13.02.2018 Views

8495160

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Oxidative Medicine and Cellular Longevity<br />

15<br />

oxygen species generation in mitochondria,” Journal of Biological<br />

Chemistry, vol. 279, no. 38, pp. 39846–39855, 2004.<br />

[129] D. J. Roberts, V. P. Tan-Sah, E. Y. Ding, J. M. Smith, and<br />

S. Miyamoto, “Hexokinase-II positively regulates glucose<br />

starvation-induced autophagy through TORC1 inhibition,”<br />

Molecular Cell, vol. 53, no. 4, pp. 521–533, 2014.<br />

[130] L. Li, J. Tan, Y. Miao, P. Lei, and Q. Zhang, “ROS and<br />

autophagy: interactions and molecular regulatory mechanisms,”<br />

Cellular and Molecular Neurobiology, vol. 35, no. 5,<br />

pp. 615–621, 2015.<br />

[131] R. Scherz-Shouval and Z. Elazar, “ROS, mitochondria and the<br />

regulation of autophagy,” Trends in Cell Biology, vol. 17,<br />

no. 9, pp. 422–427, 2007.<br />

[132] F. M. Yakes and B. Van Houten, “Mitochondrial DNA damage<br />

is more extensive and persists longer than nuclear DNA<br />

damage in human cells following oxidative stress,” Proceedings<br />

of the National Academy of Sciences of the United States<br />

of America, vol. 94, no. 2, pp. 514–519, 1997.<br />

[133] A. P. Joselin, S. J. Hewitt, S. M. Callaghan et al., “ROS-dependent<br />

regulation of Parkin and DJ-1 localization during oxidative<br />

stress in neurons,” Human Molecular Genetics, vol. 21,<br />

no. 22, pp. 4888–4903, 2012.<br />

[134] S. Yang, C. Xia, S. Li, L. Du, L. Zhang, and R. Zhou, “Defective<br />

mitophagy driven by dysregulation of rheb and KIF5B contributes<br />

to mitochondrial reactive oxygen species (ROS)-<br />

induced nod-like receptor 3 (NLRP3) dependent proinflammatory<br />

response and aggravates lipotoxicity,” Redox Biology,<br />

vol. 3, pp. 63–71, 2014.<br />

[135] J. M. Flynn and S. Melov, “SOD2 in mitochondrial dysfunction<br />

and neurodegeneration,” Free Radical Biology & Medicine,<br />

vol. 62, pp. 4–12, 2013.<br />

[136] R. A. Kirkland, R. M. Adibhatla, J. F. Hatcher, and J. L.<br />

Franklin, “Loss of cardiolipin and mitochondria during<br />

programmed neuronal death: evidence of a role for lipid<br />

peroxidation and autophagy,” Neuroscience, vol. 115,<br />

no. 2, pp. 587–602, 2002.<br />

[137] S. J. Cherra 3rd and C. T. Chu, “Autophagy in neuroprotection<br />

and neurodegeneration: a question of balance,” Future<br />

Neurology, vol. 3, no. 3, pp. 309–323, 2008.<br />

[138] S. Carloni, G. Buonocore, and W. Balduini, “Protective role of<br />

autophagy in neonatal hypoxia–ischemia induced brain<br />

injury,” Neurobiology of Disease, vol. 32, no. 3, pp. 329–339,<br />

2008.<br />

[139] M. Redmann, V. Darley-Usmar, and J. Zhang, “The role<br />

of autophagy, mitophagy and lysosomal functions in modulating<br />

bioenergetics and survival in the context of redox<br />

and proteotoxic damage: implications for neurodegenerative<br />

diseases,” Aging and Disease, vol. 7, no. 2, pp. 150–<br />

162, 2016.<br />

[140] T. Kahles and R. P. Brandes, “Which NADPH oxidase isoform<br />

is relevant for ischemic stroke? The case for nox 2,”<br />

Antioxidants & Redox Signaling, vol. 18, no. 12, pp. 1400–<br />

1417, 2013.<br />

[141] G. W. Albers, L. R. Caplan, J. D. Easton et al., “Transient<br />

ischemic attack — proposal for a new definition,” The New<br />

England Journal of Medicine, vol. 347, no. 21, pp. 1713–<br />

1716, 2002.<br />

[142] S. Manzanero, T. Santro, and T. V. Arumugam, “Neuronal<br />

oxidative stress in acute ischemic stroke: sources and contribution<br />

to cell injury,” Neurochemistry International, vol. 62,<br />

no. 5, pp. 712–718, 2013.<br />

[143] F. Adhami, A. Schloemer, and C. Y. Kuan, “The roles of<br />

autophagy in cerebral ischemia,” Autophagy, vol. 3, no. 1,<br />

pp. 42–44, 2007.<br />

[144] Y. Zhao, G. Huang, S. Chen, Y. Gou, Z. Dong, and X. Zhang,<br />

“Folic acid deficiency increases brain cell injury via autophagy<br />

enhancement after focal cerebral ischemia,” The Journal<br />

of Nutritional Biochemistry, vol. 38, pp. 41–49, 2016.<br />

[145] W. Wang, Y. Sun, M. Dai, Y. Tang, Q. Sun, and L. Bian, “The<br />

regulation effect of oxidative stress on autophagy after cerebral<br />

ischemia-reperfusion injury,” Chinese Journal of Minimally<br />

Invasive Neurosurgery, vol. 18, no. 6, pp. 275–279,<br />

2013.<br />

[146] C. Kubota, S. Torii, N. Hou et al., “Constitutive reactive<br />

oxygen species generation from autophagosome/lysosome<br />

in neuronal oxidative toxicity,” Journal of Biological Chemistry,<br />

vol. 285, no. 1, pp. 667–674, 2010.<br />

[147] S. H. Dai, T. Chen, X. Li et al., “Sirt3 confers protection<br />

against neuronal ischemia by inducing autophagy: involvement<br />

of the AMPK-mTOR pathway,” Free Radical Biology<br />

& Medicine, vol. 108, pp. 345–353, 2017.<br />

[148] A. Cheng, Y. Yang, Y. Zhou et al., “Mitochondrial SIRT3<br />

mediates adaptive responses of neurons to exercise and<br />

metabolic and excitatory challenges,” Cell Metabolism,<br />

vol. 23, no. 1, pp. 128–142, 2016.<br />

[149] J. Shao, X. Yang, T. Liu, T. Zhang, Q. R. Xie, and W. Xia,<br />

“Autophagy induction by SIRT6 is involved in oxidative<br />

stress-induced neuronal damage,” Protein & Cell, vol. 7,<br />

no. 4, pp. 281–290, 2016.<br />

[150] Y. Yuan, X. Zhang, Y. Zheng, and Z. Chen, “Regulation of<br />

mitophagy in ischemic brain injury,” Neuroscience Bulletin,<br />

vol. 31, no. 4, pp. 395–406, 2015.<br />

[151] R. Von Bernhardi and J. Eugenín, “Alzheimer’s disease: redox<br />

dysregulation as a common denominator for diverse<br />

pathogenic mechanisms,” Antioxidants & Redox Signaling,<br />

vol. 16, no. 9, pp. 974–1031, 2012.<br />

[152] P. I. Moreira, M. S. Santos, and C. R. Oliveira, “Alzheimer’s<br />

disease: a lesson from mitochondrial dysfunction,” Antioxidants<br />

& Redox Signaling, vol. 9, no. 10, pp. 1621–1630,<br />

2007.<br />

[153] S. M. de la Monte, T. R. Neely, J. Cannon, and J. R. Wands,<br />

“Oxidative stress and hypoxia-like injury cause Alzheimertype<br />

molecular abnormalities in central nervous system neurons,”<br />

Cellular and Molecular Life Sciences, vol. 57, no. 10,<br />

pp. 1471–1481, 2000.<br />

[154] S. Giordano, V. Darley-Usmar, and J. Zhang, “Autophagy<br />

as an essential cellular antioxidant pathway in neurodegenerative<br />

disease,” Redox Biology, vol. 2, pp. 82–90,<br />

2014.<br />

[155] B. R. Underwood, S. Imarisio, A. Fleming et al., “Antioxidants<br />

can inhibit basal autophagy and enhance neurodegeneration<br />

in models of polyglutamine disease,” Human Molecular<br />

Genetics, vol. 19, no. 17, pp. 3413–3429, 2010.<br />

[156] M. Dodson, V. Darley-Usmar, and J. Zhang, “Cellular<br />

metabolic and autophagic pathways: traffic control by redox<br />

signaling,” Free Radical Biology & Medicine, vol. 63,<br />

pp. 207–221, 2013.<br />

[157] E. Barbero-Camps, A. Fernández, L. Martínez, J. C. Fernández-<br />

Checa, and A. Colell, “APP/PS1 mice overexpressing SREBP-<br />

2 exhibit combined Aβ accumulation and tau pathology<br />

underlying Alzheimer’s disease,” Human Molecular Genetics,<br />

vol. 22, no. 17, pp. 3460–3476, 2013.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!