07.12.2022 Views

The Dirac Delta function ( PDFDrive )

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Dirac Delta function

Ernesto Estévez Rams

estevez@imre.oc.uh.cu

Instituto de Ciencia y Tecnología de Materiales (IMRE)-Facultad de Física

Universidad de la Habana

IUCr International School on Crystallography, Brazil, 2012.

III Latinoamerican series


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Outline

1 Introduction

Defining the Dirac Delta function

2 Dirac delta function as the limit of a family of functions

3 Properties of the Dirac delta function

4 Dirac delta function obtained from a complete set of

orthonormal functions

Dirac comb

5 Dirac delta in higher dimensional space

6 Recapitulation

7 Exercises

8 References

The Dirac Delta function

2 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

The Kronecker Delta

Suppose we have a sequence

of values {a 1, a 2, . . .} and we

wish to select algebraically a

particular value labeled by its

index i

The Dirac Delta function

3 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

The Kronecker Delta

Definition (Kronecker

delta)

K δ ij =

{ 1 i = j

0 i ≠ j

Picking one member of a set algebraically

j=1

a K j δ ij = a i

The Dirac Delta function

4 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

The Kronecker Delta

Definition (Kronecker

delta)

K δ ij =

{ 1 i = j

0 i ≠ j

Picking one member of a set algebraically

j=1

a K j δ ij = a i

The Dirac Delta function

4 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Properties of the Kronecker Delta

j K δ ij = 1: Normalization condition.

K δ ij

= K δ ji : Symmetry property.

The Dirac Delta function

5 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Properties of the Kronecker Delta

j K δ ij = 1: Normalization condition.

K δ ij

= K δ ji : Symmetry property.

The Dirac Delta function

5 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Spotting a point in the mountain profile

We want to pick up

just a narrow window

of the whole view

The Dirac Delta function

6 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

How to deal with continuous functions ?

We want to do the

same with a

continuous function.

The Dirac Delta function

7 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Defining the Dirac Delta function

Consider a function f(x) continuous in the interval (a, b) and suppose we

want to pick up algebraically the value of f(x) at a particular point labeled

by x 0.

In analogy with the Kronecker delta let us define a selector function D δ(x)

with the following two properties:

∫ b

a f(x) D δ(x − x 0 )dx = f(x 0 ): Selector or sifting property

∫ b

a D δ(x − x 0 )dx = 1: Normalization condition

The Dirac Delta function

8 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Defining the Dirac Delta function

Consider a function f(x) continuous in the interval (a, b) and suppose we

want to pick up algebraically the value of f(x) at a particular point labeled

by x 0.

In analogy with the Kronecker delta let us define a selector function D δ(x)

with the following two properties:

∫ b

a f(x) D δ(x − x 0 )dx = f(x 0 ): Selector or sifting property

∫ b

a D δ(x − x 0 )dx = 1: Normalization condition

The Dirac Delta function

8 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Defining the Dirac Delta function

To be more general consider f(x) to be continuous in the interval (a, b)

except in a finite number of points where finite discontinuities occurs, then

the Dirac Delta can be defined as

Definition (Dirac delta function)

1

∫ 2 b

⎪⎨

[f(x− 0 ) + f(x+ 0 ] x0 ∈ (a, b)

1

f(x)δ(x − x 0)dx =

2 f(x+ 0 ) x0 = a

1

a

⎪⎩

2 f(x− 0 ) x0 = b

0 x 0 /∈ (a, b)

The Dirac Delta function

9 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

A bit of history

Siméon Denis Poisson (1781-1840)

In 1815 Poisson already for sees the δ(x − x 0) as a selector

function using for this purpose Lorentzian functions. Cauchy

(1823) also made use of selector function in much the same

way as Poisson and Fourier gave a series representation on

the delta function(More on this later).

Paul Adrien Maurice Dirac (1902-1984)

Dirac ”rediscovered” the delta function that now bears his

name in analogy for the continuous case with the Kronecker

delta in his seminal works on quantum mechanics.

The Dirac Delta function

10 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

What does it look like ?

δ p(x − x 0) =

{ p x ∈ (x0 − 1/2p, x 0 + 1/2p)

0 x /∈ (x 0 − 1/2p, x 0 + 1/2p)

The Dirac Delta function

11 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

What does it look like ?

p ∫ x 0 +1/2p

f(x)dx x 0 −1/2p

The Dirac Delta function

12 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

What does it look like ?

∫ ∞

−∞ δp(x) dx = ∫ 1/2p

−1/2p p dx = 1

Definition (Dirac delta function)

{ ∞ x = x0

δ(x − x 0)dx =

0 x ≠ x 0

13 / 45

The Dirac Delta function


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

What does it look like ?

Definition (Dirac delta function)

{ ∞ x = x0

δ(x − x 0) =

0 x ≠ x 0

The above expression is just ”formal”, the δ(x) must be always understood in

the context of its selector property i.e. within the integral

δ(x) is defined more rigorously in terms of a distribution or a functional

(generalized function)

The Dirac Delta function

14 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Dirac delta function as the limit of a family of functions

The Dirac delta function can be pictured as the limit in a sequence of

functions δ p which must comply with two conditions:

lím ∞

p→∞ −∞ δp(x)dx = 1: Normalization condition

lím p→∞

δ p(x≠0)

lím x→0 δ = 0 Singularity condition. p(x)

The Dirac Delta function

15 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Dirac delta function as the limit of a family of functions

The Dirac delta function can be pictured as the limit in a sequence of

functions δ p which must comply with two conditions:

lím ∞

p→∞ −∞ δp(x)dx = 1: Normalization condition

lím p→∞

δ p(x≠0)

lím x→0 δ = 0 Singularity condition. p(x)

The Dirac Delta function

15 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

... as the limit of Gaussian functions

∆ px

δ p(x) Gaussian

family

δ p(x) =

p

π exp (−px2 )

1 p

Π

1 p

1 p

x

The Dirac Delta function

16 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

... as the limit of Gaussian functions

Normalization condition

∫ ∞

−∞

p

δ p(x)dx =

π

∫ ∞

−∞

√ ∫

exp (−px 2 1 ∞

)dx = exp (−px 2 )d( √ px) =

π −∞

√ ∫ 1 ∞

√ ∫

exp (−t 2 1 ∞

)dt = 2 exp (−t 2 )dt

π

π

−∞

0

I = ∫ ∞

0

e −t2 dt

I 2 = ∫ ∞

0

e −y2 dy ∫ ∞

0

e −z2 dz = ∫ ∫ ∞

0

exp (y 2 + z 2 )dydz

The Dirac Delta function

17 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Normalization condition

r 2 = y 2 + z 2

y = r cos φ

z = r sin φ

I 2 = ∫ π/2

dφ ∫ ∞

e −r2 rdr = π ∞

e −s ds = π 0 0 4 0 4

I = √ π

2

∫ ∞ δp(x)dx = 1 −∞

The Dirac Delta function

18 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

... as the limit of Gaussian functions

Singularity condition

lím

p→∞

δ p(x ≠ 0)

lím x→0 δ = p(x)

lím

p→∞

√ p

π e−px2

√ p

π

= 0

The Dirac Delta function

19 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

... as the limit of Lorentzian functions

∆ px

δ p(x) Lorentzian

family

δ p(x) = 1 p

p

p

Π

p

1 + p 2 x 2 x

1p

1p

The Dirac Delta function

20 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

... as the limit of Lorentzian functions

Normalization condition

∫ ∞

−∞

δ p(x)dx = 1 π

∫ ∞

−∞

pdx

1 + p 2 x = 1 ∫ ∞

2 π −∞

dt

1 + t 2 =

1

π lím arctan t|t=k t=−k = 2

k→∞ π lím arctan k = 1

k→∞

Π2

y

ArcTanx

x

The Dirac Delta function

21 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

... as the limit of Lorentzian functions

Singularity condition

lím

p→∞

δ p(x ≠ 0)

lím x→0 δ p(x) =

1

π lím

p→∞

1

π lím

p→∞

p

1+p 2 x 2

p

1

=

1 + p 2 x = 0 2 The Dirac Delta function

22 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

... as the limit of Sinc functions

∆ px

p

Π

δ p(x) Sinc family

δ p(x) = p π

sin px

px

Π

p

Π

2

p

Π

3

p

x

The Dirac Delta function

23 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

... as the limit of Sinc functions

Normalization condition

∫ ∞

−∞

δ p(x)dx = 1 π

2 ∞

π 0

∫ ∞

−∞

∫ ∞

1

π

sin (px)dx

=

x

−∞

sin z

z dz =

sin z

z

dz = 2 π

π 2 = 1 The Dirac Delta function

24 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

... as the limit of Sinc functions

Singularity condition

1

π

lím

p→∞

sin (px)

x

p

π

lím

p→∞

δ p(x ≠ 0)

lím x→0 δ p(x) =

sin (px)

= lím = 0

p→∞ px

δ p(x) alternative definition of the

Sinc family

δ p(x) = 1 p

2π −p e±itx dt

δ p(x) = 1 p cos (tx)dt π 0

The Dirac Delta function

25 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Properties of the Dirac delta function

Let us denote by x n the roots of the equation f(x) = 0 and suppose that

f ′ (x n) ≠ 0 then

Composition of functions

δ(f(x)) = ∑ n

δ(x−x n)

|f ′ (x n|

The Dirac Delta function

26 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Important consequences of the composition property are

δ(−x) = δ(x) (symmetry property).

δ(ax) = δ(x)

|a|

(scaling property).

δ(ax − x 0 ) = δ(x− x 0

a

)

(a more general formulation of the scaling property).

|a|

The Dirac Delta function

27 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Important consequences of the composition property are

δ(−x) = δ(x) (symmetry property).

δ(ax) = δ(x)

|a|

(scaling property).

δ(ax − x 0 ) = δ(x− x 0

a

)

(a more general formulation of the scaling property).

|a|

δ(x 2 − a 2 ) = δ(x−a)+δ(x+a)

2|a| .

The Dirac Delta function

27 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Important consequences of the composition property are

δ(−x) = δ(x) (symmetry property).

δ(ax) = δ(x)

|a|

(scaling property).

δ(ax − x 0 ) = δ(x− x 0

a

)

(a more general formulation of the scaling property).

|a|

δ(x 2 − a 2 ) = δ(x−a)+δ(x+a)

2|a| .

∫ ∞

−∞ g(x)δ(f(x))dx = ∑ n

g(x n)

|f ′ (x n)|

The Dirac Delta function

27 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Important consequences of the composition property are

δ(−x) = δ(x) (symmetry property).

δ(ax) = δ(x)

|a|

(scaling property).

δ(ax − x 0 ) = δ(x− x 0

a

)

(a more general formulation of the scaling property).

|a|

δ(x 2 − a 2 ) = δ(x−a)+δ(x+a)

2|a| .

∫ ∞

−∞ g(x)δ(f(x))dx = ∑ n

g(x n)

|f ′ (x n)|

The Dirac Delta function

27 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Convolution

Convolution

f(x)⊗δ(x+x 0) = ∫ ∞

f(ς)δ(ς−(x+x0))dς = f(x+x0)

−∞

The effect of convolving with the position-shifted Dirac delta is to shift f(t)

by the same amount.

∫ ∞

−∞ δ(ζ − x)δ(x − η)dx = δ(ζ − η)) The Dirac Delta function

28 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Convolution

Convolution

f(x)⊗δ(x+x 0) = ∫ ∞

f(ς)δ(ς−(x+x0))dς = f(x+x0)

−∞

The effect of convolving with the position-shifted Dirac delta is to shift f(t)

by the same amount.

∫ ∞

−∞ δ(ζ − x)δ(x − η)dx = δ(ζ − η)) The Dirac Delta function

28 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Heaviside

Definition (Step function)

Θ(x) = 1 2 (1 + x

|x| )

Definition (Step function)

{ 1 x ≥ 0

Θ(x) =

0 x < 0

dx = 1 d x

2 dx |x| = 1 2 lím d 2

arctan (px) =

p→∞ dx π

1

π lím p

p→∞ 1 + p 2 x = δ(x)

2

Heaviside

δ(x) = dΘ(x)

dx

The Dirac Delta function

29 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Heaviside

Definition (Step function)

Θ(x) = 1 2 (1 + x

|x| )

Definition (Step function)

{ 1 x ≥ 0

Θ(x) =

0 x < 0

dx = 1 d x

2 dx |x| = 1 2 lím d 2

arctan (px) =

p→∞ dx π

1

π lím p

p→∞ 1 + p 2 x = δ(x)

2

Heaviside

δ(x) = dΘ(x)

dx

The Dirac Delta function

29 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Heaviside

y

y

p⩵0.5

x

p⩵2

x

y

y

p⩵1

x

p⩵5

x

The Dirac Delta function

30 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Fourier transform of the Dirac delta function

Fourier transform

Γ [δ(x)] = ̂δ(x ∗ ) ≡ ∫ ∞

−∞ δ(x) exp (−2πix∗ x)dx = 1

This property allow us to state yet another definition of the Dirac delta as

the inverse Fourier transform of f(x) = 1

Definition (Dirac delta function)

δ(x) =

∫ ∞

−∞

exp (2πix ∗ x)dx ∗ The Dirac Delta function

31 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Fourier transform of the Dirac delta function

Fourier transform

Γ [δ(x)] = ̂δ(x ∗ ) ≡ ∫ ∞

−∞ δ(x) exp (−2πix∗ x)dx = 1

This property allow us to state yet another definition of the Dirac delta as

the inverse Fourier transform of f(x) = 1

Definition (Dirac delta function)

δ(x) =

∫ ∞

−∞

exp (2πix ∗ x)dx ∗ The Dirac Delta function

31 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Dirac delta function obtained from a complete set of

orthonormal functions

Let the set of functions {ψ n} be a complete system of orthonormal functions

in the interval (a, b) and let x and x 0 be inner points of that interval. Then

Theorem (Orthonormal functions)

n ψ∗ n(x)ψ n(x 0) = δ(x − x 0)

To proof the theorem we shall demonstrate that the left hand side has the

sifting property of the Dirac distribution

I = ∫ b

f(x) ∑

a n ψ∗ n(x)ψ n(x 0)dx = f(x 0)

f(x) = ∑ m cmψm(x) cm = ∫ b

a f(x)ψ∗ m(x)dx

The Dirac Delta function

32 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Dirac delta function obtained from a complete set of

orthonormal functions

I =

∫ b

a

c ∑ mψ m(x) ψn(x)ψ ∗ n(x 0)dx =

m

n

∑ ∑

∫ b

c m ψ n(x 0) ψn(x)ψ ∗ m(x)dx

m n

a

∫ b

a ψ∗ n(x)ψ m(x)dx = K δ mn

I = ∑ n

c m ψ n(x 0) K δ mn =

n

c mψ m(x 0) = f(x 0)

n

The Dirac Delta function

33 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Dirac comb

Definition (Dirac comb)

∑ ∞

m=−∞ δ(x − ma) The Dirac Delta function

34 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Dirac comb

1

The set { √ exp (2πinx/a)} forms a complete set of orthonormal

(|a|)

functions, then

δ(x) = 1 ∞

|a| n=−∞

exp (2πinx/a)

each summand in the LHS in the above expression is periodic with period

|a| therefore the whole sum is periodic with the same period and

Dirac comb

∑ ∞

1

m=−∞

δ(x − ma) = ∞

|a| n=−∞ exp (2πinx/a) The Dirac Delta function

35 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Fourier transform of a Dirac comb

∞∑

∫ ∞

∫ ∞

−∞ m=−∞

δ(x − ma) exp(−2πix ∗ x)dx =

∞∑

δ(x − ma) exp(−2πix ∗ x)dx =

m=−∞ −∞

m=−∞

∞∑

exp(2πix ∗ ma)

Theorem (Fourier transform of a Dirac comb)

Γ [ ∑ ∞

1

m=−∞

δ(x − ma)] =

|a|

∑ ∞

h=−∞ δ(x∗ − h/a) = |a ∗ | ∑ ∞

h=−∞ δ(x∗ − ha ∗ )

The Fourier transform of a Dirac comb is a Dirac comb

The Dirac Delta function

36 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Dirac delta in higher dimensional space

Dirac delta in higher dimensions. Cartesian coordinates

···

f(⃗x)δ(⃗x − ⃗x0)d N x = f( ⃗x 0)

which comes from

···

f(x1, x 1, . . . x N )δ(x 1 −x 01)δ(x 2 −x 02) . . . δ(x N −x 0N )dx 1dx 2 . . . dx N =

f( x 01, x 02, ⃗ . . . x 0N )

Definition (Dirac delta in higher dimensions. Cartesian

coordinates)

δ(⃗x − ⃗x 0) = δ(x 1 − x 01)δ(x 2 − x 02) . . . δ(x N − x 0N ) = ∏ N

s=1 δ(xs − x0s)

The Dirac Delta function

37 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

General coordinates

{x i}: Cartesian coordinates

{y i}: General coordinates

x 1 = x 1(y 1, . . . y N )

x 2 = x 2(y 1, . . . y N )

. . .

x N = x N (y 1, . . . y N )

J(y 1, y 2, . . . , y N ) =

∂x 1 ∂x 1

∂y 1

∂x 2 ∂x 2

∂y 1

∂x N

∂y 1

∂x 1

∂y 2

. . .

∂y N

∂y 2

. . .

∂x 2

∂y N

. . . . . . . . . . . .

∂x N

∂y 2

. . .

∂x N

∂y N

∣ ∣∣∣∣∣∣∣∣

Definition (Dirac delta in higher

dimensions. General coordinates)

δ(⃗x − ⃗x 0) =

1

δ(⃗y − ⃗y0) |J(y 1 ,y 2 ,...,y N )|

The Dirac Delta function

38 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Oblique coordinates

x 1 = a 11y 1 + a 12y 2 . . . a 1N y N

J(y 1, y 2, . . . , y N ) =

x 2 = a 11y 1 + a 22y 2 . . . a 2N y N

a 11 a 12 . . . a 1N ∣∣∣∣∣∣∣

.

a 21 a 22 . . . a 2N

x N = a N1y 1 + a N2y 2 . . . a NN y N ∣

. . . . . . . . . . . .

a N1 a N2 . . . a NN

⃗x =

a 11 a 12 . . . a 1N

a 21 a 22 . . . a 2N

. . . . . . . . . . . .

⎠ ⃗y

Definition (Dirac delta in higher

dimensions. Oblique coordinates)

δ(⃗x− ⃗x 0) = 1 δ(⃗y − ⃗y0) = √

1

δ(⃗y − ⃗y

| ||A|| | | ||G|| | 0)

The Dirac Delta function

39 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Recap: Definitions

δ(x − x 0)dx =

{ ∞ x = x0

δ(x) = d ( 1

dx 2 (1 + x )

|x| ) 0 x ≠ x 0

p

δ(x) = lím

p→∞ π exp (−px2 )

p sin px

δ(x) = lím

p→∞ π px

δ(x) = lím

p→∞

δ(x) =

∫ ∞

−∞

1 p

p 1 + p 2 x 2

exp (2πix ∗ x)dx ∗

δ(x − x 0) = ∑ n

ψ ∗ n(x)ψ n(x 0)

where {ψ ∗ n(x)} is a complete set of orthornormal functions.

The Dirac Delta function

40 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Recap: Properties

Γ [

∫ b

a

δ(f(x)) = ∑ n

δ(x 2 − a 2 ) =

∞∑

m=−∞

1

2 ⎪⎨

[f(x− 0 ) + f(x+ 0 ] x0 ∈ (a, b)

1

f(x)δ(x − x 0)dx =

2 f(x+ 0 ) x0 = a

1

⎪⎩

2 f(x− 0 ) x0 = b

0 x 0 /∈ (a, b)

δ(x − x n)

|f ′ (x n|

∫ ∞

g(x)δ(f(x))dx = ∑

−∞ n

δ(−x) = δ(x) δ(ax − x 0) = δ(x − x 0

a

)

|a|

δ(x − ma)] = |a ∗ |

δ(x − a) + δ(x + a)

2|a|

∞∑

m=−∞

∞∑

h=−∞

g(x n)

|f ′ (x n)|

f(x) ⊗ δ(x + x 0) = f(x + x 0)

δ(x ∗ − ha ∗ ) Γ [δ(x)] = ̂δ(x ∗ ) = 1

δ(x − ma) = 1

|a|

∞∑

n=−∞

exp (2πinx/a)

The Dirac Delta function

41 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Recap: Higher Dimensions

Cartesian coordinates:

· · ·

f(⃗x)δ(⃗x − ⃗x 0)d N x = f( ⃗x 0)

δ(⃗x − ⃗x 0) = δ(x 1 − x 01)δ(x 2 − x 02) . . . δ(x N − x 0N ) =

General Coordinates {y i}:

δ(⃗x − ⃗x 0) =

Oblique Coordinates ⃗x = A · ⃗y:

1

δ(⃗y − ⃗y0)

|J(y 1, y 2, . . . , y N )|

N∏

δ(x s − x 0s)

s=1

δ(⃗x − ⃗x 0) = 1

| ||A|| | δ(⃗y − ⃗y0) = 1

| ||G|| |

δ(⃗y − ⃗y 0)

The Dirac Delta function

42 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Exercises

Prove:

δ(f(x)) = ∑ δ(x−x n)

n |f ′ (Hint: develop f(x) in Taylor series around x n and

(x n|

prove the sifting property with δ(f(x)))

∑ ∞

n=−∞ f(na) = |x∗ | ∑ ∞

m=−∞ ̂f(mx ∗ ) (Poisson summation formula)

sin ((2p+1)π x−x 0 )

a

lím p→∞

sin (π x−x0 = |a| ∑ ∞

a ) m=−∞ δ(x − x 0 − ma)

The Dirac Delta function

43 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

Exercises

Prove that on the limit p → ∞ the sawtooth funtion tends to the Dirac

comb

The Dirac Delta function

44 / 45


Introduction δ as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

References

Prof. RNDr. Jiri Komrska.

The Dirac distribution

http://physics.fme.vutbr.cz/∼komrska

V. Balakrishnan

All about the Dirac Delta Function(?)

The Dirac Delta function

45 / 45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!