31.10.2014 Views

Curso Limpeza de Gases - ESSS

Curso Limpeza de Gases - ESSS

Curso Limpeza de Gases - ESSS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Implementation of the critical velocity<br />

boundary condition for particle-wall<br />

interaction in FLUENT’s Discrete Phase Mo<strong>de</strong>l<br />

Gonçalves, J.A.S.; Furlan, F.F.; Valver<strong>de</strong> Ramirez, M.; Coury, J.R.<br />

Chemical Engineering Department<br />

Fe<strong>de</strong>ral University of São Carlos


Universida<strong>de</strong> Fe<strong>de</strong>ral <strong>de</strong><br />

São Carlos - SP<br />

Início das ativida<strong>de</strong>s: 1970<br />

3 campi: São Carlos, Araras e Sorocaba<br />

<strong>Curso</strong>s <strong>de</strong> graduação: 37 (presencial) + 5<br />

(a distância)<br />

Alunos <strong>de</strong> graduação: 6.200 (presencial)<br />

+ 1850 (a distância)<br />

<strong>Curso</strong>s <strong>de</strong> pós-graduação: 50 (20 <strong>de</strong><br />

doutorado e 30 <strong>de</strong> mestrado)<br />

Alunos <strong>de</strong> pós-graduação: 2.000<br />

Número <strong>de</strong> professores: quadro efetivo:<br />

640 (90% são doutores)<br />

Área total: 937 hectares<br />

Área Construída: 170 mil m 2


Departamento <strong>de</strong> Engenharia Química<br />

Universida<strong>de</strong> Fe<strong>de</strong>ral <strong>de</strong> São Carlos<br />

• Graduação: 1976<br />

• Mestrado: 1982<br />

• Doutorado: 1989<br />

• Graduação: Conceito 5 no MEC<br />

• Pós-Graduação: Conceito 6 na Capes<br />

• 400 alunos <strong>de</strong> graduação<br />

• 104 alunos <strong>de</strong> pós-graduação (2006)<br />

• 380 dissertações/teses <strong>de</strong>fendidas<br />

• 47 trabalhos/ano (2008) publicados<br />

em periódicos internacionais<br />

in<strong>de</strong>xados<br />

• 30 professores em <strong>de</strong>dicação exclusiva<br />

• 1 professor em <strong>de</strong>dicação parcial<br />

• 3 professores substitutos<br />

• 5 professores voluntários


Gas Cleaning Laboratory<br />

Chemical Engineering Department / UFSCar<br />

• Tratamento <strong>de</strong> Efluentes Gasosos<br />

Industriais<br />

• Monitoramento da qualida<strong>de</strong> do ar em<br />

São Carlos<br />

• Prof. Dr. José Renato Coury<br />

• Profª. Drª. Mônica Lopes Aguiar<br />

• Profª. Drª. Vádila Giovani Guerra<br />

• Prof. Dr. José Antônio Silveira Gonçalves<br />

• 2 pós-doutorandos, 6 doutorandos e 8 mestrandos


Gas Cleaning Laboratory<br />

Chemical Engineering Department / UFSCar


NANOPARTÍCULAS<br />

Gas Cleaning Laboratory<br />

Legenda<br />

1 – Filtro <strong>de</strong> purificação <strong>de</strong> ar<br />

2 – Gerador <strong>de</strong> nanopartículas<br />

3 – Secador <strong>de</strong> difusão<br />

4 – Fonte <strong>de</strong> Kriptônio-85<br />

5 – Dispositivo <strong>de</strong> filtração<br />

6 – Rotâmetro<br />

7 – SMPS<br />

8 – Computador<br />

1<br />

1<br />

2<br />

2<br />

3<br />

3<br />

4<br />

4<br />

6<br />

5<br />

6<br />

8<br />

7<br />

7


Our application – A cyclone<br />

Industrial<br />

gas-solid<br />

separator<br />

Particle<br />

collection<br />

efficiency


Tabela 3.1 Dimensões dos ciclones simulados. Todas as medidas estão em metros (m).<br />

Simulations in Fluent 6.3.26<br />

Geometry<br />

Grupo I Grupo II Grupo III<br />

Dimensão<br />

Ciclone 1 Ciclone 2 Ciclone 3 Ciclone 4 Ciclone 5 Ciclone 6 Ciclone 7 Ciclone 8 Ciclone 9<br />

Dc 0,245 0,245 0,245 0,245 0,245 0,245 0,245 0,245 0,245<br />

De 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098<br />

L 0,122 0,367 0,612 0,122 0,367 0,612 0,122 0,367 0,612<br />

h 0,150 0,150 0,150 0,395 0,395 0,395 0,640 0,640 0,640<br />

H 0,875 0,875 0,875 0,875 0,875 0,875 0,875 0,875 0,875<br />

S 0,090 0,090 0,090 0,090 0,090 0,090 0,090 0,090 0,090<br />

A 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098 0,098<br />

B 0,051 0,051 0,051 0,051 0,051 0,051 0,051 0,051 0,051<br />

C 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100 0,100<br />

Z 0,725 0,725 0,725 0,480 0,480 0,480 0,235 0,235 0,235<br />

Todas as dimensões estão em metros


Simulations in Fluent 6.3.26<br />

Mesh<br />

CICLONE<br />

Pré-<br />

Processamento<br />

Malhas geradas<br />

no GAMBIT<br />

Primeiro<br />

afinamento da<br />

malha<br />

Pós-Processamento<br />

Segundo<br />

afinamento da<br />

malha<br />

Terceiro<br />

afinamento da<br />

malha<br />

1 64514 83876 117518 195351<br />

2 63800 83162 113192 191025<br />

3 67378 81572 142899 219836<br />

4 62498 81188 126037 201203<br />

5 63810 83172 118550 196376<br />

6 63010 82372 152533 230366<br />

7 64610 83972 117621 195482<br />

8 63810 83172 114672 192533<br />

9 63042 82404 141736 219562<br />

y-plus/y-star adaption y + = 5


Simulations in Fluent 6.3.26<br />

Physical and numerical conditions<br />

DEFINIÇÃO DO PROBLEMA<br />

DESCRIÇÃO<br />

Dimensão espacial<br />

Tridimensional<br />

Coor<strong>de</strong>nadas<br />

Cartesianas<br />

Tipo <strong>de</strong> escoamento<br />

Turbulento<br />

Dependência em função da temperatura<br />

Isotérmico<br />

Empuxo Vetor gravida<strong>de</strong> (0;0;-9.81)<br />

Tipo <strong>de</strong> fluido<br />

Incompressível<br />

Descrição das fases<br />

Fase contínua<br />

Ar<br />

Fase dispersa<br />

Material particulado (rocha fosfática)<br />

Dependência com relação ao tempo<br />

Estado Estacionário<br />

Proprieda<strong>de</strong>s físicas constantes<br />

Ar<br />

Densida<strong>de</strong> = 1,142 (Kg/m3)<br />

Viscosida<strong>de</strong>= 1,85x10 -5 (Kg/m.s)<br />

Rocha fosfática Densida<strong>de</strong>= 3030 (Kg/cm 3 )<br />

Diâmetro da partícula: 1,33 µm<br />

Mo<strong>de</strong>los <strong>de</strong> acoplamento pressãovelocida<strong>de</strong><br />

SIMPLEC<br />

Mo<strong>de</strong>lo <strong>de</strong> turbulência<br />

RNG K-E<br />

Velocida<strong>de</strong> <strong>de</strong> entrada no ciclone<br />

10,2 (m/s)<br />

• Euler-Lagrange approach<br />

• Fluent’s Discrete Phase Mo<strong>de</strong>ling<br />

• Gas flow in<strong>de</strong>pen<strong>de</strong>nt of particles<br />

• PRESTO! (pressure), QUICK<br />

(momentum), 2 nd or<strong>de</strong>r (turbul.)<br />

• Convergence: Residuals


Particle-Wall Interaction using built-in<br />

Boundary conditions in Fluent’s DPM<br />

• Na pare<strong>de</strong> do cilindro: “trap”<br />

• Na pare<strong>de</strong> do cone: “trap”<br />

• Na pare<strong>de</strong> da caixa: “trap”<br />

• No duto <strong>de</strong> entrada tangencial <strong>de</strong><br />

ar e pó: “reflect”<br />

• No duto superior <strong>de</strong> saída do<br />

ciclone: “reflect”<br />

• Na face <strong>de</strong> entrada do ciclone:<br />

“escape”<br />

• Na face <strong>de</strong> saída do ciclone:<br />

“escape”


Particle-Wall Interaction using the<br />

critical velocity boundary condition<br />

• A critical particle velocity is <strong>de</strong>termined by comparing<br />

the kinetic and the surface energies involved in each<br />

particle-wall interaction.<br />

• If the particle velocity is smaller than the critical<br />

velocity, it is trapped; otherwise, it is reflected.<br />

• This boundary condition was applied on the cone,<br />

cylin<strong>de</strong>r and hooper walls, in substitution to the trap<br />

condition.<br />

• A correlation for the tangential restitution coefficient as<br />

a function of particle diameter was <strong>de</strong>veloped to allow<br />

best fit to the experimental data.<br />

• Seville, J.P.K.; Tuzun, U.; Clift, R. (1997). Processing of Particulate Solids. Blackie Aca<strong>de</strong>mic<br />

and Professional, London.<br />

• Zhang X., Wang L., Zhu, K. (2005). Particle tracking and particle-wall collision in a wire-plate<br />

electrostatic precipitator. Journal of Electrostatics, 63, 1057-1071.


UDF Co<strong>de</strong><br />

/* reflect boundary condition for inert particles */<br />

#inclu<strong>de</strong> "udf.h“<br />

#inclu<strong>de</strong> "dpm.h“<br />

DEFINE_DPM_BC(bc_reflect_OR_trap_inert_3D,p,t,f,f_normal,dim)<br />

{<br />

/* particle and wall characteristics */<br />

real ao; /* raio da área <strong>de</strong> contato */<br />

real nup; /* Poisson ratio para a particula */<br />

real nuw; /* Poisson ratio para a pare<strong>de</strong> */<br />

real Ep; /* Young's module para a particula */<br />

real Ew; /* Young's module para a pare<strong>de</strong> */<br />

real kp; /* Zhang, X.; Wang, L.; Zhu, K., Journal of Electostatics 63 (2005), 1057-1071. */<br />

real kw;<br />

real K;<br />

real gamap; /* surface energy per unity area of the particle */<br />

real gamaw; /* surface energy per unity area of the wall */<br />

real gamai; /* surface energy per unity area of the interface */<br />

real gama; // gama = gamap + gamaw – gamai<br />

real Rp;<br />

real vx, vy, vz; // particle velocity antes do choque<br />

real vn;<br />

real vt;<br />

real modvquad; /* particle velocity */<br />

real modvf;<br />

real nor_coeff, tan_coeff;<br />

real Eko; /* Energia cinética antes do choque */<br />

real Ekf;<br />

//Energia cinética final<br />

int i;<br />

real Es; /* Energia <strong>de</strong> superfície <strong>de</strong>vido a van <strong>de</strong>r waals */<br />

/* particle and wall characteristics */<br />

nup = 0.33; /* alumminium alloy */<br />

nuw = 0.285; /* steel */<br />

Ep = 10.0e10; /* (Pa) alumminium alloy */<br />

Ew = 3.00e11; /* (Pa) steel */<br />

gamap = 1.3; /* J/m2 */<br />

gamaw = 1.5; /* J/m2 */<br />

gamai = 0.2; /* J/m2 */<br />

gama = gamap + gamaw - gamai;<br />

kp = (1.0-nup*nup)/(3.141592654*Ep);<br />

kw = (1.0-nuw*nuw)/(3.141592654*Ew);<br />

K = 4.0/(9.424777961*(kp+kw));<br />

Rp = P_DIAM(p)/2.0;<br />

ao = pow((18.84955592*gama*Rp*Rp/K),(1.0/3.0));<br />

Es = 3.141592654*ao*ao*gama;<br />

vx = p->state.V[0];<br />

vy = p->state.V[1];<br />

vz = p->state.V[2];<br />

modvquad = vx*vx+vy*vy+vz*vz;<br />

Eko = 0.5*P_MASS(p)*modvquad;<br />

vn=0.;<br />

nor_coeff = 1.0;<br />

tan_coeff = 165.12*pow((ao/P_DIAM(p)),1.9133);<br />

if (tan_coeff > 0.8) tan_coeff = 0.8;<br />

/* Compute normal velocity. */<br />

for(i=0; istate.V[i]*f_normal[i];<br />

/* Subtract off normal velocity. */<br />

for(i=0; istate.V[i] -= vn*f_normal[i];<br />

// Compute tangencial velocity<br />

vt = sqrt(p->state.V[0]*p->state.V[0]+p->state.V[1]*p->state.V[1]+p->state.V[2]*p->state.V[2]);<br />

/* Apply tangential coefficient of restitution. */<br />

for(i=0; istate.V[i] *= tan_coeff;<br />

/* Add reflected normal velocity. */<br />

for(i=0; istate.V[i] -= nor_coeff*vn*f_normal[i];<br />

modvf = p->state.V[0]*p->state.V[0]+p->state.V[1]*p->state.V[1]+p->state.V[2]*p->state.V[2];<br />

Ekf = 0.5*P_MASS(p)*modvf;<br />

if ((Es/(Ekf))>=1.0) // significa que a Es é maior. Particula fica a<strong>de</strong>rida<br />

{<br />

Trap_Particle(p);<br />

p->gvtp.n_trapped += 1;<br />

return PATH_END;<br />

}<br />

Else<br />

{<br />

/* Store new velocity in state0 of particle */<br />

for(i=0; istate0.V[i] = p->state.V[i];<br />

return PATH_ACTIVE;<br />

}<br />

}


Results


Conclusion<br />

• The results suggest that the critical velocity boundary<br />

condition improved the collection efficiency prediction in<br />

comparison with the predictions obtained by the use of<br />

FLUENT®’s built-in boundary conditions.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!