29.03.2013 Views

RILSAN® Polyamide 11 in Oil & Gas Off - HCL Fasteners Ltd

RILSAN® Polyamide 11 in Oil & Gas Off - HCL Fasteners Ltd

RILSAN® Polyamide 11 in Oil & Gas Off - HCL Fasteners Ltd

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

RILSAN ® <strong>Polyamide</strong> <strong>11</strong><br />

<strong>in</strong> <strong>Oil</strong> & <strong>Gas</strong><br />

<strong>Off</strong>-shore Fluids<br />

Compatibility Guide


After 14 years of research <strong>in</strong> a program<br />

launched <strong>in</strong> 1958 by the French Institut de<br />

Petrole, polyamide <strong>11</strong> was chosen as the<br />

best material out of several hundred<br />

tested. Today RILSAN ® polyamide <strong>11</strong>, the<br />

unique polyamide from ATOFINA, looks<br />

back at a service history of over 30 years<br />

<strong>in</strong> the petroleum <strong>in</strong>dustry. The comb<strong>in</strong>ed<br />

qualities of flexibility, excellent impact<br />

resistance even at low temperatures, high<br />

resistance to ag<strong>in</strong>g and good compatibility<br />

with products common to the petroleum<br />

<strong>in</strong>dustry environment have made RILSAN<br />

polyamide <strong>11</strong> an unequaled standard.<br />

For even higher demands, especially at<br />

higher temperatures or when the<br />

comb<strong>in</strong>ed high temperature and high<br />

water content requirements are too<br />

severe, ATOFINA proposes its unique<br />

KYNAR ® off-shore grade. KYNAR is a<br />

thermoplastic fluoropolymer res<strong>in</strong><br />

developed by ATOFINA. Outstand<strong>in</strong>g<br />

thermomechanical properties comb<strong>in</strong>ed<br />

with exceptional chemical and ag<strong>in</strong>g<br />

resistance enable KYNAR to meet the<br />

most str<strong>in</strong>gent demands.<br />

The data given <strong>in</strong> this brochure describe the material performance of RILSAN ® polyamide <strong>11</strong> <strong>in</strong> applications such as<br />

pneumatic or hydraulic tubes. For large diameter pipes or sheaths such as <strong>in</strong> flexible pipe the data give <strong>in</strong>dications<br />

of lifetime limits, but further considerations might have to be taken <strong>in</strong>to account. Hence this data may be <strong>in</strong>applicable<br />

where lifetime and design specifications established by flexible pipe manufacturers or jo<strong>in</strong>t <strong>in</strong>dustry efforts have<br />

resulted <strong>in</strong> new recommended practices or <strong>in</strong>dustry specifications.


1<br />

2<br />

3<br />

PA<strong>11</strong><br />

CONTENTS<br />

1 General <strong>in</strong>troduction and material overview Page 2<br />

1.1 Introduction to thermoplastic polymers 3<br />

1.2 General guide for the use of polyamide <strong>11</strong> 3<br />

2 Technical data: RILSAN ® BESNO P40 TLO res<strong>in</strong> 5<br />

2.1 Mechanical properties and design parameters 5<br />

2.2 Thermal properties 5<br />

3 Overview of ag<strong>in</strong>g properties and chemical compatibility 7<br />

3.1 Heat ag<strong>in</strong>g 7<br />

3.2 UV ag<strong>in</strong>g 8<br />

3.3 Chemical ag<strong>in</strong>g 9<br />

3.4 Chemical resistance tables – RILSAN ® BESNO P40 res<strong>in</strong> grades 10<br />

3.5 Ag<strong>in</strong>g <strong>in</strong> water and acidic solutions – hydrolysis 15<br />

3.6 Influence of methanol on ag<strong>in</strong>g and mechanical<br />

properties, permeability data 17<br />

3.7 Influence of monoethyleneglycol and ethyleneglycol<br />

based hydraulic liquids on mechanical properties 19<br />

3.8 Compatibility of RILSAN ® BESNO P40 TLX and BESNO P40 TLO<br />

res<strong>in</strong>s with various offshore fluids and chemicals 21<br />

3.8.1 Demulsifiers 22<br />

3.8.2 Corrosion <strong>in</strong>hibitors– oil soluble 22<br />

3.8.3 Corrosion <strong>in</strong>hibitors – water soluble 23<br />

3.8.4 Corrosion <strong>in</strong>hibitors – oil soluble and water dispersible 24<br />

3.8.5 Oxygen scavengers 24<br />

3.8.6 Biocides 25<br />

3.8.7 Paraff<strong>in</strong> <strong>in</strong>hibitors 26<br />

3.8.8 Scale <strong>in</strong>hibitors 27<br />

3.8.9 Overview of chemical compatibility of RILSAN ® BESNO P40 TLX<br />

and BESNO P40 TLO res<strong>in</strong>s with common offshore chemicals 27<br />

3.9 Compatibility with crude oil, natural gas,<br />

carbon dioxide (CO2) and hydrogen sulfide (H2S) 29<br />

3.9.1 Compatibility with crude oil 29<br />

3.9.2 Compatibility with natural gas 29<br />

3.9.3 Compatibility with carbon dioxide (CO2) 30<br />

3.9.4 Compatibility with hydrogen sulfide (H2S) 30<br />

3.10 Data on permeability of polyamide <strong>11</strong> 30<br />

3.<strong>11</strong> Blister<strong>in</strong>g resistance 31


2<br />

1<br />

General <strong>in</strong>troduction and<br />

material overview<br />

The term umbilical is applied to<br />

connective systems between underwater<br />

equipment such as wellheads, subsea<br />

manifolds or remote operated vehicles<br />

(ROVs).<br />

An umbilical generally consists of a group<br />

of hydraulic l<strong>in</strong>es, <strong>in</strong>jection l<strong>in</strong>es and/or<br />

electrical cables bundled together <strong>in</strong> a<br />

flexible arrangement, sheathed and<br />

sometimes armored for mechanical<br />

strength and/or a specific buoyancy.<br />

Related <strong>in</strong>formation describ<strong>in</strong>g<br />

recommended practice can be found <strong>in</strong><br />

the API documents 17R, but also <strong>in</strong><br />

API 17B and API 17J on flexible pipes.<br />

Specific examples of structures are given<br />

below.<br />

Fig.1 Umbilical cross sections<br />

PA<strong>11</strong> hydraulic<br />

hose 1/2”<br />

1<br />

PA<strong>11</strong> hydraulic<br />

hose 1”<br />

PP fillers<br />

A range of materials comes <strong>in</strong>to play to<br />

make up the entire structure:<br />

• carbon steel for the armor<br />

• metals for electrical wire<br />

• cable sheath<strong>in</strong>g<br />

• different thermoplastics for the<br />

<strong>in</strong>jection and hydraulic l<strong>in</strong>es<br />

• fiber re<strong>in</strong>forcement, often aramid<br />

fibers are used<br />

• outer sheath<strong>in</strong>g of umbilical, often<br />

polyethylene or polyurethane<br />

• duplex steel for hydraulic l<strong>in</strong>es<br />

Extruded pipe made from polyamide <strong>11</strong>,<br />

<strong>in</strong> comb<strong>in</strong>ation with an aramid braid<strong>in</strong>g<br />

and subsequently sheathed with another<br />

layer of polyamide, provides a very<br />

reliable hose possess<strong>in</strong>g high flexibility,<br />

very high pressure performance, unlimited<br />

seamless tube length and long life <strong>in</strong><br />

harsh offshore environments.<br />

Power cables<br />

Tape b<strong>in</strong>der<br />

PE sheath<br />

PP separator<br />

Steel armor wires and outer sheath Steel armor wires<br />

Outer sheath<br />

PP fillers<br />

PA<strong>11</strong> hydraulic<br />

hose 1/2”


Fig. 2 Morphology of a semicrystall<strong>in</strong>e polymer<br />

a. b.<br />

●<br />

●<br />

● ●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

● ● ●<br />

●<br />

●<br />

● ● ●<br />

●<br />

●<br />

d.<br />

a. repeat unit cell b. crystall<strong>in</strong>e (lc) and amorphous<br />

(la) doma<strong>in</strong>s with<strong>in</strong> the long period Lp (lamellar<br />

structure) c. a stack of lamelle d. the spherolite.<br />

1.1 Introduction to thermoplastic<br />

polymers<br />

Thermoplastic polymers are a class of<br />

materials with a wide range of flexibility,<br />

a medium range of elasticity and a wide<br />

range of upper temperature limits. For<br />

semicrystall<strong>in</strong>e materials, their maximum<br />

use temperatures are limited by the<br />

melt<strong>in</strong>g po<strong>in</strong>t of the crystall<strong>in</strong>e phase.<br />

An image of the general structure of a<br />

semicrystall<strong>in</strong>e thermoplastic material is<br />

given above. The properties of such a<br />

material are governed by the <strong>in</strong>terplay of<br />

the crystall<strong>in</strong>e phase giv<strong>in</strong>g strength and<br />

temperature resistance and the amorphous<br />

phase render<strong>in</strong>g the material<br />

tough and flexible. Typical examples of<br />

semicrystall<strong>in</strong>e polymers are high density<br />

polyethylene (HDPE), polyamide <strong>11</strong> or<br />

nylon <strong>11</strong> (PA<strong>11</strong>) and polyv<strong>in</strong>ylidene<br />

fluoride (PVDF).<br />

c.<br />

lc<br />

la<br />

L p<br />

The follow<strong>in</strong>g table gives an outl<strong>in</strong>e of the scope of properties of thermoplastic<br />

polymers which can be found <strong>in</strong> offshore applications today.<br />

COMPARISON OF DIFFERENT THERMOPLASTIC POLYMERS USED IN OFFSHORE SERVICE<br />

PVC HDPE PA<strong>11</strong> PVDF<br />

Density (g cm-3) 1.38 – 1.40 0.95 – 0.98 1.03 1.78<br />

Melt<strong>in</strong>g Po<strong>in</strong>t (°C) 80 130 – 135 188 160 – 170<br />

Flexural modulus (MPa) <strong>11</strong>00 – 2700 700 – 1000 300 – 1300 800 – 2000<br />

Tensile strength (MPa) 50 – 75 20 – 30 25 – 30 37 – 48<br />

Shore D hardness 55 – 70 32 – 61 75 – 77<br />

LOI (%) 42 5.7 26 44<br />

1.2 General guide for the use of polyamide <strong>11</strong><br />

<strong>Polyamide</strong> <strong>11</strong> is a specialty nylon. It comb<strong>in</strong>es high ductility, excellent ag<strong>in</strong>g resistance<br />

and high barrier properties with mechanical strength and resistance to creep and fatigue.<br />

It thus compares advantageously to standard nylons such as 6 and 66. Notably its significantly<br />

lower water absorption results <strong>in</strong> better ag<strong>in</strong>g resistance, higher chemical resistance<br />

and less property fluctuation due to plasticization by water.<br />

COMPARISON OF DIFFERENT POLYAMIDES<br />

PA 66 PA 6 PA <strong>11</strong> PA <strong>11</strong><br />

plasticized<br />

Melt<strong>in</strong>g po<strong>in</strong>t (°C) 255 215 188 184<br />

Density 1.14 1.13 1.03 1.05<br />

Flexural modulus (MPa)<br />

50% RH (23°C) 2800 (1200) 2200 1300 300<br />

Water absorption<br />

50% RH (23°C) 2.5 2.7 1.1 1.2<br />

<strong>in</strong> water immersion 8.5 9.5 1.9 1.9<br />

Charpy notched impact<br />

ISO 180/1A (kJ/m 2 )<br />

23°C 5.3 (24) 8 (30) 23 N.B.<br />

- 40°C X X 13 7<br />

ISO 527<br />

Tensile stress (MPa) 87 (77) 85 (70) 36 21<br />

Tensile elongation (%) 5 (25) 22 –<br />

Elongation at rupture (%) 60 (300) 15 – 200 360 380<br />

N.B. = no break, values <strong>in</strong> parentheses at elevated humidities, RH = relative humidity<br />

3


4<br />

The excellent properties of polyamides<br />

and <strong>in</strong> particular polyamide <strong>11</strong> are a result<br />

of the amide l<strong>in</strong>kages <strong>in</strong> the cha<strong>in</strong> which<br />

allow a strong <strong>in</strong>teraction between the<br />

cha<strong>in</strong>s by hydrogen bonds. Low creep,<br />

high abrasion resistance, good resistance<br />

to fatigue and high barrier properties are<br />

a direct result of these strong <strong>in</strong>ter-cha<strong>in</strong><br />

l<strong>in</strong>ks.<br />

Molecules which can create hydrogen<br />

bonds such as water, methanol, ethanol,<br />

ethylene glycol can penetrate polyamide<br />

<strong>11</strong> and lead to plasticization. They can<br />

<strong>in</strong>terfere <strong>in</strong> <strong>in</strong>ter-cha<strong>in</strong> hydrogen bonds<br />

thus weaken<strong>in</strong>g the hydrogen bond network.<br />

Especially methanol has a significant<br />

absorption rate and must be considered<br />

<strong>in</strong> certa<strong>in</strong> applications. Please refer<br />

to section 3.6.<br />

H–N<br />

O=C<br />

H–N<br />

O=C<br />

PA CHAINS WITH H-BONDING<br />

C=O<br />

N–H<br />

N–H<br />

IIIIIII<br />

IIIIIII<br />

H–N<br />

O=C<br />

C=O IIIIIII H-N<br />

IIIIIII O=C<br />

C=O IIIIIII H–N<br />

N–H IIIIIII O=C<br />

C=O IIIIIII H–N<br />

N–H IIIIIII O=C<br />

C=O<br />

H–N<br />

C=O<br />

Although polyamide <strong>11</strong> is highly resistant<br />

to ag<strong>in</strong>g and cha<strong>in</strong> breakdown, the reaction<br />

of water with amide bonds creates a<br />

limit to the use of polyamide at higher<br />

temperatures and <strong>in</strong> the presence of<br />

water. The specific reaction <strong>in</strong>duced by<br />

water, called hydrolysis, can be accelerated<br />

<strong>in</strong> the presence of acids. At cont<strong>in</strong>uous<br />

service temperatures of 65°C and below,<br />

the impact of hydrolysis on polyamide <strong>11</strong><br />

<strong>in</strong> a neutral medium such as water can be<br />

neglected. Under these conditions, the<br />

material can have a service life of 20 years<br />

or more. The use at higher cont<strong>in</strong>uous<br />

service temperatures depends on the performance<br />

requirements and more precise<br />

conditions. The reader should refer to<br />

data on temperature – lifetime correlations<br />

<strong>in</strong> section 3.5.<br />

O<br />

=<br />

REACTION: HYDROLYSIS<br />

vvvvv C–Nvvvvv +H2O →<br />

← vvvvv CO2H + vvvvv NH2<br />

–<br />

H<br />

A special molecule, butyl-benzene-sulfonamide<br />

or BBSA, has been chosen as a<br />

plasticizer. It has very low volatility and<br />

leads to an efficient plastification of the<br />

res<strong>in</strong>. Questions related to its extraction<br />

or its <strong>in</strong>fluence on material properties are<br />

discussed <strong>in</strong> section 3.7.<br />

BUTYL-BENZENE-SULFONAMIDE OR BBSA<br />

O II<br />

SII<br />

O<br />

N<br />

H<br />

A range of RILSAN ® polyamide <strong>11</strong> grades<br />

has been developed to correspond to the<br />

specific needs of the oil and gas <strong>in</strong>dustry.<br />

BESNO P40 TL<br />

A high viscosity and plasticized grade<br />

developed for pipe extrusion.<br />

BESNO P40 TLX<br />

A high viscosity and plasticized grade<br />

developed for pipe extrusion especially<br />

for the <strong>in</strong>ner pressure layer of flexible<br />

pipe.<br />

BESNO P40 TLO<br />

A high viscosity and plasticized grade<br />

developed for pipe extrusion with a low<br />

extractable content especially adapted for<br />

hydraulic hoses <strong>in</strong> umbilicals.<br />

The bloom<strong>in</strong>g of oligomers has clogged<br />

valves or filters <strong>in</strong> subsea <strong>in</strong>stallations.<br />

Oligomeric molecules present <strong>in</strong> the<br />

polymerized PA<strong>11</strong> res<strong>in</strong> are extracted and<br />

the material is compounded with a<br />

plasticizer and heat additives.<br />

BESNO P20 TL<br />

A medium plasticized, high viscosity extrusion<br />

grade for pipe and sheath extrusion.<br />

BESNO TL<br />

A high viscosity unplasticized grade<br />

adapted for pipe extrusion.<br />

BMNO TLD<br />

An <strong>in</strong>jection mold<strong>in</strong>g grade.<br />

These grades are all of natural color.<br />

Certa<strong>in</strong> colored grades or color master<br />

batches are also available.


2<br />

Technical data: BESNO P40 TLO<br />

BESNO P40 TLO is a plasticized and<br />

washed polyamide <strong>11</strong> grade. The<br />

methanol wash<strong>in</strong>g process elim<strong>in</strong>ates<br />

low molecular weight extractables<br />

(chemical name: oligomers) which can<br />

lead to foul<strong>in</strong>g or clogg<strong>in</strong>g of the filters<br />

or needle valves.<br />

2.1 Mechanical properties and<br />

design parameters<br />

DENSITY<br />

ASTM D792 1.05 g/cm 3<br />

HARDNESS<br />

ISO 2039/2 (R SCALE) 75<br />

ISO 868 (D SCALE) 61<br />

COMPRESSION STRENGTH<br />

ASTM D695 (23°C) 50 MPa<br />

ABRASION RESISTANCE<br />

ISO 9352 : 1995(F)<br />

(loss <strong>in</strong> weight after 1000 rev under<br />

500g H18 wheel) 22 mg<br />

FLEXURAL TESTS ACCORDING TO ISO 178 : 93<br />

Temperature °C -40 -20 23 80<br />

Flexural modulus MPa 1950 1350 320 165<br />

(dry material)<br />

Flexural modulus MPa 2050 <strong>11</strong>50 280 160<br />

(after condition<strong>in</strong>g 15<br />

daysat23°C, 50% R.H.)<br />

FLEXURAL TESTS ACCORDING TO ASTM D790<br />

Temperature °C 23 80<br />

Flexural modulus MPa 330 170<br />

(dry material)<br />

IMPACT TESTS ACCORDING TO ISO 179 (type 1)<br />

Temperature °C -40 23<br />

Unnotched KJ.m -2 N.B. N.B.<br />

Notched KJ.m -2 8 N.B.<br />

N.B. = no break<br />

IMPACT TESTS ACCORDING TO ISO 179 :93 CA<br />

Temperature °C -40 -20 0 23<br />

Notched KJ.m -2 6.8 9.9 52.9 N.B.<br />

2.2 Thermal properties<br />

THERMAL CONDUCTIVITY<br />

Temperature (°C) 39 61 82 102 122 142 163 182 202 223<br />

K(W/m°K) 0.21 0.24 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.25<br />

THERMAL EXPANSION HEAT DISTORTION TEMPERATURE SOFTENING POINT<br />

ASTM E 821 ASTM D648 ASTM D1525<br />

from -30°C to +50°C <strong>11</strong>x10 -5 °K -1 ISO 75 (0.46 Mpa) 130 °C under 1 daN 170 °C<br />

from +50°C to +120°C 23x10 -5 °K -1 ISO 75 (1.85 Mpa) 45 °C under 5 daN 140 °C<br />

5


6<br />

Measured by D.S.C.<br />

HEAT CAPACITY<br />

Temperature (°C) 20 50 80 120 160 200 230 260<br />

cal/g.°C 0.40 0.50 0.6 0.6 0.65 0.65 0.65 0.65<br />

D.M.A. 0-10 °C<br />

DYNAMIC MECHANICAL ANALYSIS<br />

(full curve)<br />

The DMA curve obta<strong>in</strong>ed is characteristic<br />

for semicrystall<strong>in</strong>e polymers. Essentially<br />

four different temperature zones can be<br />

described which are related to characteristic<br />

relaxational transitions.<br />

The first zone is a low temperature high<br />

modulus zone which starts to soften<br />

around –20°C. Due to efficient low temperature<br />

relaxations (centered around<br />

–80°C) PA<strong>11</strong> is tough even at these very<br />

low temperatures.<br />

Between –20 and 40°C the material softens<br />

gradually to atta<strong>in</strong> its characteristic<br />

STORAGE MODULUS E' (Pa) LOSS MODULUS E" (Pa)<br />

1.00E+10<br />

1.00E+09<br />

1.00E+08<br />

GLASS TRANSITION TEMPERATURE<br />

flexibility. This soften<strong>in</strong>g is due to the<br />

onset of motion, the glass transition, <strong>in</strong><br />

the amorphous regions. From 40 to 160°C,<br />

the PA<strong>11</strong> modulus rema<strong>in</strong>s very stable<br />

due to the crystall<strong>in</strong>e phase with its<br />

onset of melt<strong>in</strong>g start<strong>in</strong>g only around<br />

160°C. The f<strong>in</strong>e distribution of the crystall<strong>in</strong>e<br />

phase and its constant modulus,<br />

largely <strong>in</strong>dependent of temperature,<br />

guarantee very stable mechanical<br />

properties over a very wide temperature<br />

range and a high resistance to creep.<br />

For a textbook on the comprehensive<br />

analysis of DMA data refer to Anelastic<br />

and Dielectric Effects <strong>in</strong> Polymer Solids by<br />

N.G. McCrum, B.E. Read, G. Williams;<br />

Dover Publication, New York, 1991.<br />

1.00E+07<br />

-140 -120 -100 - 80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180<br />

TEMPERATURE ( °C)<br />

Fig. 3 BESNO P40 TL – plasticized PA<strong>11</strong> Measurement <strong>in</strong> a 3-po<strong>in</strong>t bend<strong>in</strong>g flexural mode at 10 rad/s<br />

E'<br />

E"


3<br />

Overview of ag<strong>in</strong>g properties of<br />

polyamide <strong>11</strong><br />

<strong>Polyamide</strong> <strong>11</strong> is subject to ag<strong>in</strong>g phenomena.<br />

These phenomena are rather<br />

varied and depend on the specific environment.<br />

The most important factors<br />

<strong>in</strong>duc<strong>in</strong>g ag<strong>in</strong>g and subsequent loss of<br />

properties for polyamides are:<br />

• Heat<br />

• UV light<br />

• Chemicals<br />

Alldata given <strong>in</strong> the follow<strong>in</strong>g chapters<br />

refer to BESNO grades. The suffix “P40”<br />

signifies a plasticized grade.<br />

“TL” and “TLX” signify various heat and<br />

light stabilizer packages.<br />

The suffix “TLO” signifies an oligomer<br />

extracted grade which is heat and light<br />

stabilized.<br />

3.1 Heat ag<strong>in</strong>g<br />

Heat <strong>in</strong> the presence of oxygen causes oxidative degradation. For the reaction of<br />

oxygen with an organic polymer to take place, oxygen molecules must diffuse <strong>in</strong>to the<br />

bulk polymer from the outside. Reactions occur first on the surface, lead<strong>in</strong>g to surface<br />

embrittlement.<br />

Oxidative degradation can be efficiently suppressed by anti-oxidants. All RILSAN ® PA<strong>11</strong><br />

grades used <strong>in</strong> offshore applications have specially suited anti-oxidant packages. In<br />

the grade nomenclature, this is notified by a suffix “TL.”<br />

Heat ag<strong>in</strong>g performance has been established based on accelerated tests <strong>in</strong> a ventilated<br />

oven. In most cases the performance is monitored by tensile experiments. An<br />

example of a typical test series isgiven <strong>in</strong> the figure below.<br />

ELONGATION AT BREAK (%)<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

•<br />

0<br />

•<br />

50<br />

•<br />

•<br />

•<br />

100 150 200 250 300 350<br />

TIME (HOURS)<br />

Fig. 4 Reduction of elongation at break: BESNO P40 TLX aged at 155°C<br />

•<br />

• mean values<br />

•<br />

7


8<br />

LOG TIME (DAYS)<br />

ELONGATION AT BREAK (%)<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

.5<br />

0<br />

■■■ 20 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 10 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 5 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 1 YEAR ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

+ + + + + + + +<br />

150 140 130 120 <strong>11</strong>0 100 90 80<br />

TEMPERATURE ( °C)<br />

Fig. 6 Laboratory ag<strong>in</strong>g of BESNO P40 TLX: Xenotest 1200<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Fig. 5 Laboratory ag<strong>in</strong>g as a function of temperature – half times from elongation at break<br />

are taken from <strong>in</strong>jection-molded and mach<strong>in</strong>ed samples – material is BESNO P40 TLX. The<br />

<strong>in</strong>fluence of poorer surface quality on ag<strong>in</strong>g performance is demonstrated.<br />

•<br />

0<br />

•<br />

•<br />

+<br />

Mach<strong>in</strong>ed<br />

Injected<br />

L<strong>in</strong>ear (mach<strong>in</strong>ed)<br />

L<strong>in</strong>ear (<strong>in</strong>jected)<br />

500 1000 1500 2000 2500<br />

TIME (HOURS)<br />

TIME (h) 0 500 1000 1400 2000<br />

EB (%) 380 330 275 85 33<br />

EB/EB 0 1 0.87 0.72 0.22 0.09<br />

MB (MPa) 72 61 47 34 25<br />

YI 6 14 16 13 13<br />

EB = elongation at break, MB = modulus at break, YI = yellowness <strong>in</strong>dex<br />

•<br />

•<br />

3.2. UV ag<strong>in</strong>g<br />

UV light <strong>in</strong> conjunction with oxygen leads<br />

to similar surface degradation effects as<br />

heat degradation. Effective anti-UV light<br />

stabiliz<strong>in</strong>g packages are rout<strong>in</strong>ely<br />

employed to protect the res<strong>in</strong> (marked by<br />

suffix “TL”). Different tests have been<br />

developed to simulate the impact of UVlight<br />

comb<strong>in</strong>ed with natural weather<strong>in</strong>g.<br />

These tests <strong>in</strong>clude cycles where the samples<br />

are alternatively subject to moist heat<br />

and UV light.<br />

The UV resistance is measured under<br />

accelerated conditions on a standardized<br />

mach<strong>in</strong>e, XENOTEST 1200, accord<strong>in</strong>g to<br />

the RENAULT standard no. 1380. Results<br />

are shown <strong>in</strong> Figure 6.<br />

Conditions:<br />

Xenon lamps with filters elim<strong>in</strong>at<strong>in</strong>g radiation<br />

with wave lengths less than to 300 nm.<br />

Intermittent exposure – equal periods of<br />

light and darkness.<br />

Dur<strong>in</strong>g a 20 m<strong>in</strong>ute cycle, the specimens<br />

are exposed to 3 m<strong>in</strong>utes of distilled<br />

water spray and 17 m<strong>in</strong>utes of exposure<br />

without spray<strong>in</strong>g. The relative humidity of<br />

the cab<strong>in</strong>et dur<strong>in</strong>g period without spray is<br />

approximately 65%.<br />

Black panel temperature <strong>in</strong> the measurement<br />

cab<strong>in</strong>et:<br />

65°C ± 2°C before spray<strong>in</strong>g<br />

45°C ± 2°C after spray<strong>in</strong>g<br />

The specimens are dumbells accord<strong>in</strong>g to<br />

ISO/NFT 51034 cut from a film of 1 mm<br />

thickness. Tensile tests are carried out at<br />

50 mm/m<strong>in</strong>ute.


3.3 Chemical ag<strong>in</strong>g<br />

In offshore applications, certa<strong>in</strong> offshore<br />

fluids and chemicals can have a detrimental<br />

effect on polyamide <strong>11</strong> performance. For<br />

each application, the specific chemicals<br />

should be reviewed <strong>in</strong> order to estimate<br />

service life.<br />

<strong>Polyamide</strong>s, and <strong>in</strong> particular polyamide<br />

<strong>11</strong>, are very resistant to many types of<br />

chemicals. <strong>Polyamide</strong> <strong>11</strong> is very resistant<br />

to oils and hydrocarbons as well as to a<br />

large variety of solvents. In contrast to<br />

standard polyamides 6 and 66; polyamide<br />

<strong>11</strong> shows only little absorption of water<br />

and is also resistant to diluted acids and<br />

bases. Due to its <strong>in</strong>creased flexibility and<br />

molecular structure, it is also highly resistant<br />

to stress crack<strong>in</strong>g, unlike most other thermoplastics.<br />

<strong>Polyamide</strong> <strong>11</strong> can be used <strong>in</strong> conjunction<br />

with a great variety of standard offshore<br />

chemicals. A detailed description of compatibilities<br />

is given <strong>in</strong> sections 3.8 and 3.9.<br />

Because chemical species attack thermoplastic<br />

res<strong>in</strong>s when they are absorbed,<br />

diffusion and solubility play important roles<br />

<strong>in</strong> the assessment of chemical compatibility.<br />

There are two effects <strong>in</strong>duced by absorbed<br />

species – an <strong>in</strong>fluence on the mechanical<br />

properties due to plasticization, and a<br />

chemical effect lead<strong>in</strong>g to loss of material<br />

performance.<br />

Specific examples of absorption and<br />

plasticizer extraction are given <strong>in</strong> sections<br />

3.6 and 3.7 on methanol-and glycol-based<br />

hydraulic liquids.<br />

The ma<strong>in</strong> chemical effect is reduction <strong>in</strong><br />

polymer molecular weight due to hydrolysis.<br />

Hydrolysis is the reverse reaction of the<br />

cha<strong>in</strong>-form<strong>in</strong>g polycondensation reaction.<br />

It can be <strong>in</strong>duced by water at elevated<br />

temperatures and is accelerated by acids<br />

and, to some extent, also by bases. Due to<br />

the importance of hydrolysis <strong>in</strong> ag<strong>in</strong>g related<br />

to offshore applications, section 3.5<br />

describes the phenomenon <strong>in</strong> detail.<br />

ELONGATION AT BREAK (%)<br />

Fig. 6A Evolution of Yellowness Index (YI) <strong>in</strong> Xenotest ag<strong>in</strong>g<br />

40<br />

35<br />

30<br />

25<br />

YI 20<br />

15<br />

10<br />

5<br />

•<br />

0<br />

•<br />

•<br />

500 1000 1500 2000 2500<br />

TIME (HOURS)<br />

EQUILIBRIUM SWELLING AND CHEMICAL COMPATIBILITY<br />

OF COMMON SOLVENTS AND OFF SHORE FLUIDS<br />

Solvent Swell<strong>in</strong>g at 20°C <strong>in</strong> % weight Compatibility<br />

Benzene 7.5 good up to 70°C / swell<strong>in</strong>g<br />

Toluene 7 good up to 90°C / swell<strong>in</strong>g<br />

Cyclohexane 1 good<br />

Petrol ether 1.5 good<br />

Decal<strong>in</strong>e < 1 good<br />

<strong>Gas</strong>ol<strong>in</strong>e depends on type, mostly < 2% good<br />

Kerosene depends on type, mostly < 2% good<br />

Ethylene glycol 2.5 good up to 60°C / swell<strong>in</strong>g<br />

Glycerol 1 good up to 60°C<br />

•<br />

•<br />

9


10<br />

3.4. Chemical resistance table – BESNO P40 grades<br />

The follow<strong>in</strong>g tables give a first impression of chemical<br />

resistance of PA<strong>11</strong> extrusion res<strong>in</strong>s.<br />

G: good<br />

L: limited (important swell<strong>in</strong>g or dissolution)<br />

P: poor<br />

Index * denotes swell<strong>in</strong>g, <strong>in</strong>dexb denotes discoloration<br />

(brownish or yellowish)<br />

Inorganic Salts<br />

Concentration 20°C 40°C 60°C 90°C<br />

calcium arsenate Concentrated or paste G G G<br />

sodium carbonate Concentrated or paste G G L P<br />

barium chloride Concentrated or paste G G G G<br />

potassium nitrate Concentrated or paste G b L b P P<br />

diammonium phosphate Concentrated or paste G G L<br />

trisodium phosphate Concentrated or paste G G G G<br />

alum<strong>in</strong>ium sulphate Concentrated or paste G G G G<br />

ammonium sulphate Concentrated or paste G G L<br />

copper sulphate Concentrated or paste G G G G<br />

potassium sulphate Concentrated or paste G G G G<br />

sodium sulphide Concentrated or paste G G L<br />

calcium chloride Concentrated or paste G G G G<br />

magnesium chloride 50% G G G G<br />

sodium chloride saturated G G G G<br />

z<strong>in</strong>c chloride saturated G G L P<br />

iron trichloride saturated G G G<br />

barium formate saturated G L P<br />

sodium acetate saturated G L P


Other Inorganic Materials<br />

Concentration 20°C 40°C 60°C 90°C<br />

water See section 3.5 G G G G<br />

sea water G G G G<br />

carbonated water G G G G<br />

bleach L P P P<br />

hydrogen peroxide 20% G L<br />

oxygen G G L P<br />

hydrogen G G G G<br />

ozone L P P P<br />

sulphur G G<br />

mercury G G G G<br />

fluor<strong>in</strong>e P P P P<br />

chlor<strong>in</strong>e P P P P<br />

brom<strong>in</strong>e P P<br />

potassium permanganate 5% P P<br />

agricultural sprays G G<br />

Organic Bases<br />

anil<strong>in</strong>e Pure L P P P<br />

pyrid<strong>in</strong>e Pure L P P P<br />

urea G G L L<br />

diethanolam<strong>in</strong>e 20% G G* G* L<br />

Inorganic Bases<br />

sodium hydroxide 50% G L P P<br />

potassium hydroxide 50% G L P P<br />

ammonium hydroxide concentrated G G G G<br />

ammonia liquid or gas G G<br />

<strong>11</strong>


12<br />

Inorganic Acids<br />

Concentration 20°C 40°C 60°C 90°C<br />

hydrochloric acid 1% G L P P<br />

10% G L P P<br />

sulphuric acid 1% G L L P<br />

10% G L P P<br />

phosphoric acid 50% G L P P<br />

nitric acid P P P P<br />

chromicacid 10% P P P P<br />

sulphur dioxide L P P P<br />

Halogenated solvents<br />

methyl bromide G P<br />

methyl chloride G P<br />

trichloroethylene L P<br />

perchloroethylene L P<br />

carbon tetrachloride P<br />

trichloroethane L P<br />

Freon G<br />

Phenols P P P P<br />

Esters and Ethers<br />

methyl acetate G G G<br />

ethyl acetate G G G<br />

butyl acetate G G G L<br />

amyl acetate G G G L<br />

tributylphosphate G G G L<br />

dioctylphosphate G G G L<br />

dioctylphthalate G G G L<br />

diethyl ether G<br />

fatty acid esters G G G G<br />

methyl sulphate G L


Various Organic Compounds<br />

Concentration 20°C 40°C 60°C 90°C<br />

anethole G<br />

ethylene chlorohydr<strong>in</strong> P P L<br />

ethylene oxide G G P P<br />

carbon disulphide G L L<br />

furfuryl alcohol G G<br />

tetraethyl lead G<br />

diacetone alcohol G G L P<br />

glucose G G G G<br />

Organic Acids and Anhydrides<br />

acetic acid refer to section 3.5 – role of acidity <strong>in</strong> hydrolysis<br />

L P P P<br />

acetic anhydride L P P P<br />

citric acid G G L P<br />

formic acid P P P P<br />

lactic acid G G G L<br />

oleic acid G G G L<br />

oxalic acid G G L P<br />

picric acid L P P P<br />

stearic acid G G G L<br />

tartaric acid G G G L<br />

uric acid G G G L<br />

13


14<br />

Hydrocarbons<br />

Concentration 20°C 40°C 60°C 90°C<br />

methane G G G G<br />

propane G G G G<br />

butane G G G G<br />

acetylene G G G G<br />

benzene G G L P<br />

toluene G G L L<br />

xylene G G L L<br />

styrene G G<br />

cyclohexane G G G L<br />

naphthalene G G G L<br />

decal<strong>in</strong> G G G L<br />

crude oil G G G L<br />

Alcohols<br />

methanol Pure G L P<br />

ethanol Pure G L P<br />

butanol G L P<br />

glycer<strong>in</strong>e pure G G L P<br />

glycol G G L P<br />

benzyl alcohol L P P P<br />

Aldehydes and Ketones<br />

acetone Pure G G L P<br />

acetaldehyde G L P<br />

formaldehyde G L P<br />

cyclohexanone G L P<br />

methylethylketone G G L P<br />

methylisobutylketone G G L P<br />

benzaldehyde G L P


AGING TEMPERATURE (°C)<br />

150<br />

140<br />

130<br />

120<br />

<strong>11</strong>0<br />

100<br />

90<br />

80<br />

70<br />

60<br />

3.5 Ag<strong>in</strong>g <strong>in</strong> water and acid solutions – hydrolysis<br />

In many offshore conditions, the performance loss for polyamide <strong>11</strong> has been l<strong>in</strong>ked to<br />

a cha<strong>in</strong> scission mechanism due to a reaction with water. Polyesters, polyamides and<br />

polyurethanes are created by polycondensation. The polycondensation reaction creat<strong>in</strong>g<br />

the long cha<strong>in</strong>s is reversible and the opposite reaction is called hydrolysis. Among the<br />

cited polymers, polyamide <strong>11</strong> is particularly resistant to hydrolysis due to its low<br />

moisture absorption (~2% water at saturation).<br />

vvvvv CO2H + vvvvv NH2 →<br />

← vvvvv C–Nvvvvv +H2O<br />

polycondensation =>


16<br />

An aggravat<strong>in</strong>g factor for the hydrolysis<br />

process is the presence of acids – either<br />

carbonic acid produced under CO2 pressure<br />

or naphthenic acids possibly present<br />

<strong>in</strong> crude oil.<br />

Carbonic acid formed by the dissolution<br />

of carbon dioxide <strong>in</strong> water under pressure<br />

causes a more severe polymer performance<br />

loss than gaseous carbon dioxide.<br />

In the case of naphthenic acids, the larger<br />

molecule size slows its diffusion <strong>in</strong>to the<br />

polymer. In this case, a dist<strong>in</strong>ct surface<br />

attack or a gradient over the sample thickness<br />

can be observed.<br />

LIFETIME (DAYS)<br />

LIFETIME (DAYS)<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

Fig. 8 Hydrolysis resistance as a function of pH<br />

■■■ 20 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 10 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 5 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 1 YEAR ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■<br />

• ■ ▲<br />

■<br />

▲<br />

■<br />

•<br />

■<br />

▲■<br />

•<br />

140 130 120 <strong>11</strong>0 100 90 80 70<br />

Fig. 9 Ag<strong>in</strong>g behavior as a function of pH<br />

■<br />

▲<br />

•<br />

TEMPERATURE ( °C)<br />

TEMPERATURE ( °C)<br />

■<br />

▲<br />

■<br />

•<br />

■<br />

■<br />

pure water pH=7<br />

pH=5 CO2 liquid<br />

pH=4 CO2 gas<br />

pH=4 CO2 liquid<br />

■■■ 20 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 10 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 5 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 1 YEAR ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

• ■<br />

■<br />

•<br />

◆<br />

■<br />

■<br />

•<br />

◆<br />

140 130 120 <strong>11</strong>0 100 90 80 70<br />

■<br />

•<br />

◆<br />

■<br />

■<br />

•<br />

◆<br />

■<br />

pure water pH=7<br />

pH=4 CO2 liquid<br />

Strong organic acid


METHANOL ABSORPTION WT. %<br />

3.6 Influence of methanol on ag<strong>in</strong>g and mechanical<br />

properties, permeability data<br />

Methanol is a widely used <strong>in</strong>jection fluid. For example, it is efficient<br />

<strong>in</strong> dissolv<strong>in</strong>g gas hydrates formed dur<strong>in</strong>g a gas production<br />

pipe shut-down. Methanol, due to its small molecule size and its<br />

high solubility, has a high permeation rate through PA<strong>11</strong>. It is<br />

also an efficient solvent for plasticizer extraction. In spite of<br />

these unfavorable factors, methanol can be successfully used <strong>in</strong><br />

conjunction with PA<strong>11</strong> hydraulic tubes.<br />

Methanol affects the material performance of PA<strong>11</strong> <strong>in</strong><br />

several ways:<br />

• A swell<strong>in</strong>g effect accompanied by plasticization. At temperatures<br />

of 140°C and above, methanol becomes a solvent for PA<strong>11</strong>.<br />

• Plasticizer extraction.<br />

• A methanolysis reaction which leads to a loss of<br />

polymer molecular weight.<br />

O O<br />

CH3OH + vvvvv N – H2 – C vvvvv →<br />

← vvvvv NH2 + vvvvv C – OCH3<br />

H<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

–<br />

• • •<br />

=<br />

•<br />

0 20 40 60 80 100 120 140 160<br />

TEMPERATURE (°C)<br />

Fig.10 Methanol absorption of BESNO P40 grades<br />

•<br />

•<br />

=<br />

The effect of methanol absorption on mechanical properties is<br />

outl<strong>in</strong>ed <strong>in</strong> the figure below.<br />

STRESS AT RUPTURE (MPa)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

•<br />

•• • •<br />

0 5 10 15 20 25 30 35 40 45<br />

TIME (DAYS)<br />

Fig. <strong>11</strong> Methanol ag<strong>in</strong>g: Stress at rupture <strong>in</strong> time at 40°C<br />

A rapid drop <strong>in</strong> strength as measured by stress at rupture is<br />

observed due to deplasticization. The res<strong>in</strong> strength then equilibrates<br />

<strong>in</strong> methanol lead<strong>in</strong>g to stable properties.<br />

Extraction of plasticizer and swell<strong>in</strong>g due to methanol change<br />

the modulus, but this is not an ag<strong>in</strong>g effect. Once the modulus<br />

after methanol condition<strong>in</strong>g is atta<strong>in</strong>ed, it rema<strong>in</strong>s stable. The<br />

long-term stability of polyamide <strong>11</strong> <strong>in</strong> methanol is further<br />

demonstrated <strong>in</strong> experiments outl<strong>in</strong>ed below.<br />

Long term ag<strong>in</strong>g data of PA<strong>11</strong>, BESNO P40 TLO <strong>in</strong> methanol<br />

Small dogbone samples are immersed at a given temperature <strong>in</strong><br />

methanol <strong>in</strong> an autoclave. After a given time, five samples are<br />

retrieved and tensile tests are performed.<br />

DATA AT 40°C<br />

Time (days) Stress at rupture (MPa) Elongation at rupture (%)<br />

0 53 ± 0.86 438 ± 13<br />

40 42.2 ± 2.63 597 ± 34<br />

100 42.9 ± 0.9 646 ± 22.6<br />

150 42.8 ± 2.71 667 ± 31.7<br />

250 40.6 ± 1.94 591 ± 46<br />

300 39.7 ± 1.4 603 ± 51<br />

360 43.2 ± 1.4 646 ± 28.8<br />

410 37.4 ± 2.2 561 ± 32.5<br />

At 40°C, the plasticizer is extracted after 2 days. The <strong>in</strong>itial<br />

decrease of the stress at rupture is due to a plasticization effect<br />

of absorbed methanol.<br />

17


18<br />

DATA AT 70°C<br />

Time (days) Stress at rupture (MPa) Elongation at rupture (%)<br />

0 53 ± 0.86 438 ± 13<br />

1 31.9 ± 2.58 419 ± 25.1<br />

2 32.8 ± 3.43 419 ± 32.8<br />

8 33.7 ± 2.48 432 ± 19.6<br />

42 34.9 ± 3.02 440 ± 22.7<br />

120 33.8 ± 4.3 460 ± 44<br />

160 33.1 ± 3.8 442 ± 30<br />

2000 (5 1/2 years) 32 ± 5 320 ± 40<br />

The plasticizer is extracted after 2 hours at 70°C. The strong plastification effect of<br />

methanol more than compensates for the plasticizer loss. The material becomes more<br />

flexible. At 70°C, Rilsan ® PA<strong>11</strong> is not significantly degraded.<br />

All these factors lead to the follow<strong>in</strong>g picture for a service life – temperature relationship:<br />

LIFETIME (DAYS)<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

Fig. 12 <strong>Polyamide</strong> <strong>11</strong>, BESNO P40 grades – lifetime <strong>in</strong> methanol contact<br />

■■■ 20 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

120 <strong>11</strong>0 100 90 80 70 60 50<br />

TEMPERATURE ( °C)<br />

water, pH=7<br />

methanol


PERMEABILITY (G.MM/M 2.DAY)<br />

1000<br />

100<br />

10<br />

1<br />

METHANOL PERMEATION DATA<br />

Temperature <strong>in</strong> °C 4 23 40 50<br />

PA<strong>11</strong> unplasticized 6 18<br />

PA<strong>11</strong> plasticized 13.5 40 <strong>11</strong>5 190<br />

units: g mm/m 2 day atm<br />

The activation energies for the unplasticized and plasticized<br />

grades are respectively:<br />

39.4 kJ mol-1 and 43.1 kJ mol-1. Fig. 13 Methanol permeability<br />

■<br />

■<br />

• BESNO TL<br />

■ BESNO P40TL<br />

50°C 40°C 30°C 20°C 10°C 0°C<br />

1/TEMPERATURE<br />

Pressure effects on permeability have been observed. As a<br />

general rule, a tenfold <strong>in</strong>crease <strong>in</strong> pressure results <strong>in</strong> a three-fold<br />

<strong>in</strong>crease <strong>in</strong> methanol permeation.<br />

Conclusions:<br />

• Methanol has a f<strong>in</strong>ite permeation rate through PA<strong>11</strong> which has<br />

to be taken <strong>in</strong>to account <strong>in</strong> design.<br />

•Liquid methanol efficiently extracts the plasticizer from PA<strong>11</strong><br />

plasticized grade “P40”. For umbilicals, this extraction has no<br />

consequence on the <strong>in</strong>tegrity of the pipe.<br />

• Methanol <strong>in</strong>duces a soften<strong>in</strong>g and also polymer breakdown at<br />

higher temperatures. We suggest 70°C as the maximum cont<strong>in</strong>uous<br />

use temperature and 90°C for occasional temperature<br />

peaks <strong>in</strong> the case of hydraulic hoses. For offshore flexible<br />

pipes, the extraction of plasticizer and the modification of the<br />

flexiblity can further reduce the cont<strong>in</strong>uous use temperature.<br />

■<br />

•<br />

■<br />

•<br />

3.7 Influence of monoethylene glycol and ethylene<br />

glycol-based hydraulic liquids on mechanical<br />

properties<br />

Monoethylene glycol and other ethylene glycols mixed <strong>in</strong><br />

different ratios with water are used as constituents of hydraulic<br />

liquids <strong>in</strong> offshore applications. These liquids can extract plasticizer<br />

from polyamide res<strong>in</strong> because the plasticizer has a rather<br />

high solubility <strong>in</strong> glycol/water mixtures. This effect is shown <strong>in</strong><br />

the graph below. The tensile yield shifts to higher<br />

modulus with the departure of the plasticizer.<br />

To some extent glycol/water mixtures act as plasticizer themselves<br />

when absorbed by polyamide <strong>11</strong> res<strong>in</strong>.<br />

All these phenomena are well known today and experience has<br />

shown that they do not cause any particular problem <strong>in</strong> the<br />

function<strong>in</strong>g of the subsea <strong>in</strong>stallation under ord<strong>in</strong>ary work<strong>in</strong>g<br />

conditions.<br />

In the follow<strong>in</strong>g, the phenomena are described <strong>in</strong> detail so that a<br />

thorough understand<strong>in</strong>g of the prevail<strong>in</strong>g material behavior can<br />

be developed.<br />

STRESS AT YIELD (MPa)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Fig. 14 Evolution of tensile stress of BESNO P40 TL 12mm bore<br />

hoses <strong>in</strong> water/glycol 60/40<br />

0 200 400 600 800 1000<br />

TIME (DAYS)<br />

40°C<br />

70°C<br />

19


20<br />

The physical picture of the <strong>in</strong>teractions<br />

In a physical description of the ensemble<br />

“umbilical filled with control fluid,” we<br />

have to consider a closed system with<br />

two phases, PA<strong>11</strong> and control fluid, and<br />

several components which, <strong>in</strong> time, can<br />

<strong>in</strong>terdiffuse between the two phases.<br />

These components are the plasticizer<br />

BBSA and constituents of the control<br />

fluid, ma<strong>in</strong>ly glycols.<br />

Control Fluid<br />

The effects can be described when the<br />

solubility parameters of the diffus<strong>in</strong>g<br />

species and the diffusion k<strong>in</strong>etics are<br />

known. The mathematics of diffusion <strong>in</strong> a<br />

plane sheet are well described (Crank).<br />

We will use some simple forms to illustrate<br />

the effects <strong>in</strong> a semiquantitative<br />

manner.<br />

For a particular umbilical, the ratio<br />

between the two phases may be different<br />

due to the particular tube dimensions.<br />

The approach is best described <strong>in</strong> a<br />

worked example.<br />

Standard 1 /2’’ hydraulic tube<br />

ID = 12 mm WS = 1.5 mm<br />

OD = 15 mm L = 100 mm<br />

...................<br />

...................<br />

OD ID<br />

...................<br />

...................<br />

BBSA BBSA<br />

We calculate:<br />

Fluid volume: <strong>11</strong>.3 ml<br />

Weight of tube (r = 1.05 mm): 5.4 g<br />

The plasticizer content is on average<br />

12.5% by weight of the res<strong>in</strong>.<br />

BBSA content <strong>in</strong> a tube<br />

with L = 100 mm: 675 mg<br />

L<br />

PA<strong>11</strong><br />

BBSA SOLUBILITY (G/L)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

60°C<br />

22°C<br />

0 5 10 15 20 25 30 35 40 45<br />

GLYCOL CONTENT ( %)<br />

Fig. 15 The solubility of BBSA <strong>in</strong> glycol-based control fluids and its temperature<br />

dependence<br />

The maximum extractable amount of plasticizer adds up to approximately 6% by<br />

weight. For a hydraulic fluid conta<strong>in</strong><strong>in</strong>g 45% glycol, the maximum plasticizer solubility<br />

at ambient temperature is close to 6%. For a hydraulic fluid conta<strong>in</strong><strong>in</strong>g 25% glycol, the<br />

solubility limit is 2.2 – 2.5%. At temperatures over 60°C, the plasticizer will be extracted<br />

as it will become soluble <strong>in</strong> such a fluid.<br />

22°C 60°C<br />

pure water based, eg., Oceanic* HW 500 0.1 - 1 1.5 – 2.5<br />

approx 25% glycol, eg., Oceanic HW 525 2.2 – 2.5 6.8 – 7.4<br />

approx 40% glycol, eg., Oceanic HW 540 4.0 – 5.0 12.0 – 13.6<br />

*Hydraulic fluid manufactured by MacDermid Cann<strong>in</strong>g, PLC


3.8 Compatibility of <strong>RILSAN®</strong> BESNO P40 TLX and<br />

BESNO P40 TLO res<strong>in</strong> with various offshore fluids<br />

and chemicals<br />

A variety of offshore fluids have specific functions <strong>in</strong> the exploration<br />

and production process <strong>in</strong> offshore <strong>in</strong>stallations:<br />

• Demulsifiers to break oil/water emulsions<br />

• Corrosion <strong>in</strong>hibitors to slow corrosion of steel<br />

• Bactericides to suppress the formation of acid-creat<strong>in</strong>g<br />

bacteria<br />

• Paraff<strong>in</strong> <strong>in</strong>hibitors which prevent the crystallization of<br />

paraff<strong>in</strong>s lead<strong>in</strong>g to a block<strong>in</strong>g of the pipes<br />

• Scale <strong>in</strong>hibitors which prevent the formation of salt scales<br />

capable of block<strong>in</strong>g of the pipes<br />

• Oxygen scavengers which help prevent corrosion<br />

Numerous formulations exist depend<strong>in</strong>g on the producer and<br />

specific adaptions. However, the nature of the <strong>in</strong>gredients<br />

rema<strong>in</strong> essentially the same. Often even the compounds rema<strong>in</strong><br />

the same and given formulations differ only <strong>in</strong> the amounts of<br />

the constituents. The aim of this chapter is to analyze the behavior<br />

of PA<strong>11</strong> when exposed to the specific chemicals used <strong>in</strong> offshore<br />

applications. It supplements the <strong>in</strong>formation <strong>in</strong> the more<br />

general chemical resistance table <strong>in</strong> section 3.4.<br />

For convenience, the results of the testsoftypical offshore fluids<br />

are summarized <strong>in</strong> a f<strong>in</strong>al subsection 3.8.9.<br />

For the screen<strong>in</strong>g tests, small dogbone samples were autoclaved<br />

at a given temperature immersed <strong>in</strong> the chosen offshore fluid.<br />

After a given time, 5 samples were retrieved on which tensile<br />

testswere performed, weight changes monitored, and the<br />

molecular weight changes analyzed.<br />

Allcompatibility tests were performed at 60°C. Test<strong>in</strong>g periods<br />

were generally 2 years.<br />

Given the typical activation energy for the chemical degradation<br />

processes, a good behavior after 2 years at 60°C should give a<br />

service life over 20 years at temperatures around 20°C.<br />

21


22<br />

3.8.1 Demulsifiers<br />

Chemicals<br />

• oxypropylated and/or oxyethylated alkylphenol<br />

• ethylene oxide/propylene oxide copolymers<br />

• glycol esters<br />

• condensates of modified propylene oxide/ethylene oxide<br />

• aromatic solvents, C7 to C10<br />

(benzene, toluene, xylene, ethylbenzene)<br />

TEST: PROCHINOR 2948 (AROMATIC SOLVENTS, NON-IONIC SURFACTANT)<br />

Immersion time at 60°C Ultimate tensile Elongation at break Weight Inherent viscosity<br />

strength % change % change % change % change<br />

1 week - 2.7 - 0 + 1.26<br />

1 month + 5.3 0 - 0.43<br />

3 months + 85 + 2.7 - 2.37<br />

6 months + 0.4 - 4.5 – 2.9<br />

12 months + 10.5 + 0<br />

18 months - 4 - 7.2 - 3.16<br />

24 months + 1.4 - 1.2 - 3.26 no change<br />

3.8.2 Corrosion <strong>in</strong>hibitors – oil soluble<br />

Chemicals<br />

• fatty am<strong>in</strong>es<br />

• imidazol<strong>in</strong>e derivatives<br />

• aromatic solvents<br />

TEST: NORUST ® PA23 (FATTY AMINES, IMIDAZOLINE DERIVATIVES, AROMATIC SOLVENT)<br />

Immersion time at 60°C Ultimate tensile stress Elongation at break Weight Inherent viscosity<br />

(% change) (% change) (% change) (% change)<br />

1 week + 3.6 - 3.6 - 1.13<br />

1 month + 3.4 - 6.3 - 2.0<br />

3 months + 8.7 - 3.3 - 3.17<br />

6 months + 1.8 - 9.0 - 4.07<br />

12 months + 9.7 - 7.5<br />

18 months + 1.0 - 6.0 - 5.37<br />

Comments<br />

None of these chemicals have adverse effect on PA<strong>11</strong>.<br />

Aromatic solvents exert slight swell<strong>in</strong>g at temperatures above 40°C.<br />

24 months + 5.15 - 10.2 - 5.85 + 1.6


3.8.3 Corrosion <strong>in</strong>hibitors – water soluble<br />

Chemicals<br />

• fatty am<strong>in</strong>es<br />

• imidazol<strong>in</strong>e derivatives<br />

• sulphite derivatives<br />

• water/glycol mixtures<br />

TEST: NORUST ® 743D (FATTY AMINES, IMIDAZOLINE DERIVATIVES, WATER/GLYCOL MIXTURES)<br />

Immersion time at 60°C Ultimate tensile stress Elongation at Weight Inherent viscosity<br />

(% change) break (% change) (% change) (% change)<br />

1 week - 6.7 - 4.2 - 1.04<br />

1 month + 0.2 - 2.4 - 3.06<br />

3 months + 4.5 - 0.6 - 5.02<br />

6 months + 2.0 - 3.3 - 5.82<br />

12 months + 4.2 - 2.1<br />

18 months + 5.0 + 2.4<br />

24 months + 3.0 - 3.3 - 6.79 0<br />

TEST: NORUST 720 (FATTY AMINES, IMIDAZOLINE DERIVATIVES, WATER)<br />

1 week - 1.4 + 2.7 - 1.03<br />

1 month + 2.2 + 0.9 - 3.22<br />

3 months + 5.9 + 4.8 - 5.7<br />

6 months - 5.7 - 3.0 - 6.63<br />

12 months - 4.7 - 7.8 - 7.54<br />

18 months - 3.0 - 3.6<br />

24 months + 2.6 - 0.6 - 7.55 + 0.8<br />

TEST: NORUST CR486 (FATTY AMINES, SULPHITE DERIVATIVES, WATER/GLYCOL MIXTURE)<br />

1 week - 8.9 - 6.0 - 1.0<br />

1 month - 5.7 - 10.0 - 2.86<br />

3 months + 2.6 - 0.9 - 5.1<br />

6 months - 4.5 - 3.3 - 5.89<br />

12 months - 15 - 12.7<br />

18 months - 36.6 - 38.4 - 6.33<br />

24 months - 42.7 - 50.1 - 5.98 - 38<br />

23


24<br />

3.8.4 Corrosion <strong>in</strong>hibitors (oil soluble and water dispersible)<br />

TEST: NORUST ® PA23D (FATTY AMINES, IMIDAZOLINE DERIVATIVES, AROMATIC SOLVENT, ALCOHOL)<br />

Immersion time at 60°C Ultimate tensile stress Elongation at break Weight Inherent viscosity<br />

(% change) (% change) (% change) (% change)<br />

1 week + 5.1 - 1.8 - 0.74<br />

1 month + 5.1 - 5.1 - 1.31<br />

3 months + 9.1 + 0.3 - 2.37<br />

6 months + 0.4 - 8.4 - 4.4<br />

12 months + 6.5 - 5.1<br />

18 months + 3.0 - 1.5 – 4.67<br />

24 months + 8.3 - 2.7 - 6.02 + 4.0<br />

3.8.5 Oxygen scavengers<br />

Chemicals<br />

• sodium bisulphite<br />

NORUST SC45<br />

Immersion time at 60°C Ultimate tensile stress Elongation at break Weight Inherent viscosity<br />

(% change) (% change) (% change) (% change)<br />

1 week - 13.6 - 5.4 + 4.23<br />

1 month - 10.3 - 1.5 + 5.78<br />

3 months - 10.5 + 2.1 + 3.94<br />

6 months - 13.9 + 3.6 + 4.67<br />

12 months - 23.2 + 0.9<br />

18 months - 80.2 - 97 + 5.22 - 65<br />

24 months


3.8.6 Biocides<br />

Chemicals<br />

• ammonium quarternary salts<br />

• ammonium salts<br />

• aldehydes<br />

• water/glycol mixtures<br />

TEST: BACTIRAM ® C85 (AMMONIUM QUARTERNARY SALTS, WATER)<br />

Immersion time at 60°C Ultimate tensile stress Elongation at break Weight Inherent viscosity<br />

(% change) (% change) (% change) (% change)<br />

1 week + 0.6 + 1.5 - 0.73<br />

1 month + 8.7 + 5.1 - 2.79<br />

3 months + 7.5 + 0.9 - 4.86<br />

6 months + 7.3 - 0.6 - 5.32<br />

12 months + 3.1 - 3.3<br />

18 months - 6.8<br />

24 months - 3.0 - 7.5 - 8.07 + 5.6<br />

TEST: BACTIRAM CD30 (AMMONIUM SALTS, WATER/GLYCOL MIXTURE)<br />

1 week - 15.8 - 0.6 - 0.09<br />

1 month - 15.4 - 1.8 - 1.87<br />

3 months - 9.3 + 5.7 - 2.44<br />

6 months - 7.9 + 3.6 + 0.48<br />

12 months -12.3 0.0<br />

18 months - 18.8 - 8.8 - 1.59<br />

24 months - 21.8 - 1.5 - 3.19 - 4<br />

TEST: BACTIRAM 3084 (ALDEHYDES, WATER)<br />

1 week - 3.2 - 1.8 + 0.77<br />

1 month + 2.2 + 0.3 - 2.23<br />

3 months + 0.2 - 5.4 - 3.53<br />

6 months 0.0 - 5.4 - 4.1<br />

12 months + 2.4 + 3.6<br />

18 months - 8.9 - 9.4 + 0.65<br />

24 months - 9.1 - 3.9 - 2.02 - 22.6<br />

25


26<br />

3.8.7 Paraff<strong>in</strong> <strong>in</strong>hibitors<br />

Chemicals<br />

• non-ionic surfactants<br />

• polyacrylate<br />

• aromatic solvents<br />

TEST: PROCHINOR ® AP 104 (NON-IONIC SURFACTANT, AROMATIC SOLVENTS)<br />

Immersion time at 60°C Ultimate tensile Elongation at break Weight Inherent viscosity<br />

stress (% change) (% change) (% change) (% change)<br />

1 week + 1.4 - 1.5 + 0.8<br />

1 month + 3.2 - 1.2 - 0.43<br />

3 months + 7.5 + 1.2 - 2.44<br />

6 months - 5.9 - 9.4 - 2.9<br />

12 months + 3.0 - 4.8<br />

18 months + 3.0 - 0.6 - 3.38<br />

24 months + 4.9 - 0.1 - 4.35 + 8<br />

TEST: PROCHINOR AP 270 (POLYACRYLATE. AROMATIC SOLVENTS)<br />

1 week - 3.7 + 0.6 + 3.07<br />

1 month + 0.6 - 1.5 - 0.04<br />

3 months + 6.3 + 4.2 - 0.28<br />

6 months + 2.0 + 1.5 + 1.37<br />

12 months + 4.0 + 4.2<br />

18 months - 1.0 + 6.0 - 1.84<br />

24 months - 3.2 - 2.7 + 0.2 - 13.7


3.8.8 Scale <strong>in</strong>hibitors<br />

Chemicals<br />

• phosphonate<br />

• polyacrylate<br />

TEST: INIPOL ® AD100 (POLYACRYLATE, WATER)<br />

Immersion time at 60°C Ultimate tensile stress Elongation at break Weight Inherent viscosity<br />

(% change) (% change) (% change) (% change)<br />

1 week - 0.6 + 2.7 - 0.58<br />

1 month + 2.6 + 1.8<br />

3 months + <strong>11</strong>.5 + 9.4 - 3.83<br />

6 months + 0.8 - 0.3 - 5.64<br />

12 months - 4.9 - 0.9<br />

18 months - 6.9 - 4.5 - 5.48<br />

24 months - 9.7 - 3.6 - 5.5 - 16<br />

TEST: INIPOL AD20 (PHOSPHONATE, WATER)<br />

1 week - 3.4 + 4.5 + 1.88<br />

1 month - 3.6 + 6.0 + 1.98<br />

3 months - 82.2 - 97.8 + 2.5 - 48<br />

6 months<br />

12 months<br />

18 months<br />

24 months<br />

3.8.9 Overview of chemical compatibility of RILSAN ®<br />

BESNO P40 TLX and BESNO P40 TLO with<br />

common offshore chemicals<br />

<strong>Off</strong>shore fluids are complex mixtures of several functional<br />

chemicals which are either<br />

• water based<br />

• glycol/water mixture based<br />

• hydrocarbon based<br />

To quickly assess the compatibility of a given offshore fluid, it is<br />

useful to exam<strong>in</strong>e the active constituents which are most often<br />

given <strong>in</strong> the safety data sheet. Concentrations of the active<br />

chemical species <strong>in</strong> the concentrated offshore fluid range<br />

between 3 and 30%. In order to estimate the chemical compatibility,<br />

the most aggressive species must be identified. Its given<br />

temperature limit can be taken as the limit for the given offshore<br />

fluid. In the given list, no two chemicals have a synergistic<br />

degradative effect, but some have antagonistic effects.<br />

Furthermore, the pH value should be noted when it is given.<br />

27


28<br />

LIFETIME (DAYS)<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

Water<br />

■■■ 20 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 10 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 5 YEARS ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

■■■ 1 YEAR ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■<br />

120 <strong>11</strong>0 100 90 80 70 80 50 40 30 20<br />

TEMPERATURE ( °C)<br />

Chemical Liquid base Functions Compatibility class<br />

oxypropylated and/or oxyethylated hydrocarbon demulsifier < water<br />

alkylphenols “non ionic surfactants” water/glycol<br />

ethylene oxide/propylene oxide copolymers hydrocarbon demulsifier < water<br />

glycol esters hydrocarbon demulsifier < water<br />

fatty am<strong>in</strong>es hydrocarbon corrosion <strong>in</strong>hibitor class 1<br />

water<br />

water/glycol<br />

imidazol<strong>in</strong>e derivatives hydrocarbon corrosion <strong>in</strong>hibitor class 1<br />

water<br />

water/glycol<br />

sulphite derivatives water corrosion <strong>in</strong>hibitor class 1<br />

water/glycol<br />

bisulphite salts water oxygen scavenger class 2<br />

quaternary ammonium salts, water<br />

“quats”, ammonium salts water/glycol biocides < water<br />

aldehydes water biocides class 2<br />

water/glycol<br />

polyacrylates water paraff<strong>in</strong>e <strong>in</strong>hibitors class 1<br />

water/glycol scale <strong>in</strong>hibitors<br />

organic phosphonates water scale <strong>in</strong>hibitors class 3<br />

water/glycol corrosion <strong>in</strong>hibitors<br />

organic sulfonates water scale <strong>in</strong>hibitors class 3<br />

water/glycol corrosion <strong>in</strong>hibitors<br />

hydrochloric acid, 15% water well stimulation class 4<br />

hydrofluoric acid, 15% water well stimulation class 4<br />

The sign “< water” means that the chemical is less agressive than water.<br />

Class 1 Class 2 Class 3<br />

Class 4<br />

Fig. 16 Overview: compatibility<br />

between PA<strong>11</strong> grades BESNO<br />

P40 TLO, TL and TLX and different<br />

chemical classes


3.9 Compatibility with crude oil,<br />

natural gas, carbon dioxide (CO 2 )<br />

and hydrogen sulfide (H 2 S)<br />

3.9.1 Compatibility with crude oil<br />

<strong>Polyamide</strong> <strong>11</strong> is not chemically attacked<br />

by hydrocarbons. Aliphatic hydrocarbons<br />

have a very low solubility <strong>in</strong> polyamide<br />

<strong>11</strong>, so that barrier properties are very<br />

high. Low molecular weight aromatic<br />

hydrocarbons can lead to some swell<strong>in</strong>g<br />

at higher temperatures as shown <strong>in</strong> the<br />

follow<strong>in</strong>g table.<br />

The low solubility of hydrocarbons and<br />

the high cohesive energy of polyamide<br />

<strong>11</strong> result <strong>in</strong> an excellent blister<strong>in</strong>g<br />

resistance (see section 3.<strong>11</strong>).<br />

Whereas polyamide <strong>11</strong> is highly resistant<br />

to hydrocarbons, certa<strong>in</strong> other constituents<br />

of crude oil can lead to performance<br />

limitations. These constituents are<br />

water, organic acids, often referred to as<br />

naphthenic acids, carbon dioxide and, to<br />

a lesser extent, hydrogen sulfide. All<br />

these chemicals create different acidities<br />

depend<strong>in</strong>g on pressure, concentration<br />

and overall fluid composition. Their<br />

effects are described <strong>in</strong> the correspond<strong>in</strong>g<br />

chapters.<br />

3.9.2 Compatibility with natural gas<br />

<strong>Polyamide</strong> <strong>11</strong> is perfectly resistant to<br />

methane, ethane, propane and butane as<br />

well as higher hydrocarbons. Chemical<br />

degradation can only be <strong>in</strong>duced by acid<br />

species, that is carbon dioxide and/or<br />

hydrogen sulfide <strong>in</strong> comb<strong>in</strong>ation with<br />

water vapor.<br />

The follow<strong>in</strong>g test demonstrates the<br />

chemical resistance:<br />

Sheets of BESNO P40 TL with 2mm<br />

thickness are immersed <strong>in</strong> natural gas at<br />

100°C and 120 bar pressure for a given<br />

time. Mechanical properties are checked.<br />

Composition of the natural gas: 93%<br />

hydrocarbon, 4% hydrogen sulfide, and<br />

3% carbon dioxide and moisture.<br />

Solvent Swell<strong>in</strong>g at 20°C <strong>in</strong> % weight Compatibility<br />

Benzene 7.5 good up to 70°C / swell<strong>in</strong>g<br />

Toluene 7 good up to 90°C / swell<strong>in</strong>g<br />

Cyclohexane 1 good<br />

Petrol ether 1.5 good<br />

Decal<strong>in</strong>e < 1 good<br />

<strong>Gas</strong>ol<strong>in</strong>e depends on type, mostly < 2% good<br />

Kerosene depends on type, mostly < 2% good<br />

Time Flexural modulus Yield strength Elongation Stress at rupture<br />

(hours) (MPa) (MPa) at break (%) (MPa)<br />

ELONGATION AT BREAK (%)<br />

0 350 27 325 45<br />

100 350 32.5 345 53<br />

250 500 30.5 325 57<br />

500 600 34.5 375 60.5<br />

1000 400 28 360 63<br />

2000 480 32 335 43<br />

5000 460 34.5 430 55<br />

Fig. 17 <strong>Polyamide</strong> <strong>11</strong>, BESNO TL <strong>in</strong> natural gas - Evolution of elongation at break<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

• • •<br />

0<br />

• •<br />

CRUDE OIL EXPOSURE<br />

METHANE OR NATURAL GAS EXPOSURE AT 20° C<br />

•<br />

1000 2000 3000 4000 5000 6000<br />

TIME (HOURS)<br />

•<br />

29


30<br />

No chemical degradation was observed. Fluctuations <strong>in</strong> the<br />

mechanical properties are caused by the loss of plasticizer and<br />

changes <strong>in</strong> moisture content of the gas.<br />

In a typical field experience, polyamide <strong>11</strong> grade BESNO P40 TL<br />

used as a l<strong>in</strong><strong>in</strong>g for carbon steel pipe was aged <strong>in</strong> the follow<strong>in</strong>g<br />

conditions:<br />

Temperature: 65°C<br />

Natural gas: moist, with some condensate, H2S 17%, pH 5.5.<br />

A sample was retrieved after 5 years of service. A chemical<br />

analysis revealed no polymer degradation. Of the <strong>in</strong>itial plasticizer,<br />

30% was lost.<br />

As a conclusion, polyamide <strong>11</strong> grades BESNO TL, BESNO P40 TL,<br />

BESNO P40 TLX and BESNO P40 TLO are compatible with hydrogen<br />

sulfide.<br />

3.9.3. Compatibility with carbon dioxide (CO2)<br />

<strong>Polyamide</strong> <strong>11</strong> is quite resistant to dry carbon dioxide. However,<br />

carbonic acid formed by dissolution of carbon dioxide <strong>in</strong> water<br />

under pressure can lead to cha<strong>in</strong> degradation due to hydrolysis.<br />

The rate of hydrolysis, as a function of acidity, is relatively well<br />

known and described <strong>in</strong> section 3.5.<br />

3.9.4. Compatibility with hydrogen sulfide (H2S)<br />

<strong>Polyamide</strong> <strong>11</strong> is also resistant to hydrogen sulfide. As with carbon<br />

dioxide, only aqueous solutions which are acidic can lead to<br />

cha<strong>in</strong> degradation. Due to the low acidity and generally low partial<br />

pressures of hydrogen sulfide <strong>in</strong> crude oil or natural gas,<br />

degradation via hydrolysis seldom occurs.<br />

For a series of tests, please refer to the preceed<strong>in</strong>g section 3.9.2<br />

“Compatibility with natural gas.”<br />

TABLE COMPARING INITIAL AND AGED MECHANICAL PROPERTIES<br />

Elongation Stress at Stress at Elongation at Tensile<br />

at break (%) rupture (Mpa) yield (Mpa) yield (%) modulus (Gpa)<br />

Aged sample 315 ± 38 46.7 ± 8,3 27.7 ± 0.5 42.4 ± 0.6 2.82 ± 0.02<br />

Initial sample 359 ± 48 42.0 ± 3,0 – – 2.78 ± 0.008<br />

3.10 Data on permeability of polyamide <strong>11</strong><br />

The follow<strong>in</strong>g data were obta<strong>in</strong>ed from a detailed study on 6 mm<br />

extruded sheet.<br />

RILSAN ® BESNO P40 TL<br />

P (bar) T (°C) Permeability Diffusion Solubility<br />

/f (bar) cm 3 .cm/cm 2 .s.bar cm 2 /s cm 3 /cm 3 .bar<br />

10 -8 10 -7<br />

CH4 96 99 3.8 7.3 0.05<br />

99 99 4.4 6.1 0.07<br />

103 78 2 2.8 0.07<br />

97 80 2 3.3 0.06<br />

101 61 0.8 2.6 0.03<br />

103 61 0.9 2.2 0.04<br />

102 41 0.4<br />

101 60 0.8 2.2 0.03<br />

CO2 40 79 10 4.5 0.22<br />

39 80 9.4 4.7 0.2<br />

39 60 4.5 1.9 0.23<br />

39 61 4.4 2.3 0.19<br />

41 41 1.5 0.9 0.16<br />

H2S 100/47.5 80 67 7.6 0.88<br />

103/48 80 66 8.2 0.8<br />

92/47 80 77 9.2 0.84<br />

41/33 80 43 4.2 1.04<br />

40/33 80 46 5.1 0.9<br />

39/33 80 38 4.5 0.85


Complementary data can be obta<strong>in</strong>ed from the literature.<br />

PLASTICIZED POLYAMIDE <strong>11</strong><br />

Fluid Conditions Permeation value/<br />

cm3.cm/cm2.s.bar CH4 70°C, 100 bars 9x10 -9<br />

CO2 70°C, 100 bars 50x10 -9<br />

H2O 70°C, 50 to 100 bars 2x10 -6 to 7x10 -6<br />

H2S 70°C, 100 bars 1.5x10 -7<br />

METHANOL 23°C, 1 bar 3.7x10 -9<br />

data from IFP/ COFLEXIP OTC 5231<br />

PLASTICIZED POLYAMIDE <strong>11</strong><br />

Fluid Permeation value/cm3.cm/cm2.s.bar 70°C, 25 bar 70°C, 50 bar 70°C, 75 bar 70°C, 100 bar<br />

CH4 0.53x10 -7 1.4x10 -7 1.9x10 -7 1.8x10 -7<br />

CO2 2.3x10 -7 5.8x10 -7 7.8x10 -7 7.8x10 -7<br />

H2O 3.6x10 -6 6.5x10 -6 3.4x10 -6 1.9x10 -6<br />

data from NACE publication, Jan Ivar Skar (Norsk Hydro)<br />

Some differences exist <strong>in</strong> reported values which can be<br />

expla<strong>in</strong>ed by different condition<strong>in</strong>g of the measured samples. For<br />

example, some plasticizer loss leads to high barrier and lower<br />

permeation.<br />

3.<strong>11</strong>. Blister<strong>in</strong>g resistance<br />

The blister<strong>in</strong>g resistance of a polymer material is directly related<br />

to the solubility of gases <strong>in</strong> the material and its cohesive<br />

strength. The blister<strong>in</strong>g effect has its orig<strong>in</strong> <strong>in</strong> the gas bubbles<br />

formed when gas dissolved <strong>in</strong> the polymer material under high<br />

pressure is expelled on a rapid decompression.<br />

An extensive study has been performed at IFP (French Petroleum<br />

Institute) which confirms the excellent blister resistance of<br />

plasticized polyamide <strong>11</strong> accord<strong>in</strong>g to the procedures outl<strong>in</strong>ed<br />

<strong>in</strong> API 17J.<br />

The follow<strong>in</strong>g grades were tested on samples cut from an<br />

extruded pipe, thickness 8 mm:<br />

BESNO P40 TLX<br />

BESNO P40 TLOS<br />

Test conditions:<br />

medium: 85% CH4 + 15% CO2<br />

temperature: 90°C<br />

pressure: 1000 bar<br />

The decompression rate was explosive. The soak time was more<br />

than 30 hours.<br />

Result:<br />

After 20 pressure/decompression cycles, no blister was<br />

observed.<br />

The same result is obta<strong>in</strong>ed when the samples were<br />

preconditioned <strong>in</strong> oil or diesel fuel.<br />

31


EUROPE<br />

ATOFINA NORDEN ATOFINA UK <strong>Ltd</strong>. ATOFINA<br />

(Danmark) Colthrop Way - Thatcham Technical Polymers Division<br />

Herlev Hovegarde 195 Newbury - Berkshire 4/8 cours Michelet<br />

2730 Herlev RG 13 4 LW 92800 Puteaux, France<br />

Tel: 44 503 939 Tel: (01635) 87 0000 Tel: +33 149008080<br />

Fax: 44 503 940 Fax: (01635) 86 1212 Fax: +33 149008044<br />

ATOFINA NEDERLAND BV ATOFINA KIMYA SAN ATOFINA BELGIUM N.V.<br />

Otto Heldr<strong>in</strong>gstraat 41 Ihlamur Rue de Stalle 63 - Bte 1<br />

1066 XT Amsterdam Yildiz Cad. Kessaf Sok n° 4 <strong>11</strong>80 Bruxelles<br />

Tel: (20) 614 25 <strong>11</strong> Besiktas 80700 Tel: (2) 370 20 32<br />

Fax: (20) 669 2231 Istanbul Fax: (2) 332 12 84<br />

Tel: (212) 227 6384<br />

Fax: (212) 227 6386<br />

ATOFINA DEUTSCHLAND GmbH ATOFINA SCHWEIZ AG ATOFINA ÖSTERREICH<br />

Tersteegenstr. 28, Postfach 300152 Luegisland 2/4 Handelsges. m. b. H.<br />

40474 Düsseldorf 8143 Stallikon Karlsplatz 1/Steige 1/Büro n°8<br />

Tel: (02<strong>11</strong>) 4552 00 Tel: (1) 701 8121 A 1010 Wien<br />

Fax: (02<strong>11</strong>) 4552 <strong>11</strong>2 Fax: (1) 700 3921 Tel: (1) 503 5055<br />

Fax: (1) 503 505520<br />

ATOFINA ITALIA SRL ATOFINA PORTUGAL LDA ATOFINA ESPANA SA<br />

Degli Artigianelli 10 Rua Artilharia UM 63 Poligon Industrial Pratenc<br />

20159 Milano 4’ Dto Lisboa Calle 100s/n Acesso A<br />

Tel: (02) 668 <strong>11</strong>1 Tel: <strong>11</strong>3 806 004 08820 - El Prat De Llobregat<br />

Fax: (02) 668 03 607 Fax: <strong>11</strong>3 862 281 Barcelone<br />

Tel: (3) 403 9500<br />

Fax: (3) 337 94307<br />

AMERICAS<br />

ATOFINA Chemicals, Inc. ATOFINA BRASIL QUIMICA <strong>Ltd</strong>a<br />

Technical Polymers Avenida Ibirapuerra, 2033<br />

2000 Market Street 8° andar<br />

Philadelphia CEP 04029 901<br />

PA 19103 – 3222 Sao Paulo<br />

U.S.A. Tel: +55 <strong>11</strong> 5051 0622<br />

Tel: +1 215 419 7400 Fax: +55 <strong>11</strong> 5051 4780<br />

Fax: +1 215 419 7497<br />

FAR EAST<br />

ATOFINA CHINA ATOFINA S.E.A. ATOFINA JAPAN<br />

Room 1410 53, Tuas Crescent Eng<strong>in</strong>eer<strong>in</strong>g Plastics Division<br />

Ch<strong>in</strong>a World Tower S<strong>in</strong>gapour 638732 Bungei shunju Annex 2F<br />

1, Jianguomenwaidajie Tel: +65 86 90 268 3-23 Kioi-cho<br />

Beij<strong>in</strong>g 100004 Fax: +65 86 90 341 Chiyoda-Ku<br />

Ch<strong>in</strong>a Tokyo 102<br />

Tel: +86 10 650 52 291 Tel: +81 3 32 88 71 21<br />

Fax: +86 10 6505 55 17 Fax: +81 3 32 88 71 30<br />

Inipol ® , NoRust ® , Proch<strong>in</strong>or ® and Bactiram ® are registered trademarks of CECA, S.A.<br />

Rilsan ® is a registered trademark of Atof<strong>in</strong>a.<br />

ATOFINA S.A. - Société Anonyme au capital de 2 953 089 200 F - RCS Nanterre B 319 632 790<br />

4, cours Michelet - La Défense 10 - Cedex 42 - 92091 Paris La Défense (France) - Tél. 149 00 80 80 - Téléfax 149 00 83 96<br />

© 2003 ATOFINA Chemicals, Inc. All rights reserved.<br />

ADDRESSES OF REGIONAL SALES OFFICES


The statements, technical <strong>in</strong>formation and recommendations conta<strong>in</strong>ed here<strong>in</strong> are believed to be accurate as of the date hereof. As the condition and methods of use of<br />

the products and of the <strong>in</strong>formation referred to here<strong>in</strong> are beyond our control, ATOFINA expressly disclaims any and all liability as to any results obta<strong>in</strong>ed or aris<strong>in</strong>g from<br />

any use of the product or reliance on such <strong>in</strong>formation; NO WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, OR ANY OTHER WAR-<br />

RANTY, EXPRESS OR IMPLIED, IS MADE CONCERNING THE GOODS DESCRIBED OR THE INFORMATION PROVIDED HEREIN. The <strong>in</strong>formation provided here<strong>in</strong> relates only to the<br />

specific product designated and may not be applicable when such product is used <strong>in</strong> comb<strong>in</strong>ation with other materials or <strong>in</strong> any process. The user should thoroughly test<br />

any application before commercialization. Noth<strong>in</strong>g conta<strong>in</strong>ed here<strong>in</strong> should be taken as an <strong>in</strong>ducement to <strong>in</strong>fr<strong>in</strong>ge any patent and the user is advised to take appropriate<br />

steps to be assured that any proposed use of the product will not result <strong>in</strong> patent <strong>in</strong>fr<strong>in</strong>gement.<br />

BEFORE HANDLING THIS MATERIAL, READ AND UNDERSTAND THE MSDS (MATERIAL SAFETY DATA SHEET) FOR ADDITIONAL INFORMATION ON PERSONAL PROTECTIVE EQUIP-<br />

MENT AND FOR SAFETY, HEALTH AND ENVIRONMENTAL INFORMATION.


ATOFINA Chemicals, Inc. 2000 Market Street Philadelphia, PA 19103-3222 Telephone: (215) 419-7000<br />

ATOFINA Canada, <strong>Ltd</strong>. 700 Third L<strong>in</strong>e Oakville, Ontario L6J5A3 Canada, Telephone: (905) 827-9841<br />

www.Atof<strong>in</strong>aChemicals.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!