolitic au fost reduse <strong>prin</strong> laminare de lagrosimea de 5 mm, la grosimea de 3,5 mm ºi apoi au fostsupuse tratamentului termic de recoacere în atmosferã deNH 3 cracat, pentru îndepartarea ecruisajului indus <strong>prin</strong>operaþia de laminare. Dupã tratamentul de recoacere, plãcilede Ni au fost supuse procesului de curãþare ºi activare asuprafeþelor de îmbinat.Dimensiunile semifabricatelor supuse încercarilor deîmbinare au fost:· pentru joncþiunea Cu-Fe: Cu: (85 x 20 x 5) mm; Fe: (88 x 20x 11 ) mm;· pentru joncþiunea Cu-Al: Cu: (58 x 20 x 5) mm; Al (60 x 30x5 ) mm;· pentru joncþiunea Ni-Al: Ni: (39 x 33 x 0,5) mm; Al: (39 x 30x 5 ) mm;· pentru joncþiunea FeCoV-Cu-Ti: Fe-48Co-2V (% gr.) de (f5x11) mm; folie de cupru de 40 mm grosime ºi Ti (f 5x6) mm.Înainte de a fi supuse procedelului de îmbinare, suprafeþelede sudare ale plãcuþelor <strong>metalice</strong> au fost activate superficial<strong>prin</strong> polizare ºi ºlefuire pe hârtie metalograficã. Pentru realizareajoncþiunilor Cu-Fe/Al ºi Ni-Al, suprafeþele plane deîmbinare, astfel curãþate, au fost aduse în contact intim <strong>prin</strong>presare la 200 kg f /cm 2 . Pentru realizarea joncþiunilorFeCoV-Cu-Ti, suprafeþele de îmbinare ale pieselor cilindriceau fost, de asemenea, pregãtite <strong>prin</strong> tehnici obiºnuite deºlefuire ºi polisare. Ca material intermediar s-a folosit o foliede cupru, curãþatã în prealabil cu acetonã ºi uscatã în aer.2.1. Parametrii tehnologici de sudare <strong>prin</strong> <strong>difuzie</strong>Experimentãrile de îmbinare ale cuplelor <strong>metalice</strong> Cu-Fe,Cu-Al ºi Al-Ni au avut loc într-un cuptor tip SAFED cu bandãcontinuã, în atmosferã de NH 3 cracat. Probele au fost fixatepentru îmbinare cu metalele mai grele ºi cu puncte de topireSUDURA , XXII - 1/2012· Al plates (6060 mark) of 98.724% purity%; Mn=0,03%;Si=0,463%; Cr=0,011%; Cu=0,034%; Ti=0,012%; Fe = 0,219%;Zn=0,047%; Mg=0,46%.· electrolytical Ni plates (28102 mark) of purity 99.97%;C=0,005%; Cu=0,001%; P=0,0002%; S=0,0005%; Co=0,0003%;Fe= 0,003%; Pb=0,0001%; Zn=0,0005%.· discs of Fe-Co-V alloys with 48% Co and 2% V; Cu foil(99.95%), commercial pure Ti.The thickness of the electrolytical Ni plates was reduced byrolling from 5 mm to 3.5 mm and then, the plates weresubjected to an annealing treatment in cracked NH3atmosphere for hardening removal which was induced bythe rolling. After annealing treatment, Ni plates haveundergone the process of cleaning and activation of thejoining surfaces.The dimensions of the semifinished parts subjected to thewelding tests were the followings:· for Cu-Fe junction: Cu: (85 x 20 x 5) mm, Fe: (88 x 20 x 11)mm;· for Cu-Al junction: Cu: (58 x 20 x 5) mm, Al (60 x 30 x 5)mm;· for Ni-Al junction: Ni: (39 x 33 x 0.5) mm; Al: (39 x 30 x 5)mm;· for FeCoV-Cu-Ti junction: Fe-48Co-2V (% wt.) of 5 mm indiameter and 11 mm length, copper foil of 40 µm thicknessand Ti of f 5mm and 6 mm length.Before joining, the welding surfaces of metallic plates weresuperficial activated by grinding and polishing with metallographicpaper. To achieve Cu-Fe/Al and Ni-Al junctions, flatjoining surfaces, already cleaned, were brought in intimatecontact by pressing at 200 kg f/cm 2 . To achieve FeCoV-Cu-Ti junctions, joining surfaces of the cylindrical parts werealso prepared by grinding and polishing commontechniques. As an intermediate material a copper foil wasused, cleaned before with acetone and air dried.2.1. Technological parameters for diffusion bondingWelding experiments of the Cu-Fe Cu-Al and Al-Ni metalliccouples, took place in a continuous band furnace of SAFEDtype, in cracked NH 3 atmosphere. In order to be welded,samples were arranged in such a way that the heavier metalshaving higher melting points were placed on top of thelighter metals with lower melting points (Fe plates on topof Cu plates, Cu and Ni plates on top of the Al plates) andthen, they have been arranged in graphite trays and placedon the furnace band.Ti/Cu/FeCoV ensemble was kept in contact in a fixing deviceand placed in a tubular furnace. Diffusion bonding was donein Ar atmosphere at 900 o C and maintained at thistemperature for 1.5 h. Diffusion welding parameters selectionwas made based on previous experiments 15.Technological parameters used for diffusion welding of Cu-Fe, Cu-Al and Al-Ni metallic couples are presented in Table 1.3. Results and discussions3.1 Characterizations of the obtained junctionsA very good bonding at interfaces was observed by visualexamination of the welded metallic components. In Figure2 - 5, the macrographic aspects of the Cu-Fe, Cu-Al, Ni-Aland FeCoV-Cu-Ti components obtained by diffusion weldingare presented.3.1.1 Junctions analysis by optical microscopy and X-raydiffractionSpecimens were sampled from the Cu-Fe/Al, Ni-Al and FeCoV-Cu-Ti metallic couples obtained by solid state diffusion inorder to examine the interfaces areas by optical microscopy31


mai ridicate deasupra celor mai uºoare ºi cu puncte detopire mai scãzute (plãcile de Fe deasupra celor de Cu,plãcile de Cu ºi de Ni deasupra celor de Al) ºi au fost asezatepe banda cuptorului pe tãviþe de grafit.Ansamblul Ti/Cu/FeCoV a fost þinut în contact într-un dispozitivde fixare ºi introdus într-un cuptor tubular. Sudarea<strong>prin</strong> <strong>difuzie</strong> s-a realizat în atmosferã de Ar, la o temperaturãde 900 o C cu menþinere pe palier timp de 1,5 ore. Selecþiaparametrilor de sudare <strong>prin</strong> <strong>difuzie</strong> s-a efectuat în bazaexperimentãrilor anterioare [15].Parametrii tehnologici utilizaþi pentru care s-a obþinutîmbinarea cuplelor <strong>metalice</strong> Cu-Fe, Cu-Al ºi Al-Ni suntprezentaþi în tabelul 1.by using an optical microscope of of Carrziess type, withAxiovision software, and to detect the presence of theintermetallic phases in the diffusion area by X-ray diffractionand electronic microscopy. The specimens for opticalmicroscopy examination were embedded into resin andpolished with metallographic abrasive paper of SiC with adegree of fineness of grains of 400, 600, 800 and 1000 µm,and then polished on velvet support with Al 2 O 3 solution of0,3 µm.In Figure 6-9, the microscopic aspects of the cross sectionof Cu-Fe, Cu-Al, Al-Ni-Cu-Ti and FeCoV specimens, in thebonding areas of the metallic materials, are presented at x500 magnification.Tabel 1. Parametrii tehnologici de ^mbinare a cuplelor <strong>metalice</strong> Cu-Fe/Al }i Al-NiTable 1. Technological parameters used for diffusion bonding of Cu-Fe, Cu-Al and Al-Ni couplings3. Rezultate ºi discuþii3.1 Caracterizarea joncþiunilor realizatePrin examinarea vizualã a componentelor <strong>metalice</strong> sudate,In the case of the Cu-Fe couple, in which Cu and Fe arealmost immiscible, Figure 1 [4], the welding at interfacewas done by diffusion processes and hot plastic deformationat micro level, by the interplay of the copper between theFigura 2. Jonc]iuni Cu-FeFigure 2. Cu-Fe JunctionsFigura 3. Jonc]iuni Cu-AlFigure 3. Cu-Al Junctionss-a constatat o lipire foarte bunã la interfeþe. În figurile 2- 5sunt prezentate aspectele macrografice ale componentelor Cu-Fe, Cu-Al, Ni-Al ºi FeCoV-Cu-Ti, obþinute <strong>prin</strong> sudare <strong>prin</strong> <strong>difuzie</strong>.32Figura 4. Jonc]iuni Ni-AlFigure 4. Ni-Al JunctionsFigura 5. Jonc]iuni FeCoV-Cu-Ti-AlFigure 5. FeCoV-Cu-Ti-Alharder asperities of the Fe, Figure 6.In the case of the Cu-Al and Al-Ni metallic couples, the opticalmicroscopy images have shown the presence of a verySUDURA , XXII - 1/2012


Figura 6. Zona de interfa]@ Cu-Fe x 500Figure 6. Cu-Fe interface area x 500Figura 7. Zona de interfa]@ Cu-Al x 500Figure 7. Cu-Al interface area x 500Figura 8. Zona de interfa]@ Al-Ni x 500Figure 8. Al-Ni interface area x 5003.1.1 Analiza joncþiunilor <strong>prin</strong> microscopie opticã ºi difracþiede raze XDin cuplele <strong>metalice</strong> Cu-Fe/Al, Ni-Al ºi FeCoV-Cu-Ti, realizate<strong>prin</strong> <strong>sudarea</strong> <strong>prin</strong> <strong>difuzie</strong> în fazã solidã, au fost prelevateprobe în vederea examinãrii zonelor de interfaþã, <strong>prin</strong>microscopie opticã la un microscop optic de tip Carrziess cusoft Axiovision iar prezenþa fazelor inter<strong>metalice</strong> din zonade <strong>difuzie</strong> a fost investigatã <strong>prin</strong> difracþie de raze X ºi microscopieelectronicã. Probele supuse examinãrii <strong>prin</strong> microscopieopticã au fost înglobate în rãºinã, prelucrate <strong>prin</strong>ºlefuire cu hârtie metalograficã abrazivã de SiC cu un gradde fineþe a granulaþiei de 400, 600, 800 ºi 1000 µm ºi apoilustruite pe suport de catifea cu soluþie de Al 2 O 3 de 0,3 µm.În figurile 6 ºi 9 sunt prezentate aspectele microscopiceale probelor Cu-Fe, Cu-Al, Al-Ni ºi FeCoV-Cu-Ti, în secþiunetransversalã, în zonele de îmbinare ale materialelor <strong>metalice</strong>,la mãrire x 500.În cazul cuplului Cu-Fe, în care metalele Cu ºi Fe sunt aproapenemiscibile, figura 1 [4], <strong>sudarea</strong> la interfaþã s-a realizat<strong>prin</strong> procese de <strong>difuzie</strong> ºi de deformare plasticã la cald, lanivel micro, <strong>prin</strong> întrepãtrunderea cuprului între asperitãþilemai dure ale Fe, figura 6.În cazul cuplelor <strong>metalice</strong> Cu-Al ºi Al-Ni, imaginile de microscopieopticã, au arãtat prezenþa unor zone foarte înguste de<strong>difuzie</strong> (@0,3÷0,6 µm), atât la interfaþa Cu-Al cât ºi la interfaþaNi-Al, figurile 7 ºi 8, în timp ce pentru cuplul FeCoV-Cu-Ti zonade <strong>difuzie</strong> este de aproximativ 47 µm, figura 9.În figurile 10 ºi 11 (a ºi b) sunt prezentate imaginile demicroscopie electronicã la interfaþa joncþiunilor Cu-Al ºi Ni-Al efectuate la un microscop electronic de baleiaj cu fasciculSUDURA , XXII - 1/2012Figura 9. Zona de interfa]@ FeCoV-Cu-Ti x 500Figure 8. FeCoV-Cu-Ti interface area x 500narrow diffusion area (@0,3÷0,6 µm), both at the Cu-Al interfaceand Ni-Al interface, Figure 7 and 8, while for the FeCoV-Cu-Ticouple the diffusion area is about 47 µm, Figure 9.In the Figure 10 and 11 (a and b), the electron microscopyimages of the Cu-Al and Ni-Al interface junctions performedwith a scanning electron microscope with focused ion beam,FIB-FESEM, Auriga model, with imaging and elementalchemical quantification (EDS + SEM), and the quantitativeanalysis of analyzed spectra in the diffusion areas, arepresented. The elemental analysis reveals that for the Cu-Al junction, the AlCu 3 and Al 2 Cu + Cu intermetallic compoundstype were formed in the diffusion area close to Cuside (Figure 10 a) and AlCu 3 and Al 2 Cu + Al compounds inthe diffusion area close to Al side (Figure 10 b). For the Ni-Al couple, compounds of Al 3 Ni 2 + Ni type, and Al 3 Ni 2 + Alrespectively, were determined in the diffusion area close toNi (Figure 11a) and in the area close to Al diffusion (Figure11b), respectively.Intermetallic compounds in the diffusion area of theFeCoV/Cu/Ti ensemble obtained by diffusion welding havebeen highlighted by X-ray diffraction technique, Figure 12.At 900 °C, the atomic activity over the joining surfaces isincreasing causing a significant interdiffusion.At this temperature, besides Ti phase which has a hexagonalstructure, the Ti 2 Cu 3 (Cu 4 Ti 3 ) intermetallic compounds withtetragonal structure and Cu 3 Ti intermetallic compoundwith orthorhombic structure were revealed.The X-ray images revealed the presence of compounds withtetragonal structure of Al 2 Cu type and of Al 4 Cu 9 type withcubic structure for the Cu-Al metallic couples, which were33


abFigura 10. Imagini SEM la jonc]iunea Cu-Al ^n zona apropiat@ de Cu (a) }i de Al (b)Figure 10. SEM images at Cu-Al junction in the area near to Cu (a) and Al (b)concentrat de ioni, FESEM-FIB, model Auriga, cu imagisticãºi cuantificare elementalã chimicã (EDS + SEM) ºi analizelecantitative ale spectrelor analizate în zonele de <strong>difuzie</strong>. Dinanaliza elementalã rezultã cã, la joncþiunea Cu-Al, s-auformat compuºi intermetalici de tip AlCu 3 ºi Al 2 Cu + Cu, înzona de <strong>difuzie</strong> apropiatã de Cu (figura 10a) ºi compuºiAlCu 3 si Al 2 Cu + Al în zona de <strong>difuzie</strong> apropiatã de Al (figura10 b). În cazul cuplei Ni-Al, s-au determinat compuºi de tipAl 3 Ni 2 + Ni ºi respectiv, Al 3 Ni 2 + Al în zona de <strong>difuzie</strong>apropiatã de Ni (figura 11a) ºi respectiv, în zona de <strong>difuzie</strong>apropiatã de Al (figura11b).Compuºii intermetalici din zona de <strong>difuzie</strong> a ansambluluiFeCoV/Cu/Ti obþinut <strong>prin</strong> sudare <strong>prin</strong> <strong>difuzie</strong>, au fost evidenþiaþi<strong>prin</strong> tehnica de difracþie de raze X, figura 12. La 900 o C,actually found also by the authors of [3], Figure 13 a) whilefor the Al-Ni metallic couple, the compounds with hexagonalstructure of Al 3 Ni 2 type, Figure 13 b) were determined.3.1.2. Junction characterization from mechanical andelectrical point of viewFrom the realized metallic couples there were sampledspecimens in order to their characterization at interface, interms of mechanical properties (Vickers microhardnessmeasurements) and electrical (resistivity and electricalconductivity measurements).Vickers microhardness measurements were performed witha microhardness tester of EM 700 type, with Precidursoftware and the resistivity and electrical conductivity testswere conducted by four point’s method, by using TESLA BMabFigura 11. Imagini SEM la jonc]iunea Ni-Al ^n zona apropiat@ de Ni (a) }i de Al (b)Figura 11. SEM images at Ni-Al junction in the area near to Ni (a) and Al (b)activitatea atomicã de-a lungul suprafeþelor de îmbinare creºtedeterminând producerea unei interdifuzii semnificative. Pelângã faza de Ti care are o structurã hexagonalã, la aceastãtemperaturã s-au pus în evidenþã compuºii intermetalici Ti 2 Cu 3(Cu 4 Ti 3 ) cu structurã tetragonalã ºi compusul intermetalicCu 3 Ti cu structurã ortorombicã.Pentru cuplele <strong>metalice</strong> Cu-Al, imaginile de raze X au pus34395 bridge.In the Figure 14, 15 and 16, the graphs of variation ofVickers microhardness measured on the metallic matrix ofCu, Fe, Al and Ni and also, on the interfaces of the obtainedmetallic couples were presented.Variation curve of the Vickers microhardness valuesmeasured on the Cu matrix, on the Cu-Fe interface, and onSUDURA , XXII - 1/2012


Figura 12. Analiza <strong>prin</strong> difrac]ie de raze X a suprafe]ei de des<strong>prin</strong>dere lajonc]iunea ansamblului FeCoV-Cu-Ti ^mbinat <strong>prin</strong> <strong>difuzie</strong> la: 900 o C/1,5 oreFigure 12. X-ray diffraction of a detachment surface coming from the FeCoV-Cu-Ti ensemble junction bonded by diffusion at: 900 o C/1,5 hrsthe Fe matrix, is shown in Figure14. From Figure14 it is revealed that the micro-hardness valueobtained on the Cu-Fe interface (108 HV 0,1 ) showsan increase with 34 HV 0,1 in compare with theaverage value recorded on the matrix (74 HV 0,1 )and a decrease with 33 HV 0,1 , in compare withthe average value of microhardness obtained onthe matrix of Fe (141 HV 0,1 ).By micrographs examination of the Cu-Al diffusionwelded samples (Figure 7) it is shown that thereis a diffusion area of approx. 0.6 mm, and an areaof intermetallic compounds in Al matrix. Theexistence of the hard compounds of Al 2 Cu typewith tetragonal structure, and of Al 4 Cu 9 type withcubic structure, at the bonding line of Cu-Al,Figure10 and13 a), increases the microhardnessvalue (203 HV), Figure 15.By micrographs examination of the Ni-Al samplesdiffusion welded it is observed the existence ofa diffusion area of approx. 0, 3 mm and of anintermetallic compound zone near to the Almatrix, Figure 8. The existence of the hardcompounds in the Ni-Al junction interface, withhexagonal structure of Al 3 Ni 2 type, Figure 11 andîn evidenþã prezenþa compuºilor cu structurãtetragonalã de tip Al 2 Cu ºi cu structurã cubicãde tip Al 4 Cu 9 , fapt constatat ºi de autorii lucrãrii[3], (figura13 a) iar pentru cuplele <strong>metalice</strong> Al-Ni, compuºi cu structurã hexagonalã, de tipAl 3 Ni 2 (figura13 b).3.1.2. Caracterizarea joncþiunilor din punct devedere mecanic ºi electricDin cuplele <strong>metalice</strong> realizate, au fost prelevateprobe în vederea caracterizãrii acestora lainterfaþã, din punct de vedere al proprietãþilormecanice (mãsurãtori de microduritate Vickers)ºi electrice (mãsurãtori de rezistivitate ºi conductivitateelectricã).Mãsurãtorile de microduritate Vickers s-auefectuat, la un microdurimetru de tip EM 700,cu soft Precidur iar testele de rezistivitate ºiconductivitate electricã s-au realizat, <strong>prin</strong>metoda celor patru puncte, cu ajutorul punþiiTESLA BM 395.În figurile 14, 15 ºi 16 sunt prezentate graficelede variaþie ale microduritãþii Vickers mãsurateatât pe matricile <strong>metalice</strong> de Cu, Fe, Al ºi Ni câtºi la interfeþele cuplelor <strong>metalice</strong> obþinute.de variaþie a valorilor de microduritate Vickers,mãsurate pe matricea de Cu, la interfaþa Cu-Fe ºipe matricea de Fe, este prezentatã în figura 14.Din figura 14 se constatã cã valoarea microduritãþiiobþinutã la interfaþa Cu-Fe (108 HV 0,1 )aratã o creºtere cu 34 HV 0,1 faþã de valoarea medieînregistratã pe matricea de Cu (74 HV 0,1 ) ºi odiminuare cu 33 HV 0,1 , faþã de valoarea medie amicroduritãþii pe matricea de Fe (141 HV 0,1 ).Din examinarea micrografiilor probelor Cu-Alsudate <strong>prin</strong> <strong>difuzie</strong> (figura 7) se constatãexistenþa unei zone de <strong>difuzie</strong> de aproximativ0,6 µm ºi a unei zone de compuºi intermetaliciîn matricea de Al. Existenþa compuºilor duri custructura tetragonalã, de tip Al 2 Cu ºi cu structuracubicã, de tip Al 4 Cu 9 , la linia de îmbinare Cu-Al,Figura 13. Difrac]ie de raze X la interfa]a Cu-Al (a) }i la interfa]a Ni-Al (b)Figure 13. X-ray diffraction at the Cu-Al interface (a) and at the Ni-Al interface (b)abSUDURA , XXII - 1/201235


Figura 14. Valori ale m@sur@torilor de microduritate efectuate pe matricea deCu, la interfata Cu-Fe }i pe matricea de FeFigure 14. Vickers microhardness measurements valuesperformed on the Cumatrix, the Cu-Fe interface and Fe matrixFigura 15. Valori ale microdurit@]ii Vickers (HV 0,025) ob]inute pe matricea deCu la interfa]a }i matricea de AlFigure 15. Vickers microhardness values (HV 0.025) performed on the Cumatrix, the Cu-Al interface and Al matrixfigurile 10 ºi 13 a), determinã creºterea microduritãþii (203HV), figura15.Din examinarea micrografiilor probelor Ni-Al sudate <strong>prin</strong><strong>difuzie</strong> se constatã existenþa unei zone de <strong>difuzie</strong> de aproximativ0,3 µm ºi a unei zone de compuºi intermetalici înapropierea matricei de Al, figura 8. Existenþa compuºilorduri de la interfaþa joncþiunii Ni-Al, cu structurã hexagonalãde tip Al 3 Ni 2 , figurile 11 ºi 13 b), confirmã valorile mari alemicroduritãþii obþinute (155 HV), figura 16.În tabelul 2 sunt prezentate mãsurãtorilede rezistivitate (r) ºi conductivitate electricã(s), pentru metalele de îmbinare utilizateFe, Cu, Al ºi Ni, precum ºi pentru cuplele<strong>metalice</strong> studiate Fe-Cu, Cu-Al ºi Ni-Al.Rezultatele obþinute aratã cã valorileproprietãþilor electrice obþinute pentrucuplele <strong>metalice</strong> realizate, se încadreazãîn intervalul de variaþie al conductivitãþiielectrice (10 5 ºi 10 8 W -1 x cm -1 ) ºi al rezistivitãþiielectrice (10 -5 ºi 10 -8 W x cm), specificemateriale <strong>metalice</strong> compacte [16].4. ConcluziiCuplele <strong>metalice</strong> Cu-Fe, Cu-Al, Al-Ni ºirespectiv, FeCoV-Cu-Ti pot fi realizate încuptor cu bandã continuã ºi respectiv, încuptor tubular în atmosferã controlatã, în conditiile pregãtiriicorespunzatoare a suprafeþelor de îmbinare ºi asigurãrii uneipresiuni minime de contact.13b) confirms the high values of the obtainedmicrohardness (155 HV), Figure 16.In Table 2, it is shown the measurementsvalues of resistivity (r) and electricalconductivity (s), of the Fe, Cu, Al and Niused bonding metals, and also thoseobtained on the Fe-Cu, Cu-Al and Ni-Alstudied metallic couples.Results showed that the electrical propertiesvalues obtained for the realized metalliccouplings are within the range of variationof the electrical conductivity (10 5 ºi 10 8 W -1 xcm -1 ) and of the electrical resistivity (10 -5 ºi10 -8 W x cm), which are specific to the compactmetallic materials [16].4. ConclusionsMetallic couples of the Cu-Fe, Cu-Al, Al-Niand FeCoV-Cu-Ti respectively, can be achieved in acontinuous band furnace, and a tubular furnace respectively,in a controlled at-mosphere, with proper preparation of thejoining surfaces and ensuring of a mini-mum contactpressure.Optimal parameters that led to theobtaining of successful junctions of Fe, Cu,Ni and Al, and FeCoV, Cu and Ti respectively,dissimilar metals were the followings:w diffusion welding temperature: 1100±10 o C (Fe-Cu) 640-650 o C (Al-Cu) and 660-670 o C (Al-Ni) 950±5 o C (FeCoV-Cu-Ti);w band furnace speed: max. 180 o C (Cu-Feand Al-Cu) mm/min, max. 90 o C (Al-Ni)mm/min; heating speed of 5 o C/min(FeCoV-Cu-Ti);w maintaining time on band: 10±2min(Cu-Fe), 8±2 min (Al-Cu), 16±2 min (Al-Ni);w working atmosphere: NH 3 cracked forCu-Fe, Cu-Al and Al-Ni, and Ar atmospherefor FeCoV-Cu-Ti respectively.By diffusion processes and local plasticdeformation by creep, at micro level, there were obtainedsuccessful and qualitative Cu-Fe, Cu-Al, Al-Ni, and FeCoV-Cu-Ti respectively, dissimilar metal junctions, as evidencedby optical and electronic microscopy images.Figura 16. Valori ale microdurit@]ii Vickers (HV 0,025) ob]inute pe matricea deNi, zona de <strong>difuzie</strong> }i matricea de AlFigure 16. Vickers microhardness values (HV 0.025) obtained in the Ni matrix,the Ni-Al diffusion area and Al matrix.With the transition from Cu matrix to Fe matrix, the Vickersmicrohardness measurements showed intermediate valuesof microhardness obtained on the Cu-Fe interface (10836SUDURA , XXII - 1/2012


Parametrii optimi care au condus la obþinerea unorîmbinãri reuºite ale metalelor <strong>disimilare</strong> Fe, Cu, Ni ºiAl, respectiv FeCoV, Cu ºi Ti au fost:w temperatura de sudare <strong>prin</strong> <strong>difuzie</strong>: 1100±10 o C(Fe-Cu) 640-650 o C (Al-Cu) ºi 660-670 o C (Al-Ni) 950±5 o C (FeCoV-Cu-Ti);w viteza bandã cuptor: max. 180 o C (Cu-Fe ºi Al-Cu)mm/min, max. 90 o C (Al-Ni) mm/min; viteza deîncãlzire de 5 o C/min (FeCoV-Cu-Ti);w timp de menþinere pe bandã: 10±2 min (Cu-Fe),8±2 min (Al-Cu), 16 ±2 min (Al-Ni);w atmosferã de lucru: MH 3 cracat pentru Cu-Fe, Cu-Al ºi Al-Ni, ºi respectiv, atmosferã de Ar pentru FeCoV-Cu-Ti.În urma proceselor de <strong>difuzie</strong> ºi de deformare plasticãlocalã <strong>prin</strong> fluaj, la nivel micro, s-au obþinut joncþiuni<strong>metalice</strong> <strong>disimilare</strong> reuºite ºi de calitate Cu-Fe,Cu-Al, Al-Ni ºi respectiv, FeCoV-Cu-Ti, fapt evidenþiat<strong>prin</strong> imaginile de microscopie opticã ºi electronicã.La tranziþia dinspre matricea de Cu spre matricea deFe, mãsurãtorile de microduritate Vickers audemonstrat obþi-nerea unor valori intermediare alemicroduritãþii la interfaþa Cu-Fe (108 HV 0,1 ), comparativcu cele obþinute pe matricea de Cu (74 HV 0,1 ) ºimatricea de Fe (141 HV 0,1 ).Îmbinarea metalelor <strong>disimilare</strong> Cu ºi Al se realizeazã caurmare a proceselor de <strong>difuzie</strong> ºi fluaj, cu formare decompuºi intermetalici duri de tip Al 2 Cu ºi Al 4 Cu 9 , cu structuratetragonalã, respectiv cubicã. Îmbinarea metalelor Alcu Ni, are loc <strong>prin</strong> procese de <strong>difuzie</strong> ºi fluaj, cu formare decompuºi intermetalici de tip Al 3 Ni 2 , cu structura hexagonalã.Formarea la interfatã a compuºilor intermetalici, determinãcreºterea valorilor de duritate: 55 HV pentru Al-Ni ºi respectiv,203 HV pentru Al-Cu. În cazul joncþiunii FeCoV-Cu-Ti, <strong>prin</strong>difracþie de raze X, s-a evidenþiat existenþa compuºilorintermetalici Ti 2 Cu 3 (Cu 4 Ti 3 ) cu structura tetragonalã ºi acompusului Cu 3 Ti cu structura ortorombicã.Joncþiunile realizate Cu-Fe, Cu-Al ºi Al-Ni, au prezentat valoriale proprietãþilor electrice, asemãnãtoare materialelorcompacte, <strong>metalice</strong>.Cuplele <strong>metalice</strong> <strong>disimilare</strong> Cu-Fe îmbinate <strong>prin</strong> <strong>difuzie</strong> înfazã solidã, pot fi utilizate pentru anumite aplicaþii în industriaelectrotehnicã (de exp. în condiþiile existenþei unor forþeelectromotoare mari), în scopul reducerii consumului deCu ºi îmbunãtãþirii performanþelor mecanice ale acestuia.Cuplele <strong>metalice</strong> <strong>disimilare</strong> Cu-Al ºi Ni-Al pot fi utilizatepentru aplicaþii în industria electrotehnicã ºi/sau electricã.De exemplu, joncþiunile <strong>metalice</strong> <strong>disimilare</strong> Cu-Al pot fifolosite sub formã de plãci la bornele generatoarelor de laturbine, cu partea din cupru în contact cu borna din cuprua generatorului ºi cu partea din aluminiu în contact cuconductorul din aluminiu. În acest fel, se asigurã un contactelectric optim ºi tensiunile electromotoare de contact suntdiminuate.Din joncþiunea particularã FeCoV-Cu-Ti realizatã dinmateriale <strong>disimilare</strong>, s-a realizat un pivot de forma celuiprezentat în figura 5, pentru a fi utilizat în stomatologie.Acest pivot împreunã cu un ataºament dentar magneticasigurã fixarea protezei dentare, <strong>prin</strong> intermediul unei forþemagnetice de atracþieTabel 2. Valorile rezistivit@]ii }i conductivit@]ii electrice, pentru metaleleFe, Cu, Al }i Ni, precum }i pentru cuplele <strong>metalice</strong> Cu-Fe, Cu-Al }iNi-Al, ob]inute <strong>prin</strong> <strong>sudarea</strong> <strong>prin</strong> <strong>difuzie</strong>Table 2. Electrical resistivity and conductivity values for the Fe, Cu, Aland Ni metals, and Cu-Fe Cu-Al and Ni-Al metallic couplings, obtainedby diffusion weldingHV 0,1 ), in compared with those obtained on the Cu matrix(74 HV 0,1 ) and matrix of Fe (141 HV 0,1 ).Joining of Cu and Al dissimilar metals is achieved due todiffusion and creep processes, with formation of toughintermetallic compounds of Al 2 Cu and Al 4 Cu 9 type havingtetragonal structure, and cubic structure, respectively. Thebonding of Al and Ni metals occur by diffusion and creepprocesses, with formation of intermetallic compounds ofAl 3 Ni 2 type with hexagonal structure.The formation of intermetallic compounds at interface increasesthe hardness values: 55 HV for Al-Ni and 203 HV forAl-Cu, respectively. In the case of the FeCoV-Cu-Ti junction,the X-ray diffraction has revealed the existence of the Ti 2 Cu 3(Cu 4 Ti 3 ) intermetallic compounds with tetragonal structureand of Cu3Ti with orthorhombic structure.Junctions made of Cu-Fe, Cu-Al and Al-Ni had values ofelectrical properties, like compact metallic materials.Cu-Fe dissimilar metallic couples bonded by solid phasediffusion can be used for certain applications in the electrotechnicalindustry (i.e. when there are large electromotiveforces), to reduce Cu consumption and to improve itsmechanical performances.Cu-Al and Ni-Al dissimilar metallic couples can be used forapplications in the electro-technical and/or electricalindustry. For example, Cu-Al dissimilar metallic junctionscan be used as plates at the turbine generators terminals,with the copper in contact with the copper borne of thegenerator and aluminum in contact with the aluminumconductor. In this way, it provides an optimal electricalcontact and the contact electro-motor tensions are reduced.From the particular junction of FeCoV-Cu-Ti made ofdissimilar materials, it was made a pivot in the form of thatpresented in Figure 5, to be used in dentistry. This pivottogether with a magnetic dental attachment providesdenture fixation via a magnetic force of attraction.Autorii mulþumesc pentru suportul financiar acordat, <strong>prin</strong>Proiectul nr. 06-30-01-16/2008 ºi Proiectul nr. 229906/2009-ICPE-HyFC.SUDURA , XXII - 1/2012AcknowledgementThe authors thank for the financial support granted byProject. No 06-30-01-16/2008 and Project. No 229906/2009-ICPE-HyFC.37


Bibliografie/References[1] Dahmms St., Basier U., Köhler G.: Diffusion welding – An alternative joining procedure, chances and limitationsfor exemplary applications, South-East European Welding Congress, Timisoara, 2006, p. 203–211.[2] Mahoney M. W., and Bampton C.C.: Fundamentals of Diffusion Bonding, ASM Handbook-Welding, brazing andsoldering, vol 6, 1993.[3] Ifran AY, Sare CELIK, Ibrahim CELIK: Comparison of properties of friction and diffusion welded joints madebetween the pure aluminium and copper bars – BAU Fen Bilimleri Enstitusu Dergisi,1999.[4] Massalschi T. B: Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1980.[5] Elder S. P., Abaschian G. S.: Proc. Principle of Solidification and Materials Processing, R. Trivedi, J. A. Sekhar,and J. Mazumdar, eds., Oxford and IBH Publishing Co Ltd., New Delhi, 1989, vol 1, p. 1-299.[6] Muniz A.: Metall. Trans. B, 1987, vol. 18B, p. 75-565.[7] Hee Y. Kim, Dong S. Chung, Soon H. Hong: Reaction synthesis and microstructures of NiAl/Ni micro – laminatedcomposites – Materials Science and Engineering A 396, 2005, p. 376 – 384.[8] Morsi K.: Mater. Sci. Eng. A 299, 2001, p. 1-15.[9] Gosh M., Kundu S., Chatterjee S., and Mishura B., "Influence of Interface Microstructure on the Strength of theTransition Joint between Ti-6Al-4V and Stainless Steel," Metallurgical and Materials Transactions A, Vol. 36A, July 2005-1891.[10] Kundu S., Gosh M., Laik. A., Bhanumurthy K., Kale G. B., Chatterjee S.: Diffusion bonding of commerciallypure titanium to 304 stainless steel using copper interlayer, Materials Science and engineering A 407, 2005, p. 54-160.[11] He P., Zhang J., Zhou R., Li X.: Diffusion bonding technology of a titanium alloy to a stainless steel web withan Ni interlayer. Materials Characterization, 1999, 43, 287-92.[12] Gosh M., Chatterjee S., Mishra B.: The effect of intermetallics on the strength properties of diffusion bondsformed between Ti-5.5Al-2.4V and 304 stainless steel, Materials Science and Engineering A 363, 2003, p. 268-274.[13] Tsakiris V.: Îmbinãri de materiale <strong>prin</strong>tr-o tehnicã specialã-sudurã <strong>prin</strong> <strong>difuzie</strong>, Proiect PN 06-30-01-16/2007, Faza2/15.11.2008.[14] Tsakiris V., Cristinel I., Marinescu V., Rosu R., Petica A., Popa M., Chirita I.: Pivots for magnetical fixing ofdental prosthesis obtained by diffusion welding technique, ’’The 4th International Conference 10-11.06.2010, Timisoara,Romania-Innovative technologies for joining advanced materials, p.266-271, Ed.SUDURA Publishing House ISSN 1844-4938.[15] Tsakiris V., Lucaci M., Sbârcea G., Marinescu V.: Characterization of diffusion welded joints between titaniumand permendur type alloy using different interlayers –3rd International Conference Innovative Technologies For AdvancedMaterials, 11 -12.06.2009, Timiºoara, pag. 148-151 (CD), ISSN 1844-4938.[16] Ursache M., Chircã D.: Proprietãþile metalelor, Ed. Did. ºi Ped. Bucureºti, 1982.Lista firmelor cu reclame ^n SUDURA 1/2012ROBCON TM S.R.L. Timi}oara.............................................................................................................Cop. ILINDE GAZ ROMANIA S.R.L . Timi}oara............................................................................................Cop.IICM METAL S.R.L. Timi}oara.............................................................................................................................Cop.IIIDUCTIL S.A. Buz@u...........................................................................................................................................Cop.IVABICOR BINZEL S.R.L. Ploie}ti...........................................................................................................................Pg.1ESAB ROM#NIA TRADING S.R.L. Bucure}ti.....................................................................................................Pg.4ISIM Timi}oara.....................................................................................................................................................Pg.44SAM ROBOTICS S.R.L. Timi}oara......................................................................................................................Pg.2PARWELD S.R.L. Cluj Napoca...........................................................................................................................Pg.3SUDOMETAL S.R.L. Cluj Napoca ................................................................................................................Pg.43Nu uitaþi!38Informaþii noi despre activitãþile ASR sunt prezentate lunar înASR Newsletter, accesibil pe www.asr.roSUDURA , XXII - 1/2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!