10.02.2017 Views

Beam_Deflection_Formulae

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

BEAM DEFLECTION FORMULAE<br />

BEAM TYPE SLOPE AT FREE END DEFLECTION AT ANY SECTION IN TERMS OF x<br />

1. Cantilever <strong>Beam</strong> – Concentrated load P at the free end<br />

MAXIMUM DEFLECTION<br />

2<br />

Pl<br />

2EI<br />

2<br />

Px<br />

6EI<br />

θ= y = ( 3l−<br />

x)<br />

3<br />

Pl<br />

δ<br />

max<br />

=<br />

3EI<br />

2. Cantilever <strong>Beam</strong> – Concentrated load P at any point<br />

2<br />

Pa<br />

θ=<br />

2EI<br />

3. Cantilever <strong>Beam</strong> – Uniformly distributed load ω (N/m)<br />

2<br />

Px<br />

y = ( 3a− x)<br />

for 0< x<<br />

a<br />

6EI<br />

2<br />

Pa<br />

y = ( 3x− a)<br />

for a< x<<br />

l<br />

6EI<br />

2<br />

Pa<br />

δ<br />

max<br />

= 3 −<br />

6EI<br />

( l a)<br />

3<br />

ωl<br />

6EI<br />

2<br />

ωx<br />

24EI<br />

2 2<br />

θ= y = ( x + 6l − 4lx)<br />

4<br />

ωl<br />

δ<br />

max<br />

=<br />

8EI<br />

4. Cantilever <strong>Beam</strong> – Uniformly varying load: Maximum intensity ω o (N/m)<br />

ω l<br />

24EI<br />

ω x<br />

120lEI<br />

3<br />

2<br />

o<br />

o 3 2 2 3<br />

θ= y = ( 10l − 10l x+ 5lx − x )<br />

4<br />

ωol<br />

δ<br />

max<br />

=<br />

30EI<br />

5. Cantilever <strong>Beam</strong> – Couple moment M at the free end<br />

θ=<br />

Ml<br />

EI<br />

y =<br />

2<br />

Mx<br />

2EI<br />

2<br />

Ml<br />

δ<br />

max<br />

=<br />

2EI


BEAM DEFLECTION FORMULAS<br />

BEAM TYPE SLOPE AT ENDS DEFLECTION AT ANY SECTION IN TERMS OF x MAXIMUM AND CENTER<br />

DEFLECTION<br />

6. <strong>Beam</strong> Simply Supported at Ends – Concentrated load P at the center<br />

2<br />

Pl<br />

θ<br />

1<br />

=θ<br />

2<br />

=<br />

16EI<br />

Px 2<br />

⎛3<br />

l 2 ⎞<br />

y = ⎜ − x ⎟ for 0 < x<<br />

l<br />

12EI<br />

⎝ 4 ⎠<br />

2<br />

3<br />

Pl<br />

δ<br />

max<br />

=<br />

48EI<br />

7. <strong>Beam</strong> Simply Supported at Ends – Concentrated load P at any point<br />

Pbx 2 2 2<br />

2 2<br />

Pb( l − b )<br />

y = ( l −x − b ) for 0 < x<<br />

a<br />

θ<br />

1<br />

=<br />

6lEI<br />

6lEI<br />

Pb ⎡ l<br />

3 2 2 3⎤<br />

Pab(2 l − b)<br />

y = ( x a) ( l b ) x x<br />

θ<br />

2<br />

=<br />

6lEI<br />

⎢<br />

− + − −<br />

⎣b<br />

⎥<br />

⎦<br />

6lEI<br />

for a< x<<br />

l<br />

8. <strong>Beam</strong> Simply Supported at Ends – Uniformly distributed load ω (N/m)<br />

2 2<br />

Pb( l − b ) 32<br />

δ<br />

max<br />

= at x= ( l 2 − b<br />

2<br />

)<br />

3<br />

9 3lEI<br />

Pb<br />

δ= ( 3l<br />

2 −4b<br />

2<br />

) at the center, if a><br />

b<br />

48EI<br />

3<br />

ωl<br />

3 2 3<br />

θ<br />

1<br />

=θ<br />

2<br />

= y = ( l − 2lx + x )<br />

24EI<br />

ωx<br />

24EI<br />

4<br />

5ωl<br />

δ<br />

max<br />

=<br />

384EI<br />

9. <strong>Beam</strong> Simply Supported at Ends – Couple moment M at the right end<br />

θ =<br />

1<br />

θ =<br />

2<br />

Ml<br />

6EI<br />

Ml<br />

3EI<br />

Mlx ⎛ x<br />

y = ⎜1−<br />

6EI<br />

⎝ l<br />

2<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

Ml<br />

δ<br />

max<br />

= at x =<br />

9 3EI<br />

2<br />

Ml<br />

δ= at the center<br />

16EI<br />

l<br />

3<br />

10. <strong>Beam</strong> Simply Supported at Ends – Uniformly varying load: Maximum intensity ω o (N/m)<br />

3<br />

7ωol<br />

θ<br />

1<br />

=<br />

360EI<br />

ωox<br />

4 2 2 4<br />

y =<br />

3<br />

( 7l − 10l x + 3x<br />

)<br />

ωol<br />

360lEI<br />

θ<br />

2<br />

=<br />

45EI<br />

ω l<br />

max<br />

0.00652<br />

EI<br />

4<br />

ωol<br />

δ= 0.00651 at the center<br />

EI<br />

4<br />

o<br />

δ = at x = 0.519<br />

l

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!