20.05.2013 Views

Ambienti acquatici di transizione - Autorità di Bacino del fiume Po

Ambienti acquatici di transizione - Autorità di Bacino del fiume Po

Ambienti acquatici di transizione - Autorità di Bacino del fiume Po

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Ambienti</strong> <strong>acquatici</strong> <strong>di</strong> <strong>transizione</strong>: aspetti<br />

ecologici e problemi semantici<br />

Pierluigi Viaroli<br />

Dipartimento <strong>di</strong> Scienze Ambientali, Università <strong>di</strong> Parma<br />

Dati e risultati dai progetti europei: CLEAN, ROBUST, NICE & DITTY<br />

e dal progetto MURST: NITIDA


Il termine acque <strong>di</strong> <strong>transizione</strong> (transitional waters) viene introdotto con la<br />

<strong>di</strong>rettiva 2000/60/EC con lo scopo <strong>di</strong> una semplice classificazione <strong>del</strong>le<br />

acque superficiali in dolci, interme<strong>di</strong>e, marino costiere (McLusky & Elliot,<br />

2007). La definizione è : corpi idrici superficiali in prossimità <strong>del</strong>la foce <strong>di</strong> un<br />

<strong>fiume</strong>, che sono parzialmente <strong>di</strong> natura salina a causa <strong>del</strong>la loro vicinanza<br />

alle acque costiere, ma sostanzialmente influenzati dai flussi <strong>di</strong> acqua dolce<br />

La definizione è però ambigua ed esclude la maggior parte <strong>del</strong>le lagune<br />

me<strong>di</strong>terranee che non ricevono acque dolci (Tagliapietra & Volpi Ghirar<strong>di</strong>ni,<br />

2006), mentre è applicabile alle lagune <strong>del</strong> Baltico. Viene proposto il termine:<br />

ambienti <strong>di</strong> <strong>transizione</strong><br />

Una definizione operativa “aquatic areas which are neither fully open coastal<br />

nor enclosed or flowing freshwater areas” è proposta da McLusky & Elliot<br />

(2007).<br />

McLusky & Elliott, 2007. Transitional waters: A new approach, semantics or just muddying the waters?<br />

Estuarine, Coastal and Shelf Science 71: 359-363<br />

Tagliapietra, D., Ghirar<strong>di</strong>ni, A.V., 2006. Notes on the coastal lagoon typology in the light of the EU Water<br />

Framework Directive: Italy as a case study. Aquatic Conservation: Marine & Freshwater Ecosystems 16,<br />

457e467.


… the term transitional waters … reflects the evolution of<br />

language in this subject area, encompassing tidal<br />

estuaries and non-tidal brackish water lagoons.<br />

La <strong>di</strong>scussione è ancora aperta - conclusione <strong>del</strong>l’e<strong>di</strong>torial<br />

<strong>di</strong> McLusky & Elliot (2007)<br />

Non solo una questione semantica : nell’applicazione <strong>del</strong>la<br />

WFD alcuni stati membri non considerano le transitional<br />

waters.<br />

McLusky & Elliott, 2007. Transitional waters: A new approach, semantics or just muddying the<br />

waters? Estuarine, Coastal and Shelf Science 71: 359-363


Giordani G., P. Viaroli, D. P.<br />

Swaney, C. N. Murray, J. M.<br />

Zal<strong>di</strong>var and J. J. Marshall<br />

Crossland (eds), 2005. Nutrient<br />

fluxes in transition zones of the<br />

Italian Coast. LOICZ<br />

REPORTS & STUDIES No. 28.<br />

http://www.dsa.unipr.it/lagunet


Coastal lagoon typology<br />

Basset, A., Sabetta, L., Fonnesu, A., Mouillot, D., Do Chi, T., Viaroli, P.,<br />

Giordani, G., Reizopoulou, S., Abbiati, M., Carrada, G.C., 2006. Typology in<br />

Me<strong>di</strong>terranean transitional waters: new challenges and perspectives. Aquatic<br />

Conservation: Marine and Freshwater Ecosystems 16, 441-455.<br />

Tagliapietra, D., Ghirar<strong>di</strong>ni, A.V., 2006. Notes on the coastal lagoon typology in<br />

the light of the EU Water Framework Directive: Italy as a case study. Aquatic<br />

Conservation: Marine & Freshwater Ecosystems 16, 457-467.<br />

Climate<br />

Morphometry<br />

Tidal range<br />

Freshwater<br />

influence<br />

Geology<br />

Biogeochemistry<br />

Log number of taxa<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

y = 0.24x + 1.50<br />

R 2 = 0.19, p


BenthOC<br />

Investigation of relationships between macrobenthos communities and se<strong>di</strong>mentary<br />

organic matter content in transitional waters soft se<strong>di</strong>ments along the Italian coast to<br />

develop benthic in<strong>di</strong>cators of environmental quality<br />

(leaders P. Magni & D. Tagliapietra)<br />

ARBITRARY UNITS<br />

No effect<br />

Interme<strong>di</strong>ate<br />

stress<br />

Macrobenthic variables<br />

High stress/<br />

Disturbance<br />

Dissolved O2<br />

Se<strong>di</strong>mentary organic matter TOC %DW<br />

mo<strong>di</strong>fied from Pearson & Rosemberg (1978), Hyland et al.<br />

(2000), de Wit et al. (2001); Viaroli et al. (2004)


Nel Me<strong>di</strong>terraneo gli ambienti <strong>di</strong> <strong>transizione</strong> sono<br />

soprattutto lagune costiere<br />

Caratteristiche unificanti e tratti <strong>di</strong>stintivi<br />

Bassa profon<strong>di</strong>tà<br />

Gra<strong>di</strong>enti <strong>di</strong> salinità<br />

Variabilità morfologica<br />

Prevalenza <strong>del</strong>le comunità bentoniche<br />

Risospensione<br />

Zonazione<br />

Zonazione


EEA – Corine Land Cover 2000 © JRC-EC


Intervallo <strong>di</strong><br />

superficie (km 2 )<br />

0.25-0.50<br />

0.51-1.00<br />

1.0-5.0<br />

5.0-10.0<br />

10.0-50.0<br />

50.0-100.0<br />

100.0-200.0<br />

> 200.0<br />

Total<br />

Lagune me<strong>di</strong>terranee<br />

No.<br />

1<br />

209<br />

lagune<br />

65<br />

33<br />

68<br />

16<br />

15<br />

6<br />

5<br />

%<br />

31.1<br />

15.8<br />

32.5<br />

7.7<br />

7.2<br />

2.9<br />

2.4<br />

0.5<br />

100.0<br />

km 2<br />

23.3<br />

25.2<br />

160.8<br />

106.2<br />

338.4<br />

365.0<br />

661.6<br />

364.7<br />

2045.2<br />

Area<br />

0.4<br />

0.8<br />

2.4<br />

6.6<br />

22.6<br />

60.8<br />

132.3<br />

364.7<br />

%<br />

1.1<br />

1.2<br />

7.9<br />

5.2<br />

16.5<br />

17.9<br />

32.4<br />

17.8<br />

100.0<br />

46.9% con A< 0.50 km 2 79.4% con A< 5.0 km 2


Intervallo <strong>di</strong><br />

superficie (km 2 )<br />

0.51-1.00<br />

1.0-5.0<br />

5.0-10.0<br />

10.0-50.0<br />

50.0-100.0<br />

100.0-200.0<br />

> 200.0<br />

Numero totale<br />

Superficie totale<br />

Lagune italiane<br />

Nord<br />

Adriatico<br />

3<br />

4<br />

4<br />

7<br />

1<br />

1<br />

1<br />

21<br />

1068.0<br />

Sud<br />

Adriatico<br />

0<br />

3<br />

0<br />

0<br />

2<br />

0<br />

0<br />

5<br />

120.2<br />

Tirreno<br />

3<br />

5<br />

0<br />

1<br />

0<br />

0<br />

0<br />

9<br />

43.9<br />

Sicilia<br />

Il 76% <strong>del</strong>le aree lagunari si trova nell’alto adriatico<br />

2<br />

1<br />

0<br />

1<br />

0<br />

0<br />

0<br />

4<br />

22.4<br />

Sardegna<br />

18<br />

15<br />

3<br />

4<br />

0<br />

0<br />

0<br />

40<br />

143.7


A multiscalar approach (Tagliapietra and Co-workers)<br />

Map Art Design: Atlante <strong>del</strong>la Laguna, GIS CNR-ISMAR Venezia, LAR-IUAV Venezia<br />

ISMAR


Restricted lagoon<br />

Open Lagoon<br />

Courtesy by D. Tagliapietra et al.<br />

Map Art Design: Atlante <strong>del</strong>la Laguna, GIS CNR-ISMAR Venezia, LAR-IUAV Venezia


Upper Fluvial Delta (Bay-<br />

Head, Proximal)<br />

Lower Fluvial Delta<br />

(Mouth, Distal)<br />

Marginal Fringe Zone<br />

Remote Fringe Zone<br />

Courtesy by D. Tagliapietra et al.<br />

Fringe Zone local Facies<br />

Open Lagoon Sheltered<br />

Central Basin Calm<br />

Central Basin Dynamic<br />

Map Art Design: Atlante <strong>del</strong>la Laguna, GIS CNR-ISMAR Venezia, LAR-IUAV Venezia<br />

Marine Tidal Delta Calm<br />

Marine Tidal Delta<br />

Dynamic<br />

Mesotipologies


Numero minimo <strong>di</strong> repliche che garantisce una descrizione<br />

adeguata <strong>del</strong>l’eterogeneità spaziale (Bartoli et al., 2003.<br />

Aquatic ecology 37: 341-349 )<br />

,25<br />

,20<br />

,15<br />

,10<br />

,05<br />

0,00<br />

-,05<br />

Where:<br />

BEA<br />

An<br />

D04_D<br />

Average of n replicates with 4<br />

d<br />

n<br />

BEA An<br />

BEA<br />

Best Estimate of the true Average ( assumed as the average of 18 replicates)<br />

D06_D<br />

D08_D<br />

D10_D<br />

D12_D<br />

D14_D<br />

D16_D<br />

D18_D<br />

18<br />

d6 0,05


Neanthes spp.<br />

17 cm<br />

Profon<strong>di</strong>tà <strong>del</strong>le tane<br />

Corophium spp.<br />

4 cm


Estensione <strong>del</strong>l’interfaccia acqua-se<strong>di</strong>mento in relazione alla<br />

densità <strong>di</strong> Corophium<br />

3 mm<br />

40 mm<br />

Area pareti:<br />

~700 mm 2<br />

Con densità <strong>di</strong><br />

5000 ind m -2<br />

~3.5 m 2


0<br />

0<br />

-2<br />

biomass (g DW m )<br />

365<br />

730<br />

1095<br />

1460<br />

<strong>di</strong>ssolved oxygen (% saturation) A<br />

365<br />

730<br />

1095<br />

1460<br />

1825<br />

1825<br />

2190<br />

2190<br />

2555<br />

2555<br />

2920<br />

2920<br />

A<br />

3285<br />

3285<br />

Sacca <strong>di</strong> Goro lagoon<br />

(<strong>Po</strong> River Delta,<br />

Northern Adriatic Sea)<br />

biomass of the<br />

seaweed Ulva rigida<br />

and related <strong>di</strong>ssolved<br />

oxygen concentrations


Sacca <strong>di</strong> Goro Maggio-Luglio 1992 – variazioni <strong>del</strong>le<br />

concentrazioni <strong>del</strong>l’ossigeno nella colonna d’acqua


sed water level (mm)<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

4 am<br />

3 pm<br />

0 6 12 18 24 30<br />

mgO 2 L-1<br />

Sacca <strong>di</strong> Goro St G<br />

Variazioni <strong>del</strong>le<br />

concentrazioni<br />

<strong>del</strong>l’ossigeno <strong>di</strong>sciolto<br />

all’interfaccia acquase<strong>di</strong>mento<br />

in presenza <strong>di</strong><br />

microfitobenthos<br />

SWIMP: Se<strong>di</strong>ment-Water<br />

Interface MicroProfiler,<br />

ISMES © , Italy. Mo<strong>di</strong>fied<br />

from (Barbanti et al., 1996)


se<strong>di</strong>ment water (mm)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

St. 17: 13:00 29/9/95<br />

µmolS 2- L -1<br />

0 600 1200 1800 2400 Sacca <strong>di</strong> Goro lagoon, st.<br />

17 - Profili verticali <strong>di</strong><br />

ossigeno e solfuri in uno<br />

strato <strong>di</strong> Ulva adagiato sul<br />

se<strong>di</strong>mento<br />

Ulva bed<br />

mol O 2L -1<br />

0 100 200 300<br />

Sistemi a macroalghe<br />

SWIMP: Se<strong>di</strong>ment-Water<br />

Interface MicroProfiler, ISMES © ,<br />

Italy (Barbanti et al., 1996)


Concentrazioni <strong>del</strong>l’ossigeno o flussi <strong>di</strong> ossigeno?<br />

Ecosystem properties represented with NP and DR maximum potential:<br />

TH = total heterotrophy; H = net heterotrophy; A = net autotrophy; TA =<br />

total autotrophy (after Rizzo et al., 1996; and Viaroli and Christian, 2003)<br />

Dark Respiration ( mol m -2 h -1 )<br />

-2000<br />

-4000<br />

-6000<br />

-8000<br />

-10000<br />

-12000<br />

-14000<br />

-16000<br />

2D Graph 2<br />

Net Maximum Productivity ( mol m -2 h -1 )<br />

-10000 0 10000 20000 30000 40000<br />

0<br />

TH<br />

Balanced<br />

stable<br />

Unbalanced<br />

unstable<br />

H A TA<br />

stG-Ulva stG-bare se<strong>di</strong>ment stS-Ruppia stS-Bare se<strong>di</strong>ment


.<br />

Classification of ecosystem metabolism . based on oxygen<br />

production (NP = net production at light saturation) and<br />

consumption (DR = dark respiration). BP = biomass peak (L: low,<br />

H:High), BD = biodegradability (R: refractory, La: labile) C= NP<br />

and DR peaks are coincident, S= DR peak follows the NP peak<br />

(Rizzo et al., Estuaries, 1996; Viaroli & Christian, Ecological In<strong>di</strong>cators, 2003)<br />

===============================================================<br />

CATEGORIES CONDITION SYSTEM QUALIFICATIONS<br />

Rates BP/BD Timing<br />

-------------------------------------------------------------------------------------------------------------<br />

Dystrophy DR=NP


Il metabolismo netto <strong>del</strong>l’ecosistema (NEM) può essere stimato con il mo<strong>del</strong>lo<br />

biogeochimico LOICZ. Il NEM misura la produttività <strong>del</strong> sistema.<br />

Relazione tra NEM (mol m -2 y -1 ) e carico <strong>del</strong> fosforo inorganico (DIP, mol m -2<br />

y -1 ) in 17 lagune italiane (Giordani et al., 2005. LOICZ R&S 28)


•Eutrofizzazione<br />

•Bassa profon<strong>di</strong>tà processi se<strong>di</strong>mentari<br />

•Centralità <strong>del</strong> comparto bentonico<br />

•Vegetazione bentonica come tracciante<br />

Conceptual representation of the succession of aquatic vegetation along an<br />

increasing eutrophication gra<strong>di</strong>ent accor<strong>di</strong>ng to 1: Nienhuis (1992), 2: Valiela et<br />

al. (1997) and Dahlgreen and Kautsky (2004); 3: Schramm (1999)<br />

phanerogams<br />

perennial benthic<br />

macrophytes<br />

Succession phases and con<strong>di</strong>tions (pristine altered)<br />

seagrasses<br />

phanerogams+epiphytes<br />

macrophytes+ fast<br />

growing epiphytes<br />

macroalgae+phytoplankton<br />

macroalgae<br />

free floating<br />

macroalgae+phytoplankton<br />

phytoplankton<br />

phytoplankton<br />

picoplankton<br />

cyanobacteria<br />

Ref<br />

1<br />

2, 3<br />

?


multivariate systems with non-liner behaviour<br />

Water depth<br />

phanerogams macroalgae<br />

Nutrient loa<strong>di</strong>ng<br />

phytoplankton<br />

In nutrient poor, well-flushed and shallow waters phanerogams take advantage of<br />

nutrient supply from se<strong>di</strong>ment. Long water residence times favour macroalgae and<br />

phytoplankton. Given a certain water residence time, the succession from perennial<br />

benthic species to macroalgae and phytoplankton seems mainly caused by nutrient<br />

loa<strong>di</strong>ngs (Valiela et al., 1997, L&O 42: 1105-1118; Dahlgreen & Kautsky, 2004.<br />

Hydrobiologia 514: 249–258,).<br />

Water residence time


iogeochemical controls and switches (de Wit et al., 2001; Rozan et al., 2002)<br />

oxic<br />

O 2<br />

SO 4 2-<br />

FeOOH-PO 4 3-<br />

anoxic<br />

HS -<br />

OM+SO 4 2- HS -<br />

HS - + Fe 2+ + PO 4 3-<br />

FeS + FeS 2<br />

uptake<br />

oxic<br />

O 2 PO 4 3-<br />

SO 4 2-<br />

FeOOH-PO 4 3-<br />

anoxic<br />

HS -<br />

decay<br />

Winter Summer Winter


key biogeochemical controls<br />

CaCO 3 Fe HS -<br />

CaCO 3<br />

-<br />

+<br />

Fe<br />

+<br />

-<br />

PO 4 3-<br />

HS -<br />

-<br />

+<br />

PO 4 3-<br />

•Caumette P., Castel J, Herbert R., 1996. Coastal lagoon eutrophication and anaerobic processes (C.L.E.A.N.).<br />

Hydrobiologia 329<br />

•Chambers RM, Fourquren JW, Macko SA, Hoppenot R, 2001. Biogeochemical effects of iron availability on primary<br />

producers in a shallow marine carbonate environment. Limnology and Oceanography 46: 1278-1286<br />

•de Wit R et al., 2001. ROBUST: The ROle of BUffering capacities in STabilising coastal lagoon ecosystems. Continental<br />

Shelf Research 21: 2021-2041.<br />

•Lapointe, B.E., M.M. Littler & D.S. Littler, 1992. Nutrient availability to marine macroalage in siliciclastic versus carbonaterich<br />

coastal waters. Estuaries 15: 75-82<br />

•Meysman FJR, Middleburg JJ, 2005. Acid-volatile sulphide (AVS) – A comment. Marine Chemistry 97: 206-212. Rickard D,<br />

Morse JW, 2005. Acid Volatile Sulphide (AVS). Marine Chemistry 97: 141-197.<br />

+<br />

-


ARBITRARY UNITS<br />

No effect<br />

Interme<strong>di</strong>ate<br />

stress<br />

Macrobenthic variables<br />

High stress/<br />

Disturbance<br />

Dissolved O2<br />

Se<strong>di</strong>mentary organic matter TOC %DW<br />

Relationship between se<strong>di</strong>mentary organic matter,<br />

oxygen and macrobenthic variables. Mo<strong>di</strong>fied from<br />

Pearson & Rosemberg (1978), De Wit et al. (2001),<br />

and Hyland et al. (2000)


Elemental and molecular composition (units: % dry weight) and<br />

decomposition of <strong>di</strong>fferent macrophyte biomass under summer<br />

con<strong>di</strong>tions (from De Wit et al., 1996; Viaroli et al., 1992 and 1996)<br />

C<br />

N<br />

P<br />

AFDW<br />

Hemicellulose<br />

Cellulose<br />

Lignin<br />

Decomposition<br />

Half-time (d)<br />

Ulva<br />

20.5-38.9<br />

2.2-5.1<br />

0.11-0.68<br />

66-83<br />

22.3-29.3<br />

7.4-14.0<br />

-<br />

7-9<br />

Ruppia<br />

34.9-37.7<br />

2.2-3.4<br />

0.14-0.38<br />

76-84<br />

19.6-26.5<br />

12.0-19.1<br />

2.0-3.4<br />

28<br />

Zostera<br />

40.1-45.5<br />

2.4-3.1<br />

0.24-0.29<br />

77-82<br />

25.3-29.2<br />

15.1-20.0<br />

3.1-7.2<br />

37


Variables and ranges for assessing the potential<br />

vulnerability level. Se<strong>di</strong>mentary variables are referred to the<br />

upper 5 cm se<strong>di</strong>ment horizon<br />

<strong>Po</strong>tential Vulnerability Level<br />

Score<br />

Water Residence Time (WRT)<br />

Net Ecosystem Metabolism (NEM)*<br />

Granulometry<br />

Se<strong>di</strong>mentary Organic Matter (OM)<br />

C:N ratio in the se<strong>di</strong>mentary OM<br />

Se<strong>di</strong>mentary carbonates<br />

Se<strong>di</strong>mentary Reactive Iron<br />

Se<strong>di</strong>mentary Acid Volatile Sulphide<br />

(AVS)<br />

* NEM or NPmax vs DR<br />

Units<br />

days<br />

mol m -2 y -1<br />

-<br />

% dw<br />

-<br />

% dw<br />

µmol cm -3<br />

µmol cm -3<br />

Low<br />

3<br />

20<br />

>40<br />

>200<br />

100<br />

10<br />

clay<br />

>10<br />


PVL<br />

<strong>Po</strong>tential Vulnerability level<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Goro Lesina<br />

Water Residence Time<br />

Net Ecosystem Metabolism<br />

Granulometry<br />

Se<strong>di</strong>mentary Organic Matter<br />

C:N ratio in se<strong>di</strong>mentary OM<br />

Se<strong>di</strong>mentary carbonates<br />

Se<strong>di</strong>mentary Reactive Iron<br />

Se<strong>di</strong>mentary AVS


vulnerability = impacts – effects of adaptation<br />

(McFadden, Nicholls, Penning-Rowsell (eds), 2007. Managing Coastal Vulnerability.<br />

Elsevier, Oxford, 262 p.)<br />

potential vulnerability = impacts – buffering capacity ?<br />

(CLEAN and ROBUST projects)<br />

Stressors?<br />

Controlling factors?<br />

In<strong>di</strong>cators of vulnerability?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!