19.11.2021 Views

Tarea_I_especiales

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Parcial 3

Cristian Camilo Perez Puentes

1000137144

crperezp@unal.edu.co

1. Encontrar factores de escala, vectores unitarios, probar su ortogonalidad, unitariedad y

regla de la mano derecha, para la coordenadas esfericas.

Dada la transformacion de coordenadas esfericas:

x = ρSin(θ)Cos(φ)

y = ρSin(θ)Sin(φ)

x = ρCos(θ)

entonces las coordenadas cartesianas quedan:

r = ρSin(θ)Cos(φ)î + ρSin(θ)Sin(φ)ĵ + ρCos(θ)ˆk

por lo que los factores de escala son:

h ρ = | ∂ (

)

ρSin(θ)Cos(φ)î + ρSin(θ)Sin(φ)ĵ + ρCos(θ)ˆk |

∂ρ

= |Sin(θ)Cos(φ)î + Sin(θ)Sin(φ)ĵ + Cos(θ)ˆk|

= √ Sin 2 (θ)Cos 2 (φ) + Sin 2 (θ)Sin 2 (φ) + Cos 2 (θ)

= √ Sin 2 (θ) + Cos 2 (θ)

= 1

h φ = | (ρSin(θ)Cos(φ)î + ρSin(θ)Sin(φ)ĵ + ρCos(θ)) |

∂φ

= | − ρSin(θ)Sin(φ)î + ρSin(θ)Cos(φ)ĵ|

= √ a 2 Sin 2 (θ)Cos 2 (φ) + a 2 Sin 2 (θ)Sin 2 (φ)

= ρSin(θ) √ Sin 2 (φ) + Cos 2 (φ)

= ρSin(θ)

h θ = | ∂ (

)

ρSin(θ)Cos(φ)î + ρSin(θ)Sin(φ)ĵ + ρCos(θ)ˆk |

∂θ

= |ρCos(θ)Cos(φ)î + ρCos(θ)Sin(φ)ĵ − ρSin(θ)ˆk|

= √ a 2 Cos 2 (θ)Cos 2 (φ) + a 2 Cos 2 (θ)Sin 2 (φ) + a 2 Sin 2 (θ)

= ρ √ Sin 2 (θ) + Cos 2 (θ)

= ρ

Luego los vectores unitario quedas como

ê ρ = 1 ( ) ∂r

1 ∂ρ

= 1 ( )

1 ∂ρ (ρSin(θ)Cos(φ) + ρSin(θ)Sin(φ) + ρCos(θ))

= Sin(θ)Cos(φ)î + Sin(θ)Sin(φ)ĵ + Cos(θ)ˆk

1


ê θ = 1 ρ

( ) ∂r

∂θ

= 1 ( ∂

(ρSin(θ)Cos(φ)î + ρSin(θ)Sin(φ)ĵ + ρCos(θ)ˆk)

ρ ∂θ

= Cos(θ)Cos(φ)î + Cos(θ)Sin(φ)ĵ − Sen(θ)ˆk

( )

1 ∂r

ê φ =

ρien(θ) ∂φ

( )

1 ∂

=

(ρSin(θ)Cos(φ)î + ρSin(θ)Sin(φ)ĵ + ρCos(θ)ˆk)

ρSin(θ) ∂φ

1

= (−Sin(θ)Sin(φ)î + Sin(θ)Cos(φ)ĵ + 0ˆk)

Sin(θ)

= −Sin(φ)î + Cos(φ)ĵ + 0ˆk

Vectores de los cuales se puede ver que:

|ê| = |Sin(θ)Sin(φ)î + Sin(θ)Cos(φ)ĵ + Cos(θ)ˆk|

= √ Sin 2 (θ)Sin 2 (φ) + Sin 2 (θ)Cos 2 (φ) + Cos 2 (θ)

= √ Sin 2 (θ) + Cos 2 (θ)

= 1

|ê| = |Cos(θ)Sin(φ) + Cos(θ)Cos(φ)î − Sen(θ)ˆk|

= √ Cos 2 (θ)Sin 2 (φ) + Cos 2 (θ)Sin 2 (φ) + Sin 2 (θ)

= √ Cos 2 (θ) + Sin 2 (θ)

= 1

|ê| = | − Sin(φ)î + Cos(φ)ĵ + 0ˆk|

= √ Sin 2 (φ) + Cos 2 (φ)

= 1

Por lo tanto se verifica que la base es unitaria. Ademas:

ê · ê = (Sin(θ)Cos(φ)î + Sin(θ)Sin(φ)ĵ + Cos(θ)ˆk) · (Cos(θ)Cos(φ)î + Cos(θ)Sin(φ)ĵ − Sin(θ)ˆk)

= Sin(θ)Cos(θ)Cos 2 (φ) + Sin(θ)Cos(θ)Sin 2 (φ) − Sin(θ)Cos(θ)

= Sin(θ)Cos(θ) − Sin(θ)Cos(θ)

= 0

ê · ê = (Sin(θ)Cos(φ)î + Sin(θ)Sin(φ)ĵ + Cos(θ)ˆk) · (−Sin(φ)î + Cos(φ)ĵ + 0ˆk)

= −Sin(θ)Cos(φ)Sin(φ) + Sin(θ)Sin(φ)Cos(φ)

= 0

ê · ê = (Cos(θ)Cos(φ)î + Cos(θ)Sin(φ)ĵ − Sin(θ)ˆk) · (−Sin(φ)î + Cos(φ)ĵ + 0ˆk)

= −Cos(θ)Cos(φ)Sin(φ) + Cos(θ)Sin(φ)Cos(φ)

= 0

Por lo que la base es ortogonal. Y tambien:

)

2


item [2.] Encontrar factores de escala, vectores unitarios, probar su ortogonalidad, unitariedad

y regla de la mano derecha, para la coordenadas esferoidales oblatas.

x = aCosh(ξ)Cos(η)Cos(φ)

y = aCosh(ξ)Cos(η)Sin(φ)

x = aSinh(ξ)Sin(η)

entonces las coordenadas cartesianas quedan:

r = aCosh(ξ)Cos(η)Cos(φ)î + aCosh(ξ)Cos(η)Sin(φ)ĵ + aSinh(ξ)Sin(η)ˆk

por lo que los factores de escala son:

h ξ = | ∂ (

)

aCosh(ξ)Cos(η)Cos(φ)î + aCosh(ξ)Cos(η)Sin(φ)ĵ + aSinh(ξ)Sin(η)ˆk |

∂ξ

= |aSin(ξ)Cos(η)Cos(φ)îaSin(ξ)Cos(η)Sin(φ)ĵ + aCos(ξ)Sin(η)ˆk|

= a √ Sinh 2 (ξ)Cos 2 (η)Cos 2 (φ) + Sinh 2 (ξ)Cos 2 (η)Sin 2 (φ) + Cosh 2 (ξ)Sin 2 (η)

= a √ Sinh 2 (ξ)Cos 2 (η) + Cosh 2 (ξ)Sin 2 (η)

= a √ Sinh 2 (ξ)Cos 2 (η) + (1 + Sinh 2 (ξ))Sin 2 (η)

= a √ Sinh 2 (ξ)Cos 2 (η) + Sin 2 (η) + Sinh 2 (ξ)Sin 2 (η)

= a √ Sinh 2 (ξ) + Sin 2 (η)

h φ = | (aCosh(ξ)Cos(η)Cos(φ)î + aCosh(ξ)Cos(η)Sin(φ)ĵ + aSinh(ξ)Sin(η)) |

∂φ

= | − aCosh(ξ)Cos(η)Sin(φ)î + aCosh(ξ)Cos(η)Cos(φ)ĵ|

= √ a 2 Cosh 2 (ξ)Cos 2 (η)Cos 2 (φ) + a 2 Cosh 2 (ξ)Cos 2 (η)Sin 2 (φ)

= aCosh(ξ)Cos(η) √ Sin 2 (φ) + Cos 2 (φ)

= aCosh(ξ)Cos(η)

h η = | ∂ (

)

aCosh(ξ)Cos(η)Cos(φ)î + aCosh(ξ)Cos(η)Sin(φ)ĵ + aSinh(ξ)Sin(η)ˆk |

∂η

= |aCosh(ξ)Sin(η)Cos(φ)î + aCosh(ξ)Sin(η)Sin(φ)ĵ − aSinh(ξ)Cos(η)ˆk|

= √ a 2 Cosh 2 (ξ)Sin 2 (η)Cos 2 (φ) + a 2 Cosh 2 (ξ)Sin 2 (η)Sin 2 (φ) + a 2 Sinh 2 (ξ)Cos 2 (η)

= a √ Cosh 2 (ξ)Sin 2 (η) + Sinh 2 (ξ)Cos 2 (η)

= a √ Sinh 2 (ξ)Cos 2 (η) + (1 + Sinh 2 (ξ))Sin 2 (η)

= a √ Sinh 2 (ξ)Cos 2 (η) + Sin 2 (η) + Sinh 2 (ξ)Sin 2 (η)

= a √ Sinh 2 (ξ) + Sin 2 (η)

Luego los vectores unitario quedas como

ê ξ = 1 ( ) ∂r

h ξ ∂ξ

= 1 ( )

h ξ ∂ξ (aCosh(ξ)Cos(η)Cos(φ) + aCosh(ξ)Cos(η)Sin(φ) + aSinh(ξ)Sin(η))

= a )

(Sinh(ξ)Cos(η)Cos(φ)î + Sinh(ξ)Cos(η)Sin(φ)ĵ + Cosh(ξ)Sin(η)ˆk

h ξ

3


ê η = 1 ( ) ∂r

h η ∂η

= 1 ( )

h η ∂η (aCosh(ξ)Cos(η)Cos(φ) + aCosh(ξ)Cos(η)Sin(φ) + aSinh(ξ)Sin(η))

= a )

(−Sin(η)Cosh(ξ)Cos(φ)î − Sin(η)Cosh(ξ)Sin(φ)ĵ + Cos(η)Sinh(ξ)ˆk

h η

ê φ = 1 ( ) ∂r

h φ ∂φ

( )

(aCosh(ξ)Cos(η)Cos(φ)î + aCosh(ξ)Cos(η)Sin(φ)ĵ + aSinh(ξ)Sin(η)ˆk)

∂φ

1

=

aCosh(ξ)Cos(η)

1

=

(−Cosh(ξ)Cos(η)Sin(φ)î + Cosh(ξ)Cos(η)Cos(φ)ĵ + 0ˆk)

Cosh(ξ)Cos(η)

= −Sin(φ)î + Cos(φ)ĵ + 0ˆk

Vectores de los cuales se puede ver que:

|ê ξ | = a h ξ

|Sinh(ξ)Cos(η)Cos(φ)îSinh(ξ)Cos(η)Sin(φ)ĵ + Cosh(ξ)Sin(η)ˆk|

= a h ξ

Sinh2 (ξ)Cos 2 (η)Sin 2 (φ) + Sinh 2 (ξ)Cos 2 (η)Cos 2 (φ) + Cosh 2 (ξ)Sin 2 (η)

= a h ξ

Sinh2 (ξ)Cos 2 (η) + Cosh 2 (ξ)Sin 2 (η)

= a h ξ

Sinh2 (ξ)Cos 2 (η) + (1 + Sinh 2 (ξ))Sin 2 (η)

= a h ξ

Sinh2 (ξ)Cos 2 (η) + Sin 2 (η) + Sinh 2 (ξ)Sin 2 (η)

= a h ξ

Sinh2 (ξ) + Sin 2 (η)

a

=

a √ √

Sinh2 (ξ) + Sin 2 (η)

Sinh 2 (ξ) + Sin 2 (η)

= 1

|ê η | = a | − Sin(η)Cosh(ξ)Cos(φ)î − Sin(η)Cosh(ξ)Sin(φ)ĵ + Cos(η)Sinh(ξ)ˆk|

h η

= a √

Sin2 (η)Cosh

h 2 (ξ)Sin 2 (φ) + Sin 2 (η)Cosh 2 (ξ)Cos 2 (φ) + Cos 2 (η)Sinh 2 (ξ)

η

= a √

Sin2 (η)Cosh

h 2 (ξ) + Cos 2 (η)Sinh 2 (ξ)

η

= a √

Sinh2 (η)Cos

h 2 (ξ) + (1 + Sinh 2 (η))Sin 2 (ξ)

η

= a √

Sinh2 (η)Cos

h 2 (ξ) + Sin 2 (ξ) + Sinh 2 (η)Sin 2 (ξ)

η

= a √

Sinh2 (η) + Sin

h 2 (ξ)

η

a

=

a √ √

Sinh2 (η) + Sin 2 (ξ)

Sinh 2 (η) + Sin 2 (ξ)

= 1

4


|ê φ | = | − Sin(φ)î + Cos(φ)ĵ + 0ˆk|

= √ Sin 2 (φ) + Cos 2 (φ)

= 1

Por lo tanto se verifica que la base es unitaria. Ademas:

ê ξ · ê η = a )

(Sinh(ξ)Cos(η)Cos(φ)î + Sinh(ξ)Cos(η)Sin(φ)ĵ + Cosh(ξ)Sin(η)ˆk ·

h ξ

a

(

)

−Sin(η)Cosh(ξ)Cos(φ)î − Sin(η)Cosh(ξ)Sin(φ)ĵ + Cos(η)Sinh(ξ)ˆk

h η

= − Sinh(ξ)Cosh(ξ)Cos(η)Sin(η)Cos 2 (φ)+

− Sinh(ξ)Cosh(ξ)Cos(η)Sin(η)Sin 2 (φ)+

+ Sinh(ξ)Cosh(ξ)Cos(η)Sin(η)

= −Sinh(ξ)Cosh(ξ)Cos(η)Sin(η) + Sinh(ξ)Cosh(ξ)Cos(η)Sin(η)

= 0

ê ξ · ê φ = a )

(Sinh(ξ)Cos(η)Cos(φ)î + Sinh(ξ)Cos(η)Sin(φ)ĵ + Cosh(ξ)Sin(η)ˆk ·

h ξ

(−Sin(φ)î + Cos(φ)ĵ + 0ˆk))

= −Sinh(ξ)Cos(η)Cos(φ)Sin(φ) + Sinh(ξ)Cos(η)Sin(φ)Cos(φ)

= 0

ê η · ê φ = a )

(−Sin(η)Cosh(ξ)Cos(φ)î − Sin(η)Cosh(ξ)Sin(φ)ĵ + Cos(η)Sinh(ξ)ˆk ·

h η

= Sin(η)Cosh(ξ)Cos(φ)Sin(φ) − Sin(η)Cos(ξ)Sin(φ)Cos(φ)

= 0

Por lo que la base es ortogonal. Y tambien:

(−Sin(φ)î + Cos(φ)ĵ + 0ˆk))

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!