31.10.2014 Views

Curso Limpeza de Gases - ESSS

Curso Limpeza de Gases - ESSS

Curso Limpeza de Gases - ESSS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Implementation of the critical velocity<br />

boundary condition for particle-wall<br />

interaction in FLUENT’s Discrete Phase Mo<strong>de</strong>l<br />

Gonçalves, J.A.S.; Furlan, F.F.; Valver<strong>de</strong> Ramirez, M.; Coury, J.R.<br />

Chemical Engineering Department<br />

Fe<strong>de</strong>ral University of São Carlos


Universida<strong>de</strong> Fe<strong>de</strong>ral <strong>de</strong><br />

São Carlos - SP<br />

Início das ativida<strong>de</strong>s: 1970<br />

3 campi: São Carlos, Araras e Sorocaba<br />

<strong>Curso</strong>s <strong>de</strong> graduação: 37 (presencial) + 5<br />

(a distância)<br />

Alunos <strong>de</strong> graduação: 6.200 (presencial)<br />

+ 1850 (a distância)<br />

<strong>Curso</strong>s <strong>de</strong> pós-graduação: 50 (20 <strong>de</strong><br />

doutorado e 30 <strong>de</strong> mestrado)<br />

Alunos <strong>de</strong> pós-graduação: 2.000<br />

Número <strong>de</strong> professores: quadro efetivo:<br />

640 (90% são doutores)<br />

Área total: 937 hectares<br />

Área Construída: 170 mil m 2


Departamento <strong>de</strong> Engenharia Química<br />

Universida<strong>de</strong> Fe<strong>de</strong>ral <strong>de</strong> São Carlos<br />

• Graduação: 1976<br />

• Mestrado: 1982<br />

• Doutorado: 1989<br />

• Graduação: Conceito 5 no MEC<br />

• Pós-Graduação: Conceito 6 na Capes<br />

• 400 alunos <strong>de</strong> graduação<br />

• 104 alunos <strong>de</strong> pós-graduação (2006)<br />

• 380 dissertações/teses <strong>de</strong>fendidas<br />

• 47 trabalhos/ano (2008) publicados<br />

em periódicos internacionais<br />

in<strong>de</strong>xados<br />

• 30 professores em <strong>de</strong>dicação exclusiva<br />

• 1 professor em <strong>de</strong>dicação parcial<br />

• 3 professores substitutos<br />

• 5 professores voluntários


Gas Cleaning Laboratory<br />

Chemical Engineering Department / UFSCar<br />

• Tratamento <strong>de</strong> Efluentes Gasosos<br />

Industriais<br />

• Monitoramento da qualida<strong>de</strong> do ar em<br />

São Carlos<br />

• Prof. Dr. José Renato Coury<br />

• Profª. Drª. Mônica Lopes Aguiar<br />

• Profª. Drª. Vádila Giovani Guerra<br />

• Prof. Dr. José Antônio Silveira Gonçalves<br />

• 2 pós-doutorandos, 6 doutorandos e 8 mestrandos


Gas Cleaning Laboratory<br />

Chemical Engineering Department / UFSCar


NANOPARTÍCULAS<br />

Gas Cleaning Laboratory<br />

Legenda<br />

1 – Filtro <strong>de</strong> purificação <strong>de</strong> ar<br />

2 – Gerador <strong>de</strong> nanopartículas<br />

3 – Secador <strong>de</strong> difusão<br />

4 – Fonte <strong>de</strong> Kriptônio-85<br />

5 – Dispositivo <strong>de</strong> filtração<br />

6 – Rotâmetro<br />

7 – SMPS<br />

8 – Computador<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

6<br />

5<br />

6<br />

8<br />

7<br />

7


Our application – A cyclone<br />

Industrial<br />

gas-solid<br />

separator<br />

Particle<br />

collection<br />

efficiency


Tabela 3.1 Dimensões dos ciclones simulados. Todas as medidas estão em metros (m).<br />

Simulations in Fluent 6.3.26<br />

Geometry<br />

Grupo I Grupo II Grupo III<br />

Dimensão<br />

Ciclone 1 Ciclone 2 Ciclone 3 Ciclone 4 Ciclone 5 Ciclone 6 Ciclone 7 Ciclone 8 Ciclone 9<br />

Dc 0,245 0,245 0,245 0,245 0,245 0,245 0,245 0,245 0,245<br />

De 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098<br />

L 0,122 0,367 0,612 0,122 0,367 0,612 0,122 0,367 0,612<br />

h 0,150 0,150 0,150 0,395 0,395 0,395 0,640 0,640 0,640<br />

H 0,875 0,875 0,875 0,875 0,875 0,875 0,875 0,875 0,875<br />

S 0,090 0,090 0,090 0,090 0,090 0,090 0,090 0,090 0,090<br />

A 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098<br />

B 0,051 0,051 0,051 0,051 0,051 0,051 0,051 0,051 0,051<br />

C 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100<br />

Z 0,725 0,725 0,725 0,480 0,480 0,480 0,235 0,235 0,235<br />

Todas as dimensões estão em metros


Simulations in Fluent 6.3.26<br />

Mesh<br />

CICLONE<br />

Pré-<br />

Processamento<br />

Malhas geradas<br />

no GAMBIT<br />

Primeiro<br />

afinamento da<br />

malha<br />

Pós-Processamento<br />

Segundo<br />

afinamento da<br />

malha<br />

Terceiro<br />

afinamento da<br />

malha<br />

1 64514 83876 117518 195351<br />

2 63800 83162 113192 191025<br />

3 67378 81572 142899 219836<br />

4 62498 81188 126037 201203<br />

5 63810 83172 118550 196376<br />

6 63010 82372 152533 230366<br />

7 64610 83972 117621 195482<br />

8 63810 83172 114672 192533<br />

9 63042 82404 141736 219562<br />

y-plus/y-star adaption y + = 5


Simulations in Fluent 6.3.26<br />

Physical and numerical conditions<br />

DEFINIÇÃO DO PROBLEMA<br />

DESCRIÇÃO<br />

Dimensão espacial<br />

Tridimensional<br />

Coor<strong>de</strong>nadas<br />

Cartesianas<br />

Tipo <strong>de</strong> escoamento<br />

Turbulento<br />

Dependência em função da temperatura<br />

Isotérmico<br />

Empuxo Vetor gravida<strong>de</strong> (0;0;-9.81)<br />

Tipo <strong>de</strong> fluido<br />

Incompressível<br />

Descrição das fases<br />

Fase contínua<br />

Ar<br />

Fase dispersa<br />

Material particulado (rocha fosfática)<br />

Dependência com relação ao tempo<br />

Estado Estacionário<br />

Proprieda<strong>de</strong>s físicas constantes<br />

Ar<br />

Densida<strong>de</strong> = 1,142 (Kg/m3)<br />

Viscosida<strong>de</strong>= 1,85x10 -5 (Kg/m.s)<br />

Rocha fosfática Densida<strong>de</strong>= 3030 (Kg/cm 3 )<br />

Diâmetro da partícula: 1,33 µm<br />

Mo<strong>de</strong>los <strong>de</strong> acoplamento pressãovelocida<strong>de</strong><br />

SIMPLEC<br />

Mo<strong>de</strong>lo <strong>de</strong> turbulência<br />

RNG K-E<br />

Velocida<strong>de</strong> <strong>de</strong> entrada no ciclone<br />

10,2 (m/s)<br />

• Euler-Lagrange approach<br />

• Fluent’s Discrete Phase Mo<strong>de</strong>ling<br />

• Gas flow in<strong>de</strong>pen<strong>de</strong>nt of particles<br />

• PRESTO! (pressure), QUICK<br />

(momentum), 2 nd or<strong>de</strong>r (turbul.)<br />

• Convergence: Residuals


Particle-Wall Interaction using built-in<br />

Boundary conditions in Fluent’s DPM<br />

• Na pare<strong>de</strong> do cilindro: “trap”<br />

• Na pare<strong>de</strong> do cone: “trap”<br />

• Na pare<strong>de</strong> da caixa: “trap”<br />

• No duto <strong>de</strong> entrada tangencial <strong>de</strong><br />

ar e pó: “reflect”<br />

• No duto superior <strong>de</strong> saída do<br />

ciclone: “reflect”<br />

• Na face <strong>de</strong> entrada do ciclone:<br />

“escape”<br />

• Na face <strong>de</strong> saída do ciclone:<br />

“escape”


Particle-Wall Interaction using the<br />

critical velocity boundary condition<br />

• A critical particle velocity is <strong>de</strong>termined by comparing<br />

the kinetic and the surface energies involved in each<br />

particle-wall interaction.<br />

• If the particle velocity is smaller than the critical<br />

velocity, it is trapped; otherwise, it is reflected.<br />

• This boundary condition was applied on the cone,<br />

cylin<strong>de</strong>r and hooper walls, in substitution to the trap<br />

condition.<br />

• A correlation for the tangential restitution coefficient as<br />

a function of particle diameter was <strong>de</strong>veloped to allow<br />

best fit to the experimental data.<br />

• Seville, J.P.K.; Tuzun, U.; Clift, R. (1997). Processing of Particulate Solids. Blackie Aca<strong>de</strong>mic<br />

and Professional, London.<br />

• Zhang X., Wang L., Zhu, K. (2005). Particle tracking and particle-wall collision in a wire-plate<br />

electrostatic precipitator. Journal of Electrostatics, 63, 1057-1071.


UDF Co<strong>de</strong><br />

/* reflect boundary condition for inert particles */<br />

#inclu<strong>de</strong> "udf.h“<br />

#inclu<strong>de</strong> "dpm.h“<br />

DEFINE_DPM_BC(bc_reflect_OR_trap_inert_3D,p,t,f,f_normal,dim)<br />

{<br />

/* particle and wall characteristics */<br />

real ao; /* raio da área <strong>de</strong> contato */<br />

real nup; /* Poisson ratio para a particula */<br />

real nuw; /* Poisson ratio para a pare<strong>de</strong> */<br />

real Ep; /* Young's module para a particula */<br />

real Ew; /* Young's module para a pare<strong>de</strong> */<br />

real kp; /* Zhang, X.; Wang, L.; Zhu, K., Journal of Electostatics 63 (2005), 1057-1071. */<br />

real kw;<br />

real K;<br />

real gamap; /* surface energy per unity area of the particle */<br />

real gamaw; /* surface energy per unity area of the wall */<br />

real gamai; /* surface energy per unity area of the interface */<br />

real gama; // gama = gamap + gamaw – gamai<br />

real Rp;<br />

real vx, vy, vz; // particle velocity antes do choque<br />

real vn;<br />

real vt;<br />

real modvquad; /* particle velocity */<br />

real modvf;<br />

real nor_coeff, tan_coeff;<br />

real Eko; /* Energia cinética antes do choque */<br />

real Ekf;<br />

//Energia cinética final<br />

int i;<br />

real Es; /* Energia <strong>de</strong> superfície <strong>de</strong>vido a van <strong>de</strong>r waals */<br />

/* particle and wall characteristics */<br />

nup = 0.33; /* alumminium alloy */<br />

nuw = 0.285; /* steel */<br />

Ep = 10.0e10; /* (Pa) alumminium alloy */<br />

Ew = 3.00e11; /* (Pa) steel */<br />

gamap = 1.3; /* J/m2 */<br />

gamaw = 1.5; /* J/m2 */<br />

gamai = 0.2; /* J/m2 */<br />

gama = gamap + gamaw - gamai;<br />

kp = (1.0-nup*nup)/(3.141592654*Ep);<br />

kw = (1.0-nuw*nuw)/(3.141592654*Ew);<br />

K = 4.0/(9.424777961*(kp+kw));<br />

Rp = P_DIAM(p)/2.0;<br />

ao = pow((18.84955592*gama*Rp*Rp/K),(1.0/3.0));<br />

Es = 3.141592654*ao*ao*gama;<br />

vx = p->state.V[0];<br />

vy = p->state.V[1];<br />

vz = p->state.V[2];<br />

modvquad = vx*vx+vy*vy+vz*vz;<br />

Eko = 0.5*P_MASS(p)*modvquad;<br />

vn=0.;<br />

nor_coeff = 1.0;<br />

tan_coeff = 165.12*pow((ao/P_DIAM(p)),1.9133);<br />

if (tan_coeff > 0.8) tan_coeff = 0.8;<br />

/* Compute normal velocity. */<br />

for(i=0; istate.V[i]*f_normal[i];<br />

/* Subtract off normal velocity. */<br />

for(i=0; istate.V[i] -= vn*f_normal[i];<br />

// Compute tangencial velocity<br />

vt = sqrt(p->state.V[0]*p->state.V[0]+p->state.V[1]*p->state.V[1]+p->state.V[2]*p->state.V[2]);<br />

/* Apply tangential coefficient of restitution. */<br />

for(i=0; istate.V[i] *= tan_coeff;<br />

/* Add reflected normal velocity. */<br />

for(i=0; istate.V[i] -= nor_coeff*vn*f_normal[i];<br />

modvf = p->state.V[0]*p->state.V[0]+p->state.V[1]*p->state.V[1]+p->state.V[2]*p->state.V[2];<br />

Ekf = 0.5*P_MASS(p)*modvf;<br />

if ((Es/(Ekf))>=1.0) // significa que a Es é maior. Particula fica a<strong>de</strong>rida<br />

{<br />

Trap_Particle(p);<br />

p->gvtp.n_trapped += 1;<br />

return PATH_END;<br />

}<br />

Else<br />

{<br />

/* Store new velocity in state0 of particle */<br />

for(i=0; istate0.V[i] = p->state.V[i];<br />

return PATH_ACTIVE;<br />

}<br />

}


Results


Conclusion<br />

• The results suggest that the critical velocity boundary<br />

condition improved the collection efficiency prediction in<br />

comparison with the predictions obtained by the use of<br />

FLUENT®’s built-in boundary conditions.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!