27.05.2013 Views

Note brevi ed i Riassunti del convegno - Sezione di Georisorse e ...

Note brevi ed i Riassunti del convegno - Sezione di Georisorse e ...

Note brevi ed i Riassunti del convegno - Sezione di Georisorse e ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Convegno Annuale <strong>del</strong> Gruppo Italiano <strong>di</strong> Geologia Strutturale<br />

U<strong>di</strong>ne, 25 – 28 febbraio 2009<br />

<strong>Note</strong> <strong>brevi</strong> e <strong>Riassunti</strong><br />

Questo volume dei Ren<strong>di</strong>conti online <strong>del</strong>la Società Geologica Italiana raccoglie le <strong>Note</strong> Brevi e i <strong>Riassunti</strong><br />

<strong>del</strong>le comunicazioni e dei poster presentati al Convegno annuale <strong>del</strong> Gruppo Italiano <strong>di</strong> Geologia Strutturale<br />

(GIGS), sezione <strong>del</strong>la Società Geologica Italiana. Il <strong>convegno</strong>, svoltosi tra il 25 e il 28 febbraio 2009, è stato<br />

organizzato presso il Polo scientifico <strong>del</strong>l’Università <strong>di</strong> U<strong>di</strong>ne e ha visto la partecipazione <strong>di</strong> 130 persone, oltre<br />

60 <strong>del</strong>le quali hanno preso parte all’escursione <strong>del</strong> 27 e 28 febbraio nelle Prealpi Carniche e Giulie. Numerosa la<br />

partecipazione <strong>di</strong> ricercatori e dottoran<strong>di</strong>, in linea con lo spirito dei Convegni annuali <strong>del</strong> GIGS, che intendono<br />

fornire soprattutto a loro un occasione per confrontarsi scientificamente e per presentare i risultati - anche<br />

preliminari – <strong>del</strong>le ricerche.<br />

I temi trattati vanno dalla Geo<strong>di</strong>namica alla Tettonica, all’Analisi micro- e mesostrutturale e, in particolare,<br />

alla Tettonica attiva, con comunicazioni sui risultati <strong>di</strong> ricerche svolte principalmente in Appennino, Alpi e<br />

Dinari<strong>di</strong>, ma anche in America meri<strong>di</strong>onale e centrale, Asia, Antartide e Oceano Pacifico. In vari casi si tratta <strong>di</strong><br />

ricerche che usano tecniche e metodologie innovative, spesso nell’ambito <strong>di</strong> gruppi <strong>di</strong> ricerca multi<strong>di</strong>sciplinari.<br />

Il 26 febbraio si è anche tenuta la sessione tematica “La geologia strutturale nella ricerca petrolifera”, che è<br />

stata sponsorizzata dall’Asso Mineraria. Questa sessione ha voluto rappresentare un primo passo per un rapporto<br />

organico e produttivo la tra la ricerca e il mondo <strong>del</strong> lavoro, in questo caso rappresentato dagli enti privati che<br />

si occupano <strong>di</strong> esplorazione mineraria. Oltre che nelle comunicazioni <strong>del</strong>la sessione tematica, le potenzialità<br />

applicative <strong>del</strong>la Geologia Strutturale sono risaltate anche da vari contributi <strong>del</strong>le sessioni “Tettonica attiva” e<br />

poster, per la definizione <strong>del</strong>la pericolosità sismica <strong>di</strong> aree alpine <strong>ed</strong> appenniniche.<br />

Ci è gra<strong>di</strong>to ringraziare il Magnifico Rettore <strong>del</strong>l’Università degli Stu<strong>di</strong> <strong>di</strong> U<strong>di</strong>ne Prof.ssa Cristiana Compagno<br />

e il Preside <strong>del</strong>la Facoltà <strong>di</strong> Ingegneria prof. Alberto F. De Toni per aver ospitato il Convegno GIGS 2009 nel<br />

complesso <strong>del</strong> Polo Scientifico.<br />

M. Eliana Poli<br />

Adriano Zanferrari<br />

Michele Marroni<br />

Enrico Tavarnelli


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 5-8, 3 ff.<br />

From fractures to flow, a field-bas<strong>ed</strong> quantitative analysis of<br />

an outcropping carbonate reservoir.<br />

AGOSTA FABRIZIO (*), MAURO ALESSANDRONI (*, **), MARCO ANTONELLINI (°) & EMANUELE TONDI (*)<br />

RIASSUNTO<br />

Relazione tra anisotropia <strong>del</strong>le fratture e circolazione <strong>di</strong> idrocarburi<br />

In questa nota breve si riportano i dati principali riguardanti la lunghezza,<br />

spaziatura, apertura, orientazione e connettività <strong>di</strong> fratture presenti all’interno<br />

<strong>di</strong> damage zone calcaree associate a faglie trastensive affioranti nella porzione<br />

settentrionale <strong>del</strong>la Montagna <strong>del</strong>la Majella, Abruzzo. Lo scopo è quello <strong>di</strong><br />

definire le relazioni esistenti tra le singole caratteristiche <strong>del</strong>le fratture<br />

sopramenzionate e la <strong>di</strong>stribuzione <strong>di</strong> bitume all’interno <strong>di</strong> esse. Dalle analisi<br />

effettuate si evince come il bitume si concentri principalmente all’interno <strong>di</strong><br />

sistemi <strong>di</strong> fratture caratterizzati da marcate anisotropie in termini <strong>di</strong><br />

orientazione, rapporto tra fratture ad alto angolo e fratture a basso angolo<br />

rispetto alla stratificazione, e connettività. Questa configurazione determina<br />

un cambiamento <strong>del</strong>le proprietà idrauliche <strong>del</strong>la roccia madre, la quale<br />

originariamente favoriva l’accumulo degli idrocarburi all’interno <strong>del</strong>le fratture,<br />

grazie al loro basso grado <strong>di</strong> connnettività. All’interno <strong>del</strong>le damage zone <strong>del</strong>le<br />

faglie, invece, i dati a nostra <strong>di</strong>sposizione in<strong>di</strong>cano un comportamento che ne<br />

favorisce la migrazione e non l’accumulo.<br />

Parole chiave: lunghezza, spaziatura e connettività <strong>del</strong>le<br />

fratture, idrocarburi, migrazione dei flui<strong>di</strong>, Formazione <strong>del</strong><br />

Bolognano, Montagna <strong>del</strong>la Majella, Apennino centrale.<br />

Keywords: fracture length, fracture spacing, fracture<br />

connectivity, hydrocarbons, fluid flow, Bolognano Formation,<br />

Majella Mountain, central Apennines.<br />

INTRODUCTION<br />

Carbonate reservoirs constitute more than 60% of the<br />

world’s oil, and about 40% of its gas reserves<br />

(SCHLUMBERGER, 2007). This is probably why in the last<br />

years a large scientific interest has risen on the characterization<br />

of their mechanical and petrophysical properties, as well as of<br />

the deformation mechanisms they are subject<strong>ed</strong> to at shallow<br />

crustal levels (AGOSTA & TONDI, 2009). Fractures in<br />

carbonates may have an important role in geofluids migrations<br />

and/or accumulation (AYDIN, 2000; GRAHAM et alii 2006;<br />

TONDI et alii 2006). They can either focus the fluid flow (e.g.,<br />

_________________________<br />

(*)Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Camerino<br />

(**)BEICIP-FRANLAB, Parigi, Francia<br />

(°)Centro Inter<strong>di</strong>partimentale <strong>di</strong> Ricerca per le Scienze Ambientali,<br />

Università <strong>di</strong> Bologna<br />

Lavoro eseguito nell’ambito <strong>del</strong> Progetto Faults & Fractures in Carbonates<br />

(F & FC) <strong>del</strong>l’Università <strong>di</strong> Camerino.<br />

joints, shear<strong>ed</strong> joints, and shear<strong>ed</strong> pressure solution seams) or<br />

form impermeable features (pressure solution seams).<br />

In this study, we take advantage of an expos<strong>ed</strong> hydrocarbonbearing,<br />

fractur<strong>ed</strong> carbonate reservoir to address the role play<strong>ed</strong><br />

by fractures on hydrocarbon migration. The study area is<br />

locat<strong>ed</strong> along the northern termination of the Majella anticline,<br />

in central Italy, within a quarry originally excavat<strong>ed</strong> by the<br />

ancient Romans, and then exploit<strong>ed</strong> until the second world war,<br />

to recover hydrocarbons in the form of tar residues. There, at<br />

the Roman Valley Quarry, the tar is present within the fractur<strong>ed</strong><br />

and fault<strong>ed</strong> carbonates associat<strong>ed</strong> to two high-angle, oblique<br />

normal faults. The faulting processes and mechanisms of fault<br />

development were recently document<strong>ed</strong> by AGOSTA et alii. in<br />

the same quarry (2009). The authors conduct<strong>ed</strong> a detail<strong>ed</strong><br />

structural analysis of the failure modes, geometry, orientation,<br />

relative timing of the <strong>di</strong>fferent fractures sets, recognizing the<br />

main structural assemblages.<br />

In this present contribution, we focus on the relation between<br />

the in<strong>di</strong>vidual fracture characteristics (length, spacing, aperture,<br />

orientation, connectivity, and <strong>di</strong>stance from slip surfaces) and<br />

tar <strong>di</strong>stribution (ALESSANDRONI, 2008). This is<br />

accomplish<strong>ed</strong> by analyzing data obtain<strong>ed</strong> from 1D scan lines<br />

measurements carri<strong>ed</strong> out along the quarry’s vertical outcrops.<br />

We perform a total of sixteen scan lines in the damage zones of<br />

the two oblique normal faults, most of which along fractur<strong>ed</strong><br />

carbonate b<strong>ed</strong>s, a few others across smaller faults crosscutting<br />

the damage zones. After data computation, we <strong>di</strong>scuss the<br />

in<strong>di</strong>vidual relations among the <strong>di</strong>fferent fracture characteristics<br />

and tar <strong>di</strong>stribution in terms of fracture anisotropy within the<br />

deform<strong>ed</strong> carbonates. We propose a conceptual mo<strong>del</strong> of<br />

fracture arrays geometry in both carbonate host rocks and in<br />

fault<strong>ed</strong> carbonates.<br />

FAULT ARCHITECTURE AND PERMEABILITY<br />

Our observations are consistent with most of the<br />

hydrocarbon flow postdating faulting and fracturing of the<br />

Oligo-Miocene carbonate rocks. At a large scale, the oil show<br />

<strong>di</strong>stribution along the main faults cropping out along the<br />

northern Majella in<strong>di</strong>cates the strong control they exert<strong>ed</strong> on<br />

hydrocarbon migration. Hydrocarbons were channel<strong>ed</strong> along<br />

these faults at unknown depths, and then migrat<strong>ed</strong> upward<br />

within the fractur<strong>ed</strong> and fault<strong>ed</strong> carbonate damage zones.<br />

Incipient faults (offset < a few cm) consist of shear<strong>ed</strong> fractures,<br />

which generally include very thin fragment<strong>ed</strong> rocks and are<br />

keen to conduce fluids. Small faults (a few cm < offset < 10cm)


6 AGOSTA ET ALII<br />

include isolat<strong>ed</strong>, b<strong>ed</strong>-confin<strong>ed</strong>, short slip surfaces, fractur<strong>ed</strong><br />

carbonates and isolat<strong>ed</strong> pods of fragment<strong>ed</strong> carbonates, and<br />

behave as single fluid conduits. M<strong>ed</strong>ium faults (10’s cm <<br />

offset < ~1m) contain well-develop<strong>ed</strong>, through-going, a few mlong<br />

slip surfaces, which are often coat<strong>ed</strong> by calcite cements,<br />

and <strong>di</strong>scontinuous pockets of fault breccias and fragment<strong>ed</strong><br />

carbonates. Bas<strong>ed</strong> on their internal architecture, these faults<br />

also behave as single conduits to fluid flow. Tar <strong>di</strong>stribution<br />

within the quarry suggests that the hydraulic connectivity of<br />

small and m<strong>ed</strong>ium faults to larger fluid conduits is key to focus<br />

hydrocarbon flow.<br />

Considering the two large faults of the quarry, the NE fault<br />

(offset > 10m) is compris<strong>ed</strong> of several segments orient<strong>ed</strong> E-W<br />

to NE-SW. The intersections among not-parallel slip surfaces<br />

are mark<strong>ed</strong> by triangular-shap<strong>ed</strong> fault breccias, whereas jogs of<br />

sub-parallel interacting slip surfaces by elongat<strong>ed</strong>, lithonshap<strong>ed</strong><br />

fault breccias. The m’s-thick fault core therefore<br />

includes the aforemention<strong>ed</strong> fault breccias, <strong>di</strong>scontinuous<br />

cataclastic rocks and major slip surfaces. The damage zone is<br />

made up of fractur<strong>ed</strong> carbonates and several smaller faults.<br />

crosscut by small faults. Overall, this fault forms a <strong>di</strong>stribut<strong>ed</strong><br />

conduit to fluid flow, in which fluids focus primarily along the<br />

numerous slip surfaces that enhance fault parallel fluid flow.<br />

The SW fault (offset > 40m)is made up of a continuous, mthick<br />

fault core flank<strong>ed</strong> by a 10’s of m-thick damage zone,<br />

which is more develop<strong>ed</strong> in the fault hanging wall then in the<br />

footwall. The fault core includes major slip surfaces, fault<br />

breccias and cataclastic rocks. The damage zone is made up of<br />

fractur<strong>ed</strong> carbonates and several smaller faults. Overall, this<br />

fault acts as a combin<strong>ed</strong> barrier-conduit permeability structure<br />

to fluid flow. There, the cataclasites form a seal for cross-fault<br />

fluid flow, whereas the surroun<strong>di</strong>ng fault breccia and the<br />

carbonate damage zone behave as <strong>di</strong>ffuse fluid conduits.<br />

FRACTURES VS. TAR DISTRIBUTION<br />

In this section we present the results of our quantitative<br />

analysis in order to assess the relation of in<strong>di</strong>vidual fracture<br />

characteristics (namely: (i) length, (ii) spacing, (iii) aperture,<br />

(iv) orientation, and (v) connectivity) and hydrocarbon<br />

<strong>di</strong>stribution. For this purpose, we group<strong>ed</strong> the fractures in highangle,<br />

HA, and low-angle, LA. The former have a <strong>di</strong>p angle<br />

>75°, the latter < 75°. We also investigate the overall fracture<br />

connectivity of fractures present along tar-free and tar-rich<br />

outcrops, and analyze the abutting relations of HA and LA<br />

fractures separately.<br />

Fracture Length, Spacing, and Aperture<br />

The graph shown in Fig. 1a represents the average length<br />

values measur<strong>ed</strong> at each station. Data range from more than<br />

4cm to 20cm, and do not show any relation with hydrocarbon<br />

<strong>di</strong>stribution. This means that the values of fracture length do<br />

not correlate with presence of hydrocarbons. In fact, we note<br />

that the tar-rich fractures have lengths compris<strong>ed</strong> between more<br />

than 8cm and less than 18cm, similar to the aforemention<strong>ed</strong><br />

length range. The HA/LA length ratios shown in fig. 1b are<br />

consistent with a wider range of values of tar-free fractures<br />

(from ~0.2 to 1.8) relative to tar-rich fractures (between ~0.9<br />

and 1.5). These data suggest that fracture arrays with HA/LA<br />

ratios around 1.2, which is the mean value comput<strong>ed</strong> for tarrich<br />

fractures, form the principle fluid pathways.<br />

The graph in fig. 1c represents the average spacing values<br />

measur<strong>ed</strong> at each station. Data span between ~4cm and ~8cm;<br />

those relat<strong>ed</strong> to only tar-rich fractures are compris<strong>ed</strong> between<br />

~4cm and ~7cm. Accor<strong>di</strong>ngly, there is no relation between<br />

fracture spacing and hydrocarbon <strong>di</strong>stribution. However, the<br />

comput<strong>ed</strong> LA/HA spacing ratios provide some new insights on<br />

their possible relation (Fig. 1d). In fact, LA fractures have<br />

higher spacing values relative to the HA ones. This relation<br />

applies in particular to fractures measur<strong>ed</strong> along tar-rich<br />

outcrops, where LA fractures have spacing values from ~1.5 to<br />

~3 times higher than those pertaining to HA fractures.<br />

Fig. 1 – (a) mean fracture lengths comput<strong>ed</strong> for in<strong>di</strong>vidual stations of<br />

measurements. Tar-free stations are in white, those invad<strong>ed</strong> by tar in<br />

black; (b) HA/LA length ratio; (c) mean fracture spacing, (d) HA/LA<br />

spacing ratio.<br />

Considering the average fracture apertures measur<strong>ed</strong> only at<br />

tar-rich stations, they are often smaller than 1mm, with the<br />

lowest ~0.2mm. Only fractures measur<strong>ed</strong> at one station (#7)<br />

greater than 1mm. In general, values compris<strong>ed</strong> between<br />

0.5mm and 0.8mm characterize the average fracture aperture<br />

measur<strong>ed</strong> at the Roman Valley Quarry. We note that HA


FROM FRACTURES TO FLOW, A FIELD BASED QUANTITATIVE ANALYSIS OF AN OUTCROPPING CARBONATE RESERVOIR<br />

fractures always have larger values than LA ones. This relation<br />

applies to almost all tar-rich outcrops, along which HA and LA<br />

fractures have similar aperture values.<br />

Bas<strong>ed</strong> on aperture data, we also compute the values of 2D<br />

fracture porosity for the tar-rich stations ranges between 0.001<br />

and ~0.01, showing therefore a one order of magnitude. The<br />

mean value comput<strong>ed</strong> for the tar-rich stations is ~0.0045<br />

(0.45%), which not very <strong>di</strong>fferent from what is generally found<br />

in fractur<strong>ed</strong> rocks (NELSON, 1985). Bas<strong>ed</strong> on these values, we<br />

also study their relation with respect to the percentage of tarrich<br />

fractures, obtaining a positive linear relation(R2 = 0.63)<br />

between the two variables.<br />

Fig. 2 – (a) <strong>di</strong>p azimuth orientation of the two most<br />

abundant fracture sets at in<strong>di</strong>vidual stations; (b) fracture<br />

anisotropy; (c) fracture spread.<br />

Fracture Orientation<br />

Data concerning the orientation of the <strong>di</strong>fferent fracture sets<br />

measur<strong>ed</strong> within the study quarry are shown in fig. 2a. The<br />

graph shows the <strong>di</strong>p azimuth of measur<strong>ed</strong> fractures (the value<br />

N180 in<strong>di</strong>cates a E-W striking and south <strong>di</strong>pping set). Data are<br />

plott<strong>ed</strong> with an angular range of 30°. The main fracture set <strong>di</strong>ps<br />

~N30 at all stations, whereas the <strong>di</strong>p azimuth of the second<br />

most abundant set varies between ~N60 and N180.<br />

These data suggest that the fracture array is characteriz<strong>ed</strong> by<br />

a pronounc<strong>ed</strong> anisotropy (Fig. 2b). The anisotropy values<br />

calculat<strong>ed</strong> by the ratio of the frequencies of the two most<br />

abundant fracture sets measur<strong>ed</strong> at in<strong>di</strong>vidual stations span<br />

between ~1 relat<strong>ed</strong> to an equal <strong>di</strong>stribution of the two most<br />

abundant fracture sets, and ~5. The latter value, on the<br />

contrary, points out to a pronounc<strong>ed</strong> fracture anisotropy.<br />

Considering the values comput<strong>ed</strong> for only tar-rich stations, we<br />

observe that they range between 1.3 and 5.2, with a mean value<br />

of ~2.7. This values is greater than that of only tar-free station,<br />

which is ~2.1, and therefore suggests that tar-rich outcrops have<br />

a higher fracture anisotropy relative to tar-free ones.<br />

We compute the fracture spread by summing the frequencies<br />

of the two most abundant fracture sets measur<strong>ed</strong> at in<strong>di</strong>vidual<br />

stations. The results of this computation are report<strong>ed</strong>, in<br />

percentage, in the graph of fig. 2c. The spread values range<br />

between ~0.4 and ~0.8, with a mean value of ~0.65 for tar-free<br />

stations and of ~0.75 for tar-rich ones. Data are therefore<br />

consistent with a mark<strong>ed</strong> fracture anisotropy in the survey<strong>ed</strong><br />

carbonate outcrops. As stat<strong>ed</strong> above, this fracture anisotropy is<br />

more pronounc<strong>ed</strong> is tar-rich outcrops.<br />

Fracture Connectivity<br />

Fracture connectivity is an important structural parameter for<br />

assessing the fluid flow/storage properties of fractur<strong>ed</strong> rocks.<br />

This parameter can be comput<strong>ed</strong> from 1D data, and is generally<br />

in<strong>di</strong>cative of the typology of fracture tips. Bas<strong>ed</strong> on their<br />

abutting relations, we may have 3 main types of fractures:<br />

isolat<strong>ed</strong> (type I), coupl<strong>ed</strong> (type II), and interconnect<strong>ed</strong> (type III)<br />

fractures (ORTEGA & MARRET, 2000). By considering the<br />

prevalent fracture typology in given outcrops, we may have low<br />

(prevalence of type I fractures), m<strong>ed</strong>ium (type II), or highly<br />

connect<strong>ed</strong> fracture arrays (type III). These relations are shown<br />

by plotting our data in a triangular <strong>di</strong>agram (Fig. 3a).<br />

Fig. 3 – Triangular <strong>di</strong>agram, showing fracture<br />

connectivity along tar-free (white dots) and tar-rich<br />

stations (black dots) of the Roman Valley Quarry.<br />

The results of this computation are consistent with presence<br />

of highly connect<strong>ed</strong> fracture arrays within the quarry. Most of<br />

the outcrops, independently on tar <strong>di</strong>stribution, are crosscut by<br />

interconnect<strong>ed</strong> fractures (type III). In terms of fluid<br />

flow/storage properties, we observe that the storage properties<br />

assess<strong>ed</strong> to the Bolognano Fm. host rocks (MARCHEGIANI et<br />

alii 2006), who recogniz<strong>ed</strong> mainly isolat<strong>ed</strong> and coupl<strong>ed</strong><br />

fractures (types I and II, respectively), are not confirm<strong>ed</strong> by our<br />

7


8 AGOSTA ET ALII<br />

data. Conversely, we find that most of the fractures present in<br />

the two fault damage zones are interconnect<strong>ed</strong> fractures.<br />

FRACTURE ANISOTROPY<br />

At a large scale, we observe that hydrocarbons are present<br />

primarily within releasing jogs of left-stepping normal faults<br />

characteriz<strong>ed</strong> by minor component of left-lateral slip. At<br />

smaller scales, we document that the structural position of small<br />

and m<strong>ed</strong>ium faults crosscutting the carbonate damage zones<br />

plays a role for hydrocarbon migration as well. In order to<br />

better address the peculiarities of fractures containing tar<br />

residues, thanks to the knowl<strong>ed</strong>ge we gain<strong>ed</strong> from this<br />

quantitative analysis, we propose the following conceptual<br />

mo<strong>del</strong> of fracture arrays in (i) carbonate host rocks and (ii)<br />

fault<strong>ed</strong> carbonates:<br />

(i) The fracture arrays in the carbonate host rocks are mainly<br />

compris<strong>ed</strong> of b<strong>ed</strong>-perpen<strong>di</strong>cular PS boun<strong>di</strong>ng oblique to<br />

b<strong>ed</strong><strong>di</strong>ng PS, and some b<strong>ed</strong>-parallel PS. The orientation of these<br />

PS sets determines quite isotropic arrays, in which those<br />

orient<strong>ed</strong> at a low-angle to the local hmax stress (inferr<strong>ed</strong> by<br />

comparing fracture orientation and aperture data) may form<br />

conduits to fluid flow, thanks to their opening caus<strong>ed</strong> by the<br />

stress con<strong>di</strong>tions, whereas those at a high-angle determine fluid<br />

barriers. In this mo<strong>del</strong>, we propose that the b<strong>ed</strong>-perpen<strong>di</strong>cular<br />

and oblique sets have both negative exponential <strong>di</strong>stributions,<br />

whereas the former sets have lengths up to the b<strong>ed</strong> thickness<br />

while the oblique PS may have greater length values.<br />

(ii) Conversely, the fracture arrays present of the fault damage<br />

zones are characteriz<strong>ed</strong> by a pronounc<strong>ed</strong> anisotropy. Bas<strong>ed</strong> on<br />

the values of the aforemention<strong>ed</strong> thresholds, we infer that tarrich<br />

fault<strong>ed</strong> carbonates have HA/LA fracture lengths >0.9, and<br />

a LA/HA spacing >1.5. We infer that this geometry is due to,<br />

primarily, pronounc<strong>ed</strong> cracking that occurr<strong>ed</strong> in the fault<strong>ed</strong><br />

carbonates. Tail joints that form<strong>ed</strong> within these rock volumes<br />

increas<strong>ed</strong> the degree of fracture connectivity, the values of<br />

fracture porosity, and the fluid transmissibility. This<br />

contribut<strong>ed</strong> to shift the fluid storage properties of the fracture<br />

arrays in carbonate host rocks, in which fluids accumulate<br />

within isolat<strong>ed</strong> or coupl<strong>ed</strong> fractures (MARCHEGIANI et alii<br />

2006), to the fluid flow properties of the fault<strong>ed</strong> carbonates, in<br />

which fluids circulate through interconnect<strong>ed</strong> fractures.<br />

CONCLUSIONS<br />

We were able to assess the control exert<strong>ed</strong> by in<strong>di</strong>vidual<br />

fracture characteristics (length, spacing, aperture, orientation,<br />

connectivity) on the hydrocarbon migration through the<br />

carbonate fault damage zones. Bas<strong>ed</strong> on the results of our<br />

detail<strong>ed</strong> quantitative analysis, we conclude that neither the<br />

fracture length nor the fracture spacing play<strong>ed</strong> a role on fluid<br />

flow. Conversely, we found that hydrocarbon mov<strong>ed</strong><br />

preferentially through fracture arrays characteriz<strong>ed</strong> by a<br />

pronounc<strong>ed</strong> anisotropy in terms of geometry, orientation, and<br />

connectivity. This configuration enhance the fluid flow through<br />

the fractures rather than its accumulation.<br />

REFERENCES<br />

AGOSTA F., & TONDI E. (Guest E<strong>di</strong>tors) (2009) - Faulting and<br />

Fracturing in Carbonate Rocks: New Insights on<br />

Deformation Mechanisms and Petrophysical Properties.<br />

Journal of Structural Geology, special volume, in press.<br />

AGOSTA F., ALESSANDRONI M., & TONDI E. (2009) - Oblique<br />

normal faulting along the northern <strong>ed</strong>ge of the Majella<br />

anticline, central Italy: inferences on hydrocarbon<br />

migration and accumulation. Journal of Structural Geology,<br />

in press.<br />

ALESSANDRONI M. (2008) - Structural control on the flow and<br />

accumulation of hydrocarbons in carbonate grainstones:<br />

an example from the Bolognano Fm. (Majella Mt. Italy).<br />

Ph.D. Thesis, University of Camerino, 167 pp.<br />

AYDIN A. (2000) - Fractures, faults, and hydrocarbon<br />

entrapment, migration and flow. Marine and Petroleum<br />

Geology 17, 797-814.<br />

GRAHAM-WALL B., GIRGACEA R., MESONJESI A. & AYDIN A.<br />

(2006) - Evolution of fluid pathways through fracture<br />

controll<strong>ed</strong> faults in carbonates of the Albanides fold-thrust<br />

belt. AAPG Bulletin, 90, 1227-1249.<br />

MARCHEGIANI L., VAN DIJK J. P., GILLESPIE P. A., TONDI E. &<br />

CELLO G. (2006) - Scaling properties of the <strong>di</strong>mensional<br />

and spatial characteristics of fault and fracture systems in<br />

the Majella Mountain, central Italy. In: CELLO G. &<br />

MALAMUD B. (Eds) Fractal Analysis for Natural Hazards.<br />

Geological Society of London, Special Publications, 261,<br />

113–131.<br />

NELSON R. A. (1985) - Geologic Analysis of Naturally<br />

Fractur<strong>ed</strong> Reservoirs. Houston, TX. Gulf Professional<br />

Publishing. 320 pp.<br />

ORTEG O., & MARRETT R. 2000, Pr<strong>ed</strong>iction of macrofracture<br />

properties using microfracture information, Mesaverde<br />

Group sandstones, San Juan basin, New Mexico. Journal of<br />

Structural Geology, 22, 5, 571–588<br />

SCHLUMBERGER (2007) - www.slb.com<br />

TONDI E., ANTONELLINI M., AYDIN A., MARCHEGIANI L. &<br />

CELLO G. (2006) - Interaction between deformation bands<br />

and pressure solution seams in fault development in<br />

carbonate grainstones of Majella Mountain, Italy. Journal<br />

of Structural Geology, 28, 376-391.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 9-12, 1 f.<br />

Deformation along the lea<strong>di</strong>ng <strong>ed</strong>ge of the Majella thrust sheet,<br />

central Italy.<br />

AGOSTA FABRIZIO (*), EMANUELE TONDI (*), MARCO ANTONELLINI (**) & ATILLA AYDIN (°)<br />

RIASSUNTO<br />

Analisi <strong>del</strong>la deformazione presente lungo il fianco orientale <strong>del</strong>la<br />

Montagna <strong>del</strong>la Majella, Fara San Martino, Abruzzo<br />

Il fianco orientale <strong>del</strong>l’anticlinale <strong>del</strong>la Majella, esposto nella zona <strong>di</strong> Fara<br />

San Martino (CH), mostra un complesso sistema <strong>di</strong> strutture tettoniche<br />

comprenden<strong>di</strong>: (i) kink band <strong>ed</strong> associate faglie inverse, (ii) faglie normali,<br />

(iii) faglie trascorrenti e (iv) fratture estensionali nei calcari <strong>di</strong> piattaforma<br />

Cretacei. In questo lavoro si documentano i meccanismi si formazione e<br />

crescita <strong>di</strong> queste strutture, così come le loro età relative. Le kink band hanno<br />

fianchi molto inclinati, sono orientate a basso angolo rispetto la stratificazione<br />

e sono localizzate al tetto <strong>di</strong> faglie inverse a basso angolo. Al contrario, le<br />

faglie normali sono ad alto angolo <strong>ed</strong> orientate parallelamente alla <strong>di</strong>rezione<br />

degli strati. I due set <strong>di</strong> faglie trascorrenti sono anch’esse ad alto angolo e, pur<br />

essendosi formate attraverso meccanismi <strong>di</strong> <strong>di</strong>ssoluzione per pressione<br />

associati al taglio <strong>di</strong> anisotropie preesistenti, formano una geometria coniugata<br />

<strong>di</strong> tipo Andersoniano. Gli elementi strutturali più recenti sembrano essere<br />

crack molto minuti visibili solo in pochi affioramenti. I vari set <strong>di</strong> faglie<br />

sembrano essere stati attivi più o meno contemporaneamente durante il<br />

piegamento degli strati con modalità <strong>di</strong> deformazione <strong>del</strong> tipo tri-shear.<br />

Parole chiave: anticlinali <strong>di</strong> rampa, Montagna <strong>del</strong>la Majella,<br />

deformazione dei calcari <strong>di</strong> piattaforma, Apennino centrale.<br />

Keywords: thrust-relat<strong>ed</strong> anticline, Majella Mountain,<br />

platform carbonate deformation, central Apennines.<br />

INTRODUZIONE<br />

Understan<strong>di</strong>ng the processes of faulting and fracturing<br />

provides a foundation for pr<strong>ed</strong>ictive mo<strong>del</strong>s for faults and<br />

fractures, inclu<strong>di</strong>ng their orientation, geometry, pattern,<br />

<strong>di</strong>stribution, kinematics, and petrophysical properties. This<br />

knowl<strong>ed</strong>ge is necessary for determining the structural setting of<br />

deform<strong>ed</strong> rocks and regions, and for evaluating fluid flow<br />

pathways in fractur<strong>ed</strong> reservoirs. In some carbonate rock types,<br />

fault initiation and evolution are associat<strong>ed</strong> with opening-mode<br />

fractures such as joints and veins. This has been document<strong>ed</strong> by<br />

_________________________________________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Camerino.<br />

(**) Centro Inter<strong>di</strong>partimentale <strong>di</strong> Ricerca per le Scienze Ambientali,<br />

Università <strong>di</strong> Bologna.<br />

(°) Department of Geological and Environmental Sciences, Stanford<br />

University, CA, USA.<br />

Lavoro eseguito nell’ambito dei progetti: Faults & Fractures in<br />

Carbonates (Università <strong>di</strong> Camerino) e <strong>del</strong> Rock Fracture Project<br />

(Stanford University).<br />

MOLLEMA &ANTONELLINI (1999) in dolomites, and<br />

KELLY et alii (1998), and GROSS & EYAL (2007) in<br />

limestones. The mechanisms describ<strong>ed</strong> by these authors are<br />

similar to those decipher<strong>ed</strong> in other brittle rocks. However,<br />

because carbonate rocks are prone to <strong>di</strong>ssolution under<br />

common geological loa<strong>di</strong>ng con<strong>di</strong>tions in the upper crust,<br />

deformation and failure of carbonate rocks usually involve<br />

pressure solution. Recent examples of carbonate rock<br />

deformation pr<strong>ed</strong>ominantly by pressure solution, and the<br />

subsequent shearing of solution seams, can be found in<br />

ALVAREZ et alii (1978), SALVINI et alii (1999), and BILLI<br />

et alii (2003). In some cases, however, both opening and<br />

closing failure modes simultaneously play<strong>ed</strong> equally important<br />

roles in carbonate rock failure (WILLEMSE et alii 1997;<br />

AGOSTA & AYDIN 2006; and ANTONELLINI et alii 2008).<br />

The con<strong>di</strong>tions lea<strong>di</strong>ng to a mix<strong>ed</strong> failure modes are not yet<br />

well constrain<strong>ed</strong>.<br />

The Majella Mountain offers an extraor<strong>di</strong>nary example of a<br />

marine carbonate that include a broad sequence of the platform<br />

carbonates and associat<strong>ed</strong> slope and basin deposits (VEZZANI<br />

& GHISETTI 1998). All these rocks have been subsequently<br />

deform<strong>ed</strong> during Apennine orogeny. Deformation of the basin<br />

and slope deposits, which consist of alternating turbi<strong>di</strong>tic<br />

grainstones and micritic marls, and its spatial and temporal<br />

variations as a function of the <strong>di</strong>fferent lithotypes were the<br />

subjects of three our recent stu<strong>di</strong>es (TONDI et alii 2006,<br />

ANTONELLINI et alii 2008; AGOSTA et alii 2009). In this<br />

note, we document a number of structural assemblages with an<br />

emphasis on the geometry, <strong>di</strong>stribution, and formation<br />

mechanisms of faults crosscutting the platform carbonates<br />

expos<strong>ed</strong> along the lea<strong>di</strong>ng <strong>ed</strong>ge of the Majella thrust sheet<br />

imm<strong>ed</strong>iately west of the town of Fara San Martino.<br />

PRINCIPAL STRUCTURAL FEATURES<br />

The study area lies along steeper frontal limb of the Majella<br />

anticline in between two spectacular gorges: Vallone Santo<br />

Spirito and Vallone Del Fossato. The area exposes carbonates<br />

of the Cima <strong>del</strong>le Murelle Formation with a b<strong>ed</strong><strong>di</strong>ng striking<br />

approximately N-S and <strong>di</strong>pping to the east about ~30°.Near the<br />

lea<strong>di</strong>ng <strong>ed</strong>ge of the thrust sheet, the <strong>di</strong>p angle increases up to<br />

65-85°. Although there are a few fossiliferous b<strong>ed</strong>s that are<br />

well-defin<strong>ed</strong> by their depositional features, most b<strong>ed</strong>s in the<br />

platform carbonates form in<strong>di</strong>vidual mechanical layers defin<strong>ed</strong><br />

by b<strong>ed</strong>-parallel pressure solution seams (GRAHAM et alii<br />

2003). It is apparent that b<strong>ed</strong>s are thinner and more systematic


10 AGOSTA ET ALII<br />

in the Cima <strong>del</strong>le Murelle Formation than in the Morrone <strong>di</strong><br />

Pacentro Fm. In spite of such <strong>di</strong>fferences, the three mutually<br />

orthogonal sets of pressure solutions, are present, in varying<br />

degrees, within both formations.<br />

These three orthogonal sets consist of one b<strong>ed</strong>-parallel and<br />

two b<strong>ed</strong>-perpen<strong>di</strong>cular pressure solution seams (PS). The<br />

former elements have spacing typically on the order of 0.5 cm<br />

to 20 cm, lengths up to 10’s of meters and define the<br />

mechanical layering of the otherwise massive carbonate rocks.<br />

Considering the two orthogonal sets of PS perpen<strong>di</strong>cular to the<br />

depositional and mechanical, the E-W PS are more continuous<br />

than the N-S orient<strong>ed</strong> PS. The latter set is generally, but not<br />

always, younger and truncates against the other sets; for this<br />

reason, it results shorter than the E-W PS. Spacing of both b<strong>ed</strong>perpen<strong>di</strong>cular<br />

sets is smaller than the thickness of the<br />

mechanical layers in which they occur.<br />

The quality of the outcrops that we have examin<strong>ed</strong> is very<br />

good, but the field work in the study area result<strong>ed</strong> highly<br />

challenging due to the steep topographic gra<strong>di</strong>ent (nearly 1<br />

km/1 km). Thus, these barren slopes, often defin<strong>ed</strong> by smooth<br />

and slippery pavements <strong>di</strong>pping higher than 35°, demand<strong>ed</strong><br />

from geologists a tiresome struggle against the gravity at all<br />

times. Also, the aerial photography is prone to significant<br />

<strong>di</strong>stortion due to high slope. Therefore, we reli<strong>ed</strong> on ground<br />

photographs and detail<strong>ed</strong> sketches for structural documentation.<br />

The study area <strong>di</strong>splays a series of kink bands and numerous<br />

faults with a variety of orientation, kinematics, and <strong>di</strong>stribution<br />

patterns: (i) thrust faults confin<strong>ed</strong> within the steeper limb of<br />

kink bands approximately in strike-parallel orientation, (ii)<br />

normal faults <strong>di</strong>stribut<strong>ed</strong> throughout the eastern slopes of the<br />

Mountain and, approximately, strike-parallel <strong>di</strong>pping generally<br />

down slope, (iii) left-lateral faults at high-angle to the front, and<br />

right-lateral faults at an acute angle to them, (iv) minor hairline<br />

cracks. The relations among these structural features are<br />

report<strong>ed</strong> in the conceptual mo<strong>del</strong> of Fig. 1.<br />

(i) Kink bands and associat<strong>ed</strong> thrust/reverse faults<br />

Perhaps one of the most intriguing types of structures<br />

<strong>di</strong>splay<strong>ed</strong> along the eastern forelimb of the Majella anticline is<br />

a series of kink bands and the associat<strong>ed</strong> thrust/reverse faults<br />

and brecciat<strong>ed</strong> zones. These structures have attract<strong>ed</strong> little<br />

attention in literature in spite of the fact that, together with the<br />

three mutually orthogonal sets of pervasive pressure solution<br />

systems, they represent the actual contraction structures of the<br />

Majella thrust sheet besides the major anticline itself.<br />

Two major continuous kink bands (label<strong>ed</strong>, from east to<br />

west, as K1 and K2) and three short and <strong>di</strong>scontinuous kink<br />

bands are all sub parallel to the project<strong>ed</strong> frontal thrust at the<br />

base of the eastern slope of the Mountain. The kink bands are<br />

monoclinals in which the <strong>di</strong>p angles of the b<strong>ed</strong>s reach 900 , if<br />

not overturn<strong>ed</strong> in a few locations. Because the east facing,<br />

steeper limbs of the kink bands are the locations of greater<br />

internal deformation, we identifi<strong>ed</strong> the approximate boundaries<br />

of these zones by the antiformal and synformal axes along the<br />

two major kink bands, K1 and K2.<br />

The antiformal axis of the kink band K2 is somewhat<br />

irregular and is less certain to define, whereas the synformal<br />

axis is extremely sharp and well-defin<strong>ed</strong>. The kink band<br />

geometry in<strong>di</strong>cates top-to-east shearing, which is consistent<br />

with the overall transport <strong>di</strong>rection of the Majella thrust sheet.<br />

The steeper limb of the kink band is compos<strong>ed</strong> of mechanical<br />

b<strong>ed</strong>s <strong>di</strong>pping to the east of an angle greater than 550. The width<br />

of the steeper limb shows some variability but, on average, falls<br />

between 10 and 30 m. We estimate a top-to-east offset across<br />

each of the two major bands of about 100 m. This offset was<br />

establish<strong>ed</strong> by considering both b<strong>ed</strong><strong>di</strong>ng attitudes and thickness<br />

of the kink bands. The large faults, primarily characteriz<strong>ed</strong> by a<br />

thrust/reverse sense of slip, within K2 are quite <strong>di</strong>scontinuous<br />

but can be mapp<strong>ed</strong> in the field. Although the mechanical b<strong>ed</strong>s<br />

are generally recognizable along K2, they are highly deform<strong>ed</strong><br />

by shear<strong>ed</strong>, pre-existing PS and ad<strong>di</strong>tional splay oblique PS.<br />

The easternmost kink band (K1), south of Vallone Del<br />

Fossato, near the project<strong>ed</strong> location of the main frontal thrust<br />

underlying the Majella sheet, shows localiz<strong>ed</strong> narrow zones of<br />

fragment<strong>ed</strong> and brecciat<strong>ed</strong> rocks along the steeper forelimb of<br />

the kink structure. The antiformal fold axis is well-round<strong>ed</strong> but<br />

still easily identifiable. Some reverse faults and breccia pockets<br />

characteriz<strong>ed</strong> by various degrees of deformation intensity can<br />

be observ<strong>ed</strong> along the steeper limb. Several reverse high-angle<br />

faults, locally utilizing pre-existing b<strong>ed</strong>-parallel PS as well as<br />

the oblique PS, are also present along the steeper limb. The<br />

oblique PS are in an orientation in<strong>di</strong>cating top-to-the-east<br />

motion along the fault. Numerous examples of oblique pressure<br />

solution seams emanating from the high-angle slip surfaces,<br />

in<strong>di</strong>cating reverse sense of slip, have also been observ<strong>ed</strong> in<br />

Vallone Del Fossato, about 200 m to the north of this location.<br />

About 100 m to the south, the steep K1 forelimb is nearly<br />

upright to overturn<strong>ed</strong> and interlac<strong>ed</strong> by high-angle faults, which<br />

locally follow b<strong>ed</strong>-parallel and oblique solution surfaces. These<br />

high-angle faults, along with multiple sets of pressure solution<br />

seams (three orthogonal sets plus oblique sets), weaken parts of<br />

the fold limb to a degree to brecciate the rock. The welldevelop<strong>ed</strong><br />

breccia pocket, whose thickness is at least 30 m, is<br />

the location of a series of catchments that provide water for the<br />

pasta factories nearby. The eastern boundary of this breccia<br />

zone is cover<strong>ed</strong> by, and may possibly merge into, the main<br />

thrust boun<strong>di</strong>ng the Majella sheet. If mergence is the case, the<br />

kink bands along the forelimb of the Majella anticline may be<br />

analogs of imbricate thrusts emanating from the basal thrust.<br />

Bas<strong>ed</strong> on both breccia thickness, which is assum<strong>ed</strong> to be the<br />

central steep limb of the kink band, and b<strong>ed</strong><strong>di</strong>ng orientation,<br />

>850, the amount of top-to-east motion associat<strong>ed</strong> with the<br />

kinks alone may be, at least, a few hundr<strong>ed</strong> meters.<br />

(ii) Normal faults<br />

A system of normal faults with traces parallel to the strike of<br />

the b<strong>ed</strong><strong>di</strong>ng pervasively occurs in the study area. A majority of<br />

the normal fault planes is orient<strong>ed</strong> down-<strong>di</strong>p with respect to<br />

b<strong>ed</strong><strong>di</strong>ng, but some, the smaller ones, are also orient<strong>ed</strong> up-<strong>di</strong>p<br />

(antithetic). In the following paragraphs we report the main<br />

results of a few select<strong>ed</strong> examples previously stu<strong>di</strong><strong>ed</strong> along the<br />

eastern limb of the Majella anticline by GRAHAM et alii<br />

(2003).<br />

The authors propos<strong>ed</strong> a mechanism for the initiatiiion and<br />

growth of normal faults in the Cretaceous platform carbonates,<br />

which consist on the shearing of the pre-existing b<strong>ed</strong>-parallel<br />

and b<strong>ed</strong>-perpen<strong>di</strong>cular, strike-parallel pressure solution seams<br />

propell<strong>ed</strong> by flexural fol<strong>di</strong>ng. Shearing across these PS sets<br />

produc<strong>ed</strong> oblique splay PS that, eventually, link<strong>ed</strong> the preexisting<br />

structures from one mechanical layer to the adjacent


DEFORMATION ALONG THE LEADING EDGE OF THE MAJELLA THRUST SHEET, CENTRAL ITALY.)<br />

ones. The oblique PS play<strong>ed</strong> an important role in the initiation<br />

and growth of the normal faults along the lea<strong>di</strong>ng <strong>ed</strong>ge of the<br />

thrust sheet. This set form<strong>ed</strong> at an angle ranging from 30° to<br />

75° to the two aforemention<strong>ed</strong> orthogonal sets, and typically<br />

truncates against them. The oblique set is commonly locat<strong>ed</strong> at<br />

their contractional quadrants, and around geometric<br />

complexities, but it has also found elsewhere along the length<br />

of the b<strong>ed</strong>-parallel seams. These oblique PS, along with the<br />

shear<strong>ed</strong> pre-existing PS, fragment<strong>ed</strong> the rock to make it weak<br />

enough to form through-going normal fault zones.<br />

The thick carbonate packages presumably deform<strong>ed</strong> due to<br />

flexural-slip along the b<strong>ed</strong>-parallel solution surfaces. As tilting<br />

and rotation of the b<strong>ed</strong>s continu<strong>ed</strong>, b<strong>ed</strong>-parallel slip proce<strong>ed</strong><strong>ed</strong><br />

producing numerous oblique PS that connect<strong>ed</strong> b<strong>ed</strong>-parallel PS<br />

and b<strong>ed</strong>-perpen<strong>di</strong>cular, strike-parallel PS. These <strong>di</strong>scontinuities<br />

fragment<strong>ed</strong> the rock in pockets that localiz<strong>ed</strong> both within and at<br />

the interfaces of the mechanical layers. These weak zones<br />

eventually coalesc<strong>ed</strong> across mechanical layer boundaries,<br />

lea<strong>di</strong>ng to the development of one or more thorough-going slip<br />

surfaces flanking fine-grain<strong>ed</strong> fault rocks. There exists a set of<br />

antithetic normal faults, which occur along the PS<br />

perpen<strong>di</strong>cular to b<strong>ed</strong><strong>di</strong>ng and parallel to the strike of the b<strong>ed</strong>s.<br />

One more set, which does not fit the normal fault group<br />

characteriz<strong>ed</strong> earlier, it is also recogniz<strong>ed</strong>. Bas<strong>ed</strong> on the<br />

intersection relations, they appear to be the oldest set. Only one<br />

relatively larger strike-slip fault appears to cut across, with<br />

complex intersection geometries, at two locations <strong>di</strong>splacing<br />

these normal faults. The earlier normal faults have low-angle<br />

<strong>di</strong>ps at present time, intersect the b<strong>ed</strong><strong>di</strong>ng at about 60°, and<br />

probably form<strong>ed</strong> when the b<strong>ed</strong>s were flat. Normal faults in<br />

similar relationship to the tilt<strong>ed</strong> b<strong>ed</strong>s were also report<strong>ed</strong> by<br />

MARCHEGIANI et alii (2006) from <strong>di</strong>fferent parts of the<br />

eastern front of the Majella Mountain.<br />

(iii) Strike-slip faults<br />

Strike-slip faults in the study area are organiz<strong>ed</strong> in, at least,<br />

two major sets. One set of these faults is about vertical, trends<br />

almost E-W, and is characteriz<strong>ed</strong> by left-lateral slip. The other<br />

set trends NE, oblique to the first set at angle of about 20-500,<br />

and shows right-lateral kinematics. The first set is generally<br />

better develop<strong>ed</strong> and controls the site of the second set. The<br />

localization of the right-lateral set in between sub parallel leftlateral<br />

faults, as well as only on one side of them is clear at a<br />

large scale. The acute intersection angle between the left-lateral<br />

and right-lateral faults is reminiscence of that between a shear<br />

fracture and its splays. A third set, which is merely a lineament,<br />

is spatially relat<strong>ed</strong> to the first set. Unfortunately, neither the<br />

sense nor the amount of slip are shown.<br />

It is <strong>di</strong>fficult to determine the slip across many of these<br />

strike-slip faults because of the lack of marker b<strong>ed</strong>s and limit<strong>ed</strong><br />

accessibility. Nevertheless, at one location near the end of a<br />

left-lateral fault, a fossiliferous b<strong>ed</strong> has been <strong>di</strong>splac<strong>ed</strong> by about<br />

7.5 to 8m. The fault core at this location includes a brecciat<strong>ed</strong><br />

fault rock of about 0.5m in thickness, which is comparable to<br />

that expect<strong>ed</strong> from a fault with 5 to 20m slip range<br />

(ANTONELLINI et alii, 2008). Considering that this fault<br />

appears to <strong>di</strong>e out to the east, the maximum slip near the center<br />

of this fault should be significantly greater than 8m.<br />

Detail<strong>ed</strong> observations and maps of the two sets of strike-slip<br />

faults suggest that they occur in a hierarchical order. In a<br />

11<br />

detail<strong>ed</strong> view, the abutting relationships appear to be mutual.<br />

Kinematical relations observ<strong>ed</strong> in the field (opposing sense of<br />

slip) in<strong>di</strong>cate the hierarchical formation of multiple generations<br />

of faults with intersection angles comparable to those between<br />

primary shear fractures and their secondary splay pressure<br />

solutions (FLETCHER AND POLLARD, 1981). We refer to<br />

this kind of strike-slip network as an “apparent conjugate”<br />

pattern in order to <strong>di</strong>stinguish it from the Andersonian fault<br />

mo<strong>del</strong>, which has <strong>di</strong>fferent implications for the mechanics and<br />

evolution of the fault systems. The pattern we document<strong>ed</strong><br />

develop<strong>ed</strong> by shearing of E-W orient<strong>ed</strong>, b<strong>ed</strong>-perpen<strong>di</strong>cular,<br />

cross pressure solution system with formation of oblique splay<br />

solution seams, and subsequent shearing of these splay features.<br />

(iv) Minor hairline cracks<br />

On one clean<strong>ed</strong> and polish<strong>ed</strong> pavement (courtesy of Eni<br />

Agip) cropping out right at the entrance of the Vallone Santo<br />

Fig. 1 – Conceptual mo<strong>del</strong> representing the relations among the<br />

structural features document<strong>ed</strong> along the trailing <strong>ed</strong>ge of the Majella<br />

thrust sheet (note that pss stands for pressure solution seams).<br />

Spirito, some cracks with apparent opening and local shearing<br />

are present. These cracks are short and <strong>di</strong>scontinuous, and<br />

cannot be seen anywhere else. This limit<strong>ed</strong> site observation<br />

in<strong>di</strong>cates that they are younger than b<strong>ed</strong>-perpen<strong>di</strong>cular PS and<br />

shear<strong>ed</strong> b<strong>ed</strong>-perpen<strong>di</strong>cular PS. Bas<strong>ed</strong> upon the drastically<br />

<strong>di</strong>fferent failure mode from all other structures we describ<strong>ed</strong><br />

before, it is likely that these cracks are the youngest structural<br />

features, possibly due to the latest uplift and down faulting.<br />

CONCLUSIONS<br />

We have describ<strong>ed</strong> a rich variety of structures within the<br />

Cretaceous platform carbonates expos<strong>ed</strong> along the frontal<br />

eastern limb of the Majella Anticline, imm<strong>ed</strong>iately above the<br />

lea<strong>di</strong>ng <strong>ed</strong>ge of the underlying thrust fault. These are pressure<br />

solution seams (PS), normal and strike-slip faults, kink bands<br />

and relat<strong>ed</strong> reverse/thrust faults, and some minor hairline<br />

cracks. The assemblages of the three mutually orthogonal PS<br />

are of pre tilting origin, and are instrumental in the formation of<br />

all three major types of faults as well as of the kink bands.


12 AGOSTA ET ALII<br />

The opening-mode cracks are the youngest structural<br />

features, and are minor in terms of spatial frequency and<br />

magnitude of strain that they accommodate. On the other hand,<br />

the three mutually orthogonal PS belonging to the pre-tilting<br />

phase are the most crucial structural elements, which<br />

introduc<strong>ed</strong> the initial mechanical anisotropy, or weak planes,<br />

within the massive platform carbonates. In the study area, they<br />

instigat<strong>ed</strong> all three types of synorogenic faults, as well as l<strong>ed</strong> to<br />

kink bands formation. The b<strong>ed</strong>-parallel PS creat<strong>ed</strong> the<br />

mechanical b<strong>ed</strong><strong>di</strong>ng within the platform carbonates and are<br />

responsible for two of the most intriguing structures describ<strong>ed</strong><br />

in this paper, kink bands and normal faults.<br />

Also crucial in terms of the developmental process of the<br />

faults, are the two orthogonal transverse sets of PS<br />

perpen<strong>di</strong>cular to the mechanical b<strong>ed</strong>s: one parallel to the strike<br />

and the second one to the <strong>di</strong>p <strong>di</strong>rection. Shearing across the<br />

b<strong>ed</strong>-perpen<strong>di</strong>cular strike-parallel PS is thought to be<br />

responsible for the formation of normal faults the context of<br />

flexural-slip of the Majella anticline forelimb. On the contrary,<br />

shearing across the b<strong>ed</strong>-perpen<strong>di</strong>cular, <strong>di</strong>p-parallel PS is<br />

assum<strong>ed</strong> to be responsible for strike-slip fault formation.<br />

Strike-slip faults occur hierarchically in two sets, which form<br />

in an apparent conjugate pattern. The two mechanisms that<br />

produc<strong>ed</strong> this pattern are the following: (1) shearing of the b<strong>ed</strong>perpen<strong>di</strong>cular,<br />

<strong>di</strong>p-parallel PS with right- or left-stepping<br />

patterns, and (2) shearing of the b<strong>ed</strong>-perpen<strong>di</strong>cular, <strong>di</strong>pparallel<br />

PS and associat<strong>ed</strong> splaying, and subsequent shearing of<br />

these splays with an opposite sense of slip. The spatial<br />

relationship between the frontal thrust and the sub-parallel kink<br />

bands in the hanging wall is kinematically and geometrically<br />

consistent except where the boundary has been obliterat<strong>ed</strong> by<br />

younger faults. Development of breccia zones along the steeper<br />

limb of the kink bands, and of high-angle thrust faults therein,<br />

is also consistent with the contractional nature of deformation<br />

along the lea<strong>di</strong>ng <strong>ed</strong>ge of a thrust sheet.<br />

REFERENCES<br />

AGOSTA F., AYDIN A., 2006 - Architecture and Deformation<br />

Mechanism of a Basin-Boun<strong>di</strong>ng Normal Fault in Mesozoic<br />

Platform Carbonates, Central Italy. Journal of Structural<br />

Geology, 28, 2445-2467.<br />

AGOSTA F., ALESSANDRONI M., & TONDI. E. (2009) - Oblique<br />

normal faulting along the northern <strong>ed</strong>ge of the Majella<br />

anticline, central Italy: inferences on hydrocarbon<br />

migration and accumulation. Journal of Structural Geology,<br />

in press.<br />

ALVAREZ W., ENGELDER T., GEISER P.A., 1978 - Classification of<br />

solution cleavage in pelagic limestones. Geology, 6, 263-<br />

266.<br />

ANTONELLINI M., TONDI E., AGOSTA F., AYDIN A., CELLO G., 2008<br />

- Evolution of strike slip faults in calcarenites and marls of<br />

basinal carbonate rocks from Majella Mountain, central<br />

Italy. Marine and Petroleum Geology, 25, 1074-1096.<br />

BILLI A., SALVINI F., STORTI F., 2003 - The Damage zone-fault<br />

core transition in carbonate rocks: implications for fault<br />

growth, structure and permeability. Journal of Structural<br />

Geology, 25, 1779-1794.<br />

FLETCHER R.C., POLLARD D.D., 1981 - Anticrack mo<strong>del</strong> for<br />

pressure solution surfaces. Geology, 9, 419-424.<br />

GRAHAM B., ANTONELLINI M., AYDIN A., 2003 - Formation and<br />

growth of normal faults in carbonates within a<br />

compressional environment. Geology, 31, 11-14.<br />

GRAHAM-WALL B., GIRGACEA R., MESONJESI A. & AYDIN A.<br />

(2006) - Evolution of fluid pathways through fracture<br />

controll<strong>ed</strong> faults in carbonates of the Albanides fold-thrust<br />

belt. American Association of Petroleum Geologists<br />

Bulletin, 90, 1227-1249.<br />

GROSS M., EYAL Y., E. (2007) - Throughgoing fractures in<br />

layer<strong>ed</strong> carbonate rocks. Geological Society of America<br />

Bulletin, 119, 1387-1404.<br />

MARCHEGIANI L., VAN DIJK J. P., GILLESPIE P. A., TONDI E. &<br />

CELLO G. (2006) - Scaling properties of the <strong>di</strong>mensional and<br />

spatial characteristics of fault and fracture systems in the<br />

Majella Mountain, central Italy. In: CELLO G. &<br />

MALAMUD B. (Eds) Fractal Analysis for Natural Hazards.<br />

Geological Society of London, Special Publications, 261,<br />

113–131.<br />

MOLLEMA P., ANTONELLINI M., 1999 - Development of strikeslip<br />

faults in the Dolomites of the Sella Group, Northern<br />

Italy. Journal of Structural Geology, 21, 273-292.<br />

KELL P. G., SANDERSON D. J., PEACOCK D. C. P., 1998 - Linkage<br />

and evolution of conjugate strike-slip fault zones in<br />

limestone of Summerset and Northumbria. Journal of<br />

Structural Geology, 20, 1477-1493.<br />

SALVINI F., BILLI A., WISE D.U., 1999 - Strike-slip faultpropagation<br />

cleavage in carbonate rocks: the Mattinata<br />

Fault zone, Southern Apennines, Italy. Journal of Structural<br />

Geology, 21, 1731–1749.<br />

TONDI E., ANTONELLINI M., AYDIN A., MARCHEGIANI L. & CELLO<br />

G. (2006) - Interaction between deformation bands and<br />

pressure solution seams in fault development in carbonate<br />

grainstones of Majella Mountain, Italy. Journal of<br />

Structural Geology, 28, 376-391.<br />

VEZZANI L., GHISETTI F., 1998. Carta Geologica Dell'Abruzzo.<br />

Regione Abruzzo. E<strong>di</strong>zioni SE.L.C.A, Firenze, scala<br />

1:100,000.<br />

WILLEMSE E., PEACOCK D., AYDIN A., 1997 - Nucleation and<br />

growth of strike-slip faults in limestones from Somerset,<br />

U.K. Journal of Structural Geology, 19, 1461-1477.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 13-16, 4 ff.<br />

Il ruolo <strong>del</strong>l’er<strong>ed</strong>ità strutturale nello sviluppo <strong>del</strong>la catena<br />

appenninica: l’esempio <strong>del</strong>la Montagna Grande e <strong>del</strong> Monte<br />

Genzana (Appennino Centrale Abruzzese)<br />

ABSTRACT<br />

The role of structural inheritance on the development of Apennine chain:<br />

an example from Montagna Grande and Monte Genzana in the Abruzzi<br />

region (Central Apennines)<br />

In the Marsica area of the Abruzzi region (Central Apennines), geological and<br />

structural study carri<strong>ed</strong> out in this paper allow<strong>ed</strong> us to characterize the high<br />

angle faults, which juxtapos<strong>ed</strong> the Messinian siliciclastic deposits to the<br />

Jurassic-Cretaceous carbonate succession, as Miocene pre-thrusting normal<br />

faults relat<strong>ed</strong> to for<strong>ed</strong>eep basin flexural process. These syn-orogenic normal<br />

faults have NW-SE, NNW-SSE attitude, parallel to the Montagna Grande and<br />

Monte Genzana fold axial trend, a length of about 15 km and a maximum<br />

<strong>di</strong>splacement of about 1.5 km. Surface data integrat<strong>ed</strong> with sub-surface<br />

information allow<strong>ed</strong> us to recogniz<strong>ed</strong> Miocene normal faults rotat<strong>ed</strong>, until to<br />

assume an apparent high angle reverse attitude (Monte Genzana Fault), and<br />

<strong>di</strong>splac<strong>ed</strong> during Messinian-early Pliocene thrust and back-thrust propagation,<br />

accor<strong>di</strong>ng to a shortcut trajectory and development of characteristic<br />

buttressing structures.<br />

The reconstruct<strong>ed</strong> kinematic and dynamic relationship between thrusts<br />

and Miocene Normal faults has been validat<strong>ed</strong> in the restor<strong>ed</strong> template of the<br />

geological sections, that allow<strong>ed</strong> us to evaluate a maximum shortening value<br />

between the Montagna Grande and Monte Genzana anticlines of about 3 km<br />

and to reconstruct an inversion tectonic mo<strong>del</strong> characteriz<strong>ed</strong> by a shortcut<br />

trajectory of thrusts across high angle Miocene syn-orogenic normal faults<br />

which controll<strong>ed</strong> the physiography of the Messinian for<strong>ed</strong>eep basin and<br />

represent the high angle faults outcropping in the stu<strong>di</strong><strong>ed</strong> area.<br />

Key words: Central Apennines, inversion tectonics, structural<br />

inheritance.<br />

INTRODUZIONE<br />

Nella catena <strong>del</strong>l’Appennino centrale abruzzese, le relazioni<br />

geometriche tra le strutture <strong>del</strong>la Montagna Grande e <strong>del</strong> Monte<br />

Genzana sono state associate alla presenza <strong>di</strong> sovrascorrimenti<br />

regionali caratterizzati da importanti entità <strong>di</strong> raccorciamento<br />

(CRESCENZI & MICCADEI, 1990; D’ANDREA et alii, 1992;<br />

PATACCA et alii, 1992; MICCADEI, 1993) o <strong>di</strong> sovrascorrimenti<br />

locali con raccorciamento conservativo <strong>di</strong> qualche chilometro<br />

(BENEO, 1938; COLACICCHI, 1967), caratterizzati da traiettorie<br />

<strong>di</strong> shortcut attraverso faglie normali giurassiche connesse allo<br />

sviluppo <strong>del</strong> paleomargine (PACE et alii, 2005). Diversamente,<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università degli Stu<strong>di</strong> <strong>di</strong> Chieti e<br />

Pescara, via dei Vestini 30, 66013 Chieti Scalo (Chieti), Italy<br />

e-mail: calamita@unich.it<br />

AGOSTINI S.(*) & CALAMITA F. (*)<br />

CORRADO et alii (1996) evidenziano nella stessa area faglie ad<br />

alto angolo connesse ad una tettonica trascorrente sin- e postcatena.<br />

PATACCA et alii (1992) hanno attribuito al bacino <strong>di</strong><br />

avanfossa <strong>del</strong> Monte Genzana una posizione più interna<br />

rispetto a quello <strong>del</strong>la Montagna Grande con forte traslazione<br />

dall’unità Gran Sasso – Genzana. Recentemente PATACCA &<br />

SCANDONE (2007) attribuiscono la Montagna Grande e il<br />

Monte Genzana allo stesso dominio <strong>di</strong> avanfossa e alla stessa<br />

unità tettonica.<br />

Lo stu<strong>di</strong>o geologico-strutturale condotto in questo lavoro è<br />

stato finalizzato a caratterizzare le relazioni tra le strutture <strong>del</strong>la<br />

Montagna Grande e <strong>del</strong> Monte Genzana allo scopo <strong>di</strong> portare<br />

un contributo alla definizione dei rapporti tra le strutture <strong>del</strong>la<br />

catena centro-appenninica e le faglie normali presovrascorrimento<br />

(er<strong>ed</strong>ità strutturale), fondamentale nella<br />

valutazione <strong>del</strong>lo stile tettonico e <strong>del</strong>l’entità <strong>di</strong> raccorciamento<br />

<strong>del</strong>la catena.<br />

ASSETTO STRUTTURALE<br />

Le strutture <strong>del</strong>la catena centro-appenninica coinvolgono le<br />

successioni triassico-mioceniche <strong>di</strong> piattaforma carbonatica<br />

persistente e <strong>di</strong> scarpata-bacino associate e i depositi<br />

silicoclastici <strong>di</strong> avanfossa messiniano-pliocenici,<br />

progressivamente più recenti verso l’avampaese adriatico.<br />

Nell’Appennino abruzzese, i sovrascorrimenti e le pieghe<br />

associate hanno un andamento NW-SE e si raccordano alla<br />

rampa obliqua Sangro-Volturno ad andamento NNE-SSW, che<br />

caratterizza l’arco <strong>del</strong>l’Appennino centro-settentrionale<br />

(CALAMITA et alii, 2004). In questo lavoro sono state analizzate<br />

le strutture <strong>del</strong>la Montagna Grande e <strong>del</strong> Monte Genzana che<br />

coinvolgono rispettivamente la successione <strong>di</strong> piattaforma<br />

carbonatica-scarpata e <strong>di</strong> scarpata-bacino pelagico e i<br />

sovrastanti depositi silicoclastici <strong>di</strong> avanfossa messiniani pre- e<br />

sin-evaporitici. Si tratta <strong>di</strong> monoclinali carbonatiche ad<br />

immersione a NE, con strati che progressivamente verso nordest<br />

assumono una maggiore pendenza sino a circa 70 gra<strong>di</strong>,<br />

sovrascorse verso NE sui depositi silicoclastici. Verso ovest,<br />

tali monoclinali sono a contatto tettonico, lungo faglie regionali<br />

ad alto angolo <strong>di</strong> pendenza e andamento NW-SE, con i depositi<br />

silicoclastici messiniani. Nell’ambito <strong>di</strong> tale assetto<br />

monoclinalico, gli strati <strong>del</strong>la successione carbonatica<br />

assumono localmente immersione a SW evidenziando blande<br />

anticlinali ad andamento assiale NW-SE, con un fianco sud-


14 S.AGOSTINI & F.CALAMITA<br />

Fig. 1 – Schema strutturale e sezioni geologiche <strong>del</strong>l’area in esame realizzati integrando i dati presentati in questo lavoro con quelli bibliografici (BENEO, 1938;<br />

COLACICCHI, 1967; CRESCENZI & MICCADEI, 1991; MICCADEI, 1993; PACE et alii, 2001).<br />

- Structural sketch and geological sections of the stu<strong>di</strong><strong>ed</strong> area reconstruct<strong>ed</strong> also using publish<strong>ed</strong> data (BENEO, 1938; COLACICCHI, 1967; CRESCENZI &<br />

MICCADEI, 1991; MICCADEI, 1993; PACE et alii, 2001).<br />

occidentale poco sviluppato.<br />

L’assetto geologico-strutturale ricostruito in questo lavoro<br />

integrando i dati bibliografici (BENEO, 1938; COLACICCHI,<br />

1967; CRESCENZI & MICCADEI, 1991; MICCADEI, 1993; PACE<br />

et alii, 2001) è schematizzato nella Fig. 1. Le sezioni<br />

geologiche e le relative retrodeformate hanno consentito <strong>di</strong><br />

definire le relazioni geometriche tra le strutture <strong>del</strong>la Montagna<br />

Grande e <strong>del</strong> Monte Genzana e <strong>di</strong> caratterizzare i contatti<br />

tettonici ad alto angolo seguibili a scala regionale tra la<br />

successione carbonatica e i depositi silicoclastici messiniani<br />

(Fig. 1).<br />

La successione carbonatica <strong>del</strong>la Montagna Grande è<br />

generalmente sovrascorsa sui depositi silicoclastici messiniani,<br />

ad eccezione <strong>del</strong> tratto in prossimità <strong>di</strong> Anversa degli Abruzzi,<br />

ove si osserva un passaggio stratigrafico (Fig. 1).<br />

I depositi silicoclastici, caratterizzati da una ripetizione<br />

marcata dalla presenza dei calcari miocenici in strati subverticali,<br />

sono coinvolti in strette pieghe e vengono a contatto<br />

con la successione carbonatica <strong>del</strong> Monte Genzana lungo una<br />

faglia inversa (faglia La Difesa) ad alto angolo immergente a<br />

NE, caratterizzata dai dati <strong>di</strong> sottosuolo (BENEO, 1938). Essa è<br />

parte integrante <strong>del</strong> sistema <strong>di</strong> faglie che <strong>del</strong>imitano a SW la<br />

struttura <strong>del</strong> Monte Genzana e si segue con continuità verso sud<br />

fino a Frattura, ove è costituita da una faglia normale


IL RUOLO DELL’EREDITÀ STRUTTURALE NELLO SVILUPPO DELLA CATENA APPENNINICA: L’ESEMPIO DELLA MONTAGNA GRANDE E DEL<br />

MONTE GENZANA (APPENNINO CENTRALE ABRUZZESE)<br />

Fig. 2 – a) Piano <strong>di</strong> faglia La Difesa-Genzana (F) <strong>di</strong>slocato da piani coniugati inversi associati al buttressing (I); b) dettaglio dei piani coniugati (I); c) scarpata<br />

<strong>di</strong> faglia che suggerisce un attività quaternaria per la faglia La Difesa-Genzana.<br />

- a) La Difesa-Genzana fault plane (F) <strong>di</strong>splac<strong>ed</strong> by conjugate reverse mesofaults(I) as effect of buttressing; b) close-up showing the conjugate reverse planes<br />

(I); c) fault scarp suggesting quaternary activity of La Difesa-Genzana fault.<br />

immergente a SE con circa 40 gra<strong>di</strong> <strong>di</strong> pendenza (Fig. 2). Il<br />

piano <strong>di</strong> faglia è <strong>di</strong>slocato da mesofaglie coniugate inverse,<br />

interpretabili come strutture da buttressing connesse al ruolo <strong>di</strong><br />

ostacolo <strong>del</strong>la faglia stessa durante lo sviluppo dei piani <strong>di</strong><br />

sovrascorrimento (Figg. 2a e 2b). Alla faglia si associa una<br />

scarpata <strong>di</strong> faglia connessa alla sua riattivazione quaternaria,<br />

responsabile <strong>del</strong> tilting dei depositi continentali quaternari <strong>di</strong><br />

Frattura (Fig. 2c). L’insieme dei dati descritti consente <strong>di</strong><br />

caratterizzare la faglia La Difesa-Genzana come una faglia<br />

normale miocenica, contemporanea alla deposizione dei<br />

depositi silicoclastici messiniani e connessa alla flessurazione<br />

<strong>del</strong>l’avampaese, ruotata fino ad assumere un apparente carattere<br />

inverso (faglia La Difesa) e <strong>di</strong>slocata dai motivi inversi a basso<br />

angolo, sviluppati durante la strutturazione <strong>del</strong>la catena<br />

(Messiniano post-crisi <strong>di</strong> salinità-Pliocene) e riutilizzata dove<br />

ha conservato una giacitura compatibile con l’estensione<br />

Fig.3 - Mesofaglie (F), caratterizzate da superfici stilolitiche, che<br />

<strong>di</strong>slocano la superficie <strong>di</strong> strato (S0) <strong>del</strong>le calcareniti mioceniche.<br />

- Mesofaults (F), characteriz<strong>ed</strong> by stylolithic surfaces, that <strong>di</strong>splac<strong>ed</strong> the<br />

b<strong>ed</strong><strong>di</strong>ng (S0) of Miocene calcarenites.<br />

quaternaria (loc. Frattura). In tutta l’area esaminata sono stati<br />

osservati numerosi sistemi <strong>di</strong> faglie inverse coniugate<br />

interpretate in questo lavoro come sistemi <strong>di</strong> faglie normali<br />

ruotate, attribuibili all’estensione associata alla flessurazione<br />

<strong>del</strong>l’avanfossa messiniana. Al top <strong>del</strong>le calcareniti mioceniche<br />

affioranti lungo la sezione BB’ si riconosce un sistema<br />

coniugato <strong>di</strong> mesofaglie con lunghezza nell’or<strong>di</strong>ne <strong>del</strong> metro e<br />

<strong>di</strong>slocazione centimetrica. Tali strutture presentano una<br />

superficie stilolitica che ne documenta un processo <strong>di</strong><br />

<strong>di</strong>ssoluzione per pressione successivo al loro sviluppo (Fig. 3).<br />

L’insieme dei dati e <strong>del</strong>le ricostruzioni ha vincolato<br />

l’esecuzione <strong>del</strong>la sezione B-B’ <strong>di</strong> Fig. 1, che consente <strong>di</strong><br />

stimare una entità <strong>di</strong> raccorciamento tra la Montagna Grande e<br />

il Monte Genzana <strong>di</strong> circa 1.5. Inoltre, la retrodeformazione<br />

<strong>del</strong>la sezione permette <strong>di</strong> valicare l’evoluzione ricostruita in<br />

questo lavoro. Nel settore più meri<strong>di</strong>onale <strong>del</strong>l’area, compreso<br />

tra il Monte Marsicano e Monte Greco, il presente stu<strong>di</strong>o ha<br />

messo in evidenza che tali strutture sin-s<strong>ed</strong>imentarie<br />

mioceniche rappresentano la riattivazione <strong>di</strong> faglie normali preorogeniche<br />

(Fig. 1, sezione D-D’). La retrodeformazione <strong>del</strong>la<br />

sezione geologica (Fig. 1 sezione d) ha consentito <strong>di</strong> stimare<br />

entità massima <strong>di</strong> raccorciamento tra la Montagna Grande e il<br />

Monte Genzana <strong>di</strong> circa 2.5 km e <strong>di</strong> confermare che i contatti<br />

tettonici ad alto angolo sono rappresentati dalle faglie normali<br />

mioceniche. L’attività <strong>di</strong> tali strutture ha portato allo sviluppo<br />

<strong>di</strong> megabrecce carbonatiche, rinvenibili nei depositi<br />

silicoclastici messiniani, <strong>ed</strong> è connessa all’estensione flessurale<br />

<strong>del</strong>l’avampaese.<br />

CONCLUSIONI<br />

Le relazioni geometriche tra le strutture <strong>del</strong>la catena centroappenninica<br />

abruzzese <strong>del</strong>la Montagna Grande e <strong>del</strong> Monte<br />

Genzana sono state <strong>di</strong>versamente interpretate dagli autori, che<br />

hanno dato particolare significato a motivi <strong>di</strong> sovrascorrimento<br />

con forti entità <strong>di</strong> raccorciamento (D’ANDREA et alii, 1992) o


16 S.AGOSTINI & F.CALAMITA<br />

Fig.4 - a) Sistema coniugato <strong>di</strong> faglie normali alla mesoscala connesso<br />

all’estensione associata alla flessurazione <strong>del</strong>l’avanfossa; b) con l’inizio<br />

<strong>del</strong>la fase compressiva le <strong>di</strong>scontinuità preesistenti hanno agito come<br />

precursori fragili ai fenomeni <strong>di</strong> presso-soluzione; c) situazione attuale a<br />

seguito <strong>del</strong>la rotazione connessa al piegamento.<br />

a) development of normal faults sistem during foreland-for<strong>ed</strong>eep<br />

evolution; b) the pre-thrusting meso-faults assum<strong>ed</strong> the role of brittle<br />

precursor localizing subsequent pressure-solution deformation<br />

document<strong>ed</strong> by stylolithes; c) present day attitude relat<strong>ed</strong> to fol<strong>di</strong>ng.<br />

con entità molto conservativa (COLACICCHI, 1967). Le<br />

geometrie ad alto angolo riscontrabili in tale settore <strong>del</strong>la<br />

catena hanno portato altri autori a dare particolare risalto alla<br />

tettonica trascorrente sin- e post-catena (CORRADO et alii,<br />

1996). Lo stu<strong>di</strong>o geologico strutturale condotto in questo<br />

lavoro ha consentito <strong>di</strong> evidenziare per le faglie ad alto angolo,<br />

che pongono a contatto i depositi silicoclastici messiniani con<br />

le successioni carbonatiche, un carattere principalmente<br />

normale, una entità <strong>di</strong> rigetto massima <strong>del</strong>l’or<strong>di</strong>ne <strong>di</strong> 1500<br />

metri, una lunghezza massima <strong>di</strong> circa 15 Km <strong>ed</strong> un età<br />

miocenica sin-depositi silicoclastici stessi (Fig.1). Tali faglie<br />

pre-sovrascorrimento sono state ruotate durante la<br />

strutturazione <strong>del</strong>la catena fino ad assumere un apparente<br />

carattere inverso (come evidente per la Faglia La Difesa),<br />

<strong>di</strong>slocate da piani <strong>di</strong> sovrascorrimento e retroscorrimento a<br />

basso angolo e riutilizzate durante la tettonica <strong>di</strong>stensiva<br />

quaternaria (loc. Frattura). Ad una scala <strong>di</strong> maggior dettaglio, il<br />

suddetto contesto <strong>di</strong> tettonica d’inversione è documentato dalla<br />

presenza <strong>di</strong> superfici stitlolitiche lungo i piani <strong>di</strong> faglia<br />

centimetrici con attuale giacitura inversa (Fig. 3). Questi sono<br />

interpretabili come un sistema <strong>di</strong> faglie normali, ruotato durante<br />

lo sviluppo <strong>del</strong>la catena, che ha agito come un precursore<br />

fragile (sensu MANCKTELOW & PENNACCHIONI, 2005) nella<br />

localizzazione <strong>del</strong>la <strong>di</strong>ssoluzione per pressione, durante la fase<br />

iniziale <strong>di</strong> raccorciamento (Fig. 4). Nel settore più meri<strong>di</strong>onale<br />

<strong>del</strong>l’area (compreso tra il Monte Marsicano e Monte Greco) il<br />

presente stu<strong>di</strong>o ha messo in evidenza che tali strutture sins<strong>ed</strong>imentarie<br />

mioceniche rappresentano la riattivazione <strong>di</strong> faglie<br />

normali pre-orogeniche (Fig. 1, sezione D-D’). La<br />

retrodeformazione <strong>del</strong>le sezioni geologiche (Fig. 1) ha<br />

consentito <strong>di</strong> validare l’interpretazione proposta, mettendo in<br />

evidenza una entità massima <strong>di</strong> raccorciamento tra la Montagna<br />

Grande e il Monte Genzana <strong>del</strong>l’or<strong>di</strong>ne <strong>di</strong> qualche chilometro.<br />

Infine il mo<strong>del</strong>lo <strong>di</strong> tettonica d’inversione proposto considera<br />

una traiettoria in short-cut a basso angolo dei piani <strong>di</strong><br />

sovrascorrimento e retroscorrimento attraverso le faglie normali<br />

pre-sovrascorrimento con sviluppo <strong>di</strong> anticlinali <strong>di</strong> short-cut.<br />

BIBILIOGRAFIA<br />

BENEO E. (1938) - Insegnamenti <strong>di</strong> una galleria a proposito<br />

<strong>del</strong>la tettonica nella Valle <strong>del</strong> Sagittario (Appennino<br />

Abruzzese). Boll. R. Uff. Geol. D’It., 65, 1-10. <br />

CALAMITA F., VIANDANTE M.G. & HEGARTY K. (2004) -<br />

Pliocene-Quaternary burial/exhumation paths of the<br />

Central Apennines (Italy). Boll. Soc. Geol. It., 123 , 503-<br />

512.<br />

COLACICCHI R. (1967) - Geologia <strong>del</strong>la Marsica Orientale.<br />

Geologica Romana, 6, 189-316.<br />

CORRADO S., MICCADEI E., PAROTTO M. & SALVINI F. (1996) -<br />

Evoluzione tettonica <strong>del</strong> settore <strong>di</strong> Montagna Grande<br />

(Appennino Centrale): il contributo <strong>di</strong> nuovi dati<br />

geometrici, cinematici e paleogeotermici. Boll. Soc. Geol.<br />

It., 115, 325-338.<br />

CRESCENZI B. & MICCADEI E. (1990) - Nuovi dati sull’assetto<br />

geologico-strutturale <strong>del</strong>la Marsica nord-orientale<br />

(Abruzzo, Appennino Centrale). Mem. Soc. Geol. It., 45,<br />

555-562.<br />

D’ANDREA M, MICCADEI E. & PRATURLON A. (1992) -<br />

Rapporti tra il margine orientale <strong>del</strong>la piattaforma Laziale-<br />

Abruzzese <strong>ed</strong> il margine occidentale <strong>del</strong>la piattaforma<br />

Morrone-Pizzalto-Rotella. Stu<strong>di</strong> geologici Camerti, Vol. sp.<br />

1991/2, CROP 11, 389-395.<br />

MICCADEI E. (1993) - Geologia <strong>del</strong>l’area Alto Sagittario-Alto<br />

Sangro (Abruzzo, Appennino Centrale). Geologica Romana,<br />

29, 463-481.<br />

MANCKTELOW N.S. & PENNACCHIONI G. (2005) - The control<br />

of precursor brittle fracture and fluid–rock interaction on<br />

the development of single and pair<strong>ed</strong> ductile shear zones.<br />

Journal of Structural Geology, 27, 645-661.<br />

PACE B., DI MATTEO P., BONCIO P. & LAVECCHIA G. (2001),<br />

Considerazioni sull’evoluzione geologica <strong>del</strong>la Marsica<br />

Sud-Orientale (Abruzzo, Appennino Centrale) sulla base <strong>di</strong><br />

un’analisi integrata <strong>di</strong> dati stratigrafici e strutturali. Boll.<br />

Soc. Geol. It., 120, 139-150.<br />

PATACCA E. & SCANDONE P. (2007) Geology of the Southern<br />

Apennines. Boll. Soc. Geol.It., Spec. Issue No. 7, 75-119.<br />

PATACCA E., SCANDONE P., BELLATALLA M., PERILLI N. &<br />

SANTINI U. (1992) La zona <strong>di</strong> giunzione tra l’arco<br />

appenninico settentrionale e l’arco appenninico<br />

meri<strong>di</strong>onale nell’Abruzzo e nel Molise. Stu<strong>di</strong> geologici<br />

Camerti, Vol. sp. 1991/2, CROP 11, 417-441.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 17-20, 3 ff.<br />

Reconstruction of pre-thrusting basin architecture: the contribution<br />

of the 3D mo<strong>del</strong>ling approach<br />

Applicazione <strong>di</strong> tecniche <strong>di</strong> mo<strong>del</strong>lizzazione 3D nella ricostruzione <strong>del</strong>le<br />

geometrie pre-thrust dei bacini <strong>di</strong>stensivi<br />

Nella catena a pieghe e sovrascorrimenti umbro-marchigiana sono<br />

descritti numerosi casi <strong>di</strong> inversione tettonica positiva; esempi chiari derivano<br />

dalla zona compresa tra la conca <strong>di</strong> Rieti e la Valnerina, dove le formazioni<br />

mesozoiche e cenozoiche affiorano con buona continuitá. Stu<strong>di</strong> <strong>di</strong> dettaglio<br />

sulle relazioni <strong>di</strong> sovrapposizione <strong>del</strong>le strutture e sulla loro cinematica hanno<br />

permesso <strong>di</strong> ipotizzare che le strutture <strong>di</strong>stensive rifeiribili alla tettonica<br />

sins<strong>ed</strong>imentaria giurassica e cretaceo-paleogenica hanno influenzato la<br />

localizzazione e lo sviluppo dei sovrascorrimenti durante la tettonica<br />

compressiva neogenica, producendo pattern <strong>di</strong> deformazione caratteristici, che<br />

appaiono controllati dalla geometria <strong>del</strong>le strutture piú antiche.<br />

M<strong>ed</strong>iante l’applicazione <strong>di</strong> tecniche <strong>di</strong> bilanciamento e retrodeformazione<br />

sequenziale in due e tre <strong>di</strong>mensioni, sono state acquisite ricostruzioni<br />

palinspastiche che descrivono la geometria tri<strong>di</strong>mensionale <strong>del</strong>l’area <strong>di</strong> stu<strong>di</strong>o:<br />

queste mostrano importanti variazioni <strong>del</strong>l’architettura dei bacini pre-orogenici<br />

durante i vari sta<strong>di</strong> evolutivi <strong>del</strong>la tettonica compressiva neogenica.<br />

Questo contributo offre un esempio <strong>di</strong> applicazione <strong>di</strong> mo<strong>del</strong>lizzazione e<br />

analisi tri<strong>di</strong>mensionale, che puó essere utilizzato per testare la coerenza<br />

geometrica in casi <strong>di</strong> tettonica da inversione positiva.<br />

Key words: Appennino settentrionale, mo<strong>del</strong>lizzazione 3D,<br />

retrodeformazione, bilanciamento.<br />

INTRODUCTION<br />

Similarly to many other fold-and-thrust belts, the Northern<br />

Apennines are an orogenic belt develop<strong>ed</strong> at the expenses of an<br />

early passive margin, where tectonic depressions and<br />

seamounts locally determin<strong>ed</strong> abrupt thickness changes in the<br />

s<strong>ed</strong>imentary successions; the architecture of precursor rift<br />

basins often controll<strong>ed</strong> the geometry of fold-and thrust systems<br />

(e.g. GILLCRIST et alii, 1987). Although many examples in<br />

literature depict cases of positive inversion tectonics, or<br />

<strong>di</strong>fferent degrees of deformation overprint, the mo<strong>di</strong>fication in<br />

space and time of precursor rift-basin geometries is not<br />

extensively document<strong>ed</strong> in publish<strong>ed</strong> accounts.<br />

The three-<strong>di</strong>mensional (3D) reconstruction of complex<br />

geological settings and of original, pre-thrusting basin geometry<br />

is one of the challenges for modern structural geology. It has<br />

inde<strong>ed</strong> a critical role in many industrial applications, such as in<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Universitá <strong>di</strong> Siena. Via Laterina,<br />

8. 53041 Siena (Italy) – e-mail: aque@unisi.it<br />

RICCARDO AQUÈ (*) & ENRICO TAVARNELLI (*)<br />

Fig. 1 – Location (a) and geological sketch (b) of the study area.<br />

the hydrocarbon exploration (e.g. CLARKE et alii, 2006).<br />

3D mo<strong>del</strong>ling techniques provide tools for an enhanc<strong>ed</strong><br />

understan<strong>di</strong>ng of the evolution of structurally complex<br />

domains, and for the validation of paleogeographic<br />

reconstructions. In combination with classical 2D restoration<br />

techniques, 3D mo<strong>del</strong>ling allows to better constrain the<br />

otherwise not always clear mean <strong>di</strong>rection of tectonic transport,<br />

the kinematics and the internal consistency of interpret<strong>ed</strong><br />

geometry of investigat<strong>ed</strong> structures. By back-stripping the<br />

deformation (tectonics and compaction), it is possible to<br />

reconstruct a set of pre-deformation templates depicting the<br />

tectonic evolution through time (i.e. ROUBY et alii, 2000;<br />

CALCAGNO et alii, 2007). These computations may also be us<strong>ed</strong><br />

to provide semi-quantitative estimates of tectonically relevant<br />

parameters (e.g. DEE et alii, 2005).<br />

By using commercial specific softwares to produce<br />

balanc<strong>ed</strong> cross-sections and inferr<strong>ed</strong> 3D reconstructions


18 R. AQUÉ & E. TAVARNELLI<br />

(2Dmove, Gocad), we mo<strong>del</strong>l<strong>ed</strong> a portion of the Umbria-<br />

Marche fold-and-thrust belt, in order to infer the pre-thrusting<br />

geometry of the Mesozoic-Cenozoic extensional basins and test<br />

the applicability of existing computer tools in areas that have<br />

experienc<strong>ed</strong> the effects of positive tectonic inversion.<br />

GEOLOGICAL OUTLINE<br />

The Umbria-Marche zone is locat<strong>ed</strong> in the outer zone of the<br />

Northern Apennines, which is an arcuate fold and thrust belt<br />

(Fig. 1a), form<strong>ed</strong> during the Neogene-Quaternary as a<br />

consequence of the closure of the Ligurian ocean, a branch of<br />

the Mesozoic Thethys, and the subsequent collision between<br />

the Corsica-Sar<strong>di</strong>nia block and the Adria promontory<br />

(BOCCALETTI et alii, 1980). The Meso-Cenozoic sequence<br />

consists on Upper Triassic evaporites and lower Liassic<br />

platform limestones gra<strong>di</strong>ng to Liassic-Tertiary pelagic<br />

carbonates. An intense Jurassic syns<strong>ed</strong>imentary extensional<br />

event determin<strong>ed</strong> the development of fault-relat<strong>ed</strong> depressions<br />

and isolat<strong>ed</strong> seamounts, respectively seat of deposition of<br />

complete and condens<strong>ed</strong> successions (e.g. CENTAMORE et alii,<br />

1971; ALVAREZ, 1989); analogous syns<strong>ed</strong>imentary activity is<br />

record<strong>ed</strong> during the Early Cretaceous and Cretaceous-<br />

Paleogene intervals (MICARELLI et alii., 1977; DECANDIA,<br />

1982). From Late Miocene onwards, the region underwent a<br />

positive tectonic inversion process that determin<strong>ed</strong> the<br />

development of the fold-and-thrust belt. The Late Triassic<br />

evaporites were kinematically activat<strong>ed</strong> as a major detachment<br />

layer, allowing for the partial decoupling of the s<strong>ed</strong>imentary<br />

cover from the underlying basement; accor<strong>di</strong>ng with<br />

palaeomagnetic evidence (CHANNELL et alii., 1978) the<br />

present-day arcuate shape of the Apennines may results from<br />

oroclinal ben<strong>di</strong>ng of an originally linear fold-and-thrust belt.<br />

In the study area, the accurate reconstruction of the<br />

structural setting, cross-cut relationships and timing of the<br />

deformation, was inferr<strong>ed</strong> by using field data, map analysis and<br />

cross-section balancing techniques (TAVARNELLI, 1996a, b).<br />

The structural overprinting relationships among the<br />

investigat<strong>ed</strong> thrusts made it possible to infer a general piggyback<br />

thrusting sequence, with new thrust faults to the East,<br />

develop<strong>ed</strong> in the footwall of formerly emplac<strong>ed</strong> thrust sheets, in<br />

the West. This allow<strong>ed</strong> to sequentially remove the effects of the<br />

deformation for progressively older structures, and to backstrip<br />

the thrust sheets in sequential evolutionary steps, in order<br />

to reconstruct a viable pre-thrusting template.<br />

3D MODELING<br />

Four balanc<strong>ed</strong> cross-sections (fig.2) have been drawn,<br />

provi<strong>di</strong>ng the initial skeleton for 3D mo<strong>del</strong>ling, together with<br />

the map trace of the major tectonic features. The cross-sections<br />

and the geological map have been <strong>di</strong>gitiz<strong>ed</strong> and geo-referr<strong>ed</strong> in<br />

2D-Move. Starting from the inferr<strong>ed</strong> geometries, a coherent<br />

3D mo<strong>del</strong> was built in Gocad (Fig. 3a). The surfaces<br />

represent post-thrust normal faults, thrust planes, and pre-thrust<br />

Fig. 2 – Balanc<strong>ed</strong> cross-sections showing key b<strong>ed</strong>s and restor<strong>ed</strong> templates,<br />

with length-shortening calculation (after TAVARNELLI, 1996a).<br />

normal faults, and five key stratigraphic surfaces, from bottom;<br />

the base and top of the Calcare Massiccio fm. (Lower Liassic),<br />

the base of the Maiolica fm. (Titonian), the base and the top of<br />

the Marne a Fucoi<strong>di</strong> fm. (Upper Albian-Lower Cenomanian).<br />

The main pre-thrusting normal faults have been project<strong>ed</strong> using<br />

their map and cross-section traces, keeping into account the<br />

thickness variation of the select<strong>ed</strong> stratigraphic reference; the<br />

complete detail of the condens<strong>ed</strong> and complete stratigraphic<br />

sequence was consider<strong>ed</strong> in cross-section only.<br />

The initial mo<strong>del</strong> shows the final state of deformation, and


was us<strong>ed</strong> to test the geometrical consistency of the cross-<br />

Fig. 3 – Top: Initial 3D mo<strong>del</strong> after the removal of the late normal faults.<br />

Bottom: restor<strong>ed</strong> top of Marne a Fucoi<strong>di</strong> fm. and buri<strong>ed</strong> basin<br />

architecture; the effect of the Jurassic normal faults is visible.<br />

sections. After the removal of the main post-thrusting normal<br />

faults, the compressive deformation has been sequentially<br />

remov<strong>ed</strong> in both cross-sections and 3D mo<strong>del</strong>, to obtain a set of<br />

mo<strong>del</strong>s that illustrat<strong>ed</strong> sequential steps of deformation through<br />

time. In this exercise, an ad<strong>di</strong>tional horizon, roughly coincident<br />

with the Oligocene, was us<strong>ed</strong> as further reference, in order to<br />

complete the mo<strong>del</strong> and to provide a first surface to be flatten<strong>ed</strong><br />

in the sequential restoration, as this marker is consider<strong>ed</strong> little<br />

affect<strong>ed</strong> by pre-orogenic syns<strong>ed</strong>imentary deformation.<br />

The restoration of the surfaces was perform<strong>ed</strong> in Gocad<br />

by using a research plugin (Muron, 2005, 2006); the method<br />

allows to flatten a fold<strong>ed</strong> horizon and fill the gap between<br />

hanging-wall and footwall cutoffs, similarly to the surface<br />

restoration that can be perform<strong>ed</strong> through other commercial<br />

software (e.g. Kine-3D, 3D-Move). The constraints for the<br />

restoration are impos<strong>ed</strong> systematically to progressively deeper<br />

surfaces, which are restor<strong>ed</strong> to an ideal undeform<strong>ed</strong> state (i.e.<br />

flatten<strong>ed</strong>, unfault<strong>ed</strong>), by joining the hanging-wall and footwall<br />

cutoffs. During restoration, the stratigraphic thickness between<br />

surfaces is maintain<strong>ed</strong> by ad<strong>di</strong>tional thickness constraints. The<br />

result is a progressively restor<strong>ed</strong> template under the reference<br />

top stratigraphic surface, highlighting the buri<strong>ed</strong> geometry and<br />

finally depicting an approximation of the basin geometry at the<br />

time of deposition (Fig.3b). During restoration, a set of<br />

tectonically relevant parameters are comput<strong>ed</strong>, such as fault<br />

<strong>di</strong>splacement, area <strong>di</strong>latation, surface curvature, strain<br />

<strong>di</strong>rections, etc. Such parameters can be us<strong>ed</strong> for further<br />

analysis, i.e. pr<strong>ed</strong>ict areas of expect<strong>ed</strong> intense fracturation (e.g.<br />

ROYER, 2006).<br />

CONCLUSIONS<br />

The combination of balanc<strong>ed</strong> cross-sections, 3D mo<strong>del</strong>ling<br />

and restoration techniques, sequentially appli<strong>ed</strong> to fold-and-<br />

RECONSTRUCTION OF PRE-THRUSTING BASIN ARCHITECTURE<br />

thrust belts, provides effective tools to unravel the geometry of<br />

the pre-thrusting geometries and depict the architecture of the<br />

s<strong>ed</strong>imentary basins. Even if the surface restoration techniques<br />

are strongly dependent from the reconstruct<strong>ed</strong> surface geometry<br />

(i.e. the mesh of the surface and the obtain<strong>ed</strong> cutoffs along a<br />

fault surface), the results are comparable to the calculations<br />

obtain<strong>ed</strong> from classical 2D balancing techniques.<br />

The results of this work seem to encourage for further<br />

applicability of similar methods to other areas of the Northern<br />

Apennines, and to geologically complex areas in general.<br />

REFERENCES<br />

ALVAREZ W. (1989) - Evolution of the Monte Nerone seamount<br />

in the Umbria-Marche Apennines: 2 - Tectonic control of<br />

the seamount-basin transition. Boll. Soc. Geol. It., 108 (1),<br />

23-39.<br />

BOCCALETTI M., COLI, M., DECANDIA F.A., GIANNINI, E. &<br />

LAZZAROTTO A. (1980) – Evoluzione <strong>del</strong>l’appennino<br />

settentrionale secondo un nuovo mo<strong>del</strong>lo strutturale. Mem.<br />

Soc. Geol. It., 21, 359-373.<br />

CALCAGNO, P., LAZARRE, J., COURRIOUX , G & LEDRU, P.<br />

(2007) - 3D geometric mo<strong>del</strong>ling of an external orogenic<br />

domain: a case history from the western Alps (massif de<br />

Morges, Pelvoux). Bull. Soc. Geol. de France, 178 (4), 263-<br />

274.<br />

CENTAMORE, E., CHIOCCHINI, M., DEIANA, G., MICARELLI, A.<br />

& PIERUCCINI U. (1971) – Contributo alla conoscenza <strong>del</strong><br />

Giurassico <strong>del</strong>l’appennino Umbro-Marchigiano. Stu<strong>di</strong><br />

Geol. Cam., 1, 7-89.<br />

CHANNELL, J.E.T., LOWRIE, W., MEDIZZA, F. & ALVAREZ, W.<br />

(1978) – Paleomagnetism and tectonics in Umbria, Italy.<br />

Earth and Planet. Sci. Lett., 39, 199-210.<br />

CLARKE, S.M., BURLEY, S.D., WILLIAMS, G.D., RICHARDS,<br />

A.J., MEREDITH, D. & EGAN, S. (2006) - Integrat<strong>ed</strong> 4D<br />

mo<strong>del</strong>ling of s<strong>ed</strong>imentary basin architecture and<br />

hydrocarbon migration.. Butler, S.J.H. and Schreurs, G.<br />

(<strong>ed</strong>s): Analogue and Numerical mo<strong>del</strong>ling of crustal scale<br />

processes. Sp. Pub. Geol Soc. London, 253, 185-211.<br />

DECANDIA, F.A. (1982) – Geologia dei monti <strong>di</strong> Spoleto (Prov.<br />

Di Perugia). Boll. Soc. Geol. It., 101, 291-315.<br />

DEE, S., FREEMAN, B., YIELDING, G., ROBERTS, A. & BRETAN,<br />

P. (2005) – Best practice in structural geological analysis.<br />

First Break, 23, 49-54.<br />

GILLCRIST, R., COWARD, M. & MUJER, J. (1987) – Structural<br />

inversion and its controls: examples from the Alpine<br />

foreland and the French alps. Geo<strong>di</strong>namica Acta, 1, 5-34.<br />

MICARELLI, A., POTETTI M. & CHIOCCHINI M. (1977) –<br />

Ricerche microbiostratigrafiche sulla maiolica <strong>del</strong>la<br />

regione umbro-marchigiana. Stu<strong>di</strong> Geol. Cam., 3, 56-86.<br />

19


20 R. AQUÉ & E. TAVARNELLI<br />

MURON, P., MALLET, J.-L. & MEDWEDEFF, D. (2005) - 3D<br />

sequential structural restoration: Geometry and<br />

Kinematics. American Association of Petroleum Geologist<br />

Annual Convention (Calgary, Canada).<br />

MURON P. (2006). Methodes numeriques 3-D de restauration<br />

des structures geologiques faillees. Ph. D. thesis, Institut<br />

National Polytechnique de Lorraine (Nancy, France).<br />

ROYER, J.J., MALLET, J.-L., COGNOT, R., & MOYEN, R. (2006)<br />

– Geochron: a framework to estimate fracturation of<br />

deform<strong>ed</strong> s<strong>ed</strong>imentary layers. XI th Int. Ass. Math. Geol.,<br />

Liége – Belgium.<br />

ROUBY, D., XIAO, H. & SUPPE, J. (2000) - 3-D Restoration of<br />

Complexly Fold<strong>ed</strong> and Fault<strong>ed</strong> Surfaces Using Multiple<br />

Unfol<strong>di</strong>ng Mechanism. AAPG bulletin, 84 (6), 805-829.<br />

TAVARNELLI, E. (1996a) – Ancient syns<strong>ed</strong>imentary structural<br />

control on thrust ramps development: examples from the<br />

Northern Apennines, Italy. Terra Nova, 8, 65-74 .<br />

TAVARNELLI, E. (1996b) – Thethyan heritage in the<br />

development of the Neogene Umbria-Marche fold-andthrust<br />

belt, Italy: a 3D approach. Terra Nova, 8, 470-478.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 21-22, 1 f.<br />

The tectonic evolution of the Pisa-Viareggio basin: implications for<br />

the Neogene basins of Tuscany<br />

RIASSUNTO<br />

Evoluzione tettonica <strong>del</strong> bacino <strong>di</strong> Pisa-Viareggio: implicazioni<br />

riguardanti i bacini neogenici <strong>del</strong>la Toscana<br />

Il bacino <strong>di</strong> Pisa-Viareggio e’ il piu’ settentrionale dei gran<strong>di</strong> bacini<br />

neogenici toscani, <strong>ed</strong> e’ riempito da ca. 3 km <strong>di</strong> s<strong>ed</strong>imenti cha vanno dal<br />

Miocene superiore al Quaternario. La sua evoluzione tettonica e’ stata stu<strong>di</strong>ata<br />

utilizzando profili sismici multicanale e pozzi per l’esplorazione, unitamente a<br />

carte geologiche <strong>di</strong> dettaglio (LAZZAROTTO et alii, 1990) nella parte<br />

meri<strong>di</strong>onale. Il bacino mostra una chiara origine estensionale, con una grande<br />

faglia bor<strong>di</strong>era immergente verso ovest posta nel sottosuolo <strong>del</strong>la pianura <strong>di</strong><br />

Pisa-Viareggio. Tuttavia, nella sua parte meridonale il bacino e’ stato soggetto<br />

a raccorciamenti e a una marcata tettonica <strong>di</strong> inversione che ha portato alla<br />

formazione dei Monti <strong>di</strong> Livorno. E’ interessante notare che a sud <strong>del</strong> bacino<br />

<strong>di</strong> Pisa-Viareggio si colloca il dominio dei bacini neogenici toscani, la cui<br />

origine e’ <strong>di</strong>battuta e il cui riempimento s<strong>ed</strong>imentario e’ deformato, talora<br />

intensamente.<br />

Key words: basin inversion, post-orogenic extension, seismic<br />

profiles, Tuscany.<br />

INTRODUCTION AND RATIONALE<br />

Several small s<strong>ed</strong>imentary basins characterize the internal<br />

portion of the Northern Apennines. These inter-montane basins<br />

trend almost parallel to the Apennine range and are fill<strong>ed</strong> by<br />

Neogene s<strong>ed</strong>iments with thickness ranging between few 100’s<br />

m to few km (BARTOLINI et alii, 1982; MARTINI et alii, 2001).<br />

S<strong>ed</strong>iments belonging to the inter-montane basins crop out<br />

extensively in western Tuscany, often appearing heavily<br />

deform<strong>ed</strong> (BROGI, 2004; SANI et alii, 2004). Partly because of<br />

the intense deformation the early tectonic history of these<br />

basins is <strong>di</strong>fficult to constrain; although classically interpret<strong>ed</strong><br />

as extensional basins (see MARTINI & SAGRI, 1993 and<br />

references therein), some recent papers call for an initial thrustrelat<strong>ed</strong><br />

origin, only later overprint<strong>ed</strong> by extension (BERNINI et<br />

alii, 1994; BOCCALETTI et alii, 1995; BONINI & SANI, 2002).<br />

The debate about the origin of the Neogene basins of<br />

_________________________<br />

(*) ISMAR-CNR, Bologna<br />

(**) ENI S.p.A., Exploration & Production Division, S. Donato Milanese,<br />

Milano<br />

ANDREA ARGNANI (*) & SERGIO ROGLEDI (**)<br />

Tuscany has been going on for more than ten years, and in spite<br />

of recent field works (BROGI 2004; SANI et alii, 2004) the<br />

ambiguity remains still unresolv<strong>ed</strong>.<br />

This contribution aims at presenting the case of an internal<br />

basin, the Pisa-Viareggio basin, which is the northernmost one<br />

among the large inter-montane basins of Tuscany and which<br />

straddles the coastline, being partly buri<strong>ed</strong> underneath the<br />

alluvial s<strong>ed</strong>iments of the Pisa plain and partly exten<strong>di</strong>ng<br />

offshore (PASCUCCI, 2005). This basin can be investigat<strong>ed</strong> only<br />

through subsurface data, and the current study is bas<strong>ed</strong> on the<br />

interpretation of a grid of industrial seismic profiles covering<br />

the Pisa plain and ti<strong>ed</strong> to the stratigraphy obtain<strong>ed</strong> from<br />

exploration wells. In ad<strong>di</strong>tion, the geology of nearby outcrops<br />

(LAZZAROTTO et alii, 1990) has been us<strong>ed</strong> to enlarge the<br />

regional scale picture.<br />

MAIN RESULTS<br />

An extensional origin can be clearly proven for the Pisa-<br />

Fig. 1 – Geological map of western Tuscany (simplifi<strong>ed</strong> after BOCCALETTI &<br />

Coli, 1982) with location of the Pisa-Viareggio basin.<br />

Viareggio basin, as seismic profiles show a west-<strong>di</strong>pping listric<br />

extensional fault that bounds the basin to the east. The basin is<br />

fill<strong>ed</strong> with up to 3 seconds of upper Messinian to Quaternary<br />

s<strong>ed</strong>iments, and extension mostly occurr<strong>ed</strong> during late


22 A. ARGNANI & S. ROGLEDI<br />

Messinian-early Pliocene, although continuing with r<strong>ed</strong>uc<strong>ed</strong><br />

intensity till the Quaternary. In spite of the extensional origin,<br />

the southern part of this basin shows in<strong>di</strong>cations of<br />

superimpos<strong>ed</strong> contractional deformation, possibly in the form<br />

of tectonic inversion, that progressively increases to the south,<br />

where the basin appears completely overturn<strong>ed</strong> and erod<strong>ed</strong> in<br />

the Livorno Mountains. The basin-boundary fault trends<br />

roughly NNW-SSE and is buri<strong>ed</strong> in the Quaternary s<strong>ed</strong>iments<br />

of the Pisa plain, but it turns rather abruptly to N-S and NNE-<br />

SSW in the south, near Livorno. Inspection of the detail<strong>ed</strong><br />

geological maps (LAZZAROTTO et alii, 1990) suggests that the<br />

fault plane may be possibly uplift<strong>ed</strong> and expos<strong>ed</strong> in the Livorno<br />

Mountains, locat<strong>ed</strong> just east of Livorno. The timing of the<br />

contractional deformation that affect<strong>ed</strong> the southern part of the<br />

Pisa-Viareggio basin can be roughly constrain<strong>ed</strong> within the<br />

Pleistocene.<br />

We speculate on the possible causes of the intense<br />

deformation that affect<strong>ed</strong> the sourthern part of the Pisa-<br />

Viareggio basin and attempt to show that the tectonic history of<br />

this basin can possibly help to better undestand the evolution of<br />

the other Neogene basins, locat<strong>ed</strong> further to the south, which<br />

suffer<strong>ed</strong> deformation and uplift to a larger extent.<br />

REFERENCES<br />

BARTOLINI C., BERNINI M., CARLONI G.C., COSTANTINI A.,<br />

FEDERICI, P.R., GASPERI G., LAZZAROTTO A., MARCHETTI<br />

G., MAZZANTI R., PAPANI G., PRANZINI G., RAU A.,<br />

SANDRELLI F., VERCESI P.I., CASTALDINI D. &<br />

FRANCAVILLA F. (1982) - Carta Neotettonica<br />

<strong>del</strong>l’Appennino settentrionale. <strong>Note</strong> Illustrative. Boll. Soc.<br />

Geol. It., 101, 523-549.<br />

BOCCALETTI M & COLI M. (coor<strong>di</strong>nators) (1982) – Carta<br />

Strutturale <strong>del</strong>’Appennino Settentrionale. Scala 1:250000.<br />

Consilgio Nazionale <strong>del</strong>le Ricerche, P.F. Geo<strong>di</strong>namica,<br />

Pubbl, 429, SELCA, Firenze.<br />

BOCCALETTI M., BONINI M., MORATTI G. & SANI F. (1995) -<br />

Nuove ipotesi sulla genesi e l'evoluzione dei bacini postnappe<br />

in relazine alle fasi compressive neogenicoquaternarie<br />

<strong>del</strong>l'Appennino Settentrionale. Scritti e docum.<br />

Accad. Naz. <strong>del</strong>le Scienze, 14, 229-262.<br />

BROGI A. (2004) - Miocene extension in the inner Northern<br />

Apennines; the Tuscan Nappe megabou<strong>di</strong>ns in the Mt.<br />

Amiata geothermal area and their influence on Neogene<br />

s<strong>ed</strong>imentation. Boll. Soc. Geol. It., 123, 513-529.<br />

BONINI M. & SANI F. (2002) - Extension and compression in<br />

the Northern Apennines (Italy) hinterland: Evidence from<br />

the late Miocene-Pliocene Siena-Ra<strong>di</strong>cofani Basin and<br />

relations with basement structures. Tectonics, 21, 3, 1010,<br />

10.1029/2001TC900024.<br />

LAZZAROTTO A., MAZZANTI R. & NENCINI C. (1990) - Carta<br />

geologica dei comuni <strong>di</strong> Livorno e <strong>di</strong> Collesalvetti<br />

(Provincia <strong>di</strong> Livorno). Scala 1:25000. Consiglio Nazionale<br />

<strong>del</strong>le Ricerche.<br />

MARTINI, I.P. & SAGRI, M. (1993) - Tectono-s<strong>ed</strong>imentary<br />

characteristics of late Miocene-Quaternary extensional<br />

basins of the Northern Apennines, Italy. Earth Science<br />

Reviews, 34, 197–233.<br />

MARTINI I.P., SAGRI M. & COLELLA A. (2001) - Neogene-<br />

Quaternary basins of the inner Apennines and Calabrian<br />

arc. In: G.B. Vai and I.P. Martini (Eds.) - Anatomy of a<br />

Mountain: the Apennines and adjacent M<strong>ed</strong>iterranean<br />

Basins. Kluwer Academic Publisher, London, 375-400.<br />

PASCUCCI V. (2005) - Neogene evolution of the Viareggio<br />

Basin, Northern Tuscany (Italy). GeoActa, 4, 123-138.<br />

SANI F., DEL VENTISETTE C., MONTANARI D., COLI M., NAFISSI<br />

P. & PIAZZINI A. (2004) - Tectonic evolution of the internal<br />

sector of the Central Apennines, Italy. Marine and<br />

Petroleum Geology, 21, 1235–1254.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 23<br />

Grain size, shape, porosity and permeability evolution of extensional<br />

fault zones develop<strong>ed</strong> in poorly lithifi<strong>ed</strong>, low-porosity sandstones of<br />

the Barreiras Formation, NE Brazil<br />

FABRIZIO BALSAMO (*), FABRIZIO STORTI (*), FRANCESCO SALVINI (*), ALINE SILVA (°) & CLAUDIO LIMA (°)<br />

ABSTRACT<br />

Evoluzione <strong>del</strong>la <strong>di</strong>mensione e <strong>del</strong>la forma dei granuli, <strong>del</strong>la porosità e<br />

<strong>del</strong>la permeabilità in zone <strong>di</strong> faglia estensionali sviluppate in arenarie<br />

poco consolidate <strong>ed</strong> a bassa porosità <strong>del</strong>la Formazione Barreiras, Brasile<br />

nord-orientale.<br />

We describe the structural and petrophysical evolution of<br />

extensional fault zones develop<strong>ed</strong> in low-porosity, poorly<br />

lithifi<strong>ed</strong> quartz-dominat<strong>ed</strong> sandstones from the Mio-Pliocene<br />

continental Barreiras Formation, NE Brazil. We stu<strong>di</strong><strong>ed</strong> eight<br />

fault zones having <strong>di</strong>splacement between few centimetres up to<br />

about 50 meters and develop<strong>ed</strong> from soft-s<strong>ed</strong>iment up to more<br />

brittle con<strong>di</strong>tions during progressive burial and Fe-oxide<br />

cementation. Our data include structural and microstructural<br />

analyses, grain size and shape analyses, porosity and pore size<br />

analyses, and laboratory and in situ permeability measurements.<br />

Undeform<strong>ed</strong> rocks are very poorly sort<strong>ed</strong>, m<strong>ed</strong>ium to fine<br />

grain<strong>ed</strong> clay-rich sandstones with an average intergranular<br />

porosity of about 3 %. Sandstones in damage zones are<br />

characteris<strong>ed</strong> by non destructive <strong>di</strong>latant granular flow and<br />

opening-mode intergranular tensional fractures, which increase<br />

bulk porosity, pore size and permeability. Deformation in fault<br />

cores evolv<strong>ed</strong> from particulate flow to compactional cataclastic<br />

flow with progressive grain size, porosity and permeability<br />

r<strong>ed</strong>uction. Our data highlight a conduit/barrier behaviour of the<br />

stu<strong>di</strong><strong>ed</strong> fault zones, which significantly <strong>di</strong>ffers from the sealing<br />

behaviour of deformation band fault zones commonly observ<strong>ed</strong><br />

in high-porosity sandstones.<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Università degli Stu<strong>di</strong> Roma Tre,<br />

Roma, Italy<br />

(°) Cenpes, Petrobras, Rio de Janeiro, Brazil<br />

Lavoro eseguito nell’ambito <strong>del</strong> progetto TRAFUR (Transmissibility of<br />

Faults in Unconsolidat<strong>ed</strong> Rocks) con il contributo finanziario <strong>del</strong>la società<br />

petrolifera Petrobras (Brasile).


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 24-26<br />

Lithological and Mechanical Control on the Base of the Crustal<br />

Seismogenic Zone: a Case-Study from the Northern Apennines of Italy.<br />

MASSIMILIANO R. BARCHI (*), CRISTIANO COLLETTINI (*), NICOLA DE PAOLA (**), DAN FAULKNER (°), ANDREA<br />

LUPATTELLI (*), FRANCESCO MIRABELLA (*) & FABIO TRIPPETTA (*)<br />

RIASSUNTO<br />

Il controllo litologico e meccanico sullo spessore sismogenetico crostale:<br />

un caso <strong>di</strong> stu<strong>di</strong>o dall'Appennino Settentrionale.<br />

L'integrazione <strong>di</strong> dati geologici <strong>di</strong> sottosuolo e dati sismologici ha<br />

mostrato che le rotture principali <strong>del</strong>la sequenza sismica che ha colpito la<br />

regione umbro-marchigiana nel 1997-98 si localizzano nelle evaporiti<br />

triassiche (formazione <strong>di</strong> Burano), senza propagarsi nel sottostante basamento.<br />

Per spiegare questo comportamento sono stati svolti stu<strong>di</strong> <strong>di</strong> terreno su faglie<br />

esumate, sviluppate nelle evaporiti triassiche, e prove <strong>di</strong> laboratorio, volte a<br />

caratterizzare le principali litologie (anidriti e dolomie) dal punto <strong>di</strong> vista<br />

meccanico e <strong>del</strong>la permeabilità.<br />

Sulla base dei risultati ottenuti, proponiamo che nella regione stu<strong>di</strong>ata la<br />

base <strong>del</strong>lo strato sismogenetico superficiale sia controllata dalle proprietà<br />

meccaniche e <strong>di</strong> permeabilità <strong>del</strong>le evaporiti triassiche, in grado <strong>di</strong> costituire<br />

una barriera per la risalita dei flui<strong>di</strong> crostali (principalmente CO2). Al <strong>di</strong> sotto<br />

<strong>del</strong>le evaporiti, un livello a bassa velocità, localizzato nella parte alta <strong>del</strong><br />

basamento, <strong>di</strong>saccoppia la copertura s<strong>ed</strong>imentaria dal basamento cristallino.<br />

Questo stu<strong>di</strong>o mostra che un semplice mo<strong>del</strong>lo <strong>di</strong> crosta superiore<br />

omogenea <strong>ed</strong> isotropa non può essere applicato ad una regione geologicamente<br />

complessa come l'Appennino Settentrionale, dove i livelli crostali superficiali<br />

sono caratterizzati da una grande variabilità litologica (e quin<strong>di</strong> meccanica e <strong>di</strong><br />

permeabilità) sia in senso verticale che laterale.<br />

Key words: Seismogenic Layer, Upper Crust, Seismic<br />

Reflection Profiles, Laboratory Tests, Anhydrites<br />

INTRODUCTION<br />

Lithological composition and temperature are the most<br />

important factors controlling the thickness of the seismogenic<br />

layer, although the mechanical/transport properties of the crust<br />

also play an important role when crustal fluids are present in<br />

areas affect<strong>ed</strong> by a complex stratigraphy and structural setting,<br />

such as the Umbria-Marche Apennines of Italy.<br />

In this region the s<strong>ed</strong>imentary cover consists of three major<br />

_________________________<br />

(*) Geologia Strutturale e Geofisica, Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra -<br />

Università <strong>di</strong> Peugia<br />

(**) Reactivation Research Group, Dept. of Earth Sciences, University of<br />

Durham (UK)<br />

(°) Rock Deformation Laboratory, University of Liverpool (UK)<br />

Lavoro eseguito nell’ambito <strong>del</strong> progetto DPC/S2 2005 (U.R. 2.3, Resp.<br />

M.R. Barchi) e MIUR Cofin 2005 (U.R. Perugia, Resp. C. Collettini)<br />

lithological groups (from top to bottom): turbi<strong>di</strong>tes (Miocene,<br />

up to 3000 m thick), made of alternat<strong>ed</strong> layers of sandstones<br />

and marls; carbonates (Jurassic-Oligocene, about 2000 m<br />

thick), consisting of an early Jurassic carbonate platform<br />

(Calcare Massiccio Fm.), overlain by pelagic limestones with<br />

subor<strong>di</strong>nat<strong>ed</strong> marly levels; and evaporites (late Triassic, 1500–<br />

2000 m thick), made of alternating layers of anhydrites and<br />

dolostones.<br />

An important regional décollement separates these units<br />

from the underlying basement. The upper part of the basement<br />

consists of clastic s<strong>ed</strong>imentary and slightly metamorphos<strong>ed</strong><br />

rocks: in situ measurements have shown that these rocks<br />

possess a Vp between 4.8 and 5.2 km/s, significantly lower than<br />

the overlying evaporites (Vp > 6.0 km/s). The genuine<br />

crystalline basement has never been reach<strong>ed</strong> by any well.<br />

Refraction DSS data in<strong>di</strong>cate that below the Umbria-Marche<br />

region the crystalline basement is characteriz<strong>ed</strong> by Vp values of<br />

about 6 km/s. Summarising, the upper part of the basement is a<br />

low-velocity zone, at least 2 km thick, sandwich<strong>ed</strong> between<br />

two high velocity layers, the Triassic Evaporites and the upper<br />

part of the crystalline basement.<br />

A widespread deep seat<strong>ed</strong> CO2 degassing is document<strong>ed</strong> in<br />

the region (CHIODINI et al., 2004) where two deep boreholes<br />

encounter<strong>ed</strong> fluid overpressure at 85% of the lithostatic load<br />

trapp<strong>ed</strong> within the Triassic Evaporites.<br />

SUBSURFACE GEOLOGY AND SEISMICITY<br />

In 1997-98 a sequence of six 5< Mw


LITHOLOGICAL AND MECHANICAL CONTROL ON THE BASE OF THE CRUSTAL SEISMOGENIC ZONE<br />

penetrate the underlying basement;<br />

- the six mainshocks nucleat<strong>ed</strong> at 6 km of depth within the<br />

Triassic Evaporites (Burano Fm.), made of interb<strong>ed</strong>d<strong>ed</strong><br />

anhydrites and dolostones.<br />

Mo<strong>del</strong>s bas<strong>ed</strong> on heat flow measurements define the base of<br />

the frictional-viscous transition at about 20 km depth (PAUSELLI<br />

& FEDERICO, 2002), in agreement with the cut-off of the<br />

background seismicity (DE LUCA et al., 2008).<br />

This suggests that the Triassic Evaporites play<strong>ed</strong> a key role<br />

in controlling the relatively shallow depth <strong>di</strong>splay<strong>ed</strong> by the<br />

major earthquakes.<br />

FIELD STUDIES AND LABORATORY TESTS<br />

In order to characterise the deformation processes occurring<br />

within the source region of the major earthquakes of the area<br />

we have combin<strong>ed</strong> field stu<strong>di</strong>es on exhum<strong>ed</strong> evaporites-bearing<br />

faults with permeability experiments on anhydrites samples<br />

collect<strong>ed</strong> from deep boreholes.<br />

The Triassic Evaporites are made of interb<strong>ed</strong>s of dolomites<br />

and anhydrites (gypsum at the surface). Foliat<strong>ed</strong> Ca-sulphate<br />

rocks form an anastomosing network surroun<strong>di</strong>ng the fractur<strong>ed</strong><br />

dolostones . The most competent lithology (i.e. the dolostones)<br />

is affect<strong>ed</strong> by a well develop<strong>ed</strong> bou<strong>di</strong>nage. In a closer view a<br />

“Gneissic” transpos<strong>ed</strong> fabric is made of interb<strong>ed</strong>d<strong>ed</strong> dolostones<br />

and Ca-sulphate.<br />

We analys<strong>ed</strong> the internal structure of a well expos<strong>ed</strong><br />

evaporites bearing fault, cropping out in Roccastrada, Tuscany<br />

(DE PAOLA et al., 2008). This is a mature normal fault<br />

(inferr<strong>ed</strong> <strong>di</strong>splacement >100 m and exhumation from depths >1<br />

km) that <strong>di</strong>ps in the range 40°-45°. The fault zone structure is<br />

characteris<strong>ed</strong> by a 5-6 m thick fault core, which appears to be<br />

zon<strong>ed</strong>. The inner fault core is made of fine-grain<strong>ed</strong> fault rocks<br />

(about 1m thick), with deformation localis<strong>ed</strong> along continuous<br />

and straight slip surfaces associat<strong>ed</strong> with a dolomite-rich<br />

cataclasite (brittle deformation). The outer fault core is mainly<br />

characteris<strong>ed</strong> by <strong>di</strong>stribut<strong>ed</strong> deformation accommodat<strong>ed</strong> by a<br />

fault parallel fabric consisting of interb<strong>ed</strong>s of cataclastic<br />

dolostones and foliat<strong>ed</strong> Ca-sulphate rocks. The damage zone<br />

consists of foliat<strong>ed</strong> Ca-sulphate rocks (foliation almost<br />

perpen<strong>di</strong>cular to the fault zone) and heavily fractur<strong>ed</strong> and<br />

bou<strong>di</strong>nag<strong>ed</strong> dolostones.<br />

Mechanical data obtain<strong>ed</strong> from triaxial loa<strong>di</strong>ng tests on<br />

borehole-recover<strong>ed</strong> anhydrites with <strong>di</strong>fferent grain-size and<br />

mesoscopic fabric, show that the transition from localiz<strong>ed</strong> to<br />

<strong>di</strong>stribut<strong>ed</strong> deformation occurs at effective pressures of about<br />

20 MPa. The permeability measur<strong>ed</strong> under hydrostatic stress<br />

con<strong>di</strong>tions, before loa<strong>di</strong>ng, is generally low and ranges between<br />

10 -21 k 10 -19 m 2 . During sample loa<strong>di</strong>ng, the permeability<br />

increases up to 3 (prior to brittle localiz<strong>ed</strong> failure) and 2 (prior<br />

to <strong>di</strong>stribut<strong>ed</strong> ductile failure) orders of magnitude, with<br />

measur<strong>ed</strong> k values of 10 -17 m 2 and 10 -18 m 2 , respectively<br />

(COLLETTINI et al., 2008; DE PAOLA et al., 2009).<br />

FINAL REMARKS<br />

25<br />

A simple mo<strong>del</strong> of a relatively homogeneous and isotropic<br />

upper crust cannot be appli<strong>ed</strong> to regions, where a complex<br />

stratigraphy and structural setting results in large vertical and<br />

lateral variations of lithological, mechanical and permeability<br />

properties of the shallow structural levels. This is the case of<br />

the Northern Apennines of Italy where active extension affects<br />

a previous fold and thrust belt, involving a mechanically<br />

complex stratigraphic sequence.<br />

Through the combin<strong>ed</strong> analysis of seismic reflection<br />

profiles and seismological data, we show<strong>ed</strong> that the main<br />

seismic ruptures occur within the Triassic evaporites, consisting<br />

of alternat<strong>ed</strong> anhydrites and dolostones. Our field stu<strong>di</strong>es show<br />

that within the fault zone the deformation is localis<strong>ed</strong> along<br />

principal slip surfaces associat<strong>ed</strong> to fine grain<strong>ed</strong> dolomite-rich<br />

cataclasite. Laboratory test show<strong>ed</strong> that the anhydrites possess<br />

very low static permeability values (k< 10 -19 m 2 ), capable of<br />

explaining the overpressure encounter<strong>ed</strong> in boreholes.<br />

The integration of field observations and laboratory<br />

permeability data suggests that, where the foliat<strong>ed</strong> anhydrites of<br />

the damage zone surround the fractur<strong>ed</strong> dolostones, resulting in<br />

a low fracture connectivity, the fault zone permeability is low<br />

enough to develop fluid overpressures.<br />

In the active area of the Northern Apennines, where a deepseat<strong>ed</strong><br />

CO2 degassing is document<strong>ed</strong>, crustal fluids in their<br />

ascent can be trapp<strong>ed</strong> within evaporite-bearing faults, promote<br />

fault zone weakening and trigger earthquake nucleation. In this<br />

view the shallow base of the seismogenic zone would be<br />

controll<strong>ed</strong> by the mechanical/transport properties of the<br />

Triassic Evaporites along with the decoupling effect of the<br />

underlying phyllitic basement.<br />

REFERENCES<br />

AMATO A., AZZARA R., CHIARABBA C.,. CIMINI G.B, COCCO<br />

M., DI BONA M., MARGHERITI L., MAZZA S., MELE F.,.<br />

SELVAGGI G, BASILI A., BOSCHI E., COURBOULEX F.,<br />

DESCHAMPS A., GAFFET S., BITTARELLI G., CHIARALUCE L.,<br />

PICCININI G., & RIPEPE M..(1998) - The 1997 Umbria-<br />

Marche, Italy earthquake sequence: a first look at the main<br />

shocks and aftershocks. Geophysical Research Letters,<br />

25:2861-2864.<br />

CHIARALUCE L., ELLSWORTH W.L., CHIARABBA C. & COCCO.<br />

M. (2003) - Imaging the complexity of an active complex<br />

normal fault system: the 1997 Colfiorito (central Italy) case<br />

study. Journal of Geophysical Research, 108 (B6):2294,<br />

doi:10.1029/2002JB002166.<br />

CHIODINI, G., CARDELLINI, C., AMATO, A., BOSCHI, E., CALIRO,<br />

S., FRONDINI, F. & VENTURA, G. (2004) - Carbon <strong>di</strong>oxide<br />

Earth degassing and seimogenesis in central and southern


26 M.R. BARCHI ET ALII<br />

Italy. Geophys. Res. Lett., 31, L07615,<br />

doi:10.1029/2004GL019480.<br />

COLLETTINI C., DE PAOLA N. & FAULKNER D. (2008) - Insights<br />

on the geometry and mechanics of the Umbria-Marche<br />

earthquakes (Central Italy) from the integration of field and<br />

laboratory data. Tectonophysics, in press,<br />

doi:10.1016/j.tecto.2008.08.013.<br />

DE LUCA G., CATTANEO M., MONACHESI G. & AMATO<br />

A..(2009) - Seismicity in Central and Northern Apennines<br />

integrating the Italian national and regional networks.<br />

Tectonophysics, in press.<br />

DE PAOLA N., COLLETTINI C., FAULKNER D. & TRIPPETTA F.<br />

(2008) - Fault zone architecture and deformation processes<br />

within evaporitic rocks in the upper crust. Tectonics, 27,<br />

10.1029/2007TC002230.<br />

DE PAOLA N., COLLETTINI C. & FAULKNER D. (2009) -<br />

Localis<strong>ed</strong> versus <strong>di</strong>stribut<strong>ed</strong> deformation as a control on<br />

the transport properties of a low porosity anhydrites rocks.<br />

Journal od Geophysical Research, in press.<br />

MIRABELLA F., BARCHI M.R., LUPATTELLI A., STUCCHI E., &<br />

CIACCIO M.G.. (2008) - Insights on the seismogenic layer<br />

thickness from the upper crust structure of the Umbria-<br />

Marche Apennines (Central Italy). Tectonics, 27,<br />

TC1010:doi:10.1029/2007TC002134.<br />

PAUSELLI C. & FEDERICO C. (2002) - The brittle/ductile<br />

transition along the Crop03 seismic profile: relationship<br />

with the geological features. Bollettino <strong>del</strong>la Società<br />

Geologica Italiana, Vol.Spec.1/2002, 25-35.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 27<br />

Subsurface structure of the Tagliamento valley (NE Italy) using<br />

Microtremors and Gravity Anomaly.<br />

C. BARNABA (*), L. MARELLO (**), A. VUAN(*), F. PALMIERI(*), M.ROMANELLI (*), E. PRIOLO (*), C. BRAITENBERG (°)<br />

Microtremor observations and gravity survey were made to<br />

determine the subsurface structures of a stretch of the<br />

Tagliamento river (Friuli, NE Italy).This area is close to the<br />

epicenter of the 1976 Friuli earthquake (M=6.5), and stuck in<br />

the past by several earthquakes of M>5.5.<br />

More than 240 H/V noise, three refraction profiles and 270<br />

gravimetric measurements have been acquir<strong>ed</strong> along the valley.<br />

The applications of non-invasive, low cost, mutually<br />

independent geophysical methodologies are us<strong>ed</strong> to investigate<br />

shallow geological structures. The buri<strong>ed</strong> shape of the valley is<br />

here defin<strong>ed</strong> from the resonance frequencies in H/V spectral<br />

ratio of seismic noise measurements and gravimetric forward<br />

mo<strong>del</strong>ling. The result is a good convergence of the two<br />

methods, although the valley shape is irregular, due to the<br />

structural geological complexity of the study area. For this<br />

reason the top of the carbonate rocks are mapp<strong>ed</strong>, instead of the<br />

classical alluvium cover.<br />

Most of the <strong>di</strong>fferences in defining the valley depth are found at<br />

the valley <strong>ed</strong>ges both beacause 2000 m height reliefs can affect<br />

the gravity measurements there and the buri<strong>ed</strong> steep flanks of<br />

the valley can make <strong>di</strong>fficult to interpret H/V peaks as due to<br />

simple 1D layering. However, the observations demostrat<strong>ed</strong> the<br />

noise wavefield within the sector stu<strong>di</strong><strong>ed</strong> is mainly dominat<strong>ed</strong><br />

by horizontally propagating surface waves giving rise to 1D<br />

resonance at lower frequencies.<br />

The maximum depth estimat<strong>ed</strong> is of about 400m in the southern<br />

part of the sector, while a mean value of 150-180m is estimat<strong>ed</strong><br />

in the northern part. These values are support<strong>ed</strong> by the few<br />

underground data available, confirming the possibility to detect<br />

the buri<strong>ed</strong> structure with low cost geophysical methodologies.<br />

The result represents the first 3D image of this part of the<br />

Tagliamento valley and it is the base for near future 3D wave<br />

propagation simulations and for planning more detail<strong>ed</strong><br />

geophysical surveys.<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Ricerche Sismologiche, Istituto Nazionale <strong>di</strong> Oceanografia e<br />

Geofisica Sperimentale, Trieste, Italy<br />

(**) Geological Survey of Norway, Petroleum Technology and Appli<strong>ed</strong><br />

Geophysics, Norway<br />

(°) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Trieste, Trieste, Italy<br />

Carla Barnaba: cbarnaba@inogs.it


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 28-31, 2 ff.<br />

Neogene rotations in the Sicilian-Maghrebian Chain: new structural<br />

data from the Madonie Mountains<br />

RIASSUNTO<br />

Rotazioni neogeniche nella Catena Siculo-Maghrebide: nuovi dati strutturali<br />

dai monti <strong>del</strong>le Madonie<br />

L’analisi strutturale eseguita lungo i monti <strong>del</strong>le Madonie (Sicilia centrosettentrionale),<br />

confrontata con i dati paleomagnetici pubblicati, suggerisce<br />

che le successioni mesozoico-m<strong>ed</strong>iomioceniche <strong>del</strong>le unità imeresi e<br />

panormi<strong>di</strong> hanno registrato sia le rotazioni avvenute tra il Langhiano e il<br />

Tortoniano superiore (circa 70° in senso orario) che, localmente, quelle<br />

avvenute dopo il Pliocene inferiore (almeno 30° in senso orario), mostrando<br />

assi strutturali <strong>di</strong> prima fase orientati circa nord-sud deformati da strutture <strong>di</strong><br />

seconda fase orientate circa est-ovest. Conseguentemente, le strutture <strong>del</strong>le<br />

successioni meso-cenozoiche formate durante la prima fase <strong>di</strong> deformazione<br />

sono state ruotate nel complesso <strong>di</strong> circa 100° in senso orario, mentre le<br />

strutture dei depositi <strong>di</strong>scordanti supratortoniani-infrapliocenici sono state<br />

coinvolte solo nelle rotazioni orarie plio-pleistoceniche legate all’attivazione <strong>di</strong><br />

un sistema <strong>di</strong> faglie trascorrenti destre. Dal punto <strong>di</strong> vista geo<strong>di</strong>namico, le<br />

rotazioni neogeniche nella Catena Siculo-Maghrebide sono da inquadrare nel<br />

processo regionale <strong>del</strong>la convergenza Africa-Europa.<br />

Key words: Sicilian-Maghrebian Chain, Madonie Mts., folds,<br />

rotations<br />

INTRODUCTION<br />

The Neogene thrust migration along the Sicilian sector of<br />

the Sicilian-Maghrebian Chain has been accompani<strong>ed</strong> by<br />

clockwise rotations, reveal<strong>ed</strong> by structural (GIUNTA et alii,<br />

2000; AVELLONE & BARCHI, 2003; GUARNIERI, 2004; NIGRO &<br />

RENDA, 2005; MONACO & DE GUIDI, 2006) and<br />

palaeomagnetic data (CHANNELL et alii, 1980; 1990; GRASSO<br />

et alii, 1987; OLDOW et alii, 1990; SPERANZA et alii, 1999;<br />

2003). In particular, palaeomagnetic data on Upper Trias to<br />

Lower-Middle Pliocene s<strong>ed</strong>iments reveal a major 70°<br />

clockwise rotation with respect to the Hyblean foreland<br />

between the Langhian and the Tortonian, follow<strong>ed</strong> by a further<br />

30° clockwise rotation occurr<strong>ed</strong> after Early Pliocene.<br />

A detail<strong>ed</strong> geological and structural analysis was carri<strong>ed</strong> out<br />

in the Madonie Mts., along the central-northern sector of the<br />

Sicilian-Maghrebian Chain (Fig. 1), in order to define the<br />

tectonic evolution of the area in relation to the rotation episodes<br />

occurr<strong>ed</strong> since the Middle Miocene.<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Università <strong>di</strong><br />

Catania. E-mail:cmonaco@unict.it<br />

GIOVANNI BARRECA (*) & CARMELO MONACO (*)<br />

The structural analysis was focus<strong>ed</strong> on the Upper Triassic-<br />

Middle Miocene s<strong>ed</strong>imentary successions of the Imerese and<br />

Panormide tectonic units and on the top-thrust Neogene<br />

terrigenous covers, in order to compare tectonic structures of<br />

<strong>di</strong>fferent ages. The structural field analysis was support<strong>ed</strong> by<br />

the elaboration of 3D topographic <strong>di</strong>gital elevation mo<strong>del</strong> of<br />

the area and by the analysis of 1:33,000 scale aerial<br />

photographs. Structural data (fault and fracture systems,<br />

slickensides on fault surfaces, fold axes) collect<strong>ed</strong> on several<br />

measurement stations were process<strong>ed</strong> to better define the<br />

geometric and kinematic features of the structures occurring in<br />

the area.<br />

GEOLOGICAL SETTING<br />

The stu<strong>di</strong><strong>ed</strong> area is locat<strong>ed</strong> on the southern slope of<br />

Madonie Mts. and it is characteriz<strong>ed</strong> by two roughly E-W<br />

orient<strong>ed</strong> antiformal structures; the Mt.dei Cervi ridge to the<br />

west, that reaches an elevation of about 1800 m.a.s.l and the<br />

Mt. San Salvatore ridge to the east with an elevation of about<br />

1900 m.a.s.l. Both structures correspond to <strong>di</strong>stinct tectonic<br />

units (GRASSO et alii, 1978; ABATE et alii, 1982) deriving from<br />

deformation of <strong>di</strong>fferent palaeo-geographic domains stack<strong>ed</strong><br />

during the Neogene Africa-Europe collisional processes<br />

(DEWEY et alii, 1989). The deepest structural position is<br />

occupi<strong>ed</strong> by over 500-m-thick pelagic sequence of the Imerese<br />

unit, outcropping at Mt. dei Cervi, mostly compos<strong>ed</strong> of Upper<br />

Triassic cherty limestones follow<strong>ed</strong> upwards by Jurassic-<br />

Cretaceous ra<strong>di</strong>olarites and by Eocene-Oligocene marls and<br />

marly limestones (Scaglia formation), unconformably cover<strong>ed</strong><br />

by Upper Oligocene Numi<strong>di</strong>an flysch-type sequence (Portella<br />

Colla clays). During the Middle Miocene this unit was<br />

tectonically overlain by shallow-water carbonates deposits<br />

pertaining to the Panormide platform that start from the bottom<br />

with Middle-Upper Carnian brownish clays and calcarenites<br />

(Mufara formation) passing upwards to Upper Triassic-Eocene<br />

limestones and dolostones. This succession is unconformably<br />

cover<strong>ed</strong> by the Upper Oligocene-Lower Miocene Numi<strong>di</strong>an<br />

Flysch deposits. The NNW-SSE striking tectonic contact<br />

between the two units is clearly expos<strong>ed</strong> from the western slope<br />

of Pizzo Carbonara to Polizzi G. (Fig. 1).


NEOGENE ROTATIONS IN THE SICILIAN-MAGHREBIAN CHAIN<br />

Fig. 1 – Geological sketch-map of the southern slope of the Madonie Mountains. Black dash<strong>ed</strong> circular arrows in<strong>di</strong>cate the amount of rotations calculat<strong>ed</strong> by<br />

structural analysis during this work. Grey circular arrows in<strong>di</strong>cate the amount of clockwise rotation calculat<strong>ed</strong> by palaeomagnetic analysis (from CHANNELL et<br />

alii, 1980; 1990; GRASSO et alii, 1987; OLDOW et alii, 1990; SPERANZA et alii , 1999; 2003).<br />

STRUCTURAL ANALYSIS<br />

The structural analysis was focus<strong>ed</strong> to fold axes trend<br />

<strong>di</strong>stribution in the multilayer<strong>ed</strong> Imerese succession of Mt. dei<br />

Cervi and to fault planes statistical orientation in the calcareous<br />

or arenaceous deposits of Mt. San Salvatore area (Fig. 1).<br />

In the Mt. dei Cervi area (Fig. 2), the Imerese s<strong>ed</strong>imentary<br />

succession forms a large dome structure characteriz<strong>ed</strong> by two<br />

main fold systems. The first system ( in Fig. 2) shows NNW-<br />

SSE orient<strong>ed</strong> fold axes, plunging at angles of 10-45°, which are<br />

sub-parallel to the coeval thrust contact between Panormide and<br />

Imerese units. The second and more recent system ( in Fig. 2)<br />

is mainly represent<strong>ed</strong> by a roughly ENE-WSW striking large<br />

ramp anticline, with sub-horizontal axes, also deforming the<br />

former thrust contact between Panormide and Imerese units.<br />

This anticline is coaxial to the high angle south-verging out-ofsequence<br />

large thrust (Scillato-Petralia thrust) responsible,<br />

during the Tortonian-Middle Pliocene, for the development of a<br />

29<br />

top-thrust s<strong>ed</strong>imentary basin to the south and of the final uplift<br />

of the Madonie Mountains.<br />

In the Mt. San Salvatore area, east of Mt. dei Cervi (Fig. 2),<br />

the structural analysis was bas<strong>ed</strong> on determination of the spatial<br />

<strong>di</strong>stribution of meso-faults and their geometric relationships<br />

with large strike-slip faults develop<strong>ed</strong> since Middle Pliocene<br />

times. The main structures are represent<strong>ed</strong> by N120-140E<br />

striking right-lateral strike-slip faults boun<strong>di</strong>ng to the north-east<br />

and to the south-west the Mt. San Salvatore ridge. Minor<br />

associat<strong>ed</strong> structures consist of NE-SW striking left-lateral<br />

strike-slip faults which are confin<strong>ed</strong> between the major rightlateral<br />

strike-slip faults. They have been interpret<strong>ed</strong> as<br />

coniugate antithetical structures, boun<strong>di</strong>ng clockwise rotat<strong>ed</strong><br />

blocks, and are <strong>di</strong>stribut<strong>ed</strong> on two main systems orient<strong>ed</strong><br />

~N40E and ~N75E.<br />

To the south, on the footwall the Scillato-Petralia thrust<br />

(Fig. 1), the Serravallian-Lower Pliocene deposits are<br />

characteriz<strong>ed</strong> by only one fold and thrust system, WSW-ENE<br />

tren<strong>di</strong>ng, coaxial to the second system found in the Mt. dei


30 G.BARRECA & C.MONACO<br />

Cervi area. Locally, the folds are dragg<strong>ed</strong> by large right-lateral<br />

strike-slip faults and involv<strong>ed</strong> in up to 45° clockwise rotation<br />

(e.g. the Gangi syncline, see Fig. 1).<br />

DISCUSSION AND CONCLUSIONS<br />

Data collect<strong>ed</strong>, bas<strong>ed</strong> on meso-fold axis <strong>di</strong>stribution, fault<br />

planes statistical orientation and on fault-relat<strong>ed</strong> structures field<br />

analysis, compar<strong>ed</strong> to publish<strong>ed</strong> palaeomagnetic data, allow<strong>ed</strong><br />

us to define the tectonic evolution of the area in relation to two<br />

main rotation episodes occurr<strong>ed</strong> since the Middle Miocene.<br />

The structural analysis carri<strong>ed</strong> out in the Mt. dei Cervi area<br />

shows the occurrence of two fold and fault systems, with subperpen<strong>di</strong>cular<br />

axes, relat<strong>ed</strong> to two <strong>di</strong>stinct tectonic phases. The<br />

second and more recent one is also responsible for the thrusting<br />

of the Upper Triassic-Middle Miocene successions (Scillato-<br />

Petralia thrust) over the Serravallian-Lower Pliocene deposits and<br />

for the fol<strong>di</strong>ng of these cover succession. The superposition of<br />

two contractional structure systems with sub-orthogonal axes,<br />

compar<strong>ed</strong> to palaeomagnetic data (see Fig. 1), can be interpret<strong>ed</strong><br />

as the result of ~70° clockwise block rotation of the first phase<br />

structures (includ<strong>ed</strong> the old tectonic contact between Imerese and<br />

Panormide units) around vertical axes, occurr<strong>ed</strong> between<br />

Langhian and Late Tortonian time by a roughly N-S orient<strong>ed</strong><br />

maximum horizontal compression. (see also AVELLONE &<br />

BARCHI, 2003; MONACO & DE GUIDI, 2006). This was follow<strong>ed</strong><br />

by locally more than 30° clockwise rotation since the Lower-<br />

Middle Pliocene relat<strong>ed</strong> to dragging by Plio-Pleistocene NW-SE<br />

striking right-lateral strike-slip faults (Figs. 1 and 2).<br />

The second rotation episode is also consistent with the<br />

angular relationship (35°) between the two left-lateral strike-slip<br />

fault systems detect<strong>ed</strong> in the Mt. San Salvatore area that can be<br />

interpret<strong>ed</strong> as the result of clockwise block rotation between<br />

major right-lateral strike-slip faults. In this kinematic mo<strong>del</strong>, the<br />

~N75E orient<strong>ed</strong> faults belong to an older rotat<strong>ed</strong> and abandon<strong>ed</strong><br />

system, while the ~N40E faults represent a more recent system.<br />

From a geodynamic point of view, the Neogene clockwise<br />

rotation in the Sicilian-Maghrebian Chain is relat<strong>ed</strong> to the<br />

regional framework of the Africa-Europe oblique convergence<br />

(DEWEY et alii, 1989). The clockwise rotation accompani<strong>ed</strong><br />

thrusting processes since the Early-Middle Miocene, when the<br />

Africa-Europe collision trigger<strong>ed</strong> the extensive southwards<br />

migration of large nappes and a general block rotation around<br />

vertical axes under a quasi-constant stress field relat<strong>ed</strong> to the N-S<br />

convergence. In this context, only the Plio-Pleistocene rotation<br />

episode is well constrain<strong>ed</strong> on field all over the northern Sicily,<br />

where large right-lateral strike-slip faults are document<strong>ed</strong> (see<br />

also GHISETTI & VEZZANI, 1984; LENTINI et alii, 1991; FINETTI et<br />

alii., 1996; GIUNTA et alii, 2000; RENDA et alii, 2000; GUARNIERI,<br />

2004; NIGRO & RENDA, 2005).<br />

Fig. 2 – Shad<strong>ed</strong>-relief map (SW prospective view) of the Mt. dei Cervi-Mt. S. Salvarore area showing the main structural features. The first phase folds,<br />

striking N150E () are sub-parallel to the thrust contact between Panormide and Imerese units (a) while the second phase folds () are coaxial to the large<br />

Scillato-Petralia thrust ramp (b) that caus<strong>ed</strong> the uplift of the Madonie Mts. during the Tortonian-Middle Miocene.


REFERENCES<br />

ABATE B., DI STEFANO, E., DI STEFANO P., PECORAIO C.,<br />

RENDA P. (1982) - Segnalazione <strong>di</strong> un affioramento <strong>di</strong><br />

“Trubi” sul massiccio <strong>di</strong> Pizzo Carbonara (Madonie,<br />

Sicila). Rend. Soc. Geol. It., 5, 25-26.<br />

AVELLONE G. & BARCHI M.R. (2003) - Le pieghe minori nelle<br />

Unità Imeresi e Trapanesi dei Monti <strong>di</strong> Palermo e il loro<br />

significato nell’evoluzione tettonica <strong>del</strong>l’area. Boll. Soc.<br />

Geol. It., 122, 277-294.<br />

CHANNELL J.E.T., CATALANO R. & D’ARGENIO B. (1980) -<br />

Palaeomagnetism and deformation of the Mesozoic<br />

continental margin in Sicily. Tectonophysics, 61, 391-407.<br />

CHANNELL J.E.T., OLDOW J.S., CATALANO R. & D’ARGENIO B.<br />

(1990) -. Palaeomagnetically determin<strong>ed</strong> rotations in the<br />

western Sicilian fold and thrust belt. Tectonics, 9, 641-660.<br />

DEWEY J.F., HELMAN M.L., TURCO E., HUTTON D.H.W. &<br />

KNOTT S.D. (1989) - Kinematics of the westwern<br />

M<strong>ed</strong>iterranean. In Coward, M.P., Dietrich, D. and Park,<br />

R.G. (Eds.), Alpine Tectonics, Geol. Soc. of London<br />

Special Publication, 45, 265–283.<br />

FINETTI I., LENTINI F., CARBONE S., CATALANO S. & DEL BEN,<br />

A. (1996) - Il sistema Appennino meri<strong>di</strong>onale-Arco<br />

Calabro-Sicilia nel M<strong>ed</strong>iterraneo centrale: stu<strong>di</strong>o<br />

geologico-geofisico. Boll. Soc. Geol. It., 115, 539-559.<br />

GHISETTI F. & VEZZANI L. (1984) - Thin-skinn<strong>ed</strong> deformations<br />

of the western Sicily thrust belt and relationships with<br />

crustal shortening: mesostructural data on the Mt. Kumeta-<br />

Alcantara fault zone and relat<strong>ed</strong> structures. Boll. Soc.<br />

Geol. It., 103, 129-157.<br />

GIUNTA G., NIGRO F., RENDA P. & GIORGIANNI A. (2000) - The<br />

Sicilian-Maghrebides Tyrrhenian margin: a neotectonic<br />

evolutionary mo<strong>del</strong>. Boll. Soc. Geol. It., 119, 553-565.<br />

GRASSO M., LENTINI F., VEZZANI L. (1978) - Lineamenti<br />

stratigrafico strutturali <strong>del</strong>le Madonie (Sicilia centrosettentrionale).<br />

Geol. Romana, 17, 45-69.<br />

GRASSO M., MANZONI M. & QUINTILI A. (1987) - Misure<br />

magnetiche sui Trubi infrapliocenici <strong>del</strong>la Sicilia<br />

orientale: possibili implicazioni stratigrafiche e strutturali.<br />

Mem. Soc. Geol. It., 38, 459-474.<br />

GUARNIERI P. (2004) - Structural evidence for deformation by<br />

block rotation in the context of transpressive tectonics,<br />

northwestern Sicily (Italy). J. of Struct. Geol., 26, 207-219.<br />

LENTINI F., CARBONE S., CATALANO S., GRASSO M. &<br />

MONACO C. (1991) - Presentazione <strong>del</strong>la Carta Geologica<br />

<strong>del</strong>la Sicilia centro-orientale. Memorie Società Geologica<br />

Italiana, 47, 145-156.<br />

MONACO C. & DE GUIDI G. (2006) – Structural evidence for<br />

Neogene rotations in the eastern Sicilian fold and thrust<br />

belt. J. of Struct. Geol., 28, 561-574.<br />

NEOGENE ROTATIONS IN THE SICILIAN-MAGHREBIAN CHAIN<br />

31<br />

NIGRO F. & RENDA P. (2005) - Plio-Pleistocene strike-slip<br />

deformation in NE Sicily: the example of the area between<br />

Capo Calavà and Capo Tindari. Boll. Soc. Geol. It., 124,<br />

377-394.<br />

OLDOW J.S., CHANNEL J.E.T., CATALANO R. & D’ARGENIO B.<br />

(1990) - Contemporaneous thrusting and large-scale<br />

rotations in the western Sicilian fold and thrust belt.<br />

Tectonics, 9, 661-681.<br />

RENDA P., TAVARNELLI E., TRAMUTOLI M., GUEGUEN E.<br />

(2000) - Neogene deformations of Northern Sicily and<br />

their implications for the geodynamics of the Southern<br />

Tyrrhenian Sea margin. Mem. Soc. Geol. It., 55, 53-59.<br />

SPERANZA F., MANISCALCO R., MATTEI M., DI STEFANO A.,<br />

BUTLER R.W.H.& FUNICIELLO R. (1999) - Timing and<br />

magnitude of rotations in the frontal thrust systems of<br />

south-western Sicily. Tectonics, 18, 1178-1197.<br />

SPERANZA F., MANISCALCO R. & GRASSO M. (2003) - Pattern<br />

of orogenic rotation in central-eastern Sicily: implications<br />

for the timing of sprea<strong>di</strong>ng in the Tyrrhenian Sea. J. Geol.<br />

Soc. of London, 160, 183-195.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 32-35, 2ff.<br />

Strutture a macro e mesoscala <strong>del</strong>le Dinari<strong>di</strong> triestine (carta GEO-<br />

CGT <strong>del</strong> FVG).<br />

ABSTRACT<br />

Macro and meso structures of external Dinarides in Trieste and Gorizia<br />

region<br />

The region of Trieste and Gorizia is a sector of north-western Dinarides,<br />

characteris<strong>ed</strong> by a fold and thrust tectonic that interests the creataceouspaleogenic<br />

carbonate platform and eocenic flysch, call<strong>ed</strong> Trieste Flysch.<br />

The main structure is the Carso Thrust overlapping toward SW the smaller<br />

subthrust, in the Flysch of “Ciceria structure”. Toward SE (in the Val<br />

Rosandra area) this thrust overlaps with his lateral ramp some others minor<br />

thrusts that, it turn, cover a great fold produc<strong>ed</strong> by a bukcling process.<br />

The Trieste Flysch is implicat<strong>ed</strong> in all the describ<strong>ed</strong> structures, but<br />

presents also frequent isoclinal folds referable to the gravitative tectonic of the<br />

first compressive phases that has interest<strong>ed</strong> the region.<br />

Key words: Carso-Kras Thrust, Dinarides, thrust tectonic,<br />

Trieste Flysch.<br />

INTRODUZIONE<br />

I rilievi compresi nell’area dei Fogli GEO-CGT 110<br />

Trieste, 131 Caresana, 109 Grado e 088 Gorizia, fanno parte<br />

<strong>del</strong>la Catena <strong>del</strong>le Dinari<strong>di</strong> Esterne settentrionali, in particolare<br />

<strong>del</strong> settore <strong>di</strong> catena ad W <strong>del</strong>la Faglia <strong>di</strong> Idria, imponente<br />

lineamento a cinematica trascorrente che, secondo alcuni<br />

Autori, rappresenta l’attuale “binario” orientale <strong>di</strong> scorrimento<br />

<strong>del</strong>la Zolla Adriatica nel suo moto traslatorio verso N e N-W.<br />

In particolare, l’area in esame si situa ad W dei fronti <strong>del</strong>le<br />

principali falde <strong>di</strong> ricoprimento <strong>ed</strong> è caratterizzata<br />

prevalentemente da strutture a thrust tipiche dei settori più<br />

esterni <strong>del</strong>le catene <strong>di</strong> collisione (JURKOVŠEK, 2008). Il<br />

maggiore sviluppo assunto dalle falde vere e proprie verso NW,<br />

sino al contatto con le strutture <strong>del</strong>le Alpi Giulie, testimonia<br />

<strong>del</strong>la grande importanza <strong>del</strong> trasporto tettonico <strong>di</strong>narico nei<br />

settori <strong>di</strong> catena oggi inglobati nelle Alpi Meri<strong>di</strong>onali. La zona<br />

in stu<strong>di</strong>o si presenta quin<strong>di</strong> come un settore <strong>di</strong> catena a<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche Ambientali e Marine – Universtà<br />

degli stu<strong>di</strong> <strong>di</strong> Trieste<br />

Lavoro eseguito nell’ambito <strong>del</strong> progetto GEO-CGT, Convenzione n. 8504<br />

<strong>del</strong> 25 febbraio 2005 tra il Servizio Geologico – Direzione centrale<br />

ambiente e lavori pubblici – Regione Autonoma Friuli Venezia Giulia e le<br />

Università degli stu<strong>di</strong> <strong>di</strong> Trieste e <strong>di</strong> U<strong>di</strong>ne.<br />

BENSI SARA (*), FANUCCI FRANCESCO (*) & PODDA FULVIO (*)<br />

trasporto tettonico relativamente limitato.<br />

Non<strong>di</strong>meno, la tettonica locale é evoluta e importante,<br />

soprattutto nella zona <strong>del</strong> Carso Triestino, e non priva <strong>di</strong><br />

complessità.<br />

L’ASSETTO TETTONICO A GRANDI LINEE<br />

L’area è caratterizzata da due motivi strutturali principali e<br />

da altri, non meno importanti dal punto <strong>di</strong> vista <strong>del</strong>l’evoluzione<br />

tettonica, ma riconoscibili solo in aree specifiche. L’unità <strong>di</strong><br />

gran lunga dominante nel panorama tettonico è il Thrust <strong>del</strong><br />

Carso che si sviluppa in senso <strong>di</strong>narico caratterizzando<br />

fondamentalmente la zona. L’ampiezza <strong>del</strong>l’anticlinale <strong>di</strong><br />

rampa che, nei limiti <strong>del</strong> territorio italiano, mostra il fianco<br />

settentrionale solo in una ristretta zona <strong>del</strong> Goriziano e la<br />

potenza <strong>del</strong>la serie coinvolta nel piegamento sono<br />

testimonianza <strong>di</strong> uno scollamento profondo e <strong>di</strong> un trasporto<br />

tettonico non trascurabile. L’andamento <strong>del</strong> fronte è<br />

leggermente obliquo rispetto a quello <strong>del</strong>la costa a N <strong>di</strong><br />

Barcola, mentre nell’area urbana se ne <strong>di</strong>scosta fortemente. Il<br />

limite meri<strong>di</strong>onale <strong>del</strong>la struttura è segnato da una rampa<br />

laterale sdoppiata che porta il Thrust a sovrascorrere su tutte le<br />

altre unità tettoniche che caratterizzano l’area <strong>del</strong>la Val<br />

Rosandra.<br />

L’altro motivo importante è quello dei thrust minori che<br />

interessano estesamente la zona <strong>di</strong> Flysch su cui sorge Trieste<br />

per poi prolungarsi alla base <strong>del</strong> versante costiero <strong>ed</strong> entro il<br />

Golfo. Anche considerando il <strong>di</strong>sturbo dovuto alle <strong>di</strong>scontinuità<br />

anti<strong>di</strong>nariche <strong>del</strong>la zona Muggia - S. Servolo non si può negare<br />

un’evidente continuità tra queste strutture e quelle <strong>del</strong>la Ciceria<br />

(subthrusting belt, <strong>di</strong> supposta età miocenica), a cui è stata<br />

attribuita <strong>di</strong> recente (PLACER, 2007) una notevole importanza<br />

nell’evoluzione geo<strong>di</strong>namica <strong>del</strong>le Dinari<strong>di</strong> esterne<br />

settentrionali. Secondo l’ Autore citato, farebbe parte <strong>del</strong><br />

sistema detto anche la zona <strong>del</strong>la Val Rosandra, in cui però si<br />

rilevano unità tettoniche i cui caratteri non si accordano con<br />

questa attribuzione:


Fig. 1 – Thrust a embrici in destra <strong>del</strong>la Val Rosandra<br />

- l’unità in posizione basale è costituita dalle pieghe <strong>di</strong><br />

Monte Carso e <strong>del</strong> vicino Monte S. Michele, anticlinali<br />

rovesciate a SW a curvatura accentuata su cui si accavalla<br />

l’Unità <strong>di</strong> Crinale, ampio thrust a vergenza W. Entrambe le<br />

strutture interessano la Formazione dei Calcari a Alveoline e<br />

Nummuliti e il Flysch <strong>di</strong> Trieste: Il processo <strong>di</strong> buckling che dà<br />

origine alle pieghe deve riferirsi ad un livello <strong>di</strong> scollamento<br />

interno alla prima formazione. Analogamente il thrust deve<br />

essere una struttura relativamente pellicolare dato che si adatta<br />

all’anticlinale descritta e alla sinclinale <strong>del</strong>la Val Rosandra;<br />

- il fianco orientale <strong>del</strong>la Valle è interessato da alcuni<br />

thrust embriciati che sovrascorrono alle strutture prec<strong>ed</strong>enti; il<br />

più importante è quello <strong>di</strong> Monte Stena, con un’anticlinale <strong>di</strong><br />

rampa relativamente ampia, che ad E è sovrascorso a sua volta<br />

da un’unità che possiamo denominare Thrust <strong>di</strong> Draga il quale<br />

presenta fenomeni <strong>di</strong> retroscorrimento <strong>del</strong> Flysch sul fronte, a<br />

deformazione massima, <strong>del</strong>l’anticlinale <strong>di</strong> rampa, simili a quelli<br />

che, a scala maggiore, propiziati da potenti livelli <strong>di</strong> marne,<br />

interessano il Thrust <strong>del</strong> Carso;<br />

STRUTTURE A MACRO E MESOSCALA NELLE DINARIDI TRIESTINE<br />

33<br />

- quest’ultimo sovrascorre in rampa laterale su tutte le<br />

strutture <strong>del</strong>la zona, al punto che l’enorme carico litostatico<br />

indotto da questo sovrascorrimento ha prodotto scistosità in<br />

con<strong>di</strong>zioni <strong>di</strong> anchimetamorfismo nelle marne associate<br />

all’unità basale.<br />

La cronologia <strong>del</strong>le fasi deformative segue ovviamente<br />

l’or<strong>di</strong>ne <strong>di</strong> sovrapposizione <strong>del</strong>le relative Unità con l’eccezione<br />

dei thrust <strong>del</strong>l’Unità <strong>del</strong>la Ciceria che deriverebbero da un<br />

sottoscorrimento ben più recente rispetto alla messa in posto<br />

<strong>del</strong> Thrust <strong>del</strong> Carso.<br />

Elementi risalenti a fasi deformative più antiche,<br />

sins<strong>ed</strong>imentarie, sono rappresentate nel Carso Goriziano<br />

essenzialmente da faglie trascorrenti a orientamento <strong>di</strong>narico,<br />

mentre con orientamento anti<strong>di</strong>narico si manifestano, a tratti, le<br />

linee <strong>di</strong> transfer derivanti dalla fase <strong>di</strong> collasso non omogeneo<br />

<strong>del</strong>la piattaforma carbonatica nell’Eocene. Tutti i Thrust sono<br />

interessati sul fronte da importanti tear faults, contemporanee<br />

alla messa in posto dei fronti, che inducono spesso<br />

con<strong>di</strong>zionamenti morfostrutturali <strong>di</strong> rilievo negli affioramenti <strong>di</strong><br />

Flysch sottostanti.


34 S. BENSI ET ALII<br />

Fig. 2 – Cerniera <strong>di</strong> piega isoclinale nel Flysch.<br />

Il Flysch <strong>di</strong> Trieste mostra a tratti, soprattutto nelle zone<br />

sottostanti l’Unità <strong>del</strong> Carso, deformazioni semiduttili <strong>del</strong> tipo<br />

pieghe isoclinali che si associano talvolta nelle aree <strong>di</strong><br />

affioramento a livelli caoticizzati, qualora gli strati arenacei<br />

siano poco potenti <strong>ed</strong> alternati ad abbondanti marne siltose. Ciò<br />

può essere imputato, come già intuito dai primi Autori<br />

interessati alla zona, a processi <strong>di</strong> tettonica gravitativa<br />

impostatisi durante le fasi precoci <strong>di</strong> movimentazione<br />

compressiva <strong>del</strong>la piattaforma carbonatica.<br />

REFERENCES<br />

CARULLI G.B. & CUCCHI F. (1991) - Proposta <strong>di</strong><br />

interpretazione strutturale <strong>del</strong> Carso triestino.- Atti<br />

Ticinensi <strong>di</strong> Scienze <strong>del</strong>la Terra 34, 161-166.<br />

CARULLI G.B. (2006) – Carta Geologica <strong>del</strong> Friuli Venezia<br />

Giulia – Scala 1:150.000.- Servizio Geologico, Direzione<br />

Centrale Ambiente e Lavori Pubblici – Regione Autonoma<br />

Friuli Venezia Giulia.<br />

D’AMBROSI C. (1953), Carta geologica <strong>del</strong>le Tre Venezie –<br />

Foglio Trieste. Ufficio idrografico <strong>del</strong> Magistrato alle<br />

Acque. <strong>Sezione</strong> Geologica. Venezia.<br />

D’AMBROSI C. (1958) - Sul colamento per gravità <strong>del</strong> Flysch<br />

lungo la Riviera <strong>di</strong> Trieste. In: G. Ranalli (Ed.) - Plate<br />

Tectonics: The First Twenty-Five Years. Proc. VIII<br />

Summer School Earth and Planetary Sciences, Siena, 1995,<br />

171-251<br />

JURKOVŠEK B. (2008) – Geološka Karta Severnega <strong>del</strong>a<br />

Tržaško-Komenske Planote / Geological Map of Northern<br />

part of the Trieste-Komen peneplain (Slovenia) 1:25000.<br />

Ed. Geološki Zavod Slovenije, Ljubljana.<br />

PLACER L. (1981) – Geološka zgradba jugozahodne Slovenije /<br />

Geologic structure of southwestern Slovenia. GEOLOGIJA<br />

21, 27-60.<br />

PLACER L. (2007) – Kraški rob Geološki prerez vzdolž AC<br />

Kozina – Koper / Kraški rob (landscape term) Geologic<br />

section along the mortway Kozina – Koper (Capo<strong>di</strong>stria).<br />

GEOLOGIJA 50/1, 29-44.


TARI V. (2002) – Evolution of the northern and western<br />

Dinarides: a tectonostratigraphic approach). EGU Stephan<br />

Mueller Special Publication Series, 1, 223-236.<br />

STRUTTURE A MACRO E MESOSCALA NELLE DINARIDI TRIESTINE<br />

35


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 36-38, 2 ff.<br />

Compatibilità <strong>del</strong>l’assetto strutturale superficiale con la faglia<br />

sismogenetica profonda nello Stretto <strong>di</strong> Messina in base ai mo<strong>del</strong>li<br />

analogici<br />

LORENZO BONINI (*), DANIELA DI BUCCI (**), SILVIO SENO (*), GIOVANNI TOSCANI (*), GIANLUCA VALENSISE (***)<br />

ABSTRACT<br />

Reconciling shallow structural setting and seismogenic normal faults in<br />

the Messina Straits: the analogue mo<strong>del</strong> perspective<br />

The Messina Straits and its adjacent areas show an important tectonic<br />

activity and have been deeply investigat<strong>ed</strong>. In this paper we make use of<br />

analogue mo<strong>del</strong>s to reconcile field and surface evidences of high angle normal<br />

faults with the presence of a deep, not expos<strong>ed</strong> low angle normal fault (LANF),<br />

responsible for the large earthquake of 28 December 1908. Reproducing in a<br />

sand-box a SE <strong>di</strong>pping low angle normal fault we observ<strong>ed</strong> the forming of one<br />

or, in some cases, two grabens with a <strong>di</strong>rection and an asimmetry compatible<br />

with those observ<strong>ed</strong> in the study area. All synthetic and antithetic high angle<br />

normal faults are <strong>di</strong>rectly link<strong>ed</strong> to the main LANF and they all develop in the<br />

very early stages of deformation. In this view, the high angle normal faults<br />

faults survey<strong>ed</strong> and mapp<strong>ed</strong> by many Authors could be consider<strong>ed</strong> as a surface<br />

expression of a long-term activity of a main SE-<strong>di</strong>pping LANF.<br />

Key words: Faglia normale a basso angolo, faglie sismo<br />

genetiche, mo<strong>del</strong>li analogici, terremoto Calabro-Messinese<br />

<strong>del</strong> 1908.<br />

INTRODUZIONE<br />

Lo stretto <strong>di</strong> Messina <strong>ed</strong> i settori ad esso a<strong>di</strong>acenti sono una<br />

<strong>del</strong>le regioni a maggior attività tettonica nel M<strong>ed</strong>iterraneo e,<br />

per questo motivo, oggetto <strong>di</strong> numerosi <strong>ed</strong> approfon<strong>di</strong>ti stu<strong>di</strong>.<br />

Ciò nonostante, la comunità scientifica, pur <strong>di</strong>sponendo <strong>di</strong> una<br />

dataset <strong>di</strong> informazioni che si è recentemente molto aggiornato<br />

<strong>ed</strong> incrementato, non ha ancora un’opinione unanime su quale<br />

struttura sismogenetica sia responsabile <strong>del</strong> <strong>di</strong>sastroso sisma<br />

che ha colpito l’area nel Dicembre <strong>del</strong> 1908. L’approccio<br />

metodologico proposto e la serie <strong>di</strong> mo<strong>del</strong>li analogici realizzati<br />

hanno l’intento <strong>di</strong> verificare se la presenza e le caratteristiche<br />

geometriche e cinematiche <strong>del</strong>la faglia responsabile <strong>del</strong><br />

terremoto <strong>del</strong> 1908 possa spiegare le evidenze <strong>di</strong> superficie<br />

legandole all’assetto strutturale profondo <strong>del</strong>lo Stretto.<br />

Le deformazioni cosismiche associate all’evento <strong>del</strong> 1908<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, università <strong>di</strong> Pavia<br />

(**) Dipartimento <strong>del</strong>la Protezione Civile<br />

(***) Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia<br />

(quantificate, in particolare, attraverso misure <strong>di</strong> livellazione),<br />

la <strong>di</strong>stribuzione <strong>del</strong> danno, i dati strumentali e più in generale<br />

l’assetto morfotettonico recente <strong>del</strong>l’area <strong>del</strong>lo Stretto hanno<br />

permesso una ricostruzione dettagliata <strong>del</strong>la sorgente<br />

sismogenetica. Si tratta <strong>di</strong> una faglia lunga circa 40 km, con<br />

immersione <strong>di</strong> 30-35° verso SE e cinematica prevalentemente<br />

normale. Questa faglia si trova tra 3 e 12 km <strong>di</strong> profon<strong>di</strong>tà e<br />

non arriva a interessare <strong>di</strong>rettamente la superficie (DISS<br />

Working Group, 2007, bibliografia inclusa).<br />

Stu<strong>di</strong> geofisici e <strong>di</strong> terreno, sia sulla costa messinese che su<br />

quella calabra, hanno tuttavia rilevato la presenza <strong>di</strong> numerose<br />

faglie normali ad alto angolo, con immersione sia verso NW<br />

che verso SE, dando talvolta a queste strutture un’importanza<br />

<strong>di</strong> primo or<strong>di</strong>ne. Queste faglie interessano le porzioni più<br />

superficiali <strong>del</strong>lo spessore crostale <strong>del</strong>l’area <strong>del</strong>lo Stretto, sia in<br />

terra sia a mare, e deformano depositi recenti, in alcuni casi<br />

raggiungendo la superficie (Del Ben et al., 1996, bibliografia<br />

inclusa). La valutazione in chiave sismotettonica <strong>di</strong> questi dati<br />

ha portato anche alla formulazione <strong>di</strong> ipotesi <strong>di</strong>verse dalla<br />

prec<strong>ed</strong>ente (Fig. 1) per la faglia sorgente <strong>del</strong> terremoto <strong>del</strong><br />

1908 (si v<strong>ed</strong>a Valensise e Pantosti, 1992, per una review).<br />

Tuttavia, tali ipotesi non sono completamente compatibili con<br />

le deformazioni cosismiche, il quadro <strong>del</strong> danneggiamento e i<br />

dati strumentali <strong>di</strong>sponibili per lo stesso terremoto.<br />

Per verificare la possibilità che queste due posizioni<br />

apparentemente inconciliabili siano in realtà espressioni <strong>di</strong>verse<br />

<strong>di</strong> un unico fenomeno (ovvero la presenza <strong>di</strong> una faglia normale<br />

a basso angolo profonda, con immersione verso SE, che<br />

sottende faglie <strong>di</strong> rango inferiore ad alto angolo che in alcuni<br />

casi arrivano in superficie), ci siamo avvalsi <strong>del</strong>la mo<strong>del</strong>lazione<br />

analogica col fine ultimo <strong>di</strong> riprodurre l’evoluzione cinematica<br />

<strong>di</strong> una faglia normale, a basso angolo <strong>ed</strong> attiva tra 3 e 12<br />

chilometri <strong>di</strong> profon<strong>di</strong>tà. In questo modo è possibile, pur con i<br />

limiti <strong>del</strong>la mo<strong>del</strong>lizzazione analogica, verificare la<br />

compatibilità geometrica e cinematica tra faglia sepolta a basso<br />

angolo e faglie più superficiali ad alto angolo, con immersioni<br />

opposte.<br />

METODOLOGIA<br />

Abbiamo realizzato una serie <strong>di</strong> mo<strong>del</strong>li analogici che<br />

riproducono in 3D una faglia normale, sepolta, con<br />

un’immersione <strong>di</strong> 30°. I mo<strong>del</strong>li sono alla scala 1:100.000. La


porzione <strong>di</strong> faglia che viene attivata è lunga 40 cm e larga 20<br />

cm, e dunque riproduce in scala il mo<strong>del</strong>lo <strong>di</strong> sorgente per il<br />

1908 (DISS Working Group, 2007). Inoltre, la larghezza <strong>del</strong>la<br />

sandbox è <strong>di</strong> 80 cm e permette, quin<strong>di</strong>, <strong>di</strong> analizzare anche le<br />

deformazioni che si producono alle estremità laterali <strong>del</strong>la<br />

faglia (Fig. 2 a e b).<br />

I mo<strong>del</strong>li sono realizzati in sabbia (=34°); sulla superficie<br />

<strong>del</strong>la faglia è inoltre presente uno strato <strong>di</strong> circa 2 cm <strong>di</strong><br />

microbiglie in vetro (=24°). Sono stati condotti quattro<br />

esperimenti per valori crescenti <strong>di</strong> estensione pari a 0,5, 2,0, 3,5<br />

e 5,5 cm lungo il piano <strong>di</strong> faglia.<br />

RISULTATI<br />

Tutti i mo<strong>del</strong>li hanno mostrato l’attivazione <strong>del</strong>l’intera<br />

superficie <strong>del</strong>la faglia principale a basso angolo. Inoltre, al tetto<br />

<strong>del</strong>la stessa si sono formate numerose faglie normali sintetiche<br />

e antitetiche ad alto angolo (Fig. 2c). In sezione, queste faglie<br />

LA FAGLIA SISMOGENETICA PROFONDA NELLO STRETTO DI MESSINA<br />

Fig. 1 – a) Localizzazione degli eventi sismici maggiori avvenuti nell’area <strong>del</strong>lo Stretto <strong>di</strong> Messina (Working Group CPTI, 2004). b) Localizzazione <strong>del</strong>la<br />

sorgente <strong>del</strong> terremoto <strong>del</strong> 1908 secondo vari Autori che si basano su osservazioni sismologiche o macrosismiche.<br />

- a) Map of the Messina Straits area with epicenters of historical earthquakes (Working Group CPTI, 2004).b) Seismogenic source mo<strong>del</strong>s for the 1908<br />

earthquake bas<strong>ed</strong> on seismological or macroseismic observations.<br />

Fig. 2 – Set-up <strong>ed</strong> esempi <strong>di</strong> mo<strong>del</strong>li analogici. a) Mappa <strong>del</strong>l’apparato degli esperimenti con riferimenti geografici <strong>del</strong> contesto reale. Il box tratteggiato<br />

rappresenta la proiezione in superficie <strong>del</strong> piano <strong>di</strong> faglia. b) Vista 3D <strong>del</strong>l’apparato. c) Esempio <strong>del</strong>lo sviluppo dei sistemi <strong>di</strong> faglie normali sintetiche e<br />

antitetiche (mo<strong>del</strong>lo con a 3,5 cm <strong>di</strong> estensione).<br />

- Set-up and examples of analogue mo<strong>del</strong>s. a) Map of the experimental apparatus with geographic references of the study area. The dash<strong>ed</strong> box represents the<br />

surface projection of the fault plane. b) 3D view of the apparatus. c) Example of synthetic and antithetic normal fault systems (after 3.5 cm of extension).<br />

37<br />

sono organizzate in uno o, in alcuni casi, due graben che, negli<br />

esperimenti a rigetto maggiore, mostrano un’asimmetria<br />

compatibile con quella osservata nel contesto reale, oggetto<br />

<strong>del</strong>lo stu<strong>di</strong>o. In mappa, esse nascono e si mantengono parallele<br />

alla faglia principale nei primi sta<strong>di</strong> <strong>di</strong> deformazione;<br />

successivamente si formano anche sistemi <strong>di</strong>sposti a circa 30°<br />

dalla <strong>di</strong>rezione <strong>del</strong>la faglia principale, a partire dalle sue<br />

estremità laterali. Anche questa osservazione pare ben<br />

compatibile con la geologia <strong>di</strong> terreno e le principali strutture<br />

rilevate da <strong>di</strong>versi autori. È da notare, infine, che lo sviluppo <strong>di</strong><br />

piani ad alto angolo è molto precoce rispetto all’attivazione<br />

<strong>del</strong>la faglia principale, come emerge già nell’esperimento con<br />

estensione finale pari 0,5 cm. In particolare, sono i piani<br />

sintetici ad alto angolo i primi ad attivarsi e a raggiungere la<br />

superficie topografica dei mo<strong>del</strong>li, mentre i piani antitetici che<br />

concorrono alla formazione dei graben nascono, solitamente, in<br />

una fase più avanzata <strong>di</strong> deformazione e si raccordano, nella<br />

quasi totalità dei casi, <strong>di</strong>rettamente con la faglia principale a<br />

basso angolo.


38 L. BONINI ET ALII<br />

CONCLUSIONI<br />

La mo<strong>del</strong>lazione analogica permette <strong>di</strong> formulare un’ipotesi<br />

più articolata e complessa, a riguardo <strong>del</strong>la deformazione a<br />

lungo termine associata alla faglia sismogenetica che ha<br />

generato il terremoto calabro-messinese <strong>del</strong> 1908. Infatti, i<br />

mo<strong>del</strong>li mostrano che la fagliazione superficiale minore, che<br />

per altro prende in carico ratei <strong>di</strong> scorrimento <strong>di</strong> or<strong>di</strong>ne <strong>di</strong><br />

grandezza minore rispetto a quelli associabili alla sorgente <strong>del</strong><br />

terremoto <strong>del</strong> 1908, è perfettamente compatibile con una faglia<br />

normale principale a basso angolo immergente a SE e, anzi, ne<br />

è un’espressione <strong>del</strong>l’attività a lungo termine.<br />

La possibilità per ciascuna <strong>del</strong>le faglie al tetto <strong>del</strong>la<br />

principale <strong>di</strong> essere essa stessa sorgente <strong>di</strong> terremoti viene<br />

infine <strong>di</strong>scussa, anche tenendo conto <strong>del</strong>la magnitudo massima<br />

possibile in funzione <strong>del</strong>la profon<strong>di</strong>tà a cui ciascuno dei piani<br />

ad alto angolo intercetta il piano a basso angolo.<br />

BIBLIOGRAFIA<br />

AMORUSO A., CRESCENTINI L. & SCARPA R. (2002). Source<br />

parameters of the 1908 Messina Straits, Italy, earthquake<br />

from geodetic and seismic data. J. Geoph. Res., 107,<br />

B4,10.1029/2001JB000434, 2002.<br />

BOSCHI E., PANTOSTI D. & VALENSISE G. (1989). Mo<strong>del</strong>lo <strong>di</strong><br />

sorgente per il terremoto <strong>di</strong> Messina <strong>del</strong> 1908. Atti VIII<br />

Convegno GNGTS, 246, 258.<br />

BOTTARI A., CARAPEZZA E., CARAPEZZA M., CARVENI P.,<br />

CEFALI F., LO GIUDICE E. & PANDOLFO C. (1986). The 1908<br />

Messina Strait earthquake in the regional geostructural<br />

framework. J. Geodyn., 5, 275-302.<br />

CAPUANO P., DE NATALE G., GASPARINI P., PIGUE F. & SCARPA<br />

R. (1988). A mo<strong>del</strong> for the 1908 Messina Straits (Italy)<br />

earthquake by inversion of levelling data. Bull. Seism. Soc.<br />

Am., 78, 1930-1947.<br />

DE NATALE G. AND PINGUE F. (1991). A variable slip fault<br />

mo<strong>del</strong> for the 1908 Messina Straits (Italy) earthquake, by<br />

inversion of levelling data. Geoph. J. Intern., 104, 73-84.<br />

DEL BEN A., GARGANO C. & LENTINI F. (1996). Ricostruzione<br />

strutturale e stratigrafica <strong>del</strong>l’area <strong>del</strong>lo Stretto <strong>di</strong> Messina<br />

m<strong>ed</strong>iante analisi comparata dei dati geologici e sismici.<br />

MEMORIE DELLA SOCIETÀ GEOLOGICA ITALIANA, 51, PP.<br />

703-717.<br />

DISS WORKING GROUP (2007). Database of In<strong>di</strong>vidual<br />

Seismogenic Sources (DISS), Version 3.0.4: A compilation<br />

of potential sources for earthquakes larger than M 5.5 in<br />

Italy and surroun<strong>di</strong>ng areas. HTTP://WWW.INGV.IT/DISS/, ©<br />

INGV 2007 - Istituto Nazionale <strong>di</strong> Geofisica e<br />

Vulcanologia - All rights reserv<strong>ed</strong>.<br />

MULARGIA F. & BOSCHI E. (1983). The 1908 Messina<br />

earthquake and relat<strong>ed</strong> seismicity. In: H. Kanamori and E.<br />

Boschi (<strong>ed</strong>s), Earthquakes, Observations, Theory and<br />

Interpretation, North-Holland, New York, 493-518.<br />

SCHICK R. (1977). Eine seismotektonische Bearbeitung des<br />

Erdbebens von Messina im Jahre 1908. Geol. Jahrb., 11, 3-<br />

74.<br />

VALENSISE G. & PANTOSTI D. (1992). A 125 Kyr-long<br />

geological record of seismic source repeatability: the<br />

Messina Straits (southern Italy) and the 1908 earthquake<br />

(Ms 71/2). Terra Nova, 4 (4), pp. 472-483.<br />

WORKING GROUP CPTI (2004). Catalogo Parametrico dei<br />

Terremoti Italiani, versione 2004 (CPTI04), INGV<br />

Bologna. Available on-line at:<br />

http://emi<strong>di</strong>us.mi.ingv.it/CPTI.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 39<br />

Strutture tettoniche potenzialmente attive: la fissure-ridge <strong>di</strong><br />

Bagni S.Filippo (Monte Amiata)<br />

ALESSANDRO BORGNA (*), ANDREA BROGI (*), LORENZO FABBRINI (**) & DOMENICO LIOTTA (**)<br />

In aree caratterizzate da poca o m<strong>ed</strong>ia sismicità e nelle aree<br />

dove la ricorrenza sismica non è definibile in tempi storici,<br />

l’in<strong>di</strong>viduazione <strong>del</strong>le faglie che potenzialmente possano<br />

attivarsi è <strong>di</strong> più <strong>di</strong>fficile definizione. Pur tuttavia, tale stu<strong>di</strong>o<br />

geologico-strutturale può essere condotto valutando la<br />

collocazione strutturale e le modalità <strong>di</strong> deposizione dei<br />

travertini. Questi infatti si originano in aree dove la<br />

circolazione dei flui<strong>di</strong> è favorita da aperture e condotti<br />

strutturali, collocati lungo zone <strong>di</strong> taglio in cui la deformazione<br />

è caratterizzata da faglie <strong>di</strong>rette o transtensive. La Toscana<br />

meri<strong>di</strong>onale rappresenta un’area ideale per questo tipo <strong>di</strong><br />

stu<strong>di</strong>o: infatti essa è regionalmente caratterizzata da scarsa<br />

sismicità, elevato flusso termico, tettonica <strong>di</strong>stensiva e <strong>di</strong>ffusi<br />

affioramenti <strong>di</strong> travertino <strong>di</strong> età compresa fra il Pleistocene e<br />

l’Attuale. In particolare l’area <strong>di</strong> Bagni <strong>di</strong> S.Filippo rappresenta<br />

un chiaro esempio <strong>di</strong> questa relazione. Infatti, i travertini <strong>di</strong><br />

Bagni S.Filippo si collocano sulla prosecuzione nord-orientale<br />

<strong>del</strong>la zona <strong>di</strong> taglio transtensiva lungo cui sono ubicati i centri<br />

eruttivi <strong>del</strong> Monte Amiata.<br />

In questo lavoro presentiamo i risultati <strong>di</strong> una indagine<br />

geologico strutturale nell’area <strong>di</strong> Bagni S.Filippo, dove sono<br />

presenti estesi depositi <strong>di</strong> travertino e sorgenti termali in<br />

attività.<br />

La metodologia <strong>di</strong> stu<strong>di</strong>o ha previsto il rilevamento<br />

geologico-strutturale <strong>del</strong> substrato, la ricostruzione <strong>del</strong>la<br />

<strong>di</strong>mensione e <strong>del</strong>l’orientamento <strong>del</strong>la fissure-ridge, lo stu<strong>di</strong>o<br />

<strong>del</strong>la geometria <strong>del</strong> travertino e degli eventi deposizionali che<br />

ne hanno determinato la costruzione. In particolare è stato<br />

riconosciuto: a) un sistema articolato <strong>di</strong> fissure-ridge legate a<br />

fratture la cui orientazione in<strong>di</strong>ca la continuità con la zona <strong>di</strong><br />

taglio che attraversa le vulcaniti <strong>del</strong> Monte Amiata; b) i<br />

manufatti e le costruzioni costruiti sulla fissure-ridge mostrano<br />

evidenti segni <strong>di</strong> <strong>di</strong>slocazione; c) il sistema deposizionale<br />

riconosciuto nei travertini è paragonabile al sistema attuale <strong>di</strong><br />

deposizione ad in<strong>di</strong>care che le con<strong>di</strong>zioni deposizionali non<br />

sono cambiate nel tempo.<br />

Se ne conclude che la struttura tettonica alla quale è<br />

associato il sistema <strong>di</strong> fissure-ridge è ancora ci nematicamente<br />

_________________________<br />

(*)Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università degli Stu<strong>di</strong> <strong>di</strong> Siena, Via<br />

Laterina, 8 – 53100 Siena.<br />

(**)Dipartimento <strong>di</strong> Geologia e Geofisica, Università degli Stu<strong>di</strong> <strong>di</strong> Bari,<br />

Via Orabona, 4 – 70125 Bari.<br />

Andrea Brogi: brogiandrea@unisi.it<br />

attiva, suggerendo una continua propagazione verso est <strong>del</strong>la<br />

zona <strong>di</strong> taglio che caratterizza il Complesso vulcanico <strong>del</strong><br />

Monte Amiata.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 40<br />

Faglie trascorrenti potenzialmente attive nel complesso vulcanico <strong>del</strong><br />

Monte Amiata (Toscana meri<strong>di</strong>onale)<br />

ANDREA BROGI (*), LORENZO FABBRINI (*), DOMENICO LIOTTA (**), MARCO MECCHERI (*) & ALESSIO MONTAUTI (*)<br />

RIASSUNTO<br />

Il complesso vulcanico <strong>del</strong> Monte Amiata è ritenuto<br />

collegato allo sviluppo <strong>di</strong> una struttura tettonica, <strong>di</strong> carattere<br />

regionale, orientata NO-SE e lungo la quale si collocano i<br />

principali centri eruttivi.<br />

Sebbene <strong>di</strong>versi autori abbiano convenuto sul ruolo<br />

dominante <strong>di</strong> tale struttura per la messa in posto <strong>del</strong>le vulcaniti,<br />

sono mancati fino ad ora stu<strong>di</strong> <strong>di</strong> dettaglio che abbiano<br />

permesso <strong>di</strong> definire le caratteristiche geometriche e<br />

cinematiche <strong>del</strong>le <strong>di</strong>scontinuità tettoniche correlate e/o<br />

successive all’attività eruttiva <strong>del</strong> Monte Amiata (300-190ka).<br />

In questo lavoro presentiamo i primi risultati <strong>di</strong> uno stu<strong>di</strong>o<br />

strutturale condotto nell’apparato vulcanico amiatino e nel suo<br />

substrato. La metodologia <strong>di</strong> stu<strong>di</strong>o si è basata su:<br />

a) rilevamento geologico-strutturale soprattutto lungo la<br />

fascia SO-NE comprendente i centri eruttivi più recenti <strong>del</strong><br />

vulcano <strong>ed</strong> in altre aree chiave ubicate lungo <strong>di</strong>scontinuità<br />

minori. I risultati preliminari mettono in evidenza una zona <strong>di</strong><br />

taglio <strong>di</strong> importanza regionale caratterizzata da faglie e<br />

strutture minori associate, che localmente possono definire<br />

strutture a fiore sia positive che negative, ma che nell’insieme<br />

sono riconducibili ad un movimento transtensivo sinistro <strong>del</strong>la<br />

zona <strong>di</strong> taglio;<br />

b) analisi <strong>di</strong> dati <strong>di</strong> sondaggio e minerari resi <strong>di</strong>sponibili<br />

dall’intensa attività mineraria storicamente sviluppatasi nella<br />

regione amiatina per l’estrazione <strong>del</strong> cinabro. Prospezioni e<br />

sezioni minerarie permettono <strong>di</strong> riconoscere il ruolo dominante<br />

<strong>del</strong>le strutture transtensive nella circolazione dei flui<strong>di</strong><br />

responsabili <strong>del</strong>le mineralizzazioni sia nelle vulcaniti che nelle<br />

rocce <strong>del</strong> substrato;<br />

c) analisi strutturale dei depositi <strong>di</strong> travertino post-vulcanici<br />

nella zona <strong>di</strong> Bagni S.Filippo; i travertini sono deformati da<br />

strutture fragili che risultano in continuità con la zona <strong>di</strong> taglio<br />

riconosciuta nelle vulcaniti.<br />

L’integrazione dei dati raccolti ha permesso <strong>di</strong> ricondurre<br />

_________________________<br />

(*)Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università degli Stu<strong>di</strong> <strong>di</strong> Siena, Via<br />

Laterina, 8 – 53100 Siena.<br />

(**)Dipartimento <strong>di</strong> Geologia e Geofisica, Università degli Stu<strong>di</strong> <strong>di</strong> Bari,<br />

Via Orabona, 4 – 70125 Bari.<br />

Andrea Brogi: brogiandrea@unisi.it<br />

tutte le osservazioni ad un unico quadro deformativo guidato<br />

dalla tettonica regionale trascorrente sinistra e la cui attività è<br />

almeno riferibile ad un periodo <strong>di</strong> tempo compreso tra 300ka e<br />

l’Attuale. Pur tuttavia non può essere escluso, come già<br />

ipotizzato da altri autori, che la tettonica trascorrente fosse già<br />

attiva durante il Pleistocene così da controllare la messa in<br />

posto <strong>del</strong>le vulcaniti.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 41<br />

Strutture geologiche e circolazione idrotermale:<br />

il pull-apart <strong>di</strong> Bagnore (Monte Amiata)<br />

ANDREA BROGI (*), LORENZO FABBRINI (**) & DOMENICO LIOTTA (**)<br />

RIASSUNTO<br />

L’area geotermica <strong>di</strong> Bagnore si colloca sulla terminazione<br />

sud-occidentale <strong>del</strong>la struttura regionale transtensiva che ha<br />

verosimilmente guidato la messa in posto <strong>del</strong> complesso<br />

vulcanico <strong>del</strong> Monte Amiata (300-190ka). Nell’area <strong>di</strong> Bagnore<br />

è presente un campo geotermico, attualmente sfruttato per la<br />

produzione <strong>di</strong> energia elettrica, che si sovrappone ad un’area<br />

mineraria dove la coltivazione a cinabro si è protratta per oltre<br />

un secolo. La zona <strong>di</strong> Bagnore è anche caratterizzata da una<br />

anomalia geotermica con picchi fino a 400 mW/m 2 .<br />

Integrando dati <strong>di</strong> miniera, <strong>di</strong> sondaggio e <strong>di</strong> superficie, in<br />

questo lavoro presentiamo l’assetto strutturale <strong>del</strong>l’area <strong>di</strong><br />

Bagnore. I principali risultati mettono in evidenza che la<br />

circolazione idrotermale, sia quella attuale caratterizzata da<br />

flui<strong>di</strong> e vapori geotermici che quella fossile, caratterizzata dalla<br />

mineralizzazione a cinabro, è strettamente controllata da faglie<br />

con principale componente <strong>di</strong> movimento verticale,<br />

m<strong>ed</strong>iamente orientate in <strong>di</strong>rezione NNO-SSE. Queste strutture<br />

terminano contro faglie maggiori orientate SO-NE e che sono<br />

caratterizzate de una cinematica trascorrente sinistra, come<br />

in<strong>di</strong>cato dalle relazione tra strutture <strong>di</strong> Ri<strong>ed</strong>el e le faglie<br />

principali, da strie e mineralizzazioni sul piano <strong>di</strong> faglia.<br />

Il quadro strutturale che si ottiene, quin<strong>di</strong>, è riferibile alla<br />

evoluzione <strong>di</strong> una struttura <strong>di</strong> pull-apart dove la localizzazione<br />

<strong>del</strong>le strutture <strong>di</strong>stensive ha causato un aumento <strong>del</strong>la<br />

permeabilità, favorendo la circolazione <strong>di</strong> flui<strong>di</strong> idrotermali.<br />

_________________________<br />

(*)Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università degli Stu<strong>di</strong> <strong>di</strong> Siena, Via<br />

Laterina, 8 – 53100 Siena.<br />

(**)Dipartimento <strong>di</strong> Geologia e Geofisica, Università degli Stu<strong>di</strong> <strong>di</strong> Bari,<br />

Via Orabona, 4 – 70125 Bari.<br />

Andrea Brogi: brogiandrea@unisi.it


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 42-43<br />

RIASSUNTO<br />

Cronologia <strong>del</strong>le deformazioni compressive nel Preappennino Umbro:<br />

una sintesi<br />

In questo lavoro vengono sintetizzati i dati stratigrafici e strutturali<br />

raccolti in 4 ampie aree <strong>del</strong> Preappennino umbro con l’obiettivo <strong>di</strong> descrivere<br />

in modo esaustivo l’intera evoluzione tettono-s<strong>ed</strong>imentaria <strong>del</strong>la porzione più<br />

interna <strong>del</strong>l’avanfossa miocenica.<br />

La cronologia <strong>del</strong>le deformazioni compressive e la loro migrazione, nel tempo<br />

e nello spazio, vengono definiti ricostruendo, per i vari settori in stu<strong>di</strong>o, le età<br />

<strong>del</strong>la transizione da dominio <strong>di</strong> avampaese a dominio <strong>di</strong> avanfossa e <strong>del</strong>la<br />

successiva incorporazione nella catena. La scansione temporale <strong>di</strong> tali eventi<br />

viene definita con l’utilizzo sistematico <strong>del</strong>l’analisi biostratigrafia quantitativa<br />

<strong>del</strong>le associazioni <strong>di</strong> nannofosili calcarei applicata ad oltre 40 successioni<br />

torbi<strong>di</strong>tiche <strong>di</strong> età compresa fra il limite Oligocene-Aquitaniano <strong>ed</strong> il<br />

Tortoniano.<br />

L’in<strong>di</strong>viduazione <strong>del</strong>l’avanfossa, la sua sud<strong>di</strong>visione in sub-bacini e la sua<br />

progressiva tettonizzazione in tempi via via più recenti da ovest verso est,<br />

vengono posti in relazione con i motivi tettonici <strong>di</strong> scala regionale come la<br />

messa in posto e l’avanzamento <strong>del</strong>le unità alloctone <strong>di</strong> derivazione interna<br />

(Falda <strong>del</strong>le Arenarie <strong>del</strong> Falterona <strong>ed</strong> Unità Liguri) e l’enucleazione dei<br />

sovrascorrimenti dei massicci mesozoici perugini e <strong>di</strong> Gubbio.<br />

Key words: Umbria Preapennines, Miocene for<strong>ed</strong>eep<br />

s<strong>ed</strong>imentation, timing of compressional tectonics.<br />

INTRODUZIONE<br />

The shallow structure of the Umbria Preapennines is<br />

characteris<strong>ed</strong> by an east-verging embricate thrust-system<br />

deforming the Miocene turbi<strong>di</strong>te successions (TEEN HAF &<br />

VAN WAMEL, 1979, DE FEYTER, 1982; MENICHETTI et alii,<br />

1991).<br />

The major thrust-sheets correspon<strong>di</strong>ng to the regional tectonic<br />

units of Monte Rentella (BROZZETTI et alii, 2000), Monte Nero<br />

and Gubbio-Borgo Pace (DE FEYTER et alii, 1990), from west<br />

to east, show decreasing amount of allochthony and<br />

progressively younger ages of involvement in the<br />

_________________________<br />

Timing of contractional deformations in the Umbria<br />

Preapennines: an overview.<br />

(*)Geosis Lab- Dip. Sc. <strong>del</strong>la Terra, Università G.<br />

d'Annunzio Chieti f.brozzetti@dst.unich.it<br />

ARTA - Abruzzo, Chieti<br />

BROZZETTI FRANCESCO (*) & LUCINA LUCHETTI (**)<br />

compressional tectonics.<br />

This eastward-rejuvenating trend documents the steps through<br />

which each zone of the west-central Umbria evolv<strong>ed</strong> from<br />

foreland to for<strong>ed</strong>eep domain and was, subsequently,<br />

incorporat<strong>ed</strong> into the chain.<br />

The Miocene succession at the top of each tectonic unit, <strong>di</strong>ffers<br />

from the neighbouring ones as regards the age of the basal<br />

ramp-mud, the time interval affect<strong>ed</strong> by turbi<strong>di</strong>tic<br />

s<strong>ed</strong>imentation (expecially its onset-time), the location of the<br />

turbi<strong>di</strong>te source-areas and their <strong>di</strong>spersal pattern (DAMIANI et<br />

alii, 1983; LUCHETTI, 1998; BROZZETTI & LUCHETTI, 2002).<br />

The features and the timing of s<strong>ed</strong>imentation are also<br />

influenc<strong>ed</strong> by the emplacement of allochthon sheets above the<br />

inner side of the for<strong>ed</strong>eep and by the growth of the Umbria<br />

Preapennines compressional structures.<br />

With the aim of reconstruct an exhaustive tectonic-stratigraphic<br />

frame, four key-areas have been investigat<strong>ed</strong> by integrating<br />

structural geology, physical stratigraphy and nannofossil<br />

biostratigraphy: a) M. Rentella area, b) Monte S. Maria<br />

Tiberina ridge, c) Mt. Casale - Bocca Trabaria area and d)<br />

Perugia massifs - Gubbio transect.<br />

Within these areas, the main compressional structures (regional<br />

thrusts and folds, representative of the main tectonic units<br />

forming the Umbria pre-apennines) have been survey<strong>ed</strong> and<br />

several stratigraphic sections have been logg<strong>ed</strong>, sampl<strong>ed</strong> and<br />

analys<strong>ed</strong> through nannofossils biostratigraphy.<br />

The Mt. Rentella succession, tectonically cover<strong>ed</strong> by the<br />

Falterona Nappe, includes from the bottom, the polychromic<br />

marls of Mt. Rentella (MVR), the cherty marls of Mt. Sperello<br />

(MMS) and the sandy-marly turbi<strong>di</strong>tes of Castelvieto-La<br />

Montagnaccia (Acv). The nannofossil content of the sequence<br />

shows that the MVR are Late Oligocene-Aquitanian in age, the<br />

MMS are upper Aquitanian and that the ACv are position<strong>ed</strong> at<br />

the Aquitanian-Bur<strong>di</strong>galian boundary (BROZZETTI et alii,<br />

2000).<br />

These data clearly point out that the Mt Rentella succession can<br />

not be relat<strong>ed</strong> to the Marnoso Arenacea fm (MAR) cropping<br />

out just to the east (Corciano – M. Acuto area) which is Late<br />

Bur<strong>di</strong>galian in age and follows upwards the Early-Middle<br />

Bur<strong>di</strong>galian Schlier fm. The chronologic constrain and its<br />

structural position, suggest that this unit, during the Oligocene -<br />

Early Miocene interval, deriv<strong>ed</strong> from the tectonization of an<br />

interm<strong>ed</strong>iate palaeogeographic domain locat<strong>ed</strong> between the<br />

Tuscan for<strong>ed</strong>eep s.s. and the Umbria-Marche basin.<br />

MAR s<strong>ed</strong>imentation start<strong>ed</strong>, in western Umbria, during the<br />

Middle Bur<strong>di</strong>galian with a pelitic-arenaceous successions


TIMING OF CONTRACTIONAL DEFORMATIONS IN THE UMBRIA PREAPENNINES<br />

(MUM1 mr accor<strong>di</strong>ng to CARG nomenclature) in which axial<br />

(alpine) and transversal (appenninic) suppli<strong>ed</strong> turbi<strong>di</strong>tes<br />

alternates (LUCHETTI, 1998). During this same time span, the<br />

Falterona Nappe, carrying piggy back the Vicchio Marls and<br />

the Liguride tele-allochthon, overthrust<strong>ed</strong> the M. Rentella unit<br />

reaching the west side of the for<strong>ed</strong>eep. At the beginnig of the<br />

Late Bur<strong>di</strong>galian, its front got the present location and was<br />

seal<strong>ed</strong> by the lower part of the M.S. Maria Tiberina fm<br />

(BROZZETTI et alii, 2002; BROZZETTI, 2007). Toward west, this<br />

latter deposit<strong>ed</strong> in fact, upon the Late Bur<strong>di</strong>galian Vicchio<br />

Marls, whereas, towards east, it s<strong>ed</strong>iment<strong>ed</strong>, in continuity on<br />

MUM1. During the Early Langhian, the M. S. Maria Tiberina<br />

fm continu<strong>ed</strong> to s<strong>ed</strong>iment on the western border of the<br />

for<strong>ed</strong>eep. In the meantime, more to the east, a thicker turbi<strong>di</strong>te<br />

system, rich in coarse-grain<strong>ed</strong> arenites form<strong>ed</strong> within a NW-SE<br />

tren<strong>di</strong>ng oversuppli<strong>ed</strong> trough (MUM2, M. Casale member) and<br />

evolv<strong>ed</strong> upward as a pelitic arenaceous succession (MUM3,<br />

Vesina Member). The eastward extent of this succession is<br />

uncertain; nevertheless we may exclude that it deposit<strong>ed</strong> east of<br />

the Gubbio and M. Subasio anticlines where, up to Early<br />

Langhian, the s<strong>ed</strong>imentation of Schlier fm was still going on.<br />

During the Late Langhian - Early Serravallian time span<br />

homogeneous depositional con<strong>di</strong>tions resettl<strong>ed</strong> all over the<br />

basin and the peripheral bulge reach<strong>ed</strong> the Serra Maggio area.<br />

The wide <strong>di</strong>stribution of the typical marly-arenaceouscalcarenitic,<br />

turbi<strong>di</strong>tes characterising the Galeata and Nespoli<br />

mrs, supports this inference. Furthermore, the ubiquity of a<br />

number of calcarenite and hibrid arenite key-b<strong>ed</strong>s (among<br />

which the well-known “Contessa” b<strong>ed</strong>) showing constant<br />

thickness and composition over tens of kms, suggests that the<br />

for<strong>ed</strong>eep had a regular physiography.<br />

The tectonic deformation of the western Umbria domain,<br />

during the Late Serravallian, lead to nucleation of the well<br />

known Perugia massifs compressional structure (MINELLI et<br />

alii, 1986; BROZZETTI, 1995), detaching in the pre-Burano<br />

phillite, whose shallower and outer splay coincides with the M.<br />

Nero frontal thrust.<br />

In the western part of the basin, the growth of this<br />

compressional structures caus<strong>ed</strong> a mark<strong>ed</strong> uplift which is<br />

clearly register<strong>ed</strong> by the shallowing-upward trend of the<br />

topmost M.S. Maria Tiberina fm and lead to wide-scale sli<strong>di</strong>ng<br />

of olistostromes and slumps in the Serravallian MAR<br />

(LUCHETTI, 1997). A contraction of the for<strong>ed</strong>eep width and a<br />

sensible change in the s<strong>ed</strong>imentary supply is testifi<strong>ed</strong> by<br />

uppermost MAR succession, which deposit<strong>ed</strong> only in the<br />

central-east part of the basin and consists exclusively of very<br />

thick alpine-suppli<strong>ed</strong> turbi<strong>di</strong>tes.<br />

Since the very-Late Serravallian, contractional tectonics<br />

involv<strong>ed</strong> all that part of the basin plac<strong>ed</strong> between the M. Nero<br />

thrust and the Gubbio - M. Subasio alignment (Pietralunga<br />

Unit); possibly in this same time span, also these last anticlines<br />

start<strong>ed</strong> to grow. A clear fining and shallowing upward<br />

sequence, characterising the uppermost Civitella mr and the<br />

emplacement of further slump deposits, in the axial zone of the<br />

M. Pollo syncline (east of Gubbio, DE FEYTER et alii, 1990)<br />

support this latter hypothesis. During the Early Tortonian, the<br />

Umbria MAR for<strong>ed</strong>eep was almost completely deform<strong>ed</strong> and<br />

only the narrow Serra Maggio trough was still affect<strong>ed</strong> by the<br />

turbi<strong>di</strong>te s<strong>ed</strong>imentation of the M. Vicino sandstone.<br />

REFERENCES<br />

43<br />

BROZZETTI F. (1995) - Stile strutturale <strong>del</strong>la tettonica<br />

<strong>di</strong>stensiva nell’Umbria occidentale: L’esempio dei Massicci<br />

Mesozoici Perugini. Stud. Geol. Camerti, special issue<br />

1995,1, 105-119.<br />

BROZZETTI F. (2007) - The Umbria pre-Apennine in the Monte<br />

Santa Maria Tiberina area: new geological map and<br />

structural notes. Boll Soc. Geol. It. ital. J. Geosci., 126, 3,<br />

511-529<br />

BROZZETTI F., LUCHETTI L., & PIALLI G. (2000a) – La<br />

successione <strong>di</strong> Monte Rentella (Umbria Occidentale)<br />

biostratigrafia nannofossili calcarei <strong>ed</strong> ipotesi per un<br />

inquadramento tettonico regionale. Boll. Soc. Geol. It.,<br />

119, 407-422.<br />

BROZZETTI F & LUCHETTI L. (2002) – Vincoli stratigrafici<br />

all’evoluzione tettonica <strong>del</strong>l’ avanfossa miocenica<br />

nell’Appennino settentrionale. Atti <strong>del</strong> 3° seminario sulla<br />

Cartografia Geologica, Bologna Febbraio 2002.<br />

BROZZETTI F., GALLI M., LUCHETTI L. & PIALLI G. (2000) –<br />

Stratigraphy and structural setting of the M. Nero thrust<br />

sheet between the Afra and Lama Valleys (Northern Umbria).<br />

in Evol. Geol. e Geo<strong>di</strong>n. <strong>del</strong>l’Appennino, Convegno in<br />

memoria <strong>del</strong> Prof. G. Pialli, Abstract Vol.<br />

DAMIANI A.V., PANNUZI L., & PIALLI G. (1983) – Osservazioni<br />

geologiche nelle aree comprese fra i Massicci Perugini <strong>ed</strong> i<br />

rileievi <strong>di</strong> Gubbio. Giornale <strong>di</strong> Geol., 2, 45 (1), 127-150.<br />

DE FEYTER, (1982) – The structure of the Northern Umbria<br />

Apennines, Italy. Geol. en Mijnbouw, 16,183-189.<br />

DE FEYTER A.J., MOLENAAR N., PIALLI G., MENICHETTI M. &<br />

VENERI F. (1990) Paleotectonic significance of gravity<br />

<strong>di</strong>splacement structures in the Miocene turbi<strong>di</strong>te series of<br />

the M. Pollo Syncline (Umbro-Marchean Apennines, Italy).<br />

Geol. Mijnb., 69, 69 - 86.<br />

LUCHETTI L. (1997) - Stratigrafia a nannofossili calcarei <strong>del</strong>la<br />

Marnoso Arenacea <strong>del</strong>l'Umbria settentrionale fra il fronte<br />

<strong>del</strong>l'unità Falterona e la dorsale eugubina. Tesi <strong>di</strong><br />

dottorato (VIII Ciclo) Dip. Sc. Della Terra, Università <strong>di</strong><br />

Perugia, pp 118.<br />

LUCHETTI L. (1998) – Biostratigrafia a nannofossili calcarei<br />

<strong>del</strong>le successioni torbi<strong>di</strong>tiche mioceniche <strong>del</strong>l’area <strong>di</strong> M.<br />

Acuto e <strong>di</strong> M. Corona (Umbria nord-occidentale, Italia<br />

centrale). Boll. Soc. Geol. It., 117, 333-335.<br />

MENICHETTI M., DE FAYTER A.J. & CORSI M. (1991) - CROP<br />

03 - Il tratto Val Tiberina-Mare Adriatico. <strong>Sezione</strong><br />

geologica e caratterizzazione s<strong>ed</strong>imentaria <strong>del</strong>le avanfosse<br />

<strong>del</strong>la zona umbro-marchigiano-romagnola. Stu<strong>di</strong> Geol.<br />

Cam., Vol. Spec. (1991/1), 279 - 293.<br />

MINELLI G., MOTTI A. & PIALLI G. (1986) – Evoluzione tettonica<br />

dei Massicci Perugini; area <strong>di</strong> Monte Torrazzo. Mem. Soc.<br />

Geol. It., 35, 389-398.<br />

TEN HAAF E. & VAN WAMEL (1979) - Nappes of the Alta<br />

Romagna. In W.J.M. VAN DER LINDEN (Ed.): Fixism,<br />

mobilism or relativism: Van Bemmelen's search for<br />

harmony. Geol. Mijnbouw.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 44-47, 1f.<br />

The history of a post-orogenic trough: the high Agri Valley,<br />

Southern Apennines, Italy.<br />

FRANCESCO BUCCI (*), PAOLA GUGLIELMI (**), IVANA ADURNO (***), ENRICO TAVARNELLI (*), GIACOMO<br />

PROSSER (**) & ERWAN GUEGUEN (***)<br />

RIASSUNTO<br />

La storia <strong>di</strong> una fossa tettonica post-orogenica: l’alta Val d’Agri,<br />

Appennino Meri<strong>di</strong>onale, Italia.<br />

In molte catene collisionali, strutturate in pieghe e sovrascorrimenti, si<br />

riscontrano gli effetti <strong>di</strong> una tettonica estensionale post-orogenica, collegata a<br />

un sollevamento regionale <strong>del</strong>la catena. Gli effetti combinati <strong>di</strong> sollevamento e<br />

<strong>di</strong>stensione mo<strong>di</strong>ficano l’architettura sin-orogenica <strong>del</strong>la catena<br />

frammentandola in dorsali montuose separate da bacini continentali.<br />

Un’ analoga evoluzione tettonica può essere ricostruita nel settore assiale<br />

<strong>del</strong>l’Appennino Meri<strong>di</strong>onale dove si riconoscono <strong>di</strong>versi esempi <strong>di</strong> bacini<br />

continentali post-orogenici <strong>di</strong> origine tettonica. La presente ricerca ha<br />

l’obiettivo <strong>di</strong> inquadrare l’evoluzione post-orogenica <strong>del</strong>la depressione morfotettonica<br />

<strong>del</strong>l’alta Val d’Agri, dove sono evidenti gli effetti <strong>del</strong>la tettonica sinorogenica<br />

e post-orogenica. L’attuale morfologia e la strutturazione <strong>del</strong> bacino<br />

si è in gran parte prodotta nel Quaternario, a causa <strong>del</strong>l’attività <strong>di</strong> faglie<br />

transtensive e <strong>di</strong>stensive. Queste strutture sono successive a faglie <strong>di</strong>stensive a<br />

m<strong>ed</strong>io-basso angolo pre-esistenti che hanno consentito l’esumazione tettonica<br />

<strong>del</strong>le porzioni assiali <strong>del</strong>la catena appenninica a partire dal Pliocene superiore.<br />

Faglie <strong>di</strong>rette con bassi valori <strong>di</strong> inclinazione potrebbero spiegare alcune<br />

anomalie nei rapporti tra le formazioni <strong>del</strong>l’Unità Campano-Lucana e quelle<br />

<strong>del</strong>le Unità Lagonegresi, che sono imbricate a formare una parte considerevole<br />

<strong>del</strong>le unità alloctone affioranti nel settore assiale <strong>del</strong>l’ Appennino meri<strong>di</strong>onale.<br />

In questo contributo consideriamo alcuni affioramenti isolati <strong>di</strong> carbonati <strong>di</strong><br />

pertinenza campano-lucana come blocchi esotici <strong>del</strong>imitati alla base da<br />

superfici <strong>di</strong> scollamento immergenti verso l’avampaese. Questi, a lungo<br />

interpretati come parte integrante <strong>di</strong> un sistema <strong>di</strong> sovrascorrimenti <strong>di</strong><br />

importanza regionale, potrebbero alternativamente essere considerati come il<br />

prodotto <strong>di</strong> un processo <strong>di</strong> <strong>di</strong>slocazione e <strong>di</strong> parziale riattivazione in regime<br />

<strong>di</strong>stensivo <strong>del</strong>le prec<strong>ed</strong>enti superfici <strong>di</strong> sovrascorrimento. Dal Pleistocene<br />

<strong>di</strong>ventano dominanti le faglie transtensive ad alto angolo, ra<strong>di</strong>cate in<br />

profon<strong>di</strong>tà, <strong>ed</strong> è attraverso la loro progressiva attività che si struttura e prende<br />

forma l’attuale deprerssione morfo-tettonica <strong>del</strong>l’alta Val d’Agri. Dal<br />

Pleistocene m<strong>ed</strong>io ad oggi prevale una tettonica <strong>di</strong>stensiva.<br />

L’esistenza <strong>di</strong> un fe<strong>ed</strong>back positivo tra i processi <strong>di</strong> sollevamento <strong>ed</strong><br />

erosione ha contribuito a determinare il progressivo approfon<strong>di</strong>mento dei<br />

principali livelli <strong>di</strong> scollamento <strong>del</strong>le faglie <strong>di</strong>rette recenti, che tendono a<br />

localizzarsi sotto il sovrascorrimento basale <strong>del</strong>le Unità Lagonegresi.<br />

Parole Chiave: Distensione post-orogenica, Appennino<br />

meri<strong>di</strong>onale, sollevamento, faglie <strong>di</strong>rette a basso angolo.<br />

Key words: Post-orogenic extension, southern Apennines,<br />

uplift, low-angle normal faults.<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università degli stu<strong>di</strong> <strong>di</strong> Siena, Via<br />

Latrina, 8 – 53100, Siena, Italy. bucci14@unisi.it<br />

(**) Dipartimento <strong>di</strong> Scienze Geologiche, Università degli stu<strong>di</strong> <strong>del</strong>la<br />

Basilicata, Campus <strong>di</strong> Macchia Romana – 85100, Potenza, Italy<br />

(***) IMAA-CNR, 85050, Tito Scalo (Potenza), Italy<br />

INTRODUCTION<br />

The Apennine orogen is characteris<strong>ed</strong> by pair<strong>ed</strong> belts of<br />

contraction and extension which migrat<strong>ed</strong> eastward during the<br />

Neogene-Quaternary times. Since the Miocene, the eastward<br />

propagation of the fold-and-thrust structures was accompani<strong>ed</strong><br />

and follow<strong>ed</strong> by the development of post-orogenic normal<br />

faults relat<strong>ed</strong> to the collapse of the chain.<br />

In southen Apennines, post-Messinian evolution is mark<strong>ed</strong><br />

by a drastic slowdown of slab migration due to collision with<br />

the Apulian swell (GUEGUEN et alii, 1998). From this time<br />

onward, <strong>di</strong>rect convergence has been accommodat<strong>ed</strong> mainly by<br />

sinistral transpression (CINQUE et alii, 1993; PIERI et alii,<br />

1997).<br />

In the inner portion of the orogen, the eastward migration of<br />

the post-orogenic extensional front, accommodat<strong>ed</strong> by Pliocene<br />

low-angle normal faults (FERRANTI et alii, 1996) and by early<br />

Pleistocene normal to left-oblique transtensional faults<br />

(HIPPOLYTE et alii, 1994), determin<strong>ed</strong> the progressive<br />

fragmentation of the fold-and-thrust architecture. SW-NE<strong>di</strong>rect<strong>ed</strong><br />

shortening in the frontal part of the southern<br />

Apennines ceas<strong>ed</strong> during the middle Pleistocene (PATACCA &<br />

SCANDONE, 2001). Afterwards, the deformation regime was<br />

dominat<strong>ed</strong> by NE-SW <strong>di</strong>rect<strong>ed</strong> extension mainly<br />

accommodat<strong>ed</strong> by NW-SE tren<strong>di</strong>ng high-angle normal faults.<br />

Pliocene to Quaternary extension was accompani<strong>ed</strong> by intense<br />

uplift (CINQUE et alii, 1993).<br />

Interm<strong>ed</strong>iate to low-angle extensional contacts have been<br />

observ<strong>ed</strong> mostly at the base of blocks made up of platform<br />

carbonates. It seems likely that these extensional faults were<br />

active at shallow crustal levels during the late Pliocene-early<br />

Pleistocene times while coeval deep-seat<strong>ed</strong> thrusting affect<strong>ed</strong><br />

the deepest structural levels, thus allowing efficient mechanical<br />

removal of hanging-wall material by footwall uplift coupl<strong>ed</strong><br />

with enhanc<strong>ed</strong> erosion (MAZZOLI et alii, 2006).<br />

Starting from the middle Peistocene, the regional uplift was<br />

particularly concentrat<strong>ed</strong> within the extension-dominat<strong>ed</strong>, axial<br />

portion of the belt (SCHIATTARELLA et alii, 2003). Thus the<br />

present-day landscape of the western and axial sectors of the<br />

chain results from the interplay between regional uplift and<br />

fault <strong>di</strong>splacement; this is morphologically reflect<strong>ed</strong> by the<br />

characteristic occurrence of mountain ranges separat<strong>ed</strong> from<br />

fault-bound<strong>ed</strong> basins fill<strong>ed</strong> by recent continental deposits (Fig.<br />

1).


Fig. 1 – High Agri Valley - Location map. Axial sector of the chain between<br />

dash<strong>ed</strong> lines is in<strong>di</strong>cat<strong>ed</strong>. <strong>Note</strong> it is mark<strong>ed</strong> by the occurrence of continental<br />

basins.<br />

GEOLOGICAL SETTING<br />

The Val d’ Agri basin (Fig. 1), locat<strong>ed</strong> in the axial part of the<br />

Campania-Lucania sector of the Southern Apennines, is a NWelongat<strong>ed</strong><br />

basin fill<strong>ed</strong> by Quaternary continental deposits which<br />

cover down-thrown pre-Quaternary rocks of the Apenninic<br />

chain. Pre-Quaternary rock assemblages which floor the Val<br />

d’Agri basin and surroun<strong>di</strong>ng reliefs, largely consist of<br />

Mesozoic-Cenozoic platform rocks pertaining to the Campania-<br />

Lucania domain, in places tectonically overlain by deep-sea<br />

clays and sandstones of the Liguride nappe. Carbonate rocks of<br />

the Campania-Lucania domain were thrust onto coeval pelagic<br />

rocks that were deposit<strong>ed</strong> within the adjacent, more external<br />

Lagonegro basin and on younger Miocene synorogenic rocks.<br />

The main thrust contact is usually mark<strong>ed</strong> by a pervasive<br />

cataclastic texture mostly develop<strong>ed</strong> at the expenses of brittle<br />

carbonate rocks of the hangingwall. In the thrust footwall, the<br />

Lagonegro units consist of Triassic-Miocene carbonates,<br />

siliceous marls and siliciclastics that were, in turn, intensely<br />

duplicat<strong>ed</strong> and fold<strong>ed</strong> (SCANDONE, 1972). The rocks belonging<br />

to the Lagonegro units are thrust over buri<strong>ed</strong> 6-7 km-thick<br />

Mesozoic-tertiary, shallow-water carbonates and overlying<br />

Pliocene siliciclastics, that represent the westerly continuation<br />

of the Apulia platform foreland and that were, in turn, affect<strong>ed</strong><br />

by contractional deformations during the Pliocene-Pleistocene<br />

time interval (CORRADO et alii, 2005).<br />

Pelagic rocks of the Lagonegro Basin mainly outcrop on the<br />

eastern side of the high Agri Valley and in sparse tectonic<br />

windows beneath the Monti <strong>del</strong>la Maddalena thrust sheet in its<br />

western <strong>ed</strong>ge. Conversly, limit<strong>ed</strong> outcrops of neritic carbonates<br />

THE HISTORY OF A POST-OROGENIC TROUGH<br />

45<br />

belonging to the Campania-Lucania Platform are found east of<br />

the Agri basin.<br />

Scatter<strong>ed</strong> outcrops of platform carbonates are present in the<br />

north-easthern <strong>ed</strong>ge of the Agri Valley, to the east of Monte<br />

Volturino: these are generally interpret<strong>ed</strong> as thrust remnants, or<br />

klippen, in the official cartography (CARTA GEOLOGICA<br />

D’ITALIA, 1969) as well as in more recent geological maps (e.g.<br />

LENTINI et alii 1991). In nearby areas, the basal contact of the<br />

klippen clearly crosscuts open folds in the footwall block<br />

(GUEGUEN et alii, 2007). We recently carri<strong>ed</strong> out an<br />

investigation of these exotic blocks in an attempt to unravel<br />

their origin and emplacement mechanisms.<br />

THE BASAL TECTONIC CONTACT OF THE<br />

CAMPANIA-LUCANIA PLATFORM<br />

Within the Apenninic Chain, the Late Cretaceous to Miocene<br />

terrigenous cover rocks were detach<strong>ed</strong> from the mesozoiccenozoic<br />

Lagonegro substratum along decoupling horizons and<br />

passively thrust onto the upper Pliocene clastics of the Bradanic<br />

For<strong>ed</strong>eep (LENTINI et alii, 2002). Similarly, the tectonic,<br />

structurally complex relationships between the Lagonegro<br />

Basin units and overlying Campania-Lucania Platform units<br />

observ<strong>ed</strong> in the M. Volturino area can result from the activation<br />

of foreland-<strong>di</strong>rect<strong>ed</strong>, extensional detachment faults. These<br />

would have locally reactivat<strong>ed</strong> pre-existing thrust surfaces. Our<br />

investigation was focuss<strong>ed</strong> between the frontal part of the thrust<br />

sheet and the easternmost klippen of platform carbonatic rocks.<br />

At the base of the main thrust of the Apenninic platform on<br />

the Lagonegro Units an important shear zone is develop<strong>ed</strong> in<br />

the Lagonegro deep-sea rocks. Interestingly, the base of the<br />

klippen generally lacks a well-develop<strong>ed</strong> shear zone, but is<br />

rather mark<strong>ed</strong> by cataclasites. Detail<strong>ed</strong> mapping of these exotic<br />

blocks reveal<strong>ed</strong> the presence of widespread normal faults<br />

connect<strong>ed</strong> to low-angle detachments activat<strong>ed</strong> along<br />

mechanically weak horizons at shallow structural levels,<br />

correspon<strong>di</strong>ng to the uppermost portions of the Lagonegro<br />

units.<br />

To the SW of Mt. Volturino deep-sea s<strong>ed</strong>imentary rocks of<br />

the uppermost Liguride units resting <strong>di</strong>rectly on the Lagonegro<br />

units, that occupy a much deeper position within the thrust pile,<br />

documents the presence of a low-angle extensional fault. This<br />

interpretation is broadly consistent with the history of late<br />

Pliocene exhumation propos<strong>ed</strong> for the Lagonegro Basin strata<br />

bas<strong>ed</strong> on by apatite fission track age data (CORRADO et alii,<br />

2005).<br />

PLEISTOCENE-TO-PRESENT EVOLUTION<br />

In ad<strong>di</strong>tion to the exhumation controll<strong>ed</strong> by low-angle<br />

normal faults, further uplift and tectonic unroofing was<br />

achiev<strong>ed</strong> by a more recent system of high-angle,<br />

normal/transtensional faults whose activation from Middle<br />

Pleistocene time onwards, l<strong>ed</strong> to the development of the Agri<br />

Valley basin. Basinward-<strong>di</strong>pping, high-angle faults are<br />

associat<strong>ed</strong> with mature fault-line scarps, and form a regular<br />

staircase profile sloping towards the valley depocentre<br />

(MASCHIO et alii, 2005). High-angle faults are mark<strong>ed</strong> by


46 F. BUCCI ET ALII<br />

cataclastic shear bands and by a polish<strong>ed</strong> and planar slip<br />

surfaces (e.g. see also FERRANTI et alii, 2007). Fault-kinematic<br />

data from the paleosoil document faulting consistent with a<br />

mean NW-SE <strong>di</strong>rection of extension active after 40ka (GIANO<br />

et alii, 2000). Careful observation and detail<strong>ed</strong> mapping reveal<br />

a complex tectonic history, characteriz<strong>ed</strong> by the superposition<br />

of geometrically and kinematically <strong>di</strong>stinct fault sets.<br />

CONCLUDING REMARKS<br />

The present morphologic-structural frame of the high Agri<br />

Valley results from the superposition of post-orogenic<br />

extensional tectonics onto a pre-existing contractional, thrustdominat<strong>ed</strong><br />

architechture.<br />

Low-angle extensional faults, active during the Pliocene-<br />

Pleistocene time interval, were responsible early tectonic<br />

exhumation and unroofing processes, mostly localis<strong>ed</strong> at the<br />

front of the Campania-Lucania Platform. Extension within the<br />

structurally uppermost units is document<strong>ed</strong> by the occurrence<br />

of highly <strong>di</strong>scontinuous slivers of platform rocks pertaining to<br />

the Campania-Lucania unit, bound<strong>ed</strong> by shallow tectonic<br />

contacts and sandwich<strong>ed</strong> between pelagic deposits pertaining to<br />

the Ligurian and Lagonegro domains, respectively. Kinematic<br />

complexities and significant <strong>di</strong>fferences in fault rocks suggest<br />

that original thrust contacts were truncat<strong>ed</strong> and/or partly<br />

reactivat<strong>ed</strong> as low-angle detachments. Low-angle normal faults<br />

were, in turn, truncat<strong>ed</strong> by more recent, high-angle normal fault<br />

sets that became the dominant structural features since<br />

Pleistocene time onwards, lea<strong>di</strong>ng to the development of the<br />

Agri Valley basin.<br />

The geometrical and kinematic relationships amongst faults<br />

of <strong>di</strong>fferent generations suggest a positive fe<strong>ed</strong>back between<br />

uplift and erosion during post-orogenic extension; it seems<br />

likely that progressive exhumation and unroofing were<br />

achiev<strong>ed</strong> by activation of sequentially deeper detachments<br />

locat<strong>ed</strong> below the sole thrust of the Lagonegro Units.<br />

REFERENCES<br />

CARTA GEOLOGICA D’ ITALIA, 1969. SERVIZIO GEOLOGICO<br />

D’ITALIA, Potenza 199, Lauria 210, S. Arcangelo 211, IP75,<br />

Roma.<br />

CINQUE A., PATACCA E., SCANDONE P. & TOZZI M., 1993.<br />

Quaternary kinematic evolution of the southern Apennines.<br />

Relationship between surface geological features and deep<br />

lithosferic structures. Annali <strong>di</strong> Geofisica, 36 (2), 249-260.<br />

CORRADO, S., ALDEGA, L., DI LEO, P., GIAMPAOLO, C.,<br />

INVERNIZZI, C., MAZZOLI, S., AND ZATTIN, M., 2005, Thermal<br />

maturità of the axial zone of the southern Apennines fold-andthrust-belt<br />

(Italy) from multiple organic and inorganic<br />

in<strong>di</strong>cators, Terra Nova, v. 17, p. 56-65.<br />

FERRANTI, L., MASCHIO L., BURRATO P., 2007. Fieldtrip guide<br />

to active tectonics stu<strong>di</strong>es in the high Agri Valley. Val d’Agri,<br />

15-17 October 2007.<br />

FERRANTI, L., OLDOW, J.S.&SACCHI, M., 1996. Pre-<br />

Quaternary orogen-parallel extension in the Southern<br />

Apennine belt, Italy, Tectonophysics, 260, 325–347.<br />

GIANO, S.I., MASCHIO, L., ALESSIO, M., FERRANTI, L.,<br />

IMPROTA, S. & SCHIATTARELLA, M., 2000. Ra<strong>di</strong>ocarbon dating<br />

of active faulting in the Agri high valley, Southern Italy, J.<br />

Geodyn., 29, 371–386.<br />

GUEGUEN, E., PROSSER, G. & ADURNO I., 2007, Relationships<br />

between Campano-Lucana Platform and Lagonegro Basin:<br />

new data and regional implication. Rend. Soc. Geol. It., 5,<br />

153-154.<br />

GUEGUEN, E., DOGLIONI, C. AND FERNANDEZ, M., 1998, On the<br />

post-25 Ma geodynamic evolution of the western<br />

M<strong>ed</strong>iterranean. Tectonophysics, 298, 259-269.<br />

HYPPOLITE, L.-C., ANGELIER, J., ROURE, F., AND CASERO, P.,<br />

1994, Piggyback basin development and thrust belt evolution:<br />

Structural and palaeostress analyses of Plio-Quaternary<br />

basins in the southern Apennines, Journal of Structural<br />

Geology, v. 16, p. 159-173.<br />

LENTINI, F., LAZZARI, S., CARBONE, S., CATALANO S. AND<br />

MONACO, C., 1991; Carta Geologica <strong>del</strong> Bacino <strong>del</strong> Fiume Agri,<br />

Regione Bailicata, Università <strong>di</strong> Catania, scale 1/50.000. Selca,<br />

Firenze.<br />

LENTINI, F., CARBONE, S., DI STEFANO, A. & GUARNIERI P.,<br />

2000. The role of foreland-<strong>di</strong>rect<strong>ed</strong> etensional faults in the<br />

frontal part of the Southern Apenninic Chain. 80 a Riunione<br />

Estiva <strong>del</strong>la Società Geologica Italiana, Trieste 6-8 Settembre<br />

2000, p. 310.<br />

MASCHIO L., FERRANTI L., AND BURRATO P., 2005. Active<br />

extension in Val d’ Agri area, Southern Apennines, Italy:<br />

Implications for the geometry of the seismogenic belt.<br />

Geophys. J. Int. 162 (2), 591-609.<br />

MAZZOLI, S., ALDEGA, L., CORRADO, S., INVERNIZZI, C. &<br />

ZATTIN, M., 2006, Pliocene-quaternary thrusting, syn-orogenic<br />

extension and tectonic exhumation in the Southern Apennines<br />

(Italy): Insight from the Monte Alpi area. Geological Society of<br />

America, Special Paper, 414, 55-77.<br />

PATACCA, E. AND SCANDONE P., 2001. Late thrust propagation<br />

and s<strong>ed</strong>imentary response in the thrust-belt–for<strong>ed</strong>eep system of<br />

the Southern Apennines (Pliocene-Pleistocene). In: G.B. VAI<br />

AND I.P. MARTINI (<strong>ed</strong>s.), Anatomy of an Orogen: the Apennines<br />

and Adjacent M<strong>ed</strong>iterranean Basins, Kluwer Academic<br />

Publishers, Great Britain, 401–440.<br />

SCANDONE, P., 1972. Stu<strong>di</strong> <strong>di</strong> Geologia Lucana: carta dei<br />

terreni <strong>del</strong>la serie calcareo-silicomarnosa e note illustrative.<br />

Bollettino <strong>del</strong>la Societa dei Naturalisti in Napoli, 81, 225-300.


SCHIATTARELLA, M., DI LEO, P., BENEDUCE, P. & GIANO, S.I.,<br />

2003. Quaternary uplift vs tectonic loa<strong>di</strong>ng: a case study from<br />

the Lucanian Apennine, southern Italy, Quatern. Int., 101–102,<br />

239–251.<br />

THE HISTORY OF A POST-OROGENIC TROUGH<br />

47


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 48-50, 2 ff.<br />

Geometric and Kinematic mo<strong>del</strong>ing of the thrust fronts in the<br />

Montello-Cansiglio area from geologic and geodetic data (Eastern<br />

Southalpine Chain, NE Italy).<br />

PIERFRANCESCO BURRATO (*), PAOLO MARCO DE MARTINI (*), MARIA ELIANA POLI (°) & ADRIANO ZANFERRARI (°)<br />

RIASSUNTO<br />

Mo<strong>del</strong>lizzazione geometrica a cinematica da dati geologici e geodetici<br />

<strong>del</strong>le strutture compressive nell’area Montello-Cansiglio (Catena<br />

Sudalpina Orientale, Italia nord-orientale).<br />

Questo lavoro è d<strong>ed</strong>icato allo stu<strong>di</strong>o <strong>del</strong>le geometrie e dei ratei <strong>di</strong><br />

deformazione <strong>di</strong> breve e m<strong>ed</strong>io termine <strong>del</strong>le strutture compressive attive<br />

facenti parte dei fronti esterni <strong>del</strong>la Catena Sudalpina, nel settore<br />

<strong>del</strong>l’anticlinale <strong>del</strong> Montello. Il metodo adottato utilizza informazioni derivate<br />

dall’analisi <strong>di</strong> una linea geodetica <strong>di</strong> primo or<strong>di</strong>ne <strong>del</strong>l’IGM, combinate con<br />

osservazioni geofisiche, geologiche e geomorfologiche <strong>di</strong> superficie e <strong>di</strong><br />

sottosuolo. La linea geodetica presa in esame mostra lungo alcuni suoi<br />

segmenti dei movimenti verticali relativi, positivi rispetto ai segmenti<br />

a<strong>di</strong>acenti (maggiori sollevamenti). Questi segnali geodetici, ottenuti dal<br />

confronto <strong>del</strong>le quote dei capisal<strong>di</strong> misurate durante due <strong>di</strong>stinte campagne<br />

separate da un intervallo <strong>di</strong> tempo <strong>di</strong> circa 50 anni, avvengono in<br />

corripondenza <strong>del</strong>l’attraversamento <strong>di</strong> faglie cieche e sono stati quin<strong>di</strong><br />

interpretati come dovuti all’attività <strong>di</strong> queste strutture sepolte. Per<br />

l’interpretazione, è stata costruita una sezione geologica che segue la traccia<br />

<strong>del</strong>la linea <strong>di</strong> livellazione, <strong>ed</strong> è stato quin<strong>di</strong> mo<strong>del</strong>izzato il segnale geodetico<br />

adottando un metodo <strong>di</strong>retto. Nel mo<strong>del</strong>lo, le geometrie <strong>di</strong> partenza <strong>del</strong>le faglie<br />

sono state prese dalla sezione geologica, e sono state poi mo<strong>di</strong>ficate per<br />

riprodurre il segnale geodetico. Una volta fissate le geometrie <strong>del</strong>le faglie, gli<br />

uplift rate sono stati convertiti in slip e shortening rate e comparati con: 1- i<br />

ratei <strong>di</strong> m<strong>ed</strong>io e lungo termine derivati dalle osservazioni geologiche e<br />

geomorfologiche per evidenziare eventuali cambiamenti nel tempo; e 2- con i<br />

tassi <strong>di</strong> convergenza GPS per stu<strong>di</strong>are la partizione <strong>del</strong>le deformazione tra i<br />

<strong>di</strong>versi fronti. Infine sono state usate relazioni analitiche <strong>ed</strong> empiriche per<br />

stimare la massima magnitudo e i tempi <strong>di</strong> ricorrenza dei potenziali futuri<br />

terremoti.<br />

Key words: Montello anticline, slip rates, Eastern Southalpine<br />

Chain, NE Italy.<br />

INTRODUCTION<br />

We present a study of the external thrust fronts of the<br />

Eastern Southalpine Chain (ESC) in the Montello-Cansiglio<br />

area (Fig. 1) using a combination of surface and subsurface<br />

geologic, morphotectonic and geodetic data. The aim of this<br />

_________________________<br />

(*) Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia, <strong>Sezione</strong> Sismologia e<br />

Tettonofisica, Roma<br />

(°) Dipartimento <strong>di</strong> <strong>Georisorse</strong> e Territorio, Università <strong>di</strong> U<strong>di</strong>ne<br />

work is to constrain the geometry of the active thrusts and to<br />

compute the correspon<strong>di</strong>ng rates of deformation. In ad<strong>di</strong>tion we<br />

present an evaluation of the seismic potential of the<br />

seismogenic sources estimating the maximum magnitude of the<br />

potential earthquakes associat<strong>ed</strong> to the in<strong>di</strong>vidual structures and<br />

their recurrence interval.<br />

The active tectonics of the study area is the result of the<br />

relative motion of Africa and its northern Adriatic promontory<br />

with respect to Europe (e.g. CASTELLARIN, 2004). The analysis<br />

of the GPS velocities pr<strong>ed</strong>icts a counter clockwise motion of<br />

the Adriatic block around a pole locat<strong>ed</strong> in the western Alps<br />

(e.g. SERPELLONI et alii, 2005). This motion produces<br />

increasing convergence from west to east, which is match<strong>ed</strong> by<br />

a similar increase of the seismic moment release. Accor<strong>di</strong>ng to<br />

this mo<strong>del</strong>, in the Veneto Region N–S to NNW–SSE<br />

convergence is inferr<strong>ed</strong> to be in the order of about 1,5 mm/a<br />

(e.g. D'AGOSTINO et alii, 2005; GRENERCZY et alii, 2005).<br />

The Neogene-Quaternary ESC is part of the S-verging<br />

Fig. 1 – Regional tectonic sketch of northeastern Italy and western Slovenia.<br />

The black dots highlight the trace of the leveling line us<strong>ed</strong> in this work (from<br />

BURRATO et alii, 2008, mo<strong>di</strong>fi<strong>ed</strong>).<br />

backthrust chain of the Alps. West of the Tagliamento River,<br />

the ESC structures follow a WSW-ENE trend, and the activity<br />

of the main thrust fronts stea<strong>di</strong>ly migrat<strong>ed</strong> southwards<br />

(DOGLIONI, 1992; CASTELLARIN & CANTELLI, 2000). The more<br />

external contractional structures are the Bassano–<br />

Valdobbiadene Thrust (BV Thrust in Fig. 1), associat<strong>ed</strong> with<br />

the uplift of the mountain front (DOGLIONI, 1992), and in a


SHORT AND LONG-TERM DEFORMATION RATES OF THE MONTELLO ANTICLINE<br />

more external position, a system of growing mainly blind<br />

thrusts running at the boundary between the Prealpine relief and<br />

the plain areas (Fig. 1). This system is compos<strong>ed</strong> of several<br />

fault segments identifi<strong>ed</strong> by GALADINI et alii (2005), which<br />

produce the uplift of Neogene–Quaternary deposits and along<br />

its eastern portion border the mountain front of the Carnian<br />

Prealps. The Montello-Conegliano Thrust (MC Thrust in Fig.<br />

1) is the lea<strong>di</strong>ng thrust of the ESC in the study sector. Its<br />

activity is express<strong>ed</strong> by the uplift and warping of Upper<br />

Miocene and Upper Pliocene Pleistocene deposits, forming the<br />

expos<strong>ed</strong> Montello anticline (FERRARESE et alii, 1998;<br />

BENEDETTI et alii, 2000; FANTONI et alii, 2001; FANTONI et<br />

Fig. 2 – Map of historical and instrumental seismicity from the CPTI04<br />

Catalogue (CPTI Working Group, 2004) and the 1977–2001 OGS Annual<br />

Bulletin (available from: http://www.crs.inogs.it/). (from BURRATO et alii,<br />

2008, mo<strong>di</strong>fi<strong>ed</strong>).<br />

alii, 2002) one of the most impressive folds emerging from the<br />

Venetian and Friulian Plain. Surface and subsurface geological,<br />

geophysical and structural data show that the MC Thrust is a 35<br />

km long fault that <strong>di</strong>es out to the east where it is overridden by<br />

the neighbouring Cansiglio Thrust (CA Thrust; GALADINI et<br />

alii, 2005). To the west the MC Thrust has a right-stepping enechelon<br />

relationship with the adjoining Bassano-Cornuda<br />

Thrust (BC Thrust in Fig. 1). To the north of the MC Thrust the<br />

eastern portion of the BV Thrust is found at the base of the<br />

mountain front (Fig. 1). The area compris<strong>ed</strong> between the two<br />

thrust fronts is characteriz<strong>ed</strong> by the presence of a triangle zone<br />

form<strong>ed</strong> by the BV Thrust and by a back-thrust splaying-off the<br />

MC Thrust.<br />

The recent activity of the MC Thrust is testifi<strong>ed</strong> by several<br />

Middle and Upper Pleistocene warp<strong>ed</strong> terraces of the Piave<br />

River paleo-course flanking the western termination of the fold<br />

(e.g. BENEDETTI et alii, 2000 and references threin), and by the<br />

eastward deflection of the Piave River around the growing<br />

anticline. Conversely, evidence of recent activity of the BV<br />

Thrust are more sparse and not conclusive (GALADINI et alii,<br />

2001). To the east, Late Quaternary activity of the CA Thrust is<br />

shown by morphotectonic evidence and fol<strong>di</strong>ng and faulting of<br />

LGM slope deposits (GALADINI et alii, 2005).<br />

Ongoing seismic activity of the ESC results in several<br />

destructive M 6+ earthquakes that have been positively<br />

associat<strong>ed</strong> to in<strong>di</strong>vidual segments of the external thrust fronts<br />

(BASILI et alii, 2008; BURRATO et alii, 2008; DISS WORKING<br />

GROUP, 2007; GALADINI et alii, 2005). In ad<strong>di</strong>tion, shallower<br />

M 5–6 events generat<strong>ed</strong> by smaller secondary structures pose a<br />

not negligible hazard to the region at a more local scale. In this<br />

contest, the almost continuous seismogenic belt that follows the<br />

most external ESC thrust front from the Tagliamento River<br />

(epicentral area of the Mmax 6.3 1976 seismic sequence)<br />

westward to Bassano (epicentral area of the Mw 6.6 1695<br />

earthquake) is interrupt<strong>ed</strong> in the area of the Montello anticline<br />

(CPTI WORKING GROUP, 2004), with no earthquakes during the<br />

last 700 years (consider<strong>ed</strong> the interval of completness of the<br />

catalogue for events of M 6+) (Fig. 2).<br />

METHOD<br />

49<br />

Our analysis focaliz<strong>ed</strong> along the trace of the high precision<br />

IGM geodetic levelling line “Mestre-Polpet” that runs in a N-S<br />

<strong>di</strong>rection from the plain near Venice to the inner sector of the<br />

Venetian Prealps near Belluno, and crosses both the MC-CA<br />

and BV thrust fronts (Fig. 1). We analyz<strong>ed</strong> relative elevation<br />

changes measur<strong>ed</strong> by the geodetic line in a 50 years long time<br />

interval, referring them to the first nodal benchmark of the line<br />

consider<strong>ed</strong> as having a stable elevation (see D’ANASTASIO et<br />

alii, 2006 for an explanation of the method).<br />

This study highlight<strong>ed</strong> the occurrence of some segments of<br />

the line characteriz<strong>ed</strong> by positive vertical relative motions with<br />

respect to nearby segments. These vertical movements,<br />

occurring at the crossing of the ESC thrust fronts, are local<br />

signals with a wavelength up to several kilometers superpos<strong>ed</strong><br />

to a regional uplift trend. One of these sectors was already<br />

stu<strong>di</strong><strong>ed</strong> and link<strong>ed</strong> to the active growing of the Montello<br />

anticline (DE MARTINI et alii, 1998). In this study, we adopt<strong>ed</strong><br />

a forward mo<strong>del</strong>ing proc<strong>ed</strong>ure for the local geodetic uplift<br />

signals to estimate the thrusts recent activity.<br />

To reconstruct the starting geometry of our mo<strong>del</strong> we us<strong>ed</strong><br />

available seismic exploration data combin<strong>ed</strong> with surface<br />

geologic and morphotectonic observations, and produc<strong>ed</strong> a<br />

detail<strong>ed</strong> geologic section along the trace of the leveling line.<br />

The geometric parameters of the thrust deriv<strong>ed</strong> from this<br />

section (i.e. strike, angle of <strong>di</strong>p, depth) were us<strong>ed</strong> as input<br />

parameters for the mo<strong>del</strong>ing of their expect<strong>ed</strong> vertical surface<br />

<strong>di</strong>slocation. The results of the mo<strong>del</strong>ing were compar<strong>ed</strong> to the<br />

registration of the geodetic line to derive range values of the<br />

principal geometrical fault parameters.<br />

Once the geometry of the active thrust faults were known,<br />

we convert<strong>ed</strong> the short-term uplift rates obtain<strong>ed</strong> from the<br />

analysis of the geodetic line into slip and shortening rates.<br />

Then, we compar<strong>ed</strong> them with: 1- the long- and mid-term<br />

geologic/geomorphic slip rates to check for variations through<br />

time; and 2- to the GPS shortening budget in order to examin<br />

the partitioning of the deformation across the <strong>di</strong>fferent ESC<br />

thrust fronts.<br />

Finally, since the area we stu<strong>di</strong><strong>ed</strong> is a seismic gap (Fig. 2)<br />

we also us<strong>ed</strong> analytical (e.g. HANKS & KANAMORI, 1979) and<br />

empirical (e.g. WELLS & COPPERSMITH, 1994) relationships to<br />

figure out maximum magnitude and recurrence interval of<br />

possible future earthquakes.


50 P. BURRATO ET ALII<br />

REFERENCES<br />

BASILI R., VALENSISE G., VANNOLI P., BURRATO P., FRACASSI<br />

U., MARIANO S., TIBERTI M.M. & BOSCHI E. (2008) - The<br />

Database of In<strong>di</strong>vidual Seismogenic Sources (DISS),<br />

version 3: summarizing 20 years of research on Italy's<br />

earthquake geology. Tectonophysics, 453, 20–43,<br />

doi:10.1016/j.tecto.2007.04.014.<br />

BENEDETTI L., TAPPONNIER P., KING G.C.P., MEYER B. &<br />

MANIGHETTI I. (2000) - Growth fol<strong>di</strong>ng and active thrusting<br />

in the Montello region, Veneto, northern Italy. J. Geophys.<br />

Res., 105, 739-766.<br />

BURRATO P., POLI M.E., VANNOLI P., ZANFERRARI A., BASILI<br />

R. & GALADINI F. (2008) - Sources of Mw 5+ earthquakes<br />

in northeastern Italy and western Slovenia: An updat<strong>ed</strong><br />

view bas<strong>ed</strong> on geological and seismological evidence.<br />

Tectonophysics, 453, 157-176, doi: 10.1016/j.tecto.<br />

2007.07.009.<br />

CASTELLARIN A. (2004) - Structural synthesis of the Eastern<br />

Alps: a collisional orogenic chain. In: Wezel, F.C. (Ed.),<br />

Geology of Italy. Special Issue for the 32nd IGC. Episodes,<br />

26 (3), 3–13.<br />

CASTELLARIN A. & CANTELLI L. (2000) - Neo-Alpine evolution<br />

of the Southern Eastern Alps. J. Geodyn., 30, 251–274.<br />

CPTI WORKING GROUP (2004) - Catalogo Parametrico dei<br />

Terremoti Italiani, v. 2004 (CPTI04). INGV, Bologna.<br />

Available at: http://emi<strong>di</strong>us.mi.ingv.it/CPTI/.<br />

D'AGOSTINO N., CHELONI D., MANTENUTO S., SELVAGGI G.,<br />

MICHELINI A. & ZULIANI, D. (2005) - Strain accumulation<br />

in the southern Alps (NE Italy) and deformation at the<br />

northeastern boundary of Adria observ<strong>ed</strong> by CGPS<br />

measurements. Geophys. Res. Lett., 32 (19),<br />

doi:10.1029/2005GL024266.<br />

D’ANASTASIO E., DE MARTINI P.M., SELVAGGI G., PANTOSTI<br />

D., MARCHIONI A. & MASEROLI A. (2006) - Short-term<br />

vertical velocity field in the Apennines (Italy) reveal<strong>ed</strong> by<br />

geodetic levelling data. Tectonophysics 418, 219–234,<br />

doi:10.1016/j.tecto.2006.02.008.<br />

DE MARTINI P.M., BURRATO P. & VALENSISE, G. (1998) -<br />

Active tectonic structures in the Padana Plain: new<br />

<strong>di</strong>scrimination strategy from a joint study of geomorphic<br />

and geodetic leveling data. EGS annual meeting, Nice,<br />

April 1998 (abstract).<br />

DISS WORKING GROUP (2007) - Database of In<strong>di</strong>vidual<br />

Seismogenic Sources (version 3.0.4): A compilation of<br />

potential sources for earthquakes larger than M 5.5 in Italy<br />

and surroun<strong>di</strong>ng areas. Available at:<br />

http://www.ingv.it/DISS.<br />

DOGLIONI C. (1992) - The Venetian Alps thrust belt. In:<br />

McKlay, K.R. (Ed.), Thrust tectonics. Chapman and Hall,<br />

London, 319–324.<br />

FANTONI R., BARBIERI C., CATELLANI D., CASTELLARIN D., DI<br />

GIULIO A. & PESSINA C. (2001) - The record of south-<br />

Alpine events in the Venetian foreland and for<strong>ed</strong>eep. Geol.<br />

-Paläontol. Mitt. Innsbruck, 25, 79–81.<br />

FANTONI R., CATELLANI D., MERLINI S., ROGLEDI S. &<br />

VENTURINI S. (2002) – La registrazione degli eventi<br />

deformativi cenozoici nell’avampaese veneto-friulano.<br />

Mem. Soc. Geol. It., 57, 301–313.<br />

FERRARESE F., SAURO U. & TONELLO C. (1998) - The Montello<br />

Plateau. Karst evolution of an alpine neotectonic<br />

morphostructure. Zeit. für Geomorph., N.F. Suppl.-Bd.<br />

109, 41–62.<br />

GALADINI F., MELETTI C. & VITTORI E. (2001) - Major active<br />

faults in Italy: available surficial data. Geol. En Mijn.<br />

(Netherlands Journal of Geosciences), 80, 273-296.<br />

GALADINI F., POLI M.E. & ZANFERRARI A. (2005) -<br />

Seismogenic sources potentially responsible for<br />

earthquakes with M6 in the eastern Southern Alps<br />

(Thiene–U<strong>di</strong>ne sector, NE Italy). Geophys. J. Int., 161,<br />

739–762. doi:10.1111/j.1365-246X.2005.02571.x.<br />

GRENERCZY, G., SELLA G., STEIN S. & KENYERES, A. (2005) -<br />

Tectonic implications of the GPS velocity field in the<br />

northern Adriatic region. Geophys. Res. Lett., 32, L16311.<br />

doi:10.1029/2005GL022947.<br />

HANKS, T.C. & KANAMORI H. (1979) - A moment magnitude<br />

scale. J. Geophys. Res., 84 (B5), 2348–2350.<br />

SERPELLONI E., ANZIDEI M., BALDI P., CASULA G. & GALVANI<br />

A. (2005) - Crustal velocity and strain-rate fields in Italy<br />

and surroun<strong>di</strong>ng regions: new results from the analysis of<br />

permanent and non-permanent GPS networks. Geophys. J.<br />

Int., 161, 861–880.<br />

WELLS, D.L. & COPPERSMITH K.J. (1994) - New empirical<br />

relationships among magnitude, rupture length, rupture<br />

width, rupture area, and surface <strong>di</strong>splacement. Bull.<br />

Seismol. Soc. Am., 84, 4, 974–1002.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 51-54, 4ff<br />

The Pliocene-Quaternary salient structures of the Central and<br />

Southern Apennine chain inherit<strong>ed</strong> from pre-thrusting normal<br />

faults<br />

FERNANDO CALAMITA(*), PAOLO ESESTIME(*), PAOLO PACE(*), WERTER PALTRINIERI (*) ,<br />

RIASSUNTO<br />

Le strutture arcuate plio-quaternarie <strong>del</strong>la catena <strong>del</strong>l’Appennino centromeri<strong>di</strong>onale<br />

er<strong>ed</strong>itate dalle faglie normali pre-sovrascorrimento<br />

Sulla base <strong>di</strong> dati geologico-strutturali e <strong>del</strong>l’interpretazione <strong>di</strong> profili<br />

sismici a riflessione viene proposto un mo<strong>del</strong>lo <strong>di</strong> tettonica d’inversione per le<br />

strutture arcuate <strong>del</strong>l’Appennino centrale (Monti Sibillini-Olevano-Antrodoco,<br />

Montagna dei Fiori-Gran Sasso e Maiella-Sangro-Volturno) e <strong>del</strong>la catena<br />

apula sepolta <strong>del</strong>l’Appennino meri<strong>di</strong>onale (Struttura <strong>di</strong> Setteporte) che<br />

considera i sovrascorrimenti ad andamento N-S prodotti dalla completa<br />

inversione in transpressione <strong>del</strong>le faglie normali pre-thrusting, con sviluppo <strong>di</strong><br />

anticlinali d’inversione debolmente asimmetriche. Mentre per i<br />

sovrascorrimenti ad andamento NW-SE con cinematica inversa, il mo<strong>del</strong>lo<br />

propone l’inversione dei tratti a basso angolo <strong>del</strong>le faglie normali presovrascorrimenti<br />

nella crosta m<strong>ed</strong>io-inferiore e una loro traiettoria <strong>di</strong> short-cut<br />

attraverso le faglie preesistenti nel settore superiore <strong>del</strong>la crosta, con sviluppo<br />

<strong>di</strong> anticlinali <strong>di</strong> short-cut, marcatamente asimmetriche.<br />

In tale contesto, il pattern <strong>del</strong>le faglie normali pre-thrusting è er<strong>ed</strong>itato<br />

nelle strutture arcuate <strong>del</strong>la catena <strong>del</strong>l’Appennino centrale e meri<strong>di</strong>onale, ove i<br />

back-limb <strong>del</strong>le anticlinali <strong>di</strong> short-cut sono poco sviluppati e caratterizzate da<br />

faglie normali pre-thrusting che terminano in prossimità dei settori ad<br />

andamento N-S dei salienti stessi <strong>del</strong>la catena, generalmente riattivate durante<br />

l’estensione quaternaria.<br />

Key words: Salient structures, structural inheritance, Adria<br />

paleomargin, Central Apennines, Southern Apennines.<br />

INTRODUCTION<br />

VITTORIO SCISCIANI(*) & ENRICO TAVARNELLI(°)<br />

The central Apennine Chain has been describ<strong>ed</strong> as a foldand-thrusts<br />

belt dominat<strong>ed</strong> by a thin-skinn<strong>ed</strong> tectonic style, that<br />

implies high estimates of orogenic shortening (BALLY et alii,<br />

1988; GHISETTI & VEZZANI, 1990) or accor<strong>di</strong>ng to a thickskinn<strong>ed</strong><br />

tectonic style, that implies a more conservative<br />

estimate of contraction (CALAMITA et alii, 2004; BOCCALETTI<br />

et alii, 2005; FINETTI et alii, 2005a-b). CALAMITA & DEIANA<br />

(1988), TAVARNELLI (1996), CALAMITA et alii (2002),<br />

SCISCIANI et alii (2000; 2002) have document<strong>ed</strong> the<br />

inheritance of the Mesozoic paleomargin on the Neogene-<br />

Quaternary evolution of the Central Apennine Chain,<br />

emphasizing buttressing geometries and short-cut trajectories of<br />

the thrust planes through the pre- and syn-orogenic normal<br />

faults. A total, reverse-reactivation of the pre-existing normal<br />

faults has been propos<strong>ed</strong> by DECANDIA (1982), ARGNANI &<br />

GAMBERI (1996), ALBERTI (2000), TOZER et alii (2002), and<br />

BUTLER et alii (2004).<br />

The aim of this paper is to reconstruct a crustal scale 3D<br />

mo<strong>del</strong> of tectonic inversion of the pre-thrusting normal faults<br />

(i.e., the Mesozoic pre-orogenic and the Messinian-Pliocene<br />

syn-orogenic normal faults) on the Pliocene-Quaternary<br />

development of salient structures in the outer Central<br />

Apennines (i.e., the Sibillini Mts-Olevano-Atrodoco, Montagna<br />

dei Fiori-Gran Sasso and Maiella-Sangro-Volturno thrusts) and<br />

in the buri<strong>ed</strong> chain of the Southern Apennines (e.g., the<br />

Setteporte structure) bas<strong>ed</strong> on surface geological and structural<br />

data, and on seismic interpretation of industrial and public deep<br />

reflection profiles (Fig. 1).<br />

DISCUSSION<br />

Salient geometries of the thrust fronts are a common feature<br />

in the Central and Southern Apennines with arcuate shap<strong>ed</strong><br />

thrusts at <strong>di</strong>fferent scales. The Sibillini Mts, Gran Sasso,<br />

Montagna dei Fiori and Maiella thrusts and relat<strong>ed</strong> anticlines<br />

trend NW-SE to NNW-SSE and are bound<strong>ed</strong> by WSW to SW<br />

<strong>di</strong>pping normal faults in their back-limbs. These normal faults<br />

develop<strong>ed</strong> before the Pliocene-Pleistocene contractional<br />

deformation and were active during Mesozoic (pre-orogenic)<br />

and Miocene-early Pliocene (syn-orogenic) times. The<br />

relationships between pre-existing normal faults and the<br />

subsequent compressive structures suggest that the thrust planes<br />

truncat<strong>ed</strong> with a short-cut trajectory the steeper segments of the<br />

older <strong>di</strong>scontinuities.<br />

The Maiella anticline connects the Central Apennine fold<br />

and thrust system to the Apulian Chain buri<strong>ed</strong> below the<br />

allochthonous units of the Southern Apennines. A pre-thrusting<br />

normal fault, Messinian-early Pliocene in age, is locat<strong>ed</strong> in the<br />

western limb of the fold. Field and subsurface data collect<strong>ed</strong><br />

along the forelimb of the anticline reveal pre-existing normal<br />

faults that have been rotat<strong>ed</strong> and truncat<strong>ed</strong> by a buri<strong>ed</strong> thrust<br />

following a short-cut trajectory (Fig. 2a1). Imm<strong>ed</strong>iately to the<br />

east of the Maiella fold, the buri<strong>ed</strong> Casoli-Bomba structure<br />

shows similar relationships between pre-existing faults and<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università “G- d’Annunzio” <strong>di</strong><br />

Chieti-Pescara, Campus universitario Madonna <strong>del</strong>le Piane, Via dei Vestini<br />

n° 30, 68013 Chieti Scalo (CH), Italy; e-mail: calamita@unich.it<br />

(°)Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università degli Stu<strong>di</strong> <strong>di</strong> Siena, via<br />

Laterina n°5, 56100 Siena, Italy.


52 F. CALAMITA ET ALII<br />

Fig. 1 – Structural map of the Central Apennines; boxes in<strong>di</strong>cate the study area. SVL.: Sangro-Volurno Line; OAL: Olevano-Antrodoco Line.<br />

Fig. 2 – Examples of fault-thrust planes interaction from the Maiella anticline (cross section - a), the Gran Sasso<br />

area (photo of outcrop– a1), the Casoli-Bomba anticline (line drawing of seismic reflection profile - b), the<br />

Setteporte anticline (line drawing of seismic reflection profile - c) and the Sabina fault (cross section and relative<br />

restor<strong>ed</strong> template – c1). 1: Apulian carbonate platform Unit (Miocene-Triassic); 2: Siliciclastic deposits<br />

(Messinian-early Pliocene; 3: Allochthonous Molise-Sannio Units and overlaying thrust-top basins (Cretaceous-<br />

Pliocene).


THE PLIOCENE-QUATERNARY SALIENT STRUCTURES OF THE CENTRAL AND SOUTHERN APENNINE<br />

compressive structures with a prominent west-<strong>di</strong>pping synorogenic<br />

normal fault in the back-limb that was later rotat<strong>ed</strong><br />

assuming the configuration of high-angle reverse fault and was<br />

partially complicat<strong>ed</strong> by minor back-thrusts (Fig. 2b1).<br />

Seismic line interpretation allow<strong>ed</strong> us to reconstruct the<br />

three-<strong>di</strong>mensional pattern of the buri<strong>ed</strong> Apulian thrusts (e.g.,<br />

the Setteporte structure), tren<strong>di</strong>ng N-S, NNW-SSE and E-W,<br />

and parallel to the normal faults of the foreland area, which are<br />

relat<strong>ed</strong> to the Pliocene-Quaternary flexure. Detail<strong>ed</strong><br />

reconstructions show main N-S/NNE-SSW tren<strong>di</strong>ng thrusts,<br />

merging into NW-SE/E-W tren<strong>di</strong>ng minor thrusts and backthrusts,<br />

characteriz<strong>ed</strong> by push-up geometry, typically referable<br />

to a transpressive deformation (ESESTIME et alii 2006) and/or<br />

to the positive reactivation of normal faults (Fig. 2c).<br />

Several analogies with the buri<strong>ed</strong> Setteporte structure has<br />

been observ<strong>ed</strong> in the field along the Sabini Mts where structural<br />

data reveal a principal west-<strong>di</strong>pping thrust fault and relat<strong>ed</strong> fold<br />

orient<strong>ed</strong> N-S to NNE-SSW, with a gently asymmetric profile,<br />

Fig. 3 – Crustal inversion tectonic mo<strong>del</strong> showing the control of pre- and<br />

syn-orogenic normal faults (A) on the salient geometry of the Central-<br />

Southern Apennines (B). In the salient structure (B), the N-S tren<strong>di</strong>ng<br />

thrusts represent the full inversion of the pre-thrusting normal faults<br />

accor<strong>di</strong>ng to a transpressive deformation (section c), whereas the NW-SE<br />

tren<strong>di</strong>ng thrusts invert<strong>ed</strong> only the low-angle portion of pre-thrusting normal<br />

faults in the middle-lower crust and <strong>di</strong>splac<strong>ed</strong> by short-cut the normal<br />

faults in the upper crust (sections a and b). 1) Crust; 2) s<strong>ed</strong>imentary<br />

succession (?)Permian/Triassic-Miocene.<br />

and near-parallel high-angle transpressive or strike-slip faults in<br />

the back-limb (Fig. 2c2). The final geometry of the Sabina Mts<br />

structure and stratigraphic field data suggest that the fold has<br />

been originat<strong>ed</strong> from positive inversion, with complete<br />

reactivation of a Mesozoic normal fault.<br />

CONCLUSIONS<br />

53<br />

In the frontal sector of the Central-Southern Apennines,<br />

geological data integrat<strong>ed</strong> with seismic line interpretation<br />

allow<strong>ed</strong> us to propose a crustal inversion tectonics mo<strong>del</strong> of<br />

pre-thrusting normal faults (Mesozoic pre-orogenic and<br />

Messinian-Pliocene syn-orogenic faults) on Pliocene-<br />

Quaternary salient thrusts development (Sibillini Mts-Olevano-<br />

Atrodoco, Sabini Mts, Montagna dei Fiori-Gran Sasso and<br />

Maiella-Sangro-Volturno in the Central Apennines and of the<br />

Setteporte in the buri<strong>ed</strong> Apulian chain of the Southern<br />

Apennines).<br />

In the NW-SE/WNW-ESE tren<strong>di</strong>ng sector of salient structures<br />

of the chain, the thrusts reverse-reactivat<strong>ed</strong> the low angle<br />

portion of pre-existing normal faults in the middle-lower crust,<br />

where these structures are probably replac<strong>ed</strong> by shear zones.<br />

The upper, steeper parts of the pre-existing normal faults were<br />

instead truncat<strong>ed</strong> and passively carri<strong>ed</strong> piggy-back by thrusts<br />

propagating with short-cut trajectories, originating complex<br />

composite thrust-relat<strong>ed</strong> anticlines (“short-cut anticlines” -<br />

Figs. 2a, a1, b, and Figs. 3a-b). By contrast, the N-S tren<strong>di</strong>ng<br />

thrusts were produc<strong>ed</strong> by complex reverse reactivation of prethrusting<br />

normal faults in a context of a transpressive<br />

deformation (“full inversion anticlines” - Figs. 2c, c1 and Fig.<br />

3c). In this framework within the salient, the pre-thrusting<br />

normal faults, parallel to the short-cut anticlines, terminate<br />

toward the SE near the N-S tren<strong>di</strong>ng segments of the thrust<br />

planes as illustrat<strong>ed</strong> in the 3D crustal inversion tectonic mo<strong>del</strong><br />

of Figure 4.<br />

During the Quaternary, the extensional tectonics, affecting the<br />

Fig. 4 – Crustal 3D inversion tectonic mo<strong>del</strong> showing the control of prethrusting<br />

normal fault on the salient geometries of the Central-Southern<br />

Apennines. In “a” the pre-existing normal fault terminates abruptly along the<br />

N-S tren<strong>di</strong>ng thrust, whereas in “b” the normal fault show a tip in the<br />

hangingwall block of the thrust.


54 F. CALAMITA ET ALII<br />

axial zone of the Central Apennines, reactivat<strong>ed</strong> the NW-<br />

SE/WNW-SSE pre-thrusting normal faults as document<strong>ed</strong> by<br />

geological (e.g., the development of intra-mountain tectonic<br />

depressions) and seismological data.<br />

REFERENCES<br />

ALBERTI M. (2000) - Along-strike variations of thrusts in the<br />

Spoleto-Valnerina area: genesis and influence on the<br />

evolution of the Umbria-Marche Apennines. Boll. Soc.<br />

Geol. It., 119, 655-665.<br />

BALLY, A.W., BURBI, L., COOPER C., GHELARDONI, R. (1988) -<br />

Balanc<strong>ed</strong> sections and seismic reflection profiles across the<br />

Central Apennines. Mem. Soc. Geol. It., 35, 257-310.<br />

ARGANANI A. & GAMBERI F. (1996) – Stili strutturali al fronte<br />

<strong>del</strong>la Catena Appenninica. Stud. Geol. Cam., Volume<br />

Speciale 1995/1, 19-28.<br />

BOCCALETTI M., CALAMITA F. & VIANDANTE M.G. (2005) – La<br />

Neo-Catena litosferica appenninica nata a partire dal<br />

Pliocene inferiore come espressione <strong>del</strong>la convergenza<br />

Africa-Europa. Boll. Soc. Geol. It, 124, 87-105.<br />

BUTLER R.W.H., MAZZOLI S., CORRADO S., DE DONATIS M., DI<br />

BUCCI D., GAMBINI, R., NASO G., NICOLAI C., SCROCCA D.,<br />

SHINER P. & ZUCCONI V. (2004) – Applying thick-skinn<strong>ed</strong><br />

tectonic mo<strong>del</strong> sto the Apennines thrust belt of Italy –<br />

Limitations and implications. In K.R. McClay, Ed., Thrust<br />

tectonics and hydrocarbon systems: AAPG Memoir 82,<br />

647-667.<br />

CALAMITA F. & DEIANA G. (1988) - The arcuate shape of the<br />

Umbria-Marche-Sabina Apennines (Central Italy).<br />

Tectonophysics, 146, 139-147.<br />

CALAMITA F., SCISCIANI V., MONTEFALCONE R., PALTRINIERI<br />

W. & PIZZI A. (2002) – L’er<strong>ed</strong>itarietà <strong>del</strong> paleomergine <strong>di</strong><br />

Adria nella geometria <strong>del</strong> sistema orogenico centroappenninico:<br />

l’area abruzzese esterna. Mem. Soc. Geol. It.,<br />

57, 355-368.<br />

CALAMITA F., VIANDANTE M.G. & HEGARTY K. (2004) -<br />

Pliocene-Quaternary burial-exhumation paths in the<br />

Central Apennines (Italy): implications for the definition of<br />

the deep structure of the belt. - Boll. Soc. Geol. It., 123,<br />

503-512.<br />

DECANDIA F.A. (1982) – Geologia dei Monti <strong>di</strong> Spoleto (Prov.<br />

Di Perugia). Boll. Soc. Geol. It., 101, 291-315.<br />

ESESTIME P., D’ARCANGELO S., PALTRINIERI W. & CALAMITA<br />

F. (2006) – Strutture traspressive <strong>del</strong>la Catena Apula<br />

Sepolta (Appennino meri<strong>di</strong>onale, settore campano<br />

molisano). Rend. Soc. Geol. It., 2, 135-137.<br />

FINETTI I.R., CALAMITA F., CRESCENTI U., DEL BEN A., FORLIN<br />

E., PIPAN M., RUSCIADELLI G. AND SCISCIANI V. (2005A) –<br />

Crustal Geological Section across Central Italy from the<br />

Corsica Basin to the Adriatic Sea bas<strong>ed</strong> on Geological and<br />

CROP Seismic Data. In Finetti Eds, CROP PROJECT:<br />

Deep Seismic Exploration of the Central M<strong>ed</strong>iterranean and<br />

Italy Elsevier, Chapter 9, 159-197.<br />

FINETTI I.R., LENTINI F., CARBONE S., DEL BEN A., DI STEFANO<br />

A., GUARNIREI P., PIPAN M. & PRIZZON A. (2005B) –<br />

Crustal Tectono-Satratigraphy and Geodynamics of the<br />

Southern Apennines from CROP and other Integrat<strong>ed</strong><br />

Geophysical-Geological Data. In Finetti Eds, CROP<br />

PROJECT: Deep Seismic Exploration of the Central<br />

M<strong>ed</strong>iterranean and Italy Elsevier, Chapter 12, 225-263.<br />

GHISETTI F. & VEZZANI L. (1990) – Stili strutturali nei sistemi<br />

<strong>di</strong> sovrascorrimento <strong>del</strong>la catena <strong>del</strong> Gran Sasso<br />

(Appennino Centrale). Stu<strong>di</strong> Geol. Camerti, Volume<br />

Speciale, 35-70.<br />

SCISCIANI V., CALAMITA F., BIGI S., DE GIROLAMO C. &<br />

PALTRINIERI W. (2000) – The influence of syn-orogenic<br />

normal faults on Pliocene thrust system development: the<br />

Maiella structure (Central Apennines,Italy). Mem. Soc.<br />

Geol. It., 55, 193-204.<br />

SCISCIANI V., TAVARNELLI E., CALAMITA F. (2002). The<br />

interaction of extensional and contractional deformations<br />

in the outer zones of the Central Apennines, Italy. Journal<br />

of Structural Geology, 24, 1647-1658.<br />

TAVARNELLI E. (1996) – The effects of pre-existing normal<br />

faults on thrust ramp development: an example from the<br />

Northern Apennines, Italy. Geologische Rundschau, 85,<br />

363-371.<br />

TOZER, R. S. J., BUTLER, R.W. H. & CORRADO, S. (2002).<br />

Comparing thin- and thick-skinn<strong>ed</strong> thrust tectonic mo<strong>del</strong>s<br />

of the Central Apennines, Italy. IN: Bertotti, G. Schulmann,<br />

K., Cloetingh S., A., P.-L., Continental collision and the<br />

tectono-s<strong>ed</strong>imentary evolution of forelands. Stephan<br />

Mueller Special Publication Series 1, 181-194.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 55-58, 5 ff.<br />

La complessa geologia 3D <strong>del</strong>l'area epicentrale <strong>del</strong> terremoto <strong>di</strong> San<br />

Giuliano, basata su rilevamento strutturale e indagini<br />

gravimetriche.<br />

RICCARDO CAPUTO (*), PETER KLIN (°), LAURA MARELLO (°). RINALDO NICOLICH (^), FRANCESCO PALMIERI (°),<br />

& ENRICO PRIOLO (°)<br />

ABSTRACT<br />

The complex 3D geology of the 2002 San Giuliano epicentral area bas<strong>ed</strong><br />

on structural mapping and gravimetric survey<br />

The epicentral area of the 2002 San Giuliano (Molise, Italy) earthquake<br />

has been largely investigat<strong>ed</strong> for better understan<strong>di</strong>ng the important site effects<br />

observ<strong>ed</strong>. Among the several approaches that have been appli<strong>ed</strong>, in this short<br />

note we present the results of a detail<strong>ed</strong> geological-structural mapping and of a<br />

gravimetric survey. The former methodological approach allow<strong>ed</strong> to<br />

reconstruct the superficial and shallow geology of the area documenting a<br />

polyphas<strong>ed</strong> tectonics characteris<strong>ed</strong> by several low-angle, NW-SE tren<strong>di</strong>ng,<br />

NE-vergent thrust units cut by NNW-SSE tren<strong>di</strong>ng both negative and positive<br />

flower structures. On the other hand, the geophysical approach allow<strong>ed</strong> to<br />

confirm the superficial geological inferences and to constrain at greater depth<br />

the 3D geology, both in term of s<strong>ed</strong>imentary and tectonic <strong>di</strong>stribution. The<br />

results of this integrat<strong>ed</strong> analysis were then us<strong>ed</strong> for numerical mo<strong>del</strong>ling<br />

simulating the ground accelaration within the epicentral area.<br />

Key words: structural geology, gravimetric survey, epicentral<br />

area, Central Apennines<br />

INTRODUZIONE<br />

Nell'ambito dei progetti <strong>di</strong> interesse strategico per il<br />

Dipartimento <strong>del</strong>la Protezione Civile (2005-2006), l'area<br />

epicentrale <strong>del</strong> terremoto <strong>di</strong> San Giuliano <strong>di</strong> Puglia (31 ottobre<br />

2002) è stata oggetto <strong>di</strong> numerose ricerche scientifiche. In<br />

questa breve nota, sono descritti e <strong>di</strong>scussi i risultati ottenuti<br />

m<strong>ed</strong>iante due approcci metodologici, <strong>di</strong>stinti ma fortemente<br />

complementari, l'uno <strong>di</strong> carattere geologico, l'altro geofisico. In<br />

particolare, è stato effettuato un rilevamento geologico,<br />

strutturale e geomorfologico <strong>di</strong> dettaglio principalmente<br />

finalizzato alla ricostruzione <strong>del</strong>le geometrie <strong>del</strong>le unità<br />

stratigrafiche principali e <strong>del</strong>le strutture tettoniche maggiori che<br />

interessano questo settore <strong>del</strong>l'Appennino meri<strong>di</strong>onale. Nella<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Ferrara, via Saragat<br />

1, 44100 Ferrara (rcaputo@unife.it)<br />

(°) Istituto Nazionale <strong>di</strong> Oceanografia e Geofisica Sperimentale, Borgo<br />

Grotta Gigante 42/C, 34010 Sgonico (TS).<br />

() Geological Survey of Norway, Trondheim, Norway.<br />

(^) Dipartimento <strong>di</strong> Ingegneria Civile <strong>ed</strong> Ambientale, Università <strong>di</strong> Trieste,<br />

P.le Europa 1, 34127 Trieste.<br />

Lavoro eseguito bell’ambito <strong>del</strong> progetto DPC-INGV 2006-07, con il<br />

contributo finanziario <strong>del</strong> DPC, INOGS e Università <strong>del</strong>la Basilicata.<br />

stessa area, è stata effettuata una campagna <strong>di</strong> misure<br />

gravimetriche con lo scopo <strong>di</strong> d<strong>ed</strong>urre, dalle anomalie <strong>del</strong><br />

campo gravitazionale, la <strong>di</strong>stribuzione <strong>del</strong>le densità nel<br />

sottosuolo, permettendo, così, <strong>di</strong> meglio definire la geometria,<br />

lo spessore, l’assetto tettonico, etc, degli elementi geologici che<br />

caratterizzano questo sito.<br />

Il confronto incrociato dei risultati ottenuti con i due<br />

approcci in<strong>di</strong>pendenti ha permesso <strong>di</strong> vincolare fortemente la<br />

geologia <strong>del</strong> sottosuolo nell'area epicentrale e <strong>di</strong> ricostruire un<br />

mo<strong>del</strong>lo geologico 3D. Nell'ambito degli stessi progetti DPC,<br />

tale mo<strong>del</strong>lo è stato successivamente utilizzato per le<br />

simulazioni numeriche finalizzata a riprodurre (con successo)<br />

gli effetti <strong>di</strong> sito osservati durante il terremoto.<br />

RISULTATI DELLE INDAGINI GEOLOGICHE<br />

Da un punto <strong>di</strong> vista strutturale, l’area è interessata da una<br />

serie <strong>di</strong> falde <strong>di</strong> ricoprimento appenniniche caratterizzate da un<br />

sistema <strong>di</strong> sovrascorrimenti con andamento m<strong>ed</strong>io circa NO-SE<br />

e vergenza nordorientale. Profili <strong>di</strong> sismica a riflessione e <strong>di</strong><br />

pozzi per l'esplorazione petrolifera hanno permesso <strong>di</strong><br />

vincolare lo spessore <strong>del</strong>le falde <strong>di</strong> ricoprimento. Nell'area <strong>di</strong><br />

indagine, che rappresenta il settore esterno <strong>del</strong> cuneo orogenico<br />

appenninico, ad appena 5 km dai depositi affioranti <strong>di</strong><br />

avanfossa <strong>ed</strong> a meno <strong>di</strong> 10 km dal fronte sepolto <strong>del</strong>l'alloctono<br />

(PATACCA E SCANDONE, 2004), tale spessore è <strong>di</strong> appena 2.0-<br />

2.5 km. Le falde poggiano su un basamento rigido <strong>di</strong> dolomie e<br />

calcari (Mesozoico-Triassico) la cui continuazione orientale<br />

affiora nel promontorio <strong>del</strong> Gargano, nel basso Molise e a Nord<br />

<strong>del</strong>l’area <strong>di</strong> Capitanata.<br />

Il lavoro <strong>di</strong> terreno, che per completezza è stato svolto su<br />

un'area più vasta, è stato effettuato alla scala 1:10.000 sulle<br />

CTR <strong>del</strong>la Regione Molise e comprende i paesi <strong>di</strong> San<br />

Giuliano, Bonefro, Santa Croce e Colletorto. La carta geologica<br />

rappresentata in Figura 1 è limitata ad un quadrato <strong>di</strong> 6 km <strong>di</strong><br />

lato corrispondente all'area dove è stato effettuato il rilievo<br />

gravimetrico.<br />

Lo scollamento basale separa le unità alloctone dai depositi<br />

pliocenico-quaternari <strong>del</strong>l'avanfossa bradanica settentrionale in<br />

successione stratigrafica sul substrato carbonatico <strong>di</strong> pertinenza<br />

apula. Le scaglie tettoniche che sono state riconosciute e<br />

ricostruite nell'area <strong>di</strong> indagine sono costituite da due unità<br />

stratigrafiche principali. La prima è la Formazione Faeto<br />

costituita da calcari marnosi e marne bianche e rosate con<br />

intercalazioni <strong>di</strong> biocalcareniti e calciru<strong>di</strong>ti torbi<strong>di</strong>tiche in strati


56 R. CAPUTO ET ALII<br />

Fig. 1 – Carta geologico-strutturale <strong>di</strong> dettaglio <strong>del</strong>l’area <strong>di</strong> San Giuliano. Il<br />

riquadro tratteggiato <strong>del</strong>imita l’area <strong>di</strong> lato 2 km per la quale è stato costruito<br />

il mo<strong>del</strong>lo <strong>di</strong>gitale 3D.<br />

da centimetrici a decimentrici, <strong>di</strong> età Serravalliano-Tortoniano<br />

(FESTA et al., 2006). Tale unità affiora estesamente sia in tagli<br />

naturali che stradali e, verso l'alto, passa stratigraficamente ad<br />

una successione <strong>di</strong> argille marnose grigio azzurre e marne<br />

argillose con intercalazioni <strong>di</strong> arenarie, <strong>di</strong> età Tortoniano-<br />

Messiniano chiamate Formazione <strong>di</strong> Vallone Ferrato da FESTA<br />

et al. (2006) e note anche con il nome <strong>di</strong> Unità <strong>di</strong> Toppo<br />

Capuana. Gli affioramenti <strong>di</strong> questa seconda litologia sono<br />

generalmente più rari (es. 1 km NNE <strong>del</strong>l'abitato <strong>di</strong> San<br />

Giuliano o lungo la strada tra San Giuliano e Colletorto) e<br />

danno luogo a <strong>di</strong>ffusa reptazione, movimenti <strong>di</strong> massa lungo i<br />

versanti (anche se <strong>di</strong> debole inclinazione) e a numerosi<br />

fenomeni franosi principalmente per colata rapide (debris flow)<br />

e secondariamente con meccanismi <strong>di</strong> roto-traslazione.<br />

La deposizione <strong>del</strong>la Formazione <strong>di</strong> Vallone Ferrato è<br />

probabilmente perdurata anche durante le prime fasi<br />

contrazionali, inizialmente caratterizzate dallo sviluppo <strong>di</strong><br />

pieghe per propagazione <strong>di</strong> faglia, e ciò ha causato variazioni<br />

laterali sia <strong>di</strong> facies che <strong>di</strong> spessore. Localmente, come a sud <strong>ed</strong><br />

a ovest <strong>di</strong> Santa Croce, affiorano dei materiali prevalentemente<br />

argillosi a struttura caotica e non attribuibili con certezza ad<br />

alcuna unità stratigrafica. Essi rappresentano un melanges <strong>di</strong><br />

origine tettonica generalmente sviluppatosi alla base dei<br />

sovrascorrimenti a spese <strong>di</strong> argille policrome e calcareniti<br />

torbi<strong>di</strong>tiche probabilmente appartenenti alla formazione <strong>del</strong><br />

Flysch Rosso.<br />

Le unità alloctone così strutturate sono state<br />

successivamente coinvolte da un <strong>di</strong>verso regime tettonico che<br />

ha generato faglie ad assetto da verticale ad alto angolo,<br />

m<strong>ed</strong>iamente orientate NNO-SSE e con prevalente cinematica<br />

trascorrente destra. Tali strutture <strong>di</strong>ssecano in modo obliquo e<br />

<strong>di</strong>slocano anche <strong>di</strong> centinaia <strong>di</strong> metri le prec<strong>ed</strong>enti strutture<br />

contrazionali a basso angolo generalmente orientate NO-SE.<br />

L'attivazione <strong>di</strong> questi sistemi <strong>di</strong> faglie ha localmente dato<br />

luogo a tipiche strutture a fiore, come quella su cui si trova il<br />

paese <strong>di</strong> San Giuliano. Non è chiaro se tali strutture trascorrenti<br />

interessano soltanto il cuneo alloctono superficiale oppure se<br />

coinvolgono anche i calcari <strong>del</strong>la sottostante piattaforma apula.<br />

Le <strong>di</strong>mensioni pluri-chilometriche <strong>del</strong>le faglie osservate in<br />

campagna e l'entità dei rigetti stimati fanno propendere per<br />

questa seconda ipotesi suggerendo la riattivazione <strong>di</strong><br />

<strong>di</strong>scontinuità meccaniche er<strong>ed</strong>itate da fasi tettoniche<br />

mesozoiche o prodottesi durante la flessurazione prima che la<br />

piattaforma carbonatica sottoscorresse nella sua posizione<br />

attuale. Per le finalità <strong>del</strong> progetto, i dati strutturali <strong>di</strong>sponibili<br />

permettono <strong>di</strong> ricostruire, con ragionevole certezza, la geologia<br />

<strong>del</strong> sottosuolo fino ad una profon<strong>di</strong>tà <strong>di</strong> almeno 1,5 km.<br />

Fig. 2 – Alcuni esempi <strong>di</strong> sezioni geologico-strutturali orientate est-ovest a<br />

partire dalle quali è stato costruito il mo<strong>del</strong>lo <strong>di</strong>gitale 3D.


3D COMPLEX GEOLOGY OF THE 2002 SAN GIULIANO EPICENTRAL AREA<br />

Sulla base <strong>del</strong>le indagini <strong>di</strong> terreno, <strong>del</strong>la relativa<br />

rappresentazione cartografica e <strong>di</strong> vincoli stratimetrici <strong>ed</strong><br />

utilizzando profili sismici e dati <strong>di</strong> pozzi ministeriali è stato<br />

possibile costruire dei profili geologici seriali (orientati E-O)<br />

interpretando il sottosuolo fino ad una profon<strong>di</strong>tà <strong>di</strong> circa 1,5-2<br />

km (Figura 2).<br />

I risultati <strong>del</strong>le indagini geologiche documentano una<br />

strutturazione polifasica <strong>di</strong> questo settore <strong>di</strong> catena. L'area è<br />

stata coinvolta dalle fasi compressive appenniniche che hanno<br />

causato l'impilamento <strong>di</strong> <strong>di</strong>verse unità tettoniche m<strong>ed</strong>iante<br />

l'attivazione <strong>di</strong> un complesso sistema <strong>di</strong> sovrascorrimenti<br />

embriciati a vergenza ENE. Successivamente, tale<br />

strutturazione contrazionale associata a sovrascorrimenti a<br />

basso angolo è stata coinvolta da una serie <strong>di</strong> faglie subverticali<br />

con prevalente cinematica trascorrente che ha dato luogo a<br />

geometrie a fiore sia positive, sia negative. Una simile<br />

evoluzione è stata proposta anche in altri settori <strong>del</strong>l'Appennino<br />

centrale (e.g. DI BUCCI et al., 1999)<br />

RISULTATI DELLE INDAGINI GRAVIMETRICHE<br />

Il rilievo gravimetrico ha interessato un’area, centrata<br />

sull’abitato <strong>di</strong> San Giuliano <strong>di</strong> Puglia, <strong>di</strong> circa 36 km 2 . Sono<br />

state effettuate misure in 248 punti, riferiti gravimetricamente<br />

all’eccentrico <strong>del</strong>la stazione assoluta <strong>di</strong> Troia (FG), che sono<br />

stati successivamente elaborati, applicando le correzioni<br />

standard con densità <strong>di</strong> 2.1 g/cm 3 , calcolata applicando il<br />

metodo <strong>di</strong> Nettleton, per ottenere la mappa <strong>del</strong>le anomalie <strong>di</strong><br />

Bouguer.<br />

Fig. 3 – Mappa <strong>del</strong>le anomalie <strong>di</strong> Bouguer <strong>del</strong>l'area epicentrale <strong>di</strong> San<br />

Giuliano.<br />

Fig. 4 – Mappa <strong>del</strong>le anomalie <strong>di</strong> Bouguer <strong>del</strong>l'area epicentrale <strong>di</strong> San<br />

Giuliano filtrata con lunghezza d'onda


58 R. CAPUTO ET ALII<br />

Fig. 5 – Mo<strong>del</strong>lo 3D <strong>del</strong>l'area epicentrale <strong>del</strong> terremoto <strong>di</strong> San Giuliano<br />

ricostruito m<strong>ed</strong>iante software GoCad.<br />

sottraendo la componente regionale all’anomalia <strong>di</strong> Bouguer.<br />

DISCUSSIONE<br />

In una fase successiva <strong>del</strong> lavoro, tutte le informazioni<br />

geologico-strutturali, sia <strong>di</strong> superficie che profonde, sono state<br />

integrate con i risultati <strong>del</strong>la campagna gravimetrica e insieme<br />

utilizzati per realizzare un mo<strong>del</strong>lo <strong>di</strong>gitale geologicostrutturale<br />

e geofisico <strong>di</strong> dettaglio centrato sul paese <strong>di</strong> S.<br />

Giuliano <strong>di</strong> Puglia (Figura 5). Il volume considerato copre un<br />

area <strong>di</strong> 2 km <strong>di</strong> lato e si estende fino alla profon<strong>di</strong>tà <strong>di</strong> circa<br />

1500 m rispetto alla superficie. Il mo<strong>del</strong>lo è stato realizzato<br />

usando il software GoCad® e si compone <strong>di</strong> un file vettoriale<br />

(mo<strong>di</strong>ficabile), dove sono definite tutte le interfacce e le loro<br />

intersezioni, e <strong>di</strong> un file raster che definisce il volume in<br />

termini <strong>di</strong> proprietà fisiche (velocità P <strong>ed</strong> S, densità e<br />

attenuazione) su un grigliato con passo <strong>di</strong> 10 m.<br />

Il mo<strong>del</strong>lo è stato costruito sulla base <strong>del</strong>l’interpretazione<br />

geologico-strutturale prec<strong>ed</strong>entemente descritta e <strong>del</strong> mo<strong>del</strong>lo<br />

altimetrico <strong>di</strong>gitale <strong>del</strong> terreno, integrati con i risultati <strong>del</strong><br />

rilievo gravimetrico. Inoltre, sono stati presi in considerazione<br />

anche i risultati <strong>di</strong> altre indagini effettuate nell'ambito <strong>del</strong><br />

progetto DPC, come il rilievo sismico a rifrazione e<br />

<strong>del</strong>l’inversione tomografica (NIETO E BOEHM, 2006) e le<br />

indagini geotecniche (SILVESTRI et al., 2006). Grazie al<br />

software GoCad® è possibile osservare in tre <strong>di</strong>mensioni le<br />

complesse geometrie <strong>del</strong>le unità stratigrafiche e <strong>del</strong>le <strong>di</strong>verse<br />

strutture tettoniche. Con lo stesso software è inoltre possibile<br />

costruire profili geologici lungo qualsiasi <strong>di</strong>rezione e ciò ha<br />

permesso <strong>di</strong> controllare, mo<strong>di</strong>ficare localmente e così<br />

migliorare l’interpretazione geologica <strong>del</strong> sottosuolo.<br />

Nella definizione <strong>del</strong> mo<strong>del</strong>lo 3D si sono considerate le<br />

<strong>di</strong>verse unità litologiche principali che era possibile vincolare<br />

adeguatamente in profon<strong>di</strong>tà, e cioè la Formazione <strong>di</strong> Vallone<br />

Ferrato, la Formazione Faeto <strong>ed</strong> il melanges. I dati <strong>del</strong>le<br />

interfacce, definite in profon<strong>di</strong>tà e in superficie, sono stati<br />

inseriti nel mo<strong>del</strong>lo vettoriale <strong>di</strong>gitale, insieme al mo<strong>del</strong>lo<br />

altimetrico, come superfici geo-referenziate, e definiscono le<br />

principali fratture e gli orizzonti <strong>del</strong>le quattro unità strutturali.<br />

Questi elementi costituiscono il mo<strong>del</strong>lo vettoriale geologicostrutturale.<br />

Il mo<strong>del</strong>lo fisico è invece definito su una griglia regolare <strong>di</strong><br />

passo 10 m, calcolato dalla partizione litologica definita nel<br />

mo<strong>del</strong>lo vettoriale. Ad ogni nodo <strong>del</strong>la griglia è assegnata una<br />

label che definisce la litologia cui appartiene <strong>ed</strong> i valori <strong>del</strong>le<br />

proprietà fisiche. Questo è il mo<strong>del</strong>lo che è stato<br />

successivamente utilizzato per le simulazioni numeriche (sia<br />

come volume 3D sia come sezioni 2D).<br />

Il presente lavoro ha permesso <strong>di</strong> evidenziare come l’analisi<br />

integrata <strong>di</strong> un rilievo geologico-strutturale <strong>di</strong> dettaglio e <strong>del</strong>la<br />

gravimetria, una metodologia geofisica <strong>di</strong> costo limitato e non<br />

invasiva, possa fornire una migliore definizione e<br />

comprensione <strong>del</strong>la geologia <strong>del</strong> sottosuolo permettendo <strong>di</strong><br />

ricostruire le geometrie dei corpi in 3D.<br />

REFERENCES<br />

BROCHER T.M. (2005) - Empirical relations between elastic<br />

wavespe<strong>ed</strong>s and density in the Earths crust. Bull. Seism.<br />

Soc. Am., 95 (6), 2081-2092.<br />

DI BUCCI D., CORRADO S., NASO G., PAROTTO M. &<br />

PRATURLON A. (1999) - Evoluzione tettonica neogenicoquaternaria<br />

<strong>del</strong>l'area molisana. Boll. Soc. Geol. It., 118,<br />

13-30.<br />

FESTA A., GHISETTI F. & VEZZANI L. (2006) - Carta geologica<br />

<strong>del</strong> Molise. Scala 1:100.000 e <strong>Note</strong> illustrative. Litografia<br />

GEDA, Nichelino (TO).<br />

NIETO D.Y. & BOEHM G. (2006) - Progetto S3 – Scenari <strong>di</strong><br />

scuotimento in aree <strong>di</strong> interesse prioritario e/o strategico.<br />

Task 3 – Molise, Deliverable D8.<br />

PALMIERI F., MARELLO L. & PRIOLO E. (2006) - Progetto S3 –<br />

Rilievo gravimetrico <strong>di</strong> dettaglio nell’area <strong>di</strong> San Giuliano<br />

<strong>di</strong> Puglia (Cb) – REL. 2006/92- CRS 24.<br />

PATACCA E. & SCANDONE P. (2004) - The Plio-Pleistocene<br />

thrust belt – for<strong>ed</strong>eep system in the Southern Apennines and<br />

Sicily (Italy). In: Crescenti U., D’Offizi S., Merlini S. &<br />

Lacchi L. (Eds.) - Geology of Italy. Società Geologica<br />

Italiana, Roma, 93-129.<br />

SILVESTRI F., D’ONOFRIO A., GUERRICCHIO A., LANZO G.,.<br />

PAGLIAROLI A, PUGLIA R., SANTUCCI DE MAGISTRIS F., SICA<br />

S., EVA C., FERRETTI G. & DI CAPUA G. (2006) - Mo<strong>del</strong>li<br />

geotecnici 1D e/o 2D per i comuni <strong>di</strong> San Giuliano <strong>di</strong><br />

Puglia, Bonefro, Ripabottoni, Colletorto e Santa Croce <strong>di</strong><br />

Magliano. Progetto S3 – Scenari <strong>di</strong> scuotimento in aree <strong>di</strong><br />

interesse prioritario e/o strategico. Task 3 – Molise,<br />

Deliverable D8.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 59-61, 3 ff.<br />

Morfologia <strong>ed</strong> evoluzione strutturale <strong>di</strong> un corpo <strong>di</strong>apirico nel<br />

settore iraniano <strong>del</strong> Golfo Persico<br />

LUCA CHIARIOTTI (*), CESARE R. PEROTTI (*), MARCO RINALDI (*),GIUSEPPE BERTOZZI (**) & STEFANO CARRUBA (**)<br />

ABSTRACT<br />

Morphology and structural evolution of a <strong>di</strong>apiric body in the Iranian<br />

area of the Persian Gulf.<br />

The Persian Gulf basin is characteriz<strong>ed</strong> by a large number of <strong>di</strong>apiric<br />

bo<strong>di</strong>es induc<strong>ed</strong> by the rise of the Late Proterozoic evaporitic Hormuz<br />

Formation. The study of a <strong>di</strong>apiric structure through seismic interpretation,<br />

well data and three-<strong>di</strong>mensional reconstructions reveals that the salt uplift<br />

probably start<strong>ed</strong> during the Early Palaeozoic and basically was a continuous<br />

process until Recent, also if with periods of <strong>di</strong>fferent rate of deformation. The<br />

rates of this long-lasting and progressive deformation of the <strong>di</strong>apiric structure<br />

can be eximat<strong>ed</strong> in 4-5 m/Ma during the Mesozioc, and about 6 m/Ma during<br />

the Palaeogene. A possible connections with the geodynamic events that<br />

affect<strong>ed</strong> the NE margin of the Arabian Plate can be inferr<strong>ed</strong>.<br />

Key words: Persian Gulf, salt tectonics.<br />

INTRODUZIONE<br />

Il Golfo Persico costituisce il settore nord-orientale <strong>del</strong>la<br />

Placca Araba <strong>ed</strong> è caratterizzato dalla presenza nel sottosuolo<br />

<strong>di</strong> numerosi <strong>di</strong>apiri salini, costituiti dalla formazione<br />

evaporitica <strong>di</strong> Hormuz <strong>di</strong> età precambriana, situata alla base<br />

<strong>del</strong>la potente successione s<strong>ed</strong>imentaria che caratterizza la<br />

regione e che ha un’età compresa tra il Cambriano <strong>ed</strong> il<br />

Quaternario (ALA, 1974; EDGELL, 1996).<br />

Durante tutto il Paleozoico la s<strong>ed</strong>imentazione avviene in un<br />

ambiente intracratonico (SHARLAND et alii, 2001) <strong>ed</strong> è<br />

caratterizzata da depositi prevalentemente clastici continentali<br />

o <strong>di</strong> mare poco profondo. Dal Permiano superiore fino<br />

all’Oligocene, in un contesto geo<strong>di</strong>namico essenzialmente <strong>di</strong><br />

margine passivo, si assiste alla deposizione <strong>di</strong> una successione<br />

più francamente marina, con lo sviluppo <strong>di</strong> potenti successioni<br />

carbonatiche intercalate a s<strong>ed</strong>imenti argillosi o marnosi e a<br />

ridotti livelli evaporitici. Dopo l’Oligocene il Golfo Persico<br />

assume il carattere <strong>di</strong> avampaese e successivamente <strong>di</strong><br />

avanfossa rispetto alla catena degli Zagros, che ha una<br />

_________________________<br />

(*)Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università degli Stu<strong>di</strong> <strong>di</strong> Pavia, via<br />

Ferrata 1, 27100 Pavia, ITALY.<br />

(**)E<strong>di</strong>son S.p.A., Foro Bonaparte 31, 20121 Milano, ITALY.<br />

Stefano Carruba: tel 02/62227925; fax 02/62227041,<br />

stefano.carruba@<strong>ed</strong>ison.it<br />

<strong>di</strong>rezione NW-SE, una vergenza verso SW e che si estende<br />

imm<strong>ed</strong>iatamente a NE <strong>del</strong>l’area.<br />

La risalita <strong>del</strong> sale sembra sia iniziata non molto tempo<br />

dopo la sua deposizione, provocando numerosi <strong>ed</strong> estesi<br />

fenomeni <strong>di</strong> <strong>di</strong>apirismo i cui meccanismi <strong>di</strong> innesco, le modalità<br />

(<strong>di</strong>apirismo attivo e/o passivo) e le fasi evolutive non sono<br />

ancora <strong>del</strong> tutto chiarite (GANSSER, 1992; JACKSON &<br />

VENDEVILLE, 1994; EDGELL, 1996; CARRUBA ET et alii, 2007).<br />

Lo stu<strong>di</strong>o dei meccanismi <strong>di</strong> risalita e <strong>del</strong>la cinematica dei<br />

<strong>di</strong>apiri salini riveste un crescente interesse negli ultimi anni in<br />

considerazione <strong>del</strong> fatto che numerosi reservoir petroliferi si<br />

trovano in corrispondenza <strong>di</strong> trappole connesse alla risalita<br />

<strong>di</strong>apirica.<br />

L’EVOLUZIONE GEOLOGICA DEL DIAPIRO<br />

L’analisi <strong>di</strong> dati geofisici relativi ad una importante struttura<br />

<strong>di</strong>apirica localizzata nell’offshore iraniano, a nord-ovest<br />

<strong>del</strong>l’Arco <strong>del</strong> Qatar (Fig. 1), integrati con calibrazioni <strong>di</strong> pozzo<br />

su una serie <strong>di</strong> marker stratigrafici (limiti formazionali o<br />

<strong>di</strong>scordanze regionali), ha reso possibile la caratterizzazione<br />

<strong>del</strong> <strong>di</strong>apirismo salino <strong>di</strong> questo settore <strong>del</strong> Golfo Persico.<br />

L’evoluzione strutturale e temporale <strong>del</strong> <strong>di</strong>apiro è stata<br />

ricostruita attraverso l’interpretazione e la retro-deformazione<br />

(attraverso un proc<strong>ed</strong>imento <strong>di</strong> flattening dei <strong>di</strong>versi riflettori)<br />

<strong>di</strong> un grid <strong>di</strong> linee sismiche a riflessione acquisite nell’area <strong>di</strong><br />

indagine, effettuando l’analisi <strong>del</strong>le strutture tettoniche e<br />

s<strong>ed</strong>imentarie presenti nella successione deposizionale sui<br />

fianchi <strong>del</strong> <strong>di</strong>apiro. L’interpretazione ha evidenziato geometrie<br />

<strong>di</strong> onlap, troncature erosive, variazioni <strong>di</strong> spessore laterale,<br />

presenza <strong>di</strong> minibacini s<strong>ed</strong>imentari e <strong>di</strong> sinclinali <strong>di</strong> rim (Fig.<br />

2). La ricostruzione geometrica <strong>del</strong>la superficie <strong>di</strong> alcuni<br />

marker sismici ha permesso la creazione <strong>di</strong> mo<strong>del</strong>li <strong>di</strong>gitali<br />

tri<strong>di</strong>mensionali <strong>del</strong>le superfici stesse, ottenendo una dettagliata<br />

immagine <strong>del</strong>la geometria <strong>del</strong>la struttura e <strong>del</strong>la successione<br />

stratigrafica <strong>del</strong>l’area <strong>di</strong> stu<strong>di</strong>o (Fig. 3). Per caratterizzare le<br />

fasi <strong>di</strong> crescita nei <strong>di</strong>versi perio<strong>di</strong> <strong>di</strong> tempo definiti dai marker<br />

sismici, sono stati calcolati i valori relativi alle isopache,<br />

espresse in millisecon<strong>di</strong>, degli intervalli stratigrafici<br />

interpretati, valutando il tasso <strong>di</strong> risalita (in m per Ma) <strong>del</strong><br />

<strong>di</strong>apiro salino. La possibile storia evolutiva <strong>del</strong> <strong>di</strong>apiro può<br />

essere sintetizzata come segue.<br />

Durante il Paleozoico la presenza <strong>di</strong> numerosi minibacini<br />

s<strong>ed</strong>imentari e <strong>di</strong> superfici <strong>di</strong> onlap, che subiscono


60 L. CHIARIOTTI ET ALII<br />

Fig. 1 – Mappa schematica <strong>del</strong>l’area <strong>di</strong> stu<strong>di</strong>o. In grigio scuro sono evidenziate le più importanti strutture <strong>di</strong>apiriche presenti nell’offshore e nell’onshore<br />

iraniano e nel cerchio è in<strong>di</strong>cata l’ubicazione <strong>del</strong>la struttura stu<strong>di</strong>ata.<br />

rispettivamente una progressiva rotazione e verticalizzazione<br />

con l’aumento <strong>del</strong>la profon<strong>di</strong>tà, in<strong>di</strong>cano una fase <strong>di</strong> crescita<br />

continua <strong>del</strong> corpo salino.<br />

Durante il Mesozoico si osserva un progressivo aumento <strong>di</strong><br />

spessore <strong>del</strong>la successione ai lati <strong>del</strong> <strong>di</strong>apiro e l’assenza <strong>di</strong><br />

chiare superfici <strong>di</strong> onlap. Ciò potrebbe essere spiegato<br />

ipotizzando un processo <strong>di</strong> lenta aggradazione, lungo i fianchi<br />

subsidenti <strong>del</strong>la struttura <strong>di</strong>apirica, <strong>del</strong>la piattaforma<br />

Fig. 2 – Interpretazione <strong>di</strong> una sezione retro-deformata al Miocene inferiore. L’ispessimento <strong>del</strong>la successione ai fianchi <strong>del</strong> <strong>di</strong>apiro in<strong>di</strong>ca una crescita<br />

sins<strong>ed</strong>imentaria <strong>del</strong> corpo <strong>di</strong>apirico tra l’infra-Miocene e l’Oligocene Unconformity (onlap), mentre le sottostanti troncature erosive (truncation) in<strong>di</strong>cano una<br />

fase <strong>di</strong> crescita postdeposizionale durante il Paleogene. Nel Paleozoico il progressivo aumento d’inclinazione dei riflettori e dei minibacini con la profon<strong>di</strong>tà<br />

in<strong>di</strong>ca una crescita continua <strong>del</strong> <strong>di</strong>apiro.


MORFOLOGIA ED EVOLUZIONE STRUTTURALE DI UN CORPO DIAPIRICO NEL SETTORE IRANIANO DEL GOLFO PERSICO<br />

Fig. 3 – Ricostruzione 3D <strong>di</strong> alcune superfici stratigrafiche relative alla successione compresa tra il Top <strong>del</strong> Permiano e l’Oligocene Unconformity.<br />

L’inclinazione dei fianchi <strong>del</strong> <strong>di</strong>apiro <strong>ed</strong> il <strong>di</strong>slivello tra la zona <strong>di</strong> cresta e il depocentro <strong>del</strong>le sinclinali <strong>di</strong> rim aumentano progressivamente con la profon<strong>di</strong>tà<br />

evidenziando una continua attività <strong>di</strong>aprica nell’intervallo <strong>di</strong> tempo considerato (esagerazione verticale: 10x).<br />

carbonatica che si sviluppa in questo periodo. E’ stata inoltre<br />

in<strong>di</strong>viduata un’importante troncatura erosiva <strong>di</strong> significato<br />

regionale <strong>di</strong> età cretacica superiore (Turonian Unconformity).<br />

Questo intervallo temporale è caratterizzato da un tasso <strong>di</strong><br />

crescita pressoché costante con valori all’incirca compresi tra 4<br />

e 5 m/Ma e da un progressivo spostamento verso sud-ovest<br />

<strong>del</strong>la sommità <strong>del</strong> <strong>di</strong>apiro.<br />

Il Paleogene è caratterizzato da una crescita <strong>di</strong>apirica più<br />

rapida, con un tasso <strong>di</strong> circa 6 m/Ma, evidenziata anche da una<br />

marcata troncatura erosiva databile all’incirca alla transizione<br />

tra Paleogene- Neogene (Oligocene Unconformity). Durante<br />

questo periodo continua la migrazione verso sud-ovest <strong>del</strong>la<br />

sommità <strong>del</strong> <strong>di</strong>apiro, associata ad un aumento <strong>del</strong>la sua<br />

ampiezza complessiva.<br />

Il Neogene inizia con una notevole crescita <strong>del</strong> corpo<br />

<strong>di</strong>apirico seguita da una periodo contrad<strong>di</strong>stinto da probabile<br />

inattività e successivamente da una lieve crescita. Le strutture<br />

attive in questo intervallo sono contemporanee all’avanzamento<br />

verso sud-ovest <strong>del</strong>l’avanfossa degli Zagros.<br />

Il <strong>di</strong>apirismo salino in questo settore <strong>del</strong> Golfo Persico può<br />

quin<strong>di</strong> essere considerato come un processo continuo, anche se<br />

caratterizzato da fasi con <strong>di</strong>fferenti tassi <strong>di</strong> crescita, che ha<br />

avuto inizio già a partire probabilmente dal Paleozoico<br />

inferiore. Restano ancora da chiarire pienamente le cause che<br />

hanno indotto il fenomeno <strong>ed</strong> il ruolo esercitato dagli eventi<br />

geo<strong>di</strong>namici che hanno interessato il margine nord-orientale<br />

<strong>del</strong>la Placca Araba.<br />

BIBLIOGRAFIA<br />

ALA M.A. (1974) - Salt Diapirism in Southern Iran. Am. Ass. of<br />

Petr. Geol. Bull., 58 (9), 1758-1770.<br />

CARRUBA S., BERTOZZI G., PEROTTI C. R. & RINALDI M. (2007)<br />

- Alcuni aspetti <strong>del</strong> <strong>di</strong>apirismo salino nel Golfo Persico.<br />

Rend. Soc. Geol. It., 4, Nuova Serie, 188-190.<br />

EDGELL H.S. (1996) - Salt tectonism in the Persian Gulf Basin.<br />

In Alsop G.I., Blun<strong>del</strong>l D.J. & Davison I. (<strong>ed</strong>s), Salt<br />

tectonism, Geol. Soc. Spec. Publ., 100, 129-151.<br />

GANSSER A. (1992) - The enigma of the Persian salt dome<br />

inclusion. Eclogae Geol. Helv., 85(3), 825-846.<br />

JACKSON M.P.A. & VENDEVILLE B.C. (1994) - Regional<br />

extension as a geologic trigger for <strong>di</strong>apirism. Geol. Soc. of<br />

America Bull., 106, 57-73.<br />

SHARLAND P.R., ARCHER R., CASEY D.M., DAVIES R.B., HALL<br />

S.H., HEWARD A.P., HORBURY A.D. & SIMMONS M.D.<br />

(2001) - Arabian plate sequence stratigraphy. GeoArabia<br />

Special Pubblication 2, Gulf Petrolink, Bahrain.<br />

61


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 62<br />

How active is the East Antarctic craton?<br />

ABSTRACT<br />

P. CIANFARRA* & F. SALVINI*<br />

Accor<strong>di</strong>ng to plate tectonic theory East Antarctica is a<br />

stable craton almost entirely surround<strong>ed</strong> by passive margins<br />

and suffer<strong>ed</strong> only minor tectonci at the margins since the<br />

fragmentation from the Gondwanaland in Permian times.<br />

The <strong>di</strong>scovery of the Antarctic subglacial lakes and their<br />

uneven spatial <strong>di</strong>stribution, with the highest concentration in<br />

the Dome C area, rais<strong>ed</strong> the question of the origins of the<br />

depressions hosting the largest lakes that are characteris<strong>ed</strong> by<br />

elongat<strong>ed</strong>, rectilinear morphologies often associat<strong>ed</strong> to gravity<br />

lows. The 90° lakes, the Vostok Lake, the Aurora and<br />

Concor<strong>di</strong>a Trenches with the associat<strong>ed</strong> homonymous lakes, the<br />

Adventure Trench and the Astrolobe Basin, all depict a belt of<br />

subglacial troughs with possible tectonic origin running from<br />

the Eastern flanks of the Gamburtsev Mountains to the western<br />

slope of the Wilkes Basin.<br />

To explore the possible tectonic origin of these depressions<br />

a numerical mo<strong>del</strong>ling by HCA technique was perform<strong>ed</strong> to<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Università degli Stu<strong>di</strong> Roma Tre<br />

Largo S. Leonardo Murialdo 1, 00146 ROMA<br />

Lavoro eseguito nell’ambito <strong>del</strong> progetto SALE (Subglacial Antarctic Lake<br />

Exploration) con il contributo finanziario <strong>del</strong> PNRA<br />

simulate the present-day morphologies, deriv<strong>ed</strong> from ra<strong>di</strong>o<br />

echo-soun<strong>di</strong>ng data, as the result of the activity of crustal,<br />

extensional faults. The comparison and tuning of the mo<strong>del</strong>s<br />

with the b<strong>ed</strong>rock morphology allow<strong>ed</strong> to constrain the<br />

extensional tectonic style responsible for the formation of<br />

stu<strong>di</strong><strong>ed</strong> depressions.<br />

Since the onset of the East Antactic Ice Sheet (34 Ma) the<br />

tectonic activity represents the major mo<strong>del</strong>ling agent of the<br />

subglacial landscape, due to the generally dry ice cap-b<strong>ed</strong>rock<br />

contact preventing any significant erosional or s<strong>ed</strong>imentary<br />

episode by glacial dynamics.<br />

The above consideration and the results from the numerical<br />

mo<strong>del</strong>ling allow<strong>ed</strong> to speculate on the existence of an<br />

extensional belt within the East Antarctic craton that in turn<br />

may relate to an intraplate strike-slip deformation belt of<br />

Cenozoic age.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 63-64<br />

ABSTRACT<br />

Increasing amounts of geological and geophysical data<br />

suggest that some crustal faults are weak when compar<strong>ed</strong><br />

to standard friction coefficient values determin<strong>ed</strong> for<br />

faults in the laboratory, 0.6


64 C. COLLETTINI<br />

comportamento velocity strengthening che <strong>di</strong>viene<br />

sempre più accentuato all’aumentare <strong>del</strong>la velocità <strong>di</strong><br />

scivolamento.<br />

Gli esperimenti su campioni in polvere costituiti per il<br />

60-70% da clasti <strong>di</strong> calcite, calcite-tremolite, e tremolite,<br />

hanno coefficienti <strong>di</strong> attrito tra 0.5 e 0.7 e sono<br />

caratterizzati da processi cataclastici associati ad una<br />

<strong>di</strong>minuzione <strong>del</strong>la granulometria <strong>ed</strong> ad una localizzazione<br />

<strong>del</strong>la deformazione su piani R1, Y, B. Queste rocce sono<br />

caratterizzate da un comportamento velocity<br />

strengthening che passa a velocity weakening<br />

all’aumentare <strong>del</strong>la velocità <strong>di</strong> scivolamento.<br />

Il nostro dataset suggerisce che faglie mature possono<br />

essere deboli se il nucleo è ricco in fillosilicati, p. es.<br />

talco, o se questo è caratterizzato da orizzonti foliati<br />

interconnessi costituiti da minerali estremamente fini, p.<br />

es. tremolite < 2 mm, associati a fillosilicati. Il<br />

comportamento velocity strengthening <strong>di</strong> queste rocce <strong>di</strong><br />

faglia facilita un creep asismico.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 65<br />

Gelatins for laboratory mo<strong>del</strong>s: rheological - physical properties and<br />

new perspectives.<br />

FABIO CORBI (*), FRANCESCA FUNICIELLO (*), ERIKA DI GIUSEPPE (*), CLAUDIO FACCENNA (*) & GIORGIO<br />

RANALLI (°)<br />

A laboratory mo<strong>del</strong> is a simplifi<strong>ed</strong> scal<strong>ed</strong> representation of<br />

nature. Accor<strong>di</strong>ng to ‘similarity criteria’ (HUBBERT, 1937),<br />

both the rheological and physical parameters involv<strong>ed</strong> in the<br />

mo<strong>del</strong>ing have to be close to natural con<strong>di</strong>tions (WEIJERMARS<br />

& SCHMELING, 1986). In the crust/lithosphere system,<br />

rheological layering is a consequence of both compositional<br />

layering and the variations of temperature with depth. It is<br />

therefore important to search for mo<strong>del</strong> materials which scale<br />

properly and reproduce in the laboratory the whole spectrum of<br />

rheological behavior, from brittle to viscoelastic to viscous.<br />

The rheological and physical properties of a wide range of<br />

gelatins, in both gel- and sol-state, are systematically<br />

investigat<strong>ed</strong> as functions of temperature, composition,<br />

concentration, ageing and appli<strong>ed</strong> strain rate. Several types of<br />

rheometric tests (amplitude sweep, frequency sweep,<br />

temperature sweep) and flow tests are us<strong>ed</strong> to obtain storage<br />

and loss moduli, strength properties, viscoelastic range, and<br />

fluid viscosity. Other physical properites (density and thermal<br />

parameters) are also measur<strong>ed</strong> and compil<strong>ed</strong>. The rheological<br />

variability of gelatins appears promising for their potential use<br />

as analog materials to mo<strong>del</strong> crustal and lithospheric<br />

deformation. As an example, the rheological and physical<br />

properties of pig skin gelatin 2.5%wt at 10°C are analyz<strong>ed</strong>, and<br />

found to satisfy the scaling requirements for experimental<br />

mo<strong>del</strong>s of crustal deformation. This material, in fact, properly<br />

scales elastic (G* of about 10 3 Pa), viscous (n=5.0, E=450 KJ<br />

mol -1 ) and frictional properties (c of about 300 Pa) of the<br />

natural prototype for an experimental strain rate of 10 -2 s -1 .<br />

First encouraging results demonstrate the possibility to use<br />

gelatins for simulate earthquake-like dynamics. The stick-slip<br />

behavior can be locally visualiz<strong>ed</strong> and quantifi<strong>ed</strong> using the<br />

photoelastic technique.<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Università degli Stu<strong>di</strong> ROMA<br />

TRE, L.go S. Leonardo Murialdo, 1- 00146 Roma, Italy.<br />

(°) Department of Earth Sciences and Ottawa-Carleton Geoscience<br />

Centre, Carleton University, K1S 5B6, Ottawa, Canada.<br />

Fabio Corbi: fcorbi@uniroma3.it<br />

REFERENCES<br />

HUBBERT, M. K. (1937) - Theory of scale mo<strong>del</strong>s as appli<strong>ed</strong> to<br />

the study of geologic structures. Bulletin of the Geological<br />

Society of America; 48, 1459-1520.<br />

WEIJERMARS, R. & SCHMELING, H. (1986) - Scaling of<br />

newtonian and non newtonian fluid dynamics without<br />

inertia for quantitative mo<strong>del</strong>ling of rock flow due to<br />

gravity (inclu<strong>di</strong>ng the concept of rheological similarity).<br />

Physics of the Earth and Planetary Interiors; 43, 316-330.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 66-67, 2ff.<br />

First fin<strong>di</strong>ng of syntectonic gold mineralization in northern Victoria<br />

Land (Antarctica): a clue for the Paleo-Pacific margin of Gondwana<br />

ABSTRACT<br />

Primo ritrovamento <strong>di</strong> mineralizzazioni sintettoniche a oro in northern<br />

Victoria Land (Antartide): una traccia per il margine Paleo-Pacifico <strong>di</strong><br />

Gondwana<br />

Questo lavoro si riferisce al primo ritrovamento <strong>di</strong> mineralizzazione a oro<br />

nella catena <strong>del</strong>le Montagne Transantartiche, in Antartide; riguarda lo stu<strong>di</strong>o<br />

petrografico e strutturale <strong>del</strong>l'affioramento e <strong>di</strong>scute le possibili implicazioni<br />

nella ricostruzione <strong>del</strong> margine paleopacifico <strong>di</strong> Gondwana. La<br />

mineralizzazione si trova nei metabasalti Glasgow <strong>del</strong> Bowers Terrane. E'<br />

associata a un sistema <strong>di</strong> vene sintettoniche, a quarzo e carbonati legato a<br />

faglie trascorrenti a scala regionale. La zona <strong>di</strong> faglia che ospita la<br />

mineralizzazione è caratterizzata, oltre che da un pervasivo sistema <strong>di</strong> vene, da<br />

un'intensa alterazione idrotermale <strong>del</strong>la roccia ospite. L'oro è presente in<br />

moschinature <strong>di</strong> oro nativo <strong>di</strong> <strong>di</strong>mensioni pluri-millimetriche, all'interno <strong>di</strong><br />

vene a quarzo, associato ad argento e arsenopirite. Datazioni 39 Ar- 40 Ar su<br />

sericite, hanno fornito età <strong>di</strong> 318,0 ± 4,6 and 310,5 ± 6,2 Ma per l'evento <strong>di</strong><br />

mineralizzazione. Mineralizzazioni a oro <strong>di</strong> età paragonabile sono presenti nel<br />

Thomson Fold Belt e nell'Hodgkinson - Broken River Fold Belt, eastern<br />

Australia.<br />

Key words: Antarctica, gold, tectonics<br />

LAURA CRISPINI (*), LAURA FEDERICO (*), GIOVANNI CAPPONI & FRANCO TALARICO (**)<br />

Here we describe the first occurrence of gold mineralization<br />

ever signall<strong>ed</strong> in northern Victoria Land (Antarctica).<br />

Northern Victoria Land geology is classically describ<strong>ed</strong> by<br />

means of the accretion of three terranes during the Ross<br />

Orogeny: the inboard Wilson (WT), the interm<strong>ed</strong>iate Bowers<br />

(BT) and the outboard Robertson Bay Terrane (RBT). The<br />

terrane arrangement is increasingly interpret<strong>ed</strong> as a fossil arctrench<br />

system resulting from a westward-<strong>di</strong>rect<strong>ed</strong> subduction at<br />

the paleo-Pacific margin of Gondwana during the Early<br />

Paleozoic Ross Orogeny (FEDERICO et alii, 2006 and in press)<br />

and therefore the three terranes should represent the continental<br />

magmatic arc, the forearc/back-arc and the trench s<strong>ed</strong>imentary<br />

sequence, respectively.<br />

Northern Victoria Land was part of the Pacific margin of<br />

Gondwana (e.g. GOLDFARB et alii, 2001) during the Paleozoic.<br />

_________________________<br />

(*) Dip.Te.Ris - Università <strong>di</strong> Genova<br />

Corso Europa 26, 16132 Genova, Italy<br />

(**) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Siena<br />

V. Laterina 8, 53100 Siena, Italy<br />

correspon<strong>di</strong>ng author: L. Crispini - crispini@<strong>di</strong>pteris.unige.it<br />

Fig. 1 - The <strong>di</strong>stribution of major Paleozoic gold provinces on the 356-Ma<br />

global reconstruction of Scotese, 1997 (from Goldfarb et al., 2001).<br />

Fig. 2 - Geological sketch of the main outcrop with the gold bearing veins.<br />

FOV is 450 m wide.<br />

Though Paleozoic gold mineralizations occur all along this<br />

margin (Fig. 1), for instance in eastern Australia, the South<br />

Island of New Zealand and southern South America, no<br />

occurrence of gold mineralization was signall<strong>ed</strong> until now in<br />

northern Victoria Land.


FIRST FINDING OF SYNTECTONIC GOLD MINERALIZATION IN NORTHERN VICTORIA LAND<br />

The quartz-carbonate mineraliz<strong>ed</strong> veins (Fig. 2) occur<br />

inside the Bowers terrane, close to the contact with the<br />

Robertson Bay terrane. The veins are host<strong>ed</strong> by greenschist to<br />

low-greenschist metabasalts (Glasgow volcanics) with<br />

interlayers of metasandstones of Middle Cambrian age (Molar<br />

Formation). Regional structural setting is characteriz<strong>ed</strong> by NW-<br />

SE-tren<strong>di</strong>ng folds, with subvertical axial plane, and by NW-SE<br />

and N-S fault systems (Fig. 2). Quartz-carbonate veins occur in<br />

a brittle-ductile high strain zone superimpos<strong>ed</strong> on the earlier<br />

regional metamorphic foliation and folds. The high strain zone<br />

is characteriz<strong>ed</strong> by foliat<strong>ed</strong> fault rocks with S-C structures,<br />

widespread veining, and hydrothermal alteration of the host<br />

rocks. The mineraliz<strong>ed</strong> veins are extensional and shear veins,<br />

often with ribbon/band<strong>ed</strong> appearance and texture typical of<br />

crack and seal processes (RAMSAY, 1980). The vein network is<br />

surround<strong>ed</strong> by an alteration halo approximately up to 500 m<br />

wide, which ranges from a chlorite zone, to a sericite-carbonate<br />

zone and a sericite-pyrite zone approaching the core of the vein<br />

system.<br />

Preliminary chlorite thermometry (CATHELINEAU & NIEVA,<br />

1985), provides temperature estimates ranging from 270 to 280<br />

°C in the chlorite-alter<strong>ed</strong> metabasalts and from 290 to 310°C in<br />

the more alter<strong>ed</strong> samples.<br />

Gold occurs as coarse-grain<strong>ed</strong> (up to some millimeters)<br />

native gold, associat<strong>ed</strong> with silver, arsenopyrite and an<br />

ironarsenic compound.<br />

From a tectonic point of view, the vein network is<br />

associat<strong>ed</strong> and coeval with a transpressional fault system<br />

(FEDERICO et alii, this volume). NW-SE and N-S faults of this<br />

system locally cut Admiralty Intrusives and are associat<strong>ed</strong> to<br />

hypabyssal intrusions that closely recall the Gallipoli<br />

Volcanics.<br />

39 Ar- 40 Ar dating on sericites provid<strong>ed</strong> Carboniferous ages<br />

for the mineralization event, with two well-defin<strong>ed</strong> plateaus at<br />

318,0 ± 4,6 Ma and 310,5 ± 6,2 Ma. Though considerably<br />

younger, the hydrothermal circulation and the mineralization<br />

can be tentatively correlat<strong>ed</strong> with the Admiralty / Gallipoli<br />

magmatic pulse and maybe with the still elusive and enigmatic<br />

Borchgrevink Orogeny (GRINDLEY & WARREN, 1964; CAPPONI<br />

et alii, 2002).<br />

Gold deposits of similar ages have not been report<strong>ed</strong> in<br />

either the Delamerian or the Lachlan Fold Belt of south-eastern<br />

Australia, which northern Victoria land is usually correlat<strong>ed</strong><br />

with. Conversely, gold deposits of Carboniferous age occur<br />

primarily in the Thomson fold belt, and in the Hodgkinson–<br />

Broken River fold belt, far to the northeast (GOLDFARB et alii,<br />

2001). As a consequence, the relevance of gold occurrence for<br />

correlations at the scale of the paleo-Pacific margin of<br />

Gondwana ne<strong>ed</strong>s to be carefully evaluat<strong>ed</strong>.<br />

REFERENCES<br />

CAPPONI G., CASTORINA F., DI PISA A., MECCHERI M., PETRINI<br />

R. & VILLA I.M. (2002) - The metaigneous rocks of the<br />

Barber Glacier area (northern Victoria Land, Antarctica):<br />

a clue to the enigmatic Borchgrevink Orogeny? In Gamble,<br />

67<br />

J., Skinner, D., and Henrys, S. (Eds.), Antarctica at the<br />

close of a Millennium, Royal Society of New Zealand<br />

Bullettin 35, 99 - 104.<br />

CATHELINEAU M. & NIEVA D. (1985) - A chlorite solid solution<br />

geothermometer The Los Azufres (Mexico) geothermal<br />

system. Contrib. to Mineral. and Petrol., 91, 235-244.<br />

FEDERICO L., CAPPONI G. & CRISPINI L. (2006) - The Ross<br />

orogeny of the transantarctic mountains: a northern<br />

Victoria Land perspective. Int. J. of Earth Sci., 95 (5), 759-<br />

770.<br />

FEDERICO L., CRISPINI L., CAPPONI G. & BRADSHAW J.D. in<br />

press - The Cambrian Ross Orogeny in northern Victoria<br />

Land (Antarctica) and New Zealand: A synthesis.<br />

Gondwana Research, DOI: 10.1016/j.gr.2008.10.004.<br />

GOLDFARB R.J., GROVES D.I. & GARDOLL S. (2001) - Orogenic<br />

gold and geologic time: a global synthesis. Ore Geology<br />

Reviews 18, 1-75.<br />

GRINDLEY G.W. & WARREN G. (1964) - Stratigraphic<br />

nomenclature and correlation in the western Ross Sea<br />

region. In: R.J. A<strong>di</strong>e (Ed.). - Antarctic geology. Amsterdam,<br />

North Holland Publishing Company, 314-333.<br />

RAMSAY, J.G. (1980) - The crack–seal mechanism of rock<br />

deformation. Nature 284, 135 - 139.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 68-69, 1 f.<br />

Structural setting of the Gan<strong>di</strong>no – Sovere thrust system and new<br />

dating of Tertiary magmatic bo<strong>di</strong>es (Orobic Alps, Italy)<br />

PAOLO D’ADDA (*), ANDREA ZANCHI (*), FABRIZIO BERRA (**), MARCO MALUSÀ (*), MARIA BERGOMI (*) &<br />

ANNALISA TUNESI (*)<br />

RIASSUNTO<br />

Assetto strutturale <strong>del</strong>la zona a thrust <strong>di</strong> Gan<strong>di</strong>no-Sovere e nuove<br />

datazioni <strong>di</strong> corpi magmatici Terziari (Alpi Orobie, Italia)<br />

Il settore <strong>del</strong>le Orobie posto a Sud <strong>del</strong>la Faglia <strong>di</strong> Clusone è caratterizzato<br />

dalla presenza <strong>di</strong> tre unità strutturali sovrapposte, messesi in posto in <strong>di</strong>fferenti<br />

fasi <strong>del</strong>l’orogenesi Alpina. Nella zona compresa tra Gan<strong>di</strong>no e Sovere (Bg), tali<br />

unità sono <strong>di</strong>slocate da faglie normali e sono intruse da numerosi corpi<br />

magmatici filoniani e subvulcanici (Stock <strong>di</strong> Gan<strong>di</strong>no). In particolare, è stata<br />

osservata la presenza <strong>di</strong> un sistema <strong>di</strong> faglie normali che taglia in modo<br />

evidente l’unità strutturalmente più alta. I corpi magmatici sono successivi alle<br />

principali fasi <strong>di</strong> sovrascorrimento <strong>ed</strong> in<strong>di</strong>cano quin<strong>di</strong> un’importante evento<br />

estensionale che interessa l’intera area analizzata. Su questi corpi si stanno<br />

realizzando nuove datazioni ra<strong>di</strong>ometriche con meto<strong>di</strong> <strong>di</strong>versi (U/Pb su zircone<br />

e analisi <strong>di</strong> tracce <strong>di</strong> fissione su apatite).<br />

In the eastern sector of the Orobic Alps the NE-SW tren<strong>di</strong>ng<br />

Clusone Fault forms the southern boundary of the Presolana<br />

antiformal stack and it represents the back-thrusting horizon of<br />

the Upper Triassic units over the Lower-Middle Triassic ones<br />

(ZANCHI et alii, 1990a). South of this faults the s<strong>ed</strong>imentary<br />

cover has been consider<strong>ed</strong>, for long time, poorly affect<strong>ed</strong> by<br />

severe shorterning, although more recent stratigraphic and<br />

tectonic stu<strong>di</strong>es (JADOUL et alii, 1991; BERRA et alii, 1991)<br />

demonstrat<strong>ed</strong> that <strong>di</strong>fferent thrust surfaces and strike-slip faults<br />

occur between En<strong>di</strong>ne and Iseo Lakes. West of Val Borlezza<br />

several andesitic <strong>di</strong>kes and small stocks are present. They<br />

consists of amphibole leucogabbro and andesites (DE MICHELE<br />

et alii, 1983; BECCALUVA et alii, 1983) mainly with plagioclase<br />

and hornblende phenocrystals. Near Gan<strong>di</strong>no a little quartz<strong>di</strong>orite<br />

stock also outcrops. Aim of our work is the<br />

reconstruction of the chronological evolution of this sector of<br />

the Orobic Alps. Field activity allow<strong>ed</strong> us to reconstruct the<br />

geometrical and structural setting of the area between Gan<strong>di</strong>no<br />

and Sovere and we are currently trying to achieve new<br />

ra<strong>di</strong>ometric ages of the above describ<strong>ed</strong> magmatic bo<strong>di</strong>es.<br />

In the study area three main tectonic units can be recogniz<strong>ed</strong><br />

(BERRA et alii, 1991). The M. Cornetto - Corna Lunga Unit is<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche e Geotecnologie, Università degli<br />

Stu<strong>di</strong> <strong>di</strong> Milano-Bicocca, Piazza <strong>del</strong>la Scienza, 4 – 20126 Milano, Italy.<br />

(**) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra “A. Desio”, Università degli Stu<strong>di</strong><br />

<strong>di</strong> Milano, via Mangiagalli, 34 – 20133 Milano, Italy.<br />

Paolo D’Adda: Tel. 02/64482063; p.dadda2@campus.unimib.it<br />

the structurally higher thrust sheet and it entirely consists of the<br />

Upper Carnian Castro Fm. The underlying Gan<strong>di</strong>no – Val<br />

Supine – Scanapà Unit is compos<strong>ed</strong> of Upper Carnian to<br />

Norian formations, laying on the Parautoctono s.s. which is the<br />

lowermost structural unit of the area. The intermiddl<strong>ed</strong> unit is<br />

partially detach<strong>ed</strong> from the Permian to Lower-Middle Triassic<br />

successions of Val Camonica (BERRA et alii, 1991) along the<br />

gypsum layers of the San Giovanni Bianco Formation.<br />

The contact aureola of the Gan<strong>di</strong>no Stock affects both the M.<br />

Cornetto - Corna Lunga Unit and the Gan<strong>di</strong>no – Val Supine –<br />

Scanapà Unit in<strong>di</strong>cating that they were already embricat<strong>ed</strong> at<br />

the time of the intrusion. During our field analysis we have<br />

identifi<strong>ed</strong> the presence of normal and dextral transtensional<br />

faults which cut the M. Cornetto - Corna Lunga Thrust sheet,<br />

forming an E-W elongat<strong>ed</strong> graben. The most important<br />

example of these normal faults is represent<strong>ed</strong> by the Val Piana<br />

– Dosso <strong>del</strong> Falò Fault (Fig. 1). These structures had never<br />

been describ<strong>ed</strong> before and they represent the evidence for<br />

regional extensional phenomena which were previously<br />

recognis<strong>ed</strong> through the study of mesoscopic fault populations<br />

(ZANCHI et alii, 1990b).<br />

Fig. 1 – Normal faults cutting the M. Cornetto – Corna Lunga Thrust .<br />

All the magmatic bo<strong>di</strong>es expos<strong>ed</strong> in the study area are<br />

interest<strong>ed</strong> by strong hydrothermal alteration, with partial<br />

substitution of hornblende by chlorite and widespread<br />

plagioclase alteration. Field analyses reveal<strong>ed</strong> that <strong>di</strong>kes follow<br />

the main normal and strike-slip faults and are not affect<strong>ed</strong>, in<br />

the study area, by compressional structures. This suggests that<br />

they were emplac<strong>ed</strong> after thrust stacking of the main describ<strong>ed</strong><br />

units, and, possibly, during the activation of normal and strikeslip<br />

faults. For this reason it is very important to better<br />

constrain the age of these subvolcanic bo<strong>di</strong>es since this would


allow to reconstruct the chronology of the deformational events<br />

that affect<strong>ed</strong> the Orobic Alps during the Alpine tectonics. K/Ar<br />

and Ar/Ar obtain<strong>ed</strong> by previous authors on hornblende and<br />

whole rock provide ages ranging between 55 My (ZANCHI et<br />

alii, 1990) and 35 My (FANTONI et alii, 1999). The large time<br />

interval shown by these age determinations poses some<br />

questions on the reliability of the results especially due to the<br />

strong hydrothermal alteration of most of the analyz<strong>ed</strong><br />

mineralogical phases. For this reason we are trying to obtain<br />

new ages bas<strong>ed</strong> on <strong>di</strong>fferent and more reliable minerals (U/Pb<br />

zircon dating and apatite fission tracks analysis).<br />

REFERENCES<br />

BECCALUVA L., BIGIOGGERO B., CHIESA S., COLOMBO A.,<br />

FANTI G., GATTO G.O., GREGNANIN A., MONTRASIO A.,<br />

PICCIRILLO E.M. & TUNESI A. (1983) - Post collisional<br />

orogenic dyke magmatism in the Alps. Mem. Soc. Geol. It.<br />

26, 341-359.<br />

BERSEZIO R. & FORNACIARI M. (1988) - Tectonic framework of<br />

the Lombardy foothills (Southern Alps), between Brianza<br />

and Lake Iseo. Rend. Soc. Geol. Ital. 11, 75-78.<br />

BERRA F., ROVELLINI M. & JADOUL F. (1991) – Structural<br />

framework of the Bergamasc Prealps south of the Clusone<br />

Fault. Atti Tic. Sc. Terra 34, 107-120.<br />

BOYER S.E. & ELLIOTT D. (1982) - Thrust systems. Am. Assoc.<br />

Pet. Geol. Bull. 66, 1196-1230.<br />

DE MICHELE V. & ZEZZA U. (1978) - Manifestazioni<br />

ipoabissali quarzo<strong>di</strong>oritiche <strong>di</strong> età Alpina nelle Prealpi<br />

Bergamasche (Alpi Meri<strong>di</strong>onali). Atti Soc. Ital. Sci. Nat.<br />

Museo Civ. Stor. Nat. Milano, 119, 181-210.<br />

DOGLIONI C. & BOSELLINI A. (1987) - Eoalpine and<br />

mesoalpine tectonics in the Southern Alps. Geol. Rund. 76,<br />

735-754, Struttgart.<br />

FANTONI R., BERSEZIO R., FORCELLA F., GORLA L., MOSCONI<br />

A. & PICOTTI V. (1999) - New dating of the Tertiary<br />

magmatic products of the central Southern Alps, bearings<br />

on the interpretation of the Alpine tectonic history. Mem.<br />

Sci. Geol. 51, 47-61.<br />

FANTONI R., BERSEZIO R. & FORCELLA F. (2004) – Alpine<br />

structure and deformation chronology at the Southern Alps<br />

– Po Plain border in Lombardy. Boll. Soc. Geol. It., 123,<br />

463-476.<br />

FORCELLA F. (1988) - Assetto strutturale <strong>del</strong>le Orobie orientali<br />

tra la Val Seriana e la Val Camonica. Rend. Soc. Geol. It.<br />

11, 269-278, Roma.<br />

FORCELLA F. & Jadoul F. (2000) - Carta Geologica <strong>del</strong>la<br />

Provincia <strong>di</strong> Bergamo.<br />

GALLAGHER K., BROWN R. & JOHNSON C. (1998) – Fission<br />

track analysis and its applications to geological problems.<br />

Annu. Rev. Earth Planet. Sci. 26, 519-572.<br />

STRUCTURAL SETTING OF THE GANDINO–SOVERE THRUST SYSTEM<br />

JADOUL F., BERRA F., FRISIA S., RICCIUTO T. & RONCHI P.<br />

(1991) - Stratigraphy, paleogeography and genetic mo<strong>del</strong><br />

of Late Carnian carbonate breccias (Castro Formation,<br />

Lombardy, Italy). Riv. It. Paleo. Str. 97, 355-392.<br />

LAUBSCHER H.P. (1985) - Large scale, thin-skinn<strong>ed</strong> thrusting<br />

in the southern Alps: kinematic mo<strong>del</strong>s. Geol. Soc. Am.<br />

Bull., 96: 710-718.<br />

SCHÖNBORN G. (1992b) - Alpine tectonics and kinematics<br />

mo<strong>del</strong>s of the central Southern Alps. Mem. Sc. Geol. 44:<br />

229-393, Padova.<br />

ZANCHI A. CHIESA S. & GILLOT P.Y. (1990a) - Tectonic<br />

evolution of the Southern Alps in the Orobic chain:<br />

structural and geochronological in<strong>di</strong>cations for pre-<br />

Tertiary compressive tectonics. Mem. Soc. Geol. It., 45: 77-<br />

82.<br />

ZANCHI A., CHINAGLIA N., CONTI M., DE TONI S., FERLIGA C.,<br />

TSEGAYE A., VALENTI L. & BOTTIN R. (1990b) - Analisi<br />

strutturale lungo il fronte <strong>del</strong>la Dolomia Principale in<br />

bassa Val Seriana (Bergamo). Mem. Soc. Geol. It. 45, 83-<br />

92.<br />

69


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 70-72, 3ff.<br />

Morphotectonics of the Lunigiana-Garfagnana Plio-Quaternary<br />

grabens (Northern Apennines).<br />

DI NACCIO D.(*), BONCIO P. (*), BROZZETTI F. (*), & PAZZAGLIA F.J. (**)<br />

ABSTRACT<br />

Morfotettonica dei bacini Plio-Quaternari <strong>del</strong>la Lunigiana-Garfagnana<br />

(Appennino Settentrionale)<br />

Vengono presentati i primi risultati <strong>di</strong> un’analisi morfotettonica nei bacini<br />

<strong>del</strong>la Lunigiana e Garfagnana finalizzata ad integrare prec<strong>ed</strong>enti stu<strong>di</strong> sulla<br />

geometria e cinematica <strong>del</strong>le faglie estensionali e a caratterizzare l’attività <strong>del</strong>le<br />

stesse nel tardo Quaternario.<br />

Entrambi i bacini sono graben asimmetrici che si sviluppano al tetto <strong>di</strong><br />

una faglia a basso angolo, interpretata come la terminazione settentrionale<br />

<strong>del</strong>l’Etrurian Fault System (Boncio et al., 2000).<br />

In<strong>di</strong>ci topografici quali profili longitu<strong>di</strong>nali dei fiumi, in<strong>di</strong>ce <strong>del</strong>la<br />

concavità dei fiumi, in<strong>di</strong>ce SL, swath profile vengono utilizzati per<br />

quantificare gli effetti <strong>del</strong>la tettonica attiva sulle faglie bor<strong>di</strong>ere i bacini.<br />

Key words: channel concavity, low angle normal fault, swath<br />

profile, knickpoint.<br />

INTRODUCTION<br />

We report first results of structural and morphotectonic<br />

analyses aim<strong>ed</strong> to characterize active and potentially<br />

seismogenic faults in the Lunigiana and Garfagnana basins.<br />

In the area, the geometry of the extensional fault systems is<br />

well ascertain<strong>ed</strong> on the surface and at depth (Artoni et al.,<br />

1992, Carmignani et al., 2000, Camurri et al., 2001,<br />

Carmignani et al., 2001, Bernini et al., 2002, Arganani et al.,<br />

2003, Brozzetti et al., 2007). Nevertheless, the main<br />

seismogenic faults, their degree of activity, the associat<strong>ed</strong> slip<br />

rates, and the maximum seismogenic potential remain largely<br />

undetermin<strong>ed</strong>. Furthermore, lack of reliable instrumental<br />

seismological data on large earthquakes, very low deformation<br />

rates, and poor exposures in the Plio-Quaternary s<strong>ed</strong>iments,<br />

make the identification of active and possibly seismogenic<br />

faults problematic.<br />

Topographic metrics inclu<strong>di</strong>ng drainage patterns, river long<br />

profiles, in<strong>di</strong>ces of channel concavity, stream-length gra<strong>di</strong>ent of<br />

mo<strong>del</strong>l<strong>ed</strong> long profiles, steepness and swath profiles are us<strong>ed</strong> to<br />

better constrain the effects of active faulting.<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università G. D’Annunzio,<br />

Pescara-Chieti.<br />

(**)Department of Earth and Environmental Sciences, Lehigh University,<br />

Bethlehem, PA-USA<br />

Di Naccio D.: e-mail d.<strong>di</strong>naccio@unich.it<br />

REGIONAL TECTONIC SETTING OF THE<br />

LUNIGIANA AND GARFAGNANA GRABENS<br />

The Lunigiana and Garfagnana basins are Plio-Quaternary<br />

asymmetric grabens that lie in the hanging wall of a regional,<br />

east-<strong>di</strong>pping, low-angle dethachment (LANF) that is imag<strong>ed</strong> in<br />

seismic profiles deepening beneath the Apennines down to a<br />

depth of ~ 13 km (Fig 1). Seismic lines highlight E-<strong>di</strong>pping<br />

synthetic faults <strong>di</strong>pping between 30° and 60° down to a depth<br />

of ~ 5 km before soling onto the low angle detachment. In<br />

contrast, W-<strong>di</strong>pping antithetic faults show on average higher<br />

<strong>di</strong>p angles of ~ 50° to ~ 70° and root on the detachment at<br />

depths of less than 5 km.<br />

The E-<strong>di</strong>pping faults with strongest geomorphic signature of<br />

Late Quaternary activity are the Mulazzo and Olivola - Soliera<br />

faults in the Lunigiana and the Casciana - Sillicano and<br />

Bolognana - Gioviana faults in the Garfagnana. The most<br />

important W-<strong>di</strong>pping splays in terms of late Quaternary activity<br />

are the Groppodalosio and Compione - Comano faults in the<br />

Lunigiana and the M. Prato - Colle Uccelliera alignment in the<br />

Garfagnana. The Tendola - Equi Terme-Gramolazzo alignment<br />

is a high-angle E-W right-lateral transfer zone. This alignment,<br />

evident in aerial photographs and in seismic lines, is interpret<strong>ed</strong><br />

as a transfer zone of active extension between the Lunigiana<br />

and Garfagnana grabens.<br />

The background seismicity (0.4M4.2) of the Lunigiana-<br />

Garfagnana, record<strong>ed</strong> by a local network (RSLG) for the 1999-<br />

2006 time interval and accurately locat<strong>ed</strong> (Brozzetti et al.,<br />

2007, Tinari et al., 2007) confirms that probably both the<br />

conjugate E- and W-<strong>di</strong>pping fault sets are active and<br />

seismogenic even if their seismogenic potential is still not<br />

completely ascertain<strong>ed</strong>. The subsurface reconstruction of the<br />

area, carri<strong>ed</strong> out by means of seismic lines, shows that the foci<br />

concentrate in clasters and girdless which well fit with the<br />

deepest part of the Lunigiana detachment and with the plane of<br />

its antithetical fault (e.g. Groppodalsio Fault).<br />

The analys<strong>ed</strong> seismicity is extensional or transtensional and<br />

is concentrat<strong>ed</strong> E of the detachment breackaway and<br />

progressively deepens to the E from


MORPHOTECTONICS OF THE LUNIGIANA-GARFAGNANA PLIO-QUATERNARY GRABENS<br />

Fig. 1 – schematic structural map of the Lunigiana-Garfagnana grabens<br />

along an E-<strong>di</strong>pping low-angle narrow band showing a mean <strong>di</strong>p<br />

angle of nearly 30°, consistently with the geometry of the<br />

detachment.<br />

MODELING THE STEADY-STATE RIVER PROFILE<br />

The relationships between the faults and watersh<strong>ed</strong>-scale<br />

geomorphology have been quantifi<strong>ed</strong> using a 10 m <strong>di</strong>gital<br />

topography to extract channel and basin metrics.<br />

The concavity, steepness and length-gra<strong>di</strong>ent index of<br />

mo<strong>del</strong>l<strong>ed</strong> river longitu<strong>di</strong>nal profiles prov<strong>ed</strong> to be the most<br />

useful metrics for recor<strong>di</strong>ng the effects of locally active faults.<br />

Alluvial rivers typically shows concave-up long profiles,<br />

referr<strong>ed</strong> to a grad<strong>ed</strong>, equilibrium profile. Deviations from a<br />

smooth, concave-up form may in<strong>di</strong>cate that the fluvial system is<br />

in a transient state of adjustment to a base level due to tectonic,<br />

climatic, or rock-type perturbation.<br />

In particular, convex segments call<strong>ed</strong> knickpoints can be<br />

specifically investigat<strong>ed</strong> to evaluate their coincidence with<br />

tectonic perturbations.<br />

Analysis of the longitu<strong>di</strong>nal profile of the main channels in<br />

the Lunigiana (12 watersh<strong>ed</strong>s) and Garfagnana (19 watersh<strong>ed</strong>s)<br />

basins, have been accompani<strong>ed</strong> by the well known power law<br />

relationship between channel gra<strong>di</strong>ent and upstream drainage<br />

area<br />

S = ksA - (1)<br />

In equation (1) long profile concavity () and the profile<br />

steepness (ks) are the slope and y-intercept respectively of a<br />

line regress<strong>ed</strong> through a log-log plot of channel slope and<br />

drainage basin area (Fig 2).<br />

The average threshold area value was us<strong>ed</strong> to extract the<br />

stream network and therefore define the first order streams.<br />

The spatial <strong>di</strong>stribution and potential origin of knickpoints<br />

are highlight<strong>ed</strong> by the stream-gra<strong>di</strong>ent (SL) index (Hack.,<br />

1973):<br />

SL = (H/L)/L (2)<br />

where H is elevation, L is length of stream reach, and L<br />

is the total stream length measur<strong>ed</strong> from the <strong>di</strong>vide to the<br />

midpoint of the stream reach under investigation.<br />

Normalizing with respect to L allows for <strong>di</strong>rect comparisons<br />

between small drainages that typically have steep long profiles<br />

and larger drainages that have more gentle long profiles.<br />

Low order streams (extract<strong>ed</strong> accor<strong>di</strong>ng to Strahler<br />

ordering) are us<strong>ed</strong> to calculate the SL index because they best<br />

reflect tectonically controll<strong>ed</strong> channel gra<strong>di</strong>ent variations in the<br />

Fig. 2 – Example of steady-state river profile analysis<br />

landscape (Merritts & Vincent,1989).<br />

SL-countour plot maps show that the Lunigiana (Fig 3) and<br />

Garfagnana grabens are presently characteris<strong>ed</strong> by a significant<br />

71


72 D. DI NACCIO ET ALII<br />

degree of tectonic activity. In spite of this general consideration<br />

the comput<strong>ed</strong> values do not allow to <strong>di</strong>scern what structure is<br />

characteris<strong>ed</strong> by the maximum deformation rate.<br />

The active splay of the W-<strong>di</strong>pping Groppodalosio fault<br />

entirely develop<strong>ed</strong> in the Macigno (Fig 1) causes high<br />

anomalies on the SL values (>250) with knickpoints nearly<br />

parallel to the mean fault strike. Similar consideration can be<br />

done for the E-<strong>di</strong>pping M. Carmuschia and Mulazzo faults.<br />

Relatively low SL index value have been found along the<br />

Olivola fault and they can be most likely relat<strong>ed</strong> to soft<br />

lithology compar<strong>ed</strong> at the scale of whole graben. Nevertheless<br />

the drainage network, observ<strong>ed</strong> at the Olivola basin is not<br />

Fig. 3 – SL countour plot map of Lunigiana graben. (G-F: Groppodalosio<br />

fault; C-F Compione-Comano f.; Mu-F: Mulazzo f.; Ol-F: Olivola f.; Ca-F:<br />

Carmuschia f.; P-F: Picchiara f.<br />

dendritic, in fact straight streams, characteris<strong>ed</strong> by Holocene<br />

flood<strong>ed</strong> valleys, flow towards a main fault-parallel river.<br />

This evidence together with the offset of Late Pliocene and<br />

Early Pleistocene continental deposits supports Middle<br />

Pleistocene - to - late Quaternary activity of the Olivola normal<br />

fault.<br />

In the Garfagnana basin most of the anomaly values are<br />

influenc<strong>ed</strong> by lithology. Nevertheless the C. Uccelliera and the<br />

Casciana-Sillicana faults develop<strong>ed</strong> in the Macigno Unit show<br />

high SL values.<br />

CONCLUSIONS<br />

The emerging seismotectonic picture suggests that the lowangle<br />

normal fault system of the Lunigiana-Garfagnana grabens<br />

is presently active and is likely responsible for the historical<br />

seismicity of the area, inclu<strong>di</strong>ng the large (M~6.5) 1920<br />

earthquake.<br />

Computation of geomorphic in<strong>di</strong>ces is in good agreement<br />

with the seismological data, suggesting that historic<br />

earthquakes in the area can be associat<strong>ed</strong> with the mapp<strong>ed</strong><br />

faults that are further capable of generating surface ruptures<br />

and contributing to the production of local relief.<br />

REFERENCES<br />

ARGNANI A., BARBACINI G., BERNINI M, CAMURRI F., GHIELMI<br />

M., PAPANI G., RIZZINI F., ROGLEDI S. & TORELLI L. (2003)<br />

- Gravity tectonics driven by quaternary uplift in the<br />

Northern apennines: insight from the La Spezia-Reggio<br />

Emilia geo-transect. Quaternay International, 101-102, 13-<br />

26.<br />

ARTORI A., BERNINI M., PAPANI G., VESCOVI P. & ZANZUCCHI<br />

G. (1992) – <strong>Sezione</strong> geologica schematica Bonassola (SP)<br />

– Felino (PR). Stud. Geol. Camerti, 2, 61-63<br />

BERNINI M. & PAPANI P. (2002) - La <strong>di</strong>stensione <strong>del</strong>la fossa<br />

tettonica <strong>del</strong>la Lunigiana nord-occidentale (con carta<br />

geologica alla scala 1:50.000). Boll. Soc. Geol. It., 121,<br />

313-341.<br />

BONCIO P., BROZZETTI F. & LAVECCHIA G. (2000) -<br />

Architecture and seismotectonics of a regional Low-Angle<br />

Normal Fault zone in Central Italy. Tectonics, 19, 1038-<br />

1055.<br />

BROZZETTI F., BONCIO P., TINARI D.P., DI NACCIO D. &<br />

TORELLI L. (2007) - LANFs attive e relativi meccanismi <strong>di</strong><br />

trasferimento alla terminazione settentrionale <strong>del</strong>l’Etrurian<br />

Fault System (Lunigiana-Garfagnana, Italia). Rend. Soc.<br />

Geol. It., 4, 164-165<br />

CAMURRI F., ARGNANI A., BERNINI M., PAPANI G., ROGLEDI S.<br />

& TORELLI L. (2001) - The basement of the NW Apennines:<br />

Interpretation of reflection seismics and geodynamic<br />

implications. GEOITALIA 2001, 3° Forum Italiano <strong>di</strong><br />

Scienze <strong>del</strong>la Terra, Chieti 5-8 Settembre 2001, Fist<br />

<strong>Riassunti</strong>, 50-51.<br />

CARMIGNANI L., CONTI P., DISPERATI L., FANTOZZI P.L.,GIGLIA<br />

G., MECCHERI M. (2000) – Carta geologica <strong>del</strong> parco <strong>del</strong>le<br />

Alpi Apuane. 1:50000. Ed. Parco Regionale <strong>del</strong>le Alpi<br />

Apuane, SELCA, Firenze, Italia.<br />

CARMIGNANI L., DECANDIA F.A., DISPERATI L., FANTOZZI P.L.,<br />

KLIGFIELD R., LAZZAROTTO A., LIOTTA, D., MECCHERI M.<br />

(2001) – Inner Northern Apennines. In Vai G.B., Martini<br />

I.P. (<strong>ed</strong>s), Anatomy of an Orogen: The Apennines and<br />

Adjacent M<strong>ed</strong>iterranean Basins. Kluwer Academic<br />

Publishers, 197-214<br />

HACK J.T. (1973) – Stream analysis and stream-gra<strong>di</strong>ent<br />

index. Survey. J. Research., 1, (4), 421-429.<br />

MERRITTS D. & VINCENT K.R. (1989) – Geomorphic response<br />

of coastal to low, interm<strong>ed</strong>iate, and high rates of uplift,<br />

Mendocino triple junction region, northern California.<br />

Geol. Soc. Am. Bull., 101, 1373-1388.<br />

TINARI P.T., BONCIO P., LAVECCHIA G., BROZZETTI F., EVA E.,<br />

SOLARINO S., SCAFIDI D., TURINO C., TORELLI L., BERNINI<br />

M. & VESCOVI P. (2007) – Sismotettonica <strong>del</strong>la Lunigiana e<br />

Garfagnana: nuovi vincoli <strong>del</strong>l’analisi integrata <strong>di</strong> dati<br />

sismologici strumentali e dati geologici <strong>di</strong> sottosuolo. Rend.<br />

Soc. Geol. It., 4, 301-302


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 73-75, 3 ff.<br />

Frictional properties of mantle rocks during earthquakes.<br />

GIULIO DI TORO (*,**), P. DEL GAUDIO (*), R. HAN (***), T. HIROSE (****), S. NIELSEN (*), T. SHIMAMOTO<br />

(***), A. CAVALLO (*)<br />

RIASSUNTO<br />

Proprietà frizionali <strong>di</strong> rocce <strong>di</strong> mantello durante terremoti<br />

L’evoluzione <strong>del</strong>la resistenza <strong>di</strong> attrito su una superficie <strong>di</strong> faglia per<br />

velocità <strong>di</strong> scivolamento sismiche (circa 1 m/s) è uno dei parametri<br />

fondamentali che controlla la meccanica <strong>di</strong> un terremoto. In particolare, la<br />

fusione per attrito durante terremoti interm<strong>ed</strong>i e profon<strong>di</strong> (profon<strong>di</strong>tà > 60 km,<br />

all’interno <strong>del</strong> mantello terrestre) dovrebbe essere un processo frequente<br />

secondo esperimenti <strong>di</strong> torsione effettuati ad elevate pressioni <strong>di</strong> confinamento<br />

e stu<strong>di</strong> teorici e <strong>di</strong> terreno. Per esempio, alcuni sismologi hanno invocato la<br />

produzione <strong>di</strong> fusi sismici durante il terremoto Mw 8.3 <strong>del</strong>la Bolivia <strong>del</strong> 1994,<br />

enucleato ad una profon<strong>di</strong>tà <strong>di</strong> 600 km, per giustificare la bassa efficienza<br />

sismica <strong>di</strong> quel terremoto.<br />

Per stu<strong>di</strong>are le proprietà meccaniche (reologiche) dei fusi <strong>di</strong> frizione e la<br />

resistenza dei piani <strong>di</strong> faglia durante rotture sismiche in rocce <strong>di</strong> mantello,<br />

sono stati effettuati una serie <strong>di</strong> esperimenti con le peridotiti (tipiche rocce <strong>di</strong><br />

mantello) <strong>di</strong> Balmuccia (Zona <strong>di</strong> Ivrea, Italia). I provini <strong>di</strong> roccia dal <strong>di</strong>ametro<br />

<strong>di</strong> 21.8 mm, sono stati sottoposti a sforzi normali <strong>di</strong> 5.4-16.1 MPa, velocità <strong>di</strong><br />

scivolamento (sismiche) <strong>di</strong> 0.23-1.14 m/s e rigetti compresi tra 1.5 e 71 m.<br />

Durante ogni esperimento si è osservata una complessa evoluzione <strong>del</strong>la<br />

resistenza <strong>di</strong> attrito con il rigetto consistente con l’evoluzione dei prodotti <strong>di</strong><br />

faglia (da aggregati granulari a fusi <strong>di</strong> frizione). In particolare, la formazione <strong>di</strong><br />

un livello continuo <strong>di</strong> fuso sulla superficie <strong>di</strong> scivolamento, che avviene nei<br />

primi secon<strong>di</strong> dall’inzio <strong>del</strong>la prova, comporta la lubrificazione <strong>del</strong>la faglia<br />

sperimentale e il raggiungimento <strong>di</strong> resistenze per attrito circa nulle.<br />

L’estrapolazione <strong>di</strong> questi risultati sperimentali alle con<strong>di</strong>zioni <strong>di</strong> mantello<br />

suggerisce che le cadute <strong>di</strong> sforzo cosismiche (dynamic stress drops) durante<br />

terremoti profon<strong>di</strong> sono estremamente gran<strong>di</strong>, favorendo la propagazione <strong>del</strong>la<br />

rottura e la generazione <strong>di</strong> gran<strong>di</strong> terremoti.<br />

Key words: Earthquake physics, Friction Experiments,<br />

Frictional Melting, Microstructures, Peridotite,<br />

Pseudotachylyte.<br />

_________________________<br />

(*) Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia, Via <strong>di</strong> Vigna Murata<br />

605, 00143, Roma, Italy.<br />

(**) Dipartimento <strong>di</strong> Geoscienze, Università <strong>di</strong> Padova, Via Giotto 1,<br />

35137 Padova, Italy.<br />

(***) Department of Earth and Planetary Systems Science, Hiroshima<br />

University, Higashi-Hiroshima 739-8526, Japan.<br />

(****) Kochi Institute for Core Sample Research, JAMSTEC, 200<br />

Monobe-otsu Nankoku, Kochi, 783-8502, Japan .<br />

G. Di Toro expenses are cover<strong>ed</strong> by The European Research Council<br />

Starting Grant No. 205175.<br />

The evolution of the frictional strength along a fault at<br />

seismic slip rates (about 1 m/s) is one of the main factors<br />

controlling earthquake mechanics (KANAMORI & BRODSKY,<br />

2004; DI TORO et alii, 2006). In particular, friction-induc<strong>ed</strong><br />

rock melting and melt lubrication during seismic slip may be<br />

typical at mantle depths, bas<strong>ed</strong> on field stu<strong>di</strong>es (UEDA et alii,<br />

2008; ANDERSEN & AUSTRHEIM, 2006; PICCARDO et alii,<br />

2008), seismological evidence (KANAMORI et alii, 1998;<br />

Fig. 1 – Esperimento tipo. Per simulare con<strong>di</strong>zioni mantelliche caratterizzate<br />

da bassa fugacità <strong>di</strong> ossigeno, questo esperimento (HVR651) è stato effettuato<br />

sotto un flusso <strong>di</strong> Argon. L’evoluzione <strong>del</strong>la resistenza per attrito con il rigetto<br />

è complessa: dopo un primo picco (corrispondente ad un coefficiente <strong>di</strong><br />

attrito <strong>di</strong> circa 0.7, tipico per queste rocce), l’attrito decresce per poi risalire<br />

verso un secondo picco e quin<strong>di</strong> <strong>di</strong>minuire nuovamente fino a raggiungere un<br />

valore stabile (steady-state).<br />

Fig. 1 - Typical experiment. To simulate low oxygen fugacity mantle<br />

con<strong>di</strong>tions, this experiment (HVR651) was perform<strong>ed</strong> under Argon flux. The<br />

evolution of the shear stress with slip is complex: after a first peak in friction<br />

(which corresponds to a coefficient of friction of about 0.7, typical value for<br />

peridotite), friction decreases and then increases again towards a second<br />

peak. Eventually, shear stress evolves towards steady-state.<br />

BOUCHON & IHMLÉ, 1999), torsion experiments (BRIDGMAN,<br />

1936) and theoretical stu<strong>di</strong>es (GRIGGS & HANDIN, 1960;<br />

KELEMAN & HIRTH, 2007). To investigate the (1) dynamic<br />

strength of faults and (2) the frictional melting processes in<br />

mantle rocks, we perform<strong>ed</strong> 20 experiments with peridotite in a<br />

high-velocity rotary shear apparatus. The peridotite is a subcontinental<br />

lherzolite from Balmuccia (Ivrea Zone, Italy,<br />

RIVALENTI et alii, 1981). Experiments were conduct<strong>ed</strong> on


74 G. DI TORO ET ALII<br />

Fig. 2 – Evoluzione <strong>del</strong>le microstrutture con il rigetto. Esperimenti interrotti<br />

a rigetti crescenti a parità <strong>di</strong> sforzo normale (13 MPa) e velocità <strong>di</strong><br />

scivolamento (1.2 m/s), mostrano l’evoluzione <strong>del</strong> materiale <strong>di</strong> faglia con<br />

durante le prove. La complessa fase iniziale <strong>del</strong>la resistenza <strong>di</strong> taglio<br />

corrisponde alla produzione <strong>di</strong> aggregati granulari. La <strong>di</strong>minuzione graduale<br />

verso le con<strong>di</strong>zioni stazionarie corrisponde alla produzione <strong>di</strong> un livello<br />

continuo <strong>di</strong> fuso <strong>di</strong> frizione.<br />

Fig. 2 - Microstructural evolution of the slipping zone with <strong>di</strong>splacement.<br />

Experiments perform<strong>ed</strong> at identical normal stress (13 MPa) and slip rate<br />

(1.2 m/s) but interrupt<strong>ed</strong> at increasing <strong>di</strong>splacements, reveal<strong>ed</strong> that second<br />

strengthening was associat<strong>ed</strong> with the production of a highly viscous grainsupport<strong>ed</strong><br />

melt-poor layer, while second weakening and steady-state with<br />

the formation of a continuous melt-rich layer.<br />

cylindrical samples (21.8 mm in <strong>di</strong>ameter) over a wide range of<br />

normal stresses (5.4 to 16.1 MPa), slip rates (0.23 to 1.14 m/s)<br />

and <strong>di</strong>splacements (1.5 to 71 m).<br />

The dynamic strength of experimental faults evolv<strong>ed</strong> with<br />

<strong>di</strong>splacement (Fig. 1): after a first peak (first strengthening) at<br />

Fig. 3 – Microstrutture sperimentali (sinistra) e naturali (destra). Le<br />

pseudotachiliti prodotte negli esperimenti riportati in questo stu<strong>di</strong>o sono<br />

molto simili alle pseudotachliti naturali <strong>di</strong> Balmuccia (Obata & Karato,<br />

1995). Questa somiglianza, unitamente a considerazioni <strong>di</strong> carattere teorico,<br />

consente <strong>di</strong> estrapolare i risultati sperimentali a con<strong>di</strong>zioni naturali.<br />

Fig. 3 - Experimental (left) and natural (right) microstructures. Artificial<br />

pseudotachylytes produc<strong>ed</strong> in the experiments here describ<strong>ed</strong> are very<br />

similar to natural ones from Balmuccia (Obata & Karato, 1995). Textural<br />

similarity and theoretical considerations, allow us to extrapolate<br />

experimental results to natural con<strong>di</strong>tions.<br />

the initiation of slip, fault strength abruptly decreas<strong>ed</strong> (first<br />

weakening), then increas<strong>ed</strong> (second strengthening) to a second<br />

peak and eventually decreas<strong>ed</strong> (second weakening) towards a<br />

steady-state value.<br />

The microstructural and geochemical (FE-SEM, EPMA and<br />

EDS) investigation of the slipping zone from experiments<br />

interrupt<strong>ed</strong> at <strong>di</strong>fferent <strong>di</strong>splacements reveal<strong>ed</strong> that second<br />

strengthening was associat<strong>ed</strong> with the production of a highly<br />

viscous grain-support<strong>ed</strong> melt-poor layer, while second<br />

weakening and steady-state with the formation of a continuous<br />

melt-rich layer (Fig. 2).<br />

The temperature of the frictional melt estimat<strong>ed</strong> from the<br />

composition of microlites of olivine nucleat<strong>ed</strong> in the melt was<br />

up to 1780 o C. Microstructures form<strong>ed</strong> during the experiments<br />

were identical to those found in natural ultramafic<br />

pseudotachylytes (Fig. 3).<br />

By performing experiments for increasing normal stresses<br />

and slip rates, steady-state shear stress slightly increas<strong>ed</strong> with<br />

increasing normal stress (friction coefficient of 0.15) and, for a<br />

given normal stress, decreas<strong>ed</strong> with increasing slip rate. The<br />

dependence of steady-state shear stress with normal stress and<br />

slip rate is describ<strong>ed</strong> by a constitutive equation for melt<br />

lubrication (NIELSEN et alii, 2008):<br />

τ<br />

ss<br />

∝ σ<br />

⋅<br />

2 5.0<br />

n<br />

log( 2V<br />

/ W )<br />

V / W<br />

where τss is steady state shear stress, σn is normal stress, V is<br />

slip rate and W is a parameter which includes melt viscosity.<br />

The presence of microstructures similar to those found in<br />

natural pseudotachylytes and the determination of a constitutive<br />

equation that describes the experimental data, might allow to<br />

extrapolate the experimental observations to natural con<strong>di</strong>tions<br />

and to the study of rupture dynamics in mantle rocks. In<br />

particular, our experimental data suggest that faults are<br />

lubricat<strong>ed</strong> by frictional melts during mantle earthquakes.<br />

REFERENCES<br />

ANDERSEN T.B. & AUSTRHEIM H. (2006) - Fossil earthquakes<br />

record<strong>ed</strong> by pseudotachylytes in mantle peridotite from the<br />

Alpine subduction complex of Corsica. Earth Planet. Sci.<br />

Lett., 242, 58-72.<br />

BOUCHON M. & IHMLÉ (1999) - Stress drop and frictional<br />

heating during the 1994 deep Bolivia earthquake. Geophys.<br />

Res. Lett., 26 (23), 3521-3524.<br />

BRIDGMAN P.W. (1936) - Shearing phenomena at high<br />

pressure of possible importance for geology. J. Geol., 44,<br />

653-669.<br />

DI TORO G., HIROSE T., NIELSEN S., PENNACCHIONI G. &<br />

SHIMAMOTO T. (2006) - Natural and experimental evidence<br />

of melt lubrication of faults during earthquakes. Science,<br />

311, 647-649.


GRIGGS D. & HANDIN J. (1960), Observations on fracture and<br />

a hypothesis of earthquakes. Geol. Soc. of Amer. Mem., 79,<br />

343-373.<br />

KANAMORI H., ANDERSON D.L. & HEATON T.H. (1998) -<br />

Frictional melting during the rupture of the 1994 Bolivian<br />

Earthquake. Science, 279, 839-842.<br />

KANAMORI H. & BRODSKY, E. (2004) - The physics of<br />

earthquakes. Rep. Prog. Phys., 67, 1429–1496.<br />

KELEMEN P.B. & HIRTH G. (2007) - A perio<strong>di</strong>c shear-heating<br />

mechanism for interm<strong>ed</strong>iate-depth earthquakes in the<br />

mantle. Nature, 446, 787–790.<br />

NIELSEN S., DI TORO G., HIROSE T. & SHIMAMOTO T. (2008) -<br />

Frictional melt and seismic slip. J. Geophys. Res., 113,<br />

doi:10.1029/2007JB005122.<br />

OBATA M. & KARATO S. (1995) - Ultramafic Pseudotachylite<br />

from the Balmuccia Peridotite, Ivrea Verbano Zone,<br />

Northern Italy. Tectonophysics, 242, 313-328.<br />

PICCARDO B.G., RANALLI G., MARASCO M. & PADOVANO M.<br />

(2008) - Ultramafic pseudotachylytes in the Mt. Moncuni<br />

peridotite (Lanzo Massif, western Alps): tectonic evolution<br />

and upper mantle seismicity. Period. <strong>di</strong> Mineral., 76, 181-<br />

197.<br />

RIVALENTI, G., GARUTI G., ROSSI A., SIENA F. & SINIGOI S.<br />

(1981) – Existence of <strong>di</strong>fferent peridotite types ans of a<br />

layerd igneous complex in the Ivrea zone of the Western<br />

Alps. J. Petrol., 22, 127-153.<br />

UEDA T., OBATA M., DI TORO G., KANAGAWA K. & OZAWA K.<br />

(2008) - Mantle earthquakes frozen in mylonitiz<strong>ed</strong><br />

ultramafic pseudotachylytes of spinel-lherzolite facies.<br />

Geology, 36 (8), 607-610.<br />

FRICTIONAL PROPERTIES OF MANTLE ROCKS DURING EARTHQUAKES<br />

75


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 76-79, 9 ff.<br />

ABSTRACT<br />

Altopiano Ragusano (Sicilia sud-orientale): note <strong>di</strong> geologia strutturale.<br />

In this paper is describ<strong>ed</strong> some structural notes about the tectonic<br />

evolution of the South-Western sector of Hyblean Plateau, call<strong>ed</strong> Ragusan<br />

Platform (South-East Sicily).<br />

The Hyblean Plateau was consider<strong>ed</strong> slightly deform<strong>ed</strong> since few years<br />

ago. New data and field research in this area highlight the deformation of the<br />

Ragusan Platform probably due to the subduction-collisional regime of the<br />

European and African margins.<br />

Evidences in field and their interpretation here propos<strong>ed</strong>.<br />

Key words: bou<strong>di</strong>nage, deformazione, Piattaforma Ragusana,<br />

tettonica d'inversione.<br />

INTRODUZIONE<br />

La nota rappresenta un breve sunto riguardo i rilievi<br />

strutturali condotti dagli autori nell'Altopiano Ragusano -<br />

settore centro-meri<strong>di</strong>onale <strong>del</strong> Plateau Ibleo (Sicilia sudorientale).<br />

Il lavoro vuole evidenziare alcuni aspetti tettonici e<br />

deformativi sinora considerati poco significativi nell'area, legati<br />

ad eventi compressionali riconducibili, con ogni probabilità,<br />

all'avanzamento <strong>del</strong>la catena Appennino-Maghrebide sul<br />

margine settentrionale <strong>del</strong> Plateau Ibleo.<br />

Le deformazioni osservate evidenziano la necessità <strong>di</strong><br />

riconsiderare il ruolo <strong>di</strong> questa porzione <strong>di</strong> avampaese nel<br />

quadro tettonico regionale.<br />

GEOLOGIA DELL'AREA<br />

L'Altopiano ibleo è costituito da una potente successione<br />

carbonatica, <strong>di</strong> età meso-cenozoica, la cui stratigrafia è ben<br />

conosciuta grazie alle numerose trivellazioni petrolifere<br />

effettuate negli anni ‘50-‘70 <strong>del</strong> secolo scorso (Kafka &<br />

Kirkbride 1960, Casero P. 2004). In affioramento le<br />

successioni maggiormente presenti sono date dalle alternanze<br />

calcareo-marnoso-argillose eoceniche-mioceniche <strong>del</strong>le F.ni<br />

_________________________<br />

Altopiano Ragusano (Sicilia sud-orientale): note <strong>di</strong> geologia<br />

strutturale<br />

(*) Verticalia S.a.s., Ragusa - www.verticalia.info<br />

MARIO DIPASQUALE (*) & ROSARIO OCCHIPINTI (*)<br />

Fig. 1 – Schema strutturale semplificato <strong>del</strong>l'area (sopra). 1: depositi<br />

quaternari; 2: F.ne Ragusa; 3: F.ne Tellaro; a: avanfossa <strong>di</strong> Gela; b: sistema <strong>di</strong><br />

faglie Comiso-Chiaramonte; c: sistema Marina <strong>di</strong> Ragusa; d: sistema Scicli-<br />

Ragusa (da Barrier, 1992, mod.). Schema stratigrafico successioni affioranti<br />

(sotto).<br />

Amerillo, Ragusa e Tellaro (Fig. 1).<br />

Tali formazioni sono affioranti <strong>di</strong>ffusamente nella parte<br />

centro meri<strong>di</strong>onale <strong>del</strong>l’altopiano ragusano, per poi essere<br />

ricoperti verso ovest, in corrispondenza <strong>del</strong>l'avanfossa Gela-<br />

Catania, dalle coperture quaternarie che costituiscono la falda<br />

<strong>di</strong> Gela.<br />

TETTONICA<br />

La piattaforma ragusana è stata considerata quasi<br />

esclusivamente interessata da tettonica <strong>di</strong>stensiva: faglie<br />

inverse, trascorrenti e pieghe sono state generalmente relegate a<br />

strutture secondarie, associate a deboli rigetti, o circoscritte a<br />

zone limitate (Rigo e Cortesini, 1961; Mascle, 1974; Di Grande<br />

e Grasso, 1977; Grasso et al., 1979, 1986; Ghisetti e Vezzani,<br />

1980, 1981; Cristofolini et al., 1985; Barrier, 1992).<br />

Le strutture principali hanno orientazione NE-SW e NNE-<br />

SSW, tra queste si ricordano i seguenti sistemi <strong>di</strong> faglie:<br />

Comiso-Chiaramonte, Marina <strong>di</strong> Ragusa e Scicli-Ragusa (Fig.<br />

1). L’interazione <strong>di</strong> tali sistemi ha determinato la formazione <strong>di</strong><br />

numerosi horst e graben che da rilievi <strong>di</strong> dettaglio più recenti


ALTOPIANO RAGUSANO (SICILIA SUD-ORIENTALE): NOTE DI GEOLOGIA STRUTTURALE<br />

Fig. 2 – Piega coricata nei calcari <strong>del</strong> M.bo Leonardo sotto la <strong>di</strong>scarica <strong>del</strong>le<br />

miniere <strong>di</strong> roccia asfaltica (foto storica, 1920 ca.).<br />

mostrano evidenze <strong>di</strong> movimenti misti, principalmente<br />

<strong>di</strong>stensivi-trascorrenti.<br />

A grande scala, inoltre, numerose pieghe mo<strong>del</strong>lano la<br />

piattaforma carbonatica.<br />

L'orientazione degli assi varia generalmente da NNE-SSW a<br />

N-S (Kafka & Kirkbride, 1959; Ghisetti & Vezzani, 1980;<br />

Grasso & Reuther, 1988) e solo da alcuni Autori sono state<br />

interpretate come probabili manifestazioni superficiali <strong>di</strong><br />

vecchie faglie normali riattivate come thrusts, ramps o pieghe<br />

(Barrier, 1992).<br />

STUDI PRECEDENTI<br />

Negli anni venti, le strutture tettoniche osservate all'interno<br />

<strong>del</strong> bacino asfaltifero <strong>del</strong>la valle <strong>del</strong>l'Irminio (fig. 2)<br />

consentirono <strong>di</strong> ipotizzare la presenza <strong>di</strong> un giacimento<br />

petrolifero profondo (J. Elmer Thomas, Gulf Italy).<br />

L'analisi microtettonica nell'area condotta da AA in stu<strong>di</strong><br />

prec<strong>ed</strong>enti, ha permesso <strong>di</strong> determinare le principali <strong>di</strong>rezioni<br />

<strong>di</strong> stress associate alle possibili fasi tettoniche che hanno<br />

interessato le successioni affioranti.<br />

Ghisetti & Vezzani (1980), in particolare, <strong>di</strong>stinguono tre<br />

eventi compressivi, con 1 orientati rispettivamente N35°-<br />

65°E, N120°-130°E e N20°E.<br />

Boccaletti et alii (1984) <strong>di</strong>stingue, anch’egli, tre eventi<br />

compressivi; una prima fase compressiva <strong>di</strong> età<br />

m<strong>ed</strong>iopliocenica orientata ca. N 120-130E, una seconda con 1<br />

compreso tra N10 e N 50 E, databile al Pleistocene m<strong>ed</strong>io <strong>ed</strong>,<br />

infine, una terza con <strong>di</strong>rezioni preferenziali comprese tra NNE-<br />

SSW e NE-SW è ricondotta, dall’autore, ad un arco <strong>di</strong> tempo<br />

compreso tra il Pleistocene inferiore e l’attuale.<br />

77<br />

Barrier (1992) <strong>di</strong>stingue pure tre <strong>di</strong>versi eventi tettonici<br />

compressivi nell'area, tutti avvenuti durante il generale periodo<br />

<strong>di</strong>stensivo Plio-Pleistocenico. Tali eventi sono così orientati:<br />

20°-30°, 60°-80° e 100°-110°.<br />

Lo stesso Autore riporta che quest'ultimo evento<br />

compressivo, databile al Pliocene m<strong>ed</strong>io, è stato registrato in<br />

<strong>di</strong>verse aree <strong>del</strong> M<strong>ed</strong>iterraneo, quali Malta, Lamp<strong>ed</strong>usa,<br />

Ragusa, Tunisia e nell’ Appennino meri<strong>di</strong>onale, e ne ipotizza la<br />

possibile causa nella collisione tra zolla euroasiatica e zolla<br />

africana.<br />

RILIEVI CONDOTTI<br />

I rilievi condotti dagli scriventi hanno permesso <strong>di</strong><br />

verificare la presenza <strong>di</strong> dette orientazioni in base alle misure<br />

degli assi <strong>di</strong> stress nelle strutture rilevate, evidenziando inoltre<br />

la tipologia e l'entità <strong>del</strong>le deformazioni riconosciute nelle<br />

successioni analizzate.<br />

Si è riconosciuta la presenza <strong>di</strong> un primo evento<br />

compressivo, orientato ca. N120°E, che ha determinato un<br />

<strong>di</strong>ffuso piegamento <strong>del</strong>le successioni, con fenomeni <strong>di</strong> thrusting<br />

pellicolare e sovrascorrimento, spesso intraformazionale, <strong>del</strong>le<br />

successioni in affioramento (fig. 3). Tale evento, misurato in<br />

tutta l'area, è associabile allo stress indotto dall'avanzamento<br />

<strong>del</strong>la catena Appennino-Maghrebide durante il Pliocene m<strong>ed</strong>io<br />

(Barrier, 1992)<br />

Si sono riconosciute numerose sequenze <strong>di</strong> thrust, <strong>di</strong><br />

<strong>di</strong>mensioni comprese tra alcuni decimetri e qualche centinaio <strong>di</strong><br />

metri, tanto in prossimità <strong>del</strong>le principali zone <strong>di</strong> taglio (fig. 4),<br />

quanto in aree <strong>di</strong>stali <strong>ed</strong> apparentemente meno deformate.<br />

La figura n. 5 mostra una fascia cataclastica associata ad<br />

una superficie <strong>di</strong> scollamento, con presenza <strong>di</strong> un lithon<br />

calcarenitico <strong>di</strong> <strong>di</strong>mensioni metriche.<br />

La figura n. 6 mostra la successione <strong>di</strong> un evento<br />

compressivo, con formazione <strong>di</strong> sequenze <strong>di</strong> piccole faglie<br />

inverse e sovrascorrimenti, tagliate da una faglia a componente<br />

prevalentemente <strong>di</strong>retta.<br />

Tali evidenze, riconducibili a tettonica d’inversione<br />

positiva, sono state osservate nelle alternanze <strong>del</strong>la F.ne Ragusa<br />

e Tellaro, dove locali con<strong>di</strong>zioni <strong>di</strong> transpressione e<br />

trastensione <strong>di</strong> età pleistocenica, tagliano e/o riattivano, specie<br />

in corrispondenza <strong>del</strong>le principali shear zone (sistemi Scicli-<br />

Ragusa e Comiso-Chiaramonte, fig. 1), strutture più antiche a<br />

carattere prevalentemente compressivo (fig. 7; Dipasquale &<br />

Occhipinti, 2008).<br />

Fig. 3 – Sequenza <strong>di</strong> thrusts all'interno <strong>del</strong> M.bo Irminio <strong>del</strong>la F.ne Ragusa presso la cava <strong>di</strong> roccia asfaltica <strong>di</strong> C.da Tabuna (Ragusa).


78 M. DIPASQUALE & R. OCCHIPINTI<br />

Detta inversione è stata, tra l'altro, determinante per la<br />

formazione <strong>del</strong> bacino asfaltifero <strong>del</strong>la valle <strong>del</strong> fiume Irminio.<br />

Fig. 4 – Sequenze <strong>di</strong> thrust intraformazionali all'interno <strong>del</strong>la F.ne Ragusa, in prossimità <strong>del</strong> sistema Scicli-Ragusa.<br />

La risalita dei geoflui<strong>di</strong> è avvenuta a partire dal reservoir <strong>di</strong><br />

Ragusa, lungo le faglie legate al sistema Scicli-Ragusa,<br />

trovando recapito negli spessori calcarenitici e calciru<strong>di</strong>tici che<br />

costituiscono la parte bassa <strong>del</strong> M. bro Irminio – livello a<br />

banconi (Kafka & Kirkbride 1960, Dipasquale et al., 2008).<br />

Alcune strutture osservate nelle successioni affioranti,<br />

d'altro canto, non sono ancora chiaramente associate a <strong>di</strong>stinte<br />

fasi tettoniche e necessitano pertanto ulteriori approfon<strong>di</strong>menti.<br />

Sovente si evidenzia che le tre porzioni principali in cui è<br />

<strong>di</strong>visa la F.ne Ragusa (M.bo Leonardo, Livello a banchi e<br />

Alternanza superiore) sono, in numerosi siti, reciprocamente<br />

<strong>di</strong>scordanti. Tali evidenze, per quanto sinora riscontrato nei<br />

rilievi, possono essere imputate sia a tettonica sins<strong>ed</strong>imentaria,<br />

sia a riattivazione <strong>di</strong> alcuni superfici s<strong>ed</strong>imentarie in piani <strong>di</strong><br />

movimento preferenziale, durante le fasi tettoniche posteriori<br />

alla <strong>di</strong>agenesi.<br />

Le evidenze <strong>di</strong> tettonica sins<strong>ed</strong>imentaria sono state<br />

osservate soprattutto nell’intervallo compreso tra il tetto <strong>del</strong><br />

M.bo Leonardo e la base <strong>del</strong> Livello a banchi, dove il primo è<br />

interessato da una sequenza <strong>di</strong> piccole faglie <strong>di</strong>rette che<br />

sembrano essere suturate, in <strong>di</strong>scordanza, dal superiore livello a<br />

banchi.<br />

In quest'ultimo si riconoscono inoltre numerosi bou<strong>di</strong>ns,<br />

associati sovente a tipiche strutture <strong>di</strong> flusso.<br />

Tali strutture (fig. 8) sono spesso interessate da ulteriori<br />

deformazioni; le faglie inverse osservate, si <strong>di</strong>spongono<br />

Fig. 5 – Lithon all'interno <strong>di</strong> superficie <strong>di</strong> scollamento presso C.da Tabuna<br />

(Ragusa).<br />

parallelamente a superfici dei thrusts principali.<br />

I bou<strong>di</strong>ns rilevati nella zona mineralizzata a bitume (C. da<br />

Tabuna) evidenziano uno sviluppo <strong>di</strong> tipo ra<strong>di</strong>ale, con ogni<br />

probabilità in<strong>di</strong>cativo <strong>del</strong>la struttura plicativa a domo <strong>del</strong>le<br />

successioni in affioramento. L'anticlinale <strong>di</strong> superficie<br />

costituirebbe pertanto la risultanza <strong>del</strong>la deformazione che ha<br />

determinato la trappola per idrocarburi profonda (Kafka &<br />

Kirkbride 1960, Dipasquale et al., 2008).<br />

Il M.bo Leonardo <strong>del</strong>la F.ne Ragusa inoltre, presenta spesso<br />

importanti deformazioni interne già interpretate da numerosi<br />

autori come slumps (Grasso et al., 2000).<br />

Tali strutture sono state osservate dagli scriventi anche<br />

nell'alternanza calcarenitico marnosa <strong>del</strong> M.bo Irminio <strong>del</strong>la<br />

F.ne Ragusa.<br />

Si sono tuttavia riconosciute numerose evidenze <strong>di</strong> rottura<br />

fragile <strong>ed</strong> una modesta acclività <strong>del</strong>le presunte superfici <strong>di</strong><br />

scivolamento (fig. 9).<br />

CONCLUSIONI<br />

La presente nota vuole essere un contributo<br />

all'approfon<strong>di</strong>mento <strong>del</strong>le conoscenze sulla tettonica nel<br />

margine meri<strong>di</strong>onale <strong>del</strong> Plateau Ibleo.<br />

Le strutture tettoniche rilevate appaiono riconducibili a<br />

tettonica d'inversione, che porterebbe a riconsiderare <strong>ed</strong><br />

approfon<strong>di</strong>re il grado <strong>di</strong> deformazione <strong>del</strong>l’avampaese.<br />

Fig. 6 – Successioni <strong>di</strong> eventi compressionali e trastensionali nel livello a<br />

banchi <strong>del</strong>la F.ne Ragusa.


ALTOPIANO RAGUSANO (SICILIA SUD-ORIENTALE): NOTE DI GEOLOGIA STRUTTURALE<br />

Fig. 7 – Rilievi strutturali in C.da Streppenosa, con strutture determinate<br />

da locale transpressione che tagliano faglie inverse e sovrascorrimenti.<br />

Fig. 8 – Bou<strong>di</strong>ns su pilastro all'interno <strong>del</strong>le miniere <strong>di</strong> roccia asfaltica (valle<br />

<strong>del</strong>l'Irminio), localmente fagliati (in alto a sinistra).<br />

Fig. 9 – Probabili slumps all'interno <strong>del</strong> M.bo Irminio <strong>del</strong>la F.ne Ragusa<br />

(sbancamento <strong>ed</strong>ile, Ragusa). Notare le strutture plicative sulla porzione<br />

scollata e i bou<strong>di</strong>ns in quella inferiore.<br />

REFERENCES<br />

BARRIER E. (1992) – Tectonic analysis of a flex<strong>ed</strong> foreland:<br />

Ragusa Platform. Tectonophysics, 206, 91-111.<br />

79<br />

CASERO P. (2004) – Structural setting of petroleum exploration<br />

plays in Italy. Società Geologica Italiana – Special Volume<br />

of the Italian Geological Society for the IGC 32 Florence-<br />

2004, 191- 199.<br />

DIPASQUALE M. & OCCHIPINTI R. (2008) - Evidences of<br />

transpressional tectonics in tertiary sequences of F.ne<br />

Ragusa - C.da Streppenosa (Hyblean Plateau, Sicily).<br />

Tethys to M<strong>ed</strong>iterranean, a journey of geological <strong>di</strong>scovery;<br />

Catania, 3/5 june 2008.<br />

DIPASQUALE M., OCCHIPINTI R. & ZIPELLI C. (2008) - Ragusa<br />

asphalt basin (Hyblean Plateau, Sicily): proposal of an<br />

ascent mo<strong>del</strong> from the deep oilfield. 84° Congresso<br />

Nazionale <strong>del</strong>la Società Geologica Italiana, Sassari, 15-17<br />

settembre 2008.<br />

GHISETTI F. & VEZZANI L. (1980) – The structural features of<br />

the Hyblean Plateau and of the Mount Ju<strong>di</strong>ca area (South-<br />

Eastern Sicily): a microtectonic contribution to the<br />

deformation history of the Calabrian Arc. Boll. Soc. Geol.<br />

It., 99, 57-102.<br />

GRASSO M. (1994) – Neotettonica e principali elementi<br />

strutturali <strong>del</strong> Plateau Ibleo e aree limitrofe. Atti <strong>del</strong> I<br />

Congresso Regionale <strong>del</strong>l'Or<strong>di</strong>ne dei Geologi <strong>di</strong> Sicilia,<br />

Marina <strong>di</strong> Ragusa 16-18 Settembre 1994, 65-81.<br />

GRASSO M., PHILPS B., REUTHER C.D., GAROFALO P.,<br />

STAMILLA R., ANFUSO G., DONZELLA G. & CULTRONE G.<br />

(2000B) – Pliocene-Pleistocene tectonics on the western<br />

margin of the Hyblean Plateau and the Vittoria Plain (SE<br />

Sicily). Mem. Soc. Geol. It., 55, 35-44.<br />

KAFKA F. T. & KIRKBRIDE R. K. (1960) – The Ragusa oil field,<br />

Sicily. Excursion in Sicily, P.E.S.L., 61-85.<br />

MATTINA D. (2002) – The Role of Wrench Tectonics In The<br />

Neogene-quaternary Evolution of The Western Hyblean<br />

Plateau (Sicily). EGS XXVII General Assembly, Nice, 21-<br />

26 April 2002, abstract #664<br />

TAVARNELLI E., BUTLER R. W. H., DECANDIA F. A., CALAMITA<br />

F. , GRASSO M., ALVAREZ W., RENDA P. (2004) –<br />

IMPLICATION of fault reactivation and structural<br />

inheritance in the Cenozoic tectonic evolution of Italy.<br />

Società Geologica Italiana – Special Volume of the Italian<br />

Geological Society for the IGC 32 Florence-2004, 209-<br />

222.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 80-83, 4ff.<br />

Suscettività magnetica e assetto strutturale nelle Ande in Tierra <strong>del</strong> Fuego<br />

FEDERICO ESTEBAN (*), ALEJANDRO TASSONE (*), MARCO MENICHETTI (**), MARIA ELENA CERREDO (*),<br />

AUGUSTO RAPALINI (*), HORACIO LIPPAI (*), JUAN FRANCISCO VILAS (*)<br />

ABSTRACT<br />

Magnetic susceptibility and structural setting in the Tierra <strong>del</strong> Fuego<br />

Andes<br />

With the aim of studying the tectonic evolution of the Fueguian Andes,<br />

the magnetic susceptibility tensor was measur<strong>ed</strong> on sample rocks of the<br />

Lemaire and Yahgán Fms outcrop in the area between Paso Garibal<strong>di</strong> and<br />

Canal Beagle in Tierra <strong>del</strong> Fuego. In the northern area the orientations of the<br />

K1 axis of the magnetic fabric shows a dominant <strong>di</strong>rections N-S that can be<br />

correlat<strong>ed</strong> to the tectonic transport. In the south from Carbajal valley to Canal<br />

Beagle, the orientations are roughly E-W that are link<strong>ed</strong> to the<br />

morphostructural lineations associat<strong>ed</strong> with a the strike-slip faults. The good<br />

correspondence between the magnetic anisotropy axis K3 and the rock<br />

foliation, permit to assign to a tectonic origin of the magnetic fabric.<br />

Key words: Andes, Anisotropy magnetic susceptibility, AMS,<br />

magnetic fabric, microstructures, Tierra <strong>del</strong> Fuego<br />

Lo stu<strong>di</strong>o congiunto <strong>del</strong>la struttura magnetica e tettonica <strong>di</strong><br />

una roccia coinvolta in una catena orogenica, permette <strong>di</strong><br />

ottenere importanti informazioni sull’entità <strong>del</strong>la deformazione<br />

e <strong>del</strong>la sua <strong>di</strong>stribuzione spaziale (TARLING & HROUDA, 1993;<br />

BORRADAILE & HENRY, 1997).<br />

Nonostante l’ottima risoluzione oggi possibile, la versatilità<br />

e velocità <strong>di</strong> esecuzione <strong>del</strong>le misure <strong>ed</strong> analisi, stu<strong>di</strong> sulla<br />

struttura magnetica <strong>del</strong>le rocce sono ancora poco frequenti<br />

specialmente nelle catene <strong>del</strong> Sud America e si hanno solo<br />

ricerche recenti in aree circoscritte (RAPALINI et alii, 2005;<br />

ZAFFARANA et alii, 2008).<br />

L’obiettivo <strong>di</strong> questo lavoro è quello <strong>di</strong> stu<strong>di</strong>are il fabric<br />

magnetico congiuntamente con l’analisi petrografica e micro<br />

strutturale. Il fine è quello <strong>di</strong> verificare le modalità <strong>di</strong> messa in<br />

posto <strong>del</strong>le <strong>di</strong>verse unità tettoniche, legate sia alla fase<br />

compressiva che trascorrente che ha interessato la regione <strong>del</strong>la<br />

Tierra <strong>del</strong> Fuego a partire dal Mesozoico <strong>ed</strong> inquadrarla nel<br />

contesto regionale. L’area stu<strong>di</strong>ata è localizzata nel settore SW<br />

argentino <strong>del</strong>l’Isola, compresa tra il Lago Fagnano a nord e il<br />

Canal de Beagle a sud e tra il Paso Garibal<strong>di</strong> ad est e i limiti <strong>del</strong><br />

Parco Nazionale <strong>del</strong>la Tierra <strong>del</strong> Fuego ad ovest (Fig.1).<br />

_________________________<br />

(*) CONICET-INGEODAV. Dpto. de Ciencias Geológicas. Facultad de<br />

Ciencias Exactas y Naturales. Universidad de Buenos Aires - Argentina.<br />

(**) Istituto <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Urbino – Italy<br />

F<strong>ed</strong>erico Estaban : e-mail esteban@gl.fcen.una.ar<br />

Questo stu<strong>di</strong>o è stato eseguito all’interno <strong>di</strong> un progetto <strong>di</strong><br />

più ampio e a lungo termine, multi<strong>di</strong>sciplinare, sull’evoluzione<br />

<strong>del</strong>le Ande Fuegine nel Meso-Cenozoico.<br />

La geologia <strong>del</strong>la Tierra <strong>del</strong> Fuego mostra una evoluzione<br />

complessa iniziata a partire <strong>del</strong>la fine <strong>del</strong> Paleozoico con la<br />

frantumazione <strong>del</strong> continente Gondwana e la formazione <strong>di</strong> un<br />

bacino marginale noto come Rocas Verdes (DALZIEL et alii,,<br />

1974). A partire dal Cretaceo sup., la convergenza localizzata<br />

nel margine pacifico <strong>del</strong>la Placca Sud Americana, porta allo<br />

sviluppo <strong>del</strong>la catena An<strong>di</strong>na (MENICHETTI et alii, 2008 -<br />

cumm. biblio). A partire dal Paleocene, in corrispondenza <strong>del</strong>la<br />

formazione <strong>del</strong> Mare <strong>di</strong> W<strong>ed</strong><strong>del</strong>, localizzato tra la placca Sud<br />

Americana e quella Antartica e la conseguente formazione <strong>del</strong><br />

Mare <strong>di</strong> Scotia, l’area è interessata da una tettonica trascorrente<br />

(CUNNINGHAM, 1995), con deformazioni principalmente<br />

transtensive nella regione <strong>del</strong>la Tierra <strong>del</strong> Fuego (LODOLO et<br />

alii, 2003; MENICHETTI et alii, 2008). Nell’area affiorano<br />

principalmente rocce, da acide a mesosiliciche,<br />

vulcanico/piroclastiche e basaltiche <strong>del</strong>la Formazione Lemair;<br />

associate in un quadro stratigrafico ancora non <strong>del</strong> tutto chiaro,<br />

esistono rocce basaltiche <strong>del</strong>la crosta oceanica <strong>del</strong> bacino <strong>di</strong><br />

Rocas verdes unitamente a rocce s<strong>ed</strong>imentarie <strong>di</strong> mare<br />

profondo (OLIVERO et alii, 1999; OLIVERO & MARTINIONI,<br />

2001). La regione è stata interessata da una fase tettonica<br />

compressiva nel Cretaceo sup., costituita da due eventi<br />

deformativi associati all’inversione <strong>del</strong> bacino <strong>di</strong> Rocas Verdes<br />

(DALZIEL & PALMER, 1979). Il primo evento corrisponde al<br />

Cretaceo sup. e produce pieghe F1 e un clivaggio S1, associato<br />

ad un metamorfismo in facies da prenhite-pumpellyte a scisti<br />

ver<strong>di</strong> (KOHN et alii, 1993). Il clivaggio ha una <strong>di</strong>rezione NW-<br />

SE <strong>ed</strong> immerge verso SW. Il secondo evento deformativo è<br />

collegato alla formazione e messa in posto <strong>di</strong> un sistema <strong>di</strong><br />

pieghe e fronti <strong>di</strong> accavallamento vergenti a NE, ai quali sono<br />

associate larghe pieghe F2 e un clivaggio <strong>di</strong> crenulazione S2<br />

molto ben sviluppato lungo la <strong>di</strong>rezione NE-SW con<br />

immersione verso SE ad alto angolo (MENICHETTI et alii, 2008)<br />

(Fig. 2). Gli assi <strong>del</strong>le pieghe tendono a ruotare da SSE-NNW<br />

per F1 a ESE-WSW per F2 con piani assiali immergenti a SW<br />

con inclinazioni tra 40° a 60°.<br />

A partire dal Cenozoico, l’area è stata interessata da una<br />

tettonica trascorrente con strutture <strong>di</strong>stensive e sviluppo <strong>di</strong><br />

bacini <strong>di</strong> pull-apart (LODOLO et alii, 2003; MENICHETTI et alii,<br />

2008). Le principali strutture trascorrenti sono associate ad<br />

importanti lineamenti morfostrutturali, uno dei quali è costituito<br />

dalla valle Carbajal-Lasifashaj, lunga oltre 100 km che


SUSCETTIVITÀ MAGNETICA E ASSETTO STRUTTURALE NELLE ANDE IN TIERRA DEL FUEGO<br />

Fig. 1 – Carta geologica schematica <strong>del</strong>la parte centrale <strong>del</strong>la Cor<strong>di</strong>llera <strong>del</strong>le Ande in Tierra <strong>del</strong> Fuego con localizzazione <strong>del</strong>le aree campionate . CB : Canal de<br />

Beagle; CO : Valle Carbajal ovest; CE : Valle Carbajal Est; PG : Paso Garibal<strong>di</strong>.<br />

attraversa tutta la parte centrale <strong>del</strong>la catena fuegina e la<br />

sud<strong>di</strong>vide in due settori : la Sierra de Alvear a nord e la Sierra<br />

Sorondo a sud (CENNI et alii, 2006) (Fig. 1)<br />

La Cor<strong>di</strong>llera <strong>del</strong>le Ande in Tierra <strong>del</strong> Fuego è costituita da<br />

un sistema <strong>di</strong> unità tettoniche vergenti a NE accavallamento le<br />

une sulle altre attraverso superfici <strong>di</strong> scollamento basale<br />

localizzate nelle litologie marnose e scistose <strong>del</strong> Giurassico<br />

Sup. e <strong>del</strong> Cretaceo. La geometria è costituita da blocchi<br />

monoclinalici immergenti a sud e <strong>del</strong>imitati da piani <strong>di</strong><br />

sovrascorrimenti, all’interno <strong>del</strong>le quali si possono riconoscere<br />

due gruppi <strong>di</strong> macro e meso-strutture: (1) ampie pieghe e<br />

superfici <strong>di</strong> sovrascorrimento/scollamento a basso angolo; (2)<br />

pieghe a chevron asimmetriche con sovrascorrimenti<br />

moderatamente inclinati, immergenti a SSW, che costituiscono<br />

la struttura principale <strong>del</strong>la catena. Il raccorciamento<br />

complessivo <strong>di</strong> queste strutture, su tutta la regione, può essere<br />

stimato in decine <strong>di</strong> chilometri. La superficie dei<br />

sovrascorrimenti è marcata da zone <strong>di</strong> taglio con uno spessore<br />

<strong>di</strong> alcuni metri, dove sono ben sviluppate strutture S/C (Fig. 2<br />

A); alcune <strong>del</strong>le superfici <strong>di</strong> taglio sono costituite da rocce<br />

milonitiche. Nella parte più interna <strong>del</strong>la Cor<strong>di</strong>llera, il<br />

basamento è coinvolto nella deformazione con uno stile thickskinn<strong>ed</strong><br />

con rocce metamorfiche <strong>di</strong> alto grado <strong>del</strong> Paleozoico<br />

Sup., al Terziario Inf., affioranti nella Cor<strong>di</strong>llera Darwin<br />

localizzata ad ovest <strong>del</strong>l’area <strong>di</strong> stu<strong>di</strong>o (KOHN et alii, 1993;<br />

CUNNINGHAM, 1995). Verso est, nel settore argentino <strong>del</strong>la<br />

Tierra <strong>del</strong> Fuego, queste strutture compressive confluiscono in<br />

zone <strong>di</strong> taglio milonitiche in facies metamorfica <strong>di</strong> scisti ver<strong>di</strong><br />

ben visibili in affioramento nella Sierra de Alvear (Fig. 1).<br />

Dal punto <strong>di</strong> vista microstrutturale, le rocce <strong>di</strong> Paso<br />

Garibal<strong>di</strong> sono caratterizzate dallo sviluppo <strong>di</strong> un fabric<br />

milonitico definito da porfiroclasti <strong>di</strong> clinopirosseno all’interno<br />

<strong>di</strong> una matrice caratterizzata da prehnite-clorite che definiscono<br />

la foliazione principale. Nel sito F4, in maniera <strong>del</strong> tutto<br />

qualitativa, è possibile osservare una relazione <strong>di</strong>retta tra<br />

l’abbondanza <strong>del</strong>le vene <strong>di</strong> minerali opachi-quarzo-carbonatici<br />

e alti valori <strong>di</strong> P’ (Fig. 3A).<br />

Nella parte orientale <strong>del</strong>la Valle Carbajal si hanno <strong>di</strong>verse<br />

litologie con rocce andesitiche, vulcanoclastiche, s<strong>ed</strong>imentarie<br />

e basiche. Usualmente il fabric magnetico è costituito da<br />

porfiroclasti immersi in una foliazione definita da clorite e<br />

titanite in grani fini <strong>ed</strong> isorientati (Fig. 3B). Alcuni campioni<br />

<strong>del</strong>la località F7 corrispondenti a porfiroclasti silicei, mostrano<br />

cubi <strong>di</strong> pirite con associati strain fringes <strong>di</strong> quarzo.<br />

Nella parte occidentale <strong>del</strong>la Valle Carbajal, la foliazione<br />

dei porfiroclasti silicei <strong>del</strong>la Fm. Lemaire, è generalmente<br />

definita da clorite isorientata (± muscovite ± titanite). In alcuni<br />

punti sono presenti lenti o vene <strong>di</strong> carbonati paralleli alla<br />

foliazione (F10 e F11- Fig. 3C) e porfiroclasti <strong>di</strong> feldspati con<br />

microbou<strong>di</strong>nage (F12). Nel sito Y6 il fabric magnetico è<br />

collegato alla presenza <strong>di</strong> cristalli <strong>di</strong> pirite associati con strain<br />

fringes <strong>di</strong> quarzo più o meno paralleli alla clorite.<br />

81


82 F.ESTEBAN ET ALII<br />

Fig. 2 – Affioramenti con relativi stereogrammi nell’emisfero inferiore con<br />

in<strong>di</strong>cato i piani <strong>di</strong> scistosità, faglie, vene. Sono in<strong>di</strong>cati gli assi <strong>del</strong>la<br />

suscettibilità magnetica principale (K1 quadrati), interm<strong>ed</strong>io (K2 triangoli) e<br />

minimo (K3 cerchi) e l’ ellisse al 95% <strong>di</strong> confidenza. – A – Paso Garibal<strong>di</strong>; B<br />

– Valle Carbajal Est; C – Valle Carbajal Ovest.<br />

Dal punto <strong>di</strong> vista analitico, la metodologia utilizzata<br />

prev<strong>ed</strong>e, successivamente al prelievo <strong>di</strong> campioni <strong>di</strong> roccia<br />

orientati, la riduzione a dei cilindri <strong>di</strong> 2.54 cm <strong>di</strong> <strong>di</strong>ametro e<br />

2.2 cm <strong>di</strong> altezza e sui quali viene misurata l’anisotropia<br />

magnetica. La determinazione <strong>del</strong> tensore suscettività<br />

magnetica è stata eseguita con uno strumento MFK1-B<br />

Kappabridge, all’interno <strong>del</strong> quale ogni campione viene<br />

misurato in 15 <strong>di</strong>verse posizioni. Sullo stesso campione sono<br />

stati inoltre condotti stu<strong>di</strong> petrografici attraverso sezioni sottili.<br />

Il grado <strong>di</strong> anisotropia rilevato è altamente variabile con un<br />

valore <strong>di</strong> P’ compreso tra 1.03 (porfiro dacite, Y11) a 2.00<br />

(ignimbrite F7) (Fig. 4). La forma <strong>del</strong>l’ellissoide (T) è variabile<br />

con una chiara pr<strong>ed</strong>ominanza <strong>di</strong> una forma oblata. I siti<br />

<strong>del</strong>l’area Valle Carbajal est (tranne il F7) e <strong>del</strong> Canal de<br />

Beagle, mostrano un grado <strong>di</strong> anisotropia maggiore <strong>del</strong> 20%<br />

(Fig. 4).<br />

I risultati <strong>del</strong>le misure <strong>di</strong> suscettività magnetica mostrano<br />

un buon accordo con i dati petrografici, meso e microstrutturali<br />

(Fig. 2) e permettono <strong>di</strong> sud<strong>di</strong>videre la regione in<br />

quattro settori. Esiste un’ottima correlazione tra la foliazione<br />

misurata sul terreno e la struttura magnetica <strong>del</strong>la roccia,<br />

in<strong>di</strong>cando quin<strong>di</strong> una chiara origine tettonica <strong>del</strong> fabric<br />

magnetico. Nell’area <strong>di</strong> Paso Garibal<strong>di</strong> dove affiorano rocce<br />

vulcaniche (basalti <strong>ed</strong> andesiti) <strong>del</strong>la Fm. Lemaire, la lineazione<br />

magnetica (K1) ha una <strong>di</strong>rezione sistematica da N-NNE a S-<br />

SSW con una debole inclinazione verso sud, che può essere<br />

correlata con la <strong>di</strong>rezione <strong>di</strong> trasporto tettonico operato dal<br />

sistema <strong>di</strong> sovrascorrimenti (MENICHETTI et alii, 2008).<br />

Nell’area orientale <strong>del</strong>la Valle Carbajal affiorano varie<br />

Fig. 3 – Sezioni sottili (a sinistra N// e a destra NX). A: zona <strong>di</strong> Paso<br />

Garibal<strong>di</strong>, vena in una andesite con minerali opachi carbonatici e quarzosi ;<br />

B: Valle Carbajal (F9), frammento <strong>di</strong> pomice sostituito <strong>ed</strong> avvolto da clorite<br />

che definisce la scistosità; C: Valle Carbajal (F10), titanite con strutture<br />

concentriche avvolte da clorite isorientata.<br />

litologie (basalti, andesiti, ignimbriti e rocce s<strong>ed</strong>imentarie)<br />

<strong>del</strong>la Fm. Lemaire. Qui la lineazione magnetica (K1) mostra<br />

<strong>di</strong>rezioni simili a quelle <strong>del</strong>l’area <strong>di</strong> Paso Garibal<strong>di</strong>. Per contro,<br />

nell’area più occidentale <strong>del</strong>la Valle, K1 ha un trend E-W suborizzontale<br />

che può essere messo in relazione con il lineamento<br />

trascorrente che attraversa in questo punto la parte centrale<br />

<strong>del</strong>la valle (MENICHETTI et alii, 2004). In questa area le<br />

litologie sono costituite da rocce s<strong>ed</strong>imentarie, tufi basaltici,<br />

gabbri e rioliti <strong>del</strong>le Fm. Lemaire e Yaghan.


SUSCETTIVITÀ MAGNETICA E ASSETTO STRUTTURALE NELLE ANDE IN TIERRA DEL FUEGO<br />

Nell’area <strong>del</strong> Canal de Beagle, sono state campionate rocce<br />

vulcaniche intrusive (sill meta-basaltico, gabbro e una dacite<br />

porfirica) all’interno <strong>del</strong>la Fm. Yaghan. Il trend <strong>del</strong>la lineazione<br />

magnetica è sub orizzontale verso SW-NE, coincidente con<br />

l’andamento generale <strong>del</strong> Canal de Beagle. Questo lascerebbe<br />

supporre che l’assetto tettonico prettamente transtensivo<br />

Fig. 4 – Diagramma P’/ T (TARLING D.H.& HROUDA F., 2003)) con in<strong>di</strong>cati i<br />

campioni analizzati, in<strong>di</strong>cati in Fig. 1 - Paso Garibal<strong>di</strong> (rombi), Valle<br />

Carbajal Est (quadrati), Valle Carbajal ovest (triangoli), Canal de Beagle<br />

(cerchi) - e la forma degli ellissoi<strong>di</strong> <strong>del</strong>la suscettività magnetica.<br />

determina il fabric magnetico <strong>di</strong> questa località (LODOLO et<br />

alii, 2003; MENICHETTI et alii, 2008).<br />

E’ possibile effettuare un confronto tra le <strong>di</strong>rezioni degli<br />

assi <strong>del</strong>l’ellissoide <strong>di</strong> deformazione calcolato sulla base<br />

<strong>del</strong>l’analisi cinematica <strong>del</strong>le faglie (MENICHETTI et alii, 2008)<br />

con gli assi <strong>del</strong>l’ellissoide <strong>del</strong>la suscettività magnetica. In<br />

alcune zone come in quella <strong>di</strong> Passo Garibal<strong>di</strong>, Sierra Alvear e<br />

Valle Carbajal occidentale e Canal de Beagle, l’asse <strong>del</strong>lo<br />

sforzo principale σ1, corrisponde circa con l’asse K1<br />

(foliazione) <strong>del</strong>la suscettività magnetica, il σ2 è circa K2 e il<br />

σ3 con K3 (lineazione). Questa coincidenza potrebbe essere<br />

spiegata attraverso un meccanismo deformativo dove il taglio<br />

puro ha agito nella prima fase <strong>di</strong> deformazione. In altre località<br />

come nella parte occidentale <strong>del</strong>la Valle Carbajal, per contro,<br />

non esiste una chiara relazione tra i valori <strong>del</strong>la suscettività<br />

magnetica e il campo deformativo, lasciando ipotizzare un<br />

meccanismo <strong>di</strong> deformazione più complesso e probabilmente<br />

polifasico.<br />

REFERENCES<br />

BORRADAILE, G. J., HENRY, B. (1997) - Tectonic applications<br />

of magnetic susceptibility and its anisotropy. Earth-<br />

Science Reviews, Vol. 42, (1-2): 49-93.<br />

CENNI, M., MENICHETTI, M., MATTIOLI, M., LODOLO, E.,<br />

TASSONE A. (2006) - Analisi meso-microstrutturale lungo<br />

la faglia trascorrente Magellano-Fagnano nella<br />

Cor<strong>di</strong>gliera <strong>del</strong>le Ande in Terra <strong>del</strong> Fuoco-Argentina.<br />

Ren<strong>di</strong>conti <strong>del</strong>la Società Geologica Italiana. Nuova Serie,<br />

2: 121-124.<br />

CUNNINGHAM, W.D. (1995)- Orogenesis at the southern tip of<br />

the Americas: the structural evolution of the Cor<strong>di</strong>llera<br />

Darwin metamorphic complex, southernmost Chile.<br />

Tectonophysics, 244: 197-229.<br />

DALZIEL, I.W.D., DE WIT, M.J., PALMER, K.F., (1974) - Fossil<br />

marginal basin in the southern Andes. Nature, 250: 291-<br />

294.<br />

DALZIEL, I.W.D., PALMER, K.F. (1979) - Progressive<br />

deformation and orogenic uplift at the southern extremity<br />

of the Andes. Bulletin of the Geological Society America,<br />

90: 259-280.<br />

LODOLO E., MENICHETTI M., BARTOLE R., BEN-AVRAHAM Z.,<br />

TASSONE A.& LIPPAI H. (2003) - Magallanes-Fagnano<br />

continental transform fault (Tierra <strong>del</strong> Fuego,<br />

southermost South America. Tectonics, 22, 1076, doi:<br />

10129/2003TC0901500, 2003.<br />

KOHN M.J., SPEAR F.S., DALZIEL I.W.D. (1993) - Metamorphic<br />

PT paths from the Cor<strong>di</strong>llera Darwin: a core complex in<br />

Tierra <strong>del</strong> Fuego, Chile. Journal of Petrology, 34: 519-<br />

542.<br />

MENICHETTI M., ACEVEDO R., BUJALESKY G., CENNI M.,<br />

CERREDO M.E., CORONATO A., HORMAECHEA J.L., LIPPAI<br />

H., LODOLO E., OLIVERO E., RABASSA J., RUSSI M.,<br />

TASSONE, A. (2004) – Geological field trip guide in the<br />

Tierra <strong>del</strong> Fuego. Geosur 2004, Argentina, 39 p.<br />

MENICHETTI M., LODOLO E., TASSONE A. (2008)- Structural<br />

geology of the Fuegian Andes and Magallanes fold-andthrust<br />

belt-Tierra <strong>del</strong> Fuego Island. Geologica Acta, 6,<br />

(1):19-42.<br />

OLIVERO E.B., MALUMIÁN D.R. (2008) - Mesozoic-Cenozoic<br />

stratigraphy of the Fuegian Andes, Argentina. Geologica<br />

Acta, 6, (1): 5-18.<br />

OLIVERO E.B., MARTINIONI D.R. (2001) - A review of the<br />

geology of Argentinian Fuegian Andes. Journal of South<br />

American Earth Sciences, 14: 175-188.<br />

RAPALINI A.E., CERREDO M.E., TASSONE A., LIPPAI H. (2005)<br />

- Estu<strong>di</strong>o de magnetofábrica y microestructuras a través<br />

de los Andes de Tierra <strong>del</strong> Fuego. In Congreso Geológico<br />

Argentino, 16. Actas en CD. 8 pp. La Plata.<br />

TARLING D.H., HROUDA F. (2003) - The Magnetic Anisotropy<br />

of Rocks. Chapman and Hall: 217 p. London.<br />

ZAFFARANA C.B., SOMOZA R., OLIVERO E.B. (2008) -<br />

Anisotropía de la susceptibilidad magnética en el<br />

paleógeno de la faja plegada Fueguina. In Congreso<br />

Geológico Argentino17, Actas, 168, Jujuy.<br />

83


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 84<br />

Faglie transtensive e mineralizzazioni a solfuri nell’area meri<strong>di</strong>onale<br />

<strong>del</strong> Monte Amiata: la struttura <strong>del</strong> Monte Civitella<br />

(Toscana meri<strong>di</strong>onale)<br />

LORENZO FABBRINI (*), ANDREA BROGI (**) & DOMENICO LIOTTA (**)<br />

Lo stu<strong>di</strong>o <strong>del</strong>la circolazione dei flui<strong>di</strong> idrotermali nella crosta<br />

superiore costituisce l’elemento fondamentale per le ricerche<br />

geotermiche. Tale tipologia <strong>di</strong> stu<strong>di</strong>o si avvale <strong>del</strong>l’integrazione<br />

<strong>di</strong> dati geochimici, geofisici, strutturali con mo<strong>del</strong>li <strong>di</strong><br />

simulazione numerica. Un contributo molto importante alla<br />

comprensione dei sistemi <strong>di</strong> circolazione nei campi geotermici<br />

attuali è dato anche dallo stu<strong>di</strong>o dei sistemi geotermici fossili,<br />

poiché essi offrono le migliori opportunità per analizzare<br />

<strong>di</strong>rettamente in affioramento le strutture, oggi esumate, che<br />

hanno funzionato da condotti per la circolazione idrotermale.<br />

Le relazioni tra le mineralizzazioni, la permeabilità, le<br />

caratteristiche chimico-fisiche dei flui<strong>di</strong> idrotermali permettono<br />

<strong>di</strong> ricostruire il paleosistema idrotermale, fornendo<br />

informazioni utili alla comprensione dei sistemi geotermici<br />

attuali.<br />

L’area <strong>del</strong> Monte Amiata rappresenta un’area chiave per lo<br />

stu<strong>di</strong>o dei sistemi geotermici sia fossili che attuali. Quest’area,<br />

infatti, è caratterizzata da un sistema geotermico attivo,<br />

sfruttato da <strong>di</strong>versi decenni per la produzione <strong>di</strong> energia<br />

elettrica e da numerose aree mineralizzate a solfuri <strong>di</strong> mercurio<br />

<strong>ed</strong> antimonio, principalmente legate a circolazione idrotermale<br />

attiva durante il Pleistocene e sfruttate dall’attività mineraria<br />

condotta nei secoli scorsi.<br />

Lo scopo <strong>di</strong> questo stu<strong>di</strong>o è quello <strong>di</strong> fornire dati relativi alle<br />

relazioni tra la mineralizzazione a cinabro <strong>ed</strong> antimonite<br />

presente nel massiccio <strong>del</strong> Monte Civitella, collocato tra le aree<br />

vulcaniche <strong>del</strong> Monte Amiata (Toscana meri<strong>di</strong>onale) e dei<br />

Monti Vulsini (Lazio settentrionale), <strong>ed</strong> i sistemi <strong>di</strong> faglie<br />

pleistoceniche, ad oggi poco stu<strong>di</strong>ate, che interessano<br />

pervasivamente tutto l’intero massiccio.<br />

La metodologia <strong>di</strong> stu<strong>di</strong>o si è basata sull’integrazione <strong>di</strong> dati<br />

minerari, <strong>di</strong> sondaggio e <strong>di</strong> campagna. I principali risultati<br />

hanno messo in evidenza che: a) le strutture deformative<br />

cretacico-terziarie sviluppatesi durante la tettogenesi<br />

<strong>del</strong>l’Appennino Settentrionale risultano <strong>di</strong>slocate da zone <strong>di</strong><br />

taglio orientate N30°-70°; b) le superfici <strong>di</strong> taglio sono<br />

caratterizzate da più in<strong>di</strong>catori cinematici sovrapposti ma<br />

nell’insieme riconducibili ad una tettonica transtensiva sinistra;<br />

_________________________<br />

(*)Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università degli Stu<strong>di</strong> <strong>di</strong> Siena, Via<br />

Laterina, 8 – 53100 Siena.<br />

(**)Dipartimento <strong>di</strong> Geologia e Geofisica, Università degli Stu<strong>di</strong> <strong>di</strong> Bari,<br />

Via Orabona, 4 – 70125 Bari.<br />

Lorenzo Fabbrini: fabbini15@unisi.it<br />

c) le zone <strong>di</strong> faglia risultano essere caratterizzate da cataclasiti<br />

mineralizzate ad in<strong>di</strong>care che le damage zones hanno costituito<br />

la via preferenziale per la circolazione idrotermale; d) nell’area<br />

si riconoscono più zone <strong>di</strong> taglio orientate N30°-70° fra loro<br />

<strong>di</strong>sposte en-echelon e che sono raccordate da faglie minori a<br />

componente <strong>di</strong> movimento verticale, orientate NNO-SSE <strong>ed</strong><br />

intensamente mineralizzate.<br />

Ne emerge un quadro strutturale confrontabile con quanto<br />

definito nell’area <strong>del</strong> Monte Amiata dove faglie trascorrenti e<br />

sistemi <strong>di</strong> pull-apart hanno guidato la circolazione dei flui<strong>di</strong><br />

idrotermali.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 85, 1f.<br />

RIASSUNTO<br />

Esumazione <strong>del</strong>le unità <strong>di</strong> alta pressione indotte dall’arretramento <strong>del</strong>la<br />

placca in subduzione<br />

In questa nota viene illustrato un mo<strong>del</strong>lo <strong>di</strong> esumazione <strong>del</strong>le<br />

unità continentali <strong>di</strong> alta pressione-bassa temperatura affioranti<br />

nel M<strong>ed</strong>iterraneo. Lo stu<strong>di</strong>o si basa sugli esempi <strong>del</strong>la Calabria<br />

e <strong>del</strong>l’Egeo, dove sono note le con<strong>di</strong>zioni paleogeografiche, le<br />

velocità <strong>di</strong> subduzione e l’età <strong>del</strong>le unità <strong>di</strong> alta pressione. Il<br />

mo<strong>del</strong>lo fisico proposto, testato con simulazioni <strong>di</strong> laboratorio<br />

e numeriche, si basa sul principio che l’arretramento <strong>del</strong>la<br />

placca in subduzione rappresenti il meccanismo necessario per<br />

creare lo spazio sufficiente e permettere la risalita <strong>del</strong>le unità<br />

prec<strong>ed</strong>entemente subdotte. Viene inoltre proposto che il<br />

meccanismo <strong>di</strong> arretramento sia innescato dalla <strong>del</strong>aminazione<br />

<strong>di</strong> blocchi continentali prec<strong>ed</strong>entemente subdotti.<br />

Key words: exhumation of HP rocks, subduction rollback,<br />

Calabria–Apennine, Aegean<br />

Rocks metamorphos<strong>ed</strong> under high-pressure (HP) and ultra<br />

high-pressure (UHP) con<strong>di</strong>tions in subduction zones come back<br />

to the surface relatively soon after their burial and at rates<br />

comparable to plate boundary velocities. In the M<strong>ed</strong>iterranean<br />

realm, their occurrence in several belts relat<strong>ed</strong> to a single<br />

subduction event shows that the burial–exhumation cycle is a<br />

recurrent transient process. Using the Calabria–Apennine and<br />

Aegean belts as examples, we show that the exhumation of HP<br />

rocks is associat<strong>ed</strong> in time and space with the subduction of<br />

small continental lithosphere blocks that triggers slab rollback,<br />

creating the necessary space for the exhumation of the buoyant<br />

continental crust that was deeply buri<strong>ed</strong> just before (Fig. 1).<br />

The buoyancy force of the subduct<strong>ed</strong> crust increases until this<br />

crust detaches from the downgoing slab. It then exhumes at a<br />

rate that depends <strong>di</strong>rectly on the velocity of trench retreat to<br />

become part of the overri<strong>di</strong>ng plate.<br />

Heat<strong>ed</strong> from below by the asthenosphere that flows into the<br />

_________________________<br />

Exhumation of high-pressure rocks driven by slab rollback.<br />

CLAUDIO FACCENNA (*), JEAN PIERRE BRUN (**) & FEDERICO ROSSETTI (*)<br />

(*)Dipartimento <strong>di</strong> Scienze Geologiche, Universita Roma Tre, Largo S.L.<br />

Murialdo 1, 00146 Rome, Italy<br />

(°)Géosciences Rennes, UMR 6118CNRS, Université Rennes1, Campus de<br />

Beaulieu, 35042 Rennes, France<br />

opening mantle w<strong>ed</strong>ge, the exhum<strong>ed</strong> crust weakens and<br />

undergoes core-complex-type extension, responsible for a<br />

second stage of exhumation at a lower rate. The full sequence<br />

of events that characterizes this mo<strong>del</strong> (crust–mantle<br />

<strong>del</strong>amination, slab rollback and trench retreat, HP rock<br />

exhumation, asthenosphere heating and core-complex<br />

formation) arises entirely from the initial con<strong>di</strong>tion impos<strong>ed</strong> by<br />

the subduction of a small continental block. No specific<br />

con<strong>di</strong>tion is requir<strong>ed</strong> regar<strong>di</strong>ng the rheology and erosion rate of<br />

HP rocks. The burial–exhumation cycle is transient and can<br />

recur every time a small continental block is subduct<strong>ed</strong>.<br />

advancing trench<br />

retreating trench<br />

a<br />

continental<br />

subduction<br />

b<br />

c<br />

trench position<br />

compressional front<br />

HP exhumation<br />

d<br />

core complex<br />

e<br />

f<br />

continental block<br />

total decoupling<br />

core<br />

complex<br />

oceanic melange<br />

HP metamorphism<br />

Suture<br />

REFERENCES<br />

backarc extension<br />

Fig. 1 – Mo<strong>del</strong> of exhumation driven by slab rollback: continental<br />

subduction stage (a to c), exhumation of high-pressure (HP) rocks (d) and<br />

exhumation of high-temperature (HT) rocks in core complex (e). Slab <strong>di</strong>p<br />

increases during subduction of the continental block (a to c), and then<br />

decreases during oceanic subduction (d to f).<br />

BRUN J.P. & FACCENNA C. (1008) –Exhumation of highpressure<br />

rocks driven by slab rollback. Earth Plan. Sci. Letters,<br />

doi:10.1016/j.epsl.2008.02.038.<br />

a


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 86-88, 2ff.<br />

Cicli deposizionali <strong>del</strong> travertino Lapis Tiburtinus durante il<br />

tardo Pleistocene (Tivoli, Italia Centrale): influenze climatiche e<br />

tettoniche<br />

C. FACCENNA (*) , L. DE FILIPPIS (*) , M. SOLIGO (*) , A. BILLI (*) , R. FUNICIELLO (*) , C. ROSSETTI (*) , P. TUCCIMEI (*)<br />

ABSTRACT<br />

Cycles of Lapis Tiburtinus deposition and erosion during Late Pleistocene<br />

time (Tivoli, Central Italy): possible influence of climate and faulting<br />

The depositional and erosional history of the Lapis Tiburtinus endogenic<br />

travertine locat<strong>ed</strong> 30 km to the east of Rome, Central Italy, near the Colli<br />

Albani quiescent volcano, is interpret<strong>ed</strong> through three-<strong>di</strong>mensional<br />

stratigraphy and uranium-series geochronology. Analyses of large exposures<br />

locat<strong>ed</strong> in active quarries and of cores obtain<strong>ed</strong> from 114 industrial wells<br />

reveal that the travertine deposit is about 20 km 2 wide and 60 m thick on<br />

average. The travertine thickness is over 85 m toward its western N-Selongat<strong>ed</strong><br />

side, where thermal springs and large sinkholes occur align<strong>ed</strong> over a<br />

seismically-active N-striking shallow fault. The travertine age was calculat<strong>ed</strong><br />

using the U/Th isochron method. Results constrain the onset and conclusion of<br />

travertine deposition at about 115 and 30 ka, respectively. The thre<strong>ed</strong>imensional<br />

study of the travertine shows that this deposit is characteriz<strong>ed</strong> by<br />

a succession of depositional benches grown in an aggradational fashion and<br />

separat<strong>ed</strong> by five main erosional surfaces, which are associat<strong>ed</strong> with paleosols,<br />

conglomerates, and karstic features. This evidence shows that the travertine<br />

evolution was mostly controll<strong>ed</strong> by water table fluctuations. A comparison<br />

with global and local paleoclimatic in<strong>di</strong>cators suggests that water table<br />

fluctuations were partly modulat<strong>ed</strong> by climate cycles. Other influencing factors<br />

may have been fault-relat<strong>ed</strong> deformation and volcanic activity.<br />

Key words: travertine, paleoclimate, faults, uranium-series<br />

method, three-<strong>di</strong>mensional methods.<br />

INTRODUZIONE<br />

Travertini e tufa sono rispettivamente il prodotto <strong>del</strong>la<br />

precipitazione <strong>del</strong> carbonato <strong>di</strong> calcio in ambiente continentale<br />

sia da flui<strong>di</strong> idrotermali che non (Pentecost, 2005). In<br />

particolari i travertini endogenici sono comunemente riferiti a<br />

depositi carbonatici connessi a risorgenze <strong>di</strong> acque termali <strong>ed</strong><br />

idrotermali (Crossey et al., 2006; Ford & P<strong>ed</strong>ley, 1996).<br />

Diversi parametri possono controllare la formazione dei<br />

travertini endogenici e dei tufa. Per esempio, è noto che le<br />

con<strong>di</strong>zioni climatiche influenzano considerevolmente la<br />

precipitazione dei tufa (Pentecost, 1995, 2005; Ford and<br />

P<strong>ed</strong>ley, 1996). Per contro, non è ben documentata l’influenza<br />

<strong>del</strong> clima sulla deposizione dei travertini endogenici (Rihs et<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Università degli Stu<strong>di</strong> Roma Tre,<br />

Largo S. L. Murialdo 1, Roma, 00146, Italia.<br />

E-mail: ldefilippis@uniroma3.it (Luigi De Filippis)<br />

al., 2000). La deposizione dei travertini endogenici spesso<br />

infatti avviene nell’intorno <strong>di</strong> sorgenti termali, la cui stessa<br />

ubicazione e ricarica è solitamente controllata da sistemi <strong>di</strong><br />

faglie attive; d’altra parte l’alta capacità mineralizzante dei<br />

flui<strong>di</strong> endogeni sigillerebbe “velocemente” tali percorsi <strong>di</strong><br />

risalita se la fagliazione non fosse attiva (Brogi and Capezzuoli,<br />

2008).<br />

Lo scopo <strong>di</strong> questo lavoro è <strong>di</strong> contribuire all’identificazione<br />

dei fattori che controllano i cicli deposizionali-erosivi <strong>del</strong><br />

travertino <strong>di</strong> Tivoli (Lapis Tiburtinus). Tale giacimento,<br />

oggetto <strong>di</strong> estrazione sin dai tempi dei Romani, situato circa 30<br />

km ad est <strong>di</strong> Roma (fig. 1), è caratterizzato (in cava) da una<br />

eccezionale vista tri<strong>di</strong>mensionale. Questi travertini si sono<br />

deposti all’interno <strong>di</strong> un bacino subsidente (Bacino <strong>del</strong>le Acque<br />

Albule, BAA) formatosi durante il tardo Pleistocene lungo un<br />

sistema <strong>di</strong> faglie trascorrente e transtensive a decorso meri<strong>di</strong>ano<br />

a nord <strong>del</strong> Complesso vulcanico dei Colli Albani (Faccenna et<br />

al., 1994; Gasparini et al., 2002; Minissale et al., 2002). Lo<br />

stu<strong>di</strong>o è stato effettuato m<strong>ed</strong>iante analisi strutturale,<br />

stratigrafica e geocronologica.<br />

RISULTATI<br />

Evidenze <strong>di</strong> tipo geocronologico e stratigrafiche <strong>di</strong>mostrano<br />

che il Lapis Tiburtinus si è evoluto in maniera ciclica attraverso<br />

l’alternanza <strong>di</strong> fasi deposizionali <strong>ed</strong> erosive durante il tardo<br />

Pleistocene, tra circa 115 e 30 ka. In particolare, la presenza<br />

alternata <strong>di</strong> banchi <strong>di</strong> deposizione e <strong>di</strong> superfici <strong>di</strong> erosione,<br />

associati a paleosuoli e a carsismo, <strong>di</strong>mostrano come<br />

l’evoluzione ciclica dei depositi travertinosi sia controllata<br />

dalla fluttuazione <strong>del</strong>la falda idrica (o tavola d’acqua) nel<br />

Bacino <strong>del</strong>le Acque Albule (BAA). L’erosione avveniva in<br />

con<strong>di</strong>zioni subaeree, durante fasi <strong>di</strong> abbassamento <strong>del</strong>la falda,<br />

mentre la deposizione avveniva durante le fasi <strong>di</strong> innalzamento<br />

<strong>del</strong>la falda, quando il deposito <strong>di</strong> travertino cresceva con<br />

geometria onlapping sulla sottostante superficie erosionale, con<br />

un generale progradazione verso meri<strong>di</strong>one (Faccenna et al.,<br />

2008). Le fluttuazioni <strong>del</strong>la tavola d’acqua verso il basso, in<br />

aree costiere, come è il caso <strong>del</strong> BAA, possono essere modulate<br />

da <strong>di</strong>versi fattori. La prima è che le con<strong>di</strong>zioni paleoclimatiche<br />

(ad esempio la temperatura m<strong>ed</strong>ia e l’umi<strong>di</strong>tà <strong>del</strong>l’aria) abbiano<br />

influenzato l’altezza <strong>del</strong>la tavola d’acqua nel BAA, attraverso<br />

la modulazione sia dei livelli <strong>del</strong>le acque marine sia <strong>di</strong> quelle<br />

continentali (fig. 2) (Noe-Nygaard and Heiberg, 2001;<br />

Prokopenko et al., 2005). I nostri risultati geocronologici


C. FACCENNA ET ALII<br />

Fig. 1 – (a) Carta geologica <strong>del</strong>l’area intorno a Roma (Italia Centrale). Le faglie sottostanti gli <strong>ed</strong>ifici vulcanici sono state interpretate attraverso dati in<strong>di</strong>retti e<br />

<strong>di</strong>retti, come l’allineamento <strong>del</strong>le emergenze dei flui<strong>di</strong> e i campi <strong>di</strong> fatturazione (De Rita et al., 1988, 1995). Il giacimento <strong>di</strong> Lapis Tiburtinus è situato circa 30<br />

km ad est <strong>di</strong> Roma. Si noti la posizione <strong>del</strong> Cratere <strong>di</strong> Castiglione, da cui provengono i pollini utilizzati per le relative curve (Tz<strong>ed</strong>akis et al., 2001). (b) Carta<br />

geologica <strong>del</strong>l’area <strong>di</strong> stu<strong>di</strong>o, comprendente il bacino <strong>del</strong>le Acque Albule, dove durante il tardo Pleistocene si è depositato il travertino Lapis Tiburtinus. La faglia<br />

sotto il giacimento <strong>di</strong> Lapis Tiburtinus è sismicamente attiva (come testimoniato dalla sequenza sismica <strong>del</strong> 2001 in cui si sono avuti terremoti compresi tra 0.5 e<br />

1.5 km <strong>di</strong> profon<strong>di</strong>tà; Gasparini et al., 2002).<br />

Fig. 2 – Mo<strong>del</strong>lo schematico <strong>del</strong>le relazioni tra stage climatici,<br />

deposizione <strong>del</strong> travertino e faglie attive (il <strong>di</strong>segno è ispirato e mo<strong>di</strong>ficato<br />

da Rihs et al., 2000).<br />

87<br />

mostrano, tuttavia, che i cicli deposizionali sono stati<br />

probabilmente influenzati anche dal sistema <strong>di</strong> fatturazione che,<br />

m<strong>ed</strong>iante cicli <strong>di</strong> self-sealing ha permesso la risorgenza in<br />

superficie <strong>del</strong> circuito idrotermale profondo.<br />

BIBLIOGRAFIA<br />

BROGI A. (2004) - Faults linkage, damage rocks and hydrothermal fluid<br />

circulation: Tectonic interpretation of the Rapolano Terme travertines<br />

(southern Tuscany, Italy) in the context of Northern Apennines Neogene-<br />

Quaternary extension. Eclogae Geol. Helv., 97, 307-320.<br />

CHAFETZ H.S. & FOLK R.L. (1984) - Tavertines: depositional morphology and<br />

the bacterially construct<strong>ed</strong> constituents. J. S<strong>ed</strong>iment. Petrol., 54, 289-316.<br />

CROSSEY L.J., FISCHER T.P., PATCHETT P.J., KARLSTROM K.E., HILTON D.R.,<br />

NEWELL D.L., HUNTOON P., REYNOLDS A.C. & DE LEEUW G.A.M. (2006) -<br />

Dissect<strong>ed</strong> hydrologic system at the Grand Canyon: interaction between<br />

deeply deriv<strong>ed</strong> fluids and plateau aquifer waters in modern springs and<br />

travertine. Geology, 34, 25-28.<br />

FACCENNA C., FUNICIELLO R., MONTONE P., PAROTTO M., VOLTAGGIO M.,<br />

(1994) - An example of late Pleistocene strike-slip tectonics: the Acque<br />

Albule basin (Tivoli, Latium). Memorie descrittive <strong>del</strong>la carta geologica<br />

d'Italia, vol.XLIX, 63-76.<br />

FACCENNA C., SOLIGO M., BILLI A., DE FILIPPIS L., FUNICIELLO R., ROSSETTI<br />

C. & TUCCIMEI P. (2008) - Late Pleistocene depositional cycles of the Lapis<br />

Tiburtinus travertine (Tivoli, Central Italy): possible influence of climate


88 CICLI DEPOSIZIONALI DEL TRAVERTINO LAPIS TIBURTINUS DURANTE IL TARDO PLEISTOCENE<br />

and fault activity. Global and Planetary Change, 63, 299-308<br />

(doi:10.1016/j.gloplacha.2008.06.006).<br />

FORD T.D. & PEDLEY M.H. (1996) - A review of tufa and travertine deposits<br />

of the world. Earth-Sci. Rev., 41, 117-175.<br />

GASPARINI C., DI MARO R., PAGLIUCA N., PIRRO M. & MARCHETTI A. (2002) -<br />

Recent seismicity of the “Acque Albule” travertine basin. Ann. Geophys.,<br />

45, 537-550.<br />

MINISSALE A., KERRICK D.M., MAGRO G., MURRELL M.T., PALADINI M., RIHS<br />

S., STURCHIO N.C., TASSI F. & VASELLI O. (2002) - Geochemistry of<br />

Quaternary travertines in the region north of Rome (Italy): structural,<br />

hydrologic, and paleoclimatic implications. Earth Planet. Sc. Lett., 203,<br />

709-728.<br />

NOE-NYGAARD N. & HEIBERG E.O. (2001) - Lake-level changes in the Late<br />

Weichselian Lake Tøvelde, Møn, Denmark: induc<strong>ed</strong> by changes in climate<br />

and base level. Paleogeogr. Paleoclimatol. Paleoecol., 174, 351-382.<br />

PENTECOST A. (1995) - The Quaternary travertine deposits of Europe and<br />

Asia minor. Quaternary Sci. Rev., 14, 1005-1028.<br />

PENTECOST A. (2005) - Travertine. Springer, Berlin.<br />

PROKOPENKO A.A., KUZMIN M.I., WILLIAMS D.F., GELETY V.F.,<br />

KALMYCHKOV G.V., GVOZDKOV A.N. & SOLOTCHIN P.A. (2005) - Basinwide<br />

s<strong>ed</strong>imentation changes and deglacial lake-level rise in the Hovsgol<br />

basin, NW Mongolia. Quaternary Int., 136, 59-69.<br />

RIHS S., CONDOMINES M. & POIDEVIN J.L. (2000) - Long term behaviour of<br />

continental hydrothermal system: U-series study of hydrothermal<br />

carbonates from the French Massif Central (Allier Valley). Geochim.<br />

Cosmochim. Ac., 64, 3189-3199.<br />

Si ringraziano E. Anzalone, A. Brogi, B. D'Argenio, V. Ferreri, L.<br />

Lombar<strong>di</strong>, M. Mattei, A. Minissale, and A. Taddeucci per le stimolanti<br />

<strong>di</strong>scussioni.<br />

Siamo riconoscenti inoltre a F. Lippiello, a C. Giovanrosa, a G. Squeo e a<br />

tutto il “Centro per la Valorizzazione <strong>del</strong> Travertino Romano” per<br />

l’ospitalità <strong>di</strong>mostrataci nel loro interessante ambiente <strong>di</strong> lavoro.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 89-92, 4ff.<br />

Time of hydrocarbon generation vs trap forming age in Mesozoic oil<br />

play in Po Plain<br />

RIASSUNTO<br />

Età <strong>di</strong> generazione <strong>di</strong> idrocarburi <strong>ed</strong> età <strong>di</strong> formazione <strong>del</strong>le trappole in<br />

play ad olio nella successione Mesozoica <strong>del</strong>la Pianura Padana<br />

La successione mesozoica <strong>del</strong>le Alpi Meri<strong>di</strong>onali ospita rocce madri che<br />

hanno generato gli idrocarburi accumulati in alcuni giacimenti <strong>del</strong> sottosuolo<br />

padano. La mo<strong>del</strong>lizzazione dei dati <strong>di</strong> maturità <strong>del</strong>la materia organica ha<br />

permesso la ricostruzione <strong>di</strong> una storia termica caratterizzata dalla presenza <strong>di</strong><br />

valori elevati <strong>del</strong> flusso <strong>di</strong> calore (85 to 105 mW/m 2 ) in concomitanza con le<br />

fasi estensionali mesozoiche.<br />

Questo regime termico ha notevoli implicazioni per la valutazione <strong>del</strong>le<br />

potenzialità minerarie <strong>del</strong> versante settentrionale <strong>del</strong>la Pianura Padana, ove le<br />

trappole che potrebbero ospitare gli idrocarburi generati da queste ricce madri<br />

mesozoiche si sono formate durante le fasi compressionali neoalpine<br />

(Oligocene-Miocene). L’analisi <strong>del</strong> rapporto tra età <strong>di</strong> generazione <strong>ed</strong><br />

espulsione <strong>ed</strong> età <strong>di</strong> strutturazione evidenzia che le successioni mesozoiche<br />

presenti nei rilievi estensionali ha generato idrocarburi durante il terziario e<br />

quaternario, in età successiva alla formazione <strong>del</strong>le trappole, mentre nei<br />

depocentri estensionali la generazione è iniziata durante il mesozoico, in età<br />

prec<strong>ed</strong>ente alla loro formazione.<br />

Key words: Po Plain; Mesozoic extension, thermal history, oil<br />

play<br />

INTRODUCTION<br />

Maturity data obtain<strong>ed</strong> from the analysis of organic matter are<br />

excellent in<strong>di</strong>cators of the thermal evolution of s<strong>ed</strong>imentary<br />

basins. The maturity parameters which are us<strong>ed</strong> are sensitive in<br />

<strong>di</strong>fferent ways to temperatures between 60 °C and 200 °C.<br />

They record heating events experienc<strong>ed</strong> by organic matter<br />

contain<strong>ed</strong> in the rocks, and can help to reconstruct the thermal<br />

history of s<strong>ed</strong>imentary successions Measur<strong>ed</strong> maturity data can<br />

be us<strong>ed</strong> to check the consistency of geological mo<strong>del</strong>s that may<br />

incorporate s<strong>ed</strong>imentary or tectonic burial history and thermal<br />

regime evolution. The aim of this work is to describe the<br />

thermo-chronological evolution of the Southern Alps (Northern<br />

Italy) during the Mesozoic extensional phases, through organic<br />

matter maturity analysis and mo<strong>del</strong>ling of some select<strong>ed</strong><br />

successions that were not overprint<strong>ed</strong> by the Alpine orogeny.<br />

Using the assess<strong>ed</strong> thermal regime evolution, implications for<br />

oil exploration in the Po Plain for<strong>ed</strong>eep are highlight<strong>ed</strong>.<br />

_______________________<br />

(*) Eni Exploration & Production Division, via Emilia 1 – 20097 San<br />

Donato Milanese, Italy. E-mail: roberto.fantoni@eni.it<br />

R. FANTONI (*) & P. SCOTTI (*)<br />

THE MESOZOIC EXTENSION IN THE SOUTHERN<br />

ALPS<br />

The structural pattern of the Southern Alps is characteris<strong>ed</strong> by<br />

E-W and WSW-ENE tren<strong>di</strong>ng compressional structures in the<br />

western and eastern sectors respectively. The Mesozoic<br />

extension, relat<strong>ed</strong> to the tectonic movements between Adria and<br />

Europe, result<strong>ed</strong> in the creation of a N-S half-graben (M. Nudo,<br />

M. Generoso, Iseo), bound<strong>ed</strong> by E and W <strong>di</strong>pping master<br />

normal faults. Tectonic activity start<strong>ed</strong> during the Norian. After<br />

de-activation during the Rhaetian, a new extensional phase took<br />

place during the Liassic. Extension then shift<strong>ed</strong> westward in the<br />

Ligurian-Piemont area, where oceanic crust form<strong>ed</strong> starting in<br />

the Late Jurassic. From this time until the Early Cretaceous, the<br />

Southern Alps underwent post-rift thermal subsidence<br />

(BERTOTTI et alii, 1993, and references therein). The same<br />

architecture is present in the Po Plain foreland (Fig. 1).<br />

ORGANIC MATTER MATURITY IN THE MESOZOIC<br />

SUCCESSION OF THE SOUTHERN ALPS<br />

In order to reconstruct the thermal history, organic matter<br />

(OM) maturity values were obtain<strong>ed</strong> from samples collect<strong>ed</strong><br />

from Permian to Cretaceous s<strong>ed</strong>imentary units cropping out<br />

along the whole chain. Data affect<strong>ed</strong> by anomalous thermal<br />

perturbations were previously exclud<strong>ed</strong>, e.g., significant<br />

tectonic thickening due to overthrusts whose hanging wall<br />

ramps were subsequently erod<strong>ed</strong>; deposition of thick for<strong>ed</strong>eep<br />

clastics subsequently erod<strong>ed</strong> during the recent alpine cycles;<br />

thermal perturbation due to nearby magmatic intrusions.<br />

Almost all OM maturity data are from intervals with fairgood<br />

TOC. In some localities, the presence of several “good<br />

TOC” levels provides a vertical set of data along a thick<br />

s<strong>ed</strong>imentary succession, guaranteeing better definition of the<br />

maturity gra<strong>di</strong>ent. Vitrinite reflectance (Ro%) values, from the<br />

western-central sector of the Southern Alps (from Biella area to<br />

Trento Plateau) are describ<strong>ed</strong> in FANTONI & SCOTTI (2003),<br />

CALABRÒ et alii (2003), BERSEZIO et alii. (2005), SCOTTI<br />

(2005) and SCOTTI & FANTONI (2009).<br />

The lowest OM maturity values occur on the structural highs<br />

having thin overlying s<strong>ed</strong>imentation. On the Gozzano and Arzo<br />

highs, for example, Tmax from Rock-Eval pyrolysis for Middle<br />

Triassic units is < 425°C (immature kerogen) suggesting<br />

maximum temperatures lower than 60 to 70°C (using a heating<br />

rate of 3°C/Ma).


90 R. FANTONI & P. SCOTTI<br />

Fig. 1 – Syn-extensional Mesozoic successions of the Southern Alps (AA’) and the Po Plain for<strong>ed</strong>eep/foreland (BB’).<br />

Also samples from the Trento Plateau show low OM maturity<br />

(~ 0.5% Ro and 435°C Tmax) for Upper Triassic units. The<br />

highest maturity values correspond to the depocentres of<br />

synrift successions, such as the Upper Triassic units of the M.<br />

Tremezzo/M.Galbiga (M. Generoso Basin) and Iseo Lake<br />

successions (Iseo Basin). Very high OM maturity was reach<strong>ed</strong><br />

by Norian units (Ro ~3.5% at the base of the Calcare <strong>di</strong><br />

Zorzino Formation) in the Iseo depocentre.<br />

THERMAL MODELLING<br />

Vitrinite reflectance measur<strong>ed</strong> data were us<strong>ed</strong> for thermal<br />

mo<strong>del</strong> calibration using a proprietary Eni S.p.A. on<strong>ed</strong>imensional<br />

mathematical mo<strong>del</strong>, able to simulate the degree<br />

of maturity reach<strong>ed</strong> by the kerogen. The mo<strong>del</strong> input data are:<br />

a) thickness, b) lithology (compaction curve and thermal<br />

conductivity of the rock matrix), c) ages of s<strong>ed</strong>imentation and<br />

palaeobathymetry for each stratigraphic event (all of these data<br />

define the burial history), d) heat flow values through time, and<br />

e) palaeolatitude, which is us<strong>ed</strong> to convert palaeosurface<br />

temperature to sea bottom temperature accor<strong>di</strong>ng to<br />

palaeobathymetry. Finally, the input for the kinetic mo<strong>del</strong> has<br />

to be defin<strong>ed</strong> (e.g., EasyRo method of Sweeney and Burnham,<br />

1990).<br />

The value of heat flow is the most important unknown<br />

variable, wich is is relat<strong>ed</strong> to the tectonic setting/geodynamic<br />

evolution of the area. NOVELLI et alii (1987) hypothesis<strong>ed</strong> high<br />

heat flow value (~75 mW/m 2 ) in the northwestern Po Basin<br />

during the Lower Lias, accor<strong>di</strong>ng to the geodynamic evolution<br />

of the Southern Alps. GREBER et alii (1997) and BERTOTTI et<br />

alii (1999) hypothesis<strong>ed</strong> a higher heat flow for the Lombar<strong>di</strong>an<br />

basin, but pr<strong>ed</strong>ict<strong>ed</strong> its peak value (~90 mW/m2) at Anisian-<br />

La<strong>di</strong>nian and Carnian-Norian ages respectively. BERSEZIO &<br />

BELLANTANI (1997) interpret<strong>ed</strong>, for the same basin, the thermal<br />

perturbation as Liassic (and pre-Toarcian).<br />

The Eni database was recently enrich<strong>ed</strong> with a large amount<br />

of organic matter maturity data for Mesozoic s<strong>ed</strong>imentary<br />

successions throughout the Southern Alps region. Therefore,<br />

constraints for the reconstruction of the thermal history were<br />

available. Recent thermal mo<strong>del</strong>ling in<strong>di</strong>cates that the last<br />

probable heat flow peak (although other significant earlier<br />

peaks cannot be exclud<strong>ed</strong>) was later than the Lias, when the<br />

examin<strong>ed</strong> formations (comprising the Upper Triassic and<br />

Liassic units) were subject to deep burial. Also the maximum<br />

heat flow values were better quantifi<strong>ed</strong> (SCOTTI, 2005 and<br />

references therein).<br />

Best fit solutions between calculat<strong>ed</strong> and measur<strong>ed</strong> OM<br />

maturity form some of the burial history mo<strong>del</strong>s in Fig. 1, and<br />

other simulation points in the eastern Southern Alps were<br />

obtain<strong>ed</strong> by assuming increas<strong>ed</strong> heat flow throughout the rifting<br />

stage, with a maximum reach<strong>ed</strong> during Bajocian-Bathonian<br />

time. Resulting heat flow values are quite high and relatively<br />

uniform throughout the Southern Alps (85 to 105 mW/m2)<br />

suggesting that this kind of thermal regime was widespread<br />

(FANTONI & SCOTTI, 2003). Fluctuations in peak heat flow<br />

could be due to <strong>di</strong>fferential crustal thinning, but they could also<br />

be relat<strong>ed</strong> to other causes (e.g., ra<strong>di</strong>ogenic heat within the<br />

crust, hydrothermal fluid circulation, or underplating<br />

phenomena). Heat flow progressively decreas<strong>ed</strong> after the<br />

Bajocian-Bathonian to values similar to the present day by the<br />

end of the Cretaceous. This reconstruction is consistent with the<br />

known tectonic evolution of the Mesozoic extension in the<br />

Southern Alps, characteris<strong>ed</strong> by a rifting stage up to the Lias<br />

follow<strong>ed</strong> by a drifting stage and thermal subsidence from the<br />

Middle Jurassic. As an example, the Iseo Lake case history is<br />

shown in fig. 2.


TIME OF HYDROCARBON GENERATION VS TIME OF TRAP FORMATION IN MESOZOIC OIL PLAY IN PO PLAIN<br />

Fig. 2 - Mo<strong>del</strong>ling (Scotti, 2005; Scotti and Fantoni, 2009) of Iseo Lake (western side outcrops): a) - burial and thermal regime (heat flow)<br />

evolution during the extensional Mesozoic phase and later; comparison between constant (B) and variable (A) thermal regime evolution (dash<strong>ed</strong><br />

line for to Po Plain For<strong>ed</strong>eep simulation points); b) - thermal and organic matter maturity history; - c) - measur<strong>ed</strong> and calculat<strong>ed</strong> OM maturity<br />

(R o% and Easy R o) vs. depth.<br />

IMPLICATIONS FOR HYDROCARBON<br />

EXPLORATION IN THE PO PLAIN FORELAND<br />

<br />

<br />

<br />

<br />

*<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

* * * * * * * * * * *<br />

<br />

<br />

<br />

<br />

<br />

*<br />

<br />

<br />

<br />

* * * * * * * *<br />

* * * * * * * * <br />

<br />

* <br />

<br />

* <br />

<br />

* * * <br />

* <br />

<br />

* * * <br />

<br />

*<br />

<br />

*<br />

<br />

<br />

<br />

<br />

<br />

<br />

Fig. 3 – Hydrocarbon occurences in <strong>di</strong>fferent stratigraphic settings<br />

<br />

<br />

91<br />

The Mesozoic carbonate units of the for<strong>ed</strong>eep/foreland area<br />

and of the external thrust belts <strong>di</strong>splay the largest oil and<br />

thermogenic gas accumulations of the Italian region.<br />

They include several <strong>di</strong>fferent plays which are essentially<br />

relat<strong>ed</strong> to the three main stages of the Tethyan crustal stretching<br />

(Middle Triassic, Late Triassic/Early Jurassic and Early<br />

Cretaceous) (fig. 3). Traps for hydrocarbons are also highly<br />

vari<strong>ed</strong>, as they were shap<strong>ed</strong> by the interference between the<br />

Mesozoic extensional phases and the subsequent Tertiary<br />

compressional events (BERTELLO et alii, 2008).<br />

The regional <strong>di</strong>stribution of the organic matter maturity in<br />

the Southern Alps seems to be mainly controll<strong>ed</strong> by <strong>di</strong>fferential<br />

burial during the Norian-Liassic extensional phase with an<br />

associat<strong>ed</strong> high heat flow.<br />

This kind of thermal regime can have strong implications for<br />

hydrocarbon exploration. The maturity profiles of some basinal<br />

successions (for example Iseo Lake), and consequent<br />

geochemical mo<strong>del</strong>ling suggest that the Upper Triassic source<br />

rocks may already have attain<strong>ed</strong> high maturity levels during the<br />

Mesozoic, and this is even more likely for the deeper Middle<br />

Triassic source rocks.<br />

Where traps have been form<strong>ed</strong> by Tertiary Alpine<br />

compression (FANTONI et alii, 2004), accurate mo<strong>del</strong>ling can<br />

help to better define hydrocarbon charge risk (SCOTTI &<br />

FANTONI, 2009).<br />

In the extensional high (areas with low Rhaetian–Liassic<br />

burial) the source rocks retain<strong>ed</strong> their original petroleum<br />

potential prior to strong Neogene–Quaternary burial (well C in<br />

fig. 4). High recent heating result<strong>ed</strong> in generation/expulsion of<br />

hydrocarbons after trap formation. In the extensional<br />

depocentre the hydrocarbon generation start<strong>ed</strong> since Mesozoic,<br />

before trap formation, and the generat<strong>ed</strong> hydrocarbons were<br />

partially (well B) or totally (well A) lost.


92 R. FANTONI & P. SCOTTI<br />

Fig. 4 – Burial history, thermal history and timing of hydrocarbons generation (Transformation Ratio) for the main Upper Triassic source<br />

rocks in <strong>di</strong>fferent tectonic settings of the Po Plain foreland. Type IIS (Gruppo Aralalta – GAr, and Calcare <strong>di</strong> Zorzino - CZo) and Type III<br />

kerogen (Argillite <strong>di</strong> Riva <strong>di</strong> Solto – ARS, and Calcare <strong>di</strong> Zu - CZu) kinetic parameters were us<strong>ed</strong> (Eni S.p.A. proprietary database).<br />

REFERENCES<br />

BERSEZIO R. & BELLANTANI G. (1997) - The thermal maturity<br />

of the Southalpine Mesozoic succession north of Bergamo<br />

by vitrinite reflectance data. Atti Tic. Sc. Terra, 5, 101-114.<br />

BERSEZIO R., SCOTTI P. & TONETTI M. (2005) - Maturity of<br />

organic matter in the Liassic succession of the Mt.<br />

Generoso rift<strong>ed</strong> Basin (Southern Alps, Lombardy). Atti Tic.<br />

Sci. Terra, 10, 71-76.<br />

BERTELLO F., FANTONI R. & FRANCIOSI R. (2008) -<br />

Hydrocarbon occurences in Mesozoic carbonate units in<br />

Italy. Ren<strong>di</strong>conti online Soc. Geol. It., 2, pp. 37-39.<br />

BERTOTTI G., PICOTTI V., BERNOULLI D. & CASTELLARIN A.<br />

(1993) - From rifting to drifting: tectonic evolution of the<br />

Southalpine upper crust from the Triassic to the Early<br />

Cretaceous. S<strong>ed</strong>imentary Geology, 86, 1/2, 53 - 76.<br />

BERTOTTI G., SEWARD D., WIJBRANS J., TER VOORDE M. &<br />

HURFORD A.J. (1999) - Crustal thermal regime prior to,<br />

during, and after rifting: a geochronological and mo<strong>del</strong>ing<br />

study of the Mesozoic South Alpine rift<strong>ed</strong> margin.<br />

TECTONICS, 18, 2, 185-200.<br />

CALABRÒ R., CERIANI A., DI GIULIO A., FANTONI R. & SCOTTI<br />

P. (2003) - Reconstruction of thermal history of the syn-rift<br />

sequence between the Iseo Basin and Trento Plateau:<br />

results from the integrat<strong>ed</strong> study of organic matter and fluid<br />

inclusions. Atti Tic.Sc. Terra, 9, 88 – 91.<br />

FANTONI R., BERSEZIO R. & FORCELLA F. (2004) - Alpine<br />

structure and deformation chronology at the Southern Alps –<br />

Po Plain border in Lombardy. Boll. Soc. Geol. It., 123, 463-<br />

476.<br />

FANTONI R. & SCOTTI P. (2003) - Thermal record of the<br />

Mesozoic extensional tectonics in the Southern Alps. Atti<br />

Tic. Sci. Terra, 9, 96 – 101.<br />

GREBER E., LEU W., BERNOULLI D., SCHUMACHER M. & WYSS<br />

R. (1997) - Hydrocarbon provinces in the Swiss Southern<br />

Alps – a gas geochemistry and basin mo<strong>del</strong>ling study.<br />

Marine and Petroleum Geology, 14, 1, 3-25.<br />

NOVELLI L., CHIARAMONTE M.A., MATTAVELLI L., PIZZI G.,<br />

SARTORI L. & SCOTTI P. (1987) - Oil habitat in the<br />

northwestern Po basin. In: B. Doligez (Eds.) Migration of<br />

Hydrocarbons in S<strong>ed</strong>imentary Basins, E<strong>di</strong>tions Technip,<br />

Paris, 27-57.<br />

SCOTTI P. (2005) - Thermal constraints suggest<strong>ed</strong> by the study<br />

of the organic matter and thermal mo<strong>del</strong>ling strategies – A<br />

case history from Southern Alps. Atti Tic. Sci. Terra, 10,<br />

21-35.<br />

SCOTTI P. & FANTONI (2009) - Evaluation of the thermal<br />

regime in the Southern Alps during Mesozoic extension:<br />

implication for hydrocarbon exploration in the Po Plain<br />

for<strong>ed</strong>eep. In: N. Harris and K.E. Peters (Eds.) Thermal<br />

History Analysis of S<strong>ed</strong>imentary Basins: Methods and<br />

Applications, SEPM special publication (in press.)


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 93-94, 3ff.<br />

Mo<strong>del</strong>li <strong>di</strong> accrezione <strong>del</strong> margine cileno centro-meri<strong>di</strong>onale.<br />

FANUCCI FRANCESCO (*), VARGAS CORDERO IVAN (*), LORETO M. FILOMENA (°) & TINIVELLA UMBERTA (°)<br />

ABSTRACT<br />

Some <strong>di</strong>fferent structural mo<strong>del</strong>s of the trench and downslope of the<br />

central-southern Chile continental margin<br />

The continental margin of central-southern Chile presents some<br />

morphostructural features not common among the active margins. The trench,<br />

with few exceptions, is fill<strong>ed</strong> by an important s<strong>ed</strong>imentary prism. The presence<br />

and the characters of this prism strongly con<strong>di</strong>tion the accretion process in the<br />

downslope. They introduces here some examples of active accretion and the<br />

cases are <strong>di</strong>scuss<strong>ed</strong> in which this process seems to be inactive.<br />

Key words: Continental margin, Chile trench, downslope,<br />

accretion<br />

INTRODUZIONE<br />

Il margine continentale <strong>del</strong> Cile centro-meri<strong>di</strong>onale presenta<br />

una serie <strong>di</strong> caratteri morfostrutturali peculiari o, per lo meno,<br />

non comuni tra i margini attivi. La situazione può essere<br />

sintetizzata come segue.<br />

La fossa è ampia, dal fondo pianeggiante a causa <strong>del</strong>le colmate<br />

s<strong>ed</strong>imentarie che si fanno sempre più ingenti da N a S,<br />

<strong>di</strong>minuendone anche la profon<strong>di</strong>tà massima, sino a farla<br />

praticamente scomparire come unità morfologica. Essa è<br />

interessata da un canale longitu<strong>di</strong>nale pressoché continuo anche<br />

se generato da processi <strong>di</strong>versi zona per zona. Il canale non è<br />

mai molto vicino alla scarpata, ma se ne allontana<br />

sensibilmente nelle aree occupate dalle conoi<strong>di</strong> terrigene allo<br />

sbocco dei principali canyon.<br />

La scarpata inferiore è ripida e presenta a tratti morfostrutture<br />

generate da un recente processo d’accrezione, tutt’ora in atto.<br />

Altre zone sono praticamente prive <strong>di</strong> morfostrutture riferibili a<br />

un tale processo e comunque non vi è, neppure laddove<br />

l’accrezione attuale è palese, evidenza <strong>di</strong> continuità tra il<br />

processo detto e le fasi <strong>di</strong> accrezione prec<strong>ed</strong>enti.<br />

La scarpata superiore ha morfologie complesse e variate con<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, ambientali e Marine-Università <strong>di</strong><br />

Trieste<br />

(°) Istituto <strong>di</strong> Oceanografia e Geofisica Sperimentale – Borgo Grotta<br />

Gigante – Trieste<br />

bacini s<strong>ed</strong>imentari minori e si collega <strong>di</strong>rettamente alla zona <strong>di</strong><br />

piattaforma , senza l’interposizione <strong>del</strong> tipico bacino <strong>di</strong><br />

avant’arco, presente solo nel settore più meri<strong>di</strong>onale stu<strong>di</strong>ato,<br />

in prossimità <strong>del</strong> punto triplo che collega placca sudamericana,<br />

antartica e <strong>di</strong> Nazca.<br />

Qualche osservazione meritano anche le morfologie dei fondali<br />

oceanici in prossimità <strong>del</strong>la fossa, in quanto con<strong>di</strong>zionanti gli<br />

effetti <strong>del</strong> processo <strong>di</strong> subduzione. Si alternano aree molto<br />

movimentate da seamounts e fratture ad aree con scarsi<br />

<strong>di</strong>slivelli, ulteriormente attenuati da coperture pelagiche <strong>di</strong> una<br />

certa potenza. In questo secondo caso il basamento oceanico,<br />

nella zona <strong>di</strong> flessura che prec<strong>ed</strong>e la subduzione vera e propria,<br />

reagisce agli sforzi con una serie <strong>di</strong> faglie <strong>di</strong>rette, mentre nel<br />

caso prec<strong>ed</strong>ente si hanno risposte molto varie e anche vere e<br />

proprie scaglie tettoniche <strong>di</strong> basamento oceanico che si<br />

accavallano su altre parti <strong>del</strong>lo stesso, con vergenza W.<br />

ALCUNE SEZIONI SISMICHE<br />

La sezione SO 161-09 è tracciata perpen<strong>di</strong>colarmente al<br />

margine <strong>di</strong> fronte al promontorio <strong>di</strong> Agua Dulce e comprende<br />

una zona <strong>di</strong> fondale oceanico a rilievi articolati, ma <strong>di</strong> modesto<br />

<strong>di</strong>slivello. Sono assenti coperture pelagiche e il materiale<br />

terrigeno nella fossa è estremamente ridotto, anche a causa <strong>del</strong><br />

fatto che gli apporti terrigeni vengono raccolti in bacini <strong>di</strong><br />

scarpata.<br />

Fig. 1- <strong>Sezione</strong> crostale in un tratto <strong>di</strong> fossa privo <strong>di</strong> s<strong>ed</strong>imenti<br />

Il comportamento tettonico <strong>del</strong> basamento oceanico, sollecitato<br />

dalla subduzione mostra, al limite W <strong>del</strong>la linea, la tendenza a<br />

formare un notevole bulge periferico. La flessura da luogo a<br />

strutture sia <strong>di</strong>sgiuntive che compressive, rigioco <strong>di</strong> strutture<br />

già presenti nella crosta oceanica, mentre nella fossa si<br />

in<strong>di</strong>viduano vere e proprie scaglie <strong>di</strong> basamento. Sono queste<br />

ultime che danno luogo all’accrezione frontale secondo una


94 F. FANUCCI ET ALII<br />

geometria “classica” <strong>di</strong> sottoscorrimento e giustapposizione. Il<br />

prisma, accresciuto in più fasi, sembra dare origine ad un<br />

bacino <strong>di</strong> scarpata. Altri dati geofisici in<strong>di</strong>cano che<br />

quest’ultimo é piuttosto dovuto ad un sovrascorrimento <strong>del</strong><br />

basamento metamorfico paleozoico sopra il prisma stesso.<br />

La RC 2901-728 tracciata molto più a S , in corrispondenza<br />

<strong>del</strong>la piattaforma Itata, mostra un basamento oceanico a<br />

modesta movimentazione, che si fa via via più marcata verso la<br />

fossa. Quest’ultima è completamente colmata da un complesso<br />

s<strong>ed</strong>imentario in tre livelli principali:<br />

- livelli pelagici che si fanno più potenti verso l’oceano;<br />

- su questi si appoggiano in toplap i livelli terrigeni basali che<br />

accompagnano il basamento oceanico in subduzione;<br />

- i livelli torbi<strong>di</strong>tici e conturitici più recenti, potenti 1 sec.<br />

Colmano completamente la fossa e vanno a costituire, al pi<strong>ed</strong>e<br />

<strong>del</strong>la scarpata una grossa anticlinale <strong>di</strong> rampa <strong>di</strong> un thrust, che<br />

rappresenta il primo sta<strong>di</strong>o <strong>di</strong> un’accrezione in atto, ovvero<br />

l’embrione <strong>di</strong> un prisma che si appoggia e in parte sotto scorre<br />

ad un prisma prec<strong>ed</strong>ente. La superficie <strong>di</strong> scollamento <strong>del</strong> thrust<br />

è ubicata alla base <strong>del</strong> prisma s<strong>ed</strong>imentario torbi<strong>di</strong>tico.<br />

Analoghe caratteristiche, ancor più accentuate, presenta la<br />

sezione SO161-40, tracciata a S <strong>del</strong>l’Isola <strong>di</strong> Chiloé. Qui la<br />

superficie <strong>di</strong> scollamento sta alla base <strong>di</strong> tutta sequenza<br />

terrigena, molto potente.<br />

Fig. 2- Profilo crostale che mostra ampie deformazioni al pi<strong>ed</strong>e <strong>del</strong>la<br />

scarpata<br />

Molto più frequenti sono i tratti <strong>di</strong> margine in cui non appare<br />

evidente un’accrezione frontale in atto. In qualche caso vi è il<br />

legittimo sospetto che il basamento continentale arrivi sino alla<br />

fossa obbligando il prisma s<strong>ed</strong>imentario a sottoscorrere senza<br />

deformarsi (underplating), ma in molte altre situazioni è<br />

evidente che una piccola parte <strong>del</strong> prisma stesso rimane a far<br />

parte <strong>del</strong> margine. Un esempio <strong>di</strong> cosa può avvenire ce lo<br />

fornisce la sezione SO 161-44 che mostra piccole unità con<br />

superfici <strong>di</strong> scollamento subsuperficiali che vanno a costituire,<br />

grazie ad un processo <strong>di</strong> underthrusting, un prisma<br />

d’accrezione che simula una scarpata ripida <strong>ed</strong> omogenea,<br />

quasi fosse strutturata da faglie <strong>di</strong>rette.<br />

CONCLUSIONI<br />

In sostanza tre <strong>di</strong>versi tipi <strong>di</strong> processi <strong>di</strong> accrezione sembrano<br />

attualmente attivi ai pi<strong>ed</strong>i <strong>del</strong>la scarpata <strong>del</strong> margine attivo<br />

cileno a N <strong>del</strong> punto triplo. Il primo prende origine dal<br />

“campionamento”<strong>di</strong> crosta oceanica in scaglie che vanno a<br />

costituire un prisma a geometria “classica” formato in più fasi.<br />

Nelle parti in cui è presente un prisma s<strong>ed</strong>imentario, via via<br />

più potente da N verso S, la presenza <strong>di</strong> livelli <strong>di</strong> scollamento al<br />

suo interno, più o meno profon<strong>di</strong> determina l’attivarsi <strong>di</strong> due<br />

<strong>di</strong>versi processi:<br />

- la formazione <strong>di</strong> gran<strong>di</strong> Thrust le cui anticlinali <strong>di</strong><br />

rampa costituiscono salienti morfologici imponenti e<br />

caratterizzanti il downslope;<br />

- la formazione <strong>di</strong> unità sotto scorrenti (underthrusting)<br />

relativamente piccole che forniscono alla scarpata<br />

inferiore un carattere morfologico <strong>di</strong> continuità e<br />

ripi<strong>di</strong>tà estrema.<br />

Esistono, beninteso situazioni interm<strong>ed</strong>ie tra queste ultime, ma<br />

non sono frequenti. L’inclinazione <strong>del</strong> basamento oceanico non<br />

sembra carattere determinante il processo <strong>di</strong> accrezione, anzi, i<br />

dati esaminati mostrano una sostanziale in<strong>di</strong>pendenza <strong>di</strong> tale<br />

fattore dalla “anzianità” <strong>del</strong>la litosfera oceanica. Solo in<br />

prossimità <strong>del</strong> punto triplo si ha una marcata riduzione <strong>del</strong>la<br />

pendenza a parità <strong>di</strong> altri fattori.<br />

Fig, 3 – <strong>Sezione</strong> crostale in prossimità <strong>del</strong> Golfo <strong>di</strong> Arauco<br />

REFERENCES<br />

BANGS N. L., CANDE S.C. (1997) – Episo<strong>di</strong>c development of a<br />

convergen tmargin inferr<strong>ed</strong> from structures and processes<br />

along the southern Chile margin. Tectonics, Vol. 16,<br />

3,489-503 .<br />

FOLGUERA A., RAMOS V., MELNICK D. (2003) – Instability of<br />

southern Andean strain during the last 25 Ma. 219-222<br />

MELNICK D. (2007) - Neogene seismotectonics of the southcentral<br />

Chile Universitat Postadam IGMNF, Scientific<br />

Technical Report STR 07/01, 108 pp.<br />

RAMOS V.A. (1999) – Plate tectonic setting of the Andean<br />

Cor<strong>di</strong>llera Episodes, Vol. 22, 3.<br />

Si ringrazia Juan Diaz Naveas <strong>del</strong>l’Università Cattolica <strong>di</strong> Valparaiso per<br />

la gentile concessione <strong>di</strong> alcuni dati .


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 95-96, 2 ff.<br />

Paleozoic strike-slip tectonics in northern Victoria Land,<br />

(Antarctica) and the Borchgrevink event: is there a link?<br />

LAURA FEDERICO (*), LAURA CRISPINI (*) & GIOVANNI CAPPONI (*)<br />

ABSTRACT<br />

Tettonica trascorrente paleozoica in northern Victoria Land (Antartide) e<br />

l'evento Borchgrevink: esiste una relazione?<br />

Il presente lavoro descrive la tettonica paleozoica per un settore <strong>del</strong>le<br />

Transantarctic Mountains nella Northern Victoria Land (Antartide).<br />

L'evoluzione strutturale e l'architettura <strong>di</strong> questo settore <strong>di</strong> catena è stata<br />

ricostruita su una base dati derivata dall'attività <strong>di</strong> terreno effettuata durante 5<br />

sp<strong>ed</strong>izioni in Antartide. I dati relativi alle superfici <strong>di</strong> faglia, alle lineazioni e<br />

agli in<strong>di</strong>catori cinematici, attribuibili a deformazioni pre-cenozoiche, sono<br />

stati selezionati <strong>ed</strong> elaborati per definire la cinematica regionale e i campi <strong>di</strong><br />

paleostress: i risultati in<strong>di</strong>cano la prevalenza <strong>di</strong> un regime transpressivo. Le<br />

faglie <strong>di</strong> questa generazione sono accompagnate da "damage zone"<br />

caratterizzate da alterazione idrotermale a epidoto e clorite, da network <strong>di</strong> vene<br />

a quarzo e carbonati e localmente sono associate a corpi <strong>di</strong> vulcaniti<br />

ipoabissali in parte correlabili alle Gallipoli Volcanics (Devoniano-<br />

Carbonifero). Datazioni 39 Ar- 40 Ar su miche bianche, eseguite in una zona <strong>di</strong><br />

faglia, hanno fornito età <strong>di</strong> 318,0 ± 4,6 and 310,5 ± 6,2 Ma e forniscono<br />

un'evidenza ulteriore per attribuire le strutture ad un evento tettonico<br />

Paleozoico. Nonostante queste età siano considerevolmente più giovani,<br />

rimane aperto un interrogativo sulle possibili relazioni tra questa tettonica<br />

transpressiva e l'ipotetico evento Borchgrevink (circa 360 Ma).<br />

Key words: Antarctica, northern Victoria Land, paleozoic<br />

tectonics, strike-slip faulting.<br />

Northern Victoria Land is the Pacific <strong>ed</strong>ge of the<br />

Transantarctic Mountains (Fig. 1); its structural architecture<br />

was chiefly produc<strong>ed</strong> by the Ross Orogeny, starting from the<br />

Neoproterozoic to early Paleozoic, and follow<strong>ed</strong> by a<br />

widespread magmatic pulse during the Devonian -<br />

Carboniferous (Admiralty Intrusives and Gallipoli Volcanics).<br />

This magmatic event is possibly associat<strong>ed</strong> to the still elusive<br />

Borchgrevink Orogeny (GRINDLEY & WARREN, 1964; CAPPONI<br />

et alii, 2002). Finally, Meso-Cenozoic tectonics, link<strong>ed</strong> to the<br />

fragmentation of Gondwana and to the opening of the West<br />

Antarctic Rift System, is responsible for the high-elevation of<br />

the Transantarctic Mountains and the reactivation of the<br />

_________________________<br />

(*) Dip.Te.Ris - Università <strong>di</strong> Genova<br />

Corso Europa 26, 16132 Genova, Italy<br />

correspon<strong>di</strong>ng author: L. F<strong>ed</strong>erico - f<strong>ed</strong>erico@<strong>di</strong>pteris.unige.it<br />

inherit<strong>ed</strong> Paleozoic <strong>di</strong>scontinuities (e.g. SALVINI et alii, 1997).<br />

Northern Victoria Land geology is classically describ<strong>ed</strong> by<br />

means of the accretion of three terranes during the Ross<br />

Orogeny (Fig. 2): the inboard Wilson (WT), the interm<strong>ed</strong>iate<br />

Bowers (BT) and the outboard Robertson Bay Terrane (RBT).<br />

WT and BT are in contact by a first-order tectonic surface, i.e.<br />

the Lanterman Fault (CAPPONI et alii, 1999), whereas the<br />

boundary between BT and RBT is characteriz<strong>ed</strong> by the<br />

occurrence of the high-strain belt of the Millen Schist (Capponi<br />

et al., 2003). The Millen Schist are compos<strong>ed</strong> of two elements<br />

separat<strong>ed</strong> by a main thrust fault (the Crosscut-Aorangi Thrust,<br />

CRISPINI et alii, 2007), that appears to be locally truncat<strong>ed</strong> by<br />

the Leap Year Fault.<br />

The database of this work was collect<strong>ed</strong> in the study area<br />

(Fig. 2) by the senior authors, during 5 Antarctic exp<strong>ed</strong>itions<br />

and consists of several hundr<strong>ed</strong>s of data of fault orientations<br />

and relat<strong>ed</strong> slickenlines, integrat<strong>ed</strong> with observations on the<br />

fault kinematics and cross-cutting relationships.<br />

We process<strong>ed</strong> these data with fault inversion techniques to<br />

calculate the paleostress fields: our analysis highlight<strong>ed</strong> the<br />

occurrence of brittle deformations in a traspressive regime, with<br />

faults that locally cut Admiralty Intrusives and are associat<strong>ed</strong> to<br />

hypabyssal intrusions strongly resembling Gallipoli Volcanics.<br />

A widespread hydrothermal circulation is responsible for<br />

<strong>di</strong>ffuse quartz-carbonate veining (see CRISPINI et alii, this<br />

Fig. 1 – Location of northern Victoria Land within Antarctica


96 L.FEDERICO ET ALII<br />

Fig. 2 – Geological map of northern Victoria Land and location of the study<br />

area<br />

volume) and epidote mineralization.<br />

In the study area most brittle structures have been so far<br />

attribut<strong>ed</strong> to Cenozoic deformation link<strong>ed</strong> to Australia-<br />

Antarctica break-up (SALVINI et alii, 1997). This event was<br />

achiev<strong>ed</strong> dominantly by means of dextral strike-slip faults.<br />

However some of the stu<strong>di</strong><strong>ed</strong> faults are locally cut by dextral<br />

strike-slip faults that can be referr<strong>ed</strong> to the Cenozoic tectonics.<br />

Therefore the fluid circulation and associat<strong>ed</strong> transpressional<br />

deformation are older and have to be probably assign<strong>ed</strong> to<br />

Paleozoic times.<br />

The association to Gallipoli Volcanics and to hydrothermal<br />

circulation suggests that stu<strong>di</strong><strong>ed</strong> faults are syn to post the main<br />

phase of Admiralty / Gallipoli magmatism. White micas<br />

separat<strong>ed</strong> from a gold-bearing quartz vein associat<strong>ed</strong> with faults<br />

of this set suppli<strong>ed</strong> two reliable 39 Ar- 40 Ar ages of 318,0 ± 4,6<br />

and 310,5 ± 6,2 Ma. This corroborates a tight link with the<br />

Admiralty / Gallipoli magmatism. As a working hypothesis, this<br />

transpressional tectonics can be tentatively thought as<br />

expression of the cryptic Devonian-Carboniferous<br />

Borchgrevink Orogeny.<br />

REFERENCES<br />

CAPPONI G., CAROSI R., MECCHERI M. & OGGIANO G. (2003) -<br />

Strain analysis in the Millen Range of northern Victoria<br />

Land, Antarctica. In: F: Tessensohn & C.A. Ricci (Eds). -<br />

Aspects of a Suture Zone. The Mariner Glacier Area,<br />

Antarctica. Geol. Jb., B 85, 225 - 251.<br />

CAPPONI G., CRISPINI L. & MECCHERI M. (1999) - Structural<br />

history and tectonic evolution of the boundary between the<br />

Wilson and Bowers Terranes, Lanterman Range, Northern<br />

Victoria Land, Antarctica. Tectonophysics, 312 (2-4), 249-<br />

266.<br />

CAPPONI G., CASTORINA F., DI PISA A., MECCHERI M., PETRINI<br />

R. & VILLA I.M. (2002) - The metaigneous rocks of the<br />

Barber Glacier area (northern Victoria Land, Antarctica):<br />

a clue to the enigmatic Borchgrevink Orogeny? In Gamble,<br />

J., Skinner, D., and Henrys, S. (Eds.), Antarctica at the<br />

close of a Millennium, Royal Society of New Zealand<br />

Bullettin 35, 99 - 104.<br />

CRISPINI L., CAPPONI G., FEDERICO L. (2007) - Tectonics at the<br />

Bowers - Robertson Bay Terrane boundary, northern<br />

Victoria Land (Antarctica). In: A.R.C. Cooper and the<br />

ISAES E<strong>di</strong>torial Team. - Antarctica; A keystone in a<br />

changing world - online proce<strong>ed</strong>ings for the tenth<br />

international symposium on Antarctic earth sciences: U.S.<br />

Geological Survey Open-File Report 2007-1047 (DVD-<br />

ROM) [http://pubs.usgs.gov/of/2007/1047/]<br />

CRISPINI L., FEDERICO L., CAPPONI G. & TALARICO F. (2008) -<br />

Gold-bearing veins in transcrustal fault zone in the<br />

Transantarctic Mountains (northern Victoria Land,<br />

Antarctica) Riunione Società Geologica, Sassari 15-<br />

15/09/2008, Abstract Volume, 276 - 277.<br />

GRINDLEY G.W. & WARREN G. (1964) - Stratigraphic<br />

nomenclature and correlation in the western Ross Sea<br />

region. In: R.J. A<strong>di</strong>e (Ed.). - Antarctic geology. Amsterdam,<br />

North Holland Publishing Company, 314-333.<br />

SALVINI F., BRANCOLINI G., BUSETTI M., STORTI F., MAZZARINI<br />

F. & COREN F. (1997) - Cenozoic geodynamics of the Ross<br />

Sea Region, Antarctica: Crustal extension, intraplate<br />

strike-slip faulting and tectonic inheritance. J. Geoph. Res.,<br />

102, 24669-24696.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 97-99<br />

Active transpression within the frontal zone of the Southern<br />

Apennines in northern Calabria by integration of geomorphologic,<br />

structural, and marine geophysical data.<br />

ABSTRACT<br />

Transpressione attiva nel settore frontale <strong>del</strong>l’Appennino Meri<strong>di</strong>onale in<br />

Calabria settentrionale da integrazione <strong>di</strong> dati geomorfologici, strutturali<br />

e <strong>di</strong> geofisica marina.<br />

Una analisi integrata <strong>di</strong> dati geomorfologici, strutturali e <strong>di</strong> geofisica<br />

marina ha consentito <strong>di</strong> definire il quadro sismo tettonico <strong>del</strong>la zona frontale<br />

<strong>del</strong>l’Appennino meri<strong>di</strong>onale lungo la costa ionica compresa tra i massicci <strong>del</strong><br />

Pollino e <strong>del</strong>la Sila. Il sollevamento <strong>di</strong> terrazzi marini <strong>di</strong> età mesopleistocenicaolocenica<br />

presenta <strong>del</strong>le ondulazioni locali che coincidono spazialmente con<br />

pieghe recenti nel substrato e in s<strong>ed</strong>imenti continentali, e con anomalie degli<br />

in<strong>di</strong>ci geomorfici fluviali. Pieghe e faglie transpressive sono tracciate anche a<br />

mare in profili sismici a riflessione, lungo linee strutturali alcune <strong>del</strong>le quali<br />

sono caratterizzate da sismicità <strong>di</strong> tipo compressivo e trascorrente. Queste<br />

strutture tagliano l’alloctono sudapenninico e mostrano una generale vergenza<br />

a SW. I livelli strutturali più superficiali sono caratterizzati da faglie normali<br />

<strong>di</strong>scontinue ra<strong>di</strong>cate a scollamenti pellicolari. Pertanto, questa regione sembra<br />

caratterizzata da un campo <strong>di</strong> deformazione transpressivo recente e ancora<br />

attivo, che probabilmente contribuisce al più generale sollevamento <strong>del</strong>l’arco<br />

calabro.<br />

Key words: Active thick-skinn<strong>ed</strong> transpression, Calabria<br />

Apennines, Morphotectonic analysis, Southern Italy.<br />

INTRODUCTION<br />

An integrat<strong>ed</strong> analysis of geomorphologic and structural<br />

data, offshore seismic profiles and morphobathymetric data,<br />

and local network seismicity, is us<strong>ed</strong> to sh<strong>ed</strong> light on the<br />

hitherto poorly known active deformation field that affects the<br />

Southern Apennines frontal orogen in northern Calabria. In the<br />

Southern Apennines, Middle Pleistocene waning of Miocene-<br />

Early Pleistocene thin-skinn<strong>ed</strong> frontal thrust belt motion<br />

(PATACCA & SCANDONE, 2001) was coeval to onset of regional<br />

uplift, which is document<strong>ed</strong> by flights of rais<strong>ed</strong> marine terraces,<br />

and is commonly attribut<strong>ed</strong> to deep sources (BORDONI &<br />

VALENSISE, 1998; CUCCI & CINTI, 1998; CUCCI, 2004).<br />

_________________________<br />

LUIGI FERRANTI (*), MARIA ENRICA MAZZELLA (*), CARMELO MONACO (**),<br />

DANILO MORELLI (°) & ENRICO SANTORO (**)<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Napoli, Italy.<br />

(**) Dipartimento <strong>di</strong> Scienze Geologiche, Università <strong>di</strong> Catania, Italy<br />

(°) Dipartimento <strong>di</strong> Scienze Geologiche, Ambientali e Marine, Università<br />

<strong>di</strong> Trieste, Italy,<br />

The study area is center<strong>ed</strong> on the Ionian Sea coast of<br />

northern Calabria stretching from the borders of the Sila and<br />

Pollino mountain ranges and across the Sibari coastal plain.<br />

The Miocene-Pliocene fold and thrust belt is cross-cut by steep<br />

left strike-slip and transpressional faults mapp<strong>ed</strong> both on-land<br />

(CATALANO et alii, 1993; MONACO et alii, 1998; VAN DIJK et<br />

alii, 2000) and offshore (DEL BEN et alii, 2007), which were<br />

active till the Early and perhaps the Middle Pleistocene. To the<br />

west, the area is border<strong>ed</strong> by the active extensional belt which<br />

runs through the axis of the Apennines, but does not affect the<br />

Ionian Sea terraces. Nonetheless, the existence of normal faults<br />

<strong>di</strong>splacing the terraces toward the Ionian Sea (the Avena-<br />

Lauropoli fault) is debat<strong>ed</strong>.<br />

DATA ANALYSIS<br />

Detail<strong>ed</strong> mapping and correlation of in<strong>di</strong>vidual terrace<br />

remnants allow<strong>ed</strong> to identify eleven terrace orders, plus a<br />

lowermost, Holocene terrace, which are scatter<strong>ed</strong> at elevations<br />

of between ~5 and ~480 m a.s.l. Regional correlations<br />

supplement<strong>ed</strong> by Electron Spin Resonance (ESR) and AMS 14 C<br />

dating conduct<strong>ed</strong> on shells collect<strong>ed</strong> from <strong>di</strong>fferent terraces<br />

allow<strong>ed</strong> to reconstruct a chronological frame for the terrace<br />

flight. Notably, the fourth terrace (T4) is attribut<strong>ed</strong> to the MIS<br />

5.5 (ag<strong>ed</strong> at 124 ka), a prominent marker for deformation<br />

(BORDONI & VALENSISE, 1998; FERRANTI et alii, 2006).<br />

Small- wavelength (~5-10 km) and amplitude (~20-50 m)<br />

undulations are superpos<strong>ed</strong> to the regional uplift (~100 km<br />

length and ~500 m amplitude scale) profile of the Middle-Late<br />

Pleistocene marine terraces, and reveals two structural<br />

culminations in the Pollino and Sila range and a relative low in<br />

the Sibari plain.<br />

Structural analysis both in pre-Quaternary b<strong>ed</strong>rock and in<br />

Quaternary s<strong>ed</strong>iments points to the existence of both<br />

contractional and extensional fabrics, which are segregat<strong>ed</strong><br />

within <strong>di</strong>stinct spatial compartments and at <strong>di</strong>fferent structural<br />

levels. Contractional structures are represent<strong>ed</strong> by folds and<br />

transpressional faults which can be trac<strong>ed</strong> both in b<strong>ed</strong>rock and<br />

cover, and are <strong>di</strong>stribut<strong>ed</strong> within the mountain range and at its<br />

borders. Conversely, the normal faults are basically retriev<strong>ed</strong> in<br />

the Lower Pleistocene clay and overlying terrace deposits<br />

outcropping on the range-fringing coastal plain. The normal<br />

faults which cut the terraces do not form a through-going


98 L. FERRANTI ET ALII<br />

lineament (the Avena-Lauropoli fault) but rather involves<br />

separate scarps with <strong>di</strong>fferent detachment levels as in<strong>di</strong>cat<strong>ed</strong> by<br />

the abrupt lateral variation in hanging-wall tilts of the terrac<strong>ed</strong><br />

deposits.<br />

Quantitative analysis of streams flowing toward this<br />

coastline (SL index, Vf index, hypsometric integral) reveals the<br />

existence of ~E-W to NW-SE striking anomaly axes. These<br />

anomalies spatially coincide with the last generation of folds<br />

mapp<strong>ed</strong> in b<strong>ed</strong>rock and in Middle Pleistocene s<strong>ed</strong>iments, and<br />

their trace intersects the marine terraces undulations at the<br />

coast.<br />

Analysis of multichannel seismic reflection profiles<br />

supplement<strong>ed</strong> by oil-exploration well logs illustrates that the<br />

structural pattern offshore the study are is dominat<strong>ed</strong> by steep<br />

thrusts and transpressional faults that bound structural highs<br />

and lows. The steep faults cut the frontal part of the fold and<br />

thrust belt and mostly shows evidence of SW-<strong>di</strong>rect<strong>ed</strong><br />

<strong>di</strong>splacement, particularly on the southern border of the<br />

Amendolara ridge offshore the Pollino range. Notably, also the<br />

Middle Pleistocene s<strong>ed</strong>imentary sequence submerg<strong>ed</strong> beneath<br />

the continental shelf is tilt<strong>ed</strong> and fold<strong>ed</strong> and the sea-bottom<br />

topography appears controll<strong>ed</strong> by SW-<strong>di</strong>rect<strong>ed</strong> high-angle<br />

oblique thrust faults which cut across the early low-angle, NE<strong>di</strong>rect<strong>ed</strong><br />

thrust imbricates.<br />

Slumping or creeping at more surficial levels occurs above<br />

listric normal faults localiz<strong>ed</strong> on the steeper flanks of the<br />

Amendolara and other ridges. Marker correlation suggests that<br />

the listric faults are root<strong>ed</strong> within Lower Pleistocene clays, a<br />

situation similar to the tilt<strong>ed</strong> structural panels found on-land<br />

along the Avena-Lauropoli fault.<br />

Crustal seismic epicenter <strong>di</strong>stribution and focal solutions of<br />

low- to moderate earthquakes record<strong>ed</strong> by a local seismic<br />

network during 2005-2007 illuminate two NW-SE tren<strong>di</strong>ng<br />

structural belts beneath the Amendolara ridge and northern<br />

Sila, where partitioning between thrust and left strike-slip<br />

motion occurs in response to ~E to ~NE <strong>di</strong>rect<strong>ed</strong> shortening.<br />

DISCUSSION AND CONCLUSIONS<br />

Our integrat<strong>ed</strong> study allows to argue that the local-scale, but<br />

pervasive undulations in the deformation profile of marine<br />

terraces, superpos<strong>ed</strong> to the more general uplift pattern,<br />

represent shallow-crustal folds relat<strong>ed</strong> to a recent and still<br />

active transpressional field. A major structural culmination<br />

bound by fore- and retro-verging transpressional shear zones is<br />

represent<strong>ed</strong> by the Pollino mountain range and its offshore<br />

extension in the Amendolara ridge, and a further SW-<strong>di</strong>rect<strong>ed</strong><br />

transpressional belt is found in northern Sila and adjacent sea<br />

bottom. These structural belts involve Middle-Late Pleistocene<br />

s<strong>ed</strong>iments both on-land and offshore. Their present activity is<br />

suggest<strong>ed</strong> by small to moderate seismicity which shows<br />

partitioning between thrusts and strike-slip focal solutions.<br />

Ad<strong>di</strong>tionally, the novel seismotectonic frame reconstruct<strong>ed</strong> for<br />

this region is consistent with Global Positioning System (GPS)<br />

velocities of sites of the Peri-Tyrrhenian Geodetic Array<br />

(Ferranti et al., 2008). When view<strong>ed</strong> in a MATE reference<br />

frame, GPS velocities of sites in southern Pollino converge<br />

toward MATE in<strong>di</strong>cating ~N-S shortening in the intervening<br />

region, a pattern consistent with that document<strong>ed</strong> in Middle<br />

Pleistocene rocks. On the other hand, a site on the Sila massif<br />

converge obliquely toward MATE and its velocity is subparallel<br />

to the P-axes of earthquakes in the southern Taranto<br />

Gulf. Thus, con<strong>di</strong>tions of non-plane strain are achiev<strong>ed</strong> in the<br />

region, consistent with active transpression.<br />

The small-length normal faults of the Avena-Lauropoli<br />

system which locally cut the marine terraces do not form a<br />

through-going lineament, rather they accommodate the seaward<br />

collapse of the uppermost crust above the deeper shortening<br />

compartment. Conversely, the active transpression testifi<strong>ed</strong> by<br />

geomorphic, structural and seismicity data is accommodat<strong>ed</strong><br />

along deep-seat<strong>ed</strong> oblique back-thrusts that involve the SW<br />

margin of the Apulian foreland plate underlying the now<br />

inactive thin-skinn<strong>ed</strong> accretionary w<strong>ed</strong>ge. The tight interlacing<br />

between regional and local components of deformation<br />

affecting the marine terraces carries the important implication<br />

that surficial and deep structures may be link<strong>ed</strong>, and thus whole<br />

crustal shortening may be a viable contributor to regional uplift<br />

in this part of the Calabrian Arc.<br />

REFERENCES<br />

BORDONI P. & VALENSISE G. (1998) - Deformation of the 125<br />

ka marine terrace in Italy; tectonic implications. In: I.S.<br />

Stewart, and C. Vita-Finzi (Eds.) - Coastal Tectonics.<br />

Geological Society Special Publication, London, 146, 71-<br />

110.<br />

CATALANO S., MONACO C., TORTORICI L. & TANSI C. (1993) -<br />

Pleistocene strike-slip tectonics in the Lucanian Apennine<br />

(Southern Italy). Tectonics 12, 656-665.<br />

CUCCI L. (2004) - Rais<strong>ed</strong> marine terraces in the Northern<br />

Calabrian Arc (Southern Italy): a ~600Kyr-long geological<br />

record of regional uplift. Ann. Geophys., 47, 1391-1406.<br />

CUCCI L., & CINTI F.R. (1998) - Regional uplift and local<br />

tectonic deformation record<strong>ed</strong> by the Quaternary marine<br />

terraces on the Ionian coast of northern Calabria (southern<br />

Italy). Tectonophysics, 292, 67-83.<br />

DEL BEN A., BARNABA C. & TOBOGA A. (2007) - Strike-slip<br />

systems as the main tectonic features in the Plio-<br />

Quaternary kinematics of the Calabrian Arc. Mar.<br />

Geophys. Res., DOI 10.1007/s11001-007-9041-6.<br />

FERRANTI L., ANTONIOLI F., MAUZ B., AMOROSI A., DAI PRÀ<br />

G., MASTRONUZZI G., MONACO C., ORRÙ P., PAPPALARDO<br />

M., RADTKE U., RENDA P., ROMANO P., SANSÒ P. &<br />

VERRUBBI V. (2006) - Markers of the last interglacial sealevel<br />

high stand along the coast of Italy: Tectonic<br />

implications. Quat. Int. 145-146, 30-54.<br />

FERRANTI L., OLDOW J.S., D’ARGENIO B., CATALANO R.,<br />

LEWIS D., MARSELLA E., AVELLONE G., MASCHIO L.,<br />

PAPPONE G., PEPE F. & SULLI A. (2008) - Active


ACTIVE TRANSPRESSION WITHIN THE FRONTAL ZONE OF THE SOUTHERN APENNINES IN NORTHERN CALABRIA<br />

deformation in Southern Italy, Sicily and southern Sar<strong>di</strong>nia<br />

from GPS velocities of the Peri-Tyrrhenian Geodetic Array<br />

(PTGA). Boll. Soc. Geol. It., 127(2), 299-316.<br />

MONACO C., TORTORICI L. & PALTRINIERI W. (1998) -<br />

Structural evolution of the Lucanian Apennines, southern<br />

Italy. J. Struct. Geol., 20, 617-638.<br />

PATACCA E. & SCANDONE P. (2001) - Late thrust propagation<br />

and s<strong>ed</strong>imentary response in the thrust belt-for<strong>ed</strong>eep system<br />

of the Southern Apennines (Pliocene-Pleistocene). In: G.B.<br />

Vai and I.P. Martini (Eds.) - Anatomy of a mountain belt:<br />

the Apennines and adjacent M<strong>ed</strong>iterranean basins. Kluwer<br />

Academic Publishers, Dordecht, p. 401-440.<br />

VAN DIJK J.P., BELLO M., BRANCALEONI G.P., CANTARELLA<br />

G., COSTA V., FRIXA A., GOLFETTO F., MERLINI S., RIVA<br />

M., TORRICELLI S., TOSCANO C. & ZERILLI A. (2000) - A<br />

regional structural mo<strong>del</strong> for the northern sector of the<br />

Calabrian Arc (southern Italy). Tectonophysics, 324, 267–<br />

320.<br />

99


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 100-103, 2ff.<br />

Nuovi dati su geometria, cinematica e segmentazione <strong>del</strong> sistema <strong>di</strong><br />

faglie attive lungo il margine nord-orientale <strong>del</strong> Matese (Molise)<br />

FEDERICA FERRARINI (*), BONCIO PAOLO (**), GERARDO PAPPONE (°), MASSIMO CESARANO (*), PIETRO<br />

P.C.AUCELLI (°)<br />

New data on geometry, kinematics and segmentation of the active normal<br />

fault system along the north-easter border of the Matese Mts. (Molise)<br />

The presence of N-to-NE-<strong>di</strong>pping active normal faults along the north-eastern<br />

border of the Matese Mts is document<strong>ed</strong> in the existing literature but the<br />

<strong>di</strong>splacements accumulat<strong>ed</strong> by the normal faults during their activity and the<br />

segmentation pattern are largely unconstrain<strong>ed</strong>. Moreover, only few data,<br />

mostly collect<strong>ed</strong> in the southern termination of the system, constrain the late-<br />

Quaternary slip-rate. We present the results of a detail<strong>ed</strong> structural-geological<br />

survey aim<strong>ed</strong> to constrain the <strong>di</strong>splacements and segmentation of the system.<br />

Late-Quaternary slip-rates are estimat<strong>ed</strong> by measuring the fault scarps which<br />

<strong>di</strong>splace mountain slopes mostly form<strong>ed</strong> during the retreat phase of the last<br />

glacial maximum (ca. 18 ka). Fault <strong>di</strong>splacements can be constrain<strong>ed</strong> in the<br />

central-northern part of the system (M. Patalaecchia – S. Massimo), with<br />

values varying, from N to S, from 300 m (Piana de Il Lago) to 690 m (M.<br />

Patalecchia) to 50 m (S. Massimo). The fault scarp heights, measur<strong>ed</strong> along<br />

the entire system, suggest minimum throw-rates ranging from 0.8 to 1.4 mm/a<br />

for the last 18 ka.<br />

Key words: Active tectonics, Matese Mts., normal fault,<br />

segmentation, slip-rates.<br />

INTRODUZIONE<br />

Il Bacino <strong>di</strong> Bojano è una depressione strutturale allungata<br />

in senso NO-SE, impostata lungo il margine settentrionale <strong>del</strong><br />

Massiccio <strong>del</strong> Matese. La fase tettonica che ha condotto alla<br />

sua attuale strutturazione risale a non prima <strong>del</strong> Pleistocene<br />

M<strong>ed</strong>io (RUSSO & TERRIBILE, 1995; DI BUCCI et alii, 2005), in<br />

concomitanza <strong>del</strong>l’ultimo episo<strong>di</strong>o deformativo che, in or<strong>di</strong>ne<br />

<strong>di</strong> tempo, ha interessato questo settore.<br />

L’area è s<strong>ed</strong>e storicamente <strong>di</strong> eventi sismici <strong>di</strong>struttivi<br />

(Terremoto <strong>di</strong> S. Anna, 1805, Maw= 6.57 da GRUPPO DI<br />

LAVORO CPTI, 2004; ESPOSITO et alii, 1987) e <strong>di</strong> una sismicità<br />

<strong>di</strong>ffusa caratterizzata da sequenze sismiche <strong>di</strong> bassa energia<br />

(1986, 1990, 1997, 2001), localizzate in prossimità <strong>del</strong> suo<br />

margine nord-orientale (ALESSIO et alii, 1987; MILANO et alii,<br />

2005) <strong>ed</strong> in aree a<strong>di</strong>acenti (Sannio) comunque molto prossime<br />

_________________________<br />

(*) Dipartimento S.T.A.T – Università degli Stu<strong>di</strong> <strong>del</strong> Molise,<br />

ContradaFonte Lappone, 86090 Pesche (Isernia).<br />

(**) Laboratorio <strong>di</strong> Geo<strong>di</strong>namica e Sismogenesi, Dip. Scienze <strong>del</strong>la Terra,<br />

Università «G. d’Annunzio» - Via dei Vestini, 30, 66013 Chieti Scalo,<br />

Chieti. Tel. 0871/3556456<br />

(°) Dipartimento <strong>di</strong> Scienze per l’Ambiente, Università degli Stu<strong>di</strong> <strong>di</strong><br />

Napoli “Parthenope”, Centro Direzionale-Isola C4, Napoli. Tel.<br />

081/5476663.<br />

alla piana (MILANO et alii, 1999; VILARDO et alii, 2003).<br />

Il riconoscimento <strong>di</strong> strutture ritenute attive nel tardo<br />

Pleistocene-Olocene, e possibilmente responsabili <strong>del</strong>la<br />

sismicità <strong>del</strong>l’area, è già stato segnalato da vari autori<br />

(ASCIONE et alii, 1998; CINQUE et alii, 2000; BLUMETTI et alii,<br />

2000; GALLI & GALADINI, 2002; GUERRIERI et alii, 1999;<br />

MASCHIO, 2003; DI BUCCI et alii, 2005) ma solo su alcuni<br />

segmenti (GALLI & GALADINI, 2002; GUERRIERI et alii, 1999)<br />

sono stati stimati i possibili valori <strong>di</strong> slip-rate nel tardo<br />

Quaternario. Nella presente nota si vogliono riportare i risultati<br />

<strong>di</strong> parte <strong>del</strong>la ricerca condotta nell’ambito <strong>di</strong> un dottorato che<br />

ha previsto, tra le <strong>di</strong>verse finalità, l’analisi <strong>di</strong> dettaglio <strong>di</strong><br />

strutture potenzialmente sismogenetiche, ritenute tali sulla base<br />

<strong>del</strong>le segnalazioni presenti in letteratura o <strong>di</strong> nuove evidenze <strong>di</strong><br />

tettonica attiva. Lo stu<strong>di</strong>o condotto ha consentito <strong>di</strong> valutare i<br />

rigetti stratigrafici lungo un sistema <strong>di</strong> faglie che si sviluppa dal<br />

versante nord-orientale <strong>del</strong> M. Patalecchia a Guar<strong>di</strong>aregia. La<br />

realizzazione <strong>di</strong> profili topografici, secondo una metodologia<br />

già applicata in altre aree <strong>del</strong>l’Appennino centro-meri<strong>di</strong>onale<br />

(MOREWOOD & ROBERTS, 2000) ha consentito, lungo i<br />

segmenti sospetti, <strong>di</strong> stimare gli slip-rates <strong>di</strong> lungo termine<br />

tardo-quaternari, fornendo dati in<strong>ed</strong>iti in un’area considerata ad<br />

elevato rischio sismico.<br />

ASSETTO TETTONICO<br />

Il rilevamento geologico-strutturale <strong>di</strong> dettaglio, ha<br />

interessato faglie che ricadono in due settori prossimi alla piana<br />

<strong>di</strong> Bojano. Il primo comprende il versante nord-orientale <strong>del</strong><br />

M. Patalecchia e de La Difenzola, il versante orientale <strong>di</strong> Colle<br />

<strong>di</strong> Mezzo <strong>ed</strong> il settore compreso tra gli abitati <strong>di</strong><br />

Roccamandolfi e Cantalupo <strong>del</strong> Sannio. Nel secondo, invece,<br />

ricade l’area compresa tra gli abitati <strong>di</strong> Bojano e Guar<strong>di</strong>aregia.<br />

In entrambi affiorano s<strong>ed</strong>imenti riferibili ad una ambiente<br />

deposizionale <strong>di</strong> piattaforma/rampa carbonatica e <strong>di</strong><br />

transizione a bacino (D’ARGENIO et alii, 1972) i quali coprono<br />

un intervallo stratigrafico che, nell’area indagata, va dal<br />

Giurassico Superiore al Miocene M<strong>ed</strong>io (PROGETTO CARG, F.<br />

408, CAMPOBASSO; DE CORSO et alii, 1998). Seguono<br />

s<strong>ed</strong>imenti calcareo-marnosi <strong>di</strong> ambiente neritico (SELLI, 1957)<br />

e le sequenze calcarenitico-argilloso-arenacee <strong>di</strong> avanfossa <strong>del</strong><br />

Tortoniano Superiore-Messiniano Inferiore (PROGETTO CARG,<br />

F. 408, CAMPOBASSO, PATACCA et alii, 1992).


FAGLIE ATTIVE LUNGO IL MARGINE NORD-ORIENTALE DEL MATESE<br />

Il settore è stato coinvolto nella deformazione compressiva<br />

terziaria a partire dal Miocene Superiore (PATACCA et alii,<br />

1992; FERRANTI, 1994; SCROCCA et alii, 1995; FESTA et alii,<br />

2006); le pieghe <strong>ed</strong> i sovrascorrimenti derivanti da questa fase<br />

tettonica sono state successivamente <strong>di</strong>slocate da faglie<br />

trascorrenti <strong>del</strong> Pliocene Superiore-Pleistocene Inferiore.<br />

L’assetto tettonico attuale v<strong>ed</strong>e un substrato carbonatico<br />

fortemente <strong>di</strong>ssecato da faglie variamente orientate (N-S, E-O,<br />

NE-SO) (NASO et alii, 1989; CORRADO et alii, 1998; DI BUCCI<br />

et alii., 1999). A queste, si sono sovrimposti lineamenti <strong>di</strong>retti<br />

con orientazione appenninica (NO-SE), risultato <strong>del</strong>l’ultimo<br />

evento <strong>di</strong>stensivo che ha investito il settore riutilizzando, dove<br />

possibile, le <strong>di</strong>scontinuità er<strong>ed</strong>itate dalle prec<strong>ed</strong>enti fasi<br />

tettoniche.<br />

EVIDENZE DI TETTONICA ATTIVA E SLIP-RATES DI<br />

LUNGO TERMINE TARDO QUATERNARI.<br />

Secondo BRANCACCIO et alii (1979), la storia morfoevolutiva<br />

<strong>del</strong> Bacino <strong>di</strong> Bojano segue una prima fase tettonica<br />

estensionale che ha interessato, nel Pleistocene Inferiore, il<br />

Matese settentrionale portando alla formazione <strong>del</strong> Bacino<br />

lacustre <strong>di</strong> S. Massimo. A questa prima fase tettonica segue<br />

quella che, tra la fine <strong>del</strong> Pleistocene Inferiore e gli inizi <strong>del</strong><br />

Pleistocene M<strong>ed</strong>io, avrebbe portato alla formazione <strong>di</strong> una<br />

nuova depressione, morfologicamente incastrata nella prima e<br />

con l’assetto morfo-tettonico attuale (RUSSO & TERRIBILE,<br />

1995).Recentemente DI BUCCI et alii (2005) forniscono un’età<br />

<strong>di</strong> circa 620 ka per il materiale vulcanoclastico rinvenuto nei<br />

depositi lacustri sospesi lungo il versante prospiciente la piana,<br />

nei pressi <strong>di</strong> S. Massimo. Tale datazione permette <strong>di</strong> vincolare<br />

l’attività <strong>del</strong>le faglie responsabili <strong>del</strong>la formazione <strong>del</strong>l’attuale<br />

bacino, ad un periodo successivo a 620 ka.<br />

Il rilevamento è stato concentrato lungo strutture già<br />

segnalate in letteratura o ritenute sospette sulla base <strong>di</strong> dati<br />

in<strong>ed</strong>iti derivanti dall’attività <strong>di</strong> ricerca <strong>del</strong> dottorato. Queste<br />

sono state raggruppate nei sistemi MPSM (M. Patalecchia-<br />

S.Massimo) e BG (Bojano-Guar<strong>di</strong>aregia). Su entrambi i sistemi<br />

rilevati, sono state rinvenute, in più punti, brecce <strong>di</strong> versante<br />

cementate chiaramente <strong>di</strong>slocate, come lungo il versante nordorientale<br />

<strong>del</strong> M. Patalecchia, prospiciente la Piana de Il Lago<br />

(già segnalate in BLUMETTI et alii, 2000), sul versante orientale<br />

<strong>di</strong> Colle <strong>di</strong> Mezzo <strong>ed</strong> in prossimità <strong>di</strong> Bojano (già segnalate in<br />

GALLI & GALADINI, 2002). Queste si rinvengono, spesso, ad<br />

una quota più bassa rispetto alle stesse citate in BRANCACCIO et<br />

alii (1979) coeve dei depositi lacustri. È ragionevole pensare<br />

che esse siano il prodotto <strong>del</strong> mo<strong>del</strong>lamento dei versanti<br />

quando la nuova depressione si stava generando.<br />

È possibile ritenere, quin<strong>di</strong>, che le strutture che le hanno<br />

fagliate si siano generate, o abbiano agito riutilizzando vecchie<br />

<strong>di</strong>scontinuità, in un periodo successivo 620 ka. Lungo la faglia<br />

che borda il versante nord-orientale <strong>del</strong> M. Patalecchia è stato<br />

rinvenuto, inoltre, <strong>del</strong> materiale vulcanoclastico riferibile<br />

all’evento conosciuto in letteratura come “Tufo Giallo<br />

Napoletano” (Dott.ssa P. Petrosino, comunicazione personale,<br />

101<br />

15.000-12.000 in DEINO et al., 2004; DI VITO et al., 1999),<br />

intercalato al detrito <strong>di</strong> versante all’hangingwall <strong>del</strong>la faglia<br />

Fig. 1 – Geometria <strong>del</strong> sistema attivo lungo il margine nord-orientale <strong>del</strong><br />

Massiccio <strong>del</strong> Matese.<br />

stessa e localmente <strong>di</strong>slocato da uno splay sintetico. E’<br />

possibile, quin<strong>di</strong>, affermare che l’attività <strong>del</strong>la faglia si<br />

sicuramente tardo-quaternaria.<br />

Sulla base dei dati acquisiti e <strong>del</strong>le evidenze sopra citate, si<br />

ritiene che tutto il sistema attivo caratterizzato si presenti con la<br />

geometria riportata in Fig.1. Essa segue un trend<br />

prevalentemente appenninico nel settore più settentrionale<br />

investigato mentre in quello più meri<strong>di</strong>onale prev<strong>ed</strong>e il<br />

riutilizzo <strong>di</strong> <strong>di</strong>scontinuità tettoniche preesistenti, in prevalenza<br />

con orientazione E-O.<br />

Lungo i vari segmenti è stato effettuato un rilevamento<br />

strutturale <strong>di</strong> dettaglio che ha consentito <strong>di</strong> caratterizzarli<br />

cinematicamente evidenziando, in molti punti, una estensione<br />

orientata in senso NE-SO. Sono state realizzate sezioni<br />

geologiche che hanno consentito <strong>di</strong> stimare i rigetti stratigrafici,<br />

soprattutto lungo il sistema MPSM. I rigetti partono da valori<br />

<strong>di</strong> circa 300 m (in corrispondenza <strong>del</strong>la Piana de Il Lago), per<br />

passare a 690 in corrispondenza <strong>del</strong> M. Patalecchia e <strong>di</strong>minuire<br />

gradualmente fino ad un valore <strong>di</strong> circa 50 m in prossimità <strong>di</strong> S.<br />

Massimo. In corrispondenza <strong>del</strong> sistema BG, invece, il calcolo<br />

dei rigetti stratigrafici risulta <strong>di</strong>fficoltoso per la carenza <strong>di</strong> dati<br />

relativamente alla profon<strong>di</strong>tà <strong>del</strong> substrato carbonatico sotto i<br />

depositi lacustri il cui spessore è stimato, in RUSSO &<br />

TERRIBILE (1995), in almeno 160m.<br />

L’interpretazione <strong>di</strong> pozzi E.R.I.M (Ente per le risorse<br />

idriche molisane) e <strong>del</strong>la cassa <strong>del</strong> Mezzogiorno proposta in<br />

CASCIELLO et alii (2002) fornisce una valore minimo <strong>di</strong><br />

<strong>di</strong>slocazione <strong>del</strong> substrato carbonatico <strong>di</strong> circa 100. Sulla base<br />

<strong>del</strong> rilevamento geologico recentemente effettuato, in<br />

prossimità <strong>del</strong>l’ubicazione <strong>del</strong> pozzo interpretato dagli autori<br />

sopra citati, affiorano calcari riferibili al Cretacico Superiore.<br />

Pur volendo estrapolare questo dato, non è possibile, tuttavia,<br />

valutare l’entità effettiva <strong>del</strong>la <strong>di</strong>slocazione non affiorando il<br />

limite degli stessi con i calcari <strong>del</strong> Crecatico Inferiore, né al


102 F. FERRARINI ET ALII<br />

Fig. 2 – Esempio <strong>di</strong> profilo topografico realizzato attraverso la scarpata <strong>di</strong><br />

faglia <strong>del</strong> M. Patalecchia<br />

footwall né all’hanginwall. Le stesse considerazioni possono<br />

essere fatte in prossimità <strong>del</strong> segmento <strong>di</strong> Campochiaro, dove<br />

all’hanginwaal <strong>del</strong>la faglia, non si conosce l’effettivo spessore<br />

dei s<strong>ed</strong>imenti <strong>di</strong> avanfossa in appoggio <strong>di</strong>scordante sul<br />

substrato carbonatico (SGROSSO, 1963).<br />

Per poter stimare i tassi <strong>di</strong> movimento nel tardo-quaternario<br />

<strong>del</strong>le faglie reputate attive sono stati realizzati 8 profili<br />

topografici perpen<strong>di</strong>colari alle faglie <strong>di</strong>rette, che consentissero<br />

<strong>di</strong> stimare l’entità <strong>del</strong> rigetto topografico su un versante<br />

regolarizzato in seguito all’ultima fase <strong>di</strong> mo<strong>del</strong>lamento postglaciale<br />

(circa 18 ka). In figura 2 viene riportato il profilo<br />

misurato nei pressi <strong>del</strong> M. Patalecchia dove sono riconoscibili<br />

le linee <strong>di</strong> inviluppo <strong>del</strong> versante regolarizzato <strong>di</strong>slocato dalla<br />

faglia.<br />

Sulla base <strong>del</strong>l’entità <strong>del</strong>la <strong>di</strong>slocazione è stato possibile<br />

calcolare gli slip-rates <strong>di</strong> lungo termine tardo-quaternari<br />

relativamente ad ogni segmento. Prec<strong>ed</strong>enti stu<strong>di</strong> sulla Piana <strong>di</strong><br />

Bojano <strong>ed</strong> aree attigue, riportano valori <strong>di</strong> slip-rates, calcolati<br />

su un periodo che va dal Pleistocene Superiore all’Olocene,<br />

variabili tra 0.1 e 1.0 mm/a (GUERRIERI et alii, 1999; CINQUE et<br />

alii, 2000; GALLI & GALADINI, 2002; MASCHIO, 2003). I valori<br />

da noi calcolati oscillano tra 0.8 e 1.4 mm/a <strong>di</strong> componente<br />

verticale minima <strong>del</strong>lo slip-rate per gli ultimi 18 ka.<br />

BIBLIOGRAFIA<br />

ALESSIO, G. GODANO C., GORINI A. AND RICCIARDI G.P.<br />

(1987). Stu<strong>di</strong>o <strong>del</strong>la sequenza sismica <strong>del</strong> Gennaio 1986<br />

presso Isernia. Memorie <strong>del</strong>la Società Geologica Italiana,<br />

37, 253-266.<br />

ALESSIO G., GODANO C., GORINI A. AND RICCIARDI G.P.<br />

(1987). Stu<strong>di</strong>o <strong>del</strong>la sequenza sismica <strong>del</strong> Gennaio 1986<br />

presso Isernia. Memorie <strong>del</strong>la Società Geologica Italiana,<br />

37, 253-266.<br />

ASCIONE A., CAIAZZO C., CINQUE A., GARGANO D., ROMANO<br />

P., SANTANGELO N., VITTI C. (1998). Segnalazione <strong>di</strong><br />

tettonica tardo-quaternaria in alcune aree <strong>del</strong>la Campania<br />

e <strong>del</strong> Molise: risultati preliminari <strong>del</strong> PE 97-GNDT. Atti<br />

79° Congr. Naz. S.G.I., A, 96-98. Palermo, 21-23<br />

Settembre.<br />

BLUMETTI A. M., CACIAGLI M., DI BUCCI D., GUERRIERI L.,<br />

MICHETTI A. M., NASO, G. (2000). Evidenze <strong>di</strong> fagliazione<br />

superficiale olocenica nel Bacino <strong>di</strong> Bojano (Molise).<br />

Disponibile su<br />

http://www2.ogs.trieste.it/gngts/gngts/convegniprec<strong>ed</strong>enti/2<br />

000/index.htm.<br />

BRANCACCIO L., SGROSSO I., CINQUE A., ORSI G., PECE R.,<br />

ROLANDI G. (1979). Lembi residui <strong>di</strong> s<strong>ed</strong>imenti lacustri<br />

pleistocenici sul versante settentrionale <strong>del</strong> Matese, presso<br />

S. Massimo. Boll. Soc. Natur. Napoli, 88, 275-286.<br />

CASCIELLO E., CESARANO M., NASO G., PAPPONE G.,<br />

PIACQUADIO G., AUCIELLO E. (2002). Elaborazione<br />

tri<strong>di</strong>mensionale <strong>di</strong> dati stratigrafici e strutturale <strong>di</strong> aree ad<br />

elevata pericolosità sismica: l'esempio <strong>del</strong>la Piana <strong>di</strong><br />

Boiano. In: Atti <strong>del</strong> Convegno: "I sistemi <strong>di</strong> informazione<br />

geografica (GIS) nella gestione e lo sviluppo <strong>del</strong>l’ambiente<br />

e <strong>del</strong> territorio". Isernia, 20 Novembre 2002, 31-34.<br />

CINQUE A., ASCIONE A., CAIAZZO C. (2000). Distribuzione<br />

spazio-temporale e caratterizzazione <strong>del</strong>la fagliazione<br />

quaternaria in Appennino Meri<strong>di</strong>onale. In: Le ricerche <strong>del</strong><br />

GNDT nel campo <strong>del</strong>la pericolosità sismica (1996-1999), a<br />

cura <strong>di</strong> F. Gala<strong>di</strong>ni, C. Meletti, A. Rebez, 1-14.<br />

CORRADO S., DI BUCCI D., NASO G., DAMIANI A.V. (1998).<br />

Thrusting and strike-slip tectonics in the Alto Molise region<br />

(Italy): implications for the Neogene-Quaternary evolution<br />

of the Central Apennine orogenic system. Journal of the<br />

Geological Society of London, 154, 679-688.<br />

D'ARGENIO B., PESCATORE T., SCANDONE P. (1972). Schema<br />

geologico <strong>del</strong>l'Appennino meri<strong>di</strong>onale (Campania e<br />

Lucania). Atti Conv. "Moderne v<strong>ed</strong>ute sulla geologia<br />

<strong>del</strong>l'Appennino", Acc. Naz. dei Lincei, Quad.183, 49-72.<br />

PROGETTO CARG (Cartografia Geologica, Scala 1:50.000),<br />

Foglio Geologico 408, Campobasso, Responsabile<br />

Scientifico Prof. G. Pappone.<br />

DE CORSO S., SCROCCA D., TOZZI M. (1998). Geologia<br />

<strong>del</strong>l’anticlinale <strong>del</strong> Matese e implicazioni per la tettonica<br />

<strong>del</strong>l’Appennino molisano. Bollettino <strong>del</strong>la Società<br />

Geologica italiana, 117, 419-441. Allegata Carta Geologica<br />

<strong>del</strong> settore centrale <strong>del</strong>l’anticlinale <strong>del</strong> Matese (Scala<br />

1:20.000).<br />

DEINO A. L., ORSI G., DE VITA S., PIOCHI M. (2004). The age of<br />

the Neapolitan Yellow Tuff caldera-forming eruption


FAGLIE ATTIVE LUNGO IL MARGINE NORD-ORIENTALE DEL MATESE<br />

(Campi Flegrei caldera - Italy) assess<strong>ed</strong> by 40Ar/39Ar<br />

dating method. Journal of Volcanology and Geothermal<br />

Research, 133, 157-170.<br />

DI BUCCI D., CORRADO S., NASO G., PAROTTO M., PRATURLON<br />

A. (1999). Evoluzione tettonica Neogenico-Quaternaria<br />

<strong>del</strong>l'area molisana. Bollettino <strong>del</strong>la Società Geologica<br />

Italiana, 118, 13-30.<br />

DI BUCCI D., NASO G., CORRADO S., VILLA I. M. (2005).<br />

Growth, interaction and seismogenic potential of coupl<strong>ed</strong><br />

active normal faults (Isernia Basin, Central-Southern<br />

Italy). Terra Nova , 17, 44-55.<br />

DI VITO M.A., ISAIA R., ORSI G., SOUTHON J., DE VITA S.,<br />

D’ANTONIO M., PAPPALARDO, L., PIOCHI, M. (1999).<br />

Volcanism and deformation since 12,000 years at the Campi<br />

Flegrei caldera-Italy. Journal of Volcanology and<br />

Geothermal Research, 91, 221–246.<br />

ESPOSITO E., LUONGO G., MARTURANO A., PORFIDO S. (1987).<br />

Il terremoto <strong>di</strong> S. Anna <strong>del</strong> 26 Luglio 1805. Memorie <strong>del</strong>la<br />

Società Geologica Italiana, 37, 171-191.<br />

FERRANTI L. (1994). Le strutture <strong>del</strong> bordo meri<strong>di</strong>onale <strong>del</strong><br />

Massiccio <strong>di</strong> Matese (Appennino Meri<strong>di</strong>onale): elementi <strong>di</strong><br />

tettonica compressiva e <strong>di</strong>stensiva. Bollettino <strong>del</strong>la Società<br />

Geologica Italiana, 113, 157-171.<br />

FESTA A., GHISETTI F., VEZZANI L. (2006). <strong>Note</strong> illustrative<br />

alla Carta Geologica <strong>del</strong> Molise (Scala 1:100.000).<br />

GALLI P., GALADINI F., CAPINI S. (2002). Analisi<br />

archeosismologiche nel Santuario <strong>di</strong> Ercole <strong>di</strong> Campochiaro<br />

(Matese). Evidenze <strong>di</strong> un terremoto <strong>di</strong>struttivo sconosciuto<br />

<strong>ed</strong> implicazioni sismotettoniche. Il Quaternario (Italian<br />

Journal of Quaternary Sciences) 15(2), 155-167.<br />

GIULIANI R., BONCI L., CALCATERRA S., D’AGOSTINO N.,<br />

D’ANASTASIO E., GAMBINO P., MATTONE M., MERLI K.,<br />

PEPERONI A., 2007. Campo <strong>di</strong> deformazione attiva da dati<br />

GPS in Appennino centro-meri<strong>di</strong>onale: un contributo alla<br />

definizione dei tassi <strong>di</strong> accumulo sulle strutture<br />

sismogenetiche. Atti <strong>del</strong> 26° Convegno Nazionale <strong>del</strong><br />

GNGTS, Roma.<br />

GRUPPO DI LAVORO DISS, (2008). Database of In<strong>di</strong>vidual<br />

Seismogenic Sources (DISS), Vers. 3.0.3. A compilation of<br />

potential sources for earthquakes larger than M 5.5 in Italy<br />

and Surroun<strong>di</strong>ng Areas. Disponibile su<br />

http://www.ingv.it/banch<strong>ed</strong>ati/banche.html.<br />

GUERRIERI L., SCARASCIA MUGNOZZA G., VITTORI E. (1999).<br />

Analisi stratigrafica e geomorfologia <strong>del</strong>la conoide tardoquaternaria<br />

<strong>di</strong> Campochiaro <strong>ed</strong> implicazioni per la conca<br />

<strong>di</strong> Bojano in Molise. Il Quaternario (Italian Journal of<br />

Quaternary Sciences), 12(2), 237-247.<br />

MASCHIO L. (2003). Tettonica m<strong>ed</strong>io pleistocenico-attuale <strong>del</strong><br />

settore <strong>di</strong> confine tra i Monti <strong>del</strong> Matese e de Sannio e<br />

implicazioni sulla geometria <strong>del</strong>la fagliazione attiva in<br />

103<br />

Appennino meri<strong>di</strong>onale. Tesi <strong>di</strong> Dottorato <strong>di</strong> Ricerca,<br />

Università degli Stu<strong>di</strong> <strong>del</strong> Molise, Isernia.<br />

MILANO G., DI GIOVAMBATTISTA R., ALESSIO G. (1999).<br />

Earthquake swarms in the Southern Appennines chain<br />

(Italy): the 1997 seismic sequence in the Sannio-Matese<br />

mountains. Tectonophysics, 306, 57-78.<br />

MILANO G., DI GIOVAMBATTISTA R., VENTURA G. (2005). The<br />

2001 seismic activity near Isernia (Italy): Implications for<br />

the seismotectonics of the Central-Southern Appennines.<br />

Tectonophysics, 401, 167-178.<br />

MOREWOOD N. C., ROBERTS G. P. (2000). The geometry,<br />

kinematics and rates of deformation within an enchelon<br />

normal fault segment boundary, central Italy. Journal of<br />

Structural Geology, 22, 1027-1047.<br />

NASO, G., TALLINI, M., TOZZI, M. (1989). In<strong>di</strong>zi <strong>di</strong> tettonica<br />

recente nell’area <strong>di</strong> Colli a Volturno (Molise): dati<br />

preliminari. Rend. Soc. Geol. It., 12, 3-6.<br />

PATACCA E., SCANDONE P.,, BELLATALLA M., PERILLI N.,<br />

SANTINI U. (1992). La zona <strong>di</strong> giunzione tra l’arco<br />

appenninico settentrionale e l’arco appenninico<br />

meri<strong>di</strong>onale nell’Abruzzo e nel Molise. Stu<strong>di</strong> Geologici<br />

Camerti, Vol. Spec. 1991(2), CROP 11, 417-441.<br />

RUSSO F. & TERRIBILE F. (1995). Osservazioni<br />

geomorfologiche, stratigrafiche e p<strong>ed</strong>ologiche sul<br />

Quaternario <strong>del</strong> Bacino <strong>di</strong> Bojano (Campobasso). Il<br />

Quaternario, 8(1), 239-254.<br />

SCROCCA D., TOZZI M., PAROTTO M. (1995). Assetto<br />

strutturare <strong>del</strong> settore compreso tra il Matese, le Mainarde<br />

e l’Unità <strong>di</strong> Frosolone. Implicazioni per l’evoluzione<br />

neogenica <strong>del</strong> sistema <strong>di</strong> sovrascorrimenti nell’Appennino<br />

centro-meri<strong>di</strong>onale. Stu<strong>di</strong> Geologici Camerti, Vol. Spec.<br />

1995(2), 407-418.<br />

SELLI R. (1957). Sulla trasgressione <strong>del</strong> Miocene nell’Italia<br />

Meri<strong>di</strong>onale. Giornale <strong>di</strong> Geologia, 26, 1-54.<br />

SGROSSO I. (1963). La trasgressione miocenica nel Matese<br />

centrale. Boll. Soc. Natur. Napoli Vol. LXXII, 150-153.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 104-107, 6 ff.<br />

Analisi statistica multi-scala <strong>di</strong> dati <strong>di</strong> scan line condotte su analoghi<br />

<strong>di</strong> reservoir <strong>di</strong> idrocarburi<br />

VINCENZO GUERRIERO (*), STEFANO MAZZOLI (*) & STEFANO VITALE (*)<br />

ABSTRACT<br />

Multi-scale statistical analysis of scan line data from reservoir analogues<br />

The study of statistical <strong>di</strong>stributions of structural features such as joint<br />

length, opening <strong>di</strong>splacement (aperture) and spacing at <strong>di</strong>fferent scales of<br />

observation is on the focus of research in the field of reservoir development<br />

and management, since they noticeably affect porosity and permeability of<br />

reservoir rocks.<br />

Recent stu<strong>di</strong>es (ORTEGA et alii, 20006) effectively confirm<strong>ed</strong> that<br />

opening-mode fracture size <strong>di</strong>stribution is well describ<strong>ed</strong> by a power law. A<br />

review of the <strong>di</strong>fferent types of artifacts in determining such <strong>di</strong>stributions has<br />

been provid<strong>ed</strong> by ORTEGA et alii (2006), concerning systematic errors<br />

occurring at both extremities of the scale of observation. However, a nonsystematic,<br />

often more dangerous error is that associat<strong>ed</strong> with the uncertainty<br />

of the obtain<strong>ed</strong> sampling estimates, depen<strong>di</strong>ng on the kind of aleatoric<br />

variables involv<strong>ed</strong> and statistical samples size (GUERRIERO et alii, 2009).<br />

In this paper we suggest specific, rigorous criteria for the analysis of joint<br />

spatial <strong>di</strong>stributions, as well as for the analysis of probability <strong>di</strong>stributions of<br />

sampling estimate errors affecting both exponent and coefficient of the power<br />

law. This is carri<strong>ed</strong> out taking into account methodological issues, mainly<br />

within the framework of multi-scale scan line data analysis.<br />

Key words: confidence interval, fracture statistics, power law<br />

<strong>di</strong>stribution, structural analysis<br />

INTRODUZIONE<br />

Lo stu<strong>di</strong>o <strong>del</strong>la <strong>di</strong>stribuzione statistica <strong>del</strong>le aperture dei<br />

joint è <strong>di</strong> notevole importanza nel campo <strong>del</strong>l’esplorazione<br />

petrolifera, in quanto un’adeguata conoscenza <strong>del</strong>la legge <strong>di</strong><br />

potenza che descrive tale <strong>di</strong>stribuzione (con particolare<br />

riferimento all’esponente) fornisce informazioni importanti,<br />

oltre che sulla porosità per fratturazione e strain longitu<strong>di</strong>nale<br />

associati ad un determinato joint set, anche riguardo la risposta<br />

idraulica <strong>del</strong> mezzo permeabile roccia in presenza <strong>di</strong> moti<br />

filtranti conseguenti ad attività estrattive.<br />

L’esponente m <strong>di</strong> tale legge <strong>di</strong> potenza consente <strong>di</strong><br />

<strong>di</strong>stinguere sistemi <strong>di</strong> fratture fortemente pervasivi (|m| > 1), in<br />

cui il maggior contributo alla porosità per fatturazione è fornito<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra – Università “F<strong>ed</strong>erico II” – Largo<br />

S. Marcellino 10 - 80138 Napoli, Italy<br />

Lavoro eseguito con il contributo finanziario <strong>di</strong> Shell Italia E&P<br />

dalle fratture più piccole, da set a minor grado <strong>di</strong> pervasività<br />

(GUERRIERO et alii., 2009). Il grado <strong>di</strong> pervasività <strong>di</strong> un<br />

fracture set può influenzare notevolmente le proprietà <strong>di</strong><br />

permeabilità <strong>del</strong>le rocce e la loro risposta idraulica ad un moto<br />

filtrante non stazionario. Infatti, considerando il moto filtrante<br />

<strong>di</strong> un fluido nella roccia, nel caso |m| < 1 si hanno “numerose”<br />

gran<strong>di</strong> fratture in cui circola il fluido proveniente da una roccia<br />

“poco” permeabile. Nel caso |m| > 1 siamo in presenza <strong>di</strong> una<br />

roccia in cui si hanno “poche” gran<strong>di</strong> fratture in cui è<br />

convogliato il fluido proveniente da un mezzo intimamente<br />

fratturato e pertanto “molto” permeabile. Quest’ultima<br />

circostanza risulta evidentemente favorevole nel caso <strong>di</strong> rocce<br />

reservoir.<br />

I maggiori problemi che si riscontrano nell’analisi <strong>del</strong>le<br />

<strong>di</strong>stribuzioni cumulative <strong>del</strong>le aperture sono dovuti: (i) alla<br />

presenza <strong>di</strong> errori sistematici in corrispondenza dei limiti <strong>del</strong>la<br />

scala <strong>di</strong> osservazione (ORTEGA et alii., 2006); (ii) al fatto che le<br />

<strong>di</strong>stribuzioni cumulative campionarie (definite come il numero<br />

<strong>di</strong> fratture per metro con apertura maggiore o uguale al valore<br />

in ascisse) consistono <strong>di</strong> stime <strong>di</strong> densità <strong>di</strong> fratture, per ogni<br />

valore <strong>di</strong> apertura, con incertezza variabile con l’ascissa (Fig.<br />

1), poiché i valori nella parte destra <strong>del</strong> <strong>di</strong>agramma sono<br />

ottenuti da campioni inevitabilmente meno numerosi <strong>di</strong> quelli<br />

più a sinistra (GUERRIERO et alii., 2009).<br />

Fig. 1 – Distribuzione cumulativa ottenuta dai dati <strong>di</strong> scan line su mudstone.<br />

L’ampiezza degli intervalli <strong>di</strong> confidenza <strong>di</strong> ogni determinazione <strong>del</strong>la<br />

frequenza cumulativa (in<strong>di</strong>cati con segmenti verticali), cresce al crescere<br />

<strong>del</strong>l’apertura.


AREA DI STUDIO<br />

Nell’Appennino meri<strong>di</strong>onale, la successione carbonatica<br />

<strong>del</strong>la Piattaforma Appenninica comprende unità stratigrafiche<br />

che sono molto simili, per età, litologia, facies, spessore<br />

complessivo, spessore dei singoli strati meccanici e tessitura,<br />

alle unità produttive <strong>del</strong> reservoir petrolifero <strong>del</strong>la Val d’Agri<br />

in Basilicata. In quest’ultima area, le rocce reservoir, deformate<br />

da ampie pieghe associate a thick-skinn<strong>ed</strong> reverse faults e<br />

strutture da tettonica <strong>di</strong> inversione coinvolgenti il basamento<br />

(MAZZOLI et alii., 2001, 2008), sono costituite da una porzione<br />

tettonicamente sepolta <strong>del</strong>la Piattaforma carbonatica Apula. Pur<br />

con le dovute cautele, tenendo conto <strong>del</strong>la <strong>di</strong>versa evoluzione<br />

strutturale e <strong>di</strong> seppellimento tettonico, le unità <strong>del</strong>la<br />

Piattaforma Appenninica possono essere utilizzate per l’analisi<br />

<strong>del</strong>la fratturazione in affioramento come analoghi dei reservoir<br />

petroliferi. Gli strati stu<strong>di</strong>ati appartengono a successioni<br />

carbonatiche triassico-cenozoiche <strong>del</strong>la Piattaforma<br />

Appenninica. e sono costituiti da calcari, dolomie a grana fina<br />

e dolomie a gran grossolana. Entrambi i tipi <strong>di</strong> dolomia si sono<br />

formati per sostituzione <strong>di</strong>agenetica precoce <strong>del</strong> calcare<br />

(IANNACE et alii, 1994). Tali successioni sono ben esposte in<br />

affioramento lungo un taglio stradale sul versante sud <strong>del</strong><br />

Monte Faito, in Penisola Sorrentina, circa 20 km a SE <strong>di</strong><br />

Napoli, ove sono stati analizzati in dettaglio strati carbonatici<br />

<strong>del</strong> Cretaceo Inferiore (Albiano).<br />

ANALISI STATISTICA: DETERMINAZIONE DELLA<br />

DISTRIBUZIONE SPAZIALE DI JOINT E VENE<br />

Il set <strong>di</strong> dati utilizzato nell’analisi statistica è stato ottenuto<br />

tramite otto scan line, effettuate su calcare, dolomie fini e<br />

dolomie grossolane. Inoltre, su <strong>di</strong> uno strato <strong>di</strong> calcare è stata<br />

eseguita una micro-scan line <strong>del</strong>la lunghezza <strong>di</strong> circa 15 cm,<br />

con ingran<strong>di</strong>mento 50x. I joint set affioranti mostrano un<br />

rapporto m<strong>ed</strong>ia / deviazione standard (SD) <strong>del</strong>le spaziature<br />

tendente all’unità (GUERRIERO et alii., 2009), in quanto la SD<br />

<strong>del</strong>le spaziature converge sistematicamente verso la spaziatura<br />

m<strong>ed</strong>ia (Fig. 2). Il coefficiente <strong>di</strong> uniformità unitario è<br />

caratteristico <strong>di</strong> una <strong>di</strong>stribuzione random (più correttamente<br />

uniforme) <strong>del</strong>le fratture nello spazio, alla quale è associata una<br />

Fig. 2 – M<strong>ed</strong>ia e deviazione standard SD <strong>del</strong>le spaziature in funzione <strong>del</strong>la<br />

<strong>di</strong>mensione <strong>del</strong> campione considerato. La convergenza stocastica <strong>del</strong>la SD<br />

verso la m<strong>ed</strong>ia è caratteristica <strong>del</strong>la <strong>di</strong>stribuzione <strong>di</strong> probabilità esponenziale.<br />

ANALISI STATISTICA MULTI-SCALA DI DATI DI SCAN LINE<br />

105<br />

<strong>di</strong>stribuzione cumulativa esponenziale <strong>del</strong>le spaziature <strong>ed</strong> una<br />

<strong>di</strong>stribuzione <strong>di</strong> Poisson <strong>del</strong>le densità <strong>di</strong> fratture (DEKKING et<br />

alii., 2005).<br />

Tuttavia il rapporto m<strong>ed</strong>ia / SD tendente ad 1 non<br />

costituisce una con<strong>di</strong>zione sufficiente affinché la <strong>di</strong>stribuzione<br />

<strong>del</strong>le spaziature sia effettivamente esponenziale. Allo scopo <strong>di</strong><br />

indagare questo aspetto, si è applicata la tecnica <strong>del</strong> bootstrap<br />

(e.g. DEKKING et alii., 2005; WASSERMAN, 2006) ai dati <strong>di</strong><br />

spaziatura e densità <strong>di</strong> fratture, secondo le modalità seguenti:<br />

Per ogni scan line, dal campione <strong>di</strong> spaziature rilevate sono<br />

state eseguite 10000 determinazioni <strong>di</strong> m<strong>ed</strong>ie tra 10 elementi<br />

scelti a caso con ripetizione <strong>ed</strong> è stata calcolata la <strong>di</strong>stribuzione<br />

cumulativa <strong>di</strong> tali m<strong>ed</strong>ie. Poiché la m<strong>ed</strong>ia <strong>di</strong> una variabile<br />

aleatoria (VA) esponenziale ha <strong>di</strong>stribuzione Chi quadrato, a<br />

tali <strong>di</strong>stribuzioni è stata applicata la funzione <strong>di</strong> <strong>di</strong>stribuzione<br />

inversa Chi quadrato, al fine <strong>di</strong> verificare che i valori ottenuti si<br />

<strong>di</strong>spongano lungo una retta (Fig. 3), in un <strong>di</strong>agramma che ha in<br />

ascissa la relativa VA <strong>ed</strong> in or<strong>di</strong>nata la funzione inversa <strong>del</strong>la<br />

<strong>di</strong>stribuzione cumulativa ad essa associata.<br />

Fig. 3 – Distribuzione inversa Chi quadrato e <strong>di</strong> Gauss <strong>del</strong>le <strong>di</strong>stribuzioni<br />

cumulative osservate tramite il metodo bootstrap, in funzione <strong>del</strong>la relativa VA.<br />

Nel primo caso i punti risultano sempre ben allineati<br />

Ogni scan line è stata sud<strong>di</strong>visa in N-1 segmenti, dove N è il<br />

numero <strong>di</strong> fratture rilevate. Scelti k segmenti a caso (nel nostro<br />

caso abbiamo posto k = 5), nell’ipotesi che i joint abbiano<br />

<strong>di</strong>stribuzione uniforme nello spazio, il numero <strong>di</strong> fratture<br />

presenti in tali segmenti è una VA <strong>di</strong> Poisson. Pertanto sono<br />

state effettuate 10000 determinazioni <strong>del</strong> numero <strong>di</strong> fratture<br />

presenti in campioni, casuali con ripetizione, <strong>di</strong> 5 segmenti <strong>ed</strong> è<br />

stata calcolata la loro <strong>di</strong>stribuzione cumulativa. Poiché la VA <strong>di</strong><br />

Poisson è <strong>di</strong>screta, non è possibile trovarne la funzione <strong>di</strong><br />

<strong>di</strong>stribuzione inversa per qualsivoglia valore <strong>di</strong> <strong>di</strong>stribuzione<br />

cumulativa, senza dover ricorrere all’uso <strong>di</strong> funzioni


106 V. GUERRIERO ET ALII<br />

interpolanti costruite ad hoc. Pertanto, per semplicità <strong>di</strong><br />

esposizione, i dati ottenuti sono riportati in un <strong>di</strong>agramma che<br />

ha in ascisse le <strong>di</strong>stribuzioni cumulative osservate <strong>ed</strong> in<br />

or<strong>di</strong>nate la <strong>di</strong>stribuzione cumulativa <strong>di</strong> Poisson relativa al<br />

m<strong>ed</strong>esimo valore assunto dalla VA (Fig. 4). I punti ottenuti si<br />

<strong>di</strong>spongono ben allineati intorno alla bisettrice <strong>del</strong> I quadrante.<br />

Ciò sta ad in<strong>di</strong>care che le due <strong>di</strong>stribuzioni praticamente<br />

coincidono.<br />

Per confronto, in entrambi i casi (Figg. 3 e 4) sono state<br />

riportate anche le relative <strong>di</strong>stribuzioni <strong>di</strong> Gauss.<br />

In definitiva l’analisi statistica <strong>del</strong>le spaziature ha<br />

Fig. 4 – Frequenza cumulativa teorica in funzione <strong>di</strong> quella osservata,<br />

secondo le <strong>di</strong>stribuzioni <strong>di</strong> probabilità <strong>di</strong> Poisson e <strong>di</strong> Gauss. Nel primo<br />

caso i punti risultano sempre ben allineati alla bisettrice <strong>del</strong> I quadrante,<br />

ossia risulta: frequenza osservata ≈ frequenza teorica <strong>di</strong> Poisson.<br />

confermato che la spaziatura m<strong>ed</strong>ia ha una <strong>di</strong>stribuzione Chi<br />

quadrato (che compete alla m<strong>ed</strong>ia <strong>di</strong> una VA esponenziale) e la<br />

densità <strong>di</strong> fratture è descritta dalla <strong>di</strong>stribuzione <strong>di</strong> probabilità<br />

<strong>di</strong> Poisson. Tali caratteristiche sono entrambe tipiche <strong>di</strong> una<br />

<strong>di</strong>stribuzione uniforme <strong>del</strong>le fratture lungo la scan line.<br />

ANALISI STATISTICA: DISTRIBUZIONE DI<br />

PROBABILITÀ DELLE APERTURE E<br />

QUANTIFICAZIONE DELLE INCERTEZZE<br />

Le <strong>di</strong>stribuzioni cumulative osservate <strong>del</strong>le aperture dei<br />

joint consistono <strong>di</strong> stime <strong>di</strong> densità <strong>di</strong> fratture, calcolate per<br />

ogni classe <strong>di</strong> apertura. L’incertezza associata ad ogni stima <strong>di</strong><br />

densità m<strong>ed</strong>ia <strong>di</strong> fratture può essere descritta dal suo intervallo<br />

<strong>di</strong> confidenza al 95% (definito come l’intervallo reale che<br />

contiene la m<strong>ed</strong>ia <strong>del</strong>la popolazione con probabilità <strong>del</strong> 95%).<br />

Gli intervalli <strong>di</strong> confidenza al 95% possono essere calcolati<br />

rapidamente tramite le equazioni seguenti (GUERRIERO et alii.,<br />

2009):<br />

Flow = (1 – 1.96 / (N – 1) 1/2 ) ⋅ N / L (1)<br />

Fupp = (1 + 1.96 / (N – 1) 1/2 ) ⋅ N / L (2)<br />

dove Flow <strong>ed</strong> Fupp in<strong>di</strong>cano i limiti inferiore e superiore<br />

<strong>del</strong>l’intervallo <strong>di</strong> confidenza, N il numero <strong>di</strong> fratture rilevate <strong>ed</strong><br />

L la lunghezza <strong>del</strong>la scan line. Le eq. (1) e (2) introducono<br />

un’approssimazione nel calcolo, basata sull’applicazione <strong>del</strong><br />

teorema <strong>del</strong> limite centrale. In base al confronto con un<br />

algoritmo <strong>di</strong> calcolo esatto, che utilizza la <strong>di</strong>stribuzione <strong>di</strong><br />

probabilità <strong>di</strong> Poisson per le densità <strong>di</strong> fratture, si può<br />

affermare che tali equazioni forniscono risultati per noi<br />

accettabili per N 20 (GUERRIERO et alii., 2009).<br />

Quin<strong>di</strong> ogni intervallo <strong>di</strong> confidenza osservato in Fig. 1 ha<br />

ampiezza che è funzione <strong>del</strong>lo stesso valore stimato, <strong>di</strong><br />

conseguenza, come si può osservare dal <strong>di</strong>agramma, si ha il<br />

fenomeno <strong>del</strong>l’eterosch<strong>ed</strong>asticità (DEKKING et alii., 2005).<br />

Pertanto non è corretta l’applicazione <strong>del</strong> metodo dei minimi<br />

quadrati per in<strong>di</strong>viduare la retta <strong>di</strong> regressione, senza l’uso <strong>di</strong><br />

opportune funzioni peso per i residui. La conseguenza più<br />

problematica <strong>di</strong> tale metodologia consiste nel fatto che la<br />

maggiore incertezza associata ai punti più a destra nel<br />

<strong>di</strong>agramma, determina un errore aleatorio notevole sul<br />

coefficiente angolare <strong>del</strong>la retta <strong>di</strong> regressione (ossia<br />

l’esponente <strong>del</strong>la legge <strong>di</strong> potenza). Una significativa riduzione<br />

<strong>del</strong>l’incertezza <strong>di</strong> stima <strong>del</strong>l’esponente suddetto può essere<br />

ottenuta da un’analisi multi-scala, integrando dati <strong>di</strong> micro-scan<br />

line con la tra<strong>di</strong>zionale analisi eseguita su scan line in<br />

affioramento (Fig. 5a). Tuttavia anche in questo caso resta il<br />

problema <strong>del</strong>la correttezza <strong>del</strong>l’applicazione <strong>del</strong> metodo dei<br />

minimi quadrati ad un set <strong>di</strong> dati eterosch<strong>ed</strong>astico.<br />

Tale problema è risolto utilizzando una retta passante per<br />

due punti, uno per ogni set <strong>di</strong> dati (Fig. 5b). I punti sono scelti<br />

in maniera tale da avare stime basate sul maggior numero<br />

possibile <strong>di</strong> fratture campionate per ogni set (i punti più a<br />

sinistra nel <strong>di</strong>agramma), che non siano affette da errori <strong>di</strong><br />

troncamento (ORTEGA et alii., 2006). Questo metodo riduce<br />

significativamente l’errore aleatorio nella determinazione<br />

<strong>del</strong>l’esponente <strong>del</strong>la legge <strong>di</strong> potenza.<br />

In Fig. 6 sono riportati i risultati <strong>di</strong> una simulazione Monte<br />

Carlo (con 10000 determinazioni per ogni caso) <strong>di</strong>: scan line<br />

Fig.5 – Distribuzione cumulativa ottenuta dall’uso congiunto <strong>di</strong> dati da scan<br />

line tra<strong>di</strong>zionale e da micro scan line: A) interpolazione tramite retta dei<br />

minimi quadrati; B) Interpolazione dati tramite retta per due punti. I due<br />

segmenti verticali in<strong>di</strong>cano gli intervalli <strong>di</strong> confidenza, calcolati con il<br />

metodo esatto. Le due rette grigie passano per i valori estremi degli intervalli<br />

<strong>di</strong> confidenza.


tra<strong>di</strong>zionale, scan line multiscala con interpolazione secondo il<br />

metodo dei minimi quadrati e scan line multiscala con retta per<br />

due punti, partendo dalla m<strong>ed</strong>esima <strong>di</strong>stribuzione teorica <strong>di</strong><br />

aperture. I <strong>di</strong>agrammi riportano le <strong>di</strong>stribuzioni bivariate <strong>di</strong><br />

probabilità dei valori stimati <strong>di</strong> coefficiente <strong>ed</strong> esponente <strong>del</strong>la<br />

power law.<br />

Come risulta evidente dal <strong>di</strong>agramma <strong>di</strong> Fig. 6c l’uso <strong>di</strong> una<br />

retta per due punti in luogo <strong>di</strong> una retta dei minimi quadrati<br />

determina, per il m<strong>ed</strong>esimo data set, una <strong>di</strong>spersione molto<br />

minore dei valori osservati rispetto ai valori reali <strong>del</strong><br />

coefficiente <strong>ed</strong> esponente <strong>del</strong>la legge <strong>di</strong> potenza.<br />

CONSIDERAZIONI CONCLUSIVE<br />

Una corretta analisi <strong>del</strong>le <strong>di</strong>stribuzioni statistiche <strong>del</strong>le<br />

Fig 6 – Simulazione Monte Carlo <strong>di</strong> 10000 osservazioni <strong>del</strong>la m<strong>ed</strong>esima<br />

<strong>di</strong>stribuzione <strong>di</strong> probabilità teorica <strong>di</strong> aperture, condotte secondo le modalità<br />

seguenti: A) scan line tra<strong>di</strong>zionale, B) scan line multi-scala con metodo dei<br />

minimi quadrati, C) scan line multi-scala con retta per due punti. Sugli assi<br />

orizzontali sono riportati coefficiente <strong>ed</strong> esponente <strong>del</strong>la power law stimati.<br />

Sull’asse verticale è riportata la densità <strong>di</strong> frequenza.<br />

aperture dei joint nei carbonati fratturati richi<strong>ed</strong>e, oltre la stima<br />

dei parametri <strong>di</strong> maggior interesse, la quantificazione <strong>del</strong>le<br />

incertezze associate a tali stime. La determinazione <strong>del</strong>la<br />

<strong>di</strong>stribuzione spaziale dei joint costituisce una fase<br />

irrinunciabile <strong>del</strong>l’analisi statistica, poiché l’applicazione <strong>del</strong>le<br />

eq. (1) e (2) (nonché <strong>del</strong> metodo esatto) per il calcolo degli<br />

intervalli <strong>di</strong> confidenza, si basa sul presupposto teorico che la<br />

spaziatura m<strong>ed</strong>ia abbia una <strong>di</strong>stribuzione <strong>di</strong> probabilità Chi<br />

quadrato e la densità <strong>di</strong> fratture segua la <strong>di</strong>stribuzione <strong>di</strong><br />

Poisson. Una volta verificate tali con<strong>di</strong>zioni si può proc<strong>ed</strong>ere<br />

all’analisi <strong>del</strong>le <strong>di</strong>stribuzioni cumulative <strong>del</strong>le aperture dei joint<br />

ANALISI STATISTICA MULTI-SCALA DI DATI DI SCAN LINE<br />

107<br />

secondo lo schema proposto.<br />

Un’ampia sperimentazione m<strong>ed</strong>iante simulazioni Monte<br />

Carlo ha messo in evidenza come l’applicazione <strong>di</strong> un’analisi<br />

statistica multi-scala e <strong>del</strong> criterio proposto per determinare la<br />

legge <strong>di</strong> potenza che approssima la <strong>di</strong>stribuzione cumulativa<br />

<strong>del</strong>le aperture dei joint (retta per due punti in luogo <strong>del</strong>la retta<br />

dei minimi quadrati), consente una riduzione notevole degli<br />

errori <strong>di</strong> stima <strong>del</strong>l’esponente. Nel caso riportato in Fig. 5 (scan<br />

line su mudstone) la stima <strong>del</strong>l’esponente è pari a 1.26 (in<br />

valore assoluto) <strong>ed</strong> il valore “reale” è compreso nell’intervallo<br />

[0.98 , 1.47] con probabilità <strong>del</strong> 90%.<br />

REFERENCES<br />

DEKKING F. M., KRAAIKAMP C., LOPUHAA H. P. & MEESTER L.<br />

E. (2005) - A Modern Introduction to Probability and<br />

Statistics: Understan<strong>di</strong>ng Why and How. Springer-Verlag,<br />

London (UK).<br />

IANNACE A., GALLUCCIO L., GUERRIERO V., MAZZOLI S.,<br />

PARENTE M. & VITALE S. (2008) - Dolomites within the<br />

Mesozoic carbonates of Southern Apennines (Italy): genetic<br />

mo<strong>del</strong>s and reservoir implications. Rend. Online Soc. Geol.<br />

It. 2, 109-114.<br />

GUERRIERO V., IANNACE A., MAZZOLI S., PARENTE M., VITALE<br />

S. & GIORGIONI M. (2009) - Quantifying uncertainties in<br />

multi-scale stu<strong>di</strong>es of fractur<strong>ed</strong> reservoir analogues:<br />

Implement<strong>ed</strong> statistical analysis of scan line data. Journ.<br />

Struct. Geol. (Approvato per la pubblicazione).<br />

MAZZOLI S., BARKHAM S., CELLO G., GAMBINI R., MATTIONI<br />

L., SHINER P. & TONDI E. (2001) - Reconstruction of<br />

continental margin architecture deform<strong>ed</strong> by the<br />

contraction of the Lagonegro basin, Southern Apennines,<br />

Italy. Journ. Geol. Soc. 158, 309-319.<br />

MAZZOLI S., D’ERRICO M., ALDEGA L., CORRADO S.,<br />

INVERNIZZI C., SHINER P. & ZATTIN M. (2008) – Tectonic<br />

burial and “young” (< 10 Ma) exhumation in the southern<br />

Apennines fold and thrust belt (Italy). Geology 36, 243-<br />

246.<br />

ORTEGA O., MARRETT R. & LAUBACH E. (2006) - A scaleindependent<br />

approach to fracture intensity and average<br />

spacing measurement. AAPG Bull. 90, 193-208.<br />

WASSERMAN L. (2006) - All of Nonparametric Statistics.<br />

Springer Science, New York (USA).


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 108-110, 2ff.<br />

Influence of inherit<strong>ed</strong> geometry and fault history on the seismogenic<br />

activity and potential of strike-slip fault systems in NW Slovenia:<br />

the case study of the Ravne Fault.<br />

RIASSUNTO<br />

L’influenza <strong>del</strong>le geometrie er<strong>ed</strong>itate e <strong>del</strong>la storia <strong>del</strong>la faglia sulla<br />

segmentazione e il potenziale sismogenetico dei sistemi trascorrenti in<br />

Slovenia nord-occidentale: la Faglia <strong>di</strong> Ravne.<br />

La zona <strong>di</strong> faglia Ravne è situata in un area <strong>di</strong> interazione fra due sistemi<br />

regionali <strong>di</strong> faglie con <strong>di</strong>fferente cinematica, entrambi collegati alla<br />

convergenza fra Adria e Eurasia: le faglie <strong>di</strong>nariche orientate NW-SE e le<br />

faglie <strong>del</strong> Sud-alpino orientate E-W.<br />

L’analisi <strong>di</strong> dati <strong>di</strong> geologia strutturale e <strong>di</strong> due sequenze sismiche recenti<br />

che hanno colpito l’area, ci permette <strong>di</strong> proporre un mo<strong>del</strong>lo sismotettonico per<br />

la faglia <strong>di</strong> Ravne, che è stata interessata da <strong>di</strong>verse fasi tettoniche. La<br />

geometria originale e la storia evolutiva <strong>del</strong>la zona <strong>di</strong> faglia svolgono un ruolo<br />

cruciale nella <strong>di</strong>stribuzione recente <strong>del</strong>l’attività sismica e <strong>del</strong> potenziale<br />

sismogenetico <strong>del</strong>l’intera struttura. Infatti, la configurazione attuale <strong>del</strong>la faglia<br />

Ravne, caratterizzata da fagliazione trascorrente su piani ad alto angolo a<br />

profon<strong>di</strong>tà crostali, è il risultato <strong>del</strong>l’iniziale geometria <strong>di</strong> un thrust orientato<br />

NW-SE e avente immersione verso NE, e <strong>del</strong>la sua interazione con i piani <strong>di</strong><br />

thrust <strong>di</strong>retti essenzialmente E-W. Partendo dai dati raccolti e tenendo in<br />

considerazione sia il quadro geo<strong>di</strong>namico che le relazioni empiriche,<br />

proponiamo tre possibili scenari con relativi potenziali sismogenetici per la<br />

possibile futura attività <strong>del</strong>la faglia <strong>di</strong> Ravne.<br />

Key words: fault geometry, fault growth and linkage processes,<br />

reactivation, seismicity.<br />

INTRODUCTION<br />

In this work we study the influence of the inherit<strong>ed</strong><br />

structural pattern and the fault history on the segmentation and<br />

seismogenic potential of the Ravne Fault, a fault zone locat<strong>ed</strong><br />

in the eastern Southern Alps. We also present a mo<strong>del</strong> of<br />

development of the Ravne fault, as a fault zone, which has<br />

undergone multiple tectonic phases. The emphasis of this work<br />

is on the fault's seismic activity and its relat<strong>ed</strong> seismogenic<br />

potential. For this purpose we analyz<strong>ed</strong> surficial geological and<br />

structural data to study the fault geometry and the<br />

microkinematic in<strong>di</strong>cators present within the fault zone. We<br />

also carri<strong>ed</strong> out a detail<strong>ed</strong> study of the spatial, temporal and<br />

kinematic characteristics of the 1998 and 2004 seismic<br />

_________________________<br />

VANJA KASTELIC (*, °), PIERFRANCESCO BURRATO (*) & MARKO VRABEC (°)<br />

(*) Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia, <strong>Sezione</strong> <strong>di</strong> Sismologia e<br />

Tettonofisica, Roma, Italy<br />

(°) Department of Geology, Faculty of Natural Sciences and Engineering,<br />

University of Ljubljana, Askerceva 12, 1000 Ljubljana, Slovenia<br />

sequences.<br />

The Ravne Fault is a NW-SE tren<strong>di</strong>ng, right-lateral strikeslip<br />

fault that lies in the western Julian Alps of NW Slovenia.<br />

In this area the NW-SE orient<strong>ed</strong> faults, typical of the Dinaric<br />

domain, meet and interact with the E-W orient<strong>ed</strong> faults of the<br />

South Alpine domain (e.g. CASTELLARIN & CANTELLI, 2000;<br />

DOGLIONI, 1987; PAMI et alii, 2002). The activity of both<br />

structural trends is controll<strong>ed</strong> by the Adria-Europe relative<br />

convergence, that in the study area results in about 2 mm/a of<br />

N-S orient<strong>ed</strong> shortening (WEBER et alii, 2006, GRENERCZY et<br />

alii, 2005). This deformation is seismically releas<strong>ed</strong> by thrust<br />

faulting earthquakes along the Eastern Southern Alps fronts,<br />

and by right-lateral strike-slip faulting along the Dinaric system<br />

(e.g. BURRATO et alii, 2008; DISS WORKING GROUP, 2007).<br />

Fig. 1 – Map of the main faults in the NW Slovenia, with the emphasis on<br />

the geometry of Ravne Fault. In the upper left corner a regional tectonic<br />

framework with depict<strong>ed</strong> main structures is shown; blue rectangle showing<br />

area of investigations of this study.<br />

STRUCTURAL SETTING<br />

The morphological expression of the Ravne Fault can be<br />

observ<strong>ed</strong> in the field and on satellite and <strong>di</strong>gital topographic<br />

imagery over a <strong>di</strong>stance of approximately 30 km in a NW–SE<br />

<strong>di</strong>rection (Fig. 1) between Kal Koritnica in the NW and Cerkno<br />

at the SE end (KASTELIC et alii, 2008). The fault trace is<br />

<strong>di</strong>scontinuous, interrupt<strong>ed</strong> by local transtensional basins<br />

arrang<strong>ed</strong> in a right stepping manner. The fault zone consists of<br />

in<strong>di</strong>vidual NE-<strong>di</strong>pping fault planes with <strong>di</strong>fferent <strong>di</strong>p angles.<br />

The shallower <strong>di</strong>pping planes, with values between 40°-60°,<br />

usually represent the contact between Cretaceous flysh rocks in


109<br />

INFLUENCE OF INHERITED GEOMETRY AND FAULT HISTORY ON THE SEISMOGENIC ACTIVITY AND POTENTIAL OF STRIKE-SLIP FAULT<br />

SYSTEMS IN NW SLOVENIA: THE CASE STUDY OF THE RAVNE FAULT<br />

the foot-wall and Triassic limestones in the hanging-wall. In<br />

places, where such planes are present within the limestones,<br />

shear zones are also present. The geometry of the planes and<br />

the shear bands in<strong>di</strong>cate uplift of the hanging-wall blocks. Well<br />

develop<strong>ed</strong> cataclastic zones up to a few centimetres wide are<br />

develop<strong>ed</strong> adjacent to some planes, whereas in other places,<br />

shear<strong>ed</strong> surfaces of polish<strong>ed</strong> tectonic breccia occur in the<br />

innermost fault zone. Fault-relat<strong>ed</strong> deformation on moderatly<br />

<strong>di</strong>pping fault planes is not confin<strong>ed</strong> only to the steep trace of<br />

the Ravne Fault, but is rather well record<strong>ed</strong> also on fault planes<br />

of the foot-wall block. Where preserv<strong>ed</strong>, microkinematic<br />

in<strong>di</strong>cators on these planes prove <strong>di</strong>p slip <strong>di</strong>splacements. Planes<br />

with steeper <strong>di</strong>ps reaching values of more then 75 degrees in<br />

most cases lack of microkinematic in<strong>di</strong>cators. Throughout the<br />

outcrops along the trace of the fault zone, only in<strong>di</strong>vidual<br />

subvertical planes with visible striation marks and horizontal<br />

grooves showing strike-slip movement are present. In places,<br />

also (sub)vertical fractures cutting through the more shallowly<br />

<strong>di</strong>pping thrust planes can be observ<strong>ed</strong> at the surface, in<strong>di</strong>cating<br />

the propagation towards the surface of the steep subvertical<br />

planes forming at depth (KASTELIC et alii, 2008).<br />

Recent seismicity record<strong>ed</strong> in the Ravne Fault zone shows<br />

that ongoing seismic activity is confin<strong>ed</strong> to shallow crustal<br />

levels and does not exce<strong>ed</strong> depths beyond 10 km. The 1998<br />

Fig. 2 – Spatial <strong>di</strong>stribution of aftershock sequences of the 1998 and 2004<br />

Ravne Fault earthquake events. Grey triangles depict the 1998 MW= 5.6,<br />

black circles the 2004 MW= 5.2 earthquake seismic sequences, respectively.<br />

The grey and light-greyish stars represent the 1998 and 2004 main shock<br />

locations, respectively. Grey-colour<strong>ed</strong> focal mechanism belong to the 1998<br />

(ZUPANI et alii, 2001), the black solutions to the 2004 events (KASTELIC et<br />

alii, 2006). R<strong>ed</strong> boxes represent the sources for both main shocks of the two<br />

seismic sequences, with the geometries obtain<strong>ed</strong> from their focal<br />

mechanisms and <strong>di</strong>mensions in agreement with geometrical empirical<br />

relationships (WELLS & COPPERSMITH, 1994).<br />

(MW=5.7) and 2004 (MW=5.2) earthquake sequences were<br />

characteriz<strong>ed</strong> by focal mecanisms ranging from dextral strikeslip<br />

to almost pure reverse faulting (KASTELIC et alii, 2006;<br />

Fig. 2). The main shocks of both earthquakes <strong>del</strong>ineate<br />

prevailing dextral strike-slip movements on steep SW <strong>di</strong>pping<br />

planes. The 1998 earthquake cluster follows a NW–SE trend,<br />

with the main shock locat<strong>ed</strong> approximately at 4.5 km from the<br />

fault’s NW tip, whereas the SE end of the cluster reaches the<br />

Tolminka Springs basin. Focal mechanism solutions for<br />

stronger aftershock events in<strong>di</strong>cate thrust or reverse<br />

movements on N <strong>di</strong>pping fault planes on both ends of the<br />

cluster, all within the first 7 km of the crust (ZUPANI et alii,<br />

2001). The earthquake <strong>di</strong>d not cause surface faulting, but it <strong>di</strong>d<br />

(re)activate a 12 km long and 7 km wide rectangular fault plane<br />

with an average slip of 18 cm (BAJC et alii, 2001). The 2004<br />

earthquake was weaker and also <strong>di</strong>d not cause surface faulting.<br />

The epicentre of the main shock was locat<strong>ed</strong> about 1 km from<br />

the 1998 main shock location. This event and its aftershock<br />

sequence were also confin<strong>ed</strong> to shallow crustal levels. The<br />

spatial <strong>di</strong>stribution of aftershocks is not as homogeneous in<br />

<strong>di</strong>rection as for the 1998 cluster. Two <strong>di</strong>stinctive branches of<br />

aftershocks can be observ<strong>ed</strong> for the 2004 sequence: one line<br />

continues in a NW–SE <strong>di</strong>rection rupturing an area further NW<br />

of the 1998 cluster, while the other line branches off in an E–W<br />

<strong>di</strong>rection (Fig. 2). The comput<strong>ed</strong> focal mechanisms for the<br />

stronger aftershocks (KASTELIC et alii, 2006) show similar<br />

kinematics as the main shock, the <strong>di</strong>fference being a larger <strong>di</strong>pslip<br />

component for some aftershocks, in<strong>di</strong>cating oblique<br />

dextral-reverse movements on steep to moderate-steep NW–SE<br />

orient<strong>ed</strong> fault planes and oblique reverse-dextral and reverse<br />

movements on E–W orient<strong>ed</strong>, moderate-steep faults.<br />

DISCUSSION<br />

Knowing and understan<strong>di</strong>ng the geometry, time history and<br />

recent seismic destribution is essential in provi<strong>di</strong>ng a reliable<br />

seismotectonic mo<strong>del</strong> and seismogenic potential assesment of a<br />

fault that has undergone multiple tectonic phases. In the case of<br />

Ravne Fault it was proven that the original geometry of the<br />

fault plane connect<strong>ed</strong> to SW verging thrusting phase plays an<br />

important role also in the recent seismic behaviour of the fault<br />

zone (KASTELIC et alii, 2008). During both the recent seismic<br />

sequences record<strong>ed</strong> in the Ravne Fault zone the main shocks<br />

occurr<strong>ed</strong> on SW-<strong>di</strong>pping subvertical fault planes, while the<br />

aftershocks were <strong>di</strong>stribu<strong>ed</strong> on NE to N <strong>di</strong>pping fault planes<br />

relat<strong>ed</strong> to the older thrusting phase. Of important significance<br />

is also the presence of the E-W thrusting phases within the<br />

fault zone, that caus<strong>ed</strong> <strong>di</strong>sintegration and <strong>di</strong>splacements of the<br />

NW-SE orient<strong>ed</strong> thrust zone, and formation of local<br />

geometrical barriers that are governing the seismic <strong>di</strong>stribution<br />

acting as segment boundaries. Examples of such behaviour can<br />

be found at both tips of the Ravne Fault. To the SE, the<br />

Tolminka Springs basin, an E-W tren<strong>di</strong>ng thrust system meets<br />

the NW-SE orient<strong>ed</strong> fault zone causing its <strong>di</strong>splacement and<br />

formation of a transtensional basin that act<strong>ed</strong> as a stopping<br />

barrier for the SE propagation of the 1998 earthquake<br />

sequence. From this location further to the SE the fault trace is<br />

getting more and more <strong>di</strong>scontinous and slowly fa<strong>di</strong>ng away,<br />

although some reports show its continuation in the SE <strong>di</strong>rection<br />

for further 15 km (GRAD & FERJANI, 1968). At the NW tip<br />

of the fault zone, the surface expression of the fault trace is lost<br />

in the Bovec basin under the Quaternary s<strong>ed</strong>iment infill, while<br />

in the NW slopes above the basin no fault trace can be<br />

observ<strong>ed</strong>. Close to the location of NW-SE orient<strong>ed</strong> fault trace<br />

entering the Bovec basin is also the location of the intersection<br />

with the E-W orient<strong>ed</strong> fault plane that was reactivat<strong>ed</strong> during<br />

the the 2004 earthquake sequence.<br />

Given such structural setting three <strong>di</strong>fferent seismotectonic<br />

scenarios can be envisag<strong>ed</strong>:


110 V. KASTELIC ET ALII<br />

a) if the existence of the SE continuation of the Ravne<br />

Fault zone with a length of about 15 km is establish<strong>ed</strong>, the<br />

coseismic rupture of this new segment would result in an<br />

earthquake of magnitude similar to that of the 1998 event;<br />

b) with the same assumption, the rupture of the entire<br />

Ravne Fault zone by breaching of the Tolminka Springs basin<br />

segment boundary, would produce a stronger earthquake.<br />

Taking into consideration the length of the fault trace and<br />

keeping the geometry and kinematics of the 1998 source, a<br />

Mw=6.1 earthquake is propos<strong>ed</strong> by empirical relationships<br />

(WELLS & COPPERSMITH, 1994);<br />

c) the coseismic rupture of the E-W orient<strong>ed</strong> thrust plane<br />

already activat<strong>ed</strong> during the 2004 earthquake sequence, would<br />

result in a Mw=5.5 earthquake.<br />

The mo<strong>del</strong> of segmentation appli<strong>ed</strong> in this case study can<br />

be appli<strong>ed</strong> also to the other fault systems of the region, which<br />

share the same geometry and the same structural development<br />

as the Ravne Fault. One of these fault systems is the NW-SE<br />

orient<strong>ed</strong> Idrija Fault, responsible for the 1511 M=6.9<br />

earthquake (FITZKO et alii, 2005) that is the strongest<br />

earthquake record<strong>ed</strong> in the region. Given the continuation of<br />

the fault trace to the SE, a higher magnitude earthquake with<br />

strike-slip motion is pr<strong>ed</strong>ict<strong>ed</strong> by our mo<strong>del</strong> that is in<br />

accordance with the data of known seismicity. By taking into<br />

consideration all the data known we can improve the<br />

understan<strong>di</strong>ng of recent and future seisimic processes of a<br />

particular region and fault systems and therefore contribute to<br />

more realistic and reliable seismogenic potential assesments.<br />

REFERENCES<br />

BAJC, J., AOUDIA, A., SARAO, A. & SUHADOLC P. (2001) - The<br />

Bovec–Krn mountain (Slovenia) earthquake sequence.<br />

Geophys. Res. Lett., 28 (9), 1839–1842.<br />

BURRATO P., POLI M.E., VANNOLI P., ZANFERRARI A., BASILI<br />

R. & GALADINI F. (2008) - Sources of Mw 5+ earthquakes<br />

in northeastern Italy and western Slovenia: An updat<strong>ed</strong><br />

view bas<strong>ed</strong> on geological and seismological evidence.<br />

Tectonophysics, 453, 157-176, doi: 10.1016/j.tecto.<br />

2007.07.009.<br />

CASTELLARIN A. & CANTELLI L. (2000) - Neo-Alpine evolution<br />

of the Southern Eastern Alps. J. Geodyn., 30, 251–274.<br />

DISS WORKING GROUP (2007) - Database of In<strong>di</strong>vidual<br />

Seismogenic Sources (version 3.0.4): A compilation of<br />

potential sources for earthquakes larger than M 5.5 in Italy<br />

and surroun<strong>di</strong>ng areas. Available at:<br />

http://www.ingv.it/DISS.<br />

DOGLIONI C. (1987) - Tectonics of the Dolomites (Southern<br />

Alps Northern Italy). J. Struct. Geol., 9, 181–193.<br />

FITZKO, F., SUHADOLC, P., AOUDIA A. & PANZA G.F. (2005) -<br />

Constrains on the location and mechanism of the 1511<br />

Western–Slovenia earthquake from active tectonics and<br />

mo<strong>del</strong>ing of macroseismic data. Tectonophysics, 404, 77–<br />

90.<br />

GRAD, K. & FERJANI L. (1968) - Basic geological map of<br />

SFR Yugoslavia 1:100 000, Explanatory notes for Sheet<br />

Tolmin and Videm. Zvezni geološki zavod, Beograd, 67 pp.<br />

GRENERCZY, G., SELLA G., STEIN S. & KENYERES, A. (2005) -<br />

Tectonic implications of the GPS velocity field in the<br />

northern Adriatic region. Geophys. Res. Lett., 32, L16311.<br />

doi:10.1029/2005GL022947.<br />

KASTELIC, V., ŽIVI M., PAHOR J. & GOSAR A. (2006) -<br />

Seismotectonic characteristics of the 2004 earthquake in<br />

Krn mountains. Potresi v letu 2004, EARS, 78–87.<br />

KASTELIC, V., VRABEC M., CUNNINGHAM D. & GOSAR A.<br />

(2008) - Neo-Alpine structural evolution and present-day<br />

tectonic activity of the eastern Southern Alps: The case of<br />

the Ravne Fault, NW Slovenia. J. Struct. Geol., 30, 963–<br />

975, doi:10.1016/j.jsg.2008.03.009.<br />

PAMI, J., TOMLJENOVI B. & BALEN D. (2002) - Geodynamic<br />

and petrogenetic evolution of Alpine ophiolites from the<br />

central and NW Dinarides: an overview. Lithos, 65, 113–<br />

142.<br />

WEBER J., VRABEC, M., STOPAR, B., PAVLOVI PREŠEREN, P.,<br />

DIXON, T. (2006) - The PIVO 2003 experiment: A GPS<br />

study of Istria peninsula and Adria microplate motion, and<br />

active tectonics in Slovenia. In: Pinter, N. (Ed.), The Adria<br />

microplate: GPS geodesy, tectonics and hazards. NATO<br />

Science Series. IV, Earth and Environmental Sciences, 61,<br />

305-320.<br />

WELLS, D.L. & COPPERSMITH K.J. (1994) - New empirical<br />

relationships among magnitude, rupture length, rupture<br />

width, rupture area, and surface <strong>di</strong>splacement. Bull.<br />

Seismol. Soc. Am., 84, 4, 974–1002.<br />

ZUPANI, P., CECI I., GOSAR A., PLACER L., POLJAK M. &<br />

ŽIVI M. (2001) - The earthquake of 12 April 1998 in the<br />

Krn Mountains (Upper Soa valley, Slovenia) and its<br />

seismotectonic characteristics. Geologija, 44 (1), 169–192.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 111-114, 1 ff.<br />

The Liguride Complex of the Pollino area (Southern Apennines): tectonic setting and<br />

preliminary mineralogical data<br />

SALVATORE LAURITA (*), FRANCESCO CAVALCANTE (**), CLAUDIA BELVISO (**) & GIACOMO PROSSER (*)<br />

RIASSUNTO<br />

Il Complesso Liguride affiorante nell’area <strong>del</strong> Pollino (Appennino<br />

meri<strong>di</strong>onale): assetto tettonico e dati mineralogici preliminari<br />

Il Complesso Liguride affiorante nell’area <strong>del</strong> Pollino rappresenta il relitto<br />

<strong>di</strong> un prisma <strong>di</strong> accrezione che è entrato in collisione con il margine passivo<br />

apulo durante il Miocene inferiore. Nel corso <strong>del</strong>l’evoluzione accrezionale e<br />

durante la successiva evoluzione collisionale si sono in<strong>di</strong>viduate una una serie<br />

<strong>di</strong> unità tettoniche caratterizzate da caratteristiche litologiche peculiari e da<br />

una <strong>di</strong>fferente sovraimpronta metamorfica. Nuovi dati strutturali e<br />

mineralogici permettono <strong>di</strong> <strong>di</strong>stinguere all'interno <strong>del</strong> Complesso Liguride tre<br />

unità tettoniche che sono, dall'alto verso il basso: (i) l'Unità <strong>del</strong> Frido,<br />

costituita da serpentiniti, metabasiti, scaglie <strong>di</strong> crosta continentale e<br />

metas<strong>ed</strong>imenti <strong>di</strong> basso grado; (ii) l'Unità <strong>del</strong> M. Tumbarino, costituita da<br />

metapeliti <strong>di</strong> grado molto basso con subor<strong>di</strong>nati basalti e gabbri; (iii) l'Unità<br />

Nord Calabrese, non metamorfica, costituita da ofioliti alla base e da argilliti e<br />

arenarie verso l'alto.<br />

Lo stu<strong>di</strong>o <strong>di</strong> terreno ha permesso <strong>di</strong> riconoscere che la parte alta <strong>del</strong>l'Unità<br />

<strong>del</strong> Frido è costituita da metabasiti foliate ricoperte da scaglie <strong>di</strong> serpentiniti<br />

nel settore sudoccidentale e da serpentiniti e scaglie <strong>di</strong> crosta continentale<br />

settore sudorientale. In entrambi i settori i metas<strong>ed</strong>imenti sono tipici <strong>del</strong>la<br />

porzione inferiore <strong>del</strong>l'Unità. Le varie unità litologiche <strong>del</strong>l'Unità <strong>del</strong> Frido<br />

sono interessate da una sequenza <strong>di</strong> fasi deformative in parte contemporanea<br />

ad un metamorfismo <strong>di</strong> alta pressione e bassa temperatura. I valori <strong>del</strong>l'in<strong>di</strong>ce<br />

<strong>di</strong> Kübler, ottenuti m<strong>ed</strong>iante l'analisi <strong>di</strong>ffrattometrica a raggi X <strong>di</strong><br />

metas<strong>ed</strong>imenti pelitici, hanno permesso <strong>di</strong> stimare temperature comprese tra<br />

200-220°C nel settore nordorientale e 300-350°C nel settore sudoccidentale. I<br />

valori <strong>del</strong> parametro b0 <strong>del</strong>le miche e la presenza <strong>di</strong> aragonite sono coerenti<br />

con una pressione <strong>di</strong> 7-9 Kbar. Temperature significativamente inferiori<br />

possono essere stimate per l'Unità <strong>del</strong> M. Tumbarino (180-200°C) e l'Unità<br />

Nord Calabrese (120-150°C). In conclusione, si ritiene che il prisma <strong>di</strong><br />

accrezione liguride, durante la collisione con il margine apulo, sia stato<br />

sud<strong>di</strong>viso in una pila <strong>di</strong> unità tettoniche che testimoniano con<strong>di</strong>zioni <strong>di</strong><br />

pressione e temperatura progressivamente decrescenti dall'alto verso il basso.<br />

Parole Chiave: Complesso Liguride, Appennino meri<strong>di</strong>onale,<br />

cuneo d’accrezione, metamorfismo HP/LT, In<strong>di</strong>ce <strong>di</strong><br />

Kübler.<br />

Key Words: Liguride Complex, Southern Apennines,<br />

accretionary w<strong>ed</strong>ge, HP/LT-metamophism, Kübler Index.<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Università <strong>del</strong>la Basilicata, Via<br />

<strong>del</strong>l’Ateneo Lucano, 10 – 85100, Potenza, Italy<br />

(**) IMAA CNR, C.da S. Loja - Zona Industriale, 85050 Tito Scalo (PZ),<br />

Italy<br />

INTRODUCTION<br />

The Liguride Complex in the Pollino area (Fig. 1)<br />

represents the remnants of an accretionary w<strong>ed</strong>ge that<br />

underwent collision with the Apulian passive margin during the<br />

early Miocene (KNOTT, 1994). The accretion history and the<br />

later collisional evolution produc<strong>ed</strong> a series of thrust sheets<br />

showing <strong>di</strong>fferent lithological features and metamorphic<br />

overprint. Later post-collisional evolution further complicat<strong>ed</strong><br />

this picture, since the early-form<strong>ed</strong> thrust sheets have been<br />

crosscut by out-of-sequence thrusts, transpressive and, finally,<br />

normal faults. The polyphase deformation history of the<br />

Liguride Complex complicates the recognition of the<br />

geometrical relationships between the <strong>di</strong>fferent rock bo<strong>di</strong>es.<br />

This l<strong>ed</strong> previous authors to propose conflicting structural<br />

interpretations (e.g., BONARDI et alii, 1988; MONACO &<br />

TORTORICI 1995).<br />

For this reason we carri<strong>ed</strong> out new detail<strong>ed</strong> structural<br />

mapping, petrographical, microstructural and mineralogical<br />

analyses in select<strong>ed</strong> localities of the Pollino area. The <strong>di</strong>fferent<br />

deformation phases have been defin<strong>ed</strong> by field observation and<br />

microstructural analyses. In particular, the general architecture<br />

of the Liguride Complex has been reconstruct<strong>ed</strong> by careful<br />

mapping of the main axial surfaces relat<strong>ed</strong> to large–scale folds<br />

that intensely deform the main foliation and the lithologic<br />

contacts. Microstructural observations have been coupl<strong>ed</strong> with<br />

X-ray <strong>di</strong>ffraction analyses, that allow<strong>ed</strong> to <strong>di</strong>stinguish <strong>di</strong>fferent<br />

thrust sheets in wide areas characteriz<strong>ed</strong> by monotonous<br />

lithologies, such as very low-grade metapelites and lat<strong>ed</strong>iagenesis<br />

pelites. The new data allow<strong>ed</strong> a more detail<strong>ed</strong><br />

<strong>di</strong>stinction between <strong>di</strong>fferent tectonic units and rock types,<br />

lea<strong>di</strong>ng to an upgrad<strong>ed</strong> structural interpretation and provide<br />

new information on the early evolutionary stages of the Alpine-<br />

Apennine subduction system.<br />

GEOLOGICAL SETTING<br />

The Liguride Complex represents the uppermost tectonic<br />

units of the Southern Apennines. This mountain belt develop<strong>ed</strong><br />

at the expense of the eastern passive margin of the Apulian<br />

plate resulting from the mesozoic extensional evolution of the<br />

western Tethys ocean (GUERRERA et alii, 2005). The inversion


112 S. LAURITA ET ALII<br />

Fig. 1 – Tectonic sketch map of the Liguride Units in the Pollino area. Inset shows the location of the stu<strong>di</strong><strong>ed</strong> area in the Southern Apennines.<br />

of the former passive margin took place during the Neogene<br />

time with ENE vergence (PATACCA & SCANDONE, 2007, and<br />

references therein). The Apulian margin was form<strong>ed</strong> by<br />

carbonate platforms and basins which from the west to the east,<br />

are: (i) the Sicilide deep-sea domain, correspon<strong>di</strong>ng to the<br />

ocean-continent transition; (ii) the Apennine carbonate<br />

platform; (iii) the Lagonegro basin; (iv) the internal and<br />

external Apulian carbonate platform.<br />

The Liguride Complex derives from the western Tethys<br />

oceanic domain, which laid between the European and Apulian<br />

continental domains (PERRONE et alii, 2008). Late Cretaceous –<br />

Tertiary subduction of this oceanic domain gave rise to the<br />

Liguride accretionary w<strong>ed</strong>ge that finally collid<strong>ed</strong> with the<br />

Adriatic margin during the early Miocene times (KNOTT, 1994).<br />

During this evolution the Liguride accretionary w<strong>ed</strong>ge thrust<strong>ed</strong><br />

onto the Apennine platform and the accret<strong>ed</strong> material was split<br />

into <strong>di</strong>fferent slices that can be schematically <strong>di</strong>vid<strong>ed</strong> into<br />

metamorphic and non-metamorphic units.<br />

In the study area the Liguride Complex we recognis<strong>ed</strong> three<br />

main tectonic units that, from the top to the bottom, are (Fig.<br />

1): (i) the Frido Unit (AMODIO MORELLI et alii, 1976),<br />

consisting mainly of very low grade metapelites and<br />

metalimestones, with minor slices of continental crust rocks,<br />

serpentinites and metabasites; (ii) the M. Tumbarino Unit,<br />

made up of very low-grade metapelites, with minor basalts and<br />

gabbros, comparable to the Cilento basal Unit (MAURO &<br />

SCHIATTARELLA, 1988); (iii) the North-Calabria Unit (BONARDI<br />

et alii, 1988), consisting of non metamorphic ophiolites, shales<br />

and standsones, partly referr<strong>ed</strong> to the Calabro-Lucano Flysch<br />

Unit by MONACO et alii (1995). Generally, the Liguride<br />

Complex tectonically overlies the Bifurto formation, mainly<br />

consisting of shales and quartzarenites deposit<strong>ed</strong> on the top of<br />

the Apennine platform during the Early Miocene.<br />

Our study mostly concentrat<strong>ed</strong> on the Frido Unit that<br />

documents deformation and metamorphic features typical of the<br />

deep portions of the Liguride accretionary w<strong>ed</strong>ge. The HP-LT<br />

metamorphic overprint is well develop<strong>ed</strong> in mafic rocks and,<br />

locally, in the continental crust rocks (BECCALUVA et alii,<br />

1982; SPADEA, 1982). Maximum pressure and temperature<br />

con<strong>di</strong>tions estimat<strong>ed</strong> for mafic rocks are 8-10 Kbar and 400-<br />

450°C, respectively (MONACO et alii, 1995). The widespread<br />

occurrence of aragonite in metalimestones (SPADEA, 1976)<br />

in<strong>di</strong>cates that also metas<strong>ed</strong>imentary rocks underwent HP-LT<br />

con<strong>di</strong>tions. Temperatures of 140-200°C and 200-300°C have<br />

been estimat<strong>ed</strong> by DI LEO et alii (2005) and INVERNIZZI et alii<br />

(2008), respectively.<br />

STRUCTURE OF THE FRIDO UNIT<br />

In the stu<strong>di</strong><strong>ed</strong> area metabasites, serpentinites and<br />

continental crust rocks are generally locat<strong>ed</strong> in the uppermost<br />

part of this unit, whereas metalimestones and low-grade<br />

phyllites are more widespread below. In the southwestern<br />

sector of the study area (M. Nan<strong>di</strong>niello and Gallizzi localities;<br />

Fig. 1) an almost continuous sheet of strongly foliat<strong>ed</strong><br />

metabasites overlie metalimestones and, in minor extent,<br />

phyllites. The protoliths of the foliat<strong>ed</strong> metabasites consist of<br />

meta-pillow lavas, meta-pillowbreccias and meta-hyaloclastites,<br />

well visible in less deform<strong>ed</strong> areas. Frequently, foliat<strong>ed</strong><br />

metabasites carry on top slices of intensely deform<strong>ed</strong><br />

serpentinites, containing <strong>di</strong>spers<strong>ed</strong> bo<strong>di</strong>es of massive<br />

metabasites. In the northeastern sector of the study area (Timpa<br />

Rotalupo; Fig. 1), serpentinites are tectonically overlain by


THE LIGURIDE COMPLEX OF THE POLLINO AREA (SOUTHERN APENNINES)<br />

slices of continental crust consisting of albitic gneisses, garnet<br />

gneisses and amphibolites.<br />

The detail<strong>ed</strong> structural analysis carri<strong>ed</strong> out in the study area<br />

allow<strong>ed</strong> to recognize structures relat<strong>ed</strong> to a polyphase<br />

deformation history, well develop<strong>ed</strong> in metas<strong>ed</strong>imentary rocks.<br />

Three main deformation phases have been recogniz<strong>ed</strong> in mafic<br />

rocks and metas<strong>ed</strong>iments of the Frido Unit. The D1<br />

deformation is mainly document<strong>ed</strong> by the main S1 foliation that<br />

is particularly intense along the main lithological contacts.<br />

Metamorphism under blueschist facies con<strong>di</strong>tions during the<br />

D1 deformation is document<strong>ed</strong> by the crystallization of<br />

glaucophane and lawsonite along the S1 foliation in<br />

metabasites. Later D2 folds and crenulations overprint the<br />

previous fabrics, producing a well-develop<strong>ed</strong> crenulation<br />

cleavage. D2 folds trend from NE-SW to N-S and show nearly<br />

horizontal axial surfaces. Local occurrence of riebeckite along<br />

the S2 crenulation cleavage suggests that HP-LT con<strong>di</strong>tions<br />

operat<strong>ed</strong> also during the D2 deformation. The D3 deformation<br />

develop<strong>ed</strong> E-W orient<strong>ed</strong> decametre-scale folds, with nearly<br />

horizontal axial surfaces. These folds are not associat<strong>ed</strong> to an<br />

axial planar foliation and at outcrop-scale are in<strong>di</strong>cat<strong>ed</strong> by<br />

weakly develop<strong>ed</strong> crenulations.<br />

MINERALOGY OF LOW-GRADE METASEDIMENTS<br />

Metamorphic con<strong>di</strong>tions d<strong>ed</strong>uc<strong>ed</strong> for mafic rocks of the<br />

Frido Unit have been compar<strong>ed</strong> with mineralogical data<br />

obtain<strong>ed</strong> by X-ray <strong>di</strong>ffraction in low-grade metas<strong>ed</strong>iments. This<br />

analysis allows to define the metamorphic grade of s<strong>ed</strong>iments<br />

and metas<strong>ed</strong>iments by measuring parameters such as Kübler<br />

Index (KI), the percentage of 2M1 polytipe and the b0<br />

parameter of illite-muscovite (FREY & ROBINSON, 1999, and<br />

references therein). KI values in<strong>di</strong>cate temperatures generally<br />

ranging from 220 to 260°C. Lower temperatures (200-220°C)<br />

can be obtain<strong>ed</strong> in the northeastern sector, whereas higher<br />

values (300-350°C) can be envisag<strong>ed</strong> for southwestern sector,<br />

where glaucophane and lawsonite are commonly found in<br />

foliat<strong>ed</strong> metabasites. The b0 values suggest pressures of about<br />

7-9 Kbar, in agreement with the presence of aragonite (SPADEA,<br />

1976).<br />

In the Monte Tumbarino Unit KI values allow to estimate<br />

consistently lower temperatures of 180-200°C. These<br />

con<strong>di</strong>tions are in agreement with the presence of Na-mica and<br />

K/Na-mica mix<strong>ed</strong> layer, order<strong>ed</strong> Chl/S mix<strong>ed</strong> layer in same<br />

samples, lower percentage of 2M1 muscovite politipe and<br />

weaker development of slaty clivage and crenulations<br />

compar<strong>ed</strong> to the Frido Unit. The presence of aragonite in a<br />

carbonate-bearing sample suggests pressures of at least 5 Kbar.<br />

Distinctly lower temperatures of 120-150°C have been detect<strong>ed</strong><br />

in the non-metamorphic North Calabria Unit by the presence of<br />

order<strong>ed</strong> R1 and R3 I/S mix<strong>ed</strong> layers and the KI values.<br />

CONCLUDING REMARKS<br />

113<br />

The early evolutionary history of the Frido Unit records<br />

subduction of oceanic crust and strong deformation during HP-<br />

LT metamorphism. Estimates of metamorphic con<strong>di</strong>tions<br />

obtain<strong>ed</strong> in low grade metas<strong>ed</strong>iments in<strong>di</strong>cate that during this<br />

evolution temperatures probably <strong>di</strong>d not exce<strong>ed</strong> 300-350°C in<br />

the southwestern sector and 200-220°C in the northeastern<br />

sector. When the Apulian margin was incorporat<strong>ed</strong> in the<br />

subduction zone during the early Miocene the Liguride<br />

accretionary w<strong>ed</strong>ge thrust<strong>ed</strong> on the Apennine platform during<br />

the development of the Apennine chain. This process strongly<br />

mo<strong>di</strong>fi<strong>ed</strong> the original geometry of the liguride accretionary<br />

w<strong>ed</strong>ge that was sub<strong>di</strong>vid<strong>ed</strong> into <strong>di</strong>fferent thrust sheets. New<br />

structural and mineralogical data allow<strong>ed</strong> to <strong>di</strong>stinguish three<br />

main thrust sheets. The uppermost thrust sheet (Frido Unit)<br />

derives from the deeper portion of the accretionary w<strong>ed</strong>ge,<br />

whereas the interm<strong>ed</strong>iate and lower thrust sheets (The<br />

Tumbarino and North Calabria Units) come from progressively<br />

shallower portions of the w<strong>ed</strong>ge.<br />

REFERENCES<br />

AMODIO MORELLI L., BONARDI G., COLONNA V., DIETRICH D.,<br />

GIUNTA G., IPPOLITO F., LIGUORI V., LORENZONI S.,<br />

PAGLIONICO A., PERRONE V., PICCARRETA G., RUSSO M.,<br />

SCANDONE P., ZANETTIN LORENZONI E. & ZUPPETTA A.<br />

(1976) – L’Arco Calabro-Peloritano nell’Orogene<br />

Appenninico-Maghrebide. Mem. Soc. Geol. It., 17, 1-60.<br />

BECCALUVA L., MACCIOTTA L. & SPADEA P. (1982) - Petrology<br />

and geodynamic significance of the Calabria-Lucania<br />

ophiolites. Rend. Soc. Ital. Mineral. Petrol., 38, 937-982.<br />

BONARDI G., AMORE F. O., CIAMPO G., DE CAPOA P.,<br />

MICCONET P. & PERRONE V. (1988) – Il complesso<br />

Liguride. Auct.: stato <strong>del</strong>le conoscenze e problemi aperti<br />

sulla sua evoluzione pre-appenninica <strong>ed</strong> i suoi rapporti con<br />

l’Arco Calabro. Mem. Soc. Geol. It., 41, 17-35.<br />

DI LEO P., SCHIATTARELLA M., CUADROS J. & CULLERS R.<br />

(2005) – Clay mineralogy, geochemistry and structural<br />

setting of the ophiolite-bearing units from southern Italy: a<br />

multi<strong>di</strong>sciplinary approach to assess tectonics history and<br />

exhumation modalities. Atti Ticinensi <strong>di</strong> Scienze <strong>del</strong>la<br />

Terra, 10, 87-93.<br />

FREY M. & ROBINSON D. (1999) - Low-Grade Metamorphim,<br />

Blackwell Science, Oxford, 328 pp.<br />

GUERRERA F., MARTÌN-MARTIN M., PERRONE V. &<br />

TRAMONTANA M. (2005) - Tectono-s<strong>ed</strong>imentary evolution<br />

of the southern branch of the Western Tethys (Maghrebian<br />

Flysch Basin and Lucanian Ocean): consequences for<br />

Western M<strong>ed</strong>iterranean geodynamics. Terra Nova, 17, 358-<br />

367.


114 S. LAURITA ET ALII<br />

INVERNIZZI C., BIGAZZI G., CORRADO S., DI LEO P.,<br />

SCHIATTARELLA M. & ZATTIN M. (2008) - New thermobaric<br />

constraints on the exhumation history of the Liguride<br />

accretionary w<strong>ed</strong>ge, Southern Italy. Ofioliti, 33 (1), 21-32.<br />

KNOTT S.D. (1994) - Structure, kinematics and metamorphism<br />

in the Liguride Complex, southern Apennines, Italy. J.<br />

Struct. Geol., 16, 1107-1120.<br />

MAURO A. & SCHIATTARELLA M. (1988) - L'unità<br />

Silentina <strong>di</strong> Base: assetto strutturale, metamorfismo e<br />

significato tettonico nel quadro geologico <strong>del</strong>l'Appennino<br />

meri<strong>di</strong>onale. Mem. Soc. Geol. It., 41 (2), 1201-1213.<br />

MONACO C. & TORTORICI L. (1995) – Tectonic role of<br />

ophiolite-bearing terranes in the development of the<br />

Southern Apennines orogenic belt. Terra Nova, 7, 153-160.<br />

MONACO C., TORTORICI L., MORTEN L., CRITELLI S. & TANSI<br />

C. (1995) – Geologia <strong>del</strong> versante nord-orientale <strong>del</strong><br />

massiccio <strong>del</strong> Pollino (confine calabro-lucano): nota<br />

illustrativa sintetica <strong>del</strong>la carta geologica alla scala 1:50000.<br />

Boll. Soc. Geol. It., 114, 277-291.<br />

PATACCA E. & SCANDONE P. (2007) - Geology of the Southern<br />

Apennines. Boll. Soc. Geol. It. Spec. Issue, 7, 75-119.<br />

PERRONE V., DI STASO A: & PERROTTA S. (2008) - The<br />

evolution of the Western Adriatic margin and contiguous<br />

oceanic area: new problems and working hypotheses.<br />

Boll.Soc.Geol.It. (Ital.J.Geosci.), 127 (2), 357-373.<br />

SPADEA P., (1976) - I carbonati nelle rocce metacalcaree <strong>del</strong>la<br />

formazione <strong>del</strong> Frido <strong>del</strong>la Lucania. Ofioliti, 1, 431-456.<br />

SPADEA P. (1982) – Continental crust rocks associat<strong>ed</strong> with<br />

ophiolites in Lucanian Apennine (southern Italy). Ofioliti, 2<br />

(3), 501-522.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 115_120, 7 ff.<br />

Quaternary evolution of “blind” fault-relat<strong>ed</strong> folds in the Central Po<br />

Plain (Northern Italy).<br />

FRANZ LIVIO (*), GIANCANIO SILEO (*), ANDREA BERLUSCONI (*), ALESSANDRO M. MICHETTI (*), KARL<br />

MUELLER (**), CIPRIANO CARCANO (°) & SERGIO ROGLEDI (°)<br />

RIASSUNTO<br />

Evoluzione quaternaria <strong>di</strong> strutture plicative sepolte lungo il settore<br />

centrale <strong>del</strong>l'alta Pianura Padana.<br />

Attraverso la ricostruzione tri<strong>di</strong>mensionale <strong>di</strong> due superfici appartenenti al<br />

record stratigrafico quaternario <strong>del</strong> bacino padano (Superficie Azzurra, 1.6 Ma<br />

e Superficie Rossa 0.89 Ma) si è giunti a <strong>del</strong>ineare parte <strong>del</strong>l’evoluzione<br />

quaternaria <strong>di</strong> sovrascorrimenti sepolti. Il pattern deformativo è stato<br />

ricostruito a partire dall’analisi <strong>del</strong>le pieghe associate a queste strutture <strong>ed</strong> in<br />

funzione <strong>del</strong>la loro evoluzione nel tempo. L’analisi <strong>di</strong> dettaglio <strong>di</strong> un profilo<br />

passante attraverso il sistema <strong>di</strong> faglie <strong>di</strong> Capriano <strong>del</strong> Colle (BS) e l’analisi<br />

<strong>del</strong> record stratigrafico sindeformativo ha permesso <strong>di</strong> definire lo stile<br />

strutturale tipico <strong>di</strong> questo settore <strong>ed</strong> i ratei <strong>di</strong> sollevamento associabili alle<br />

strutture <strong>di</strong> Capriano.<br />

Key words: fault-relat<strong>ed</strong> folds; Southern Alps; Quaternary<br />

tectonics<br />

INTRODUCTION<br />

The study of quaternary folds as in<strong>di</strong>cators of active crustal<br />

shortening and coseismic slip on relat<strong>ed</strong> thrusts, especially in<br />

areas characteriz<strong>ed</strong> by blind thrusting, is attracting increasing<br />

interest among specialists due to the recent dramatic evolution<br />

of the methodology for their structural analysis, which now<br />

allow to attain excellent resolution in the deep interpretation of<br />

earthquake sources (BURBANK et alii, 1996; SHAW & SUPPE,<br />

1996, MUELLER & SUPPE, 1997; SHAW et alii, 2002; ISHIYAMA<br />

et alii, 2004; LIN & STEIN, 2006, DOLAN et alii, 2003, LAI et<br />

alii, 2006, CHEN et alii, 2007, LEON et alii, 2007, STREIG et<br />

alii, 2007; OKAMURA et alii, 2007).<br />

We select<strong>ed</strong> an area between Lake Como and Lake Garda<br />

where several evidence of Quaternary tectonics has been<br />

report<strong>ed</strong>. Some isolat<strong>ed</strong> small hills (Capriano <strong>del</strong> Colle,<br />

Casten<strong>ed</strong>olo, Ciliverghe and Piev<strong>ed</strong>izio hill), rising from the<br />

surroun<strong>di</strong>ng plain, have been already mention<strong>ed</strong> by DESIO<br />

(1965) as evidence of Quaternary tectonics. Secondary faulting<br />

and fol<strong>di</strong>ng at Capriano <strong>del</strong> Colle sites have been also recently<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Chimiche <strong>ed</strong> Ambientali, Università<br />

<strong>del</strong>l’Insubria<br />

(**) University of Boulder, Colorado (US)<br />

(°) ENI Exploration & Production<br />

This research has benefit<strong>ed</strong> from fun<strong>di</strong>ng provid<strong>ed</strong> by the Italian Presidenza<br />

<strong>del</strong> Consiglio dei Ministri - Dipartimento <strong>del</strong>la Protezione Civile (DPC).<br />

Scientific papers fund<strong>ed</strong> by DPC do not represent its official opinion and<br />

policies.<br />

document<strong>ed</strong> (LIVIO et alii, 2008; MICHETTI et alii, 2008).<br />

BURRATO et alii (2003) describe river anomalies in the Valle<br />

<strong>del</strong>l’Oglio sector, probably induc<strong>ed</strong> by active growing folds. In<br />

order to depict the recent evolution of the structures recogniz<strong>ed</strong><br />

in the Po Plain basin we analyz<strong>ed</strong> ca. 18000 km of seismic<br />

lines, provid<strong>ed</strong> by ENI E&P, constrain<strong>ed</strong> by hundr<strong>ed</strong>s of deep<br />

exploratory wells, over an area of about 6800 Km 2 (Fig.1).<br />

Fig. 1 – Areal extent of the analyz<strong>ed</strong> surfaces: (a) Blue Surface – 1.6 Myrs;<br />

(b) R<strong>ed</strong> Surface - 0.89 Myrs.<br />

Faults were defin<strong>ed</strong> both by obvious truncation of strata on<br />

seismic profiles (e.g. footwall and hangingwall stratigraphic<br />

cutoffs) and by construction of contour maps of fold<strong>ed</strong> horizons<br />

of various age in the Quaternary sequence that infills the Po<br />

Plain basin. Folds associat<strong>ed</strong> to underlying thrusts were in fact


116 L. FRANZ ET ALII<br />

Fig. 2 –Block-<strong>di</strong>agram of the Plio-Pleistocene Po Plain Basin: the main<br />

domains, describ<strong>ed</strong> in the present work, have been in<strong>di</strong>cat<strong>ed</strong>.<br />

recogniz<strong>ed</strong> bas<strong>ed</strong> on deformation record<strong>ed</strong> by two regional<br />

sequence boundary horizons (Blue Surface – 1.6 Myr; and R<strong>ed</strong><br />

Surface - 0.89 Myr; e.g. CARCANO & PICCIN, 2002, MUTTONI et<br />

alii, 2003), characteriz<strong>ed</strong> by good stratigraphic and age<br />

bracketing, and marking significant changes in the s<strong>ed</strong>imentary<br />

architecture of the basin.<br />

Age controls are bas<strong>ed</strong> on stratigraphic, paleontological and<br />

magnetostratigraphic analysis by ENI E&P and Regione<br />

Lombar<strong>di</strong>a (CARCANO & PICCIN, 2002, SCARDIA et alii, 2006)<br />

and on an extensive database of shallow well logs acquir<strong>ed</strong> in<br />

boreholes drill<strong>ed</strong> for groundwater. The analysis of strain<br />

induc<strong>ed</strong> on these horizons allow<strong>ed</strong> to recognize a belt of active<br />

fold & thrust structures, each 10 to 20 km long, that extents<br />

with an en echelon arrangement across the Po basin.<br />

PATTERN OF DEFORMATION IN THE CENTRAL PO<br />

PLAIN<br />

Blue Surface (1.6 Myr)<br />

The Blue Surface covers about 7800 Km 2 . From north to south<br />

the following major domains can be recogniz<strong>ed</strong>: an alpine<br />

platform domain, an Apennine platform domain and two slopes<br />

linking this platforms with the basin (Fig. 2 and 3).<br />

The basin is ca. 40 km wide (Fig. 3) and progressively deepens<br />

eastward. The northern flank of the basin is less steep than the<br />

southern one and shows some erosive features in its northern<br />

sector. We characteriz<strong>ed</strong> segmentation of blind thrusts using<br />

several methods that inclu<strong>di</strong>ng mapping of single segment<br />

faults that terminate at a transverse structure (e.g. a transfer<br />

fault) or where fol<strong>di</strong>ng decreases to zero at the end of structures<br />

as defin<strong>ed</strong> by the regional <strong>di</strong>p of mapp<strong>ed</strong> strata.<br />

On the northern <strong>ed</strong>ge of the basin two structures has been<br />

identifi<strong>ed</strong> (Fig. 3 structures number 1 and 2). We interpret these<br />

structures as north-verging fault-propagation folds<br />

characteriz<strong>ed</strong> by ramps that detach the Gonfolite Lombarda<br />

Group (Oligo – Miocene; BERNOULLI et alii, 1989) from the<br />

underlying upper Cretaceous s<strong>ed</strong>iments. Surface deformation<br />

caus<strong>ed</strong> with these structures is associat<strong>ed</strong> with the Casten<strong>ed</strong>olo<br />

and Capriano <strong>del</strong> Colle hills. On the basin floor we recogniz<strong>ed</strong><br />

nine structures interpret<strong>ed</strong> as folds overlying growing blind<br />

faults. The northern structures belong to the Alpine domain and<br />

we interpret<strong>ed</strong> them as south-vergent fault propagation folds<br />

(structures number 3, 4 and 6 of Fig. 3). These structures have<br />

an average length of 11 - 16 km and are ca. N 110° tren<strong>di</strong>ng.<br />

Structure number 7 is the most external Apennine front<br />

(Soresina High; e.g. BIGI et alii, 1990) while structures number<br />

9, 10 and 11 represents segments of Central - Eastern sector of<br />

the Emilia fold<strong>ed</strong> Arc. The westernmost segment (11) is the<br />

San Colombano High. Structure 10 is the Piadena High, the<br />

most external structure of this sector of the Emilia Arc (e.g.<br />

BIGI et alii, 1990).<br />

At this stage of deformation (ca. 1.6 Myr) the morphobathymetry<br />

of the basin floor clearly shows two opposite<br />

verging structural fronts, facing each other in the central sector<br />

of the Po Plain, characteriz<strong>ed</strong> by an array of fault-relat<strong>ed</strong> folds,<br />

segmenting each one of these belts.<br />

R<strong>ed</strong> Surface (0.89 Myrs)<br />

Fig. 3 – Blue Surface in map view and in 3D wireframe. Main recogniz<strong>ed</strong> structures are in<strong>di</strong>cat<strong>ed</strong>. See text for details.


QUATERNARY EVOLUTION OF “BLIND” FAULT-RELATED FOLDS IN THE CENTRAL PO PLAIN<br />

The evolution of the basin between the formation of the Blue<br />

Surface and the formation of the R<strong>ed</strong> Surface (averaging ca.<br />

710.000 yrs.) is summariz<strong>ed</strong> as follows. The Alpine platform<br />

domain spreads out southward; a less steep scarp links it with a<br />

wider but less deep Apennines - Alps basin domain and the<br />

Apennines platform domain has been deform<strong>ed</strong> by the most<br />

Fig. 4 – R<strong>ed</strong> Surface in map view and in 3D wireframe. Main recogniz<strong>ed</strong> structures are in<strong>di</strong>cat<strong>ed</strong>. See text for details.<br />

external Apennines structures.<br />

At this stage the basin is still strongly asymmetric, and at the<br />

eastern <strong>ed</strong>ge is ca. 30 km wide, narrowing toward west to ca. 20<br />

Km.<br />

Folds recognizable on this surface are less than those mapp<strong>ed</strong><br />

on the Blue surface; moreover they are generally longer.<br />

This trend is consistent with a spatially – varying shortening<br />

rate mo<strong>del</strong> (e.g. SALVINI & STORTI, 2002) accor<strong>di</strong>ng to which<br />

folds grow with a constant fault geometry but with<br />

<strong>di</strong>splacement varying along strike. Faults migrate laterally as<br />

<strong>di</strong>splacement accumulates and, in the case of two or more<br />

adjacent structures, the growth along strike could produce the<br />

linkage among the adjacent structures with the formation of<br />

double plunging folds (MUELLER & TALLING, 1997, KELLER et<br />

alii, 1999; CHAMPEL et alii, 2002).<br />

CAPRIANO DEL COLLE FAULT SYSTEM<br />

A seismic reflection profile, cutting through some<br />

representative structures in the northern sector of the Po Plain,<br />

has been select<strong>ed</strong> and analyz<strong>ed</strong> (Fig. 5).<br />

The Capriano <strong>del</strong> Colle Fault System (CapFS) is compos<strong>ed</strong> by<br />

a south-vergent thrust (CCT) and an associat<strong>ed</strong> high angle<br />

backthrust (CCB). The structural style here depict<strong>ed</strong> is<br />

therefore characteriz<strong>ed</strong> by a triangle zone, or structural w<strong>ed</strong>ge,<br />

defin<strong>ed</strong> by a primary south-vergent fore-thrust and a connect<strong>ed</strong><br />

north-vergent backthrust (Fig. 5 and 6). Secondary flexural slip<br />

faults (CCBFSF e CCTFSF) are associat<strong>ed</strong> with both these<br />

structures (Fig. 6). Flexural slip faults play an important role in<br />

the accommodation of strain above blind thrusts (e.g., YEATS,<br />

117<br />

1986; ROERING et alii, 1997; NINO et alii, 1998; ISHIYAMA et<br />

alii, 2004; OKAMURA et alii, 2007). Several mo<strong>del</strong>s and natural<br />

examples, in<strong>di</strong>cate in fact that b<strong>ed</strong><strong>di</strong>ng-parallel strain tends to<br />

consume slip and therefore hinder the upward propagation of<br />

faults and fault-relat<strong>ed</strong> folds.<br />

Tectono-s<strong>ed</strong>imentary history of the Capriano <strong>del</strong> Colle Fault<br />

System<br />

Fig. 5 – Shad<strong>ed</strong> relief map bas<strong>ed</strong> on a 20 m DTM showing the locations of<br />

buri<strong>ed</strong> active thrusts in the northern sector of the Po Plain; barbs in<strong>di</strong>cate the<br />

hanging-wall of the thrusts. ENI E&P deep boreholes and seismic line<br />

location are also represent<strong>ed</strong>. Main historical earthquakes are in<strong>di</strong>cat<strong>ed</strong>.<br />

(CPTI, 2004, mo<strong>di</strong>fi<strong>ed</strong>).<br />

Syntectonic growth theory (SUPPE et alii, 1992) suggests<br />

that cumulative <strong>di</strong>splacement will decrease upward within the<br />

stratigraphic interval deposit<strong>ed</strong> during deformation. In<br />

contractional environments syntectonic strata typically thin<br />

across folds limbs towards structural highs. Methodology<br />

adopt<strong>ed</strong> for uplift rates calculation is summariz<strong>ed</strong> in Figure 7a<br />

(e.g., MASAFERRO et alii, 2002;). In situ accumulation rates (S)<br />

were also calculat<strong>ed</strong> and compar<strong>ed</strong> to relative uplift rates (U/S<br />

ratio; Fig. 7b). A very high accumulation rate, with respect to


118 L. FRANZ ET ALII<br />

Fig. 6 – Depth-convert<strong>ed</strong> interpret<strong>ed</strong> seismic profile, across the Capriano <strong>del</strong> Colle Fault System, constrain<strong>ed</strong> by constant thickness fault-relat<strong>ed</strong> fold theory.<br />

Location is shown on Figure 2a. There is no vertical exaggeration. Ab<strong>brevi</strong>ations are: CCT, Capriano <strong>del</strong> Colle thrust; CCB, Capriano <strong>del</strong> Colle backthrust;<br />

CCTFSF & CCBFSF are associat<strong>ed</strong> flexural slip faults. Values above arrows in<strong>di</strong>cate limb widths, measur<strong>ed</strong> on the section. Thick dash<strong>ed</strong> lines, active axial<br />

surface; dash and dott<strong>ed</strong> thin lines, inactive axial surface, blue dash<strong>ed</strong> lines, erosional features.<br />

uplift rate (very low ratio U/S), can in fact obscure the tectonic<br />

signal and appear as an interval apparently not influenc<strong>ed</strong> by<br />

contemporary uplift. Uncertainties in uplift and s<strong>ed</strong>imentation<br />

were evaluat<strong>ed</strong> in terms of the resolution and variability in<br />

seismic reflector character (ca. 25 m), and errors in age<br />

bracketing (ca. ± 0.1 – 0.05 Myr, accor<strong>di</strong>ng to the consider<strong>ed</strong><br />

surface).<br />

For calculations we us<strong>ed</strong> the above-mention<strong>ed</strong> Blue and<br />

R<strong>ed</strong> Surface and an interm<strong>ed</strong>iate horizon, call<strong>ed</strong> Green Surface,<br />

dat<strong>ed</strong> ca. 1.2 Myr. Results, relative to each structure, are<br />

summariz<strong>ed</strong> as follows (Fig. 7b).<br />

- For the CCT: during the first chronostratigraphic interval<br />

(Pliocene – 1.6 Myr) very low values of uplift and<br />

s<strong>ed</strong>imentation rates have been record<strong>ed</strong>. Growth b<strong>ed</strong>s<br />

onlapping the fold limb and thinning as they approach<br />

the fold crest pr<strong>ed</strong>ominat<strong>ed</strong> during the first part of this<br />

period. Such a low value of average rock uplift rate<br />

may be relat<strong>ed</strong> to averaging a relatively short episode<br />

of tectonic deformation over a very long time period<br />

(duration is ca. 3.6 Myr). The second time window<br />

(1.6-1.2 Myr) records seemingly higher values both in<br />

uplift and s<strong>ed</strong>imentation rates. The following period is<br />

characteriz<strong>ed</strong> by a deactivation of this thrust, as<br />

testifi<strong>ed</strong> by syntectonic growth strata that maintain the<br />

same thickness throughout the CCT crest. Since S value<br />

is constant for this period, compar<strong>ed</strong> to the previous<br />

interval, it is apparent that the tectonic signal has not<br />

been conceal<strong>ed</strong> by a significant increase in<br />

s<strong>ed</strong>imentation rates. The 0.89 Myr to present<br />

chronostratigraphic interval records a decrease both in<br />

uplift and s<strong>ed</strong>imentation rates.<br />

- For the CCB: during a Pliocene to 1.6 Myr time window,<br />

our analysis suggests that this structure initially<br />

experienc<strong>ed</strong> similar low values of s<strong>ed</strong>imentation and<br />

uplift rates.<br />

Fig. 7 – Assessment of uplift and in situ s<strong>ed</strong>imentation rates relative to<br />

chronologic intervals: a) Sketch of the methodological approach (e.g.<br />

Masaferro et al., 2002) appli<strong>ed</strong> to calculate uplift rates; b) graphic summary<br />

of the results accor<strong>di</strong>ng to the consider<strong>ed</strong> time windows. Error bars and U/S<br />

ratio value are also in<strong>di</strong>cat<strong>ed</strong>. (*) in<strong>di</strong>cates minimum uplift rate value,<br />

accor<strong>di</strong>ng to a fill-to-the-top growth mo<strong>del</strong>.<br />

We consider the same considerations <strong>di</strong>scuss<strong>ed</strong> above<br />

for calculations on rock uplift CCT structures to be<br />

valid. During the 1.2 – 0.89 Myr period the high value<br />

of U/S ratio marks a significant decrease in<br />

s<strong>ed</strong>imentation rates. This drastic lowering in


QUATERNARY EVOLUTION OF “BLIND” FAULT-RELATED FOLDS IN THE CENTRAL PO PLAIN<br />

s<strong>ed</strong>imentation rate is consequence of the progressive<br />

infilling of the Po Plain basin that, for this sector, was<br />

starting to shift to a continental-type environment. The<br />

latest period is characteriz<strong>ed</strong> by the onset of regional<br />

non-deposition and/or erosional con<strong>di</strong>tions over the<br />

entire Po Basin whole area. The R<strong>ed</strong> Surface is thus not<br />

visible throughout the entire CCB structural high. Thus,<br />

assuming a fill-to-the-top growth mo<strong>del</strong>, the calculat<strong>ed</strong><br />

rate has to be consider<strong>ed</strong> as a minimum value.<br />

CONCLUSIONS<br />

Deformation pattern of the Po Plain basin has been analyz<strong>ed</strong><br />

over two time windows (1.6 and 0.89 Myr and 0.89 Myr –<br />

Present). It is noteworthy the reactivation of north-verging<br />

backthrusts and associat<strong>ed</strong> folds, instead of the main<br />

forethrusts, maybe relat<strong>ed</strong> to a <strong>di</strong>fferential s<strong>ed</strong>imentary load<br />

between proximal and <strong>di</strong>stal portions of the basin. Uplift rates<br />

obtain<strong>ed</strong> for the CapFS characterize these thrusts as moderate<br />

to low strain rate structures.<br />

REFERENCES<br />

BERNOULLI D., BERTOTTI G. & ZINGG A. (1989) - Northward<br />

thrusting of the Gonfolite Lombarda ("South-Alpine<br />

Molasse"). Eclog. Geol. Helv.. - 1989. - Vol. 82. - p. 841-<br />

856.<br />

BIGI G. COSENTINO D., PAROTTO M., SARTORI R. & SCANDONE<br />

P. (1990) - Structural Mo<strong>del</strong> of Italy - 1:500000 Scale //<br />

Quaderni de "La Ricerca Scientifica" / a cura <strong>di</strong> SELCA<br />

Firenze. - 1990. - Vol. 114/3.<br />

BURBANK, D., MEIGS, A., BROZOVIC, N. (1996) - Interactions<br />

of growing folds and coeval depositional systems. Basin<br />

Research, n. 8 pp.199-223.<br />

BURRATO, P., CIUCCI, F. & VALENSISE, G. (2003) - An<br />

Inventory of river anomalies in the Po Plain, Northern<br />

Italy: evidence for active blind thrust faulting. Annals of<br />

Geophys. 46, n. 5 pp.865-882.<br />

CARCANO, C. & PICCIN, A. (a cura <strong>di</strong>) (2002) - Geologia degli<br />

acquiferi Padani <strong>del</strong>la Regione Lombar<strong>di</strong>a. Firenze:<br />

S.EL.CA.<br />

CHAMPEL, B., VAN DER BEEK, P., MUGNIER J.& LETURMY, P.<br />

(2002) - Growth and lateral propagation of fault-relat<strong>ed</strong><br />

folds in the Siwaliks of western Nepal: Rates, mechanisms,<br />

and geomorphic signature. Journal Of Geophysical<br />

Research, VOL. 107, NO. B6, 10.1029/2001JB000578,<br />

2002.<br />

CHEN, Y.G., LAI, K.Y., LEE, Y.H., SUPPE, J. CHEN, W.S., LIN,<br />

Y.N.N., WANG, Y., HUNG, J.H. & KUO Y.T (2007) -<br />

Coseismic fold scarps and their kinematic behavior in the<br />

1999 Chi-Chi earthquake Taiwan. Journal of Geophysical<br />

Research, VOL. 112, B03S02, doi:10.1029/2006JB004388,<br />

2007<br />

119<br />

CPTI (2004) - Catalogo Parametrico dei Terremoti Italiani,<br />

versione 2004 (CPTI04). INGV, Bologna.<br />

http://emi<strong>di</strong>us.mi.ingv.it/CPTI/.<br />

DESIO, A. (1965) - I rilievi isolati <strong>del</strong>la Pianura Lombarda <strong>ed</strong><br />

i movimenti tettonici <strong>del</strong> Quaternario. Rend. Ist. Lom. Acc.<br />

Sc. Lett., Sez. A 99 pp.881-894.<br />

DOLAN, J.F., CHRISTOFFERSON, S.A., SHAW J.H. (2003) -<br />

Recognition of Paleoearthquakes on the PuenteHills Blind<br />

Thrust Fault, California. Science 300, 115.<br />

ISHIYAMA, T., MUELLER, K., TOGO, M., OKADA, A. &<br />

TAKEMURA, K. (2004) - Geomorphology, kinematic history,<br />

and earthquake bahavior of the active Kuwana w<strong>ed</strong>ge<br />

thrust anticline, central Japan. J. Geophys. Res. B12408, n.<br />

109.<br />

KELLER, E. A., GURROLA, L. & TIERNEY, T. E. (1999) -<br />

Geomorphic criteria to determine <strong>di</strong>rection of lateral<br />

propagation of reverse faulting and fol<strong>di</strong>ng. Geology<br />

(Boulder), vol.27, no.6, pp.515-518.<br />

LAI, K., CHEN, Y., HUNG, J., SUPPE, J., YUE, L. & YA-WEN<br />

CHEN Y. (2006) - Surface deformation relat<strong>ed</strong> to kinkfol<strong>di</strong>ng<br />

above an active fault: Evidence from geomorphic<br />

features and co-seismic slips. Quaternary International 147,<br />

44–54.<br />

LEON, L.A., CHRISTOFFERSON, S.A., DOLAN, J.F., SHAW J.H.<br />

& PRATT T.L. (2007) - Earthquake-by-earthquake fold<br />

growth above the Puente Hills blind thrust fault, Los<br />

Angeles, California: Implications for fold kinematics and<br />

seismic hazard. Journal of Geophysical Research, Vol. 112,<br />

B03S03, doi:10.1029/2006JB004461.<br />

LIN, J. & STEIN, R. S. (2006) - Seismic Constraints and<br />

Coulomb Stress Changes of a Blind Thrust Fault System, 1:<br />

Coalinga and Kettleman Hills, California , USGS Open-<br />

File Report 2006–1149, 17 P.<br />

LIVIO F., BERLUSCONI A., MICHETTI A.M., SILEO G., ZERBONI<br />

A.,CREMASCHI M., TROMBINO L., CARCANO C., ROGLEDI<br />

S., VITTORI E., MUELLER K. (2008) - Fagliazione<br />

superficiale olocenica e paleoliquefazione nel sito <strong>di</strong> Monte<br />

Netto, Brescia: implicazioni sismotettoniche. Rend. online<br />

SGI, 1 (2008), <strong>Note</strong> Brevi, www.socgeol.it, 101-103, 3<br />

figg.<br />

MASAFERRO, J.L., BULNES, M., POBLET, J. & EBERLI, G.P.<br />

(2002) - Episo<strong>di</strong>c fol<strong>di</strong>ng inferr<strong>ed</strong> from syntectonic<br />

carbonate s<strong>ed</strong>imentation: the Santaren anticline, Bahamas<br />

foreland. S<strong>ed</strong>imentary Geology 146 pp. 11-24.<br />

MICHETTI A.M., BERLUSCONI A., LIVIO F., SILEO G., ZERBONI<br />

A., CREMASCHI M., TROMBINO L, MUELLER K., VITTORI E.,<br />

CARCANO C., ROGLEDI S. (2008) - Holocene surface<br />

faulting at Monte Netto, Brescia, and the Christmas 1222<br />

(Io = IX MCS) earthquake in the Po Plain, Italy: what does<br />

it mean “blind fault”? Geophysical Research Abstracts,<br />

Vol. 10, EGU2008-A-00000, 2008 EGU General Assembly<br />

2008.


120 L. FRANZ ET ALII<br />

MUELLER, K. & SUPPE, J. (1997) - Growth of Wheeler Ridge<br />

anticline, California: Geomorphic evidence for fault-bend<br />

fol<strong>di</strong>ng behavior during earthquakes. J. Struct. Geol., n. 19<br />

pp.383-396.<br />

MUELLER, K. & TALLING, P. (1997) - Geomorphic evidence for<br />

tear faults accommodating lateral propagation of an active<br />

fault-bend fold, Wheeler Ridge, California. Journal of<br />

Structural Geology, vol.19, no.3-4, pp.397-411.<br />

MUTTONI G., CARCANO, C., GARZANTI, E., GHIELMI, M.,<br />

PICCIN, A., PINI, R., ROGLEDI, S., SCIUNNACH, D. (2009) -<br />

Onset of major Pleistocene galciations in the Alps.<br />

Geology. - 2003. - 11 : Vol. 31. - p. 989-992.<br />

NINO, F., PHILIP, H. & CHERY J. (1998) - Role of b<strong>ed</strong>-parallel<br />

slip in th formation of blinf thrust faults. J. Struct. Geol., n.<br />

20 pp.503-516.<br />

OKAMURA,Y., ISHIYAMA,T.& YANAGISAWA, Y. (2007) - Faultrelat<strong>ed</strong><br />

folds above the source fault of the 2004 mid-Niigata<br />

Prefecture earthquake, in a fold-and-thrust belt caus<strong>ed</strong> by<br />

basin inversion along the eastern margin of the Japan Sea.<br />

Journal of Geophysical Research, VOL. 112, B03S08,<br />

doi:10.1029/2006JB004320.<br />

ROERING, J.J., COOKE, M.L. & POLLARD, D.D. (1997) - Why<br />

blind thrust faults do not propagate to the Earth's surface:<br />

Numerical mo<strong>del</strong>ing of coseismic deformation associat<strong>ed</strong><br />

with thrsuts relat<strong>ed</strong> anticlines. J. Geophys. Res., n. 102 pp.<br />

11901-11912.<br />

SALVINI, F. & STORTI, F. (2002) - Three-<strong>di</strong>mensional<br />

architecture of growth strata associat<strong>ed</strong> to fault-bend,<br />

fault-propagation, and decollement anticlines in nonerosional<br />

environments. S<strong>ed</strong>imentary Geology, vol.146,<br />

no.1-2, pp.57-73.<br />

SCARDIA, G., MUTTONI, G. & SCIUNNACH, D. (2006) -<br />

Subsurface magnetostratigraphy of Pleistocene s<strong>ed</strong>iments<br />

from the Po Plain (Italy): Constraints on rates of<br />

s<strong>ed</strong>imentation and rock uplift. GSA Bulletin 118, n. 11/12<br />

pp.1299-1312.<br />

SHAW, J.H., SUPPE, J. (1996) - Earthquake hazards of active<br />

blind thrust faults under the Central Los Angels basin,<br />

California. J. Geophys. Res., n. 101 pp.8623-8642.<br />

SHAW, J.H., PLESCH, A., DOLAN, J.F., PRATT, T.L. & FIORE, P.<br />

(2002) - Puente Hills blind-thrust systems, Los Angeles,<br />

California. Bull. Seismol. Soc. Am., n. 92 pp.2946-2960.<br />

STREIG, A.R., RUBIN, C.M., CHEN, W.S., CHEN, Y.G., LEE,<br />

L.S., THOMPSON, S.C., MADDEN, C. & LU, S.T. (2007) -<br />

Evidence for prehistoric coseismic fol<strong>di</strong>ng along the<br />

Tsaotun segment of the Chelungpu fault near Nan-Tou,<br />

Taiwan. JOURNAL OF GEOPHYSICAL RESEARCH,<br />

VOL. 112, B03S06, doi:10.1029/2006JB004493.<br />

SUPPE, J., CHOU, G.T. & HOOK, S.C. (1992) - Rates of fol<strong>di</strong>ng<br />

anf faulting determin<strong>ed</strong> from growth strata. In Thrust<br />

tectonics, <strong>di</strong> K. McClay, 105-120. London: Chapman &<br />

Hall.<br />

YEATS, R.S. (1986) - Active faults relat<strong>ed</strong> to fol<strong>di</strong>ng. In Active<br />

Tectonics, <strong>di</strong> R.E. Wallace, 63-79. Washington: National<br />

Academy Press.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 121-124, 2 ff.<br />

Ben<strong>di</strong>ng and growth of the Central Andean plateau: paleomagnetic<br />

and structural constraints from the Eastern Cor<strong>di</strong>llera (22-24°S,<br />

NW Argentina)<br />

MARCO MAFFIONE (*), FABIO SPERANZA (*) & CLAUDIO FACCENNA (**)<br />

RIASSUNTO<br />

Piegamento e crescita <strong>del</strong>l’Altopiano <strong>del</strong>le Ande Centrali: vincoli<br />

paleomagnetici e strutturali dalla Cor<strong>di</strong>gliera Orientale (22-24°S, NO<br />

Argentina)<br />

In questo lavoro presentiamo nuovi dati paleomagnetici e strutturali<br />

provenienti da rocce s<strong>ed</strong>imentarie continentali a matrice sabbioso-argillosa<br />

<strong>del</strong>l’intervallo Cretaceo superiore-Pliocene provenienti dalla Cor<strong>di</strong>gliera<br />

Orientale (Ande centrali). Qui, rilievi a <strong>di</strong>rettrice N-S e NNE-SSW, costituiti<br />

da un basamento Paleozoico e da r<strong>ed</strong>-b<strong>ed</strong>s <strong>del</strong> Cretaceo superiore, si trovano<br />

parzialmente sovrapposti a profon<strong>di</strong> bacini s<strong>ed</strong>imentari <strong>di</strong> età Cenozoica. Le<br />

<strong>di</strong>rezioni paleomagnetiche (probabilmente primarie) ottenute in 15 siti<br />

documentano una rotazione oraria rispetto alla placca Sud Americana <strong>di</strong><br />

45.9°±9.4, 30.1°±23.9°, and 15.4°±19.3°, avvenuta rispettivamente dopo il<br />

Cretaceo superiore (~80 Ma), l’Oligo-Miocene (20-30 Ma), <strong>ed</strong> il Miocene<br />

superiore-Pliocene (5-10 Ma). Al contrario, 4 siti <strong>del</strong> Cretaceo superiore,<br />

situati in prossimità <strong>di</strong> una faglia trascorrente a <strong>di</strong>rettrice N-S (faglia Yavi-<br />

Abra Pampa) mostrano una rotazione nulla. Circa 20 km ad ovest, lungo la<br />

faglia trascorrente sinistra Ambra Moreta sono presenti strutture a fiore e strati<br />

sin-tettonici subverticali datati a 14.26±0.19 Ma. Considerando i dati <strong>di</strong><br />

letteratura circa l’età <strong>di</strong> inizio <strong>del</strong>la deformazione, proponiamo che a partire<br />

dall’Eocene-Oligocene (30-40 Ma) la Cor<strong>di</strong>gliera Orientale abbia subito una<br />

rotazione regionale oraria <strong>di</strong> 40°-50°, sincrona con la propagazione dei fronti<br />

compressivi e con il piegamento a grande scala <strong>del</strong>le Ande Centrali. È<br />

possibile che la rotazione oraria sia attualmente attiva come in<strong>di</strong>cano i dati<br />

GPS. A partire da ~15 Ma, l’attività <strong>del</strong>le faglie trascorrenti sinistre a <strong>di</strong>rezione<br />

N-S ha indotto <strong>del</strong>le rotazioni antiorarie lungo la zona <strong>di</strong> faglia, <strong>di</strong> fatto<br />

annullando localmente la rotazione regionale oraria. Ipotizziamo inoltre che<br />

l’attività trascorrente <strong>del</strong> Miocene m<strong>ed</strong>io possa aver accomodato il progressivo<br />

allargamento verso sud <strong>del</strong>l’Altipiano, migrato lateralmente dalle regioni<br />

centrali <strong>del</strong>la piega orogenica dove la crosta risulta maggiormente ispessita.<br />

Key words: Altiplano-Puna plateau, Bolivian orocline, Eastern<br />

Cor<strong>di</strong>llera, paleomagnetism, strike-slip tectonics.<br />

INTRODUCTION<br />

High plateaus are the ultimate product of plate convergence.<br />

These remarkable structures are characteriz<strong>ed</strong> by internally<br />

drain<strong>ed</strong> flat surfaces stan<strong>di</strong>ng at high elevation over a thick and<br />

_________________________<br />

(*)Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia, Via <strong>di</strong> Vigna Murata<br />

605, 00143 Rome, Italy<br />

(**)Dipartimento <strong>di</strong> Scienze Geologiche, Universita Roma Tre, Largo S.L.<br />

Murialdo 1, 00146 Rome, Italy<br />

warm crust. The Altiplano-Puna plateau is locat<strong>ed</strong> in the<br />

Central Andean Cor<strong>di</strong>llera between 15° and 28°S (Figure 1),<br />

stan<strong>di</strong>ng at a mean elevation of ~ 4000 m over a ~60-70 km<br />

thick crust (ISACKS, 1988; BECK et al., 1996). The plateau<br />

broadens up to ~200 km just in the area where the Cor<strong>di</strong>llera<br />

axis is deflect<strong>ed</strong> by 55° along the “Bolivian Orocline” or<br />

“Arica Deflection” (CAREY, 1955; ISACKS, 1988). The<br />

along-strike gra<strong>di</strong>ent of crustal shortening is consider<strong>ed</strong> as the<br />

lea<strong>di</strong>ng mechanism for the formation of the Bolivian orocline<br />

(e.g. ISACKS, 1988; MACFADDEN et al., 1995; RILLER<br />

AND ONCKEN, 2003; ROUSSE et al., 2003).<br />

The orogenic axis deflection of the Bolivian orocline is<br />

accompani<strong>ed</strong> by a “Central Andes rotation pattern” (CARP of<br />

14°S<br />

18°S<br />

22°S<br />

26°S<br />

30°S<br />

OROCLINEAXIS<br />

Neogene<br />

Paleogene<br />

Cretaceous<br />

72°W 68°W 64°W<br />

St udy area<br />

Fig. 2<br />

SANTA BARBARA<br />

SYSTEM<br />

SIERRAS<br />

PAMPEANAS<br />

Fig. 1 - Digital elevation mo<strong>del</strong> of the Central Andes, showing the main<br />

morphotectonic domains and paleomagnetic <strong>di</strong>rections from select<strong>ed</strong><br />

previous stu<strong>di</strong>es (arrows).


122 M. MAFFIONE ET ALII<br />

SOMOZA et al., (1996)), showing a general counterclockwise<br />

(CCW) rotation in the northern arc limb (Peru and northern<br />

Bolivia), and a clockwise (CW) rotation in the southern limb<br />

(southern Bolivia, Chile and northwestern Argentina, Figure 1).<br />

While shortening in the Andes is ongoing since the late<br />

Cretaceous, the uplift of the plateau probably initiat<strong>ed</strong> in the<br />

Miocene, during thrusting and consequent crustal thickening,<br />

reaching an elevation of up to ~1.5-2.5 km (ISACKS, 1988;<br />

HOKE AND GARZIONE, 2008). In a later stage (probably<br />

from 10 to 6 Ma), during the thrusting of the Eastern Cor<strong>di</strong>llera<br />

over the Brazilian Shield (ISACKS, 1988; GUBBELS et al.,<br />

1993), the plateau reach<strong>ed</strong> its present-day elevation.<br />

Transpression and strike-slip faulting has been document<strong>ed</strong><br />

on both limbs of the orocline. This pattern of deformation is<br />

regionally significant, and has been relat<strong>ed</strong> to <strong>di</strong>fferent<br />

mechanisms, such as: a ben<strong>di</strong>ng mechanism (i.e. saloon door)<br />

(e.g. ISACKS, 1988; MACFADDEN et al., 1995; MÜLLER et<br />

al., 2002); slip-partitioning due to the oblique convergence<br />

(e.g. RANDALL et al., 1996); compressional relat<strong>ed</strong> block<br />

faulting; lateral ramp accommodating panels of <strong>di</strong>fferent<br />

shortening rate (SOMOZA et al., 1996), or, in a Tibetan like<br />

fashion, to the lateral expansion of the plateau (RILLER AND<br />

ONCKEN, 2003). Despite the overall structural pattern of the<br />

Cor<strong>di</strong>llera being well establish<strong>ed</strong> in terms of large-scale<br />

rotations and tectonics of the salient limbs, the tectonics active<br />

during ben<strong>di</strong>ng and growth of the belt are still poorly<br />

document<strong>ed</strong>.<br />

This study focuses on the deformation occurring during<br />

orocline formation and growth of the plateau. We select<strong>ed</strong> a<br />

key site locat<strong>ed</strong> in the Eastern Cor<strong>di</strong>llera, at the margin with the<br />

Puna plateau (22-24°S, Figure 1), where thrusting, strike-slip<br />

deformation and rotations are expect<strong>ed</strong> to be particularly<br />

evident. We paleomagnetically sampl<strong>ed</strong> 32 sites from<br />

Cretaceous to Mio-Pliocene continental s<strong>ed</strong>imentary rocks.<br />

Natural remanent magnetization (NRM) of the sampl<strong>ed</strong> rocks<br />

has been investigat<strong>ed</strong> using thermal treatment, and magnetic<br />

mineralogy analyses were also perform<strong>ed</strong>. Finally, we also<br />

measur<strong>ed</strong> the strike and <strong>di</strong>p of 70 striat<strong>ed</strong> small-scale brittle<br />

fault planes (and relative kinematic in<strong>di</strong>cators, when present)<br />

from late Cretaceous to Miocene s<strong>ed</strong>imentary rocks at 9<br />

localities, mostly coinci<strong>di</strong>ng with the paleomagnetic sites.<br />

Quartz or calcite steps and SC-structures were the most<br />

commonly identifi<strong>ed</strong> fault kinematic in<strong>di</strong>cators.<br />

RESULTS AND DISCUSSION<br />

Magnetic mineralogy analyses point to hematite (of variable<br />

grain sizes) as the unique magnetic carrier of all Cretaceous-<br />

Pliocene samples gather<strong>ed</strong> from the Eastern Cor<strong>di</strong>llera.<br />

Reliable (and likely primary) site mean paleomagnetic<br />

<strong>di</strong>rections from 15 sites document that the Eastern Cor<strong>di</strong>llera<br />

between 22° and 24°S has undergone 45.9°±9.4°, 30.1°±23.9°,<br />

and 15.4°±19.3° CW rotation with respect to South America<br />

after late Cretaceous (~80 Ma), Oligo-Miocene (20-30 Ma),<br />

and late Miocene-Pliocene (5-10 Ma), respectively (Table 1).<br />

Conversely, <strong>di</strong>rections from 4 Cretaceous sites locat<strong>ed</strong> adjacent<br />

to the Yavi-Abra Pampa fault (group B) fall ca. 40° apart from<br />

the remaining 8 Cretaceous sites (group A), showing no<br />

significant rotation (Figures 2).<br />

Field mapping and structural data in<strong>di</strong>cate that small-scale<br />

fault planes trend ~NNE-SSW on average, in agreement with<br />

the regional trend of the major structures, and show dual<br />

vergence with a pr<strong>ed</strong>ominance of west-<strong>di</strong>pping planes (Figure<br />

2). Contouring of the slickensides density from all sites reveals<br />

two main clustering at about 270° and 330°, consistent with<br />

previous results by CLADOUHOS et al. (1994) and<br />

COUTAND et al. (2001). The transport <strong>di</strong>rection is only<br />

locally <strong>di</strong>p slip (on NE-SW fault planes, i.e. near site St07 and<br />

11) but pr<strong>ed</strong>ominantly oblique on NS to NNE-SSW planes,<br />

yiel<strong>di</strong>ng an overall left-lateral transpressive regime (Figure 2).<br />

Perhaps, the most impressive feature of the area is<br />

represent<strong>ed</strong> by the tens of kilometre-scale strike-slip features.<br />

Their activity is mark<strong>ed</strong> not only by important damage zones,<br />

duplexes and flower structures, but also by the deposition of<br />

thick pack of clastic deposits growing while they were getting<br />

sub-vertical. This is clearly attest<strong>ed</strong> by progressive<br />

unconformities (growth strata), characterizing a formation<br />

dat<strong>ed</strong> at 14.26±0.19 Ma (CLADOUHOS et al., 1994).<br />

Accor<strong>di</strong>ng to this, we relate the paleomagnetic <strong>di</strong>rection of<br />

sites adjacent to the Yavi-Ambra Pampa fault to a local ~40°<br />

CCW rotation occurring adjacent to the fault system, ad<strong>di</strong>ng to<br />

the 40°-50° regional CW rotation. Consistently, the tectonic<br />

transport <strong>di</strong>rections evaluat<strong>ed</strong> at two stations (St18 and St10)<br />

close to the Yavi-Abra Pampa fault are rotat<strong>ed</strong> ca. 60° CCW<br />

with respect to those observ<strong>ed</strong> near Abra Pampa, far from the<br />

fault (Figure 2). As CCW rotations in the vicinity of a strikeslip<br />

fault are definitely induc<strong>ed</strong> by a left-lateral shear<br />

(SONDER et al., 1994), we suggest that the Yavi-Abra Pampa<br />

faults had a dominant left-lateral <strong>di</strong>splacement that induc<strong>ed</strong><br />

along the fault walls a ca. 40° CCW rotation, almost annulling<br />

the 40°-50° regional CW rotation observ<strong>ed</strong> elsewhere in upper<br />

Cretaceous strata.<br />

We also perform<strong>ed</strong> an oroclinal test (e.g. SCHWARTZ AND<br />

VAN DER VOO, 1983) on our paleomagnetic data, to verify<br />

whether in the Eastern Cor<strong>di</strong>llera a statistically significant<br />

rotational <strong>di</strong>fference exists at sites characteriz<strong>ed</strong> by <strong>di</strong>fferent<br />

structural attitude (i.e. strike of the b<strong>ed</strong><strong>di</strong>ng). The tectonic<br />

implications of the results from the oroclinal test are twofold:<br />

first, thrust-fold structures in Cretaceous and Oligo-Miocene<br />

rocks from the Eastern Cor<strong>di</strong>llera showing variable orientation<br />

(i.e. N-S to NE-SW) underwent an uniform regional CW<br />

rotation, with no oroclinal ben<strong>di</strong>ng mechanism at a local scale;<br />

second, a correlation between the paleomagnetic declinations<br />

and the local <strong>di</strong>rections of the structures emerges when<br />

consider<strong>ed</strong> the entire Cretaceous data set (group A + group B).<br />

This implies that at sites locat<strong>ed</strong> adjacent to the Yavi-Abra<br />

Pampa fault the CCW rotation (we suppos<strong>ed</strong> to be relat<strong>ed</strong> to<br />

the strike-slip shear along this fault) occurr<strong>ed</strong> after that the<br />

structural grain of the orogen was acquir<strong>ed</strong>, i.e. they postdate<br />

the onset of deformation and strata tilting in the Eastern<br />

Cor<strong>di</strong>llera. This time relationship among tectonic episodes is


BENDING AND GROWTH OF THE CENTRAL ANDEAN PLATEAU: PALEOMAGNETIC AND STRUCTURAL CONSTRAINTS FROM THE EASTERN<br />

CORDILLERA (22-24°S, NW ARGENTINA)<br />

Rinconada<br />

A<br />

St 14<br />

St07 (PC)<br />

Laguna<br />

Pozuelos<br />

Abra Moreta<br />

Fault<br />

B<br />

<br />

<br />

Abra Moreta<br />

St 02 (TA)<br />

<br />

Sierra de Cochinoca<br />

Cochinoca<br />

St 12<br />

St04 (PA)<br />

Yavi-Abra<br />

Pampa Fault<br />

Abra Pampa<br />

St 11<br />

Sierra de Aguilar<br />

St 18<br />

<br />

<br />

St 18<br />

C-C’<br />

(St15)<br />

B’<br />

Cangrejos<br />

Purmamarca<br />

Humahuaca<br />

1 2 3 4 5 6 7 8 9 10 11 12<br />

<br />

<br />

<br />

<br />

Cangrejos-TresCrucesridge<br />

<br />

<br />

<br />

<br />

St 10<br />

<br />

Tres Cruces<br />

b<br />

<br />

<br />

<br />

Quebrada de Humahuaca<br />

a<br />

Sierra de SantaVictoria<br />

A’<br />

a b c<br />

Fig. 2 - Structural and geological map of the study area, showing the stereographic projections of the fault plane <strong>di</strong>rections at each measurement site. Black<br />

arrows represent site-mean rotations from this study calculat<strong>ed</strong> with respect to stable South America. 1, Recent alluvial and colluvial deposits [Quaternary]; 2,<br />

Miomarà formation [late Miocene-Pliocene]; 3, Sijes/Chaco formation [middle-late Miocene]; 4, Moreta/Candado formation [Oligocene-Miocene]; 5, basic<br />

and acid volcanics [Neogene]; 6, Pirgua formation [Aptian-Maastrichtian]; 7, granitoides [Cretaceous]; 8, Acoite formation [Ordovician] and pre-Cretaceous<br />

formations; 9, main expos<strong>ed</strong> (a) and buri<strong>ed</strong> (b) thrust faults; 10, site-mean transport <strong>di</strong>rection; 11, structural analysis site; 12, b<strong>ed</strong><strong>di</strong>ng attitude for 0°-35° (a),<br />

35°-70° (b), and ca. 90° (c) <strong>di</strong>pping strata.


124 M. MAFFIONE ET ALII<br />

confirm<strong>ed</strong> by the evidence that shear <strong>di</strong>rections along reverse<br />

faults observ<strong>ed</strong> at two stations near the Yavi-Abra Pampa fault<br />

(St10 and St18, Figure 2) are rotat<strong>ed</strong> ca. 60° CCW with respect<br />

to those from other stations locat<strong>ed</strong> far from major tectonic<br />

structures.<br />

Relying on our paleomagnetic data and interpretation,<br />

regional CW rotations relat<strong>ed</strong> to the development of the<br />

Andean arcuate belt occurr<strong>ed</strong> in the Eastern Cor<strong>di</strong>llera from 30-<br />

40 Ma to Present, as GPS data suggest (ALLMENDINGER et<br />

al., 2005). Conversely, the strike-slip tectonics and (associat<strong>ed</strong>)<br />

CCW rotations we document have only occurr<strong>ed</strong> in the past 15<br />

Ma, and are coeval with a relatively recent regional-scale<br />

tectonic event. In fact, the strong uplift of the Altiplano-Puna<br />

plateau until the remarkable height of ca. 4000 m observ<strong>ed</strong><br />

today is thought to have occurr<strong>ed</strong> mostly during the Neogene<br />

(last 10 Ma) (e.g. HOKE AND GARZIONE, 2008). In contrast<br />

to the composite rotational mo<strong>del</strong>s put forward in the past, we<br />

suggest that the development of N-S strike-slip activity (and<br />

relat<strong>ed</strong> local rotations) in the Eastern Cor<strong>di</strong>llera (at the border<br />

with the Altiplano-Puna plateau) is relat<strong>ed</strong> to the uplift of the<br />

plateau, and rather independent from the large-scale<br />

development of the Andean salient.<br />

Accor<strong>di</strong>ng to this hypothesis, the onset of the strike-slip<br />

activity would be link<strong>ed</strong> to the lateral (southward) growth of the<br />

Central Andean plateau. The plateau uplift start<strong>ed</strong> in the central<br />

part of the Andean salient, where the shortening amount was<br />

greater (e.g. KLEY AND MONALDI, 1998; MCQUARRIE et<br />

al., 2008). This may have induc<strong>ed</strong> a stress (relat<strong>ed</strong> to body<br />

forces) at the plateau margins which could have induc<strong>ed</strong> a<br />

progressive sprea<strong>di</strong>ng of the plateau toward its northern and<br />

southern <strong>ed</strong>ges.<br />

REFERENCES<br />

ALLMENDINGER R.W., SMALLEY R., BEVIS M., CAPRIO H., &<br />

BROOKS B. (2005) - Ben<strong>di</strong>ng the bolivian orocline in real<br />

time, geology, 33, 905-908.<br />

BECK, SL, G. ZANDT, S.C. MYERS, T.C. WALLACE, P.G.<br />

SILVER, L. DRAKE (1996) - Crustal thickness variations in<br />

the Central Andes, Geology, 24, 407–410.<br />

CAREY, S. W. (1955) - The orocline concept in geotectonics,<br />

Proc. R. Soc. Tasmania, 89, 255– 288.<br />

CLADOUHOS, T.T., R.W. ALLMENDINGER, B. COIRA, E. FARRAR<br />

(1994) - Late Cenozoic deformation in the Central Andes:<br />

Fault kinematics from the northern Puna, northwest<br />

Argentina and southwest Bolivia, J. S. Am. Earth Sci., 7,<br />

209-228.<br />

COUTAND, I., P.R. COBBOLD, M.DE URREIZTITA, P. GAUTIER,<br />

A. CHAUVIN, D. GAPAIS, AND E. ROSSELLO (2001) - Style<br />

and history of Andean deformation, Puna plateau,<br />

northwestern Argentina, Tectonics, 20(2), 210-234.<br />

GUBBELS T, B. ISACKS, E. FARRAR (1993) - High level surfaces,<br />

plateau uplift, and foreland development, Bolivian central<br />

Andes, Geology, 21, 695-698.<br />

HOKE, G., GARZIONE C. (2008) - Paleosurfaces, paleoelevation,<br />

and the mechanisms for the late Miocene topographic<br />

development of the Altiplano plateau, Earth Planet. Sci.<br />

Lett., 271, 192-201.<br />

ISACKS, B. L. (1988) - Uplift of the central Andean plateau and<br />

ben<strong>di</strong>ng of the Bolivian orocline, J. Geophys. Res., 93,<br />

3211– 3231.<br />

KLEY, J., C.R. MONALDI (1998) - Tectonic shortening and<br />

crustal thickness in the Central Andes: how good is the<br />

correlation?, Geology, 26(8), 723-726.<br />

MACFADDEN, B.J., F. ANAYA, AND C.C. SWISHER III (1995) -<br />

Neogene paleomagnetism and oroclinal ben<strong>di</strong>ng of the<br />

central Andes of Bolivia, J. Geophys. Res., 100, 8153–<br />

8167.<br />

MCQUARRIE, N., J.B. BARNES, AND T.A. EHLERS (2008) -<br />

Geometric, kinematic, and erosional history of the central<br />

Andean Plateau, Bolivia (15-17°S), Tectonics, 27, TC3007,<br />

doi:10.1029/2006TC002054.<br />

MÜLLER, J.P., J. KLEY, V. JACOBSHAGEN (2002) - Structure and<br />

Cenozoic kinematics of the Eastern Cor<strong>di</strong>llera, southern<br />

Bolivia (21°S), Tectonics, 21, doi:10.1029/2001TC001340.<br />

RANDALL, D.E., G.K. TAYLOR, J. GROCOTT (1996) - Major<br />

crustal rotations in the Andean margin: paleomagnetic<br />

results from the Coastal Cor<strong>di</strong>llera of northern Chile, J.<br />

Geophys. Res., 101(B7), 15783-15798.<br />

RILLER, U., AND O. ONCKEN (2003) - Growth of the central<br />

Andean Plateau by tectonic segmentation is controll<strong>ed</strong> by<br />

the gra<strong>di</strong>ent in crustal shortening, J. Geol., 111, 367-384.<br />

ROUSSE, S., S. GILDER, D. FARBER, B. MCNULTY, P. PATRIAT,<br />

V. TORRES, AND T. SEMPERE (2003) - Paleomagnetic<br />

tracking of mountain buil<strong>di</strong>ng in the Peruvian Andes since<br />

10 Ma, Tectonics, 22(5), 1048,<br />

doi:10.1029/2003TC001508.<br />

SCHWARTZ, S.Y., AND R. VAN DER VOO (1983) - Paleomagnetic<br />

evaluation of the orocline hypothesis in the central and<br />

southern Appalachians, Geophys. Res. Lett., 10, 505–508.<br />

SOMOZA, R., S. SINGER, AND B. COIRA (1996) -<br />

Paleomagnetism of upper Miocene ignimbrites at the Puna:<br />

An analysis of vertical-axis rotations in the Central Andes,<br />

J. Geophys. Res., 101, 11,387-11,400.<br />

SONDER, L.J., C.H. JONES, S.L. SALYARDS, AND K.M. MURPHY<br />

(1994) - Vertical-axis rotations in the Las Vegas Valley<br />

Shear Zone, southern Nevada: Paleomagnetic constraints on<br />

kinematics and dynamics of block rotations, Tectonics, 13<br />

(4), 769-788.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 125<br />

Fluid assist<strong>ed</strong> shearing at the depth of the Brittle-Ductile Transition: an<br />

integrat<strong>ed</strong> structural, petrological, fluid inclusions study of the<br />

Erbalunga shear zone, Schistes Lustrés Nappe, Alpine Corsica (France).<br />

MATTEO MAGGI (*,**), FEDERICO ROSSETTI (**), FRANCESCA TECCE (***) & GIANLUCA VIGNAROLI(**)<br />

ABSTRACT<br />

In this work we present structural, petrological and fluid<br />

inclusion stu<strong>di</strong>es perform<strong>ed</strong> in a major retrogressive shear zone<br />

(the Erbalunga shear zone), which occurs within the HP/LT<br />

domain of the Schistes Lustrés Nappe of eastern Alpine<br />

Corsica. This shear zone is part of the post-orogenic network of<br />

shear zones that favour<strong>ed</strong> the exhumation of the HP core of<br />

Alpine Corsica (Daniel et al., 1996) during Late<br />

Oligocene/Early Miocene times (Brunet et al., 2000). The shear<br />

zone is characteris<strong>ed</strong> by a progressive ductile-to-brittle top-tothe-E<br />

shearing, starting at greenschist facies con<strong>di</strong>tions (ca. 600<br />

MPa, 400-450 °C). Evidence for vigorous fluid flow through<br />

the shear zone is document<strong>ed</strong> by widespread quartz and quartzcalcite<br />

vein segregations, which accompani<strong>ed</strong> the progressive<br />

evolution of shearing. Textural characteristics of three main<br />

generations of veins record the incremental evolution of the<br />

shear zone tracing the continuum transition from ductile- to<br />

brittle-dominat<strong>ed</strong> deformation environments. Regardless, of the<br />

vein generation, fluid inclusions host<strong>ed</strong> in quartz grains host<strong>ed</strong><br />

within the three <strong>di</strong>fferent sets of veins document a low-salinity<br />

(


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 126<br />

Mo<strong>del</strong>ling the fractur<strong>ed</strong> carbonatic rocks of Lepini Mountains to infer<br />

deep hydrogeological pathways<br />

IRENE MANNINO *, PAOLA CIANFARRA*, FRANCESCO SALVINI *<br />

ABSTRACT<br />

Spatial <strong>di</strong>stribution of brittle deformation rules the secondary<br />

permeability of carbonatic rocks and therefore the<br />

accumulation and the pathway of deep fluids (ground-water,<br />

hydrocarbon).<br />

This work contributes to the understan<strong>di</strong>ng of the<br />

hydrogeological relations among the deep, fractur<strong>ed</strong> carbonatic<br />

structures in the western sector of the Lepini Mountains<br />

(Central Apennines). This NW-SE structure is characteris<strong>ed</strong> by<br />

three horses stack<strong>ed</strong> towards the NE from hinterland to<br />

foreland with a major thrust that bords the NE sector of the<br />

area. A serie of lystric, regional faults lower the south-western<br />

flank of the structure. Fracture H/S (Height/Spacing) parameter<br />

prov<strong>ed</strong> a useful tool to estimate the intensity of the regional<br />

brittle deformation. It was measur<strong>ed</strong> by a set of field-structural<br />

stations in outcrops representing the main buri<strong>ed</strong> carbonate<br />

units. H/S statistical analyses provide values ranging from 1.5<br />

to 2.6. The first value relates to <strong>di</strong>agenesis, the latter to the<br />

effect of paleostress induc<strong>ed</strong> by tectonics. A numerical<br />

mo<strong>del</strong>ling (ForcTre Software) was perform<strong>ed</strong> to reconstruct the<br />

kinematic and tectonic evolution by balanc<strong>ed</strong> cross section in a<br />

forward mo<strong>del</strong>ling. In this way, the mo<strong>del</strong>ling of the intensity<br />

and spatial <strong>di</strong>stribution of brittle deformations was comput<strong>ed</strong><br />

by the Time Stress Integral (TSI), TSI = F(φ,,Σe)dt, with φ<br />

being the frictional coefficent, the stress and Σe the strength.<br />

A linear relation was found between the spatial <strong>di</strong>stribution of<br />

TSI and measur<strong>ed</strong> H/S of the outcropping rocks ( < 0.1%).<br />

This correlation allow<strong>ed</strong> to estimate the intensity and the<br />

<strong>di</strong>stribution of deep rock fracture pattern. Average higher<br />

values of pr<strong>ed</strong>ict<strong>ed</strong> H/S (1.8) characterise Jurassic rocks than<br />

Cretaceous one. Fracturing is expect<strong>ed</strong> to decrease with depth<br />

in all stu<strong>di</strong><strong>ed</strong> units. This r<strong>ed</strong>uction relates to the vertical<br />

succession of rocks characteris<strong>ed</strong> by <strong>di</strong>fferent reological<br />

properties, namely shale content, b<strong>ed</strong> thickness and interlayer<br />

shale content.<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche Università <strong>di</strong> Roma Tre, Largo<br />

S.L.Murialdo 1, I-00146 Rome, Italy<br />

Lavoro eseguito con il contributo finanziario <strong>del</strong> Laboratorio <strong>di</strong><br />

geo<strong>di</strong>namica quantitativa e telerilevamento <strong>del</strong> Dipartimento <strong>di</strong> Scienze<br />

Geologiche, Università <strong>di</strong> Roma Tre<br />

On the basis of the obtain<strong>ed</strong> results we suggest that fractures<br />

provide a deep hydrological connection between the Lepini Mts<br />

and the buri<strong>ed</strong> structures under the plio-quaternary deposits of<br />

the Pontina Plain to the SE. The normal faults locat<strong>ed</strong> in the<br />

SW sector of the investigat<strong>ed</strong> area do not compartmentalise the<br />

structures.<br />

Key words: brittle deformation, secondary permeability,<br />

fracturing, carbonates, Lepini Mts


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 127-130<br />

Tectono-metamorphic history of the Duarte terrane (Jarabacoa<br />

area, Hispaniola Island): insights on the tectonic evolution of the<br />

northern rim of the Caribbean Oceanic Plateau<br />

MICHELE MARRONI*, LUCA PANDOLFI*, GIUSEPPE GIUNTA** & ALESSANDRO MALASOMA*<br />

RIASSUNTO<br />

Evoluzione strutturale <strong>del</strong>l’unità Duarte (Jarabacoa,<br />

Hispaniola) e considerazioni sull’evoluzione tettonica <strong>del</strong><br />

bordo settentrionale <strong>del</strong> Plateau Oceanico Caraibico<br />

Il margine settentrionale <strong>del</strong>la Placca Caraibica è <strong>del</strong>imitato da una catena<br />

traspressiva caratterizzata dall’insieme <strong>di</strong> <strong>di</strong>versi terrane derivati da una<br />

convergenza obliqua, <strong>di</strong> età Cretaceo Superiore-Terziaria, fra le Placche<br />

Nordamericana e Caraibica. Frammenti <strong>di</strong> un plateau oceanico appartenenti<br />

alla Placca Caraibica sono incorporati in questa catena come unità tettoniche<br />

fortemente deformate e metamorfosate. Alcune <strong>di</strong> queste unità sono state<br />

riconosciute nel settore <strong>di</strong> Jarabacoa (Hispaniola). In questo settore il Terrane<br />

<strong>di</strong> Duarte è formato da due <strong>di</strong>verse unità tettoniche caratterizzate da un <strong>di</strong>verso<br />

grado metamorfico. L’unità inferiore è costituita da metabasiti in facies Scisti<br />

Ver<strong>di</strong>, mentre quella superiore è caratterizzata da metabasiti in facies<br />

anfibolitica a cui si sovrappongono metas<strong>ed</strong>imenti derivati dallo<br />

smantellamento <strong>di</strong> un arco magmatico.<br />

Entrambe le unità tettoniche sono affette da quattro <strong>di</strong>versi eventi<br />

deformativi (D1 to D4) che possono essere correlati. In entrambe le unità la<br />

fase D1 è caratterizzata da una foliazione metamorfica associata a lineazioni<br />

mineralogiche e dalla presenza <strong>di</strong> rare pieghe isoclinali sra<strong>di</strong>cate. La fase D2 è<br />

caratterizzata da una foliazione ben sviluppata e da pieghe isoclinali sviluppate<br />

durante una fase metamorfica retrograda. Le fasi D1 e D2 si sviluppano nel<br />

Cenomaniano-Turoniano, mentre le fasi D3 e D4 producono una successiva<br />

debole deformazione senza ricristallizzazione metamorfica. Queste ultime fasi<br />

possono essere messe in relazione con la tettonica traspressiva <strong>del</strong>l’Oligocene-<br />

Miocene Inferiore. Tutte le deformazioni riconosciute si sviluppano in rocce<br />

derivate da un arco connesso con una subduzione obliqua sud-vergente <strong>del</strong>la<br />

litosfera oceanica <strong>del</strong>la Placca Nordamericana al <strong>di</strong> sotto <strong>del</strong> plateau oceanico<br />

Caraibico.<br />

Parole chiave: metabasiti, anfiboliti, Scisti Ver<strong>di</strong>,<br />

deformazione, metamorfismo, Placca Caraibica, Duarte,<br />

Isola <strong>di</strong> Hispaniola.<br />

ABSTRACT<br />

The northern margin of the Caribbean Plate is characteriz<strong>ed</strong> by a<br />

transpressional belt consisting of an assemblage of several terranes deriv<strong>ed</strong><br />

from Upper Cretaceous to Tertiary oblique convergence between the Northern<br />

American and Caribbean Plates. Fragments of the oceanic plateau belonging to<br />

the Caribbean Plate are incorporat<strong>ed</strong> in these belts as strongly deform<strong>ed</strong> and<br />

_________________________<br />

* Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Pisa<br />

** Dipartimento <strong>di</strong> Geologia e Geodesia, Università <strong>di</strong> Palermo<br />

metamorphos<strong>ed</strong> sequences, as recogniz<strong>ed</strong> in the Jarabacoa area of the<br />

Hispaniola Island. In this area the Duarte Terrane consists of two <strong>di</strong>fferent<br />

units showing <strong>di</strong>fferent metamorphic grades. The lower unit consists of<br />

greenschist facies metabasites, whereas the upper one is represent<strong>ed</strong> by<br />

amphibolite facies metabasites topp<strong>ed</strong> by metas<strong>ed</strong>imentary rocks, whose<br />

protoliths were clastic deposits suppli<strong>ed</strong> by a magmatic arc. Both units<br />

suffer<strong>ed</strong> four deformation phases, from D1 to D4, that can be strictly correlat<strong>ed</strong>.<br />

In both units the D1 phase is characteriz<strong>ed</strong> by a syn-metamorphic foliation<br />

associat<strong>ed</strong> to a mineral lineation and very rare rootless isoclinal folds. The D2<br />

phase is characteriz<strong>ed</strong> by a well develop<strong>ed</strong> foliation and isoclinal folds<br />

acquir<strong>ed</strong> under retrograde metamorphic con<strong>di</strong>tions. The D1 and D2 phases<br />

develop<strong>ed</strong> in the Cenomanian-Turonian time span. The following D3 and D4<br />

phases produc<strong>ed</strong> weak deformations without metamorphic imprint. The D3 and<br />

D4 phase are probably connect<strong>ed</strong> with transpression tectonics of Early<br />

Oligocene to Early Miocene age. All these deformations develop<strong>ed</strong> in an arc<br />

setting connect<strong>ed</strong> with southward oblique subduction of the oceanic<br />

lithosphere of the North America Plate beneath the Caribbean oceanic plateau.<br />

Key words: metabasites, amphibolite, greenschist,<br />

deformation, metamorphism, Carribbean Plate, Duarte<br />

Terrane. Hispaniola Island.<br />

INTRODUCTION<br />

The Caribbean Plate has a composite structure that includes<br />

a small continental block showing a transition to a large<br />

igneous province represent<strong>ed</strong> by an oceanic plateau that is<br />

regard<strong>ed</strong> as the result of Lower to Upper Cretaceous plume<br />

activity. The northern border of the Caribbean Plate is<br />

represent<strong>ed</strong> by transpressional deform<strong>ed</strong> belts, consisting of an<br />

assemblage of several terranes deriv<strong>ed</strong> from Upper Cretaceous<br />

to Tertiary oblique convergence between the Northern America<br />

and the Caribbean Plates (Donnelly et al., 1990). Fragments of<br />

the oceanic plateau are incorporat<strong>ed</strong> in these deform<strong>ed</strong> belts, as<br />

recogniz<strong>ed</strong> in the Hispaniola Island locat<strong>ed</strong> at the northern<br />

margin. In this island, the oceanic plateau is expos<strong>ed</strong> as<br />

unmetamorphos<strong>ed</strong> and weakly deform<strong>ed</strong> sequences in the La<br />

Hotte-Selle-Borohuco Terrane, but also as strongly deform<strong>ed</strong><br />

and metamorphos<strong>ed</strong> sequences in the Duarte Terrane. The latter<br />

one represents a good example of the oceanic plateau involv<strong>ed</strong><br />

in the transpressional belt at the border of the Caribbean Plate.<br />

In this work, the lithostratigraphic features, the deformation<br />

history and the metamorphic characteristics of the metabasites<br />

from the Duarte Terrane cropping out in the Jarabacoa area are<br />

describ<strong>ed</strong> and the relat<strong>ed</strong> implications for the geodynamic<br />

history of the northern border of the Caribbean Plate are<br />

<strong>di</strong>scuss<strong>ed</strong>.


128 M. MARRONI ET ALII<br />

THE DUARTE TERRANE<br />

In the study area, the Duarte Terrane consists of two<br />

tectonic units, <strong>di</strong>stinguish<strong>ed</strong> by the metamorphic grade. The<br />

lower unit is characteriz<strong>ed</strong> by greenschist facies metamorphism<br />

whereas the upper one shows amphibolite facies metamorphic<br />

imprint. Both these units are strongly deform<strong>ed</strong>, showing a<br />

polyphase history. Within the Duarte Terrane a complex<br />

deformation history consisting of four deformation phases, has<br />

been recogniz<strong>ed</strong>. The later, brittle tectonics are not describ<strong>ed</strong> in<br />

this work.<br />

The amphibolite facies unit<br />

The amphibolite facies unit comprises two <strong>di</strong>fferent<br />

lithothypes. The first one consists massive to foliat<strong>ed</strong><br />

metabasites, sometimes characteriz<strong>ed</strong> by coarse-grain<strong>ed</strong><br />

texture. As describ<strong>ed</strong> by Lewis and Jimenez (1991) in the area<br />

northwest of Jarabacoa, the metabasites are topp<strong>ed</strong> by a second<br />

lithotype consisting of metas<strong>ed</strong>imentary rocks. The<br />

metas<strong>ed</strong>imentary rocks consist of quartz-bearing gneisses and<br />

micaschists with levels of massive metaconglomerates<br />

inclu<strong>di</strong>ng clasts of basic and acid volcanic rocks flatten<strong>ed</strong> along<br />

the main foliation.<br />

The amphibolite facies unit suffer<strong>ed</strong> a complex deformation<br />

history develop<strong>ed</strong> under retrograde P and T con<strong>di</strong>tions. The<br />

first deformation phase (D1) is mainly identifi<strong>ed</strong> in the foliation<br />

(S1) that can be found in two <strong>di</strong>fferent occurrences. In the finegrain<strong>ed</strong><br />

amphibolites and gneisses, the S1 is found as relic<br />

foliation largely transpos<strong>ed</strong> by deformations develop<strong>ed</strong> during<br />

the following second deformation phase. By contrast, in the<br />

more competent lithologies, as for instance the massive<br />

amphibolites, the S1 is well preserv<strong>ed</strong> and only slightly<br />

mo<strong>di</strong>fi<strong>ed</strong>. Mineralogical lineations (L1) consisting of align<strong>ed</strong><br />

amphibole and plagioclase minerals are well develop<strong>ed</strong> on the<br />

S1 and reveals the N/S trend of these structural elements. In the<br />

amphibolite, also bou<strong>di</strong>nag<strong>ed</strong> and fold<strong>ed</strong> quartz veins with a<br />

thickness ranging from 5 to 20 cm can be referr<strong>ed</strong> to the D1. In<br />

the gneisses, the S1 develop<strong>ed</strong> as alternating quartz- and<br />

plagioclase-rich layers characteriz<strong>ed</strong> by porphyroclasts of<br />

quartz. In the associat<strong>ed</strong> conglomerates, the S1 is mark<strong>ed</strong> by<br />

the shape of the deform<strong>ed</strong> pebbles flatten<strong>ed</strong> in the plane of the<br />

foliation.<br />

The second deformation phase (D2) is generally the most<br />

common at the mesoscale. It is mainly represent<strong>ed</strong> by a<br />

continuous and pervasive foliation (S2), well develop<strong>ed</strong> in<br />

bands of very fine- and fine-grain<strong>ed</strong> amphibolites. These<br />

amphibolites are found around large bou<strong>di</strong>ns, up to 200 m<br />

thick, made of massive amphibolites, where S2 is generally<br />

poorly develop<strong>ed</strong>. In the anastomizing bands, S2, generally<br />

parallel to S1, occurs with <strong>di</strong>fferent morphology, mainly<br />

depen<strong>di</strong>ng the lithology. In the very fine-grain<strong>ed</strong> amphibolites,<br />

S2 can be defin<strong>ed</strong> as fine-grain<strong>ed</strong> schistosity characteriz<strong>ed</strong> by<br />

alternating layers of amphiboles and plagioclases. When the<br />

grain-size increases, S2 occurs as spac<strong>ed</strong> foliation characteriz<strong>ed</strong><br />

by cleavage domains surroun<strong>di</strong>ng microlithons where textural<br />

remnants of S1 are preserv<strong>ed</strong> in lens-shap<strong>ed</strong>, granoblastic<br />

aggregates of plagioclase and amphibole. Therefore, the main<br />

tectonic surface detect<strong>ed</strong> in the field can be regard<strong>ed</strong> as a S1/S2<br />

composite foliation deriv<strong>ed</strong> from the overprinting of the two<br />

deformation phases. Associat<strong>ed</strong> to S2, very rare rootless<br />

isoclinal folds (F2) with thicken<strong>ed</strong> hinges have been recogniz<strong>ed</strong><br />

at both meso and microscale. The relat<strong>ed</strong> axes (A2) trend at<br />

about NE/SW. The hinges of the F2 are generally round<strong>ed</strong> or<br />

subround<strong>ed</strong>, whereas the limbs are strongly bou<strong>di</strong>nag<strong>ed</strong>. The<br />

F2 generally deform the quartz veins or the S1. When observ<strong>ed</strong><br />

on the S2, the F2 are strongly non-cylindrical, their asymmetry<br />

suggests a NW vergence.<br />

The third deformation phase (D3) is represent<strong>ed</strong> by open to<br />

close folds (F3) characteriz<strong>ed</strong> by low-angle axial plane. The F3<br />

are generally cylindrical without thickening of the hinges nor<br />

bou<strong>di</strong>nage of the limbs; their asymmetry has a NE vergence.<br />

The axes (A3) have a NW/SE trend. In the field, the F3 <strong>di</strong>splay<br />

an axial plane foliation (S3) that can be classifi<strong>ed</strong> as spac<strong>ed</strong><br />

crenulation cleavage. Dykes of foliat<strong>ed</strong> tonalites deform<strong>ed</strong> by<br />

F3 have been found in the field. In the more competent<br />

lithologies the S3 occurs as a well develop<strong>ed</strong> fracture cleavage.<br />

The S2-S3 intersection lineation is well develop<strong>ed</strong>, the<br />

mineralogical lineations are lacking.<br />

In thin section, the amphibolites are characteriz<strong>ed</strong> by a<br />

strong S1 defin<strong>ed</strong> by the preferr<strong>ed</strong> orientation of amphibole and<br />

plagioclase. Plagioclase <strong>di</strong>splays an orient<strong>ed</strong> granoblastic<br />

structure concentrat<strong>ed</strong> in thin layers alternating to bands<br />

enrich<strong>ed</strong> in nematoblastic amphiboles. The plagioclases show<br />

taper<strong>ed</strong> twins whereas the amphiboles <strong>di</strong>splay little ondulatory<br />

extinction. Quartz and epidote also occur. In the amphibolites,<br />

the D1 assemblage is characteriz<strong>ed</strong> by the development of<br />

plagioclase (andesine) + Ca-amphibole<br />

(hornblende/tschermakite) + quartz + epidote. From the D1<br />

mineral assemblage epidote and Ca-amphibole have been<br />

analyz<strong>ed</strong> by electron microprobe. The pistacite component<br />

[Fe3+/(Fe3++Al3+)] in D1-relat<strong>ed</strong> epidote ranges between<br />

0.23 and 0.27. The analyz<strong>ed</strong> amphiboles are characteriz<strong>ed</strong> by a<br />

Mg/(Mg+Fe2+) ratio ranging from 0.48 to 0.57 and Si contents<br />

between 6.21 and 3.60 apfu. These Ca-amphiboles are<br />

classifiable as magnesio-hornblende and tschermakite, close to<br />

the boundary between the magnesio- and ferro-tschermakite<br />

stability fields. Amphiboles are the most common minerals in<br />

metabasaltic rocks, and their compositions can provide useful<br />

informations on P-T con<strong>di</strong>tions of metamorphic rocks. The<br />

stability field of hornblende suggests a temperature range<br />

between 450 and 550°C and a pressure ranging from 0.40 to<br />

0.80 GPa (Okamoto and Toriumi, 2005), coherent with<br />

amphibolite facies con<strong>di</strong>tions. These values agree also with the<br />

P and T con<strong>di</strong>tions of 0.49-0.66 GPa and 542-681°C estimat<strong>ed</strong><br />

by Escuder Viruete et al. (2002) in the Duarte Terrane cropping<br />

out in the Villa Altagracia area.<br />

The gneisses are in turn characteriz<strong>ed</strong> by prevailing quartz,<br />

associat<strong>ed</strong> with muscovite and plagioclase, whereas apatite,<br />

rutile, magnetite, are accessory phases. Textures are<br />

characteriz<strong>ed</strong> by thin ( 1 mm) bands of granoblastic<br />

plagioclase + quartz and bands of lepidoblastic micas. Quartz<br />

porphyroclasts, generally envelop<strong>ed</strong> by lepidoblastic micas, are


characteriz<strong>ed</strong> by s and d structures that suggest the presence of<br />

non-coaxial strain. The micaschists are in turn characteriz<strong>ed</strong> by<br />

well develop<strong>ed</strong> schistosity associat<strong>ed</strong> with the synkinematic<br />

growth of white mica + quartz + albite. On the whole, gneisses<br />

and micaschists are characteriz<strong>ed</strong>, during the D1, by the<br />

andesina + quartz + white mica + epidote mineral assemblage,<br />

probably develop<strong>ed</strong> in the same P and T con<strong>di</strong>tions of the<br />

amphibolites.<br />

The S2 can be defin<strong>ed</strong> as a zonal crenulation cleavage with<br />

smooth and anastomizing cleavage domains. The transition<br />

between cleavage and microlithons is <strong>di</strong>screte. The coexistence<br />

of albite and actinolite suggests greenschist facies con<strong>di</strong>tions<br />

with temperature and pressure ranging between 350 and 480°C<br />

and 0.20 to 0.60 Gpa, respectively (Okamoto & Toriumi,<br />

2005). In thin section the fine-grain<strong>ed</strong> amphibolites and<br />

gneisses appear deform<strong>ed</strong> by the S3 that is a poorly develop<strong>ed</strong>,<br />

spac<strong>ed</strong>, crenulation cleavage with smooth shape of cleavage<br />

domains showing gradational transition to microlithons<br />

The greenschist facies unit<br />

The greenschist facies unit consists of metabasites with well<br />

preserv<strong>ed</strong> relics of magmatic structures. Relics of pillow<br />

structures are identifi<strong>ed</strong> as lens-shape bo<strong>di</strong>es. In the<br />

metabasites, relics of clinopyroxene and/or plagioclase have<br />

been identifi<strong>ed</strong>. Accor<strong>di</strong>ng to Escuder Viruete et al. (2007b)<br />

two lithostratigraphic units are found: the lower one includes<br />

low-Ti basalts, high-Ti picrites, High-Mg basalts, Fe-picrites,<br />

whereas the upper one is characteriz<strong>ed</strong> by the occurrence of Fe-<br />

Ti basalts.<br />

The greenschist facies unit underwent a polyphase<br />

deformation history under retrograde P and T con<strong>di</strong>tions<br />

analogue to that recogniz<strong>ed</strong> in the amphibolite facies rocks.<br />

The first deformation phase (D1) produc<strong>ed</strong> a continuous<br />

foliation (S1) well develop<strong>ed</strong> only in the fine-grain<strong>ed</strong><br />

lithologies. A mineralogical lineation (L1), mark<strong>ed</strong> by align<strong>ed</strong><br />

amphibole and plagioclase, is well develop<strong>ed</strong> on the S1and<br />

shows a NW/SE trend. In these lithologies the S1 is associat<strong>ed</strong><br />

to intrafoliar isoclinal folds characteriz<strong>ed</strong> by thicken<strong>ed</strong> hinges<br />

and bou<strong>di</strong>nag<strong>ed</strong> limbs (F1).<br />

The second deformation phase (D2) is mainly represent<strong>ed</strong><br />

by tight to isoclinal folds (F2) with generally round<strong>ed</strong> or<br />

subround<strong>ed</strong> hinges showing a NE-SW trend. These folds are<br />

cylindrical with an axial plane foliation (S2); therefore, the<br />

main surface detect<strong>ed</strong> in the field is a S1/S2 composite<br />

foliation. The asymmetry of the F2 suggests a NE vergence.<br />

During the D2, large cataclastic shear zones characteriz<strong>ed</strong> by S-<br />

C fabric develop<strong>ed</strong> parallel to the S2. The third and fourth<br />

deformation phases (D3 and D4) show features and trends<br />

analogue to those recogniz<strong>ed</strong> in the amphibolite facies rocks,<br />

without significative <strong>di</strong>fferences .<br />

In thin section, the S1 in the fine-grain<strong>ed</strong> metabasites is<br />

fine-grain<strong>ed</strong> and characteriz<strong>ed</strong> by the assemblage albite + Caamphibole<br />

(actinolite) + chlorite + epidote ± quartz ± white<br />

TECTONO-METAMORPHIC HISTORY OF THE DUARTE TERRANE<br />

129<br />

mica. From the D1 mineral assemblage chlorite, epidote and<br />

Ca-amphibole have been analyz<strong>ed</strong> by electron microprobe. The<br />

pistacite component in the epidote of the greenschist facies unit<br />

is higher (0.31-0.32) than in the amphibolite facies unit. For<br />

Ca-amphiboles the structural formulae were calculat<strong>ed</strong><br />

assuming 23 oxygens, and the classification of Leake et al.<br />

(1997) was adopt<strong>ed</strong>. The analyz<strong>ed</strong> amphiboles do not show any<br />

compositional zoning and they are classifiable as actinolite,<br />

with a Mg/(Mg + Fe2+) ratio ranging from 0.77 to 0.82. The<br />

stability field of actinolite suggests a temperature range<br />

between 350 and 480°C and a pressure ranging from 0.20 to<br />

0.60 GPa (Okamoto and Toriumi, 2005), coherent with<br />

greenschist facies con<strong>di</strong>tions.<br />

In thin section, the S2 can be classifi<strong>ed</strong> as a well develop<strong>ed</strong><br />

crenulation cleavage characteriz<strong>ed</strong> by zonal to continuous<br />

cleavage domains that envelop<strong>ed</strong> microlithons where the S1 is<br />

still preserv<strong>ed</strong>, even if fold<strong>ed</strong>. The cleavage domains are<br />

general parallel with <strong>di</strong>screte transition to microlithons. No<br />

recrystallization has been found along the S2. The S3 consists<br />

of well develop<strong>ed</strong> <strong>di</strong>sjunctive cleavage.<br />

AGE OF THE DEFORMATION PHASES<br />

Several ra<strong>di</strong>ometric analyses have been perform<strong>ed</strong> in order<br />

to assess the age of the rocks from the Duarte Terrane. The<br />

most reliable data on the foliat<strong>ed</strong> amphibolites are provid<strong>ed</strong> by<br />

Escuder Viruete et al. (2007b) by Ar/Ar dating on horneblendes<br />

recrystalliz<strong>ed</strong> during the D1. Two plateau ages of 93.9±1.4 and<br />

95.8±1.9 Ma in<strong>di</strong>cate a Cenomanian age for this phase.<br />

Accor<strong>di</strong>ngly, a pre-Cenomanian age for the protoliths of the<br />

amphibolite facies rocks from Duarte Terrane can be inferr<strong>ed</strong>.<br />

This age is also confirm<strong>ed</strong> with the Ar/Ar dating of 84±6 Ma of<br />

the D1-relat<strong>ed</strong> muscovites (Hernaiz Huerta et al., 2000) and 86<br />

± 4 Ma on amphiboles (Lapierre et al., 1999). In ad<strong>di</strong>tion, other<br />

useful evidences for the age of the deformations in the Duarte<br />

Terrane are provid<strong>ed</strong> by the Loma de Cabrera intrusive<br />

complex that postdates the D1 and D2 structures. Ar/Ar dating<br />

of the rocks belonging to this complex, points out to ages<br />

spanning from 74.0±1.7 to 88.9±2.6 Ma (Escuder Viruete et al.,<br />

2007b). Whereas the ages of the D1 and D2 can be constrain<strong>ed</strong><br />

between the Cenomanian and the Turonian, the ages of the D3<br />

and D4, that develop<strong>ed</strong> at very low structural levels are most<br />

problematic to assess. Probably, the D3 and D4 can be relat<strong>ed</strong><br />

to strike-slip tectonics develop<strong>ed</strong> in the Early Oligocene to<br />

Early Miocene.<br />

On the whole, the D1 and D2 can be relat<strong>ed</strong> to the<br />

lowermost Upper Cretaceous tectonics recogniz<strong>ed</strong> in the whole<br />

Hispaniola Island (e.g. Mann et al., 1991), that develop<strong>ed</strong><br />

before the emplacement of Loma de Cabrera intrusive complex.<br />

Differently, the younger D3 and D4 can be relat<strong>ed</strong> to Tertiary<br />

transpressive tectonics.


130 M. MARRONI ET ALII<br />

CONCLUSIONS<br />

The collect<strong>ed</strong> data in<strong>di</strong>cate that the Duarte Terrane in the<br />

Jarabacoa area consists of two units, with <strong>di</strong>fferent<br />

metamorphic facies: the lower one is characteriz<strong>ed</strong> by<br />

greenschist facies whereas the upper one by amphibolite facies.<br />

The succession of these units is characteriz<strong>ed</strong> by metabasic<br />

rocks, that in the upper unit are topp<strong>ed</strong> by metas<strong>ed</strong>imentary<br />

rocks. The metabasites, probably of Early Cretaceous age, are<br />

representative of the Caribbean oceanic plateau volcanic rocks,<br />

whereas the metavolcanoclastic rocks are relat<strong>ed</strong> to the first<br />

stage arc growth, accor<strong>di</strong>ng to the reconstruction propos<strong>ed</strong> by<br />

Mann et al. (1991) and Lewis et al. (2002). To the first stage of<br />

arc growth can be referr<strong>ed</strong> also the foliat<strong>ed</strong> tonalities<br />

recogniz<strong>ed</strong> as bo<strong>di</strong>es intrud<strong>ed</strong> into the amphibolite facies unit<br />

of the Duarte Terrane. The age of these magmatic rocks is<br />

lowermost Aptian.<br />

The deformation history recogniz<strong>ed</strong> in both units consists of<br />

four phases, from D1 to D4. The D1 is characteriz<strong>ed</strong> by a well<br />

develop<strong>ed</strong> foliation and mineral lineation develop<strong>ed</strong> under<br />

metamorphism ranging from amphibolite to greenschist facies.<br />

The D2 is, in turn, responsible for the exhumation of both the<br />

units, probably during a compressive event. The D1 and D2<br />

develop<strong>ed</strong> in the Cenomanian-Turonian, just before the<br />

magmatism relat<strong>ed</strong> to the second stage arc of growth, that can<br />

be referr<strong>ed</strong> to a Campanian-Maastritchian time span. The<br />

following Upper Oligocene to Upper Miocene transpressive<br />

tectonics is responsible for the development of the terranes<br />

recogniz<strong>ed</strong> in the Hispaniola Island. In the Duarte Terrane, the<br />

D3 and D4, that act<strong>ed</strong> at very shallow structural levels, can be<br />

referr<strong>ed</strong> to transpressive tectonics. On the whole, the<br />

deformation history of the Duarte Terrane occurr<strong>ed</strong> in the arc<br />

setting during oblique subduction lea<strong>di</strong>ng to alternation through<br />

time of compressive and transpressive tectonics, responsible for<br />

the Hispaniola present-day structural setting.<br />

REFERENCES<br />

DONNELLY T.W., BEETS D., CARR M.J., JACKSON T., KLAVER<br />

G., LEWIS J., MAURY R., SCHELLENKENS H., SMITH A.L.,<br />

WADGE G. & WESTERCAMP D. (1990) - History and<br />

tectonic setting of Caribbean magmatism. In: G. Dengo &<br />

J.E. Case (Eds.), The geology of North America, vol. H, The<br />

Caribbean Region. Geol. Soc. Am., 339-374.<br />

ESCUDER VIRUETE J., HERNAIZ HUERTA P.P., DRAPER G.,<br />

GUTIERREZ G., LEWIS J.F. & PEREZ-ESTAUN A. (2002) -<br />

Metamorfismo y estructura de la Formacion Maimon y los<br />

Complejos Duarte y Rio Verde, Cor<strong>di</strong>llera Central<br />

Dominicana: implicaciones en la estructura y la evolucion<br />

<strong>del</strong> primitivo Arco Isla caribeno. Acta Geol. Hisp., 37, 123-<br />

162.<br />

ESCUDER VIRUETE J., CONTRERAS F., STEIN G., URIEN P.,<br />

JOUBERT M., PEREZ-ESTAUN A., FRIEDMAN R. & ULLRICH<br />

T.D. (2007) - Magmatic relationships and ages between<br />

adakites, magnesian andesites and Nb-enrich<strong>ed</strong> basaltandesites<br />

from Hispaniola: record of a major change in the<br />

Caribbean island arc magma sources. Lithos,<br />

doi:10.1016/j.lithos.2007.01.008.<br />

HERNAIZ HUERTA P.P., LEWIS J.F., ESCUDER VIRUETE J.<br />

GUTERRIEZ G., MORTENSEN J., HAMES W., SOLE J.,<br />

MARTINEZ A. & DRAPER G. (2000) - Memoria explicativa<br />

<strong>del</strong> Mapa geologico a escala 1.50.000 de Villa Altagracia<br />

(6172-II) and Arroyo Cana (6172-III). Proyecto de<br />

Cartografia geotematica de la Republica Dominicana.<br />

Direccion general de Mineria, Santo Domingo.<br />

LAPIERRE H., DUPUIS V., DE LEPINAY B.M., BOSCH D., MONIE<br />

P., TARDY M., MAURY R.C., HERNANDEZ J., POLVE M.,<br />

YEGHICHEYAN D. & COTTON J. (1999) - Late Jurassic<br />

oceanic crust and Upper Cretaceous Caribbean plateau<br />

picritic basalts expos<strong>ed</strong> in the Duarte igneous complex,<br />

Hispaniola. J. Geol., 107, 193-207<br />

LEAKE B.E. , WOLLEY A.R., ARPS C.E.S., BIRCH W.D.,<br />

GILBERT M.C., GRICE J.D., HAWTHORNE F.C., KATO A.,<br />

KISH H., KRIVOVICHEV V.G., LINTHOUT K., LAIRD J.,<br />

MANDARINO J.A., MARESCH W.V., NICKEL E.H., ROCK<br />

N.M.S., SCHUMACHER J.C., STEPHENSON N.C.N.,<br />

UNGARETTI L., WHITTAKER E.J.W. & YOUZHI G. (1997) -<br />

Nomenclature of amphiboles: Report of subcommittee on<br />

amphiboles of the International Mineralogical Association,<br />

commission on new minerals and mineral names. Can.<br />

Mineral., 35, 219-46.<br />

LEWIS J.F. & JIMENEZ J.G. (1991) - Duarte Complex in the La<br />

Vega-Jarabacoa-Janico Area, central Espanola:<br />

Geological and geochemical features of the sea floor<br />

during the early stages of arc evolution. In: P. Mann, G.<br />

Draper & J.F. Lewis (Eds.), Geologic and tectonic<br />

development of the North America-Caribbean Plate<br />

boundary in Hispaniola. Spec. Paper, Geol. Soc. Am., 262,<br />

115-142.<br />

LEWIS J.F., ESCUDER VIRUETE J., HERNAIZ HUERTA P.P.,<br />

GUTIERREZ G., DRAPER G. & PEREZ-ESTAUN A. (2002) -<br />

Sub<strong>di</strong>vision geoquimica <strong>del</strong> Arco Isla Circum-Caribeno,<br />

Cor<strong>di</strong>llera Central Dominicana: implicaciones para la<br />

formacion, acrecion y crecimiento cortical en un ambiente<br />

intraoceanico. Acta Geol. Hisp. 37, 81-122.<br />

MANN P., DRAPER G. & LEWIS J.F. (1991) - An overview of the<br />

geologic and tectonic development of Espanola. In: P.<br />

Mann, G. Draper & J.F. Lewis (Eds.), Geologic and<br />

tectonic development of the North America-Caribbean plate<br />

boundary in Espanola. Spec. Paper., Geol. Soc. Am., 262,<br />

1-28.<br />

OKAMOTO A. & TORIUMI M. (2005) - Progress of actinoliteforming<br />

reactions in mafic schists during retrograde<br />

metamorphism: an example from the Sanbagawa<br />

metamorphic belt in central Shikoku, Japan. J. Metam.<br />

Geol., 23, 335-356.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 131-132, 2 ff.<br />

On fault misorientation in exhum<strong>ed</strong> metamorphic complexes: sliptendency<br />

analysis of faults in the Alpine orogenic w<strong>ed</strong>ge<br />

MATTEO MASSIRONI (*), LUCA MENEGON (*) & ANDREA BISTACCHI (**)<br />

RIASSUNTO<br />

Sulla sfavorevole orientazione <strong>di</strong> faglie in complessi metamorfici esumati:<br />

analisi <strong>di</strong> slip-tendency su faglie <strong>del</strong> prisma orogenico Alpino<br />

E’ noto che faglie a notevole componente <strong>di</strong> rigetto verticale <strong>ed</strong> attive per<br />

lunghi perio<strong>di</strong> sono caratterizzate da zone <strong>di</strong> faglia asimmetriche. All’interno<br />

<strong>del</strong> prisma orogenico alpino, le faglie normali a basso angolo responsabili <strong>di</strong><br />

importanti esumazioni quali la linea <strong>del</strong> Brennero e la linea <strong>del</strong> Sempione sono<br />

caratterizzate da ampi spessori milonitici a letto a cui si contrappongono<br />

orizzonti cataclastici a tetto. Per investigare il controllo esercitato dal fabric<br />

er<strong>ed</strong>itato sulla enucleazione <strong>del</strong>la deformazione fragile, si è fatto ricorso<br />

all’analisi <strong>di</strong> tendenza allo slip considerando una <strong>di</strong>stribuzione anisotropa dei<br />

coefficienti <strong>di</strong> frizione. Tale analisi effettuata per le zone <strong>di</strong> faglia <strong>del</strong> Brennero<br />

e <strong>del</strong> Sempione ha <strong>di</strong>mostrato che l’attività lungo orizzonti <strong>di</strong> deformazione<br />

fragile sfavorevolmente orientati rispetto al campo <strong>di</strong> sforzi regionali è una<br />

con<strong>di</strong>zione favorita nel caso <strong>di</strong> faglie che hanno controllato importanti processi<br />

<strong>di</strong> unroofing tettonico.<br />

La stessa analisi è stata applicata anche alla zona <strong>di</strong> faglia <strong>di</strong><br />

Sprechenstein-Val <strong>di</strong> Mules, un segmento <strong>del</strong> sistema Periadriatico che non<br />

mostra alcuna significativa componente <strong>di</strong> rigetto verticale. Anche questa<br />

faglia è caratterizzata da un importante fabric filllonitico orientato<br />

sfavorevolmente per una potenziale riattivazione in con<strong>di</strong>zioni fragili, ma che<br />

tuttavia mostra <strong>di</strong> aver controllato l’enucleazione e lo sviluppo <strong>di</strong> orizzonti<br />

cataclastici. L’analisi <strong>di</strong> slip tendency anisotropa applicata a questo caso<br />

consente <strong>di</strong> generalizzare l’affermazione prec<strong>ed</strong>ente, permettendo <strong>di</strong><br />

concludere che all’interno <strong>di</strong> complessi metamorfici frutto <strong>di</strong> importanti<br />

eventi esumativi, lo sviluppo <strong>di</strong> orizzonti <strong>di</strong> deformazione fragile a<br />

orientazione non andersoniana è spesso favorito in<strong>di</strong>pendentemente dal tipo <strong>di</strong><br />

attività <strong>del</strong>le faglie stesse.<br />

Key words: weak faults, slip tendency, inherit<strong>ed</strong> fabric,<br />

metamorphic complexes, misorientation<br />

Crustal-scale fault zones, which show a strong <strong>di</strong>p-slip<br />

component (either normal or reverse) and have been active for<br />

relevant times (e.g. several million years), are very often<br />

characteris<strong>ed</strong> by an asymmetric <strong>di</strong>stribution of fault rocks, with<br />

rocks in the footwall or hangingwall (for normal or reverse<br />

faults respectively) showing a transition from relatively higher<br />

temperature crystal-plastic deformation mechanisms to low<br />

temperature brittle-cataclastic mechanisms. This is the result of<br />

progressive exhumation during a deformation continuum and<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Geoscienze, Università <strong>di</strong> Padova, Italy<br />

(**) Dipartimento <strong>di</strong> Scienze Geologiche e Geotecnologie,<br />

Università <strong>di</strong> Milano Bicocca<br />

Lavoro eseguito nell’ambito <strong>del</strong> progetto Cariparo 2006, Università degli<br />

Stu<strong>di</strong> <strong>di</strong> Padova<br />

may be pr<strong>ed</strong>ict<strong>ed</strong> with the classic Sibson-Scholz fault zone<br />

mo<strong>del</strong>. This asymmetric <strong>di</strong>stribution of fault rocks is well<br />

known in exhum<strong>ed</strong> fault zones from the metamorphic core of<br />

Fig. 1 –Isotropic and anisotropic slip tendency of the Simplon low angle<br />

detachment (SD). The anisotropic slip tendency demonstrates how the<br />

low friction coefficient along the inherit<strong>ed</strong> mylonitic foliation (Mariani et<br />

al. 2006) favour<strong>ed</strong> misorient<strong>ed</strong> brittle faulting.<br />

the Alps (Austroalpine and Penninic domains) such as the<br />

extensional Simplon and Brenner detachments that are both<br />

associat<strong>ed</strong> to thick mylonitc zones expos<strong>ed</strong> within their<br />

footwall (up to 1 km) (Mancktelow, 1985,1992; Behrmann,<br />

1988; Selverstone, 1988).<br />

To investigate the control exert<strong>ed</strong> by pre-existing ductile<br />

foliations on brittle faulting along the Simplon and Brenner<br />

detachments, we have appli<strong>ed</strong> a development of slip tendency<br />

analysis (Lisle & Srivastava, 2004) that includes the effect of<br />

anisotropy (FIG. 1). It shows that, given the mechanical<br />

anisotropy and under a realistic palaeo-state of stress,<br />

continuing activity along a misorient<strong>ed</strong> and weak fault zone is<br />

the most natural behaviour for major faults controlling tectonic<br />

unroofing.<br />

The same analysis has been appli<strong>ed</strong> to the Sprechenstein-<br />

Mules fault zone (SMF), which is part of the eastern segment of<br />

the 700-km-long Periadriatic Fault System and is not<br />

characteriz<strong>ed</strong> by a significant <strong>di</strong>p-slip component (FIG. 2). Due<br />

to previous exhumation along the Pusteria Fault (PF),<br />

greenschist facies phyllonites constitute the ductile precursor of<br />

the Sprechenstein-Mules brittle fault and are characteris<strong>ed</strong> by a<br />

pervasive SCC’ composite foliation, mark<strong>ed</strong> by alternating<br />

phyllosilicate- and quartz-feldspar-rich layers. Centimetre- to<br />

micrometre-scale cataclastic shear zones develop along S, C<br />

and C’ inherit<strong>ed</strong> surfaces. Hence, the Sprechenstein-Mules fault


132 MASSIRONI ET ALII<br />

Fig. 2 – Sprechenstein-Mules fault zone (SMF): geometric 3D mo<strong>del</strong> , regional stress field and slip vector , anisotropic slip tendency. The anisotropic slip<br />

tendency analysis of the SMF demonstrates that in metamorphic complexes misorient<strong>ed</strong> brittle faulting is favour<strong>ed</strong> even for transcurrent faults.<br />

zone is characteris<strong>ed</strong> by a strong mechanical pre-existing<br />

anisotropy, which controls the mode of deformation under<br />

brittle con<strong>di</strong>tions. Given its origin in the plastic-metamorphic<br />

environment, this anisotropy is strongly misorient<strong>ed</strong> for<br />

reactivation under brittle con<strong>di</strong>tions.<br />

Anisotropic slip tendency analysis shows that the<br />

reactivation of this misorient<strong>ed</strong> inherit<strong>ed</strong> fabric is favour<strong>ed</strong> with<br />

respect to the development of “new” Andersonian faults and<br />

that this process leads to a mark<strong>ed</strong> mechanical weakness of the<br />

SMF (FIG. 2). This demonstrates that the presence of inherit<strong>ed</strong><br />

ductile foliations may control the style of brittle faulting,<br />

independently of the <strong>di</strong>fferential uplift across an in<strong>di</strong>vidual<br />

fault. Under certain con<strong>di</strong>tions, typically met in metamorphic<br />

terrains, this effect can be relevant even for faults that do not<br />

accommodate significant parts of the regional exhumation<br />

(transcurrent faults).<br />

In conclusion, in exhum<strong>ed</strong> metamorphic complexes the<br />

continuing activity along misorient<strong>ed</strong> and “weak” fault zones,<br />

with brittle re-activation of inherit<strong>ed</strong> fabrics, must be<br />

consider<strong>ed</strong> not only possible, but also more probable than the<br />

development of Andersonian “strong” faults.<br />

REFERENCES<br />

BEHRMANN, J.H., (1988) - Crustal scale extension in a<br />

convergent orogen: the Sterzing-Steinach mylonite zone in<br />

the Eastern Alps. Geodynamica Acta, 2, 63–73.<br />

SRIVASTAVA D.C. & LISLE R.J. (2004) - Test of the frictional<br />

reactivation theory for faults and vali<strong>di</strong>ty of fault-slip<br />

analysis. Geology, 32, 7, 569-572.<br />

MANCKTELOW, N. S. (1985). The Simplon Line: a major<br />

<strong>di</strong>splacement zone in the western Lepontine Alps. Eclogae<br />

geologicae Helvetiae., 78/1, 73-96.<br />

MANCKTELOW, N.S. (1992) - Neogene lateral extension during<br />

convergence in the central Alps: Evidence from interrelat<strong>ed</strong><br />

faulting and backfol<strong>di</strong>ng around Simplonpass<br />

(Switzerland). Tectonophysics, 215, 295-317.<br />

MARIANI E., BRODIE K.H. & RUTTER E.H. (2006).<br />

Experimental deformation of muscovite shear zones at high<br />

temperatures under hydrothermal con<strong>di</strong>tions and the<br />

strength of phyllosilicate-bearing faults in nature. Journal<br />

of Structural Geology, 28,1569 -1587.<br />

SELVERSTONE, J. (1988) - Evidence for east–west crustal<br />

extension in the Eastern Alps: implications for the<br />

unroofing history of the Tauern window. Tectonics, 7, 87–<br />

105.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 133-134, 3 ff.<br />

Reticolo locale <strong>di</strong> zone <strong>di</strong> taglio e relazioni con la deformazione regionale<br />

nel metagranito <strong>del</strong> Gran Para<strong>di</strong>so (Alpi Nord-Occidentali)<br />

La falda Penni<strong>di</strong>ca <strong>del</strong> Gran Para<strong>di</strong>so (Alpi Nord-Occidentali) è<br />

prevalentemente costituita da ortogneiss occhia<strong>di</strong>ni che derivano dall’intensa<br />

rielaborazione tettono-metamorfica Alpina <strong>di</strong> originari granitoi<strong>di</strong> Permiani. La<br />

foliazione regionale si è sviluppata in con<strong>di</strong>zione <strong>di</strong> facies anfibolitica <strong>di</strong> basso<br />

grado <strong>ed</strong> è associata ad un senso <strong>di</strong> trasporto tettonico top-to-W durante il<br />

sovrascorrimento <strong>del</strong>le Ofioliti Piemontesi sul basamento continentale <strong>del</strong><br />

Gran Para<strong>di</strong>so. Il protolite intrusivo è ben preservato nel dominio chilometrico<br />

<strong>di</strong> bassa deformazione nella Valle <strong>di</strong> Piantonetto e consiste in graniti porfirici<br />

contententi frequenti eterogeneità strutturali e composizionali (i.e., giunti,<br />

filoni leucocratici, schlieren). In tale dominio, la deformazione Alpina è<br />

localizzata in zone <strong>di</strong> taglio <strong>di</strong>screte all’interno <strong>di</strong> metagraniti massicci o<br />

debolmente foliati. Le zone <strong>di</strong> taglio immergono prevalentemente a S-SE, da<br />

m<strong>ed</strong>io-basso angolo (zone <strong>di</strong> taglio1) ad alto angolo (zone <strong>di</strong> taglio2). Le zone<br />

<strong>di</strong> taglio milonitico mostrano tipiche caratteristiche geometriche che vengono<br />

interpretate come l’evidenza <strong>di</strong> enucleazione lungo precursori fragili e<br />

composizionali. Relazioni <strong>di</strong> offset reciproco tra zone <strong>di</strong> taglio1 e zone <strong>di</strong><br />

taglio2 in<strong>di</strong>cano un’attività coeva dei due sets. Le analisi <strong>di</strong> paleostress e <strong>di</strong><br />

geometria <strong>del</strong>lo strain <strong>di</strong>mostrano che sia la foliazione nel metagranito<br />

incassante che le stesse zone <strong>di</strong> taglio si sono formate in presenza <strong>di</strong> una forte<br />

componente <strong>di</strong> flattening, con un σ1 subverticale. La cinematica <strong>del</strong>le singole<br />

zone <strong>di</strong> taglio <strong>di</strong>pende dall’orientazione degli originari precursori e dalla<br />

ripartizione <strong>del</strong>le componenti coassiale e non coassiale <strong>del</strong>la deformazione alla<br />

scala chilometrica, con la localizzazione <strong>del</strong>la componente <strong>di</strong> flattening<br />

all’interno <strong>del</strong> dominio <strong>di</strong> Piantonetto. Di conseguenza, la geometria <strong>del</strong>lo<br />

strain e la cinematica <strong>del</strong>le singole zone <strong>di</strong> taglio in tale dominio non appaiono<br />

<strong>di</strong>rettamente riconducibili al senso <strong>di</strong> trasporto tettonico top-to-W solitamente<br />

evidente all’interno <strong>del</strong>la falda <strong>del</strong> Gran Para<strong>di</strong>so. Tuttavia, l’ellissoide <strong>del</strong>lo<br />

stress associato al reticolo <strong>di</strong> zone <strong>di</strong> taglio incipienti all’interno dei<br />

metagraniti massicci è orientato coerentemente con il senso <strong>di</strong> trasporto<br />

tettonico registrato alla scala regionale nel massiccio <strong>del</strong> Gran Para<strong>di</strong>so. In<br />

conclusione, il reticolo <strong>di</strong> zone <strong>di</strong> taglio nella Valle <strong>di</strong> Piantonetto è da<br />

considerarsi rappresentativo <strong>del</strong>le fasi incipienti <strong>del</strong>la deformazione duttile <strong>di</strong><br />

una falda in granitoi<strong>di</strong>. Nonostante l’architettura <strong>di</strong> tale reticolo sia<br />

essenzialmente determinata dalla <strong>di</strong>sponibilità e dall’orientazione <strong>di</strong><br />

eterogeneità strutturali e composizionali preesistenti, alcuni aspetti <strong>del</strong>la<br />

deformazione alla scala regionale sono chiaramente registrati <strong>ed</strong> estrapolabili<br />

dalla sua geometria.<br />

Key words: deformation of granites, flattening, Gran Para<strong>di</strong>so,<br />

nucleation of shear zones, palaeostress analysis, strain<br />

analysis, Western Alps.<br />

_________________________<br />

Local shear zone pattern and bulk deformation in the Gran<br />

Para<strong>di</strong>so metagranite (NW Italian Alps)<br />

(*) Dipartimento <strong>di</strong> Geoscienze, Università degli Stu<strong>di</strong> <strong>di</strong> Padova. Via<br />

Giotto 1, 35137 Padova. Tel. 0498271863, E-mail: luca.menegon@unipd.it<br />

LUCA MENEGON (*) & GIORGIO PENNACCHIONI (*)<br />

The Gran Para<strong>di</strong>so nappe of the north-western Alps mostly<br />

consists of augen gneisses deriv<strong>ed</strong> from the Alpine deformation<br />

of Permian granitoids. The regional foliation of the augen<br />

gneisses develop<strong>ed</strong> at lower amphibolite facies con<strong>di</strong>tions and<br />

is associat<strong>ed</strong> with a top-to-west sense of shear (LE BAYON &<br />

BALLEVRE, 2006). The granitoid protolith is preserv<strong>ed</strong> in the<br />

kilometre-scale low-strain domain of the Piantonetto Valley<br />

Fig. 1 – Extremely localiz<strong>ed</strong> shear zone nucleating on a former joint. Pen<br />

(13.5 cm long) for scale.<br />

and mainly consists of a porphyritic metagranite inclu<strong>di</strong>ng<br />

joints, leucochratic dykes and biotite-rich schlieren. In this lowstrain<br />

domain, the Alpine deformation is mainly localiz<strong>ed</strong> in<br />

<strong>di</strong>screte ductile shear zones within weakly foliat<strong>ed</strong> metagranite<br />

(MENEGON et alii, 2006). The shear zones are mostly <strong>di</strong>pping<br />

towards S-SE from shallowly (shear zones1) to steeply (shear<br />

zones2). The shear zones show typical features that can be<br />

explain<strong>ed</strong> by reactivation of pre-existing joints and planar<br />

compositional heterogeneities (e.g., PENNACCHIONI &<br />

MANCKTELOW, 2007) (Figs. 1, 2).<br />

Mutual crosscutting relationships in<strong>di</strong>cates that shear zone<br />

sets develop<strong>ed</strong> at the same time (Fig. 2). Palaeostress and strain<br />

analyses in<strong>di</strong>cate that shear zones and the metagranite foliation<br />

both form<strong>ed</strong> in presence of a strong component of flattening<br />

with a subvertical σ1 (Fig. 3). The kinematics of in<strong>di</strong>vidual<br />

shear zones depends on the orientation of the original<br />

heterogeneities (acting as nucleation planes) and by partitioning<br />

of strain components at the kilometer-scale with concentration


134 LUCA MENEGON ET ALII<br />

Fig. 2 – (a) Surface map of a representative outcrop of shear zones1 (1a-1g) and shear zones2 (2a-2c). (b) Lower hemisphere, equal area projection of the shear<br />

zone orientation in this outcrop. (c) Strongly localiz<strong>ed</strong> shear zone2. Coin (2 cm in <strong>di</strong>ameter) for scale. (d) Mutual crosscutting relationship between shear zones<br />

1g and 2b. 1g is <strong>di</strong>splac<strong>ed</strong> left-laterally by 2b that is in turn is <strong>di</strong>splac<strong>ed</strong> right-laterally by 1g. Coin (2 cm in <strong>di</strong>ameter) for scale.<br />

of the flattening component to the Piantonetto low-strain<br />

domain. The strain geometry and the kinematics of in<strong>di</strong>vidual<br />

shear zones within Piantonetto are thus not <strong>di</strong>rectly linkable to<br />

the top-to-west sense of tectonic transport observ<strong>ed</strong> elsewhere<br />

in the Gran Para<strong>di</strong>so nappe. However, the bulk stress ellipsoid<br />

reconstruct<strong>ed</strong> for incipient shear zone network within very<br />

weakly deform<strong>ed</strong> granites is orient<strong>ed</strong> consistently with the bulk<br />

<strong>di</strong>rection of tectonic transport within the Gran Para<strong>di</strong>so massif.<br />

We conclude that the shear zones network of Piantonetto<br />

Valley is representative of the incipient stages of ductile<br />

deformation of a granite nappe. Even if its architecture is<br />

determin<strong>ed</strong> by the arrangement of pre-existing structural and<br />

Fig. 3– Palaeostress analysis on the basis of 69 incipient shear zones<br />

within massive metagranites. (a) Results from the <strong>di</strong>rect inversion method<br />

(ANGELIER, 1990). (b) Results from the pt-axes method. R% is a measure<br />

of clustering.<br />

compositional heterogeneities, aspects of the large-scale bulk<br />

strain can be deriv<strong>ed</strong> from this local shear zone pattern.<br />

REFERENCES<br />

ANGELIER J. (1990) - Inversion of field data in fault tectonics<br />

to obtain the regional stress-III. A new rapid <strong>di</strong>rect<br />

inversion method by analytical means. Geophysical Journal<br />

International, 103, 363-376.<br />

LE BAYON B. & BALLÈVRE M. (2006) - Deformation history of<br />

a subduct<strong>ed</strong> continental crust (Gran Para<strong>di</strong>so, Western<br />

Alps): continuing crustal shortening during exhumation.<br />

Journal of Structural Geology, 28, 793-815.<br />

MENEGON L., PENNACCHIONI G. & STÜNITZ H. (2006) -<br />

Nucleation and growth of myrmekite during ductile shear<br />

deformation in metagranites. Journal of Metamorphic<br />

Geology, 24, 553-568.<br />

PENNACCHIONI G. & MANCKTELOW N.S. (2007) - Nucleation<br />

and initial growth of a shear zone network within<br />

compositionally and structurally heterogeneous granitoids<br />

under amphibolite facies con<strong>di</strong>tions. Journal of Structural<br />

Geology, 29, 1757-1780.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 135-136<br />

Structure and evolution of the Calabrian accretionary w<strong>ed</strong>ge<br />

(Southern Italy)<br />

RIASSUNTO<br />

Struttura <strong>ed</strong> evoluzione <strong>del</strong> prisma <strong>di</strong> accrezione calabro (Italia<br />

meri<strong>di</strong>onale)<br />

L’arco calabro rappresenta un’area chiave per la comprensione<br />

<strong>del</strong>l’evoluzione tettonica <strong>del</strong>la catena Appennino-Maghrebide nel più ampio<br />

contesto <strong>di</strong> convergenza tra le placche Europea <strong>ed</strong> Africana nel M<strong>ed</strong>iterraneo<br />

centrale. L’arco calabro è stato oggetto <strong>di</strong> <strong>di</strong>versi stu<strong>di</strong> a carattere geologico e<br />

geofisico a partire dalle prime campagne oceanografiche degli anni ’50.<br />

Nonostante l’enorme mole <strong>di</strong> dati collezionati, geometria, cinematica <strong>ed</strong><br />

evoluzione tettonica <strong>del</strong> prisma <strong>di</strong> accrezione calabro, soprattutto nella sua<br />

parte offshore, rimangono a tutt’oggi poco definiti e compresi.<br />

Analizzando dati derivanti dalle numerose campagne, accademiche e<br />

industriali, condotte nel Mar Ionio negli ultimi 50 anni, e attraverso la<br />

calibrazione con i dati <strong>di</strong> pozzo <strong>di</strong>sponbili lungo le coste calabresi, sono state<br />

descritte la geometria, la cinematica e l’evoluzione spazio-temporale <strong>del</strong><br />

prisma <strong>di</strong> accrezione, negli ultimi 15 Ma.<br />

Key words: accretionary w<strong>ed</strong>ge, Calabrian Arc, seisimic<br />

reflection profile.<br />

INTRODUZIONE<br />

The Calabrian subduction zone is a narrow but<br />

seismologically well defin<strong>ed</strong> slab plunging toward northwest in<br />

the Central M<strong>ed</strong>iterranean (PIROMALLO & MORELLI, 2003).<br />

The subduction of the Ionian basin under Eurasia, is mainly<br />

dominat<strong>ed</strong> by trench rollback producing the opening of the two<br />

large backarc basin (Liguro-Provencal and Tyrrhenian) and the<br />

formation of the Calabrian accretionary w<strong>ed</strong>ge.<br />

The Calabrian accretionary w<strong>ed</strong>ge is a partially submerg<strong>ed</strong><br />

south-verging accretionary prism that extends from south<br />

Calabria to the Ionian abyssal plain and laterally from the Malta<br />

Escarpment to the West and Apulia Escarpment and<br />

M<strong>ed</strong>iterranean Ridge to the East.<br />

Despite the Ionian basin has been investigat<strong>ed</strong> in the last<br />

forty years by several geological and geophysical survey, the<br />

_________________________<br />

LILIANA MINELLI (*), CLAUDIO FACCENNA (*) & PIERO CASERO (*)<br />

(*)Dipartimento <strong>di</strong> Scienze Geologiche, Universita Roma Tre, Largo S.L.<br />

Murialdo 1, 00146 Rome, Italy<br />

results are often controversy, and the structure of the w<strong>ed</strong>ge is<br />

still poorly defin<strong>ed</strong> (FINETTI & MORELLI, 1973; ROSSI &<br />

SARTORI, 1981; CERNOBORI et alii., 1986).<br />

We have collect<strong>ed</strong> all the available multichannel seismic<br />

reflection profiles, acquir<strong>ed</strong> up to 60’s, in the Ionian offshore<br />

by industrial exploration and academic cruises. The resolution<br />

and the data quality of the seismic profiles vary remarkably<br />

because the <strong>di</strong>fferent acquisition parameters and energy system<br />

us<strong>ed</strong> for the <strong>di</strong>fferent survey.<br />

The interpretation of these data was facilitat<strong>ed</strong> by<br />

integration of other geophysical and geological data (ESP, DE<br />

VOOGD et alii, 1992; ODP, site 374) and well stratigraphy<br />

dataset near the southern coasts of Calabria, in order to better<br />

constrain a more complete history of the subduction process.<br />

In the central sector of Ionian sea where no <strong>di</strong>rect ties were<br />

available for the interpretation, the overall sequences can be<br />

identifi<strong>ed</strong> on the basis of previous works and of their seismic<br />

character.<br />

The high density grid of the seismic lines allow us to map<br />

out the main structural feature and the recognition along several<br />

seismic profiles of the main reflection horizons; their<br />

geological attributes allow us to date the activity of the main<br />

thrust system and to reconstruct a detail<strong>ed</strong>, time-space,<br />

evolution of the accretionary prism. The stratigraphy feature,<br />

style of deformations and internal seismic character suggest the<br />

<strong>di</strong>vision of the Calabrian accretionary w<strong>ed</strong>ge, along a general<br />

NS transect, from the foreland basin to the backstop of the<br />

w<strong>ed</strong>ge, into four major structural zones:<br />

(1) forearc basin and crystalline back stop (2) pre-<br />

Messinian accretionary w<strong>ed</strong>ge (3) post-Messinian accretionary<br />

w<strong>ed</strong>ge (4) foreland basin.<br />

The accretionary history of the Calabrian prism is<br />

punctuat<strong>ed</strong> by <strong>di</strong>screte episodes of deformations evolving in<br />

both time and space.<br />

The growth of the prism includ<strong>ed</strong> both forward propagation<br />

stages characteriz<strong>ed</strong> by frontal accretion, and out-of-sequence<br />

internal thrusting. In ad<strong>di</strong>tion to the rheology of the prism, the<br />

prism growth was mostly controll<strong>ed</strong> by two main external<br />

factors: (1) the presence of a thick evaporitic deposit, (2) the<br />

dynamic of the subduction system.


136 MINETTI ET ALII<br />

REFERENCES<br />

CERNOBORI L., HIRN A., MCBRIDE J.H., NICOLICH R.,<br />

PETRONIO L., ROMANELLI M. & the Streamers-Profiles<br />

Working Group (1996) - Crustal image of the Ionian basin<br />

and its Calabrian margin. Tectonophysics, 264, 175-189.<br />

DE VOOGD B., TRUFFERT C., CHAMOT-ROOKE N., HUCHON P.,<br />

LALLEMANT S., & LE PICHON X. (1992) - Twoship deep<br />

seismic soun<strong>di</strong>ngs in the basins of the Eastern<br />

M<strong>ed</strong>iterranean Sea (Pasiphae cruise), Geophys. J. Int., 109,<br />

536–552.<br />

FACCENNA C., FUNICIELLO F., GIARDINI D. & P. LUCENTE<br />

(2001) - Episo<strong>di</strong>c back-arc extension during restrict<strong>ed</strong><br />

mantle convection in the Central M<strong>ed</strong>iterranean. Earth and<br />

Planetary Science Letters, 187, 105-116.<br />

FINETTI I. & MORELLI C. (1973) - Geophysical exploration of<br />

the M<strong>ed</strong>iterranean Sea. Boll. Geof. Teor. Appl., 15, 263–<br />

340.<br />

PIROMALLO C. & MORELLI A. (2003) - P wave tomography of<br />

the mantle under the Alpine M<strong>ed</strong>iterranean area. J.<br />

Geophys. Res., 108, 2065, doi:10.1029/2002JB001757.<br />

ROSSI S. & SARTORI R. (1981) - A seismic reflection study of<br />

the external Calabrian Arc in the northern Ionian Sea<br />

(eastern M<strong>ed</strong>iterranean). Mar. Geophys. Res., 4, 403 – 426.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 137-138<br />

ABSTRACT<br />

New data on the Variscan cycle in Calabria<br />

In Calabria (South Italy) the middle-late Ordovician extensional (or<br />

transtensional) tectonics play<strong>ed</strong> a crucial role during the Variscan cycle. They<br />

were accompani<strong>ed</strong> by effusion of submarine aci<strong>di</strong>c-to- basic magmatics and<br />

deposition of thick terrigenous flysch–like, trough-filling successions. The<br />

lacking of true Variscan ophiolites suggests a period of crustal thinning,<br />

culminating in the formation of abortive rift.<br />

The weakness in the crust was reactivat<strong>ed</strong> during the Variscan orogenesis,<br />

thus becoming site of intracontinental shear zone. Therefore, the Variscan<br />

chain develop<strong>ed</strong> in ensialic con<strong>di</strong>tions, involving continental crust only.<br />

The recent field data in<strong>di</strong>cate the chain form<strong>ed</strong> by two main tectonic<br />

phases.<br />

The first phase produc<strong>ed</strong> westward-verging, km-siz<strong>ed</strong> isoclinal recumbent<br />

folds, accompani<strong>ed</strong> by pervasive schistosity and syn-kinematic westward<br />

increasing (from anchizone to granulite facies) metamorphism.<br />

The second phase produc<strong>ed</strong> eastward verging thrusts and open folds.<br />

The Late Carboniferous-to-Permian was characteriz<strong>ed</strong> by intrusion of<br />

abundant granitoids and by effusion, in narrow fault-bound<strong>ed</strong> depressions, of<br />

subaerial aci<strong>di</strong>c volcanics, accompani<strong>ed</strong> by the deposition of volcanoclastics<br />

around the volcanic <strong>ed</strong>ifices.<br />

The aci<strong>di</strong>c-basic middle-late Ordovician magmatics in Calabria<br />

correspond to the “bimodal” magmatics well known in the Variscan Europe.<br />

They have been connect<strong>ed</strong> to partial melting of progressively deplet<strong>ed</strong> mantle,<br />

progressively upwelling at <strong>di</strong>fferent depths in intra-continental rifting.<br />

Key words: Calabria, ciclo varisico, magmatiti bimodali,<br />

tettonica ordoviciana.<br />

INTRODUZIONE<br />

Recenti, dettagliati rilevamenti in vaste aree <strong>del</strong>la Calabria<br />

meri<strong>di</strong>onale (Serre e Aspromonte) e nuovi dati ottenuti da DE<br />

GREGORIO et alii 2003 nei Monti Peloritani permettono <strong>di</strong><br />

ri<strong>di</strong>scutere le caratteristiche <strong>del</strong> ciclo varisico nell’Arco<br />

Calabro-Peloritano.<br />

Esso è riconoscibile se si sottraggono gli effetti <strong>del</strong>le<br />

successive tettogenesi alpina e appenninica.<br />

I toponimi usati derivano dalle nuove carte topografiche<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Ferrara<br />

Minzoni Nello, mnz@unife.it<br />

Nuovi dati sul ciclo varisico in Calabria<br />

NELLO MINZONI (*)<br />

<strong>del</strong>l’IGMI, scala 1:25000: Stilo, Taurianova, Gioiosa Ionica,<br />

Locri, Platì, San Luca, Bianco, Bova<br />

IL CICLO VARISICO<br />

Il ciclo varisico è iniziato nel Cambriano inferiore con la<br />

s<strong>ed</strong>imentazione <strong>di</strong> una successione epicontinentale<br />

essenzialmente terrigena, formatasi per erosione <strong>di</strong> un<br />

basamento pre-Cambriano, costituito da granitoi<strong>di</strong> e<br />

metamorfiti.<br />

Questa s<strong>ed</strong>imentazione è durata fino all’Ordoviciano<br />

inferiore.<br />

L’Ordoviciano m<strong>ed</strong>io-superiore è caratterizzato da<br />

improvvisa, forte tettonica <strong>di</strong>stensiva, accompagnata dalla<br />

s<strong>ed</strong>imentazione <strong>di</strong> una potente successione terrigena <strong>di</strong> tipo<br />

torbi<strong>di</strong>tico e dall’effusione <strong>di</strong> vulcaniti sottomarine, acide e<br />

basiche.<br />

I ben noti scisti neri e calcari caratterizzano il Siluriano e il<br />

Devoniano.<br />

Il Carbonifero è rappresentato da siltiti e lititi, ricche <strong>di</strong><br />

fossili vegetali.<br />

La catena varisica si è formata per l’attività <strong>di</strong> due fasi<br />

principali.<br />

La prima fase ha formato pieghe isoclinali <strong>di</strong> ogni<br />

<strong>di</strong>mensione, rovesciate verso i quadranti occidentali Esse sono<br />

accompagnate da scistosità pervasiva e metamorfismo<br />

sincinematico. Il metamorfismo cresce da Est verso Ovest,<br />

passando dall’Anchizona alla facies granulitica. Pieghe<br />

isoclinali <strong>di</strong> <strong>di</strong>mensioni chilometriche sono tuttora riconoscibili<br />

(nonostante l’intensa tettonica alpina e appenninica) nelle<br />

seguenti aree: a Ovest <strong>del</strong> paese <strong>di</strong> Platì; nel fianco destro <strong>del</strong>la<br />

fiumara Bonamico (a Ovest <strong>del</strong> paese <strong>di</strong> San Luca); nella<br />

fiumara Laverde-monte Orgaro -monte Jofri (a Ovest <strong>del</strong> paese<br />

<strong>di</strong> Samo). Trattandosi <strong>di</strong> aree orientali, il metamorfismo<br />

varisico è in gran parte nella facies degli scisti ver<strong>di</strong>.<br />

La seconda fase ha realizzato pieghe <strong>di</strong> <strong>di</strong>mensioni anche<br />

chilometriche, <strong>di</strong> <strong>di</strong>rezione assiale Nord 60-70 Est. Si tratta <strong>di</strong><br />

strutture aperte, prive per lo più <strong>di</strong> scistosità pervasiva e<br />

metamorfismo, che piegano la scistosità nata sub-orizzontale<br />

con la prima fase. Queste pieghe sono ben espresse: nella<br />

seguenti aree: a Nord <strong>del</strong>la città <strong>di</strong> Stilo; a Monte Bruverello (a<br />

NW <strong>del</strong> paese <strong>di</strong> Canolo); a NW <strong>del</strong> paese <strong>di</strong> Antonimina;<br />

nella fiumara Bonamico In queste aree, le pieghe sono “a<br />

ginocchio” e sono vergenti verso i quadranti orientali.


138 MINZONI<br />

Il ciclo varisico si è concluso con l’intrusione <strong>di</strong> abbondanti<br />

granitoi<strong>di</strong> e l’effusione, in aree limitate da faglie normali, <strong>di</strong><br />

vulcaniti: vulcanoclastiti si sono formate nell’intorno degli<br />

<strong>ed</strong>ifici vulcanici.<br />

DISCUSSIONE<br />

Le strutture <strong>di</strong> prima fase varisica possono essere messe in<br />

relazione con una subduzione attiva in aree occidentali, con<br />

immersione verso Est. La subduzione è stata accompagnata<br />

dalla formazione <strong>del</strong>le pieghe isoclinali metamorfiche Ovestvergenti.<br />

Verso Ovest si è accumulata una quantità <strong>di</strong> crosta<br />

sempre maggiore; coerentemente, verso Ovest cresce anche il<br />

metamorfismo. Le metamorfiti <strong>di</strong> maggior grado caratterizzano<br />

le aree centro- occidentali <strong>del</strong>la Calabria e le aree settentrionali<br />

dei Peloritani. Esse rappresentano la parte <strong>di</strong> crosta più<br />

profondamente subdotta. Si tratta <strong>del</strong>le netamorfiti <strong>del</strong>le attuali<br />

Unità alpine <strong>di</strong> Polia—Copanelllo e <strong>del</strong>la parte più occidentale<br />

<strong>del</strong>le Unità <strong>del</strong>l’Aspromonte e <strong>di</strong> Stilo in Calabria e <strong>del</strong>l’U.<br />

<strong>del</strong>l’Aspromonte nei Peloritani. Verso Est (in Calabria) e verso<br />

Sud (nei Peloritani) le metamorfiti sono <strong>di</strong> grado via via<br />

minore, fino all’anchizona.<br />

Le Unità tettoniche <strong>di</strong> Castagna e <strong>di</strong> Bagni, affioranti nella<br />

parte più occidentale <strong>del</strong>la Calabria settentrionale, cartterizzate<br />

d metmorfiti varisiche <strong>di</strong> m<strong>ed</strong>io-basso grado costituiscono un<br />

problema a parte (in elaborazione). Esse infatti sono<br />

accavallate con vergenza occidentale dalle metamorfiti <strong>di</strong> alto<br />

grado<br />

La mancanza <strong>di</strong> sicure ofioliti paleozoiche in<strong>di</strong>ca che la<br />

catena varisica si è formata in con<strong>di</strong>zioni interamente<br />

ensialiche, con coinvolgimento <strong>di</strong> sola crosta continentale.<br />

Le strutture <strong>del</strong>la seconda fase in Calabria potrebbero<br />

essere in relazione col sollevamento isostatico <strong>del</strong>la catena<br />

varisica, ispessita dalla prima fase; con ascesa <strong>del</strong>le rocce più<br />

profondamente subdotte e più metamorfiche. E’ poi seguito il<br />

collasso gravitativo, con intrusione dei granittoi<strong>di</strong> <strong>ed</strong> effusione,<br />

in ristretti grabens , <strong>del</strong>le vulcaniti tardo-paleozoiche.<br />

CONCLUSIONI<br />

Come nei Monti Peloritani (DE GREGORIO et alii, 2003)<br />

anche in Calabria la tettonica varisica è stata sottovalutata<br />

rispetto a quella alpina e/o appenninica. Le strutture sia <strong>del</strong>la<br />

prima che <strong>del</strong>la seconda fase sono sicuramente attribuibili alla<br />

tettogenesi varisica. I rapporti cronologici e spazio-temporali<br />

sono chiari; infatti, le pieghe <strong>di</strong> seconda fase deformano la<br />

scistosità <strong>di</strong> piano assiale <strong>del</strong>le pieghe <strong>di</strong> prima fase e sono<br />

intruse dai granitoi<strong>di</strong> tardo varisici o sigillate dalle vulcaniti<br />

tardo-paleozoiche.<br />

Secondo BONARDI et alii, 2008, il contatto tettonico <strong>di</strong><br />

<strong>di</strong>rezione Nord 70 Est fra l’U. <strong>di</strong> Polia–Copanello e l’ U. <strong>di</strong><br />

Stilo nella Calabria meri<strong>di</strong>onale separa due <strong>di</strong>versi terranes fra<br />

loro amalgamatisi durante la costruzione <strong>del</strong>la catena<br />

appenninica. Si può ipotizzare che l’U. <strong>di</strong> Polia–Copanello<br />

rappresenti la parte <strong>di</strong> crosta più profondamente subdotta dalla<br />

prima fase varisica. Essa si sarebbe poi stata messa in contatto<br />

tettonico sull’ U. Di Stilo con vergenza orientale, dalla<br />

seconda fase varisica. L’assetto strutturale attuale è opera <strong>del</strong>la<br />

tettogenesi alpina. Questa ipotesi è confortata dalla presenza,<br />

in aree più orientali, <strong>del</strong>le gran<strong>di</strong> pieghe a ginocchio; esse<br />

hanno la stessa <strong>di</strong>rezione <strong>del</strong> contatto fra i due supposti terranes<br />

e vergenza verso Est.<br />

Come in altri segmenti varisici europei e circumm<strong>ed</strong>iterranei,<br />

anche in Calabria l’Ordoviciano m<strong>ed</strong>io-superiore<br />

rappresenta un periodo cruciale nel quadro evolutivo <strong>del</strong> ciclo<br />

varisico. Infatti, il lento regime <strong>di</strong>stensivo, durato per tutto il<br />

Cambriano-Ordoviciano inferiore, con s<strong>ed</strong>imentazione ovunque<br />

<strong>di</strong> successioni epicontinentali, è drasticamente mutato durante<br />

l’Ordoviciano m<strong>ed</strong>io–superiore. Questo periodo <strong>di</strong> tempo,<br />

infatti, è caratterizzato da rapido sviluppo <strong>di</strong> forte tettonica<br />

<strong>di</strong>stensiva (o trastensiva), accompagnata da intenso<br />

magmatismo e deposizione <strong>di</strong> successioni torbi<strong>di</strong>tiche in bacini<br />

profon<strong>di</strong>. E’ possibile che le zone dove si sono messe in posto<br />

le magmatiti e dove si sono s<strong>ed</strong>imentate le successioni<br />

torbi<strong>di</strong>tiche, rappresentino le aree dove la <strong>di</strong>stensione<br />

ordoviciana si è effettuata col massimo <strong>di</strong> efficacia;<br />

determinando la formazione <strong>di</strong> zone a crosta assottigliata, in<br />

corrispondenza <strong>del</strong>le quali si sono poi realizzati i processi<br />

subduttivi, con sviluppo <strong>di</strong> una catena in con<strong>di</strong>zioni<br />

interamente ensialiche.<br />

In questo quadro, le magmatiti ordoviciane non possono<br />

costituire, nonostante il loro chimismo, un arco magmatico<br />

(come ipotizzato da vari autori) legato a processi subduttivi <strong>di</strong><br />

litosfera oceanica. Esse vanno connesse alla tettonica<br />

<strong>di</strong>stensiva, in grado <strong>di</strong> causare assottigliamenti <strong>del</strong>la crosta<br />

continentale e rifting.<br />

Le magmatiti ordoviciane corrispondono quin<strong>di</strong> a quelle<br />

“bimodali”, note da tempo nell’Europa varisica.<br />

Recentemente, (BRIAND et alii, 2002), hanno legato, nel<br />

massiccio dei Mauri, la bimodalità magmatica a parziale<br />

fusione <strong>di</strong> un mantello, progressivamente impoverito, a<br />

<strong>di</strong>fferenti profon<strong>di</strong>tà <strong>del</strong>la crosta continentale soggetta ad<br />

assottigliamento.<br />

REFERENCES<br />

BONARDI G. et alii, (2008) - Boll.Soc Geol.It, 127 (2) 173-190.<br />

BRIAND B. et alii, (2002) - Geol. Magazine, 139, 291-311.<br />

DE GREGORIO S. et alii (2003) - Earth Science, 92, 852- 872<br />

Si ringrazia i geologi calabresi A. Pisciuneri e A. Stamile per la<br />

collaborazione


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 139-141, 3 ff.<br />

Involvement of pore fluids in frictional melting from stable isotopes<br />

study of pseudotachylytes<br />

RIASSUNTO<br />

Coinvolgimento <strong>di</strong> flui<strong>di</strong> <strong>di</strong> poro in faglie sismiche dallo stu<strong>di</strong>o isotopico<br />

in pseudotachiliti<br />

Le pseudotachiliti sono fusi <strong>di</strong> frizione che si formano durante lo<br />

scivolamento sismico e che si soli<strong>di</strong>ficano in tempi <strong>brevi</strong>, nell’or<strong>di</strong>ne <strong>di</strong> minuti<br />

o secon<strong>di</strong> dopo un terremoto. Lo scopo <strong>di</strong> questo lavoro è investigare la<br />

presenza <strong>di</strong> flui<strong>di</strong> acquosi durante lo scivolamento frizionale attraverso la<br />

misura <strong>del</strong> rapporto deuterio/idrogeno (D) in pseudotachiliti naturali <strong>ed</strong><br />

artificiali, e il confronto con il D dei rispettivi incassanti.<br />

Le pseudotachiliti naturali provengono da faglie paleosismiche esumate<br />

nel Massiccio <strong>del</strong>l’Adamello (Alpi Meri<strong>di</strong>onali), che erano attive circa 30 Ma<br />

a 9-11 km <strong>di</strong> profon<strong>di</strong>tà e a 250-300°C; le pseudotachiliti si formano per<br />

fusione <strong>di</strong> tonalite, dove l’unica fase idrata è biotite, e cataclasite, in cui le fasi<br />

idrate sono epidoto e clorite. I valori <strong>del</strong> D sono compresi tra -73 ±2‰ per la<br />

biotite in tonalite, e 64 ±4‰ per la cataclasite (bulk, epidoto+clorite). Le<br />

pseudotachiliti artificiali sono state prodotte in esperimenti <strong>di</strong> frizione che<br />

simulano con<strong>di</strong>zioni sismiche (fino a 1.28 m s -1 e con applicazione <strong>di</strong> sforzi<br />

normali fino a 20MPa), in con<strong>di</strong>zioni anidre. L’unica fonte <strong>di</strong> acqua nel fuso è<br />

la deidratazione dei minerali idrati <strong>del</strong>le rocce <strong>di</strong> partenza. Il D <strong>del</strong>le<br />

pseudotachiliti artificiali varia da -75 ±1‰ per campioni prodotti da tonalite<br />

(cioè in<strong>di</strong>stinguibile da quello <strong>del</strong>la biotite in tonalite), a -83 ±2‰ per<br />

campioni prodotti da cataclasite. Le pseudotachiliti naturali hanno D<br />

compreso tra -103.6 e -83.4‰, in<strong>di</strong>pendente dal tipo <strong>di</strong> incassante.<br />

Nelle pseudotachiliti artificiali in cataclasite, lo shift negativo è imputabile<br />

a frazionamento durante la fusione parziale <strong>del</strong>l’epidoto (temperatura <strong>di</strong><br />

fusione 1050°C), confermata da evidenze microstrutturali; in pseudotachiliti<br />

artificiali in tonalite, la fusione totale <strong>del</strong>la biotite (temperatura <strong>di</strong> fusione<br />

650°C) annulla l’effetto <strong>di</strong> frazionamento.<br />

Nelle pseudotachiliti naturali analisi microstrutturali (FE-SEM) e<br />

mineralogiche (XRPD) scartano l’ipotesi <strong>di</strong> alterazione tar<strong>di</strong>va (i.e.,<br />

weathering). Il comune shift negativo <strong>del</strong> D può essere quin<strong>di</strong> dovuto a (i)<br />

coinvolgimento durante il terremoto <strong>di</strong> flui<strong>di</strong> <strong>di</strong> poro a basso rapporto<br />

isotopico, oppure a (ii) idratazione <strong>del</strong>la matrice vetrosa durante processi <strong>di</strong><br />

devetrificazione coevi con gli eventi sismici.<br />

Key words: Adamello, pore fluids, stable isotopes,<br />

pseudotachylytes, seismic faulting.<br />

_________________________<br />

SILVIA MITTEMPERGHER (*), LUIGI DALLAI (**), GIULIO DI TORO (*, °) & GIORGIO PENNACCHIONI (*)<br />

(*) Dipartimento <strong>di</strong> Geoscienze, Università degli Stu<strong>di</strong> <strong>di</strong> Padova, via Giotto<br />

1, 35137 Padova (Italy)<br />

(**) Istituto <strong>di</strong> Geoscienze e <strong>Georisorse</strong>, CNR, via G. Moruzzi 1, 56124 Pisa<br />

(Italy)<br />

(°) Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia, via <strong>di</strong> Vigna Murata 605,<br />

00143 Roma (Italy)<br />

Lavoro eseguito con il contributo finanziario <strong>del</strong>la Fondazione CARITRO<br />

(Trento), <strong>del</strong>la Fondazione CARIPARO (Padova) e <strong>del</strong> Progetto European<br />

Research Council Starting Grant USEMS.<br />

INTRODUCTION<br />

Pseudotachylytes are frictional melts produc<strong>ed</strong> during<br />

seismic slip and soli<strong>di</strong>fi<strong>ed</strong> in short time (seconds to minutes)<br />

after an earthquake (DI TORO et al., 2008 for a review). We<br />

investigat<strong>ed</strong> the presence and role of hydrous fluids during<br />

seismic faulting by measuring the Deuterium/Hydrogen (D/H)<br />

ratios (D) in natural and artificial pseudotachylytes and in<br />

their host rocks.<br />

METHODS AND RESULTS<br />

Pseudotachylyte samples have been collect<strong>ed</strong> in a fault zone<br />

crosscutting the Adamello tonalitic batholith (Italian Southern<br />

Fig. 1 – Geological setting of the Adamello batholith and location of the<br />

sampling area.<br />

Fig. 1 – Inquadramento geologico <strong>del</strong> Batolite dll’Adamello e punto <strong>di</strong><br />

campionamento.<br />

Alps) (Fig. 1). From microstructural and mineralogical<br />

evidences, it has been inferr<strong>ed</strong> that seismic faulting occurr<strong>ed</strong> at<br />

9-11 km depth and 250-300°C (DI TORO & PENNACCHIONI,<br />

2004; 2005). Pseudotachylytes are host<strong>ed</strong> in tonalite, where the<br />

only hydrat<strong>ed</strong> phase is biotite and cataclasites, where the<br />

hydrat<strong>ed</strong> minerals are epidote and minor chlorite (Fig. 2a). The


140 MITTEMPERGHER ET ALII<br />

Fig. 2 – Natural and artificial pseudotachylytes. a. Field photograph of pseudotachylyte fault (FV) and injection veins (IV), intru<strong>di</strong>ng tonalite and cataclasite<br />

(CC). b. SEM image of a natural pseudotachylyte, with clasts of plagioclase and quartz floating in a microcrystalline matrix. c. FE_SEM image of the inner<br />

layer of a natural pseudotachylyte, with spherulitic aggregates floating in a cryptocrystalline matrix. d. Tonalite sample after a high velocity shear experiment.<br />

e. Cataclasite sample after an high velocity shear experiment; in both cases, the cylinders are weld<strong>ed</strong> by a thin pseudotachylyte layer (arrows). f. SEM<br />

micrograph of the experimental pseudotachylyte in tonalite; note the embayment (arrow) in the biotite grain. g. SEM micrograph of the experimental<br />

pseudotachylyte in cataclasite; note the porosity in the epidote grains near the contact with the pseudotachylyte layer.<br />

Fig. 2 – Pseudotachiliti naturali <strong>ed</strong> artificiali. a. Foto <strong>di</strong> campagna <strong>di</strong> una vena <strong>di</strong> pseudotachilite (fault vein, FV) con vene <strong>di</strong> iniezione (IV), che intrude<br />

tonalite e cataclasite (CC). b. Immagine SEM <strong>di</strong> pseudotachilite naturale, con clasti <strong>di</strong> quarzo e plagioclasio sostenuti da una matrice microcristallina. c.<br />

Immagine al FE_SEM <strong>del</strong> livello centrale <strong>di</strong> una pseudotachilite naturale, con aggregati sferulitici in matrice criptocristallina. D. Campione <strong>di</strong> tonalite dopo<br />

un esperimento <strong>di</strong> scivolamento ad alta velocità. E. Campione <strong>di</strong> cataclasite dopo un esperimento <strong>di</strong> scivolamento ad alta velocità; in entrambi i casi, i cilindri<br />

sono saldati da un sottile livello <strong>di</strong> pseudotachilite (frecce). f. Immagine al SEM <strong>di</strong> pseudotachilite sperimentale ottenuta da tonalite; notare l’insenatura<br />

(freccia) nel granulo <strong>di</strong> biotite. G. Immagine al SEM <strong>di</strong> una pseudotachilite sperimentale in cataclasite; notare la porosità nei granuli <strong>di</strong> epidoto a<strong>di</strong>acenti al<br />

contatto con la pseudotachilite.<br />

hydrogen isotopic ratio has been measur<strong>ed</strong> by combustion in an<br />

elemental analyzer in continuous flow mode (SHARP et al.,<br />

2001); D values range from -73 ±2‰ for biotite in tonalite to<br />

64 ±4‰ for bulk cataclasite (epidote+chlorite).<br />

Pseudotachylytes are form<strong>ed</strong> by clasts of quartz, plagioclase<br />

and K-feldspar in a matrix compos<strong>ed</strong> by a microcrystalline<br />

aggregate of biotite and plagioclase microlites; glass is absent<br />

(Fig. 2b). Many of the analyz<strong>ed</strong> natural pseudotachylytes are<br />

zon<strong>ed</strong>, with an inner layer form<strong>ed</strong> by spherulitic aggregates<br />

floating in a cryptocrystalline devitrifi<strong>ed</strong> (?) matrix (Fig. 2c).<br />

From X-Ray powder <strong>di</strong>ffraction analyses, the only hydrat<strong>ed</strong><br />

mineral in pseudotachylytes is biotite, and low temperature<br />

secondary minerals are absent.<br />

Natural pseudotachylytes have D values ranging between -<br />

103.6 and -83.4‰, irrespective of wall rock composition<br />

(Fig.3).<br />

Artificial pseudotachylytes were obtain<strong>ed</strong> from tonalites and<br />

cataclasites in friction experiments simulating seismic slip<br />

(velocity up to 1.28 ms -1 , normal load up to 20 MPa) under dry<br />

con<strong>di</strong>tions (DI TORO et al., 2006) (Fig. 2d, e). Dehydration of<br />

biotite in tonalite and epidote+chlorite in cataclasite provid<strong>ed</strong><br />

the source for water in experimental pseudotachylytes.<br />

Artificial pseudotachylytes are form<strong>ed</strong> by sub-round<strong>ed</strong> clasts of<br />

quartz, plagioclase and K-feldspar floating in a glassy matrix;<br />

closely resembling the microstructure of some not zon<strong>ed</strong><br />

natural pseudotachylytes, except for the natural ones do not<br />

Fig. 3 – Hydrogen isotopic ratios of the analyz<strong>ed</strong> samples plott<strong>ed</strong> versus<br />

their water content.<br />

Fig. 3 – Rapporti isotopici <strong>del</strong>l’idrogeno dei campioni analizzati, riportati<br />

contro il rispettivo contenuto in acqua.<br />

bear glass (Fig. 2f, g)<br />

The D values of artificial pseudotachylytes range from -75<br />

±1‰ for samples produc<strong>ed</strong> from tonalite, to -83 ±2‰ for<br />

samples involving cataclasite.


INVOLVEMENT OF PORE FLUIDS IN FRICTIONAL MELTING FROM STABLE ISOTOPES STUDY OF PSEUDOTACHYLYTES<br />

DISCUSSION AND CONCLUSIONS<br />

In experimental pseudotachylytes, SEM analysis (Fig. 2g)<br />

suggests that the negative D shift of pseudotachylytes<br />

produc<strong>ed</strong> from cataclasites result<strong>ed</strong> from hydrogen<br />

fractionation during partial melting of epidote (melting point<br />

1050°C) in the wall rocks; <strong>di</strong>fferently, total melting of biotite<br />

(due to its lower melting temperature of 650°C) allow<strong>ed</strong><br />

negligible H-isotope fractionation between biotite and<br />

pseudotachylyte.<br />

In natural pseudotachylytes, microstructural and<br />

geochemical observations rule out meteoric alteration of the<br />

pseudotachylyte by isotopically light water; thus, the common<br />

hydrogen isotope signature of -93 ±10‰ may result (i) from<br />

pseudotachylytes being buffer<strong>ed</strong> by a low-D pore fluid involv<strong>ed</strong><br />

in frictional melting, or (ii) hydration of the pseudotachylytes<br />

during devitrification processes.<br />

REFERENCES<br />

DI TORO G. & PENNACCHIONI, G. (2005) - Superheat<strong>ed</strong><br />

friction-induc<strong>ed</strong> melts in zon<strong>ed</strong> pseudotachylytes within the<br />

Adamello tonalites (Italian Southern Alps). Journal of<br />

Structural Geology, 26, 1783-1801.<br />

DI TORO G. & PENNACCHIONI, G. (2005) - Fault plane<br />

processes and mesoscopic structure of a strong-type<br />

seismogenic fault in tonalites (Adamello batholith,<br />

Southern Alps). Tectonophysics, 402 (1-4), 54-79.<br />

DI TORO G., HIROSE T., NIELSEN S., PENNACCHIONI G. &<br />

SHIMAMOTO T. (2006) - Natural and experimental evidence<br />

of melt lubrication of faults during earthquakes. Science,<br />

311, 647-649<br />

DI TORO G., PENNACCHIONI G. & NIELSEN S. (2008) -<br />

Pseudotachylytes and Earthquake Source Mechanics. In:<br />

Eiichi Fukuyama (Ed.) “Fault-zone Properties and<br />

Earthquake Rupture Dynamics”, International Geophysics<br />

Series, Elsevier, submitt<strong>ed</strong>.<br />

SHARP Z.D., ATUDOREI V. & DURAKIEVICZ T. (2001) – A rapid<br />

method for determination of hydrogen and oxygen isotope<br />

ratios from water and hydrous minerals. Cem. Geology<br />

178, 197-210.<br />

141


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 142-143, 1 f.<br />

Caratteri strutturali e interazione fluido-roccia in una faglia<br />

normale ad alto angolo nei marmi <strong>di</strong> Carrara<br />

GIANCARLO MOLLI (*), GIANNI CORTECCI (**), LUCA VASELLI (**) & GIUSEPPE OTTRIA (**)<br />

ABSTRACT<br />

Fault zone structure and fluid-rock interaction of a high angle normal<br />

fault in the Carrara marble (NW Tuscany, Italy)<br />

We stu<strong>di</strong><strong>ed</strong> the geometry, intensity of deformation and fluid-rock interaction of<br />

a high angle normal fault develop<strong>ed</strong> in Carrara marble in the Alpi Apuane NW<br />

Tuscany, Italy.<br />

The overall architecture of the structure is form<strong>ed</strong> by a fault core bound<strong>ed</strong> by<br />

two major non-parallel slip surfaces. The fault core, associat<strong>ed</strong> with crush<strong>ed</strong><br />

breccia and cataclasites, asimmetrically grades to the host protolith through a<br />

damage zone only well develop<strong>ed</strong> in the footwall block, whereas the transition<br />

to hangingwall is sharply defin<strong>ed</strong> by the upper main slip surface.<br />

Faulting was associat<strong>ed</strong> with fluid-rock interaction in form of kinematicallyrelat<strong>ed</strong><br />

veining observable in the damage zone and fluid channelling within<br />

fault core where an orange-brownish cataclasite matrix can be observ<strong>ed</strong>. A<br />

geochemical and isotopic study inclu<strong>di</strong>ng a mathematical mo<strong>del</strong> was<br />

perform<strong>ed</strong> to enlighten type, role and activity of fluid-rock interactions during<br />

deformation.<br />

The results of our stu<strong>di</strong>es suggest<strong>ed</strong> that the deformation pattern is mainly<br />

controll<strong>ed</strong> by processes associat<strong>ed</strong> with linking-damage zone at a fault tip,<br />

development of fault core, localization and channelling of fluids through it.<br />

Syn-kinematic microstructural mo<strong>di</strong>fication of calcite microfabric possibly<br />

plays a role in confining fluid percolation.<br />

Key words: Carrara marble, brittle faulting, geochemistry,<br />

cataclasite, calcite microstructures,<br />

INTRODUZIONE<br />

Gli sta<strong>di</strong> tar<strong>di</strong>vi <strong>del</strong>l’evoluzione geologica <strong>del</strong>le Alpi<br />

Apuane sono caratterizzati dallo sviluppo <strong>di</strong> sistemi <strong>di</strong> faglie ad<br />

alto angolo (normali e trascorrenti) che accompagnano<br />

l’esumazione finale <strong>del</strong>le unità metamorfiche esposte nel<br />

gruppo montuoso (CARMIGNANI & KLIGFIELD, 1990; OTTRIA &<br />

MOLLI, 2000; MOLLI, 2008 e bibl.).<br />

Come parte <strong>di</strong> uno stu<strong>di</strong>o in corso in questo contributo<br />

verranno illustrate le caratteristiche strutturali (architettura<br />

generale, meso e microstrutture) <strong>di</strong> un zona <strong>di</strong> faglia ad alto<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Sicenze <strong>del</strong>la Terra, Via S.Maria 53, 56126 Pisa<br />

gmolli@dst.unipi.it<br />

(**) CNR Istituto <strong>di</strong> Geoscienze e <strong>Georisorse</strong> Pisa<br />

Lavoro eseguito nell’ambito <strong>del</strong> progetto Stu<strong>di</strong>o Geologico-Strutturale dei<br />

sistemi <strong>di</strong> deformazione fragile nei marmi <strong>del</strong>le Alpi Apuane Azienda ASL<br />

1 <strong>di</strong> Massa e Carrara<br />

angolo esposta nel bacino marmifero <strong>di</strong> Fantiscritti (Carrara,<br />

Alpi Apuane occidentali). Lo stu<strong>di</strong>o strutturale è stato<br />

accompagnato da quello geochimico allo scopo <strong>di</strong> vincolare<br />

ruolo, tipo e modalità <strong>di</strong> interazione fluido-roccia durante lo<br />

sviluppo <strong>del</strong>la struttura analizzata.<br />

L’architettura generale <strong>del</strong>la struttura è formata da un<br />

nucleo (fault core) associato a brecce e cataclasiti che<br />

asimmetricamente passa ad una zona <strong>di</strong> danneggiamento<br />

(damage zone) ben sviluppata solamente nel footwall <strong>del</strong>la<br />

faglia, mentre la transizione al tetto è nettamente definita<br />

attraverso la superficie <strong>di</strong> scivolamento principale superiore.<br />

Fig. 1 – Didascalia <strong>del</strong>la figura. (Stile: Didascalie figure)<br />

Fig. 1 – Fig. 1 – Architettura generale con elementi strutturali principali <strong>del</strong>la<br />

faglia normale analizzata (Fantiscritti Carrara). a) Proiezione stereografica<br />

<strong>del</strong>la faglia principale e dei sistemi <strong>di</strong> fatturazione nella zona <strong>di</strong><br />

danneggiamento. b) <strong>di</strong>rezioni principali <strong>di</strong> deformazione per la faglia,<br />

Fig. 1 –Schematic sketch of the main structural componente of the stu<strong>di</strong><strong>ed</strong><br />

fault. a) Stereonet of the master fault and fracture sets in the damage zone; b)<br />

Principal <strong>di</strong>rection of deformation for the stu<strong>di</strong><strong>ed</strong> fault.<br />

La deformazione fragile è stata accompagnata da<br />

interazione fluido-roccia evidenziata sia dallo sviluppo <strong>di</strong> vene<br />

nella zona <strong>di</strong> danneggiamento, sia da una localizzazione <strong>di</strong><br />

circolazione all’interno <strong>del</strong> nucleo <strong>del</strong>la faglia dove sono<br />

osservabili cataclasiti con una matrice colore arancio/marrone.<br />

Lo stu<strong>di</strong>o geochimica <strong>ed</strong> isotopico, includente un mo<strong>del</strong>lazione<br />

matematica, ha permesso <strong>di</strong> ottenere informazioni sul ruolo, il<br />

tipo e l’attività <strong>di</strong> interazione fluido-roccia durante la


CARATTERI STRUTTURALI E INTERAZIONE FLUIDO-ROCCIA IN UNA FAGLIA NORMALE AD ALTO ANGOLO NEI MARMI DI CARRARA 143<br />

deformazione.<br />

I risultati <strong>del</strong> nostro stu<strong>di</strong>o suggeriscono che la<br />

deformazione è stata controllata in modo principale dai<br />

processi associati alla crescita <strong>del</strong>la faglia e alla sua<br />

segmentazione e dallo sviluppo <strong>del</strong> nucleo con localizzazione<br />

<strong>del</strong>la deformazione e incanalamento dei flui<strong>di</strong> attraverso esso.<br />

Mo<strong>di</strong>ficazioni microstrutturali sin-cinematiche <strong>del</strong>la calcite<br />

durante la propagazione <strong>del</strong>la faglia probabilmente giocano un<br />

ruolo chiave nel confinare i flui<strong>di</strong> nel footwall <strong>del</strong>la faglia<br />

(MOLLI ET ALII. 2009).<br />

REFERENCES<br />

CARMIGNANI L. & KLIGFIELD R. (1990) – Crustal extension in<br />

the Northern Apennines: The transition from compression<br />

to extension in the Alpi Apuane. Tectonics, 9, 1275-1303.<br />

MOLLI G. (2008) – Northern Apennine-Corsica orogenic<br />

system: an updat<strong>ed</strong> overview. In: Siegesmund, S.,<br />

Fugenschuh B., Froitzheim, N. (Eds). Geological Society of<br />

London, Special Pubblications, 298, 413-442.<br />

MOLLI G., CORTECCI G., VASELLI L., OTTRIA G., G.B.,<br />

CORTOPASSI A., DINELLI E., BARBIERI M. & MUSSI M.<br />

(2009) –Fault zone structure and fluid- rock interaction of<br />

a high angle normal fault. Journal of Structural Geology, in<br />

stampa.<br />

OTTRIA G. & MOLLI G. (2000) – Superimpos<strong>ed</strong> brittle<br />

structures in the late orogenic extension of the Northern<br />

Apennine. Results from Carrara area (NW Tuscany, Italy)<br />

Terra Nova 12 (2), 52-59.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 144-147, 1 f.<br />

From compression to extension during the Sicily chain buil<strong>di</strong>ng<br />

ABSTRACT<br />

Processi compressivi e <strong>di</strong>stensivi durante la costruzione <strong>del</strong>la catena<br />

siciliana<br />

Kinematics of mountain belts is often very <strong>di</strong>fficult to decipher. Main problems<br />

consist in the linkage between <strong>di</strong>fferent stages of deformation which define the<br />

chain buil<strong>di</strong>ng, their significance in the context of lithospheric evolution<br />

dominate by plate collision and the interaction with previous structures<br />

record<strong>ed</strong> in the rocks. Also, the overprinting of structures developing later with<br />

respect to the chain buil<strong>di</strong>ng may further makes complicate the way to unravel<br />

the tectonic evolution of the w<strong>ed</strong>ge.<br />

In Sicily belt, locat<strong>ed</strong> in the Central M<strong>ed</strong>iterranean, the regional pattern and the<br />

tectonic evolution are describ<strong>ed</strong> using structural analysis of small-scale<br />

structures in select<strong>ed</strong> outcrops. The geometric <strong>di</strong>fferences existing between<br />

some types of structures within the belt allow to <strong>del</strong>ineate the timing of<br />

deformations during chain buil<strong>di</strong>ng.<br />

Key words: collisional tectonics, structural pattern, sequence<br />

of deformation, Sicily Chain.<br />

INTRODUCTION<br />

The aim of this paper is to provide constraints to help<br />

unravel the structural evolution of the Sicily chain using<br />

overprinting fabrics and their relationships to larger structures.<br />

The progression of deformation is represent<strong>ed</strong> by three<br />

regionally-significant structural stages (layer-parallel<br />

shortening, fol<strong>di</strong>ng-and-thrusting and extension). The first<br />

stage of deformation includes several sub-stages (layer-parallel<br />

shortening, b<strong>ed</strong>-parallel simple shear and fold nucleation).<br />

Deformation continu<strong>ed</strong> in a second stage, where thrusting was<br />

coupl<strong>ed</strong> by fold amplification and tightening. Kinematic<br />

evolution is provid<strong>ed</strong> by a third stage, where dominantly<br />

negative inversion of previous weaken<strong>ed</strong> zones and mechanical<br />

<strong>di</strong>scontinuities occurr<strong>ed</strong>, coupl<strong>ed</strong> by normal faults activation.<br />

Each stage is defin<strong>ed</strong> as a <strong>di</strong>screte phase of deformation,<br />

characteris<strong>ed</strong> by the development of <strong>di</strong>fferent sets of structures,<br />

such as cleavage, folds, faults and veins. Each deformative step<br />

may be sequentially fram<strong>ed</strong> in a kinematic history, where a<br />

_________________________<br />

NIGRO F. (*), SALVAGGIO G. (°), FAVARA R. (*) & RENDA P. (* , °)<br />

(*) Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia-sezione <strong>di</strong> Palermo, via<br />

Ugo la Malfa 153, 90146, Palermo.<br />

(°) Dipartimento <strong>di</strong> Geologia e Geodesia <strong>del</strong>l’Università, via Archirafi 22,<br />

90123, Palermo<br />

continuous process starts with shortening and ends with<br />

extension in a tectonic setting dominat<strong>ed</strong> by collisional<br />

tectonics.<br />

SEQUENCE OF DEFORMATIONS<br />

In Sicily, the tectonic units were pil<strong>ed</strong>-up in the Oligocene-<br />

Early Miocene (BIANCHI et al., 1987; NIGRO & RENDA, 2000).<br />

Detachments inside the multilayer provide multi-harmonic<br />

fol<strong>di</strong>ng and blind splays, to form duplex geometries. Ramp-flat<br />

geometries outcrop wi<strong>del</strong>y, with moderate spacing of the<br />

sheets. The tectonic units strike <strong>di</strong>fferently from west to east.<br />

Map-scale fold trend W-E/NE-SW is perpen<strong>di</strong>cular to the mean<br />

S/SE thrusting <strong>di</strong>rection.<br />

Three main deformation stages have been recognis<strong>ed</strong><br />

(layer-parallel shortening, fol<strong>di</strong>ng-and-thrusting, low-angle<br />

extension), having regional significance.<br />

1) First stage of deformation: multilayer weakening<br />

sub-stage A: layer-parallel shortening<br />

The first stage of deformation is represent<strong>ed</strong> by b<strong>ed</strong><strong>di</strong>ngnormal<br />

pressure solution cleavage and b<strong>ed</strong><strong>di</strong>ng-parallel shearrelat<strong>ed</strong><br />

vein and fractures.<br />

The cleavage geometry changes from planar to sutur<strong>ed</strong>. The<br />

spacing of cleavage domain ranges from millimetres to<br />

centimetres, depen<strong>di</strong>ng from the mechanical behaviours of the<br />

lithologies. Closely spac<strong>ed</strong> cleavage is mostly record<strong>ed</strong> in the<br />

Cretaceous-Paleogene pelagic marls: spac<strong>ed</strong> cleavage is<br />

record<strong>ed</strong> in the Upper Triassic-Lower Jurassic limestones.<br />

Pressure solution was accommodat<strong>ed</strong> by w<strong>ed</strong>ge faults,<br />

record<strong>ed</strong> in the carbonate strata of the interb<strong>ed</strong>d<strong>ed</strong> pelagic<br />

successions of Jurassic age. Intersection lineation of w<strong>ed</strong>ge<br />

faults is sub-parallel to the b<strong>ed</strong><strong>di</strong>ng-cleavage intersection<br />

lineation.<br />

sub-stage B: b<strong>ed</strong>-parallel simple shear<br />

Deformation a stage 1A evolves toward a process of layerparallel<br />

shear. En-échelon gash vein sets and shear fractures are<br />

the main structures representing shear. Conjugate veins<br />

consistently strike parallel to cleavage and the traces of the<br />

obtuse bisectors of this sets are parallel to b<strong>ed</strong><strong>di</strong>ng and normal<br />

to LPS cleavage-b<strong>ed</strong><strong>di</strong>ng intersection lineation.


FROM COMPRESSION TO EXTENSION DURING THE SICILY CHAIN BUILDING<br />

Mutually, gash veins and LPS cleavage cross-cut.<br />

The gash veins evolve to <strong>di</strong>screte shear planes near the b<strong>ed</strong><br />

separations, especially within the pelagic successions of<br />

Cretaceous age. Locally, intraformational duplexes of 1 cm-to-<br />

1 m in scale have been observ<strong>ed</strong>.<br />

Small-scale floor-thrusts, roof-thrusts and reverse ramps<br />

<strong>di</strong>splace and strike parallel with the LPS cleavage and then<br />

post-date the LPS episode. Master roof and floor faults<br />

represent detachment within the multilayer. Slickenfibres and<br />

striae on b<strong>ed</strong> surfaces are common, cross-cutting the gash<br />

veins.<br />

The overprinting of the small-scale detachments on the LPS<br />

fabric suggests an evolution of the deformation from pure<br />

compression to shortening under non-zero simple shear.<br />

B<strong>ed</strong><strong>di</strong>ng-parallel shear zones have been observ<strong>ed</strong> especially<br />

in the Mesozoic marly pelagic horizons.<br />

The shear zones are characteris<strong>ed</strong> by two sets of surfaces.<br />

The first coincides with the b<strong>ed</strong> surfaces and/or are parallel<br />

with b<strong>ed</strong><strong>di</strong>ng. Calcite fibres on b<strong>ed</strong> surfaces allow us to<br />

reconstruct an overall forelandwards migration. The second<br />

ones form an evident cleavage, having high-angles with respect<br />

to the b<strong>ed</strong>s and to the shear veins. The cleavage bends are<br />

consistent with the <strong>di</strong>rection of movements suggest<strong>ed</strong> by the<br />

slickenfibres on b<strong>ed</strong> surfaces. S-C fabric overprints small-scale<br />

folds, suggesting continuous evolution from stage 1C to 2.<br />

Outcrop-scale main detachments have been localis<strong>ed</strong> at the<br />

base and on the top of the carbonate platform strata, at the base<br />

of the pelagic successions and of the syn-collisional deposits.<br />

sub-stage C: fold nucleation<br />

In the less competent lithologic units, between the layerparallel<br />

shear bends small-scale folds have been observ<strong>ed</strong>. LPS<br />

pressure-solution cleavage is in places overprint<strong>ed</strong> by cleavage<br />

domains relat<strong>ed</strong> with fol<strong>di</strong>ng.<br />

Geometric relationships between fol<strong>di</strong>ng-relat<strong>ed</strong> cleavage<br />

and b<strong>ed</strong><strong>di</strong>ng is represent<strong>ed</strong> by high-angles near the second- and<br />

third-order fold hinges and low-angles in the fold limbs.<br />

Refraction phenomena have been also observ<strong>ed</strong>.<br />

The second cleavage generation produc<strong>ed</strong> pencil<br />

morphology, in the limbs of outcrop-scale folds. It consistently<br />

strikes sub-parallel with respect to the LPS cleavage.<br />

Flexural slip fol<strong>di</strong>ng was easily develop<strong>ed</strong>, re-utilising<br />

weaken<strong>ed</strong> shear<strong>ed</strong> interb<strong>ed</strong> of stage 1B. Minor thrusts<br />

accompani<strong>ed</strong> <strong>di</strong>sharmonic fol<strong>di</strong>ng, allow duplex generation at<br />

<strong>di</strong>fferent lithologic levels. 10-to-100 metres in scale duplexing<br />

contribut<strong>ed</strong> to fold nucleation.<br />

2) Second stage of deformation: w<strong>ed</strong>ge thickening<br />

Minor structures of the first stage of deformation, such as<br />

detachments, reverse faults and intraformational duplex,<br />

suffer<strong>ed</strong> fol<strong>di</strong>ng. Fold<strong>ed</strong> detachments and duplex form firstorder<br />

folds, such as ramp anticlines. Second- and third-order<br />

folds probably tighten<strong>ed</strong> and amplificat<strong>ed</strong>, to form drag folds<br />

relat<strong>ed</strong> to the first-order thrust-relat<strong>ed</strong> folds.<br />

Amplification and tightening of second- and third-order<br />

folds under flexural-slip domain was wi<strong>del</strong>y accompani<strong>ed</strong> by<br />

145<br />

collapse of fold hinges. In the fold culminations, extension<br />

fabrics, such as fibrous calcite veins, have been observ<strong>ed</strong>. The<br />

extension veins are orthogonal with respect to the fold-axis and<br />

exhibit ra<strong>di</strong>al trend from the core toward the outer arc of folds.<br />

This fold generation are well record<strong>ed</strong> both in the pelagic<br />

successions and in the carbonate platform strata. Mesoscopic<br />

folds are generally upright, close, with associat<strong>ed</strong> axial-plane<br />

cleavage and bou<strong>di</strong>nage. Fold axes are generally subhorizontal.<br />

Their profile geometry is mostly concentric and<br />

ranges from angular to curvilinear. Folds of wavelength up to 1<br />

km are asymmetric. The upright limbs shallowly <strong>di</strong>p toward the<br />

hinterland and the foreland-<strong>di</strong>pping limbs are more steeply.<br />

Second- and third-order folds relat<strong>ed</strong> to the first stage of<br />

deformation are cross-cut by later generation of reverse faults,<br />

some of these relat<strong>ed</strong> to the flexural-slip deformation.<br />

Reverse faults produc<strong>ed</strong> <strong>di</strong>splacements ranging from<br />

centimetres to kilometres. Faults crosses carbonate platform<br />

strata with high angles (between 35° and 50°). Within the<br />

pelagic strata, the cut-off angles are very <strong>di</strong>fferent due to the<br />

previous fol<strong>di</strong>ng episode. Striae and slickenfibres in<strong>di</strong>cate<br />

hangingwall transport <strong>di</strong>rection south- and southeastward in<br />

Western Sicily and southwestward in North-eastern Sicily.<br />

Outcrop-scale thrusts often define link<strong>ed</strong> thrust systems,<br />

which planes flatten<strong>ed</strong> along the shear bends of stage 1B.<br />

Back-thrusts are not common. First-order fold tightening was<br />

accompani<strong>ed</strong> by new generation of conjugate gash veins,<br />

overprinting the minor folds of stage 1C.<br />

The second gash veins generation have <strong>di</strong>fferent geometric<br />

relationships with b<strong>ed</strong><strong>di</strong>ng. The surface envelopment of the<br />

vein sets exhibits high-angle with respect to the b<strong>ed</strong><strong>di</strong>ng in the<br />

fold limbs, progressively becoming sub-parallel to b<strong>ed</strong><strong>di</strong>ng in<br />

the hinges. Also, its strike is parallel with the axial plane<br />

cleavage. Overprinting relationships suggest that fold<br />

tightening, thrusting and relat<strong>ed</strong> first-order fold nucleation,<br />

such as ramp anticlines, develop<strong>ed</strong> under non-zero shear.<br />

Map-scale thrust, defines tectonic units, which in turn have<br />

large spacing, and splays. Ramp-flat geometries at this scale of<br />

observation may be recognis<strong>ed</strong>. Near the thrust surfaces, the<br />

penetrative shearing fabric consists of S-C structures, north-tonorthwestern<br />

<strong>di</strong>pping in Western Sicily and northeastern<br />

<strong>di</strong>pping in the Peloritani range.<br />

The S-C angle is lower near the thrust surfaces than in the<br />

shear bends relat<strong>ed</strong> to the stage of deformation 1B, suggesting<br />

increase of deformation during thrusting of previous bends,<br />

inducing a progressive rotation of S-surfaces.<br />

S-C lineation intersection strikes parallel with respect to the<br />

reverse faults in Northern Sicily. Along the Western border of<br />

the Caltanissetta Basin, geometric relationships between faults,<br />

S-C structures, folds and gash vein sets <strong>di</strong>ffer, suggesting that<br />

transpression dominat<strong>ed</strong> shortening.<br />

Pervasive fabric has been recognis<strong>ed</strong> near the main thrust<br />

faults, consisting in several metres thick cataclastic breccias.


146 NIGRO F. ET ALII<br />

Fig. 1 – main structural features in the Sicily Chain (A). kinematic development of folds and relat<strong>ed</strong> thrust (B) and simplifi<strong>ed</strong> cross section of a submarine<br />

thrust w<strong>ed</strong>ge, with the parameters requir<strong>ed</strong> for its critical taper calculation and failure effects of w<strong>ed</strong>ge taper increasing due to thickening in terms of thinning<br />

for negative inversion (C).<br />

The lacking of hangingwall large overlapping outside the<br />

ramp anticline is coupl<strong>ed</strong> by ramp linkage with detachments<br />

occurr<strong>ed</strong> during the stage 1B, suggesting that fault-bend<br />

fol<strong>di</strong>ng may be the dominant deformative process during this<br />

stage of deformation. Pre-existence of detachments, their<br />

linkage with thrust ramps suggest fault-bend fol<strong>di</strong>ng for thrust<br />

nucleation.<br />

Outside the ramp anticlines, thrusts are not always<br />

emergent. More frequently, the ramp anticlines are asymmetric,<br />

with the forelimb more steeply than the backlimb. Overturn<strong>ed</strong><br />

strata are in places present at the base of the forelimbs.<br />

3) Third stage of deformation: thrust stack mo<strong>di</strong>fication<br />

Fold<strong>ed</strong>-and-fault<strong>ed</strong> strata experienc<strong>ed</strong> extension. The<br />

overprint<strong>ed</strong> normal faults activity has result<strong>ed</strong> in a <strong>di</strong>stribut<strong>ed</strong><br />

fragile thinning of the previous thrust stack.<br />

The common structures associat<strong>ed</strong> to this stage of<br />

deformation are normal faults. From 1 cm-to-100s m in scale<br />

normal faults have been observ<strong>ed</strong>. Listric ramp and flat<br />

geometries are dominant. Normal faults overprint folds and<br />

shear bends. Ramps are generally less extend<strong>ed</strong> than flats.<br />

Ramps cross-cut the b<strong>ed</strong><strong>di</strong>ng at various angles, generally<br />

<strong>di</strong>p 50°-70° and affect the backlimb of first-order folds.<br />

Extensional ramps often form fans <strong>di</strong>p synthetically with<br />

respect to the thrust faults. Flats dominantly detach the b<strong>ed</strong>s<br />

and re-utilis<strong>ed</strong> previous thrust faults and the shear bends of the<br />

stage 2 though their negative inversion. Roll-over anticlines<br />

have been observ<strong>ed</strong>, often in the ramp anticlines backlimbs.<br />

The hangingwalls are cut by joints, conjugate fractures and<br />

small, dominantly planar, normal faults. Locally, in the<br />

hangingwall, extensional ramps have been offset by b<strong>ed</strong>parallel<br />

movements along the less-competent b<strong>ed</strong>s forming the<br />

outer tectonic units outcropping in Western Sicily.<br />

Simple b<strong>ed</strong><strong>di</strong>ng-plane slip is not the only way in which<br />

b<strong>ed</strong>-parallel shear was accommodat<strong>ed</strong> during extension. Lowangle<br />

faults sub-parallel to b<strong>ed</strong><strong>di</strong>ng also affect<strong>ed</strong> the b<strong>ed</strong><strong>di</strong>ng.<br />

These low-angle slip planes act as <strong>di</strong>splacement transfers from<br />

one easy slip horizon to another, accommodating flexural<br />

shear. Synthetic and antithetic normal faults also allow b<strong>ed</strong><br />

parallel shear, which results in b<strong>ed</strong> thinning, b<strong>ed</strong> length


FROM COMPRESSION TO EXTENSION DURING THE SICILY CHAIN BUILDING<br />

extension and b<strong>ed</strong> rotation. The main extensional detachments<br />

are locat<strong>ed</strong> at the base of the Mesozoic carbonates, the<br />

Cretaceous deposits and the Oligo-Miocene for<strong>ed</strong>eep deposits.<br />

Passive block rotation and repeat<strong>ed</strong> faulting during increase<br />

of extension are suggest<strong>ed</strong> by lozenge geometries, form<strong>ed</strong><br />

under high stretching rate. Rolling due to shear extension is in<br />

places coupl<strong>ed</strong> by localis<strong>ed</strong> cleavage development.<br />

Shear bends develop<strong>ed</strong> during stages 1B and 2 and smallscale<br />

roof-floor thrusts relat<strong>ed</strong> to duplexing were in places<br />

invert<strong>ed</strong> during extension.<br />

Meso-scale normal faults are represent<strong>ed</strong> by two or more<br />

variously <strong>di</strong>pping systems. Typically, the steeper extensional<br />

faults <strong>di</strong>splace the low-angle system. Both systems of mesoscale<br />

faults appear to have been tilt<strong>ed</strong> by steeply <strong>di</strong>pping<br />

normal faults, more and more frequent from the Palermo-<br />

Madonie Mts. towards the Tyrrhenian coast, suggesting a<br />

faulting evolution characteris<strong>ed</strong> by fault-block rotation during<br />

extension.<br />

Several metres thick of cataclastic bends are present at the<br />

base of the Mesozoic carbonates. Cataclasite consists of<br />

cement<strong>ed</strong> breccias, with coarse-to-m<strong>ed</strong>ium-grain<strong>ed</strong> size clasts.<br />

Extensional ramps consistently strike from W-E in Western<br />

Sicily and swing in a NW-SE <strong>di</strong>rection eastwards. Kinematic<br />

in<strong>di</strong>cators on the expos<strong>ed</strong> fault planes in<strong>di</strong>cate movement subparallel<br />

to the <strong>di</strong>p, without strike-slip component. Locally, two<br />

calcite fibres are superpos<strong>ed</strong> on the extensional ramps.<br />

The earlier kinematic in<strong>di</strong>cators have low-angles pitches,<br />

suggesting reactivation under strike-slip con<strong>di</strong>tions. Near the<br />

re-activat<strong>ed</strong> normal faults, the cataclastic breccias show brittle<br />

deformations, as high-angle small faults. The activity of the<br />

extensional detachments determin<strong>ed</strong> in places the mechanical<br />

contacts of the hangingwall flats over the footwall flats, with<br />

elision of lithostratigraphic units.<br />

REGIONAL-SCALE TIMING OF CHAIN BUILDING<br />

The outcrop-scale contractional structures are not uniformly<br />

<strong>di</strong>stribut<strong>ed</strong> throughout the deform<strong>ed</strong> multilayer, both laterally<br />

and laterally. The non-uniform horizontal <strong>di</strong>stribution of the<br />

structures from the hinterland to the foreland is consistently<br />

with the strain partitioning rate, decreasing in pervasive<br />

characters forelandwards. In fact, overprinting relationships of<br />

outcrop-scale structures are well develop<strong>ed</strong> in the inner<br />

tectonic units than in the outer, as well as the amount of<br />

<strong>di</strong>splacement. Otherwise, its vertical non-uniform <strong>di</strong>stribution<br />

may reflects the controls by mechanical behaviours anisotropy<br />

of the multilayer.<br />

Since the Oligocene onwards, the Sicily chain built. It was<br />

characteriz<strong>ed</strong> by a thrust front-for<strong>ed</strong>eep system migrating<br />

forelandwards and progressively incorporating syn-orogenic<br />

deposits. Collisional tectonics is represent<strong>ed</strong> by a thrust stack<br />

emplac<strong>ed</strong> onto a gently chain-<strong>di</strong>pping lea<strong>di</strong>ng <strong>ed</strong>ge of the<br />

foreland, underplat<strong>ed</strong> below the basal detachment horizon as a<br />

passive footwall.<br />

Map-scale compressional tectonics is represent<strong>ed</strong> by a set<br />

of thrust sheets, characteriz<strong>ed</strong> by frontal ramp anticlines, and<br />

splays. The general tren<strong>di</strong>ng of axial surfaces in<strong>di</strong>cates an<br />

147<br />

Africa vergence of the structures. The vergence of minor folds<br />

is generally consistent with that of the main folds.<br />

Thrusts <strong>di</strong>p towards NW in Western Sicily, towards the<br />

north in the middle part of Northern Sicily and towards NE in<br />

North-eastern Sicily. In the Palermo Mts., the chain units<br />

largely overthrust on the deform<strong>ed</strong> external shallow substrate<br />

through a very low angle flat (CATALANO et al., 2000). Thrust<br />

step-up geometries are characteriz<strong>ed</strong> by a few degrees of<br />

plunge. Forelandwards, the chain units link along a sole thrust<br />

and show a more highly thrust step-up angles of reverse faults.<br />

The deform<strong>ed</strong> foreland is affect<strong>ed</strong> by an emergent reverse fault<br />

system in Southwestern Sicily, where thrust step-up geometries<br />

are characteriz<strong>ed</strong> by the very high values of plunge. From<br />

magnetic data we estimate that the regional monocline gently<br />

plunges towards the hinterland by about 4 degrees.<br />

The tectonic units of North-eastern Sicily were pil<strong>ed</strong>-up<br />

during Late Oligocene-Early Miocene. Progressive foreland<br />

migration occurr<strong>ed</strong> for the Sicilian Maghrebides later, carrying<br />

piggy-back basins and incorporating for<strong>ed</strong>eep deposits (NIGRO<br />

& RENDA, 2000). The tectonic units of the Maghrebian range<br />

incorporat<strong>ed</strong> Upper Langhian-Lower Tortonian syn-tectonic<br />

deposits in North-western Sicily. Southward, the tectonic units<br />

incorporat<strong>ed</strong> Upper Tortonian syn-tectonic deposits, which<br />

become progressively younger towards the Southern Sicily.<br />

The compressional-deform<strong>ed</strong> foreland plate of Western<br />

Sicily is affect<strong>ed</strong> by high-angle faults both onland and in the<br />

off-shore of Southern Sicily, where Plio-Pleistocene sequences<br />

are involv<strong>ed</strong> in the deformation.<br />

Extensional tectonics is mostly represent<strong>ed</strong> by low-angle<br />

detachment systems innerward chain <strong>di</strong>pping, which have<br />

backslid<strong>ed</strong> the tectonic units (GIUNTA et al., 2000). The<br />

common fault linkage of the normal fault ramp segments with<br />

the contractional shears and thrust suggest that the negative<br />

inversion of the tectonic units was the dominant process of the<br />

extensional kinematics, allowing stretching and chain thinning.<br />

Normal faults may be recognis<strong>ed</strong> at <strong>di</strong>fferent scales, from 1 m<br />

to several kilometers. The main ramp segments determinate the<br />

outcropping fault steps which segment<strong>ed</strong> the thrust stack and<br />

allow<strong>ed</strong> the lowering of the belt towards the Tyrrhenian Sea.<br />

REFERENCES<br />

BIANCHI F., CARBONE S., GRASSO M., INVERNIZZI G., LENTINI<br />

F., LONGARETTI G., MERLINI S. E MOSTARDINI F. (1987) -<br />

Sicilia orientale: profilo geologico Nebro<strong>di</strong>-Iblei. Mem.<br />

Soc. Geol. It., 38, 429-458.<br />

CATALANO R., FRANCHINO A., MERLINI S. & SULLI A. (2000) -<br />

Central western Sicily structural setting interpret<strong>ed</strong> from<br />

seismic reflection profiles. Mem. Soc. Geol. It., 55, 5-16.<br />

GIUNTA G., NIGRO F. & RENDA P. (2000) - Extensional<br />

tectonics during Maghrebides chain buil<strong>di</strong>ng since late<br />

Miocene: examples from Northern Sicily. Ann. Soc. Geol.<br />

Poloniae, 70, 81-98.<br />

NIGRO F. & RENDA P. (2000) - Un mo<strong>del</strong>lo <strong>di</strong> evoluzione<br />

tettono-s<strong>ed</strong>imentaria <strong>del</strong>l’avanfossa neogenica siciliana.<br />

Boll. Soc. Geol. It., 119, 667-686.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 148-152, 2 ff.<br />

Evoluzione tettonica mesozoico-terziaria <strong>del</strong>la Sicilia centrosettentrionale<br />

NIGRO F. (*), SALVAGGIO G. (°), FAVARA R. (*), & RENDA P. (* , °)<br />

ABSTRACT<br />

Mesosozoic-to-Tertiary tectonic evolution of the North-Central Sicily<br />

Sicily owes its complex geological structure to a switch in tectonic regime<br />

from the Mesozoic to the Tertiary. A set of tectonic units outcrops in the<br />

northern portion of the island that originat<strong>ed</strong> during the Tertiary at the expense<br />

of paleogeographic domains of the African Mesozoic continental margin. The<br />

pre-orogenic successions show <strong>di</strong>fferent types of deformation (extensional and<br />

transcurrent) relat<strong>ed</strong> to the Jurassic paleotectonic evolution of the southern<br />

Neotethys margin. The history of the tectonic inversion of the Neotethys shear<br />

zone is record<strong>ed</strong> in the Cretaceous strata. Extension occurr<strong>ed</strong> during late<br />

Cretaceous and may be compatible with the tensile stress field relat<strong>ed</strong> to the<br />

Sicilide basin opening. The Neogene deformations are link<strong>ed</strong> to collisional<br />

processes and are mostly represent<strong>ed</strong> by thrusts and folds. Since the late<br />

Miocene onwards, the formation of the Tyrrhenian basin has driven the recent<br />

tectonic evolution of Northern Sicily. Its basin formation was realis<strong>ed</strong> through<br />

extension, follow<strong>ed</strong> by transcurrent tectonics along its southern margin.<br />

parole chiave: cronologia <strong>del</strong>le deformazioni mesozoicoterziarie,<br />

Sicilia centro-settentrionale.<br />

INTRODUZIONE<br />

La cronologia <strong>del</strong>le deformazioni registrate nelle<br />

successioni s<strong>ed</strong>imentarie affioranti in Sicilia settentrionale può<br />

essere ricostruita con l’analisi strutturale <strong>del</strong>le <strong>di</strong>verse<br />

popolazioni <strong>di</strong> faglie e <strong>del</strong>le loro reciproche relazioni <strong>di</strong><br />

sovraimposizione.<br />

La ripetuta sovrapposizione <strong>di</strong> strutture tettoniche, che si<br />

realizza a partire dal Mesozoico fino al Pleistocene, è <strong>di</strong><br />

<strong>di</strong>fficile comprensione in quanto esse esprimono sia i processi<br />

deformativi pre-orogenici mesozoici che quelli collisionali <strong>del</strong><br />

Terziario sup. e neotettonici.<br />

Ci si propone così <strong>di</strong> descrivere l’attuale assetto strutturale<br />

raggiunto dalle Maghrebi<strong>di</strong> siciliane al fine <strong>di</strong> ricostriure la<br />

cronologia e la tipologia <strong>del</strong>le deformazioni che si sono<br />

susseguite dal Mesozoico fino ai tempi recenti in Sicilia centrosettentrionale.<br />

L’evoluzione geologica <strong>di</strong> questo settore <strong>di</strong> catena appare<br />

scan<strong>di</strong>ta da almeno sette eventi deformativi che, a partire dai<br />

più antichi, sono espressi da:<br />

1) faglie estensionali/trascorrenti (Trias sup.-Giurassico), che<br />

possono rappresentare le fasi <strong>di</strong> rifting <strong>del</strong>la placca africana<br />

e l’evoluzione <strong>del</strong> suo margine passivo settentrionale;<br />

2) faglie estensionali (pre-Paleogene), che possono<br />

_________________________<br />

(*) Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia-sezione <strong>di</strong> Palermo, via<br />

Ugo la Malfa 153, 90146, Palermo.<br />

(°) Dipartimento <strong>di</strong> Geologia e Geodesia <strong>del</strong>l’Università, via Archirafi 22,<br />

90123, Palermo<br />

rappresentare lo sta<strong>di</strong>o tar<strong>di</strong>vo <strong>del</strong>l’inversione cinematica<br />

tetidea, e che in Sicilia coincide con l’apertura <strong>del</strong> Bacino<br />

Sicilide;<br />

3) pieghe e sovrascorrimenti (Miocene), espressione <strong>del</strong>la<br />

deformazione collisionale <strong>del</strong>l’antico margine passivo, alle<br />

quali si associano deformazioni estensionali sin-collisionali;<br />

4) faglie estensionali sin-collisionali (Miocene inf.), connesse<br />

con la cinematica <strong>di</strong> formazione <strong>del</strong>le pieghe e<br />

sovrascorrimenti;<br />

5) faglie estensionali listriche (Miocene sup.), probabilmente<br />

connesse con l’avvenuto inequilibrio meccanico <strong>del</strong>la<br />

catena in via <strong>di</strong> formazione;<br />

6) faglie inverse e sovrascorrimenti fuori sequenza (post-<br />

Pliocene inf.), probabilmente connesse con il ripristino <strong>del</strong>le<br />

con<strong>di</strong>zioni <strong>di</strong> equilibrio meccanico <strong>del</strong> cuneo collisionale<br />

7) faglie a pr<strong>ed</strong>ominante carattere trascorrente (Plio-<br />

Pleistocene), connesse con lo sviluppo <strong>del</strong> margine tirrenico<br />

meri<strong>di</strong>onale.<br />

ASSETTO GEOLOGICO-STRUTTURALE GENERALE<br />

L’<strong>ed</strong>ificio tettonico siciliano rappresenta un segmento <strong>del</strong>la<br />

catena appenninico-maghrebide (SCANDONE et al., 1974;<br />

Fig. 1 - schema strutturale <strong>del</strong>la Sicilia.


DEFORMAZIONI MESOZOICO-TERZIARIE IN SICILIA CENTRO-SETTENTRIONALE<br />

CATALANO & D’ARGENIO, 1982). Le unità <strong>del</strong>la catena<br />

affiorano in Sicilia settentrionale, mentre nella Sicilia centroorientale<br />

e meri<strong>di</strong>onale affiorano estesamente i depositi <strong>di</strong><br />

avanfossa deformata miocenico-quaternari. Infine, in Sicilia<br />

occidentale e sud-orientale affiorano porzioni <strong>di</strong> avampaese che<br />

registrano rispettivamente blande deformazioni contrazionali <strong>ed</strong><br />

estensionali (Fig. 1).<br />

Le deformazioni pre-orogeniche sono prevalentemente<br />

riconoscibili entro le successioni <strong>di</strong> piattaforma carbonatica e<br />

pelagiche affioranti in Sicilia (NIGRO & RENDA, 2002-2005).<br />

Le deformazioni collisionali, con le quali si sono messe in<br />

posto le unità <strong>del</strong>la catena avviene, a partire dall’Oligocene e<br />

prosegue per tutto il Miocene fino al Pleistocene inf.,<br />

coinvolgendo anche le successioni plio-pleistoceniche<br />

d’avanfossa (NIGRO & RENDA, 2000). Le unità <strong>del</strong>la catena<br />

affiorano con una polarità che v<strong>ed</strong>e le porzioni<br />

geometricamente più profonde in Sicilia occidentale e quelle<br />

più elevate in Sicilia nord-orientale. Durante la costruzione<br />

<strong>del</strong>la catena si sono attivate, contemporaneamente alle strutture<br />

contrazionali nei settori frontali, sistemi <strong>di</strong> faglie <strong>di</strong>rette a basso<br />

angolo nei settori geometricamente più elevati <strong>del</strong> prisma<br />

tetonico. I processi <strong>di</strong> estensione si susseguono a partire dal<br />

Miocene sup. e si alternano alla <strong>di</strong>namica contrazionale, così<br />

come evidenziato dalla progressione <strong>del</strong>le deformazioni<br />

registrata dalle unità <strong>del</strong>la catena (NIGRO & RENDA, 2001).<br />

L’assottigliamento <strong>del</strong>la catena in via <strong>di</strong> costruzione<br />

avviene soprattutto attraverso il riutilizzo <strong>di</strong> prec<strong>ed</strong>enti<br />

superfici <strong>di</strong> scorrimento contrazionali. L’inversione negativa <strong>di</strong><br />

queste superfici determina un assottigliamento crostale che<br />

potrebbe essere alla base dei meccanismi embrionali <strong>di</strong> apertura<br />

<strong>del</strong> bacino tirrenico meri<strong>di</strong>onale (GIUNTA et al., 2000a), che<br />

evolvono ad un zona <strong>di</strong> taglio destro crostale durante il Plio-<br />

Pleistocene (GIUNTA et al., 2000b; RENDA et al., 2000).<br />

QUADRO TETTONICO E LITOSTRATIGRAFICO<br />

LOCALE<br />

In Sicilia centro-settentrionale (Monti Nebro<strong>di</strong> e Madonie)<br />

affiorano sia le successioni carbonatiche deformate mesozoiche<br />

<strong>di</strong> piattaforma carbonatica Panormide e <strong>di</strong> bacino pelagico<br />

Imerese-Sicano e Sicilide che quelle neogeniche <strong>del</strong>l’avanfossa<br />

numi<strong>di</strong>ca. Le unità tettoniche sono state messe in posto secondo<br />

una progressione <strong>del</strong>le deformazioni che è proc<strong>ed</strong>uta dai settori<br />

più interni verso quelli esterni. In particolare, a partire dalle<br />

unità tettoniche geometricamente più profonde, affiorano:<br />

DOMINIO PANORMIDE<br />

- dolomie e calcari dolomitici (Trias sup.-Lias);<br />

- calcilutiti, calcari marnosi e marne (Cretaceo sup.-<br />

Eocene);<br />

FLYSCH NUMIDICO (TRE MEMBRI)<br />

- argille con intercalazioni <strong>di</strong> quarzareniti e calcari marnosi<br />

(Flysch Numi<strong>di</strong>co “Unità <strong>di</strong> Nicosia”, Dominio Sicilide,<br />

Oligocene sup.- Miocene inf.);<br />

- argille con intercalazioni <strong>di</strong> livelli arenacei e quarzarenitici<br />

e megabrecce carbonatiche (“Flysch <strong>di</strong> Portella<br />

Mandarini”, Dominio Panormide, Oligocene sup.-<br />

Miocene inf.);<br />

149<br />

- argille brune e livelli arenitici con intercalazioni <strong>di</strong> banchi<br />

quarzarenitici (“Flysch Numi<strong>di</strong>co S.S.”, Dominio Imerese,<br />

Oligocene sup.-Miocene inf.).<br />

DOMINIO SICILIDE<br />

- argille e argille marnose (Flysch <strong>di</strong> Monte Soro,<br />

Cretaceo);<br />

- argille (Argille Varicolori, Cretaceo sup.-Oligocene inf.);<br />

- calcari marnosi, marne e argille marnose (Fm. Polizzi,<br />

Eocene);<br />

- arenarie tufitiche e marne (“Tufiti <strong>di</strong> Tusa”, Oligocene<br />

sup.-Miocene inf.);<br />

DEPOSITI TARDOROGENI<br />

- arenarie con intercalazioni <strong>di</strong> argille marnose (Flysch <strong>di</strong><br />

Reitano, Bur<strong>di</strong>galiano-Serravalliano);<br />

- calcareniti e calciru<strong>di</strong>ti (“Calcareniti <strong>di</strong> Rocca D’Armi”,<br />

Bur<strong>di</strong>galiano Superiore-Serravalliano);<br />

- Conglomerati poligenici (“Conglomerati <strong>di</strong> Caronia”,<br />

Bur<strong>di</strong>galiano sup.-Tortoniano inf.);<br />

- calcareniti, arenarie bioclastiche e bioliti algali (“Arenarie<br />

<strong>di</strong> Gangi” e “Calcareniti <strong>di</strong> Rocca Mercadante”,<br />

Langhiano-Serravalliano);<br />

- argille con intercalazioni <strong>di</strong> sabbie e conglomerati<br />

poligenici (Fm. Castellana, Serravalliano-Tortoniano);<br />

- argille, sabbie e conglomerati (Fm. Terravecchia,<br />

Tortoniano-Messiniano inf.);<br />

- calcari organogeni e bioclastici (Fm. Baucina,<br />

Messiniano);<br />

- calcari e calcari dolomitici, gessi e gessareniti (Serie<br />

Gessoso-Solfifera, Messiniano sup.);<br />

- conglomerati poligenici (Messiniano sup.);<br />

- calcari marnosi (“Trubi”, Pliocene inf.).<br />

QUADRO STRUTTURALE<br />

L’analisi strutturale <strong>del</strong>le popolazioni <strong>di</strong> faglie ha permesso<br />

<strong>di</strong> <strong>di</strong>stinguere <strong>di</strong>verse fasi tettoniche pre-, sin- e postorogeniche<br />

(cfr. cronologia <strong>del</strong>le deformazioni riportata in alto<br />

a sinistra <strong>di</strong> Fig. 2), i cui rispettivi esempi sono riportati nella<br />

stessa Fig. 2):<br />

FASE TETTONICA TRANSTENSIVA (I): sistemi <strong>di</strong> faglie<br />

<strong>di</strong>rette e trascorrenti (pre-Cretaceo sup., Fig. 2A1-2A2);<br />

FASE TETTONICA ESTENSIONALE “PRE-NUMIDICA” (II):<br />

sistemi <strong>di</strong> faglie estensionali (pre-Oligocene sup., Fig. 2B);<br />

FASE TETTONICA SIN-SEDIMENTARIA “NUMIDICA” (III):<br />

faglie <strong>di</strong>rette sin-s<strong>ed</strong>imentarie (Oligocene-Miocene inf., Fig.<br />

2C);<br />

FASE TETTONICA COMPRESSIVA (IV): pieghe e<br />

sovrascorrimenti (Miocene inf., Fig. 2D);<br />

FASE TETTONICA ESTENSIONALE (V): faglie <strong>di</strong>rette<br />

listriche (Miocene sup., Fig. 2E1-2E2);<br />

FASE TETTONICA COMPRESSIVA (VI): sovrascorrimenti e<br />

faglie inverse (post-Pliocene inf., Fig. 2F);<br />

FASE TETTONICA TRASCORRENTE (VII): sistemi <strong>di</strong> faglie<br />

trascorrenti e <strong>di</strong>rette (Plio-Pleistocene, Fig. 2G).


150 F. NIGRO ET ALII<br />

Fig. 2 – esempi <strong>di</strong> faglie e sovrascorrimenti riferibili alle fasi tettoniche I-VII descritte. Transtensione mesozoica (A1-A2), estensione pre-oligocenica (B),<br />

estensione sin-collisionale oligo-miocenica (C) e contemporanea compressione (D), estensione post-collisionale alto-miocenica (E1-E2), compressione fuorisequenza<br />

pliocenica (F1-F2) e trascorrenza plio-pleistocenica (G). Sc) Creta sup.-Eocene; Fn) Oligo-Miocene inf.; Tv) Tortoniano sup., Tb) Pliocene inf.


DEFORMAZIONI MESOZOICO-TERZIARIE IN SICILIA CENTRO-SETTENTRIONALE<br />

DISCUSSIONE<br />

La cronologia <strong>del</strong>le deformazioni descritta esprime<br />

l’evoluzione paleotettonica <strong>del</strong>le Maghrebi<strong>di</strong> siciliane<br />

collegabile con i complessi processi geo<strong>di</strong>namici <strong>del</strong>la placca<br />

africana.<br />

Un tentativo <strong>di</strong> regionalizzazione <strong>del</strong>la cronologia <strong>di</strong><br />

deformazioni ricostruita attraverso l’analisi strutturale in Sicilia<br />

centro-settentrionale conduce a <strong>del</strong>le considerazioni relative<br />

all’evoluzione tettonica <strong>del</strong>l’intera area siciliana.<br />

Quest’evoluzione può essere sud<strong>di</strong>visa in tre momenti<br />

principali, durante i quali hanno prevalso tipologie deformative<br />

<strong>di</strong>fferenti: 1) deformazioni pre-orogeniche legate alle fasi<br />

<strong>di</strong>stensivo-transtensive che caratterizzano l'apertura <strong>del</strong>la<br />

Neotetide, 2) deformazioni compressive sin-orogeniche cui<br />

prevalgono processi <strong>di</strong> inversione tettonica e costruzione <strong>del</strong>la<br />

catena legati alle fasi <strong>di</strong> collisione continentale e 3)<br />

deformazioni estensionali e trascorrenti legate rispettivamente<br />

alle fasi tar<strong>di</strong>ve <strong>di</strong> costruzione <strong>del</strong>la catena siciliana e alla<br />

<strong>di</strong>namica <strong>di</strong> formazione <strong>del</strong> bacino Tirrenico.<br />

A partire dal Trias sup. si sono esplicate deformazioni<br />

estensionali/transtensionali che rappresentano probabilmente<br />

gli effetti <strong>del</strong>la <strong>di</strong>namica <strong>del</strong>la Mesogea ionica e <strong>del</strong>l’a<strong>di</strong>acente<br />

Neotetide (GIUNTA et al., 2003).<br />

L’assetto pre-orogenico assunto progressivamente dalle<br />

Maghrebi<strong>di</strong> Siciliane durante il Mesozoico può essere<br />

sintetizzato in un frastagliato e <strong>di</strong>scontinuo sistema <strong>di</strong><br />

piattaforme carbonatiche <strong>ed</strong> interposti bacini pelagici, i cui<br />

margini sono stati controllati dall’attività <strong>di</strong> faglie <strong>di</strong>stensivotranstensive.<br />

L’attività <strong>di</strong> queste faglie (fasi I e II) ha<br />

determinato la subsidenza dei bacini pelagici e la riduzione<br />

<strong>del</strong>le piattaforme carbonatiche per tutto il Mesozoico <strong>ed</strong> il<br />

Terziario inf. (NIGRO & RENDA, 1999).<br />

L'evoluzione tettono-s<strong>ed</strong>imentaria sin-collisionale dei<br />

domini <strong>di</strong> avanfossa che si sono in<strong>di</strong>viduati a partire<br />

dall'Oligocene è stata con<strong>di</strong>zionata dalla <strong>di</strong>stribuzione, dalla<br />

fisiografia e dalle caratteristiche paleotettoniche dei domini<br />

paleogeografici preesistenti.<br />

Nell’intervallo Oligocene sup.-Miocene, i processi <strong>di</strong><br />

inversione tettonica da estensionale a compressiva, imprimono<br />

un drastico cambiamento nei processi s<strong>ed</strong>imentari (NIGRO &<br />

RENDA, 2000). Durante questo momento prevale l’attività <strong>di</strong><br />

faglie inverse e sovrascorrimenti cui si associano faglie <strong>di</strong>rette<br />

sin-s<strong>ed</strong>imentarie che deformano i depositi <strong>di</strong> avanfossa e che si<br />

attivano in concomitanza alla nucleazione <strong>ed</strong> amplificazione <strong>di</strong><br />

pieghe (NIGRO & RENDA, 2005; NIGRO et al., 2008, fasi III e<br />

IV).<br />

Durante la fase tar<strong>di</strong>va <strong>di</strong> costruzione <strong>del</strong>la catena si sono<br />

attivate, contemporaneamente alle strutture contrazionali nei<br />

settori frontali, sistemi <strong>di</strong> faglie <strong>di</strong>rette nei settori<br />

geometricamente più elevati <strong>del</strong> prisma tettonico (fase V).<br />

Questi processi <strong>di</strong> estensione si susseguono a partire dal<br />

Miocene sup. e si alternano alla <strong>di</strong>namica contrazionale (fase<br />

VI), così come evidenzia la progressione <strong>del</strong>le deformazioni<br />

registrata dalle unità <strong>del</strong>la catena (NIGRO & RENDA, 2001).<br />

L’assottigliamento <strong>del</strong>la catena in via <strong>di</strong> costruzione<br />

avviene soprattutto attraverso il riutilizzo <strong>di</strong> prec<strong>ed</strong>enti<br />

superfici <strong>di</strong> scorrimento contrazionali (NIGRO & RENDA, 2004).<br />

L’inversione negativa <strong>di</strong> queste superfici determina<br />

complessivamente un assottigliamento crostale che potrebbe<br />

151<br />

essere relazionata ai meccanismi <strong>di</strong> apertura <strong>del</strong> bacino<br />

tirrenico meri<strong>di</strong>onale (GIUNTA et al., 2000a) e che evolvono ad<br />

un zona <strong>di</strong> taglio destro crostale durante il Plio-Pleistocene, i<br />

cui effetti sono rappresentati dai sistemi <strong>di</strong> faglie trascorrenti<br />

<strong>del</strong>la fase VII (GIUNTA et al., 2000b; RENDA et al., 2000).<br />

Le strutture trascorrenti neotettoniche hanno determinato<br />

l’attuale configurazione <strong>del</strong>la catena. Di queste alcuni segmenti<br />

sono attivi e lungo <strong>di</strong> esse si <strong>di</strong>stribuiscono epicentri <strong>di</strong><br />

terremoti e sorgenti termali.<br />

BIBLIOGRAFIA<br />

CATALANO R. & D'ARGENIO B. (1982) - Schema geologico<br />

<strong>del</strong>la Sicilia. In: Catalano R. & D'Argenio B. (Eds.), "Guida<br />

alla Geologia <strong>del</strong>la Sicilia Occidentale”, Guide Geologiche<br />

Regionali, Mem. Soc. Geol. It., Suppl. A., 24, 9-41.<br />

GIUNTA G., NIGRO F. & RENDA P. (2000a) - Extensional<br />

Tectonics during Maghrebides Chain Buil<strong>di</strong>ng since Late<br />

Miocene: examples from Northern Sicily. A.S.G.P., 70, 1-<br />

18.<br />

GIUNTA G., NIGRO F., RENDA P. & GIORGIANNI A. (2000b) -<br />

The Sicilian-Maghrebides Tyrrhenian Margin: a<br />

neotectonic evolutionary mo<strong>del</strong>. Boll. Soc. Geol. It., 119,<br />

553-565.<br />

GIUNTA G., NIGRO F. & RENDA P. (2003) - The Mesozoic<br />

continental break-up geometry of the Sicilian Tunisian<br />

Meghrebides: an updat<strong>ed</strong> mo<strong>del</strong>. In: Salem M. J., Oun K.<br />

M. & S<strong>ed</strong><strong>di</strong>q H. M. (<strong>ed</strong>s), “The Geology of Northwest<br />

Libya”, S<strong>ed</strong>imentary basins of Libya, III, 156-169.<br />

NIGRO F. & RENDA P. (1999) – Evoluzione geologica <strong>ed</strong><br />

assetto strutturale <strong>del</strong>la Sicilia centro-settentrionale. Boll.<br />

Soc. Geol. It., 118, 375-388.<br />

NIGRO F. & RENDA P. (2000) - Un mo<strong>del</strong>lo <strong>di</strong> evoluzione<br />

tettono-s<strong>ed</strong>imentaria <strong>del</strong>l’avanfossa neogenica siciliana.<br />

Boll. Soc. Geol. It., 219, 667-686.<br />

NIGRO F. & RENDA P. (2001) - Late Miocene-Quaternary<br />

stratigraphic record in the Sicilian Belt (Central<br />

M<strong>ed</strong>iterranean): tectonics versus eustasy. Boll. Soc. Geol.<br />

It., 120, 151-164.<br />

NIGRO F. E RENDA P. (2002) - From Mesozoic extension to<br />

Tertiary collision: deformation pattern in the northern<br />

Sicily chain units. Boll. Soc. Geol. It., 121, 87-97.<br />

NIGRO F. & RENDA P. (2004) - The contribution of the preexisting<br />

structures in mountain belt evolution: the example<br />

of the negative inversion in Northern Sicily. Boll. Soc.<br />

Geol. It., 123, 175-187.<br />

NIGRO F. & RENDA P. (2005) - Transtensional/extensional fault<br />

activity from the Mesozoic rifting to Tertiary chain buil<strong>di</strong>ng<br />

in Northern Sicily (Central M<strong>ed</strong>iterranean). Geol.<br />

Carpathica., 56, 255-271.


152 F. NIGRO ET ALII<br />

NIGRO F., SALVAGGIO G., RENDA P. & FAVARA R. (20008) -<br />

Extensional deformations during Neogene chain buil<strong>di</strong>ng in<br />

Sicily. Boll. Soc. Geol. It., in stampa.<br />

RENDA P., TAVARNELLI E., TRAMUTOLI M. & GUEGUEN E.<br />

(2000) - Neogene deformations in the central Madonie<br />

Mountains (northern Sicily, Italy) and their significance in<br />

the geodynamic evolution of the southern Tyrrhenian Sea<br />

margin. Mem. Soc. Geol. It., 55, 38-47.<br />

SCANDONE P., GIUNTA G. & LIGUORI V. (1974) - The<br />

connection between Apulia and Sahara continental margins<br />

in the Southern Apennines and in Sicily. Mem. Soc. Geol.<br />

It., 13, 317-323.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 153-156, 1f.<br />

Neotectonic uplift and tilting of crustal blocks in Northern Sicily<br />

NIGRO F.°, FAVARA R.°, RENDA P.* , ° , SALVAGGIO G. (*), ARISCO G. + & PERRICONE M. #<br />

RIASSUNTO<br />

Sollevamento neotettonico e basculamento <strong>di</strong> blocchi crostali in Sicilia<br />

settentrionale<br />

La Sicilia settentrionale è caratterizzata da un’intensa attività sismica che<br />

è espressione <strong>di</strong> deformazioni attive. In questo settore <strong>del</strong>l’Isola affiora il<br />

nucleo <strong>del</strong>la catena neogenica <strong>del</strong>le Magrebi<strong>di</strong> occidentali, che è sottoposto ad<br />

intenso sollevamento durante il Plio-Pleistocene. Le deformazioni più recenti<br />

sono, in gran parte, rappresentate da sistemi <strong>di</strong> faglie estensionali e<br />

trascorrenti. Il tasso <strong>di</strong> sollevamento non è uniforme, così come suggerisce la<br />

<strong>di</strong>fferente elevazione dei depositi <strong>di</strong> questo periodo. Essi affiorano lungo il<br />

settore costiero settentrionale e la loro quota decresce complessivamente<br />

dall’estremità nord-est a quella nord-ovest <strong>del</strong>la Sicilia.<br />

Le deformazioni più recenti possono essere riconosciute sia attraverso<br />

l’analisi strutturale che tramite quella morfometrica.<br />

Lo stu<strong>di</strong>o integrato <strong>di</strong> queste due metodologie qui presentato è stato<br />

realizzato anche attraverso l’elaborazione informatizzata <strong>del</strong> mo<strong>del</strong>lo <strong>di</strong><br />

elevazione <strong>di</strong>gitale <strong>del</strong>la superficie topografica (DEM).<br />

I dati strutturali e morfometrici in<strong>di</strong>cano che in Sicilia settentrionale vi è<br />

una stretta relazione tra l’attività <strong>del</strong>le faglie neotettoniche e le forme dei<br />

rilievi. Il loro confronto con alcune caratteristiche idrografiche, con la<br />

sismicità e con la <strong>di</strong>stribuzione dei tassi <strong>di</strong> sollevamento suggerisce che la<br />

catena siciliana settentrionale risulta segmentata da sistemi <strong>di</strong> taglio ra<strong>di</strong>cati<br />

che perimetrano blocchi crostali.<br />

In particolare, la variazione <strong>di</strong> alcuni parametri morfometrici hanno<br />

permesso <strong>di</strong> identificare <strong>di</strong>stinti settori <strong>di</strong> catena omogenei, ciascuno dei quali<br />

è soggetto a <strong>di</strong>fferenti tassi <strong>di</strong> sollevamento e <strong>di</strong> <strong>di</strong>rezioni <strong>di</strong> basculamento.<br />

Key words: neotectonic faults, morphometric pattern, uplift,<br />

crustal blocks, Sicily).<br />

INTRODUCTION<br />

Ground tilting phenomena are a characteristic of all tectonic<br />

processes. For instance, they occur during extensional<br />

deformations, during the activation of listric/domino faults or<br />

during contractional deformations that are characteris<strong>ed</strong> by<br />

fold-nucleation and amplification. Furthermore, ground tilting<br />

accompanies late-orogenic processes, when the isostatic reequilibrium<br />

of mountain chains often occurs. Non-uniform<br />

ground tilting can be identifi<strong>ed</strong> by crustal blocks having<br />

<strong>di</strong>fferent uplift and tilting rates.<br />

Drainage basins provide insights into the long-term<br />

evolution of the landscape. Basin geometry develops in<br />

response to: 1) the nature and <strong>di</strong>stribution of uplifts and<br />

subsidences; 2) the spatial arrangement of faults or joints; 3)<br />

° Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia, <strong>Sezione</strong> <strong>di</strong> Palermo, via U.<br />

La Malfa n. 153, 90146, Palermo<br />

* Dipartimento <strong>di</strong> Geologia e Geodesia <strong>del</strong>l’Università, via Archirafi n. 22,<br />

90123, Palermo<br />

+<br />

via Lanza <strong>di</strong> Scalea n. 414, 90100, Palermo<br />

#<br />

via Eurialo n. 32, 90151, Palermo<br />

the relative resistance of <strong>di</strong>fferent rock types; 4) climatically<br />

influenc<strong>ed</strong> hydrologic parameters.<br />

Active tectonics plays an important role in controlling<br />

drainage networks through the change in channel slops of<br />

fluvial systems and in<strong>di</strong>viduating preferential orientations both<br />

for stream development and for the incision of faults and<br />

fractures.<br />

Active tectonics causes the uplift and tilting of crustal<br />

blocks and influences the development and shifting of drainage<br />

networks over time.<br />

Worldwide researches regar<strong>di</strong>ng the relationships between<br />

active tectonics and morphology suggest that rivers respond<br />

<strong>di</strong>fferently in two <strong>di</strong>fferent types of scenario: longitu<strong>di</strong>nal<br />

tilting and lateral tilting.<br />

COX (1994) describes a new technique of morphometric<br />

investigation for the appraisal of ground motion relat<strong>ed</strong> to faultblock<br />

tilting. The method is bas<strong>ed</strong> on the tendency towards<br />

lateral migration over time of streams under the influence of<br />

external tectonic forces.<br />

Sicily is locat<strong>ed</strong> in the Central M<strong>ed</strong>iterranean and<br />

constitutes an emerg<strong>ed</strong> segment of the Maghrebide chain. Its<br />

geologic history is characteriz<strong>ed</strong> by repeat<strong>ed</strong> tectonic events<br />

relat<strong>ed</strong> to extensional and contractional geodynamic processes<br />

that have been developing since the Mesozoic.<br />

Uplift and tilting processes were intense during the Plio-<br />

Pleistocene, as suggest<strong>ed</strong> by the marine deposits that wi<strong>del</strong>y<br />

outcrop at <strong>di</strong>fferent elevations.<br />

The uplift rate is not uniform, which suggests that this<br />

segment of the chain may be <strong>di</strong>vid<strong>ed</strong> into separate blocks.<br />

An integrat<strong>ed</strong> structural and morphometric investigation to<br />

<strong>del</strong>ineate seismo-tectonic zoning is presently in progress, the<br />

aim of which is to try to understand the recent/active tectonics<br />

of Northern Sicily. This paper describes some of the results<br />

regar<strong>di</strong>ng the neotectonic structural setting of Northern Sicily,<br />

and has been integrat<strong>ed</strong> with morphometric elaborations of<br />

landforms d<strong>ed</strong>uc<strong>ed</strong> from a <strong>di</strong>gital elevation mo<strong>del</strong> (DEM).<br />

The structural characteristics of the main neotectonic faults<br />

systems will be describ<strong>ed</strong> below. Their positions and<br />

orientations are been compar<strong>ed</strong> with those of the main<br />

morphostructures and with the <strong>di</strong>stribution of the uplift rates<br />

and of the earthquakes. Have been also carri<strong>ed</strong> out an analysis<br />

of the morphometric pattern to understand the influence of the<br />

neotectonic faults activities on the hydrographic network.<br />

The results suggest that Northern Sicily is compos<strong>ed</strong> of<br />

separate crustal blocks each of which has its own uplift rate and<br />

tilting <strong>di</strong>rection.


154 NIGRO F. ET ALII<br />

PHYSIOGRAPHIC, NEOTETTONIC, UPLIFT,<br />

SEISMICITY, MORPHOTECTONIC AND<br />

MORPHOMETRIC SETTINGS<br />

In the northern sector of Sicily there is a group of<br />

mountains, which, from west to east, is known as: Trapani-S.<br />

Vito, Palermo, Trabia-Termini Imerese, Madonie, Nebro<strong>di</strong> and<br />

Peloritani Mts. This mountain range is 20-30 km wide. Starting<br />

from the Northern Sicilian coast, there is a general abrupt<br />

increase in the altitude, which goes from 0 to 500 or 700 m<br />

above sea level in less than 1-2 km, while the foot of the scarp<br />

is a narrow littoral zone. The mountainous groups are separat<strong>ed</strong><br />

by significant neotectonic features.<br />

The <strong>di</strong>fferent mean altitudes of the mountainous groups can<br />

suggest that they are subject to <strong>di</strong>fferent uplift rates and that<br />

they constitute the shallow portion of crustal blocks <strong>del</strong>imit<strong>ed</strong><br />

by deep-seat<strong>ed</strong> faults systems.<br />

Plio-Pleistocene transcurrent faults relat<strong>ed</strong> to the Southern<br />

Tyrrhenian margin evolution wi<strong>del</strong>y outcrop in Northern Sicily<br />

(GIUNTA et al. 2000).<br />

Three strike-slip fault systems occur in Northern Sicily: (a)<br />

NW-SE tren<strong>di</strong>ng dextral strike-slip faults; (b) NE-SW tren<strong>di</strong>ng<br />

sinistral strike-slip faults; (c) W-E tren<strong>di</strong>ng dextral strike-slip<br />

faults. The NW-SE tren<strong>di</strong>ng system frequently gains<br />

considerable normal slip components. The NE-SW and W-E<br />

tren<strong>di</strong>ng systems gain reverse slip components.<br />

The main transcurrent faults systems are locat<strong>ed</strong> along the<br />

slopes of the mountainous groups.<br />

These faults and fault zones are 20-40 km long and from a<br />

few hundr<strong>ed</strong> meters to a few kilometres wide (Fig. 1A). Shear<br />

zones consist of several sub-parallel to high-angle intersecting<br />

fault segments. Outlines of faults are very obvious and<br />

continuous in morphology. They <strong>di</strong>splay a series of welldevelop<strong>ed</strong><br />

and well-preserv<strong>ed</strong> strong morphologic evidence<br />

that in<strong>di</strong>cates a trace, strike-slip nature and recent fault activity.<br />

Some of them are fault scarps, triangular facets, break in slopes<br />

or deep, long linear valleys.<br />

All of the fault segments that constitute the main<br />

neotectonic structures of Northern Sicily <strong>di</strong>p steeply and form<br />

generally conjugat<strong>ed</strong> sets. Strikes of right-lateral faults range<br />

from N270° to N330° (with conjugate fault planes). Left-lateral<br />

strike-slip faults range from N10° to N60° (with conjugate fault<br />

planes). The average azimuth of the maximum compressive<br />

stress (σ1) is therefore inferr<strong>ed</strong> to have been about NNW-SSE<br />

in <strong>di</strong>rection.<br />

The present-day elevation of the Pliocene to upper<br />

Pleistocene deposits suggests that the Northen Sicily coastal<br />

range underwent a strong non-uniform neotectonic uplift<br />

(ANTONIOLI et al., 2004 and references therein). The<br />

correlations of MIS 5.5 sites identify areas of rapid uplift in<br />

North-East Sicily (Nebro<strong>di</strong> and Peloritani Mts), with a slower<br />

uplift rate in the central-north sector (Madonie Mts) and<br />

relative stability in North-West Sicily (Palermo and Trapani<br />

Mts). From west (Trapani Mts.) to east (Peloritani Mts.) the<br />

overall uplift rate increases from about 0.2 mm/yr to up to 1<br />

mm/yr. In particular, the highest late Pleistocene uplift rate<br />

characterises the Ionian side of the Peloritani Mts. (up to 1<br />

mm/yr).<br />

As a consequence of the effect of strike-slip kinematics, the<br />

Southern Tyrrhenian Sea is characteris<strong>ed</strong> by intense seismicity<br />

of low mean magnitude (GIUNTA et al., 2004). Shallow<br />

seismicity of a magnitude of up to 4.5 is clear evidence of<br />

transpressional deformations and is locat<strong>ed</strong> imm<strong>ed</strong>iately<br />

offshore the entire northern coast of Sicily.<br />

On land, seismicity affects the Palermo Mts., the Madonie<br />

Mts and most of Eastern Sicily. In the Peloritani Mts the fault<br />

plane solutions available for some of the crustal events show<br />

that the deformation pattern along the main faults is consistent<br />

with an ESE-WNW orient<strong>ed</strong> extension.<br />

There is a coherence among the kinematics characteristics<br />

of the previous describ<strong>ed</strong> faults systems and those inferr<strong>ed</strong> by<br />

the focal mechanisms of the earthquakes occurr<strong>ed</strong> in such shear<br />

zones.<br />

This suggests that the describ<strong>ed</strong> neotectonic faults systems<br />

are part of the seismogenic volume of northern Sicily. This can<br />

demonstrate that the activity of the neotectonic faults which<br />

bound the slopes of the mountainous groups is also reveal<strong>ed</strong> by<br />

the uplift rates, that are <strong>di</strong>versifi<strong>ed</strong> along northern Sicily but<br />

around uniforms within every sector defin<strong>ed</strong> from the main<br />

faults systems.<br />

In surface, along the neotectonic deformation bands are also<br />

recognizable a lot of morphostructural elements that in<strong>di</strong>rectly<br />

defines the minor faults network presents within the each main<br />

systems.<br />

Along the coastal areas of Northern Sicily, N-S to NW-SE<br />

tren<strong>di</strong>ng morphostructural highs are recognizable, which are<br />

closely relat<strong>ed</strong> to strike-slip faults. They are interpos<strong>ed</strong> on<br />

coastal plains, fill<strong>ed</strong> with Plio-Pleistocene marine deposits.<br />

Many fluvial channels show youthful characteristics, such<br />

as rectilinear valleys. These segments appear to be <strong>di</strong>ssect<strong>ed</strong><br />

and connect<strong>ed</strong> by fluvial elbows. The valleys are also often<br />

incis<strong>ed</strong> down the middle-upper portion of the rivers. The<br />

straight valleys are well develop<strong>ed</strong>, thereby characterising all<br />

the sectors of the drainage basins (headwaters, middle valleys<br />

and mouths).<br />

Other evident morphological characteristics relat<strong>ed</strong> to<br />

recent tectonic activity are represent<strong>ed</strong> by the plano-altimetric<br />

<strong>di</strong>scontinuities of the ridges and crests. The main<br />

morphostructures compete to the definition of the amplitude of<br />

the reliefs. The max amplitude values of the reliefs coincide<br />

with the fault zones mapp<strong>ed</strong> suggests that the activity of<br />

neotectonic faults is strictly relat<strong>ed</strong> to recent landform<br />

evolution.<br />

The main rivers are generally orient<strong>ed</strong> from 320°-330°<br />

(NW) to 20°-30° (NE).<br />

The first-order streams also show two main peaks, orient<strong>ed</strong><br />

NE-SW and NW-SE. In some places they swing towards ENE-<br />

WSW and WNW-ESE respectively. Instead, the orientation of<br />

the second-order streams swing more frequently from the two<br />

main peaks (i.e. NW-SE and NE-SW towards NNW-SSE and<br />

NNE-SSW) respectively. The NNW-SSE and NNE-SSW<br />

orientations are well represent<strong>ed</strong> in the third- fourth, fifth- and<br />

sixth-order stream networks.


NEOTECTONIC DEFORMATIONS IN NORTHEST SICILY<br />

Fig. 1 - (A) Schematic structural map of Northern Sicily and locations of the main neotectonic faults. Stereonets show the isodensities of fault poles of the<br />

neotectonic faults which form the shear zones. 1) Etna lavas, 2) Plio-Quaternary deposits, 3) Upper Miocene for<strong>ed</strong>eep deposits, 4) Hyblean-Pelagian, Panormide<br />

and Imerese-Sicanian tectonic units, 5) Sicili<strong>di</strong> tectonic units, 6) Peloritani tectonic units, 7) main neotectonic faults. (B) index map and stereonets of the minor<br />

faults sampl<strong>ed</strong> between the main fault zones. (B) Lateral shift tendency of the main rivers of Northern Sicily elaborat<strong>ed</strong> using Cox’ method (1994). The length<br />

of the vectors is proportional to the magnitude of the process. For each drainage basin the asymmetric factor (AF) is also in<strong>di</strong>cat<strong>ed</strong>. (C) graph in which the<br />

elevations of the MIS 5.5 markers and the main neotectonic faults outcropping in the coastal sectors of Northern Sicily are report<strong>ed</strong>. The comparison between<br />

the non-uniform elevat<strong>ed</strong> MIS 5.5 markers, the kinematic characteristics of the fault zones and the lateral shift tendency of the main rivers have allow<strong>ed</strong> us to<br />

identify several crustal blocks which may <strong>di</strong>vide the Northern Sicily Chain, shown in map view (D).<br />

155


156 NIGRO F. ET ALII<br />

The comparison between the fault network and the fluvial<br />

steps suggests that the recent fault activity in Northern Sicily<br />

strictly controls the drainage pattern and, as a consequence,<br />

landform evolution. The fluvial steps are very well develop<strong>ed</strong><br />

in NE Sicily but gradually become more r<strong>ed</strong>uc<strong>ed</strong> westwards.<br />

This trend is coherent with the <strong>di</strong>stribution of the uplift rate.<br />

The fluvial steps are locat<strong>ed</strong> along incis<strong>ed</strong> tectonic<br />

lineaments mainly orient<strong>ed</strong> NW-SE, N-S/NE-SW. The activity<br />

of the neotectonic faults determines repeat<strong>ed</strong> changes in<br />

inclination of the main river so that it assumes convex-up<br />

geometries.<br />

Regar<strong>di</strong>ng the hypsometric integrals/area ratios, most of the<br />

drainage basins in Northern Sicily are locat<strong>ed</strong> in the range<br />

which in<strong>di</strong>cates equilibrium, as suggest<strong>ed</strong> by the OHMORI<br />

(1993) method.<br />

The hypsometric profiles generally show mass<br />

inequilibrium in <strong>di</strong>fferent sectors of each drainage basin of<br />

Northern Sicily.<br />

The transverse topographic symmetry factor is also us<strong>ed</strong> to<br />

evaluate basin asymmetry to in<strong>di</strong>cate preferr<strong>ed</strong> stream<br />

migration (COX, 1994; Fig. 1B).<br />

DISCUSSION<br />

The above-describ<strong>ed</strong> data suggest that:<br />

• in northern Sicily are present an neotectonic faults systems<br />

superimpos<strong>ed</strong> on the Oligo-Miocene thrust system;<br />

• the neotectonic faults grid is defin<strong>ed</strong> by strike-slip<br />

kinematics;<br />

• the strike-slip deformations is consistent with the seismicity<br />

<strong>di</strong>stribution and with the fault-plane solutions of the main<br />

earthquakes. The orientation of the neotectonic faults is<br />

coherent with the seismogenic pattern defin<strong>ed</strong> by the recent<br />

earthquakes that occurr<strong>ed</strong> offshore Northern Sicily;<br />

• transcurrent faults dominate in the shear zones, which are<br />

locat<strong>ed</strong> at the <strong>ed</strong>ges of the mountain reliefs;<br />

• neotectonic deformations seem to control the morphological<br />

evolution of Northern Sicily quite strongly. The orientation<br />

of the neotectonic faults is coherent with the main<br />

morphostructures, defining a group of mountains;<br />

• The orientation of the neotectonic faults is coherent with the<br />

orientation of the <strong>di</strong>fferent orders of fluvial channels;<br />

• the neotectonic setting is consistent with the morphometric<br />

pattern;<br />

• the fault activity also influences the development of the<br />

drainage network and determines a non-uniform uplift of<br />

the group of mountains;<br />

• the segment<strong>ed</strong> rock masses outcropping in the drainage<br />

basins seem to be relat<strong>ed</strong> to the recent/active faulting that<br />

affects the chain;<br />

• the hypsometric integrals mainly fall within the equilibrium<br />

stage or within the monadnock phase fields of STRAHLER. But<br />

all the hypsometric curves show complex sinuosity. Different<br />

inflection points and slopes can be recognis<strong>ed</strong>, which reflect<br />

varying ground-slope characteristics dominat<strong>ed</strong> by recent<br />

tectonic structures. The elevations/area ratios for each Northern<br />

Sicilian mountain in<strong>di</strong>cate that the mountain belt is undergoing<br />

active tectonics.<br />

The high-angle fault grid defines many of the mountain<br />

<strong>ed</strong>ges in the Palermo, Trapani and Peloritani Mts.<br />

The comparison between the amplitude relief map, the<br />

fault-grid map and the uplift rate <strong>di</strong>stribution map suggests that<br />

the recent tectonic structures have a prominent role in the<br />

evolution of the landforms and mountain elevations, as defin<strong>ed</strong><br />

by the high coherence in the spatial <strong>di</strong>stribution of the three<br />

parameters.<br />

The spatial variability in the relief amplitude has allow<strong>ed</strong> us<br />

to take into consideration tectonic elements of the area, which<br />

fit well into the morphotectonic features.<br />

The fluvial profiles wi<strong>del</strong>y show convex-up segments,<br />

which suggests that the rock mass <strong>di</strong>stribution is strictly relat<strong>ed</strong><br />

to the recent faulting and uplift of the Sicilian belt. In fact, the<br />

convex-up geometry of the longitu<strong>di</strong>nal profiles of the rivers is<br />

very common in the drainage basins of Northern Sicily and is<br />

independent from the pr<strong>ed</strong>ominant outcropping lithology.<br />

Fluvial channels frequently develop in fault zones,<br />

especially in the Nebro<strong>di</strong> and Peloritani Mts. The longitu<strong>di</strong>nal<br />

profiles of the rivers are wi<strong>del</strong>y characteris<strong>ed</strong> by steps, which<br />

are generally align<strong>ed</strong> to form straight channels.<br />

By comparing the non-uniform magnitude and <strong>di</strong>rection of<br />

the lateral shift of the main rivers and the uplift rate<br />

<strong>di</strong>stribution, it is possible to identify the crustal blocks of<br />

Northern Sicily, their relative vertical movement (Fig. 1C), the<br />

<strong>di</strong>rection of tilting and possible large-scale fol<strong>di</strong>ng.<br />

By using the comparison between these two data sets,<br />

Northern Sicily can be <strong>di</strong>vid<strong>ed</strong> into crustal blocks (Fig. 1D),<br />

each of which possesses <strong>di</strong>fferent uplift rates and tilting<br />

<strong>di</strong>rections, as determin<strong>ed</strong> by the shift tendency of the main<br />

rivers.<br />

Some of the neotectonic faults that border the <strong>di</strong>fferent<br />

chain blocks appear to be the physical onland prolongation of<br />

those submerg<strong>ed</strong> structures that in recent years have underlin<strong>ed</strong><br />

an elevat<strong>ed</strong> seismogenic potential. The analyz<strong>ed</strong> neotectonic<br />

fault system can therefore compete in the formation of the<br />

seismogenic volume.<br />

REFERENCES<br />

ANTONIOLI F., KERSHAW S., RENDA P. & RUST D. (2004) - Contrasting<br />

patterns of Late Quaternary tectonic uplift around the coastline of<br />

Sicily. 32 nd Intern. Geol. Congr., Florence (Italy), August 20-28<br />

2004, Field Trip Guide Book - P10, pp. 20.<br />

COX R. T. (1994) - Analysis of drainage-basin symmetry as a rapid<br />

tecnique to identify areas of possible Quaternary tilt-block<br />

tectonics: An example from the Mississippi Embayment. Geol.<br />

Soc. Am. Bull., 106, 571-581.<br />

GIUNTA G., NIGRO F., RENDA P. & GIORGIANNI A. (2000) - The<br />

Sicilian-Maghrebides Tyrrhenian Margin: a neotectonic<br />

evolutionary mo<strong>del</strong>. Boll. Soc. Geol. It., 119, 553-565.<br />

GIUNTA G., LUZIO D., TONDI E., DE LUCA L., GIORGIANNI A., D’ANNA<br />

G., RENDA P., CELLO G., NIGRO F. & VITALE M. (2004) - The<br />

Palermo (Sicily) seismic cluster of September 2002, in the<br />

seismotectonic framework of the Tyrrhenian Sea-Sicily border<br />

area. Ann. of Geoph., 47 (6): 1755-1770.<br />

OHMORI H. (1993) - Changes in the hypsometric curve through<br />

mountain buil<strong>di</strong>ng resulting from concurrent tectonics and<br />

denudation. Geomorphology, 8, 263-277.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 157-159<br />

Exhumation and uplift of the Peloritani Mts (south Italy): constraints<br />

from apatite fission-tracks and (U-Th)/He thermochronometry<br />

VALERIO OLIVETTI (*), MARIA LAURA BALESTRIERI (**), FINLAY M. STUART (°) & CLAUDIO FACCENNA (*)<br />

RIASSUNTO<br />

Esumazione e sollevamento dei monti Peloritani (Sicilia, Italia): vincoli<br />

termocronologici m<strong>ed</strong>iante l’analisi <strong>di</strong> tracce <strong>di</strong> fissione e metodo (U-<br />

Th)/He<br />

Presentiamo nuovi dati termocronologici ottenuti da analisi <strong>di</strong> tracce <strong>di</strong><br />

fissione e (U-Th)/He su cristalli <strong>di</strong> apatite, eseguiti su campioni provenienti da<br />

rocce <strong>del</strong> basamento cristallino dei Monti Peloritani, Sicilia, Italia. Le età<br />

ottenute dall’analisi <strong>del</strong>le fission track variano tra 29.0±5.5 e 5.5±0.9 Ma<br />

mentre le età (U-Th)/He variano tra 20.1 e 6.2 Ma.<br />

Questi dati costituiscono un vincolo cronologico utile all’interpretazione<br />

<strong>del</strong>l’evoluzione tettonica <strong>di</strong> questa porzione <strong>del</strong>l’arco calabro peloritano. Infatti<br />

le età ottenute risultano più giovani <strong>del</strong>la deposizione <strong>del</strong>la formazione <strong>di</strong><br />

Stilo-Capo d’Orlando, che segna la fine <strong>del</strong>la strutturazione principale <strong>del</strong>le<br />

falde tettoniche. I dati termocronologici mettono in luce un evento tettonico<br />

compressivo fuori sequenza datato Miocene m<strong>ed</strong>io. Le età recenti ottenute con<br />

il metodo (U-Th)/He vincolano la fase finale <strong>del</strong>l’esumazione.<br />

Key words: Apatite fission-track, (U-Th)/He<br />

thermochronometry, Peloritani-Calabrian Arc,<br />

denudation, uplift.<br />

INTRODUCTION<br />

The Peloritani Mountains constitute the westward<br />

termination of the Calabria–Peloritani Arc of southern Italy, a<br />

portion of an orogenic w<strong>ed</strong>ge growth in response to tertiary<br />

convergence between the African and European plates.<br />

The Peloritani Mountains form<strong>ed</strong> when the continental<br />

collision occurring during Oligocene – early Miocene times,<br />

caus<strong>ed</strong> the tectonic superposition of the Kabilo-Peloritan<br />

Calabrian belt onto the rock succession of the Sicilian –<br />

Maghrebian belt (CATALANO et alii, 1996; LENTINI et alii,<br />

1996; GRASSO, 2001). Since Late Miocene times this process<br />

was accompani<strong>ed</strong> by back-arc extension of the Tyrrhenian Sea<br />

(e.g. FACCENNA et alii, 1997).<br />

_________________________<br />

(*) Dipartimento Scienze Geologiche, Università “Roma Tre”, Roma, Italy.<br />

E-mail: volivetti@uniroma3.it<br />

(**) CNR, Istituto <strong>di</strong> Geoscienze e <strong>Georisorse</strong>, <strong>Sezione</strong> <strong>di</strong> Firenze, Italy.<br />

(°) Isotope Geosciences Unit, Scottish Universities Environmental Research<br />

Centre, East Kilbride, Glasgow, UK.<br />

Combining (U-Th)/He and fission-track thermochronometry<br />

and s<strong>ed</strong>imentation history we show a complex picture of<br />

several tectonic events since Oligocene time. The obtain<strong>ed</strong> ages<br />

point out a new important Miocene burial event.<br />

GEOLOGICAL SETTING<br />

The Peloritani structural <strong>ed</strong>ifice (e.g. Amo<strong>di</strong>o-Morelli et al.,<br />

1976; Bonar<strong>di</strong> et al., 1976) consists of a set of thrust sheets<br />

compos<strong>ed</strong> of m<strong>ed</strong>ium- to high-grade Paleozoic metamorphic<br />

rocks with remnants of Mesozoic s<strong>ed</strong>imentary cover. The<br />

stacking process occurr<strong>ed</strong> during Alpine south-verging<br />

deformational phases (e.g. CIRRINCIONE & PEZZINO, 1994;<br />

GIUNTA & SOMMA, 1996; VIGNAROLI et alii, 2008). Alpine<br />

metamorphic imprinting was detect<strong>ed</strong> by <strong>di</strong>fferent Authors<br />

(BONARDI et alii, 1976; CIRRINCIONE & PEZZINO, 1994;<br />

ATZORI et alii, 1994; VIGNAROLI et alii, 2008). The age of the<br />

Alpine metamorphic climax is tentatively confin<strong>ed</strong> to the Late<br />

Oligocene (26 Ma) from Rb-Sr dating on mica (ATZORI et alii,<br />

1994) in agreement with previous zircon and apatite fission<br />

track data which points out that substantial exhumation<br />

occurr<strong>ed</strong> between late-Oligocene to early-Miocene (THOMSON,<br />

1994).<br />

The whole Peloritani <strong>ed</strong>ifice is unconformably overlain by<br />

the Stilo-Capo d’Orlando Fm (BONARDI, 1980), a w<strong>ed</strong>ge-top<br />

thick Oligocene(?)–Early Miocene terrigenous clastic<br />

formation that has been partly involv<strong>ed</strong> in the late tectonogenic<br />

phases of the construction of the nappe <strong>ed</strong>ifice (GIUNTA &<br />

SOMMA, 1996; GIUNTA & NIGRO, 1997; LENTINI et alii, 2000,<br />

and references therein).<br />

The Antisilicide nappe, a Mesozoic-Early Tertiary<br />

stratigraphic sequence, took place over the Peloritani <strong>ed</strong>ifice<br />

through a process of north-ward back-thrusting relat<strong>ed</strong> to<br />

collisional stage (BONARDi et alii, 1980). From the Langhian<br />

time the s<strong>ed</strong>imentary history proce<strong>ed</strong><strong>ed</strong> rather regularly in time<br />

with deposition of mainly terrigenous sequences within basins<br />

form<strong>ed</strong> in response to combin<strong>ed</strong> effect of tectonics and sea<br />

level fluctuation.<br />

The age of inception of extensional tectonics is unclear, and<br />

has been propos<strong>ed</strong> to be Serravallian (LENTINI et alii, 1995) or<br />

Late Tortonian (CATALANO et alii, 1996).


158 V. OLIVETTI ET ALII<br />

RESULTS<br />

Fission-track and (U-Th)/He analyses were carri<strong>ed</strong> out on<br />

apatite from crystalline rocks of the Paleozoic units of the<br />

Kabilo-Peloritan Calabrian belt from two north-south orient<strong>ed</strong><br />

traverses and one transect parallel to the Tyrrhenian coast and<br />

one perpen<strong>di</strong>cular to the Ionian coast. Fission-track ages span<br />

29.0±5.5 to 5.5±0.9 Ma while (U-Th)/He ages vary from 20.1<br />

to 6.2 Ma.<br />

Tyrrhenian coast:<br />

AFT ages vary from 5.5±0.9 to 27.3±2.5 Ma, the latter is<br />

the oldest AFT age found in the whole study area. AHe ages<br />

range between 6.6 and 19.4 Ma. The older AHe ages<br />

accompany the older AFT ages.<br />

Central zone:<br />

Samples were collect<strong>ed</strong> along two north-south <strong>di</strong>rect<strong>ed</strong><br />

transects. AFT ages span between 5.8±1.3 and 15.4±3.6. AHe<br />

ages range from 3.3 and 6.7 Ma, the youngest in the Peloritani<br />

region.<br />

Ionian coast:<br />

Along a vertical profile from 20 m to 550 m asl, AFT ages<br />

decrease from sea level going upward and toward the Central<br />

zone, from 18.0±3.8 to 7.7±0.9. The only AHe analysis yield<strong>ed</strong><br />

a mean age of 5.7 Ma.<br />

The most striking feature of both the He and AFT ages from<br />

Peloritani Mountain is the fact that they post-date the<br />

deposition of Stilo-Capo d’Orlando formation, what<br />

unconformably overlies the basement Units.<br />

Along the Ionian vertical profile the ages decrease going<br />

upwards. This trend is contrary to that expect<strong>ed</strong> in a crustal<br />

block during exhumation process. We retain that actual position<br />

is due to tectonic movement after FT cooling ages.<br />

COOLING HISTORY AND TECTONIC IMPLICATIONS<br />

The thermochronologic data of representative samples<br />

obtain<strong>ed</strong> from fission track and (U-Th)/He analysis were<br />

insert<strong>ed</strong> in a time versus temperature/depth plot.<br />

We suggest that the older fission-track and He ages in the<br />

Aspromonte Unit correspond to the time of the early<br />

exhumation of this unit during in-sequence thrusting lea<strong>di</strong>ng to<br />

the formation of the orogenic w<strong>ed</strong>ge (Vignaroli et al., 2008).<br />

Meanwhile the Capo d’Orlando flysch was deposit<strong>ed</strong> on top of<br />

the Aspromonte Unit.<br />

The Tortonian fission-track ages point out a thermal<br />

resetting which should be occurr<strong>ed</strong> between the deposition of<br />

the basal Stilo-Capo d’Orlando Fm and the Langhian deposits.<br />

We propose that the resetting is due to burial produc<strong>ed</strong> by overri<strong>di</strong>ng<br />

thrust sheets emplac<strong>ed</strong> during out-of-sequence thrusting.<br />

Actually <strong>di</strong>fferent generation of thrusts are already recogniz<strong>ed</strong><br />

from the Tyrrhenian coast toward south involving both the<br />

Aspromonte Unit and the inner portion of the Stilo-Capo<br />

D’Orlando Fm (Giunta and Nigro, 1999; Lentini et al., 2000).<br />

We speculate that this out-of-sequence thrusting process was a<br />

dynamic response to progressive foreland-ward thrust<br />

propagation for maintaining the critical taper con<strong>di</strong>tion of the<br />

inner-interm<strong>ed</strong>iate portions of the Peloritani belt.<br />

In this interpretation the young (U-Th)/He ages represent<br />

the timing of the last exhumation probably link<strong>ed</strong> to moderate<br />

post-orogenic extensional collapse. Combining two cooling<br />

ages of <strong>di</strong>fferent closure temperature and stratigraphic<br />

constraint we calculate a value of denudation rate for a<br />

representative sample. The denudation rate shows an increasing<br />

from 0.3 mm/yr to 1-3 mm/yr.<br />

REFERENCES<br />

AMODIO-MORELLI L., BONARDI G., COLONNA V., DIETRICH D.,<br />

GIUNTA G., IPPOLITO F., LIGUORI V., LORENZONI S.,<br />

PAGLIONICO A., PERRONE A., PICCARETTA G., RUSSO M.,<br />

SCANDONE P., ZANETTIN-LORENZONI E., & ZUPPETTA A.,<br />

(1976) - L’arco Calabro-peloritano nell’orogene<br />

appenninico-maghrebide. Mem. Soc. Geol. It., 17, 1-60.<br />

ATZORI P., CIRRINCIONE R., DEL MORO A., & PEZZINO A.,<br />

(1994) - Structural, Metamorphic and geochronologic<br />

features of the Alpine event in the south-eastern sector of<br />

the Peloritani Mountains (Sicily). Perio<strong>di</strong>co <strong>di</strong> Mineralogia,<br />

63, 113-125.<br />

BONARDI G., GIUNTA G., PERRONE V., RUSSO M., & ZUPPETTA<br />

A. (1976) - Schema geologico dei Monti Peloritani. Boll.<br />

Soc. Geol. It., 95, 49-74.<br />

CATALANO R., DI STEFANO P., SULLI A., & VITALE F.P. (1996)<br />

- Paleogeography and structure of the central<br />

M<strong>ed</strong>iterranean: Sicily and its offshore area.<br />

Tectonophysics, 260, 291-323.<br />

CIRRINCIONE R. & PEZZINO A. (1994) - Nuovi dati strutturali<br />

sulle successioni mesozoiche metamorfiche dei M.<br />

Peloritani orientali. Bollettino <strong>del</strong>la Società Geologica<br />

Italiana 113, 195-203.<br />

FACCENNA C., MATTEI M., FUNICIELLO R., JOLIVET L. (1997) -<br />

Styles of back-arc extension in the Central M<strong>ed</strong>iterranean.<br />

Terra Nova 9, 126-130.<br />

GRASSO M. (2001) - The Apenninic-Maghrebian orogen in<br />

southern Italy, Sicily and adjacent areas. In Vai, G.B., and<br />

Martini, I.P, <strong>ed</strong>s., Anatomy of an orogen: the Apennines<br />

and Adjacent M<strong>ed</strong>iterranean Basins: Great Britain, Kluwer<br />

Academic Publishers, p. 255-286.<br />

GIUNTA G., AND NIGRO F. (1999) - Tectono-s<strong>ed</strong>imentary<br />

constraints to the Oligocene-to-Miocene evolution of the<br />

Peloritani thrust belt (NE Sicily). Tectonophysics 315, 287–<br />

99.<br />

GIUNTA G., AND SOMMA R. (1996) - Nuove osservazioni sulla<br />

struttura <strong>del</strong>l’Unità <strong>di</strong> Alì (M.ti Peloritani, Sicilia). Boll.<br />

Soc. Geol. It., 115, 489–500.


LENTINI F., CARBONE S., CATALANO S., & GRASSO M. (1996) -<br />

Elementi per la ricostruzione strutturale <strong>del</strong>la Sicilia<br />

Orientale. Mem. Soc. Geol. It., 51, 179-195.<br />

LENTINI F., CARBONE S., CATALANO S. (2000) - Carta<br />

geologica <strong>del</strong>la provincia <strong>di</strong> Messina: Servizio Geologico,<br />

S.EL.CA., Provincia Regionale <strong>di</strong> Messina, Assessorato<br />

Territorio, scale 1:50,000, 3 sheets.<br />

THOMSON S.N. (1994) - Fission track analysis of the crystalline<br />

basement rocks of the Calabrian Arc, southern Italy:<br />

evidence of Oligo-Miocene late orogenic extension and<br />

erosion. Tectonophysics, v. 238, p. 331-352.<br />

VIGNAROLI G., ROSSETTI F., THEYE T., & FACCENNA C. (2008)<br />

- Styles and regimes of orogenic thickening in the<br />

Peloritani Mountains (Sicily, ITALY): new constraints on the<br />

tectono-metamorphic evolution of the Apennine belt. Geol.<br />

Mag., 1-18.<br />

EXHUMATION AND UPLIFT OF THE PELORITANI MTS<br />

159


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 160-163, 4 ff.<br />

Geologia e geofisica <strong>del</strong> plutone <strong>del</strong> Cerro Trapecio - Tierra <strong>del</strong> Fuego -<br />

Argentina<br />

JAVIER PERONI (*), ALEJANDRO TASSONE (*), MARCO MENICHETTI (**), HORACIO LIPPAI (*) & JUAN FRANCISCO VILAS (*)<br />

ABSTRACT<br />

Geology and geophysics of the Cerro Trapecio pluton – Tierra <strong>del</strong> Fuego -<br />

Argentina<br />

In the eastern part of the Bahìa Ushuaia outcrops dark schists pertains to<br />

the Yaghàn Fm. of the Lower Cretaceous, strongly deform<strong>ed</strong> by Upper<br />

Cretaceous Andean compresional tectonics. They are intrud<strong>ed</strong> by a basaltic<br />

rock with tholeitic-calc-alkaline affinity with a prevalent lithology of the<br />

pyroxenites and monzonites. The aereomagnetic survey and magnetic<br />

measurements of rocks samples, integrat<strong>ed</strong> with the geological informations<br />

permitt<strong>ed</strong> to mo<strong>del</strong> a N-S cross section through the area.<br />

Key words: Andes, structural geology, geophysics, Tierra <strong>del</strong><br />

Fuego.<br />

Il Cerro Trapecio è localizzato circa 16 km ad est <strong>del</strong>la città<br />

<strong>di</strong> Ushuaia, nella Sierra Sorondo nella Cor<strong>di</strong>llera <strong>del</strong>le Ande in<br />

Tierra <strong>del</strong> Fuego. Questa catena si estende per oltre 40 km in<br />

<strong>di</strong>rezione WNW-ESE lungo la costa settentrionale <strong>del</strong> settore<br />

orientale <strong>del</strong> Canal de Beagle.<br />

In questa regione <strong>del</strong> Canal de Beagle, sono presenti <strong>di</strong>versi<br />

corpi intrusivi, costituiti da rocce basaltiche con affinità<br />

toleiitica-calcalcalina intruse nella Formazione Yaghàn <strong>del</strong><br />

Cretaceo Sup.. Queste intrusioni sono connesse al grande<br />

Batolite Patagonico che affiora con continuità lungo il margine<br />

<strong>di</strong> retro-arco <strong>del</strong> continente sud-americano (HERVÈ et alii,<br />

1984).<br />

Nell’area affiora principalmente la Fm. Yaghàn che<br />

rappresenta il riempimento vulcano-clastico <strong>del</strong> bacino<br />

marginale <strong>di</strong> Rocas Verdes, depositatasi al <strong>di</strong> sopra <strong>del</strong>la Fm<br />

Lemaire <strong>del</strong> Giurassico Sup. ( DALZIEL et alii, 1974). La Fm.<br />

Yaghàn è costituita da <strong>di</strong>verse facies s<strong>ed</strong>imentarie con marne<br />

scure, torbi<strong>di</strong>ti fini e grossolana, rare arenarie da massive a<br />

gradate e tufi (OLIVERO & MALUMIAN, 2008). E’ interessata da<br />

un metamorfismo <strong>di</strong> basso grado, in facies a scisti ver<strong>di</strong>, con<br />

una intensa deformazione prodotta dalla fase tettonica an<strong>di</strong>na<br />

<strong>del</strong> Cretaceo Sup., all’interno <strong>del</strong>la quale è possibile<br />

riconoscere almeno due fasi deformative (MENICHETTI et alii,<br />

_________________________<br />

(*) CONICET-INGEODAV. Dpto. de Ciencias Geológicas. Facultad de<br />

Ciencias Exactas y Naturales. Universidad de Buenos Aires - Argentina.<br />

(**) Istituto <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Urbino – Italy<br />

Javier Peroni : e-mail peroni@gl.fcen.uba.ar<br />

2008). La prima (D1) è costituita da pieghe isoclinaliche, a<br />

scala decimetrica, con piano assiale subperpen<strong>di</strong>colare alla<br />

stratificazione; è interessata da un intenso slaty cleavage<br />

immergente a SE e NW. Una seconda fase deformativa (D2) è<br />

rappresentata da un crenulation cleavage e da pieghe<br />

mesoscopiche con lunghezza d’onda decametrica, con<br />

geometrie principalmente chevron, con piano assiale<br />

debolmente immergente a SSW. Tutta l’area è interessata da<br />

faglie inverse e sovrascorrimenti vergenti a nord, con geometrie<br />

a basso angolo <strong>di</strong> incidenza sulla stratificazione. Infine, un<br />

sistema <strong>di</strong> faglie trascorrenti sinistre e faglie normali con piani<br />

subverticali, con immersione prevalente verso sud, sono ben<br />

sviluppate lungo tutto il margine settentrionale e meri<strong>di</strong>onale<br />

<strong>del</strong> Canal de Beagle e tagliano e in parte riattivano, le strutture<br />

compressive (MENICHETTI et alii,, 2004, 2007, 2008) (Fig. 2).<br />

I due sistemi <strong>di</strong> faglie principali sono costituiti da quelli<br />

orientali <strong>del</strong> Canal de Beagle da cui <strong>di</strong>parte la faglia Andorra<br />

verso settentrione. Queste faglie hanno un controllo sulla<br />

morfologia e sull’idrografia <strong>del</strong>l’area, con blocchi ribassati e<br />

Fig. 1 – Ubicazione <strong>del</strong>l’area <strong>di</strong> stu<strong>di</strong>o nella parte più meri<strong>di</strong>onale <strong>del</strong> Sud<br />

America (A) . Localizzazione <strong>del</strong>la carta geologica <strong>di</strong> Fig. 2, <strong>del</strong>le carte aereo<br />

magnetiche e <strong>del</strong> DEM <strong>di</strong> Fig. 4 (B).<br />

basculati nei versanti meri<strong>di</strong>onali <strong>del</strong>la Serra Sorondo. Alcuni<br />

corsi d’acqua e laghi sono allineati secondo la <strong>di</strong>rezione<br />

WNW-ESE e sono localizzati al bordo dei blocchi in<br />

corrispondenza <strong>del</strong>le zone <strong>di</strong> faglie immergenti a SW (Fig. 2).<br />

Nel settore occidentale <strong>del</strong>l’area <strong>di</strong> stu<strong>di</strong>o, si hanno i<br />

maggiori affioramenti <strong>del</strong> corpo intrusivo, noto come plutone <strong>di</strong><br />

Ushuaia, il quale copre una superficie <strong>di</strong> 9 km 2 . Esso è<br />

composto principalmente da una orneblen<strong>di</strong>te <strong>di</strong> tessitura


GEOLOGIA E GEOFISICA DEL PLUTONE DEL CERRO TRAPECIO<br />

Fig. 2 – Carta geologica schematica <strong>del</strong>la parte orientale <strong>del</strong>la Bahìa <strong>di</strong> Ushuaia. 1 – Depositi quaternari; 2 - corpo intrusivo; 3 – Formazione Yaghan (Cretaceo<br />

inf.) ; 4 – Faglie <strong>di</strong>rette; 5 – Faglie trascorrenti; 6 – Giacitura <strong>del</strong>la stratificazione, inclinazione degli strati: a 0-20°; b 20-45°; c 45-75°; d >75° ; 7 – Limite<br />

<strong>del</strong>l’anomalia magnetica ridotta al polo; 8 – Aree ricoperte da ghiacciai; 9 – Laghi. Nel Canal de Beagle è in<strong>di</strong>cata la batimetria in metri (SERVICO DE<br />

HIDROGRAFIA NAVAL ARGENTINA, 1988). A-A’ traccia parziale <strong>del</strong>la sezione <strong>di</strong> Fig. 3 . (Mo<strong>di</strong>ficato da MENICHETTI et alii, 2007).<br />

grossolana con abbondante clino-anfibolo, scarso<br />

clinopirosseno, <strong>di</strong>orite e facies monzo<strong>di</strong>oritica, attraversato da<br />

numerose vene e <strong>di</strong>cchi <strong>di</strong> composizione sienitica (ACEVEDO et<br />

alii, 1989). Include termini da ultrabasici a interm<strong>ed</strong>i con un<br />

contenuto <strong>di</strong> SiO2 variabile dal 40 al 65% (CERREDO et alii,<br />

2000, 2005). Di questo plutone è stato realizzato un mo<strong>del</strong>lo<br />

utilizzando dati aereomagnetici (MENICHETTI et alii, 2007;<br />

PERONI et alii., 2008). Il corpo intrusivo ha una forma<br />

laccolitica con uno spessore massimo <strong>di</strong> 2 km nella sua parte<br />

centrale che tende ad assottigliarsi ai bor<strong>di</strong> fino a circa 500 m.<br />

In pianta il corpo presenta una forma ellittica con l’asse<br />

maggiore N-S, lungo circa 12 km e quello inferiore con<br />

<strong>di</strong>rezione E-W, <strong>di</strong> circa 10 km, per un volume totale stimato <strong>di</strong><br />

140 km 3 (PERONI et alii, 2008) .<br />

Nella zona <strong>del</strong> Cerro Trapecio gli affioramenti sono scarsi e<br />

sono localizzati esclusivamente nel versante meri<strong>di</strong>onale. Il<br />

plutone è rappresentato principalmente da una roccia<br />

monzo<strong>di</strong>oritica, simile a quella <strong>del</strong> plutone Ushuaia, con<br />

presenza <strong>di</strong> filoni <strong>di</strong> andesiti con spessore inferiore al metro,<br />

concordanti con la stratificazione degli scisti <strong>del</strong>la Fm.Yahgan.<br />

Nella mappa aereomagnetica ridotta al polo <strong>del</strong>l’area<br />

(5569-II <strong>del</strong> SEGEMAR 1998), è possibile osservare che il<br />

plutone <strong>di</strong> Ushuaia è separato da quello <strong>del</strong> Cerro Trapecio (Fig<br />

4). Quest’ultimo presenta una anomalia <strong>di</strong> forma ellittica<br />

<strong>di</strong>stribuita su <strong>di</strong> una superficie <strong>di</strong> 13 km 2 , con l’asse maggiore<br />

in <strong>di</strong>rezione N-S per 5,2 km, mentre l’asse minore, in <strong>di</strong>rezione<br />

E-W, è <strong>di</strong> 3.3 km. La suscettività magnetica massima è <strong>di</strong> 24 nT<br />

nella zona centrale fino ad un minimo <strong>di</strong> -50nT . L’anomalia<br />

riproduce abbastanza f<strong>ed</strong>elmente la morfologia <strong>del</strong> Cerro<br />

Trapecio, con un minimo magnetico compreso tra la valle <strong>del</strong><br />

Rio Encajonado ad ovest e quella <strong>del</strong> Rio Escape ad est (Fig.<br />

2).<br />

161<br />

La carta aereomagnetica che riporta il campo totale,<br />

presenta una anomalia localizzata nella zona <strong>del</strong> Cerro<br />

Trapecio con una superficie <strong>di</strong> 8.5 km 2 , sempre <strong>di</strong> forma<br />

ellittica con assi <strong>di</strong> 3,4 e 2,2 km rispettivamente. I valori <strong>del</strong><br />

campo magnetico variano da un massimo nella parte<br />

settentrionale <strong>di</strong> -52 nT fino a -85 nT nella parte meri<strong>di</strong>onale<br />

(Fig. 4). Rispetto alle anomalie ridotte al polo, il campo<br />

magnetico totale è leggermente spostato verso nord. Un<br />

comportamento simile si osserva nelle anomalie magnetiche <strong>del</strong><br />

Fig. 3 – <strong>Sezione</strong> geologica e profilo <strong>del</strong>le anomalie magnetiche ridotte al<br />

polo in nT. Ubicazione riportata in Fig. 2 . 1 – Fm Yahgan; 2 – Fm Lemaire;<br />

3 – Scistosità principale; 4 – Corpi d’acqua; 6 – Faglia <strong>di</strong>retta; 6 – Corpo<br />

intrusivo.


162 J. PERONI ET ALII<br />

Fig. 4 – Carta aereomagnetica ridotta al polo <strong>del</strong>l’area <strong>di</strong> Ushuaia, con in<strong>di</strong>cata la topografia con curve <strong>di</strong> livello con equi<strong>di</strong>stanza <strong>di</strong> 100 m . E’ in<strong>di</strong>cata la<br />

traccia <strong>del</strong>la sezione <strong>di</strong> Fig. 3 (A); carta aereomagnetica <strong>del</strong> campo totale (B); immagine SPOT con vista obliqua <strong>del</strong>l’area (C). AF : Faglia Andorra; EBF :<br />

Faglia orientale <strong>del</strong> Canal de Beagle.<br />

plutone <strong>di</strong> Ushuaia.<br />

I dati geologico-strutturali e geofisici <strong>di</strong>sponibili, sono stati<br />

integrati in una sezione geologica orientata NNE-SSW, che<br />

permette <strong>di</strong> localizzare, attraverso le anomalie magnetiche, la<br />

posizione <strong>del</strong> corpo intrusivo (Fig. 3). Sia il campo magnetico<br />

totale che l’anomalia magnetica ridotta al polo sono attraversati<br />

dal sistema <strong>di</strong> faglie <strong>di</strong>rette. Queste strutture <strong>di</strong>stensive<br />

appartenenti al sistema trascorrente sinistro <strong>del</strong> Canal de<br />

Beagle (MENICHETTI et alii, 2008), immergono a SW, con un<br />

rigetto <strong>di</strong> molte centinaia <strong>di</strong> metri. Il rigetto complessivo è<br />

<strong>di</strong>stribuito su almeno tre blocchi parzialmente ruotati in senso<br />

orario lungo i piani <strong>di</strong> faglia. L’anomalia magnetica ridotta al<br />

polo, passa da un valore minimo regionale <strong>di</strong> -50nT ad un<br />

massimo <strong>di</strong> 24 nT con un gra<strong>di</strong>ente simile a quello topografico.<br />

Il corpo intrusivo è stato mo<strong>del</strong>lato in profon<strong>di</strong>tà fino a circa<br />

1.5 km, posizionato al <strong>di</strong> sopra <strong>del</strong>la Fm. Lemaire e intruso<br />

all’interno <strong>del</strong>la F. Yahgan.<br />

BIBLIOGRAFIA<br />

ACEVEDO R.D., QUARTINO G.P. & COTO C.D. (1989) - La<br />

intrusión ultramáfica de Estancia el Tunel y el significado<br />

de presencia biotita y granate en la Isla Grande de Tierra<br />

<strong>del</strong> Fuego. Acta Geológica Lilloana. 42 (1), 21-36<br />

CERREDO M.E., TASSONE A., COREN F., LODOLO E. & LIPPAI H.<br />

(2000) - Postorogenic, alkaline magmatism in the


Fuegian Andes: The Jeujepen intrusive (Tierra <strong>del</strong> Fuego<br />

Island). IX Congreso Geológico Chileno, Puerto Varas,<br />

Acta (2), 192-196.<br />

CERREDO M.E., REMESAL M.B., TASSONE A. & LIPPAI H.<br />

(2005) - The shoshonitic suite of Hewhoepen pluton,<br />

Tierra <strong>del</strong> Fuego, Argentina. XVI Congreso Geológico<br />

Argentino, Actas I, 539-544, La Plata.<br />

DALZIEL I. W. D., DE WIT M. J.& PALMER, F. K. (1974) -<br />

Fossil marginal basin in the southern Andes. Nature 250,<br />

291–294.<br />

HERVÉ M., SUÁREZ M., PUIG A. (1984) - The Patagonian<br />

Batholith S of Tierra <strong>del</strong> Fuego, Chile: timing and tectonic<br />

implications. Journal Geological Society, London, 141,<br />

909-917.<br />

MENICHETTI M., ACEVEDO R.D., BUJALESKY G.G., CENNI M.,<br />

CERREDO M.E., CORONATO A., HORMACHEA J.L., LIPPAI,<br />

H., LODOLO E., OLIVERO E.B., RABASSA J., TASSONE A.<br />

(2004) – Geological field trip guide of the Tierra <strong>del</strong><br />

Fuego. Geosur meeting Buenos Aires 2004, 39 p.<br />

MENICHETTI M., TASSONE A., PERONI J., GONZALES GUIXOT M.<br />

& CERREDO M.E. (2007) - Assetto strutturale, petrografia e<br />

geofisica <strong>del</strong>la Bahía Ushuaia – Argentina. Rend. Soc.<br />

Geol. It., 4, Nuova Serie, 259-262.<br />

MENICHETTI M., LODOLO, E. & TASSONE A. (2008) - Structural<br />

geology of the Fuegian Andes and Magallanes fold-andthrust<br />

belt – Tierra <strong>del</strong> Fuego Island. Geologica Acta, 6, 1,<br />

19-42.<br />

OLIVERO, E. B., MALUMIÁN, N. (2008) - Mesozoic – Cenozoic<br />

Stratigraphy of the Fuegian Andes, Argentina. Geologica<br />

Acta, 6 (1): 5-18 ISSN 1695-6133.<br />

PERONI J. I., TASSONE A., CERREDO M., LIPPAI H., MENICHETTI<br />

M., LODOLO E., ESTEBAN F. & VILAS J. F. (2008) - 3D<br />

Geophysic mo<strong>del</strong> of Ushuaia Pluton. Tierra <strong>del</strong> Fuego.<br />

Argentina. GeoMod 2008, Bollettino <strong>di</strong> Geofísica teorica<br />

<strong>ed</strong> applicata (2) sup., 263-267.<br />

SERVICO DE HIDROGRAFIA NAVAL ARGENTINA (1988) - Cartas<br />

Náuticas Hoja H-478, Bahia Ushuaia – Paso Chico. Scala<br />

1:15.000.<br />

SEGEMAR - SERVICIO GEOLÓGICO MINERO ARGENTINO –<br />

(1998) - Levantamiento geofísico aéreo magnetometría<br />

área de Tierra <strong>del</strong> Fuego. Proyecto PASMA. Hoja Ushuaia<br />

5569 II, scala 1:250.000.<br />

GEOLOGIA E GEOFISICA DEL PLUTONE DEL CERRO TRAPECIO<br />

163


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 164-167, 1 f.<br />

RIASSUNTO<br />

Pseudotachiliti profonde nei metagabbri <strong>del</strong>la Zona d’Ivrea (Alpi<br />

Meri<strong>di</strong>onali, Italia)<br />

Lo stu<strong>di</strong>o <strong>di</strong> pseudotachiliti (fusi <strong>di</strong> frizione generati da scivolamento<br />

sismico in rocce silicatiche) associate a miloniti in faglie esumate dalla crosta<br />

inferiore può fornire informazioni sulla meccanica dei terremoti a profon<strong>di</strong>tà<br />

inferiori o corrispondenti alla transizione elastico-frizionale/plastico-viscoso<br />

(SIBSON, 1977) e sulla reologia <strong>del</strong>la crosta continentale (v<strong>ed</strong>. HANDY &<br />

BRUN, 2004).<br />

Nei metagabbri <strong>di</strong> Premosello, nella Zona d’Ivrea, compaiono<br />

pseudotachiliti associate ad ultramiloniti molto localizzate. I metagabbri si<br />

sono formati per underplating magmatico alla base <strong>del</strong>la crosta continentale<br />

pre-alpina, poi sono stati sottoposti a metamorfismo in facies da granulitica ad<br />

anfibolitica durante l’estensione litosferica Permiana, ma senza registrare il<br />

successivo metamorfismo alpino <strong>di</strong> più bassa temperatura (HANDY et alii,<br />

1999).<br />

Le pseudotachiliti rinvenute nei metagabbri si sono formate in facies<br />

anfibolitica, come <strong>di</strong>mostrato dalla ricristallizzazione e deformazione plastica<br />

<strong>del</strong>la matrice, dalla crescita <strong>di</strong> neoblasti <strong>di</strong> granato e pirosseno, dalla<br />

ricristallizzazione <strong>di</strong>namica <strong>di</strong> plagioclasio ricco in An e da stime<br />

geotermometriche. Le stesse con<strong>di</strong>zioni metamorfiche sono state attribuite alle<br />

ultramiloniti a plagioclasio-orneblenda-pirosseno associate. L’estrema<br />

localizzazione <strong>di</strong> tali ultramiloniti <strong>ed</strong> il m<strong>ed</strong>esimo spessore <strong>ed</strong> orientazione<br />

<strong>del</strong>le pseudotachiliti suggeriscono che le pseudotachiliti abbiano agito come<br />

precursori fragili per la nucleazione <strong>del</strong>le successive ultramiloniti, durante il<br />

rilassamento post-sismico e creep propri <strong>del</strong>la crosta inferiore.<br />

Dei <strong>di</strong>versi mo<strong>del</strong>li proposti per spiegare la formazione <strong>di</strong> pseudotachiliti<br />

nella crosta interm<strong>ed</strong>io-profonda (instabilità duttile durante creep, HOBBS et<br />

alii, 1986, WHITE, 1996; HANDY & BRUN, 2004; propagazione in profon<strong>di</strong>tà<br />

<strong>di</strong> rotture sismiche dalla crosta superiore fragile, SIBSON, 1980; TSE & RICE,<br />

1986; SCHOLZ, 1988), e shear heating a<strong>di</strong>abatico, KELEMEN & HIRTH, 2007;<br />

BRAECK & PODLADCHIKOV, 2007)), le osservazioni <strong>di</strong> terreno e <strong>del</strong>le<br />

microstrutture sembrano suggerire cicli successivi <strong>ed</strong> alterni <strong>di</strong> pseudotachiliti<br />

<strong>ed</strong> ultramolioniti in con<strong>di</strong>zioni anidre nella crosta interm<strong>ed</strong>ia/inferiore durante<br />

l’esumazione pre-Alpina.<br />

Key words: pseudotachylyte, mylonite, metagabbro, Ivrea<br />

Zone.<br />

INTRODUCTION<br />

Pseudotachylytes are soli<strong>di</strong>fi<strong>ed</strong> melts produc<strong>ed</strong> by<br />

_________________________<br />

Deep-seat<strong>ed</strong> pseudotachylyte in the Ivrea Zone metagabbros<br />

(Southern Alps, Italy).<br />

PITTARELLO LIDIA (*), PENNACCHIONI GIORGIO (* °) & DI TORO GIULIO (* °)<br />

(*) Dipartimento <strong>di</strong> Geoscienze, Università degli Stu<strong>di</strong> <strong>di</strong> Padova<br />

(°) Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia, <strong>Sezione</strong> <strong>di</strong> Roma.<br />

Lavoro eseguito bell’ambito <strong>del</strong> progetto Cariparo<br />

coseismic frictional sli<strong>di</strong>ng in faults within silicate-built rock<br />

(SIBSON, 1975). Studying pseudotachylytes in exhum<strong>ed</strong> faults<br />

might give information on several aspects of earthquake<br />

mechanics (SIBSON, 1975; DI TORO et alii, 2005; PITTARELLO<br />

et alii, 2008) complementary to seismological information.<br />

Though pseudotachylytes are mostly generat<strong>ed</strong> in the upper<br />

brittle crust, they have also been report<strong>ed</strong> from the ductile field<br />

developing in association with mylonites. Pseudotachylyte<br />

overprint<strong>ed</strong> by low grade mylonites can be expect<strong>ed</strong> in the high<br />

<strong>di</strong>fferential stress region close to the plastic-brittle transition in<br />

the crust as result of plastic instabilities (HOBBS et alii, 1986),<br />

but pseudotachylytes have also been describ<strong>ed</strong> at higher<br />

metamorphic grades up to granulite facies con<strong>di</strong>tions (SIBSON,<br />

1980; PASSCHIER, 1982; CLARKE & NORMAN, 1993;<br />

AUSTRHEIM & BOUNDY, 1994; WHITE, 1996; PENNACCHIONI &<br />

CESARE, 1997; LIN et alii, 2005). Different mechanisms have<br />

been propos<strong>ed</strong> to explain production of pseudotachylytes in the<br />

middle and lower crust: plastic instability during creep (HOBBS<br />

et alii, 1986, WHITE, 1996; HANDY & BRUN, 2004), downward<br />

propagation of seismic ruptures from the upper brittle crust<br />

(TSE & RICE, 1986; SCHOLZ, 1988), and shear heating (SIBSON,<br />

1980; KELEMEN & HIRTH, 2007).<br />

Here we describe pseudotachylytes associat<strong>ed</strong> with<br />

localiz<strong>ed</strong> amphibolite facies mylonites within granulitic<br />

metagabbros of the Ivrea Zone. These metagabbros were<br />

form<strong>ed</strong> by underplating at the base of the Pre-Alpine<br />

continental crust and were exhum<strong>ed</strong> during Permian<br />

lithospheric stretching without later strong involvement in<br />

Alpine metamorphism (HANDY et alii, 1999). Therefore, these<br />

pseudotachylytes must have develop<strong>ed</strong> under high-grade<br />

con<strong>di</strong>tions during the Pre-Alpine exhumation path. The study of<br />

this type of deep-seat<strong>ed</strong> pseudotachylyte may <strong>di</strong>scriminate<br />

between the <strong>di</strong>fferent mechanism describ<strong>ed</strong> above which have<br />

potential strong implications on the interpretation of the<br />

rheology of the continental crust as, for example, on the cut-off<br />

depth of propagation of seismic ruptures from the upper brittle<br />

crust (see HANDY & BRUN, 2004).<br />

GEOLOGICAL SETTING<br />

Samples of the stu<strong>di</strong><strong>ed</strong> pseudotachylytes were collect<strong>ed</strong> in<br />

the Premosello metagabbros of the Ivrea Zone (Italian Southern<br />

Alps). The Ivrea Zone consists of pre-Alpine continental lower<br />

crust and lithospheric mantle involv<strong>ed</strong> in Permo-Mesozoic


DEEP-SEATED PSEUDOTACHYLYTE IN THE IVREA ZONE METAGABBROS<br />

extension, thinning and high temperature metamorphism<br />

(GIESE, 1968; BRODIE & RUTTER, 1987; ZINGG et alii, 1990).<br />

The metagabbros were emplac<strong>ed</strong> by magmatic underplating<br />

about 299±5 Ma ago (VAVRA et alii, 1999; HANDY et alii,<br />

1999) at the base of the crust and were pervasively deform<strong>ed</strong><br />

along high-temperature shear zones (280-270 Ma old). These<br />

shear zones develop<strong>ed</strong> either during prograde isobaric heating<br />

from amphibolite to granulite facies, accor<strong>di</strong>ng to some authors<br />

(BRODIE, 1981; BRODIE & RUTTER 1985; HANDY, 1999), or by<br />

isothermal decompression (CHOUDHURI & SILVA, 2000).<br />

Between 230 and 180 Ma localiz<strong>ed</strong> mylonites develop<strong>ed</strong> in<br />

metagabbros during retrograde amphibolite facies con<strong>di</strong>tions<br />

associat<strong>ed</strong> with extensional tectonics (BRODIE & RUTTER, 1987;<br />

HANDY et alii, 1999). Alpine (50-20 Ma) faulting and fol<strong>di</strong>ng<br />

affect<strong>ed</strong> the metagabbros, without a significant metamorphic<br />

overprint (HANDY et alii, 1999).<br />

METHODS<br />

Metagabbros and the crosscutting fault rocks were<br />

investigat<strong>ed</strong> with the optical microscope, scanning electron<br />

165<br />

microscope (SEM), field-emission scanning electron<br />

microscope (FE-SEM), electron probe microanalyzer (EPMA)<br />

and X-ray powder <strong>di</strong>ffraction (XRPD). Image analysis was<br />

perform<strong>ed</strong> with Adobe Photoshop and Image SXM (BARRETT,<br />

see references). Geothermobarometry was conduct<strong>ed</strong> using the<br />

software GTB (SPEAR & KOHN, see references) and<br />

Thermocalc (HOLLAND & POWELL, 1998).<br />

RESULTS<br />

The Premosello metagabbros consist of garnet (37% vol.)<br />

(Alm47, Pyr34, Gro15, And3, Spe2), An85-54 plagioclase (31%),<br />

clino- and orthopyroxene (23%) (En37 Fs29 Wo28 <strong>di</strong>opside and<br />

En63 orthopyroxene), magnetite-ilmenite and apatite.<br />

Metagabbros are locally deform<strong>ed</strong> to flaser gabbros with a<br />

foliation outlin<strong>ed</strong> by ribbons of dynamically recrystalliz<strong>ed</strong><br />

aggregates (grain size of 10-50 µm) of An50 plagioclase, by<br />

elongate domains of cataclastic garnet and pyroxene and thin<br />

layers of ilmenite-magnetite. Garnet and pyroxene commonly<br />

show rims of An85 plagioclase-orthopyroxene-magnetite<br />

kelyphite and symplectite (clinopyroxene/amphibole,<br />

Fig. 1 – Microstructures of the Premosello pseudotachylyte. A) Photo of a thin section under optical microscope showing a pseudotachylyte vein (E-W black<br />

layer) in plane polariz<strong>ed</strong> light. Pseudotachylyte fault vein (E-W black layer) with two injection veins within flaser gabbros. Both the fault and injection veins cut<br />

<strong>di</strong>scordantly the foliation of the host rock. B) Back-scatter<strong>ed</strong> SEM image showing the detail of the intersection between the fault vein and central injection vein<br />

in (A). The pseudotachylyte fine grain of the matrix includes elongate plagioclase clasts (dark gray) defining a foliation in the fault vein, slightly oblique to the<br />

vein boundary, that <strong>di</strong>sappears in the injection vein. In the lower left side of the fault vein a cluster of small i<strong>di</strong>oblastic garnets (grt) is present. C) Back-scatterd<br />

SEM image of the matrix in the pseudotachylyte fault vein consisting of plagioclase (pl; dark gray), a femic mineral phase (mainly px; light gray) and small<br />

bright grains (white) of ilmenite/magnetite D) Back-scatter<strong>ed</strong> SEM image of garnet grains in (B). Garnets have i<strong>di</strong>oblastic shape and show inclusions of<br />

ilmenite/magnetite align<strong>ed</strong> with the matrix foliation. E) Back-scatter<strong>ed</strong> FE-SEM image of poikilitic single i<strong>di</strong>oblastic garnet in the pseudotachylyte. with small<br />

inclusions of pyroxene (px?). F) Back-scatter<strong>ed</strong> SEM image of plagioclase microlites in the injection vein. Microlites are decorat<strong>ed</strong> along the <strong>ed</strong>ges by bright<br />

small grains of oxides.


166 L. PITTARELLO ET ALII<br />

magnetite/ilmenite and rare quartz), respectively, form<strong>ed</strong> at<br />

800-900°C and 0.7-0.8 GPa (ZINGG, 1990; HANDY et alii,<br />

1999).<br />

The metagabbros and the flaser gabbros are cut by sharply<br />

bound<strong>ed</strong> ultramylonites and pseudotachylytes. Ultramylonite (a<br />

few millimeters to centimeters thick) consists of a matrix (grain<br />

size of 1-5 µm) of An54 plagioclase, hornblende and<br />

magnetite/ilmenite inclu<strong>di</strong>ng round<strong>ed</strong> clasts of plagioclase,<br />

pyroxene and garnet. Plagioclase-hornblende pairs from the<br />

matrix yield temperatures of 600-650°C using the calibration of<br />

HOLLAND AND BLUNDY (1994).<br />

Pseudotachylytes (Fig. 1a-b) are rather common and consist<br />

of a granoblastic matrix aggregate (grain size of 1-10 µm) of<br />

plagioclase and pyroxene, ilmenite/magnetite and rare<br />

i<strong>di</strong>oblastic garnet (Alm64, Gro12, Pyr11, And8, Spe5) (Fig. 1b-cd).<br />

The garnet is poikilitic with small (~1-2 µm) inclusions of<br />

matrix minerals. Locally (mainly in injection veins) plagioclase<br />

(An47) shows microlite crystal shapes typical of<br />

pseudotachylyte (Fig. 2f). The pseudotachylyte matrix includes<br />

clasts of the host rock plagioclase (most common), pyroxene<br />

and apatite. Garnet is almost absent between clasts.<br />

Some pseudotachylytes show a crystal-plastic overprint with<br />

development of a foliation, outlin<strong>ed</strong> by elongat<strong>ed</strong> and<br />

recrystalliz<strong>ed</strong> plagioclase clasts. Some typical localiz<strong>ed</strong><br />

ultramylonites in the metagabbros also preserve non-foliat<strong>ed</strong><br />

portion of the matrix, inclu<strong>di</strong>ng angular clasts and showing<br />

cataclastic relationships with the host metagabbros in<br />

embayment in the host rock.<br />

DISCUSSION AND CONCLUSIONS<br />

The fine grain size of the pseudotachylyte matrix <strong>di</strong>d not<br />

allow<strong>ed</strong> a precise estimate of the temperature of formation of<br />

the frictional melts in the Premosello metagabbros. However,<br />

the presence of a crystal –plastic overprint of pseudotachylyte,<br />

the dynamic recrystallization of an An-rich (An47) plagioclase<br />

and the growth of garnet and pyroxene on the pseudotachylyte<br />

matrix suggest amphibolite facies ambient con<strong>di</strong>tions for the<br />

pseudotachylyte development. Pseudotachylytes were already<br />

describ<strong>ed</strong> in the Ivrea gabbros by BRODIE & RUTTER (1987)<br />

and by ZINGG et alii (1990), but they were interpret<strong>ed</strong> as having<br />

form<strong>ed</strong> during the low temperature Alpine history. Our new<br />

observations in<strong>di</strong>cate that a part of these pseudotachylytes must<br />

be referr<strong>ed</strong> to as pre-Alpine consistently with the assumption of<br />

HANDY & BRUN (2004).<br />

The widespread production of frictional melts, at<br />

temperatures under which metagabbros should be capable of<br />

ductile flow and well below the typical plastic-brittle transition<br />

of crustal rocks, is consistent with <strong>di</strong>fferent processes as list<strong>ed</strong><br />

above (HANDY & BRUN, 2004).<br />

The relatively high ambient temperature of generation of<br />

pseudotachylytes has been referr<strong>ed</strong> to relatively dry con<strong>di</strong>tions<br />

in the middle-lower crust (PENNACCHIONI & CESARE, 1997)<br />

affecting the temperature of the brittle-plastic transition. There<br />

is not a straightforward criterion to <strong>di</strong>scriminate between the<br />

above list<strong>ed</strong> mechanics actually responsible for generation of<br />

deep-seat<strong>ed</strong> pseudotachylytes although some microstructural<br />

observations apparently lend support for the concept of a<br />

relatively strong middle-lower crust due to the presence of<br />

water-deficient rocks (MANCKTELOW & PENNACCHIONI, 2004;<br />

FITZ GERALD et alii, 2006). Discriminating between these<br />

processes is of paramount importance in the understan<strong>di</strong>ng the<br />

rheology of the continental crust and will be the topic of<br />

forthcoming work.<br />

The association between very localiz<strong>ed</strong> ultramylonite and<br />

pseudotachylyte of similar thickness and orientation, the<br />

presence of an amphibolite facies overprint of some mylonites<br />

and the relict cataclastic features preserv<strong>ed</strong> in some domains of<br />

ultramylonites suggest that pseudotachylyte may have act<strong>ed</strong> as<br />

structural heterogeneities for the nucleation and localization of<br />

some mylonitic deformation after post-seismic stress relaxation.<br />

The primary role of pre-existing structural and compositional<br />

heterogeneities in the nucleation of ductile shear zones is well<br />

establish<strong>ed</strong> in several metamorphic environments (e.g.<br />

MANCKTELOW & PENNACCHIONI, 2005; PENNACCHIONI &<br />

MANCKTELOW, 2007).<br />

REFERENCES<br />

AUSTRHEIM, H. & BOUNDY, T. M. (1994) - Pseudotachylytes<br />

generat<strong>ed</strong> during seismic faulting and eclogitization of the<br />

deep crust. Science, 265, 82-83.<br />

BARRETT, S.: http://www.liv.ac.uk/~sdb/ImageSXM/<br />

BRODIE, K. H. (1981) - Variation in amphibole and<br />

plagioclase composition with deformation. Tectonophysics,<br />

78, 385-402.<br />

BRODIE, K.H. & RUTTER, E.H. (1987) - Deep crustal<br />

extensional faulting in the Ivrea Zone of Northern Italy.<br />

Tectonophysiscs, 140, 193-212.<br />

BRODIE, K.H. & RUTTER, E.H. (1985) - On the relationship<br />

between deformation and metamorphism with special<br />

reference to the behaviour of basic rock. In A.B.Thompson<br />

and D.C.Rubie E<strong>di</strong>tors, Metamorphic reactions:<br />

Kinematics, Texture and Deformation. Adv.Phys.Geochem,<br />

Springer, Berlin, 4, 138-179.<br />

CHOUDHURI, A. & SILVA, D. (2000) - A clinopyroxeneorthopyroxene-plagioclase<br />

symplectite form<strong>ed</strong> by garnet<br />

breakdown in granulite facies, Guaxupé, Minas Gerais,<br />

Brazil. Gondwana Research, 3, 445-452.<br />

CLARKE, G.L. & NORMAN, A.R. (1993) - Generation of<br />

pseudotachylite under granulite facies con<strong>di</strong>tions, and its<br />

preservation during cooling. J.Metamorphic Geol., 11, 319-<br />

335.<br />

DI TORO, G., NIELSEN, S. & PENNACCHIONI, G. (2005) -<br />

Earthquake rupture dynamics frozen in exhum<strong>ed</strong> ancient<br />

faults. Nature, 436, 1009-1012.


DEEP-SEATED PSEUDOTACHYLYTE IN THE IVREA ZONE METAGABBROS<br />

FITZ GERALD, J.D., MANCKTELOW, N. S., PENNACCHIONI, G. &<br />

KUNZE, K. (2006) - Ultrafine-grain<strong>ed</strong> quartz mylonites<br />

from high-grade shear zones: evidence for strong dry<br />

middle to lower crust. Geology, 34, 369–372.<br />

GIESE, P. (1968) - Die Struktur der Erdkruste im Bereich der<br />

Ivrea-Zone. Schweiz. Mineral. Petrogr. Mitt. 4-8.<br />

HANDY, M.R. & BRUN, J.P. (2004) - Seismicity, structure and<br />

strenght of the continental lithosphere. EPSL, 223, 427-<br />

441.<br />

HANDY, M.R., FRANZ., L., HELLER, F., JANOTT, B. &<br />

ZURBRIGGEN, R. (1999) - Multistage accretion and<br />

exhumation of the continental crust (Ivrea crustal section,<br />

Italy and Switzerland). Tectonics, 18, 1154-1177.<br />

HOBBS, B.E., ORD, A. & TEYSSIER, C. (1986) - Earthquakes in<br />

the ductile regime? Pageoph., 124, 309-336.<br />

HOLLAND, T.J.B. & BLUNDY, D. (1994) - Non-ideal<br />

interactions in calcic amphiboles and their bearing on<br />

amphibole-plagioclase thermometry. Contrib. Mineral.<br />

Petrol., 116, 433-447.<br />

HOLLAND, T.J.B. & POWELL, R. (1998) - An internally<br />

consistent thermodynamic data set for phases of<br />

petrological interest. J. Metam. Geol., 16, 309-343<br />

fhttp://rock.esc.cam.ac.uk/astaff/holland/thermocalc.html)<br />

KELEMEN, P. B. & HIRTH, G. (2007) - A perio<strong>di</strong>c shear-heating<br />

mechanism for interm<strong>ed</strong>iate-depth earthquakes in the<br />

mantle. Nature, 446, 787-790.<br />

LIN, A., MARUYAMA, T., AARON, S., MICHIBAYASHI, K.,<br />

CAMACHO, A. & KANO, K. (2005) - Propagation of seismic<br />

slip from brittle to ductile crust: Evidence from<br />

pseudotachylyte of the Woodroffe thrust, central Australia.<br />

Tectonophysics, 402, 21-35.<br />

MANCKTELOW, N.S. & PENNACCHIONI, G. (2004) - The<br />

influence of grain boundary fluids on the microstructure of<br />

quartz-feldspar mylonites. J. of Struct. Geol. 26, 47-69.<br />

MANCKTELOW, N. S. & PENNACCHIONI, G. (2005) - The control<br />

of precursor brittle fracture and fluid–rock interaction on<br />

the development of single and pair<strong>ed</strong> ductile shear zones.<br />

J.Struct.Geol., 27, 645-661.<br />

PASSCHIER, C.W. (1982) - PSEUDOTACHYLYTE AND THE<br />

DEVELOPMENT OF ULTRAMYLONITE BANDS IN THE SAINT<br />

BARTHÉLEMY MASSIF, FRENCH PYRENEES. J. Struct. Geol.,<br />

4, 69-79.<br />

PENNACCHIONI, G. & MANCKTELOW, N.S. (2007) - Nucleation<br />

and initial growth of a shear zone network within<br />

compositionally and structurally heterogeneous granitoids<br />

under amphibolite facies con<strong>di</strong>tions. J. Struct. Geol., 29,<br />

1757-1780.<br />

PENNACCHIONI, G. & CESARE, B. (1997) - Ductile-brittle<br />

transition in pre-Alpine amphibolite facies mylonites during<br />

evolution from water-present to water-deficient con<strong>di</strong>tions<br />

167<br />

(Mont Mary nappe, Italian Western Alps). J. Metamorphic<br />

Geol., 15, 777-791.<br />

PITTARELLO, L., DI TORO, G., BIZZARRI, A., PENNACCHIONI, G.,<br />

HADIZADEH, J. & COCCO, M. (2008) - Energy partitioning<br />

during seismic slip in pseudotachylyte-bearing faults (Gole<br />

Larghe Fault, Adamello, Italy). EPSL, 269, 131-139.<br />

SCHOLZ, C.H. (1988) - The brittle-plastic transition and the<br />

depth of seismic faulting. Geol. Runds., 126, 701-718.<br />

SIBSON, R.H., (1975) - Generating of pseudotachylyte by<br />

ancient seismic faulting. Geophys.J.R.Astr.Soc., 43, 775-<br />

794.<br />

SIBSON, R.H. (1980) - Transient <strong>di</strong>scontinuities in ductile shear<br />

zones. J.Struct.Geol., 2, 165-171.<br />

SPEAR, F.S. & KOHN, M.J.: http://ees2.geo.rpi.<strong>ed</strong>u/<br />

MetaPetaRen/Software/GTB_Prog/GTB.html<br />

TSE, S. T. & RICE, J. R. (1986) - Crustal earthquake instability<br />

in relation to the depth variation of frictional slip<br />

properties. J. Geophys.Res., 91, 9452-9472.<br />

VAVRA, G., SCHMID, R. & GEBAUER, D. (1999) - Internal<br />

morphology, habit and U-Th-Pb microanalysis of<br />

amphibolite-to-granulite facies zircons: geochronology of<br />

the Ivrea Zone (Southern Alps). Contrib.Mineral.Petrol.,<br />

134, 380-404.<br />

WHITE, J. C. (1996) - Transient <strong>di</strong>scontinuities revisit<strong>ed</strong>:<br />

pseudotachylyte, plastic instability and the influence of low<br />

pore fluid pressure on deformation process in the midcrust.<br />

J.Struct.Geol., 18, 1471-1486.<br />

ZINGG, A., HANDY, M.R., HUNZIKER, J.C. & SCHMID, S.M.<br />

(1990) - Tectonometamorphic history of the Ivrea Zone and<br />

its relationship to thee crustal evolution of the Southern<br />

Alps. Tectonophysics, 182, 169-192.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 168-171, 5 ff.<br />

La carta geologica <strong>del</strong> massiccio <strong>del</strong>la Berna<strong>di</strong>a<br />

(Prealpi Giulie meri<strong>di</strong>onali, Friuli, Italia NE)<br />

ABSTRACT<br />

The geological map of the Berna<strong>di</strong>a Massif (Southern Julian Prealps<br />

Friuli, NE Italy).<br />

The Southern Julian Prealps (SJP) belong to the sector of the External<br />

Dinarides includ<strong>ed</strong> in the WSW-ENE tren<strong>di</strong>ng, SSE-verging thrust belt of the<br />

eastern Southalpine Chain in evolution from the Middle Miocene to the<br />

present. On the basis of new geological mapping and mesostructural analysis,<br />

the geological framework of the Berna<strong>di</strong>a carbonate massif was point<strong>ed</strong> out. In<br />

the Berna<strong>di</strong>a area only cover sequences outcrop ranging from Early<br />

Creataceous to Early Eocene. Scanty outcrops of glauconitic arenites (Lower<br />

Miocene) are present in the footwall of the major Neogene thrusts. During the<br />

Mesozoic the Berna<strong>di</strong>a massif was part of the Friulian Carbonate Platform<br />

(FCP). Starting from Late Cretaceous to Early Eocene the study area was part<br />

of the WSW–verging Dinaric chain-for<strong>ed</strong>eep system. The Paleogene imbricate<br />

thrust-system shows staircase trajectory and duplex-geometries; thrusts are<br />

mainly NNW-SSE tren<strong>di</strong>ng and show WSW tectonic transport. Inherit<strong>ed</strong><br />

Upper Cretaceous normal faults (NNE-SSW- and NW-SE-tren<strong>di</strong>ng) are often<br />

invert<strong>ed</strong> in lateral and frontal ramps respectively. Starting from Middle<br />

Miocene the S-SSE verging thrust system of the Southalpine Chain start<strong>ed</strong>,<br />

giving rise to a low-angle, approximately WSW-ENE to WNW-ESE tren<strong>di</strong>ng<br />

thrusts. Neoalpine compression deform<strong>ed</strong> the Paleogene structural belt,<br />

producing dome-basin structural pattern. Moreover the Neogene–Quaternary<br />

thrusts often re-utilis<strong>ed</strong> the Dinaric ramps as frontal or lateral ones.<br />

Key words: thrust tectonics, Paleogene External Dinarides,<br />

Neogene-Quaternary eastern Southalpine Chain, Friuli.<br />

INTRODUZIONE<br />

Il massiccio calcareo <strong>del</strong>la Berna<strong>di</strong>a rappresenta una <strong>del</strong>le<br />

ultime propaggini meri<strong>di</strong>onali <strong>del</strong>le Prealpi Giulie essendo<br />

posto a ridosso <strong>del</strong>l’alta pianura friulana orientale. Dal punto <strong>di</strong><br />

vista geologico le Prealpi Giulie meri<strong>di</strong>onali, limitate verso<br />

settentrione dal sovrascorrimento Periadriatico (o linea Barcis -<br />

Staro Selo Auct.), fanno parte <strong>del</strong>la Catena Dinarica esterna che<br />

è stata incorporata nella Catena Sudalpina orientale a partire<br />

dal Miocene m<strong>ed</strong>io (CASTELLARIN et al., 1992; DOGLIONI &<br />

BOSELLINI, 1987).<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> <strong>Georisorse</strong> e Territorio, Università <strong>di</strong> U<strong>di</strong>ne, via<br />

Cotonificio, 114 – 33100 U<strong>di</strong>ne; e-mail: eliana.poli@uniud.it<br />

M. ELIANA POLI *<br />

Nuovi rilevamenti geologico-strutturali <strong>di</strong> dettaglio,<br />

effettuati nell’ambito <strong>del</strong> Progetto CARG-FVG, hanno<br />

consentito <strong>di</strong> ricostruire la storia geologica <strong>del</strong> massiccio<br />

carbonatico a partire dal Cretacico superiore fino ad oggi. Sono<br />

stati definiti i rapporti stratigrafici <strong>del</strong>le unità presenti e<br />

riconosciuti due principali eventi contrazionali. Ogni evento è<br />

stato caratterizzato per geometria e cinematica; i rapporti <strong>di</strong><br />

interferenza e <strong>di</strong> sovrapposizione fra le strutture hanno<br />

consentito <strong>di</strong> ricostruire il timing <strong>del</strong>le <strong>di</strong>verse fasi deformative.<br />

IL CONTESTO PALEOGEOGRAFICO E LA SUCCESSIONE<br />

STRATIGRAFICA<br />

Nel quadro <strong>del</strong>la paleogeografia giurassico-cretacica l’area<br />

prealpina giulia faceva parte <strong>del</strong>la zona <strong>di</strong> transizione fra il<br />

Bacino Sloveno (o Giulio) e la Piattaforma Carbonatica<br />

Friulana (PCF) (Fig. 1). Tale situazione, instauratasi a partire<br />

dal Lias, si mantenne praticamente inalterata sino al Cretacico<br />

superiore.<br />

Fig. 1 – Paleogeografia giurassico-cretacica <strong>del</strong>l’area veneto-friulana. Nel<br />

riquadro l’area in esame. LP: Lineamento Periadriatico; LG: Linea <strong>del</strong>le<br />

Giu<strong>di</strong>carie; VFS: Valsugana–Fella–Sava..<br />

I terreni più antichi presenti nell’area in esame affiorano<br />

lungo le profonde incisioni dei torrenti Torre e Cornappo. Si<br />

tratta <strong>di</strong> calcari bioclastici <strong>di</strong> margine <strong>di</strong> piattaforma <strong>del</strong><br />

Valanginiano (VENTURINI & TUNIS, 1998). La successione<br />

carbonatica continua poi con i calcari <strong>di</strong> piattaforma interna <strong>del</strong><br />

Calcare <strong>del</strong> Cellina (Hauteriviano - Albiano p.p.) e termina con


le facies bioclastiche <strong>di</strong> piattaforma aperta <strong>del</strong> Calcare <strong>del</strong> M.<br />

Cavallo (Albiano sup. – Cenomaniano) (Fig. 2).<br />

A partire dal Campaniano-Maastrichtiano (COUSIN, 1981,<br />

PIRINI RADRIZZANI et al., 1986; SARTORIO et al., 1987;<br />

VENTURINI & TUNIS, 1992), lo slope e il margine <strong>del</strong>la<br />

piattaforma furono interessati da un'intensa tettonica<br />

sins<strong>ed</strong>imentaria. Questi processi, legati alla migrazione verso<br />

WSW <strong>del</strong> sistema catena-avanfossa <strong>del</strong>le Dinari<strong>di</strong> Esterne,<br />

determinarono il sollevamento <strong>del</strong>la PCF che venne a trovarsi<br />

in posizione <strong>di</strong> peripheral buldge, subendo dapprima<br />

un’intensa erosione subaerea e poi un rapido annegamento<br />

anche ad opera <strong>di</strong> faglie normali. Tutto ciò produsse nell’area<br />

prealpina giulia potenti corpi <strong>di</strong> brecce carbonatiche<br />

sottomarine contenenti livelli <strong>di</strong> emipelagiti a globotruncane<br />

(Scaglia rossa friulana) che si depositarono nell’avanfossa e<br />

sui blocchi <strong>di</strong> piattaforma annegati (Fig. 2).<br />

Fig. 2 – I rapporti stratigrafici fra le formazioni affioranti nel massiccio<br />

<strong>del</strong>la Berna<strong>di</strong>a. Legenda: PRP - Arenaria <strong>di</strong> Preplans (Aquitaniano);<br />

SVO – Arenarie e marne <strong>di</strong> Savorgnano (Ypresiano p.p.); GRI –<br />

Flysch <strong>del</strong> Grivò (Selan<strong>di</strong>ano sup. – Ypresiano p.p.); SRF – Scaglia<br />

rossa friulana (Maastrichtiano); CMC – Calcare <strong>del</strong> Monte Cavallo<br />

(Albiano sup. – Cenomaniano); CEL – Calcare <strong>del</strong> Cellina<br />

(Hauteriviano - Albiano p.p.).<br />

A partire dal Paleocene m<strong>ed</strong>io-superiore anche l’area in<br />

esame cominciò ad essere interessata dalla s<strong>ed</strong>imentazione<br />

torbi<strong>di</strong>tica con il Flysch <strong>del</strong> Grivò (qui <strong>del</strong> Selan<strong>di</strong>ano<br />

superiore - Ypresiano p.p.). Tale unità è caratterizzata da<br />

imponenti megastrati formati in gran parte da materiale<br />

proveniente dallo smantellamento <strong>del</strong>la piattaforma carbonatica<br />

<strong>ed</strong> intercalati con depositi torbi<strong>di</strong>tici silicoclastici più <strong>di</strong>stali<br />

(CATANI & TUNIS, 2000). La s<strong>ed</strong>imentazione torbi<strong>di</strong>tica<br />

proseguì nel resto <strong>del</strong>l’Ypresiano con la deposizione <strong>del</strong>le<br />

facies prevalentemente fini appartenenti alle Marne e arenarie<br />

<strong>di</strong> Savorgnano (ZANFERRARI et al., 2008).<br />

L’area prealpina giulia venne raggiunta dal fronte <strong>di</strong>narico<br />

nell’Eocene m<strong>ed</strong>io-superiore, incorporata in esso e sollevata,<br />

subendo quin<strong>di</strong> erosione subaerea fino alla fine <strong>del</strong>l’Oligocene.<br />

Localmente, alcuni isolati lembi <strong>di</strong> “molassa” <strong>di</strong> età<br />

aquitaniana (Arenaria <strong>di</strong> Preplans) poggiano in <strong>di</strong>scordanza o<br />

in paraconcordanza sulle successioni torbi<strong>di</strong>tiche paleogeniche<br />

(Fig. 2).<br />

ASSETTO STRUTTURALE<br />

Il massiccio <strong>del</strong>la Berna<strong>di</strong>a è stato per lungo tempo<br />

interpretato come una anticlinale asimmetrica ad asse WNW–<br />

ESE e vergenza meri<strong>di</strong>onale, definito come "ellissoide" a causa<br />

<strong>del</strong>le evidenti chiusure laterali sia verso SE che verso NW<br />

(FERUGLIO, 1925). L’assetto strutturale è in realtà dato da una<br />

LA CARTA GEOLOGICA DEL MASSICCIO DELLA BERNADIA<br />

169<br />

pila <strong>di</strong> unità tettoniche <strong>di</strong>nariche, successivamente rideformate<br />

nell’evento contrazionale Neoalpino.<br />

Il primo e fondamentale evento deformativo è quello<br />

connesso alla propagazione <strong>del</strong>la Catena Dinarica esterna <strong>di</strong> età<br />

cretacica superiore - paleogenica, che nelle Prealpi friulane<br />

centro-orientali ha dato origine ad un complesso sistema <strong>di</strong><br />

sottili sovrascorrimenti <strong>di</strong> copertura con vergenza occidentale<br />

(POLI, 1994; MERLINI et alii, 2002; PONTON, 2007). Il fronte<br />

<strong>di</strong>narico esterno è oggi rappresentato dal sovrascorrimento<br />

sepolto <strong>di</strong> Palmanova che corre, sigillato dalla successione<br />

miocenica, con <strong>di</strong>rezione NNW-SSE nel settore SW <strong>del</strong>la<br />

pianura friulana centrale. L’evento deformativo <strong>di</strong>narico ha<br />

determinato un raccorciamento crostale in <strong>di</strong>rezione est-ovest<br />

che nell’area prealpina giulia può essere valutato<br />

complessivamente <strong>del</strong>l’or<strong>di</strong>ne <strong>di</strong> alcune decine <strong>di</strong> km.<br />

I thrust e le strutture minori ad essi associate coinvolgono<br />

intensamente tutte le unità stratigrafiche presenti. Essi hanno<br />

una <strong>di</strong>rezione compresa fra NW-SE e NNW-SSE e trasporto<br />

tettonico verso SW-WSW (Figg. 3 e 5). Generalmente<br />

presentano una traiettoria a gra<strong>di</strong>ni, in cui rampe, anche a forte<br />

angolo, e flat si susseguono con <strong>di</strong>verse geometrie anche in<br />

funzione <strong>del</strong>la litologia attraversata.<br />

I thrust sono accompagnati da ampie zone <strong>di</strong> taglio sulle<br />

quali si osservano strutture s/c e duplex. Entro il flysch<br />

arenitico-marnoso la deformazione si è propagata<br />

principalmente lungo i piani <strong>di</strong> strato, con zone <strong>di</strong> taglio a<br />

basso angolo. Nelle sequenze a stratificazione più massiccia<br />

(calcari <strong>di</strong> piattaforma e livelli calciru<strong>di</strong>tico-calcarentici dei<br />

megastrati torbi<strong>di</strong>tici) le geometrie <strong>del</strong>le rampe possono<br />

presentarsi spesso ad alto angolo accompagnate da intenso<br />

clivaggio stilolitico (POLI, 1994).<br />

Frequente è la tettonica <strong>di</strong> inversione: le superfici <strong>di</strong> faglia<br />

estensionale a m<strong>ed</strong>io-alto angolo <strong>del</strong> Cretacico superiore sono<br />

spesso invertite come rampe frontali dalla tettonica<br />

compressiva <strong>di</strong>narica (Fig. 4).<br />

Fig. 3 – Particolare <strong>del</strong>la rampa frontale a vergenza SW <strong>del</strong> sistema <strong>di</strong><br />

thrust <strong>del</strong> M. Lanta rappresentato in Fig. 4 (Ponte <strong>del</strong> Brisicul, T.<br />

Cornappo). Sono evidenti le strutture <strong>di</strong> duplicazione. La struttura è<br />

impostata nei calcari <strong>di</strong> piattaforma interna (Calcare <strong>del</strong> Cellina).<br />

La struttura più interessante e meglio esposta è quella che si<br />

sviluppa lungo la valle <strong>del</strong> T. Cornappo, presso il M. Lanta<br />

(Figg. 3 e 4). Qui una serie <strong>di</strong> superfici <strong>di</strong> movimento con<br />

geometria a gra<strong>di</strong>ni, che coinvolgono sia i carbonati <strong>di</strong><br />

piattaforma che le successioni torbi<strong>di</strong>tiche, forma un foreland<br />

<strong>di</strong>pping duplex plurichilometrico con inversione <strong>del</strong>le strutture


170 M. ELIANA POLI<br />

Fig. 4 – <strong>Sezione</strong> geologica attraverso il massiccio <strong>del</strong>la Berna<strong>di</strong>a. Si noti presso il M. Lanta la zona <strong>di</strong> raccorciamento <strong>di</strong>narica SW-vergente che appila le<br />

successioni cretaciche <strong>di</strong> piattaforma interna (CEL) sulle unità <strong>di</strong> piattaforma esterna (CMC) e sulle successoni torbi<strong>di</strong>tiche paleocenico - eoceniche.<br />

Legenda: SVO – Arenarie e marne <strong>di</strong> Savorgnano (Ypresiano p.p.); GRI – Flysch <strong>del</strong> Grivò (Selan<strong>di</strong>ano sup. – Ypresiano p.p.); CMC – Calcare <strong>del</strong><br />

Monte Cavallo (Albiano sup. – Cenomaniano); CEL – Calcare <strong>del</strong> Cellina (Hauteriviano - Albiano p.p.).<br />

<strong>di</strong> collasso tardo cretaciche e una traslazione stimata <strong>di</strong> oltre<br />

due km. Tali orizzonti <strong>di</strong> duplicazione sembrano avere come<br />

scollamento basale il sovrascorrimento <strong>del</strong>la Berna<strong>di</strong>a,<br />

in<strong>di</strong>viduato nel pozzo AGIP Berna<strong>di</strong>a 1 (MARTINIS, 1966) ad<br />

una profon<strong>di</strong>tà dal piano campagna <strong>di</strong> circa 1.235 m. Tale<br />

superficie <strong>di</strong> accavallamento sovrappone le facies <strong>di</strong> rampa <strong>del</strong><br />

Calcare ad Ellipsactinie (Giurassico sup.) alle successioni<br />

torbi<strong>di</strong>tiche <strong>del</strong> Flysch <strong>del</strong> Grivò. Una serie <strong>di</strong> anticlinalisinclinali<br />

<strong>di</strong> rampa, anche a sviluppo chilometrico, accompagna<br />

la propagazione <strong>del</strong>la deformazione per thrust.<br />

A partire dal Miocene m<strong>ed</strong>io e fino all’Attuale l’area<br />

friulana è stata coinvolta in un secondo evento contrazionale,<br />

quello Neoalpino. All’interno <strong>del</strong>l’evento Neoalpino sono state<br />

riconosciute due fasi deformative principali. La prima è<br />

collocata nel Miocene superiore (forse anche parte <strong>del</strong> Pliocene<br />

inferiore) <strong>ed</strong> è responsabile degli accavallamenti SSE-vergenti<br />

a <strong>di</strong>rezione m<strong>ed</strong>ia N70°E che caratterizzano il settore veneto e<br />

friulano. La seconda (Pliocene - Olocene) ha dato origine alle<br />

strutture compressive più esterne e recenti (spesso ancora<br />

cieche nella pianura) ad andamento tra WSW-ENE e WNW-<br />

ESE. Dal Miocene superiore al Pleistocene σ1 è oscillato<br />

ripetutamente fra NW-SE a NNW-SSE (CAPUTO et alii, 2003).<br />

Nell’area in esame l’associazione strutturale neoalpina è<br />

data da sovrascorrimenti pellicolari a basso angolo, a <strong>di</strong>rezione<br />

tra WSW-ENE e WNW-ESE e senso <strong>di</strong> trasporto verso<br />

meri<strong>di</strong>one (Fig. 5), cui si accompagnano anticlinali <strong>di</strong> rampa e<br />

pieghe per propagazione <strong>di</strong> faglia. La deformazione è <strong>di</strong> solito<br />

accompagnata da un sistema <strong>di</strong> faglie verticali coniugate, con<br />

movimento trascorrente destro sulle faglie a <strong>di</strong>rezione NW-SE<br />

e sinistro su quelle a <strong>di</strong>rezione prevalente N-S.<br />

La compressione neoalpina, quasi ortogonale alla <strong>di</strong>rezione<br />

<strong>di</strong> propagazione paleogenica, ha dato luogo alla deformazione<br />

<strong>del</strong>le unità tettoniche <strong>di</strong>nariche, che presentano sia rotazioni<br />

degli assi <strong>di</strong> piega che geometrie a duomo-bacino a tutte le<br />

Fig. 5 – Proiezioni stereografiche <strong>di</strong> superfici <strong>di</strong> movimento e relativi in<strong>di</strong>catori cinematici misurate nel massiccio <strong>del</strong>la Berna<strong>di</strong>a. A sinistra, quelli legati<br />

all’evento <strong>di</strong>narico (1= 232/10); a destra quelli legati alle fasi deformative neogeniche: 1 = 300/08 (fase deformativa miocenico – ?pliocenica inf.) e<br />

1 = 161/02 (fase pliocenico-quaternaria).<br />

scale. Spesso la propagazione <strong>del</strong>la deformazione neoalpina<br />

avviene riutilizzando come rampe oblique o frontali le superfici<br />

<strong>di</strong> accavallamento <strong>di</strong>narico a basso angolo.<br />

La presenza alla base dei sovrascorrimenti <strong>di</strong> Buia e<br />

Periadriatico (segmento Gemona–Kobarid) <strong>di</strong> isolati lembi <strong>di</strong><br />

Arenaria <strong>di</strong> Preplans (Miocene inferiore), in<strong>di</strong>ca che queste<br />

strutture hanno agito durante l’evento contrazionale neoalpino.


L’analisi <strong>del</strong>le linee sismiche industriali a riflessione <strong>del</strong>la<br />

pianura ha confermato che anche il sovrascorrimento Susans -<br />

Tricesimo, ritenuto da molti AA. la sorgente sismogenica <strong>del</strong><br />

terremoto <strong>del</strong> Friuli <strong>del</strong> 1976, ha agito in epoca neogenicoquaternaria<br />

in quanto <strong>di</strong>sloca <strong>di</strong> oltre 2 km le sequenze basali<br />

<strong>del</strong>la “molassa” sudalpina (BURRATO et al., 2008).<br />

BIBLIOGRAFIA<br />

BURRATO P., POLI M.E., VANNOLI P., ZANFERRARI A., BASILI<br />

R. & GALADINI F. (2008) - Sources of Mw 5+ earthquakes<br />

in northeastern Italy and western Slovenia: An updat<strong>ed</strong><br />

view bas<strong>ed</strong> on geological and seismological evidence.<br />

Tectonophysics, 453, 157-176, doi: 10.1016/j.tecto.<br />

2007.07.009.<br />

CAPUTO R., POLI M.E. & ZANFERRARI A. (2003) - Neogene-<br />

Quaternary Twist Tectonics in the Eastern Southern Alps,<br />

Italy. Mem. Sci. Geol., 54, 155-158.<br />

COUSIN, M. (1981) Les rapports Alpes-Dinarides - Les confins<br />

de l'Italie et de la Yougoslavie. Soc. Géol. du Nord, 1: 1-<br />

521, 2: 1-521, Villeneuve d'Asq.<br />

CATANI & TUNIS (2001) – Caratteristiche s<strong>ed</strong>imentologiche dei<br />

megabanchi cartonatici paleogenici <strong>del</strong> Bacino Giulio<br />

(Valli <strong>del</strong> Natisone, Friuli orientale). St. Trentini Sc. Nat. –<br />

Acta Geologica, 77, 81-102.<br />

CASTELLARIN, A., CANTELLI, L., FESCE, A.M., MERCIER, J.L.,<br />

PICOTTI, V., PINI, G.A., PROSSER, G. & SELLI, L., (1992) -<br />

Alpine compressional tectonics in the Southern Alps.<br />

Relationships with the N-Apennines. Annales Tectonicae, 6,<br />

62-94.<br />

DOGLIONI C.& BOSELLINI A. (1987) - Eoalpine and mesoalpine<br />

tectonics in the Southern Alps. Geol. Rundsch., 76, 735-<br />

754.<br />

FERUGLIO E. (1925) - Le Prealpi tra l’Isonzo e l’Arzino. Boll.<br />

Assoc. Agr. Friulana, ser. 7, 39-40, 1-301, U<strong>di</strong>ne.<br />

MARTINIS B. (1966) - Prove <strong>di</strong> ampi sovrascorrimenti nelle<br />

Prealpi friulane e venete. Mem. Ist. Geol. Miner. Univ.<br />

Padova, XXV, 1-31.<br />

MERLINI S., DOGLIONI C., FANTONI R. & PONTON M. (2002) -<br />

Analisi strutturale lungo un profilo geologico fra la linea<br />

Fella-Sava e l'avampaese adriatico (Friuli Venezia Giulia -<br />

Italia). Mem. Soc. Geol. It., 57, 293-300.<br />

POLI M.E. (1994) - Evidenze <strong>di</strong> tettonica a thrust <strong>di</strong>narica nelle<br />

Prealpi Giulie meri<strong>di</strong>onali (Italia Nord-orientale). Atti<br />

Ticinensi Sci. Terra, ser. spec., 3, (1995), 99-114.<br />

PIRINI RADRIZZANI C., TUNIS G. & VENTURINI S.( 1986) –<br />

Biostratigrafia e paleogeografia <strong>del</strong>l’area sud-occidentale<br />

<strong>del</strong>l’anticlinale M. Mia – M. Mataiur (Prealpi Giulie). Riv.<br />

It. Paleont. Strat., 92, 327-382.<br />

LA CARTA GEOLOGICA DEL MASSICCIO DELLA BERNADIA<br />

171<br />

PONTON M. (2007) - Un’area polideformata nelle Prealpi<br />

Carniche: il Monte Broili e il Cuel dal Melooc. Gortania,<br />

28, 7-18.<br />

SARTORIO D. TUNIS G. & VENTURINI S. (1987) – Nuovi<br />

contributi per l’interpretazione geologica e paleogeografia<br />

<strong>del</strong>le Prealpi Giulie (Friuli orientale): il Pozzo Span . Riv.<br />

It. Paleont. Strat., 93, 181-200.<br />

TUNIS G. & VENTURINI S. (1992) - Evolution of the Southern<br />

Margin of the Julian Basin with Emphasis on the Megab<strong>ed</strong>s<br />

and Turbi<strong>di</strong>tes Sequence of the Southern Julian Prealps<br />

(NE Italy). Geologia Croatica, 45, 127-150.<br />

VENTURINI S. & TUNIS G. (1997) - Il canyon campanianomaastrichtiano<br />

<strong>del</strong>la Val Torre (Prealpi Giulie). Atti<br />

Ticinensi. Sci. Terra, ser. sp. 7, 7-16.<br />

ZANFERRARI, A., AVIGLIANO, R., MONEGATO, G., PAIERO, G.,<br />

POLI, M.E. (2008) - <strong>Note</strong> illustrative <strong>del</strong>la Carta geologica<br />

dItalia alla scala 1:50,000 Foglio 066 U<strong>di</strong>ne; 176 pp.<br />

Graphic Linea, Tavagnacco (UD).


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 172-175, 5 ff.<br />

Geometria, cinematica e attività pliocenico-quaternaria <strong>del</strong> sistema <strong>di</strong><br />

sovrascorrimenti Arba-Ragona (Alpi Meri<strong>di</strong>onali orientali, Italia NE).<br />

ABSTRACT<br />

Geometry, kinematics and Pliocene-Quaternary activity of the Arba-<br />

Ragogna thrust-system (Eastern Southern Alps, NE Italy)<br />

New stratigraphic, geomorphologic and structural data let to <strong>del</strong>ineate the<br />

Pliocene - Quaternary activity of the Arba-Ragogna thrust-system that belongs<br />

to the front of the eastern Southalpine Chain, a S-SE verging thrust-belt in<br />

evolution from middle Miocene to Present. Geometry and kinematic of the<br />

Arba-Ragogna thrust-system were recognis<strong>ed</strong> both using structural survey and<br />

industrial reflection seismic profiles. The system is arrang<strong>ed</strong> as a S-SE verging<br />

and about WSW-ENE striking imbricate fan of m<strong>ed</strong>ium to low-angle thrusts.<br />

The outermost is the Arba-Ragogna blind thrust. Its long–lasting activity is<br />

testifi<strong>ed</strong> by the angular unconformities between the Upper Miocene, Upper<br />

Pliocene and Pleistocene stratigraphic units. A vertical slip rate of about 0.19<br />

mm/a was calculat<strong>ed</strong> for the Arba –Ragogna thrust during the last 21000<br />

years. The Arba-Ragogna thrust is one of the seismogenic sources capable to<br />

generate earthquakes with M6 in the Veneto-Friuli region, but it cannot be<br />

relat<strong>ed</strong> to historical earthquakes. It in<strong>di</strong>cates that it is one of the “silent”<br />

seismogenic source of the eastern Southern Alps.<br />

Key words: thrust tectonics, embricate thrust-system,<br />

seismogenic sources, eastern Southern Alps, Friuli.<br />

INQUADRAMENTO REGIONALE<br />

Il sistema strutturale Arba-Ragogna fa parte <strong>del</strong> fronte<br />

pliocenico-quaternario <strong>del</strong>la catena Sudalpina orientale (ESC),<br />

caratterizzata da sovrascorrimenti a <strong>di</strong>rezione m<strong>ed</strong>ia WSW-<br />

ENE e WNW-ESE e vergenza meri<strong>di</strong>onale che si estendono dai<br />

Monti Lessini fino all’area <strong>di</strong> confine italo-slovena (Fig. 1). La<br />

catena Sudalpina orientale è una tipica catena a<br />

sovrascorrimenti sia <strong>di</strong> basamento che pellicolari con pieghe<br />

per propagazione <strong>di</strong> faglia, fault bend folds, zone a triangolo e<br />

ventagli embricati <strong>di</strong> faglie come strutture prevalenti.<br />

Secondo MASSARI (1990), FANTONI et alii (2002),<br />

CASTELLARIN et alii (1992), CASTELLARIN & CANTELLI (2000),<br />

CASTELLARIN et alii (2006), l’ESC ha acquisito il suo assetto<br />

strutturale fondamentale durante la fase deformativa<br />

serravalliano - tortoniana. Questa fase deformativa, sviluppatasi<br />

con un σ1 orientato circa NNW-SSE, ha dato luogo ad una<br />

_________________________<br />

M. ELIANA POLI (*), ADRIANO ZANFERRARI (*) & GIOVANNI MONEGATO (**)<br />

(*)Dipartimento <strong>di</strong> <strong>Georisorse</strong> e Territorio - Università <strong>di</strong> U<strong>di</strong>ne; e-mail:<br />

eliana.poli@uniud.it<br />

(**)Dipartimento <strong>di</strong> Geoscienze – Università <strong>di</strong> Padova; e-mail:<br />

giovanni.monegato@unipd.it<br />

serie <strong>di</strong> thrust a <strong>di</strong>rezione m<strong>ed</strong>ia WSW - ENE e vergenza SSE,<br />

tra i quali il principale per importanza regionale è quello <strong>del</strong>la<br />

Valsugana, che nella zona <strong>di</strong> Agordo e lungo la valle <strong>del</strong> Piave<br />

fa sovrascorrere le sequenze metamorfiche varisiche al <strong>di</strong> sopra<br />

dei terreni permo-mesozoici. Durante il Serravalliano -<br />

Messiniano il rapido avanzare verso SSE <strong>del</strong> fronte <strong>del</strong>la<br />

catena Sudalpina orientale in forte sollevamento ha determinato<br />

la formazione <strong>di</strong> una avanfossa con depocentro nell’area<br />

prealpina veneta orientale e friulana e <strong>di</strong> un cuneo clastico,<br />

potente oltre 3000 m nelle Prealpi venete e oltre 2.500 m in<br />

quelle carniche (MASSARI et alii, 1986b; FANTONI et alii, 2002;<br />

ZANFERRARI et alii, 2008). La successione serravallianomessiniana<br />

che attualmente affiora nell’area collinare sia veneta<br />

che friulana, è stata intensamente coinvolta nel sistema <strong>di</strong><br />

sovrascorrimenti frontali neogenico-quaternari. Con la<br />

deposizione <strong>del</strong> conglomerato <strong>del</strong> Montello (Tortoniano<br />

superiore-Messiniano inferiore) l’avanfossa viene colmata e<br />

<strong>di</strong>venta, nel Pliocene e soprattutto nel Quaternario, un bacino <strong>di</strong><br />

avampaese moderatamente subsidente.<br />

Fig. 1 – Schema tettonico <strong>del</strong>l’Italia NE e <strong>del</strong>la Slovenia occidentale (da<br />

BURRATO et alii, 2008).<br />

Il successivo intervallo pliocenico-quaternario è<br />

contrad<strong>di</strong>stinto dall’attivazione e dall’evoluzione <strong>del</strong> sistema <strong>di</strong><br />

sovrascorrimenti che caratterizzano il margine meri<strong>di</strong>onale dei<br />

rilievi prealpini (Montello - Friuli belt in CASTELLARIN et alii,<br />

2006) e parte <strong>del</strong> sottosuolo <strong>del</strong>la pianura friulana centroorientale,<br />

formando il fronte più esterno <strong>del</strong>la catena. I thrust<br />

sono ciechi nella pianura la cui superficie presenta comunque<br />

varie evidenze <strong>di</strong> deformazioni e <strong>di</strong>slocazioni anche


ecentissime. In generale evidenze <strong>di</strong> deformazioni recenti sono<br />

date da anticlinali <strong>di</strong> crescita, paleosuperfici quaternarie<br />

sollevate e tiltate e anomalie <strong>di</strong> drenaggio (Gala<strong>di</strong>ni et alii,<br />

2005). La <strong>di</strong>rezione <strong>di</strong> raccorciamento pliocenicoquaternaria,<br />

legata ad un 1 <strong>di</strong>stribuito a ventaglio tra<br />

NNW-SSE e NNE-SSW proc<strong>ed</strong>endo da ovest a est, varia da<br />

NW-SE a NNW-SSE. Questo fatto, legato alla forma <strong>del</strong><br />

cuneo <strong>di</strong> avampaese che si affonda sotto al fronte sudalpino<br />

orientale e alle numerose er<strong>ed</strong>ità strutturali mesoalpine<br />

presenti, trova una conferma nella <strong>di</strong>stribuzione <strong>del</strong>la<br />

sismicità minore (Bressan et alii, 1998).<br />

Lungo il margine meri<strong>di</strong>onale <strong>del</strong>l’ESC il raccorciamento<br />

e l’inspessimento crostale in atto sono testimoniati anche<br />

<strong>del</strong>l’intensa attività sismica che caratterizza il Veneto e il<br />

Friuli centrale (SLEJKO et alii, 1989, POLI et alii, 2002;<br />

GALADINI et alii, 2005; BURRATO et alii, 2008). A questo<br />

proposito il catalogo Working Group CPTI (2004) riporta per<br />

l’area veneto-friulana numerosi terremoti storici e strumentali<br />

con magnitudo compresa fra il 6 e il 7: 1117 (Verona), 1348<br />

(Carnia), 1695 (Asolo), 1873 (Belluno), 1936 (Bosco <strong>del</strong><br />

Cansiglio) e 1976 (Friuli).<br />

IL SISTEMA ARBA – RAGOGNA<br />

Nuovi dati stratigrafici, geomorfologici e strutturali<br />

(Progetti CARG–FVG, PRIN e GNDT) hanno permesso <strong>di</strong><br />

<strong>del</strong>ineare le caratteristiche geometriche e cinematiche e<br />

l’evoluzione pliocenico- quaternaria <strong>del</strong> sistema <strong>di</strong><br />

sovrascorrimenti Arba-Ragogna, che interessa la zona prealpina<br />

carnica fra Maniago e Ragogna e l’antistante pianura.<br />

I dati strutturali sono stati ottenuti sia avvalendosi <strong>del</strong><br />

rilevamento geologico-strutturale <strong>di</strong> terreno che dall’analisi <strong>di</strong><br />

a)<br />

b)<br />

Pli<br />

Aq - La<br />

linee sismiche industriali <strong>del</strong>l’area. Il sistema Arba-Ragogna è<br />

Q<br />

IL SISTEMA DI THRUST ARBA-RAGOGNA (FRIULI)<br />

Se - Me<br />

J -K<br />

Pal - Eoc<br />

Fig. 2 – <strong>Sezione</strong> sismica industriale al fronte <strong>del</strong> sovrascorrimento Arba–<br />

Ragogna (a) e sua interpretazione geologica (b). Il sistema è formato da più<br />

superfici <strong>di</strong> accavallamento SSE-vergenti.<br />

173<br />

composto da un fascio embricato <strong>di</strong> sovrascorrimenti Svergenti<br />

a <strong>di</strong>rezione m<strong>ed</strong>ia WSW-ENE. La geometria dei thrust<br />

più esterni è caratterizzata da forte inclinazione nel tratto superficiale,<br />

localmente fino a subverticale (Fig. 2). Le faglie <strong>di</strong>ventano a m<strong>ed</strong>iobasso<br />

angolo tra 1-3 km <strong>di</strong> profon<strong>di</strong>tà, in quanto tendono a formare flat<br />

nelle litologie meccanicamente più deboli come la marna <strong>di</strong> Tarzo (con<br />

scollamento al top <strong>del</strong> “Gruppo <strong>di</strong> Cavanella”) e il flysch <strong>di</strong> Clauzetto<br />

(con scollamenti al tetto <strong>del</strong>la Piattaforma Carbonatica Friulana).<br />

In pianta le tip line dei sovrascorrimenti descrivono un<br />

andamento arcuato, formando talora locali strutture<br />

transpressive nelle zone <strong>di</strong> interferenza e <strong>di</strong> sovrapposizione tra<br />

le rampe.<br />

Una caratteristica fondamentale <strong>del</strong> sistema <strong>di</strong><br />

accavallamenti è la presenza <strong>di</strong> faglie fuori-sequenza (Fig. 3).<br />

Si tratta in vari casi <strong>di</strong> faglie inverse che si originano nella zona<br />

<strong>di</strong> cerniera <strong>di</strong> anticlinali frontali; in altri casi si tratta <strong>di</strong><br />

accavallamenti a basso angolo (20-30°) che tagliano le strutture<br />

Fig. 3 – Profilo geologico NW-SE attraverso il Monte <strong>di</strong> Ragogna. Si notano:<br />

l’anticlinale <strong>di</strong> rampa frontale <strong>del</strong> sovrascorrimento Arba-Ragogna che è<br />

tagliata da un thrust fuori sequenza nella zona <strong>di</strong> cerniera e il<br />

sovrascorrimento cieco Arba Ragogna il cui movimento ha determinato una<br />

serie <strong>di</strong> <strong>di</strong>scordanze angolari fra i terreni miocenico-quaternari.<br />

Legenda: Mon 1, 2,3, conglomerato <strong>del</strong> Montello (Tortoniano – Messiniano<br />

superiore); SPX: conglomerato <strong>di</strong> San Pietro <strong>di</strong> Ragogna (Pliocene superiore-<br />

Pleistocene inferiore); URP, SF, SPB: depositi pleistocenici; POI, UIN:<br />

depositi olocenici .<br />

plicative e <strong>di</strong>sgiuntive regionali (<strong>di</strong> regola a forte inclinazione<br />

fino a subverticali), con rigetti, per quanto è stato possibile<br />

osservare, <strong>di</strong> or<strong>di</strong>ne decametrico-ettometrico. Nell’area<br />

Sequals-Castelnovo-Ragogna, l’anticlinale <strong>di</strong> rampa frontale<br />

presenta una immersione assiale <strong>di</strong> circa 15-20° verso WSW.<br />

I rapporti <strong>di</strong> sovrapposizione degli in<strong>di</strong>catori cinematici<br />

misurati sulle superfici <strong>di</strong> faglia mostrano la tendenza alla<br />

rotazione <strong>del</strong>la <strong>di</strong>rezione <strong>di</strong> contrazione dal Miocene superiore<br />

(attorno a N135°) al Quaternario (fino a N 180-190°) (Fig. 4).<br />

La faglia basale <strong>del</strong> sistema, il sovrascorrimento Arba –<br />

Ragogna (AR), è cieca nella sua porzione occidentale, mentre<br />

affiora per alcuni km all’estremità orientale, dove risulta essere<br />

tagliato dal sovrascorrimento Susans-Tricesimo (sorgente <strong>del</strong><br />

terremoto <strong>del</strong> Friuli <strong>del</strong> 1976). La faglia AR è SSE-vergente,<br />

con <strong>di</strong>rezione m<strong>ed</strong>ia ENE-WSW, e mostra un rigetto verticale<br />

attorno ai 250 m <strong>del</strong>la base dei depositi quaternari (Fig. 2).<br />

Nella zona <strong>di</strong> Ragogna (Fig. 3), la faglia e l’anticlinale <strong>di</strong><br />

rampa frontale in crescita fra il Messiniano e l’Attuale,<br />

evidenziano rispettivamente una serie <strong>di</strong> rigetti decrescenti e <strong>di</strong><br />

<strong>di</strong>scordanze angolari fra le varie unità stratigrafiche <strong>di</strong> età<br />

compresa fra il Messiniano e il Pleistocene superiore (PAIERO<br />

& MONEGATO, 2003). Dai rapporti stratigrafici si ricava una<br />

velocità m<strong>ed</strong>ia <strong>di</strong> sollevamento <strong>di</strong> circa 0,19 mm/a per<br />

l’intervallo LGM-Attuale (GALADINI et alii, 2005).


174 POLI M. ELIANA ET ALII<br />

Fig. 4 – proiezione stereografica dei vettori <strong>di</strong> movimento misurati sulle<br />

superfici <strong>di</strong> faglia <strong>del</strong> fronte Neoalpino nell’area Maniago-Ragogna.<br />

Lungo la tip line <strong>del</strong>la faglia AR sono evidenti importanti<br />

deformazioni morfotettoniche, come la scarpata <strong>di</strong> circa 4 m <strong>di</strong> altezza<br />

che per oltre 2 km corre nella pianura tra Lestans e Valeriano e le forti<br />

anomalie <strong>del</strong> drenaggio dei torrenti Gerchia, Cosa e <strong>del</strong> Rugo <strong>di</strong><br />

Valeriano.<br />

Recentemente GALADINI et alii (2005) e BURRATO et alii<br />

(2008) hanno stu<strong>di</strong>ato le sorgenti sismogeniche presenti al<br />

fronte <strong>del</strong> Sudalpino orientale. Sulla base <strong>del</strong>le osservazioni<br />

effettuate, gli AA ritengono che il sovrascorrimento AR sia<br />

potenzialmente sismogenico, ma alla corrispondente sorgente<br />

Fig. 5 – Effetti <strong>di</strong> fenomeni <strong>di</strong> liquefazione nei depositi lacustri <strong>del</strong><br />

Pleistocene m<strong>ed</strong>io nel tetto <strong>del</strong> sovrascorrimento Arba -Ragogna (Rugo <strong>di</strong><br />

Valeriano).<br />

sismica parametrizzata (sorgente <strong>di</strong> Sequals) non è stato<br />

possibile associare alcun terremoto storico. La struttura, quin<strong>di</strong>,<br />

nonostante le forti evidenze morfotettoniche, fra cui anche<br />

sismiti (Fig. 5), risulta essere silente perlomeno nell’arco si<br />

tempo indagato e coperto dai cataloghi.<br />

BIBLIOGRAFIA<br />

BRESSAN G., BRAGATO P.L. & VENTURINI C. (2003) – Stress<br />

and strain bas<strong>ed</strong> on focal mechanisms in the seismotectonic<br />

framework of the friuli – Venezia Giulia region<br />

(Northeastern Italy). Bull. Seism. Soc. Am., 93/3, 1280-<br />

1297.<br />

BURRATO P., POLI M.E., VANNOLI P., ZANFERRARI A., BASILI<br />

R. & GALADINI F. (2008) - Sources of Mw 5+ earthquakes<br />

in northeastern Italy and western Slovenia: An updat<strong>ed</strong><br />

view bas<strong>ed</strong> on geological and seismological evidence.<br />

Tectonophysics, 453, 157-176, doi: 10.1016/j.tecto.<br />

2007.07.009.<br />

CASTELLARIN A., CANTELLI L., FESCE A.M., MERCIER J.L.,<br />

PICOTTI V., PINI G.A., PROSSER G. & SELLI L. (1992) -<br />

Alpine compressional tectonics in Southern Alps.<br />

Relationships with the N-Apennines. Annales Tectonicae, 6<br />

(1), 62-94.<br />

CASTELLARIN A. & CANTELLI L. (2000) - Neo-Alpine evolution<br />

of the Southern Eastern Alps. J. Geodyn., 30, 251–274.<br />

CASTELLARIN A., NICOLICH R., FANTONI R., CANTELLI L.,<br />

SELLA M. & SELLI L. (2006) – Structure of the lithosphere<br />

beneath the Eastern Alps (southern sector of the<br />

TRANSALP transect). Tectonophisycs, 414, 259-282.<br />

CPTI WORKING GROUP (2004) - Catalogo Parametrico dei<br />

Terremoti Italiani, v. 2004 (CPTI04). INGV, Bologna.<br />

Available at: http://emi<strong>di</strong>us.mi.ingv.it/CPTI/.<br />

FANTONI R., CATELLANI D., MERLINI S., ROGLEDI S. &<br />

VENTURINI S. (2002) – La registrazione degli eventi<br />

deformativi cenozoici nell’avampaese veneto-friulano.<br />

Mem. Soc. Geol. It., 57, 301–313.<br />

GALADINI F., POLI M.E. & ZANFERRARI A. (2005) -<br />

Seismogenic sources potentially responsible for<br />

earthquakes with M6 in the eastern Southern Alps<br />

(Thiene–U<strong>di</strong>ne sector, NE Italy). Geophys. J. Int., 161,<br />

739–762. doi:10.1111/j.1365-246X.2005.02571.x.<br />

MASSARI F., (1990) – The for<strong>ed</strong>eeps of the northern<br />

Adriatic margin: evidence of <strong>di</strong>acronicity in<br />

deformation of the Southern Alps. Riv. It. Paleont.<br />

Strat. 96, 350–380.<br />

MASSARI F., GRANDESSO P., STEFANI S. & ZANFERRARI A.<br />

(1986B) – The Oligo-Miocene Molasse of the VenetoFriuli<br />

region, Southern Alps. Giorn. Geol., 48, 235–255.<br />

PAIERO G., MONEGATO G., (2003) - The Pleistocene evolution<br />

of Arzino alluvial fan and western part of Tagliamento<br />

morainic amphitheatre. (Friuli, NE Italy). Il Quaternario,<br />

16/1, 185-193.<br />

POLI M.E., PERUZZA L, REBEZ A, RENNER G., SLEJKO D. &<br />

ZANFERRARI A., (2002) - New seismotectonic evidence from<br />

the analysis of the 1976-1977 and 1977-1999 seismicity in<br />

Friuli (NE Italy). Boll. Geof. Teor. Appl., 43, 53-78.<br />

SLEJKO D., CARULLI G.B., NICOLICH R., REBEZ A. ZANFERRARI<br />

A., CAVALLIN A., DOGLIONI C., CARRARO F., CASTALDINI<br />

D., ILICETO V., SEMENZA E. & ZANOLLA C. (1989) -<br />

Seismotectonics of the eastern Southern-Alps: a review.<br />

Boll. <strong>di</strong> Geof. Teor. Appl., 31, 109-136.


WORKING GROUP CPTI, 2004. Catalogo Parametrico dei<br />

Terremoti Italiani, v. 2004 (CPTI04). INGV, Bologna.<br />

Available at: http://emi<strong>di</strong>us.mi.ingv.it/CPTI/.<br />

ZANFERRARI A., AVIGLIANO R., CARRARO F., GRANDESSO P.,<br />

MONEGATO G., PAIERO G., POLI M.E., ROGLEDI S., STEFANI<br />

C., TOFFOLON G. - Carta geologica d’Italia alla scala<br />

1:50.000: Foglio 065 “Maniago”. APAT-Servizio<br />

Geologico Nazionale - Regione A. Friuli Venezia Giulia.<br />

Graphic Linea, Tavagnacco (UD). In stampa.<br />

IL SISTEMA DI THRUST ARBA-RAGOGNA (FRIULI)<br />

175


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 176-178, 3ff.<br />

Evidenze <strong>di</strong> tettonica recente <strong>ed</strong> attiva nel settore esterno sepolto<br />

<strong>del</strong>l’Appennino centrale abruzzese.<br />

ABSTRACT<br />

Evidence of recent and active tectonics in the buri<strong>ed</strong> external sector of<br />

the Abruzzi central Appennines.<br />

In order to identify evidence of active tectonics in the buri<strong>ed</strong> external<br />

sector of the Abruzzi central Appennine chain a combin<strong>ed</strong> geologicalstructural<br />

and morphometric study has been carri<strong>ed</strong> out east of the Maiella<br />

thrust front (Orsogna area). In this area, inde<strong>ed</strong>, although historical seismicity<br />

has been document<strong>ed</strong> (e.g., Orsogna 1881, Maw 5.6), the location and nature<br />

of the seismogenic source is still largely debat<strong>ed</strong>. The detail<strong>ed</strong> geologicalstructural<br />

mapping, the <strong>di</strong>stribution of various orders of Quaternary alluvial<br />

terraces and the evaluation of geomorphic in<strong>di</strong>ces, allow<strong>ed</strong> us to assume the<br />

existence of an area characteris<strong>ed</strong> by Quaternary "localis<strong>ed</strong> uplift", superpos<strong>ed</strong><br />

to the “regional doming” affecting the overall Apennine chain.<br />

Bas<strong>ed</strong> on these results, although still preliminary, we interpret the<br />

localis<strong>ed</strong> uplift in the Orsogna area as connect<strong>ed</strong> to the growth of a blind fault,<br />

active at least from the Middle Pleistocene.<br />

Key words: Abruzzi central Appennines, Active tectonics,<br />

external sector of the Chain, morphometric analyses, uplift<br />

and drainage response.<br />

INTRODUZIONE<br />

L’area <strong>di</strong> stu<strong>di</strong>o è ubicata subito ad oriente <strong>del</strong>l’anticlinale<br />

carbonatica <strong>del</strong>la Maiella, in corrispondenza <strong>del</strong> fronte sepolto<br />

<strong>del</strong>la catena centro-appenninica abruzzese (Fig. 1). I terreni<br />

affioranti in tale settore sono costituiti, principalmente, dai<br />

depositi silicoclastici argilloso-sabbiosi e conglomeratici <strong>del</strong>la<br />

Formazione Mutignano (Pliocene superiore - Pleistocene<br />

inferiore). In generale, i termini più recenti <strong>di</strong> questa<br />

Formazione sono tiltati verso l’Adriatico costituendo una<br />

blanda monoclinale immergente verso (N)NE.<br />

L’assetto geologico-strutturale <strong>del</strong> sottosuolo, ottenuto<br />

dall’interpretazione dei dati <strong>di</strong> sismica a riflessione, invece,<br />

evidenzia una serie <strong>di</strong> anticlinali, la più interna <strong>del</strong>le quali è<br />

nota in letteratura come struttura <strong>di</strong> Casoli-Bomba (CASNEDI<br />

1981; PATACCA et alii, 1992). Tali pieghe, orientate<br />

prevalentemente NNW-SSE, si sono sviluppate a seguito <strong>del</strong>la<br />

propagazione verso oriente <strong>di</strong> un accavallamento principale con<br />

_________________________<br />

(*) Università «G. D’Annunzio» <strong>di</strong> Chieti. Dipartimento <strong>di</strong> Scienze <strong>del</strong>la<br />

Terra - Campus Universitario Madonna <strong>del</strong>le Piane - Via dei Vestini 30<br />

- 66013 Chieti Scalo (CH).<br />

Lavoro eseguito con il contributo finanziario <strong>del</strong>l’Università.<strong>di</strong> Chieti (resp.<br />

A. Pizzi).<br />

GIUSEPPE POMPOSO (*) & ALBERTO PIZZI (*)<br />

geometria ramp-flat-ramp dal quale si <strong>di</strong>partono una serie <strong>di</strong><br />

splay minori. In particolare le strutture più esterne coinvolgono<br />

le unità alloctone molisane e le coperture silicoclastiche<br />

neogeniche (CALAMITA et alii, 2002).<br />

Tuttavia la carenza <strong>di</strong> dati sismici risolutivi nei livelli più<br />

pellicolari non ha permesso <strong>di</strong> vincolare il coinvolgimento, o<br />

meno, <strong>del</strong>le coperture tardoquaternarie nella deformazione e<br />

quin<strong>di</strong> <strong>di</strong> <strong>di</strong>agnosticare un’eventuale attività recente <strong>di</strong> tali<br />

elementi.<br />

Inoltre, sulla base <strong>di</strong> stu<strong>di</strong> storico-archivistici tale zona è<br />

stata proposta come l’area epicentrale <strong>del</strong>l’evento sismico <strong>del</strong><br />

1881, cui è stata attribuita una Maw pari a 5.6 e Io pari a 8 con<br />

massimi effetti ad Orsogna (BOSCHI et alii, 1997; MONACHESI<br />

e STUCCHI, 1997 Gruppo <strong>di</strong> Lavoro CPTI, 2004; GALADINI et<br />

alii, 2006).<br />

Tuttavia, non esistono ancora ipotesi chiare sulla<br />

localizzazione e sulla natura geologica <strong>del</strong>la sorgente<br />

sismogenetica responsabile per questo evento. Infatti, l’attività<br />

dei sovrascorrimenti in questo settore è generalmente<br />

considerata terminata al Pleistocene inferiore (CASNEDI 1981;<br />

PATACCA et alii, 1992). Per contro, non si hanno evidenze,<br />

nell’area, degli effetti <strong>del</strong> regime estensionale proprio <strong>del</strong>le aree<br />

<strong>del</strong>la dorsale appenninica (PIZZI et alii, in stampa).<br />

Fig. 1 – Schema geologico-strutturale <strong>del</strong>l’area analizzata (mo<strong>di</strong>ficato da<br />

Calamita et alii, 2002).


EVIDENZE DI TETTONICA RECENTE ED ATTIVA NEL SETTORE DELL’APPENNINO CENTRALE ABRUZZESE<br />

METODOLOGIA<br />

Al fine <strong>di</strong> valutare la possibile attività tardoquaternaria <strong>del</strong>le<br />

strutture osservate, sono stati eseguiti dettagliati stu<strong>di</strong><br />

geologico-strutturali <strong>di</strong> terreno affiancati da analisi <strong>di</strong> tipo<br />

morfometrico sui principali elementi <strong>del</strong> reticolo idrografico<br />

<strong>del</strong>l’area.<br />

Analisi geologico-strutturale<br />

Il rilevamento geologico <strong>di</strong> dettaglio ha permesso <strong>di</strong><br />

in<strong>di</strong>viduare, nell’area localizzata a sud-ovest <strong>del</strong>l’abitato <strong>di</strong><br />

Osogna, un settore nel quale le giaciture misurate nella<br />

Formazione Mutignano hanno un’immersione verso NW (Fig.<br />

2a-b), in netta contrapposizione con il quadro giaciturale<br />

misurato nell’ambito <strong>del</strong> rilevamento CARG <strong>del</strong> Foglio Chieti<br />

(AA.VV., in stampa), che denota, per tali depositi, un regionale<br />

assetto in monoclinale con immersione verso (N)NE (Fig.2c).<br />

Inoltre è stato effettuato uno stu<strong>di</strong>o <strong>di</strong> dettaglio sui depositi<br />

alluvionali terrazzati relativi al Torrente Moro il cui bacino<br />

idrografico attuale risulta totalmente inscritto all’interno dei<br />

depositi argilloso-sabbiosi <strong>del</strong>la Formazione Mutignano. In<br />

particolare, è stato osservato come i depositi alluvionali relativi<br />

ai due or<strong>di</strong>ni <strong>di</strong> terrazzo più antichi – attribuiti rispettivamente<br />

alla parte basale <strong>ed</strong> a quella sommitale <strong>del</strong> Pleistocene m<strong>ed</strong>io –<br />

risultino costituiti quasi esclusivamente da ciottoli <strong>di</strong> natura<br />

carbonatica e quin<strong>di</strong> correlabili con un’area <strong>di</strong> alimentazione<br />

esterna a quella <strong>del</strong> bacino idrografico attuale.<br />

Fig. 2 – Panoramica dei depositi argillosi <strong>del</strong>la Formazione Mutignano a<br />

sud <strong>del</strong>l’abitato <strong>di</strong> Orsogna (a). Particolare <strong>del</strong>le argille immergenti verso<br />

NW (b). Proiezione stereografica <strong>del</strong>le giaciture misurate nell’ambito <strong>del</strong><br />

rilevamento CARG <strong>del</strong> Foglio Chieti per la Formazione Mutignano (c)<br />

(AA. VV. in stampa).<br />

177<br />

Analisi Morfometriche<br />

La <strong>di</strong>fficoltà <strong>di</strong> in<strong>di</strong>viduare evidenze <strong>di</strong> deformazione<br />

tardoquaternaria sulla base dei dati geologici <strong>di</strong> superficie,<br />

imputabile principalmente alla natura argillosa dei depositi<br />

affioranti, ha fatto si che lo stu<strong>di</strong>o geologico-strutturale <strong>di</strong><br />

terreno venisse integrato con una serie <strong>di</strong> analisi morfologiche e<br />

morfometriche effettuate sui reticoli <strong>di</strong> drenaggio.<br />

Attraverso l’interpretazione <strong>di</strong> foto aeree e l’analisi <strong>di</strong> DEM<br />

(risoluzione pixel 20mx20m) m<strong>ed</strong>iante l’utilizzo <strong>di</strong> softwares<br />

d<strong>ed</strong>icati, è stato creato un database contenente i principali<br />

elementi <strong>del</strong> reticolo idrografico.<br />

Tra gli in<strong>di</strong>ci calcolati durante l’analisi morfometrica, lo<br />

Stream Length Gra<strong>di</strong>ent Index (SL) (HACK, 1973; KELLER &<br />

PINTER, 2001) estratto per circa 30 corsi d’acqua, è risultato<br />

particolarmente utile al fine <strong>di</strong> avere un quadro regionale e<br />

dettagliato <strong>del</strong>le anomalie presenti nelle variazioni <strong>del</strong><br />

gra<strong>di</strong>ente topografico <strong>del</strong> reticolo idrografico (Fig.3).<br />

Tutti i dati ricavati sia dal rilevamento geologico-strutturale<br />

Fig. 3 – Schema litologico <strong>del</strong>l’area con sovrapposizione dei valori<br />

<strong>del</strong>l’SL calcolati. L’ellisse in tratteggio evidenzia i valori anomali.<br />

che dalle analisi geomorfiche quantitative sono stati<br />

successivamente integrati in un geo-database con lo scopo <strong>di</strong><br />

poter fruire contemporaneamente <strong>di</strong> tutte le informazioni<br />

<strong>di</strong>sponibili.<br />

DISCUSSIONE<br />

Partendo dai dati <strong>di</strong> terreno è possibile quin<strong>di</strong> ricostruire<br />

l’evoluzione recente <strong>del</strong> settore analizzato considerando la<br />

presenza <strong>di</strong> un paleo-reticolo <strong>di</strong> drenaggio che costituiva il<br />

collettore tra le zone <strong>di</strong> approvvigionamento carbonatiche<br />

(anticlinale <strong>del</strong>la Maiella) <strong>ed</strong> i depositi alluvionali terrazzati <strong>del</strong><br />

Pleistocene m<strong>ed</strong>io attualmente localizzati all’interno <strong>del</strong> bacino<br />

idrografico <strong>del</strong> Torrente Moro. Questo paleo-reticolo <strong>di</strong>


178 G. POMPOSO & A. PIZZI<br />

drenaggio, qui denominato “Paleo-Aventino”, avrebbe avuto un<br />

asse orientato NNE-SSW, coerente con l’andamento regionale<br />

<strong>del</strong>le principali aste fluviali in questo settore <strong>del</strong>la fascia<br />

periadriatica abruzzese. Successivamente, la presenza <strong>di</strong> un<br />

settore in sollevamento, avrebbe costituito un ostacolo per lo<br />

scorrimento <strong>del</strong> “Paleo-Aventino” il quale è stato quin<strong>di</strong><br />

soggetto ad una <strong>di</strong>versione. A tale fenomeno è associabile la<br />

cattura <strong>del</strong> “Paleo-Aventino” da parte <strong>del</strong> Fiume Sangro, tuttora<br />

osservabile.<br />

Inoltre l’ipotesi <strong>di</strong> un’anticlinale in crescita riuscirebbe a<br />

giustificare: i) la presenza <strong>di</strong> patterns ra<strong>di</strong>ali che<br />

<strong>del</strong>imiterebbero il settore frontale e meri<strong>di</strong>onale <strong>del</strong>la piega; ii)<br />

la presenza <strong>di</strong> deflessioni localizzate nel fianco orientale <strong>del</strong>la<br />

struttura, verosimilmente associabili al plunge <strong>del</strong>la piega; iii)<br />

la serie <strong>di</strong> catture osservabili nella porzione meri<strong>di</strong>onale<br />

<strong>del</strong>l’area stu<strong>di</strong>ata; iv) la presenza <strong>di</strong> estesi tratti <strong>del</strong> reticolo ad<br />

andamento E-W associabili a fenomeni <strong>di</strong> tilting <strong>di</strong>fferenziale.<br />

CONCLUSIONI<br />

Nel settore esterno sepolto <strong>del</strong>l’Appennino centrale<br />

abruzzese lo stu<strong>di</strong>o geologico-strutturale dei depositi marini<br />

plio-pleistocenici e la <strong>di</strong>stribuzione dei vari or<strong>di</strong>ni <strong>di</strong> terrazzi<br />

alluvionali quaternari hanno permesso <strong>di</strong> ipotizzare l’esistenza<br />

<strong>di</strong> un “sollevamento localizzato” nell’area <strong>di</strong> Orsogna durante il<br />

tardoquaternario, concomitante al doming regionale <strong>del</strong>l’intera<br />

area appenninica.<br />

I risultati <strong>del</strong>le analisi geomorfiche quantitative ottenuti per<br />

il Torrente Moro e per i corsi d’acqua circostanti mostrano la<br />

presenza <strong>di</strong> anomalie <strong>del</strong> reticolo idrografico. La polarità e la<br />

<strong>di</strong>stribuzione <strong>di</strong> queste anomalie sono coerenti con una risposta<br />

<strong>del</strong> reticolo idrografico ad un settore in sollevamento nell’area<br />

<strong>di</strong> Orsogna.<br />

In base ai risultati ottenuti, sebbene ancora preliminari,<br />

interpretiamo tali fenomeni <strong>di</strong> sollevamento come associabili<br />

all’attività <strong>di</strong> crescita <strong>di</strong> una struttura tettonica cieca, attiva<br />

nell’area almeno dal Pleistocene m<strong>ed</strong>io.<br />

Si sottolinea, inoltre, come l’area <strong>di</strong> massima intensità<br />

<strong>del</strong>l’evento sismico <strong>del</strong> 10 settembre 1881 troverebbe<br />

collocazione all’interno <strong>del</strong> settore evidenziato dal presente<br />

lavoro.<br />

BIBLIOGRAFIA<br />

AA.VV. (in stampa)- <strong>Note</strong> illustrative <strong>del</strong>laCarta Geologica<br />

d’Italia alla scala 1:50.000 - Foglio 361 Chieti. APAT -<br />

Dipartimento Difesa <strong>del</strong> Suolo-Servizio Geologico d’Italia,<br />

S.EL.CA. – Firenze.<br />

ADAMOLI L., BIGOZZI A., CIARAPICA G., CIRILLI S., PASSERI L.,<br />

ROMANO A., DURANTI F. & VENTURI F. (1990) - Upper<br />

Triassic bituminous facies and Hettangian pelagic facies in<br />

the Gran Sasso Range. Boll. Soc. Geol. It., 109 (1), 219-<br />

230.<br />

BOSCHI E., GUIDOBONI E., FERRARI G., VALENSISE G. &<br />

GASPERINI P. (a cura <strong>di</strong>) (1997) - Catalogo dei forti<br />

terremoti in Italia dal 461 a.C. al 1990. Istituto Nazionale<br />

<strong>di</strong> Geofisica e SGA Storia Geofisica Ambiente. Bologna,<br />

SGA, pp. 644. [http://storing.ingv.it/cft/].<br />

CASNEDI R., CRESCENTI U., D'AMATO C., MOSTARDINI F. &<br />

ROSSI U. (1981) - Il Plio-Pleistocene <strong>del</strong> sottosuolo<br />

molisano. Geologica Romana, 20, 1-42.<br />

GRUPPO DI LAVORO CPTI (2004) - Catalogo Parametrico dei<br />

Terremoti Italiani, vers. 2004 (CPT104). INGV Bologna,<br />

http://emi<strong>di</strong>us.mi.ingv.it/CPTI.<br />

GALADINI F., MASTINO F., PIZZI A., SAVARESE F., SCISCIANI V.,<br />

TERTULLIANI A. (2006) - Il terremoto <strong>del</strong> 10 settembre<br />

1881 e la sismicità <strong>del</strong> settore “esterno” <strong>del</strong>la regione<br />

abruzzese. Abstract 25° Convegno Nazionale GNGTS -<br />

Roma 28-30 novembre 2006.<br />

HACK J. (1973) - Stream profile analysis and stream gra<strong>di</strong>ent<br />

index. U. S. Geol. Surv. J. Res. 1, 421-429.<br />

KELLER E. (1986) - Investigation of active tectonics: use of<br />

surficial earth processes. In: Wallace, R. E. (<strong>ed</strong>s), Active<br />

Tectonics stu<strong>di</strong>es in Geophysics. Nat. Acad. Press,<br />

Washington, Dc, 136-147.<br />

KELLER E. & PINTER, N. (2001) - Active Tectonics,<br />

Earthquakes, Uplift and Landscape. Earth Sciences Series,<br />

Prentice – Hall, Englewood Cliffs, NJ, 121-156.<br />

MONACHESI G. & STUCCHI M. (a cura <strong>di</strong>) (1997) - DOM4.1 un<br />

database <strong>di</strong> osservazioni macrosismiche <strong>di</strong> terremoti <strong>di</strong><br />

area italiana al <strong>di</strong> sopra <strong>del</strong>la soglia <strong>del</strong> danno. CNR-<br />

GNDT. [http://emi<strong>di</strong>us.mi.ingv.it/DOM]<br />

PATACCA E., SCANDONE P., BELLATALLA M., PERILLI N. &<br />

SANTINI U. (1992) - La zona <strong>di</strong> giunzione tra l’arco<br />

appenninico settentrionale e l’arco appenninico<br />

meri<strong>di</strong>onale nell’Abruzzo e nel Molise. In: Tozzi, M.,<br />

Cavinato, G.P., Parotto, M., (Eds.), Stu<strong>di</strong> preliminari<br />

all’acquisizione dati <strong>del</strong> profilo CROP 11 Civitavecchia-<br />

Vasto. Stu<strong>di</strong> Geologici Camerti, 1991/2, 417-441.<br />

PIZZI A., FALCUCCI E., GORI S., GALADINI F., MESSINA P., DI<br />

VINCENZO M., ESESTIME P., GIACCIO B., SPOSATO A.<br />

(2006). Faglie attive nell’area <strong>del</strong> Massiccio <strong>del</strong>la Maiella<br />

(Appennino abruzzese, Italia centrale). Abstract 25°<br />

Convegno Nazionale GNGTS - Roma 28-30 novembre<br />

2006.<br />

PIZZI A., FALCUCCI E., GORI S., GALADINI F., MESSINA P., DI<br />

VINCENZO M., ESESTIME P., GIACCIO B., POMPOSO G.,<br />

SPOSATO A. (in stampa) - Active faulting in the Maiella<br />

Massif (central Apennines, Italy). GeoActa (Bologna).


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 179-182, 2 ff.<br />

Analisi in profon<strong>di</strong>tà <strong>di</strong> strutture mesoalpine e neoalpine nelle Alpi<br />

Meri<strong>di</strong>onali orientali<br />

ABSTRACT<br />

Depth analysis of mesoalpine and neoalpine structures<br />

To better analyse the superimposition between structures of mesoalpine<br />

(1-NE-SW) and neoalpine (1 from N-S to NW-SE) phases and to study the<br />

complex system of reactivations, some deep geologic sections have been<br />

realiz<strong>ed</strong>. Five sections are about N-S or NW-SE orient<strong>ed</strong>, they cut the principal<br />

neoalpine structures; two of them are remakes from already publish<strong>ed</strong> sections<br />

(Carulli & Ponton,1992 e Merlini et alii, 2002).<br />

A long section SW-NE cuts orthogonally the others sections and the<br />

mesoalpine structures. So we can reconstruct a more correct reason<strong>ed</strong> scheme<br />

of this part of South-alpine orogenic belt. For the first time the deep interaction<br />

between orthogonally fault planes and their three-<strong>di</strong>mensional wideness has<br />

been analyz<strong>ed</strong>. It is clear, for all the principal structures, the basement<br />

involvement and the common decollement horizons in the Permian and<br />

Carnian evaporitic units. Mesoalpine frontal ramps became lateral or oblique<br />

in the first successive phases and then they are cut and translate.<br />

In this work only one section is present<strong>ed</strong>, the Pontebba-Berna<strong>di</strong>a well-<br />

Tricesimo, mo<strong>di</strong>fi<strong>ed</strong> from Merlini et alii (2002) where are represent<strong>ed</strong> the<br />

principal structures: Val Dogna and M. S. Simeone lines, mesoalpine in<br />

origin, are fold<strong>ed</strong> from the neoalpine anticline ramp, while the Berna<strong>di</strong>a line is<br />

cut from the neoalpine plane and the Cividale line is partly a reactivation of<br />

the mesoalpine plane.<br />

Key words: Friuli, Southern Alps, thrust tectonics, poliphasic<br />

deformations.<br />

Parole chiave: Friuli, Alpi Meri<strong>di</strong>onali, tettonica compressiva,<br />

deformazioni polifasiche.<br />

INTRODUZIONE<br />

MAURIZIO PONTON (*)<br />

Il problema <strong>del</strong>la ricostruzione in profon<strong>di</strong>tà <strong>del</strong>le strutture<br />

tettoniche nel settore orientale <strong>del</strong>le Alpi Meri<strong>di</strong>onali emerge<br />

perio<strong>di</strong>camente e fino ad oggi è stato affrontato ricostruendo<br />

sezioni geologiche più o meno bilanciate orientate<br />

generalmente N-S (CASTELLARIN et alii, 1980; ROEDER, 1992;<br />

ROEDER & LINDSEY 1992; CASTELLARIN et alii, 2006) cioè<br />

analizzando i piani <strong>di</strong> faglia come <strong>di</strong> prevalente origine<br />

neoalpina (1 da N-S a NW-SE) e solo in parte considerando<br />

anche i piani <strong>di</strong> origine mesoalpina (1 NE-SW) (CARULLI &<br />

PONTON, 1992; MERLINI et alii, 2002; POLI et alii, 2002).<br />

Vari sono i lavori che provano la polifasatura <strong>di</strong> questo<br />

settore <strong>di</strong> catena (DOGLIONI & BOSELLINI, 1987; VENTURINI,<br />

1990; DOGLIONI, 1992; CAPUTO, 1996, 1997, 2008; POLI<br />

1995,1996; POLI & ZANFERRARI, 1995; PONTON, 2002;<br />

PONTON, 2007).<br />

L’interferenza fra strutture orientate <strong>di</strong>versamente fra loro,<br />

impostatesi lungo piani i cui angoli <strong>di</strong> inclinazione sono<br />

fortemente influenzati dalle varie strutturazioni prec<strong>ed</strong>enti, sta<br />

alla base <strong>del</strong> complesso <strong>ed</strong>ificio <strong>del</strong>le Alpi Meri<strong>di</strong>onali orientali<br />

e in particolare <strong>del</strong>l’area friulana e giulia.<br />

Tutti gli autori concordano sulla presenza <strong>di</strong> deformazioni<br />

determinate da tre fasi orogeniche principali: ercinica,<br />

mesoalpina e neoalpina. Per quest’ultima si sono poi<br />

in<strong>di</strong>viduati vari sta<strong>di</strong> fra i quali il più <strong>di</strong>scusso, per le poche<br />

evidenze è quello insubrico <strong>del</strong> Cattiano-Bur<strong>di</strong>galiano<br />

(CASTELLARIN et alii, 1992; CAPUTO et alii, 2002; PONTON &<br />

VENTURINI, 2002; ZANFERRARI et alii, 2002; GALADINI et alii,<br />

2005).<br />

METODOLOGIA<br />

Nel presente lavoro e in quelli che seguiranno si è cercato <strong>di</strong><br />

ricostruire in profon<strong>di</strong>tà le relazioni geometriche tra le strutture<br />

attivate durante le fasi mesoalpina e neoalpina prestando<br />

attenzione alle zone <strong>di</strong> interferenza fra i piani <strong>di</strong> faglia.<br />

Assunto che per tutti i piani <strong>di</strong> scorrimento i livelli <strong>di</strong><br />

scollamento principali sono gli stessi e cioè quelli nelle unità<br />

evaporitiche <strong>del</strong> Permiano superiore e <strong>del</strong> Triassico superiore,<br />

per quanto riguarda le rampe, spesso si impostano in<br />

corrispondenza <strong>di</strong> paleofaglie con componente <strong>di</strong>stensiva <strong>del</strong><br />

Triassico sup.- Giurassico inf. e <strong>del</strong> Cretacico sup. e nelle fasi<br />

compressive successive giocano un ruolo <strong>di</strong>verso a seconda<br />

<strong>del</strong>la <strong>di</strong>rezione <strong>di</strong> massima compressione per cui una stessa<br />

porzione <strong>di</strong> piano già esistente passa da rampa frontale a<br />

laterale o obliqua e viceversa.<br />

Al fine <strong>di</strong> analizzare queste relazioni sono state realizzate<br />

(fig. 1) più sezioni geologiche profonde in gran parte orientate<br />

circa N-S, che tagliano ortogonalmente le principali strutture<br />

neoalpine; esse seguono quelle già realizzate da CARULLI &<br />

PONTON (1992) e da MERLINI et alii, 2002 che per l’occasione<br />

sono state riviste e rimo<strong>del</strong>late. Infine una sezione orientata<br />

circa SW-NE taglia tutte queste sezioni intercettando in<br />

ortogonale le principali strutture mesoalpine nei loro tratti più<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Ambientali e Marine, Via Weiss 2<br />

- 34127 Trieste – ponton@units.it


180 M. PONTON<br />

Fig. 1 – Schema strutturale aggiornato <strong>del</strong>le Alpi Meri<strong>di</strong>onali orientali e ubicazione <strong>del</strong>le sezioni geologiche. Structural updat<strong>ed</strong> scheme of Eastern Southern<br />

Alps and location of the geological sections.<br />

1 M. Palombino-M. Cavallo-Caneva; 2 M. Peralba-Forni <strong>di</strong> Sotto-Carpacco; 3 M. Polinik-M.Dauda-Flaibano (da:Carulli & Ponton, 1992 mo<strong>di</strong>f.); 4 Weidegg-<br />

M.Amariana-M.S. Simeone-San Daniele; 5 Pontebba-Pozzo Berna<strong>di</strong>a-Tricesimo (da: Merlini et alii, 2002 mo<strong>di</strong>f.); 6 Tarvisio-M.Canin-M.Cavallo.<br />

evidenti in affioramento e cioè nella fascia p<strong>ed</strong>emontana.<br />

I dati immessi sono quelli <strong>di</strong> superficie e bibliografici più<br />

aggiornati (oltre ai già citati, anche: PLACER, 1999; CARULLI,<br />

2006; ZANFERRARI et alii, 2006a, 2006b; PONTON, 2008) e<br />

quelli in<strong>di</strong>retti gravimetrici e magnetici (CATI et alii, 1989),<br />

sismici a riflessione e sismologici (MERLINI et alii, 2002; POLI<br />

et alii, 2002; NICOLICH et alii, 2004; GALADINI et alii, 2005).<br />

La ricostruzione in profon<strong>di</strong>tà <strong>del</strong>le geometrie con sezioni<br />

geologiche incrociate è risultata complessa ma abbastanza<br />

sod<strong>di</strong>sfacente nei settori prealpini, mentre per la porzione più<br />

interna <strong>del</strong>la catena le variabili sono notevolmente più<br />

numerose. Entrano maggiormente in gioco le variazioni <strong>di</strong><br />

spessore e <strong>di</strong> facies <strong>del</strong>le formazioni, le strutture estensionali<br />

mesozoiche (CARULLI et alii, 2002) e, nei settori settentrionali,<br />

le unità erciniche che interessano le successioni precarbonifere.<br />

Queste ultime unità, insieme a quelle <strong>del</strong> Permo-<br />

Carbonifero, si sono assunte come un basamento generalizzato<br />

come quello a bassa suscettività magnetica presente al <strong>di</strong> sotto<br />

<strong>del</strong>le evaporiti permiane e <strong>del</strong>la successione mesozoica<br />

<strong>del</strong>l’avampaese.<br />

In sintesi questo lavoro attraverso un’analisi <strong>di</strong> geometrie<br />

non piane e non cilindriche si propone un primo livello <strong>di</strong><br />

interpolazione <strong>del</strong>le strutture <strong>del</strong>le due fasi deformative,<br />

sezionate in più punti e in <strong>di</strong>rezioni <strong>di</strong>verse, in<strong>di</strong>viduando i<br />

piani <strong>di</strong> scollamento e <strong>di</strong> scorrimento, i punti <strong>di</strong> cut-off e quin<strong>di</strong><br />

i più probabili raccorciamenti. Naturalmente se un obbiettivo è<br />

quello <strong>di</strong> rendere bilanciabili le sezioni, per il momento questo<br />

lavoro rappresenta un primo tentativo; l’obbiettivo finale è<br />

quello <strong>di</strong> realizzare una mappa palinspastica <strong>del</strong>l’area.<br />

DISCUSSIONE<br />

Uno dei risultati più imm<strong>ed</strong>iati derivanti dall’incrocio fra<br />

più sezioni è stato quello <strong>del</strong>la revisione <strong>del</strong>le sezioni<br />

prec<strong>ed</strong>entemente pubblicate.<br />

In questa s<strong>ed</strong>e si propone una prima rielaborazione <strong>del</strong>la


Fig.2 – <strong>Sezione</strong> geologica n°5 <strong>di</strong> fig.1 (da MERLINI et alii, 2002 mo<strong>di</strong>f.)<br />

sola sezione <strong>di</strong> MERLINI et alii (2002) nella quale (sezione 5 <strong>di</strong><br />

fig. 1 e fig.2) meglio si <strong>del</strong>ineano le ra<strong>di</strong>ci <strong>del</strong>le strutture<br />

mesoalpine, quali: la linea <strong>del</strong> M Berna<strong>di</strong>a, troncata e traslata in<br />

fase neoalpina, la linea <strong>di</strong> Cividale, il cui piano è in parte<br />

riattivato, e la linea <strong>di</strong> Palmanova, struttura frontale <strong>del</strong> sistema<br />

mesoalpino.<br />

Durante l’elaborazione <strong>del</strong>le sezioni sono emerse<br />

interessanti osservazioni che vengono <strong>di</strong> seguito elencate<br />

brevemente.<br />

Il basamento è praticamente sempre coinvolto in tutte le<br />

strutture analizzate. C’è una strettissima relazione fra il sistema<br />

<strong>del</strong>le cosiddette linee <strong>di</strong> Sauris e la linea (o sistema <strong>di</strong> linee) M.<br />

Dof-M. Auda-M.S. Simeone–Saga; infatti quest’ultima<br />

rappresenterebbe lo scollamento superiore e scorrimento più<br />

avanzato <strong>del</strong> sistema <strong>di</strong> Sauris. Le strutture mesoalpine, i cui<br />

piani <strong>di</strong> scollamento vengono in parte utilizzati nelle fasi<br />

successive, vengono prese in carico all’interno <strong>del</strong>le strutture<br />

neoalpine e traslate verso S o SE assieme a parti dei loro bacini<br />

<strong>di</strong> avanfossa; in questo contesto il sistema <strong>di</strong> Sauris (in origine<br />

mesoalpino e/o insubrico) viene piegato dall’anticlinale da<br />

rampa <strong>del</strong> sistema neoalpino nella zona <strong>del</strong>l’alto Tagliamento.<br />

La rotazione antioraria progressiva <strong>del</strong>le <strong>di</strong>rezioni <strong>di</strong> massima<br />

compressione da NE-SW (fase mesoalpina) fino a NW-SE<br />

degli sta<strong>di</strong> più recenti (fase neoalpina) con oscillazioni finali fra<br />

NW-SE e N-S, si riflette nelle complesse relazioni dei piani in<br />

profon<strong>di</strong>tà.<br />

BIBLIOGRAFIA<br />

CAPUTO R. (1996) - The polyphase tectonics of Eastern<br />

Dolomites, Italy. Mem. Sci. Geol., 48: 93-106.<br />

CAPUTO R. (1997) - The puzzling regmatic system of Eastern<br />

dolomites. Mem. Sci. Geol., 49, 1-10.<br />

ANALISI IN PROFONDITÀ DI STRUTTURE MESOALPINE E NEOALPINE<br />

181<br />

CAPUTO R. (2008) – Tettonica polifasica nei <strong>di</strong>ntorni <strong>di</strong><br />

Cortina d’Ampezzo, Dolomiti orientali. Ren<strong>di</strong>conti online<br />

SGI, 1, note <strong>brevi</strong>, 57-61.<br />

CAPUTO R., POLI M.E. & ZANFERRARI A. (2002) - Neogene-<br />

Quaternary Twist Tectonics In The Eastern Southern Alps,<br />

Italy. Mem. Sci. Geol., 54: 155-158.<br />

CARULLI G.B. (a cura <strong>di</strong>) (2006) – Carta geologica <strong>del</strong> Friuli<br />

Venezia Giulia (scala 1:150.000 con note ill.). Servizio<br />

Geologico <strong>del</strong>la Regione FVG, SELCA.<br />

CARULLI G.B., COZZI A., MASETTI D., PERNARCIC E.,<br />

PODDA F. & PONTON M. (2002) – Middle Triassic-<br />

Early Jurassic extensional tectonics in the Carnian<br />

Prealps (eastern Southern Alps). Mem. Sci. Geol., 54,<br />

151-154.<br />

CARULLI G.B. & PONTON M. (1992) – Interpretazione<br />

strutturale profonda <strong>del</strong> settore centrale carnicofriulano.<br />

Stu<strong>di</strong> Geologici Camerti, vol. spec., 2, CROP<br />

1-1°, 275-284, Camerino.<br />

CASTELLARIN A., CANTELLI L., FESCE A.M., MERCIER J.L.,<br />

PICOTTI V., PINI G.A., PROSSER G. & SELLI L. (1992) -<br />

Alpine compressional tectonics in Southern Alps.<br />

Relationships with the N-Apennines. Annales Tectonicae, 6<br />

(1), 62-94.<br />

CASTELLARIN A., FRASCARI F. & VAI G.B. (1980) – Problemi<br />

<strong>di</strong> interpretazione geologica profonda <strong>del</strong> Sudalpino<br />

orientale. Rend. Soc. Geol. It., 2 (1979), 55-60.<br />

CASTELLARIN A., NICOLICH R., FANTONI R., CANTELLI L.,<br />

SELLA M. & SELLI L. (2006) – Astructure of the litosphere<br />

beneath the Eastern Alps (southern sector of the<br />

TRANSALP transect). Tectonophisics, 414 , 259-282.<br />

CATI A., FICHERA R. & CAPPELLI V. (1989) - Northeastern<br />

Italy. Integrat<strong>ed</strong> processing of geophysical and


182 M. PONTON<br />

geological data. Mem. Soc. Geol. It., 40: 273-288,<br />

Roma.<br />

DOGLIONI C. (1992) – Relationschips between Mesozoic<br />

extensional tectonics, stratigraphy and Alpine<br />

inversion in the Southern Alps. Eclogae Geol. Helv.,<br />

85/1, 105-126.<br />

DOGLIONI C.& BOSELLINI A. (1987) - Eoalpine and mesoalpine<br />

tectonics in the Southern Alps. Geol. Rundsch., 76, 735-<br />

754.<br />

GALADINI F., POLI M.E. & ZANFERRARI A. (2005) -<br />

Seismogenic sources potentially responsible for<br />

earthquakes with M?6 in the eastern Southern Alps<br />

(Thiene-U<strong>di</strong>ne sector, NE Italy). Geoph. J. Int., 161: 739-<br />

762, Oxford.<br />

MERLINI S., DOGLIONI C., FANTONI R. & PONTON M. (2002) -<br />

Analisi strutturale lungo un profilo geologico tra la linea<br />

Fella Sava e l’avampaese adriatico (Friuli Venezia Giulia<br />

- Italia). Mem. Soc. Geol. It., 57: 293-300, Roma.<br />

NICOLICH R., DELLA VEDOVA B., GIUSTINIANI M. & FANTONI<br />

R. (a cura <strong>di</strong>) (2004) – Carta <strong>del</strong> sottosuolo <strong>del</strong>la Pianura<br />

Friulana (con note ill.). Regione FVG e Univ. Trieste, 32<br />

pp.<br />

PLACER L. (1999) - Contribution to the macrotectonic<br />

sub<strong>di</strong>visionof the border region between Southern Alps and<br />

External Dinarides. Geologija 41, 223-255, Ljubljana.<br />

POLI M.E. (1995) - Evidenze <strong>di</strong> tettonica a thrust <strong>di</strong>narica nelle<br />

Prealpi Giulie meri<strong>di</strong>onali (Italia Nord-orientale). Atti<br />

Ticinensi Sci. Terra, ser. spec., 3 (1995): 99-114.<br />

POLI M.E. (1996) - Analisi strutturale <strong>del</strong> Monte <strong>di</strong> M<strong>ed</strong>ea.<br />

(Friuli Orientale - Gorizia). Atti Ticinensi Sci. Terra, ser.<br />

spec., 4<br />

POLI M.E., PERUZZA L., REBEZ A., RENNER G., SLEJKO D.,<br />

ZANFERRARI A. (2002) - New seismotectonic evidence from<br />

the analysis of the 1976-1977 and 1977-1999 seismicity in<br />

Friuli (NE Italy). Boll. Geof. Teor. Appl., 43: 53-78.<br />

POLI M.E., ZANFERRARI A. (1995) - Dinaric thrust tectonics in<br />

the Southern Julian Prealps (Eastern Southern Alps, NE<br />

Italy). In: First Croatian Geological Congress, Opatija 18-<br />

21 october 1995, Proce<strong>ed</strong>ings, 2: 465-468, Zagreb.<br />

PONTON M. (2002) - La tettonica <strong>del</strong> gruppo <strong>del</strong> M. Canin e la<br />

linea Val Resia-Val Coritenza (Alpi Giulie occidentali).<br />

Mem. Soc. Geol. It., 57: 283-292.<br />

PONTON M. (2007) – Un’area polideformata nelle Prealpi<br />

Carniche:il Monte Broili e il Cuel dal Meloc. Gortania , 28<br />

(2006), 7-18 , U<strong>di</strong>ne.<br />

PONTON M. (2008) – <strong>Note</strong> geologiche sulle Prealpi Giulie<br />

nord-occidental. Il fenomeno carsico <strong>del</strong>le Prealpi Giulie<br />

settentrionali-Mem.Isr. It. Spel., s II, XX, 53-71.<br />

PONTON M. & VENTURINI C. (2002) – Il ciclo alpino. In: Vai<br />

G.B. et alii (a cura <strong>di</strong>) “Alpi e Prealpi Carniche e Giulie”.<br />

Guide geologiche Regionali <strong>del</strong>la Soc. Geol. It., BE-MA<br />

<strong>ed</strong>., 76-81, Roma.<br />

ROEDER D. (1992) – Thrusting and w<strong>ed</strong>ge growth, Southern<br />

Alps of Lombar<strong>di</strong>a (Italy). Tectonophysics, 207, 199-243.<br />

ROEDER D. & LINDSEY D. (1992) – Barcis area (Veneto,<br />

Friuli, Slovenia): Architecture and geodynamics. Nafta,43<br />

(11) , 509-548.<br />

VENTURINI C. (1990) – Geologia <strong>del</strong>le Alpi Carniche centroorientali.<br />

Museo Friulano St. Nat., Pubbl. 36, 220 pp.<br />

ZANFERRARI A., AVIGLIANO R., CALDERONI G., GRANDESSO P.,<br />

MARCHESINI A., MONEGATO G., PAIERO G., POLI M.E.,<br />

RAVAZZI C. & STEFANI C. (in prep.-a) – <strong>Note</strong> illustrative<br />

<strong>del</strong>la Carta Geologica d’Italia alla scala 1:50.000: Foglio<br />

065 “Maniago”. Servizio Geologico d’Italia – Regione<br />

Autonoma Friuli – Venezia Giulia.<br />

ZANFERRARI A., AVIGLIANO R., CALDERONI G., GRANDESSO P.,<br />

MARCHESINI A., MONEGATO G., PAIERO G., POLI M.E.,<br />

RAVAZZI C. & STEFANI C. (in prep.-b) – <strong>Note</strong> illustrative<br />

<strong>del</strong>la Carta Geologica d’Italia alla scala 1:50.000: Foglio<br />

066 “U<strong>di</strong>ne”. Servizio Geologico d’Italia – Regione<br />

Autonoma Friuli – Venezia Giulia.<br />

ZANFERRARI A., POLI M.E. & ROGLEDI S. (2002) - The external<br />

thrust-belt of the Eastern Southern Alps in Friuli (NE Italy).<br />

Mem. Sci. Geol., 54: 159-162.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 183<br />

Seismic Evidence of multiple intrusion episodes within the shallow<br />

subsurface of Campi Flegrei and Ischia Island<br />

The reprocessing of old seismic reflection profiles represents<br />

an useful and cost-effective tool to constrain the geologic<br />

structure of a complex tectonic area such as the inner shelf of<br />

Bay of Naples. BRUNO et al., 2002 reprocess<strong>ed</strong> a seismic<br />

dataset collect<strong>ed</strong> by OGS (Osservatorio Geofisico Sperimentale<br />

– Trieste) during 1973, r<strong>ed</strong>ucing some of the limiting effects of<br />

the acquisition phase to gain more informations on the deep<br />

part of Bay of Naples and Campi Flegrei structure. In this<br />

study, the interpretation concern<strong>ed</strong> 13 seismic lines reprocess<strong>ed</strong><br />

by BRUNO et al., 2002 that spread over an area of about 2000<br />

Km² exten<strong>di</strong>ng from the northern coast of Ischia and Procida<br />

Island up Sorrento Peninsula. The interpretation of seismic<br />

profiles allow<strong>ed</strong> the <strong>del</strong>ineation of a broad geo-volcanological<br />

and structural framework of the Campi Flegrei area. This<br />

region is well-know for its active volcanism but the crustal<br />

structure beneath the Campi Flegrei – Ischia ridge is still<br />

debat<strong>ed</strong>.<br />

Our study confirms previous investigations (FINETTI et al.,<br />

1974; PESCATORE et al., 1984; FLORIO et al., 1999; BRUNO,<br />

2003; AIELLO et al., 2005) on the structure of the Gulf of<br />

Naples basin, but bring new insights into the way magma is<br />

stor<strong>ed</strong> within the crust.<br />

In particular, we found evidence of multiple episodes of sill<br />

emplacement at <strong>di</strong>fferent levels within the crust. Igneous sills<br />

are extraor<strong>di</strong>narily well imag<strong>ed</strong> on these seismic data because<br />

of a significant contrast in acoustic properties (velocity and<br />

density) between the intru<strong>di</strong>ng magma and the s<strong>ed</strong>imentary<br />

host-rock. From the stratigraphic relationships between<br />

s<strong>ed</strong>imentary and intrud<strong>ed</strong> rock, we define two episodes of<br />

magma emplacement occurring during Upper Pliocene and Late<br />

Pleistocene, respectively.<br />

Intrusive processes, particularly well imag<strong>ed</strong> below Ischia<br />

Island, could have ultimately be responsible for the rapid uplift<br />

of Ischia resurgent structure. Eventually, we show that<br />

volcanism in the Neapolitan area is a long process operating<br />

episo<strong>di</strong>cally from the Upper Pliocene onwards.<br />

_________________________<br />

MICHELE PUNZO (*), PIER PAOLO BRUNO (°) & CLAUDIO FACCENNA (*)<br />

(*)Dipartimento <strong>di</strong> Scienze Geologiche, Università degli Stu<strong>di</strong> ROMA<br />

TRE, L.go S. Leonardo Murialdo, 1- 00146 Roma, Italy.<br />

(°)Osservatorio Vesuviano, Istituto Nazionale <strong>di</strong> Geofisica e<br />

Vulcanologia, Via Diocleziano 328 – 80124, Napoli, Italy<br />

REFERENCES<br />

BRUNO P.P., DI FIORE V. & VENTURA G. (2000) - Seismic study<br />

of the “41st Parallel” Fault System offshore the Campanian-<br />

Latial continental margin, Italy; Tectonophysics 324; 37-55.<br />

BRUNO P.P.G., DI FIORE V. & RAPOLLA G. (2002) - Seismic<br />

reflection data processing in active volcanic areas: an<br />

application to Campi Flegrei and Somma Vesuvius offshore<br />

8southern Italy). Annals of Geophysics, 45/6, 753-768.<br />

BRUNO P.P., RAPOLLA A. & DI FIORE V. (2003) - Structural<br />

setting of the Bay of Naples (Italy) seismic reflection data:<br />

implication for campanian volcanism; Tectonophysics 372;<br />

193-213


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 184-187, 3 ff<br />

Influenza <strong>del</strong>l’idratazione <strong>del</strong> cuneo <strong>di</strong> mantello sull’evoluzione <strong>di</strong><br />

un sistema <strong>di</strong> subduzione oceano/continente: una simulazione<br />

numerica<br />

ABSTRACT<br />

Influence of hydration in the mantle w<strong>ed</strong>ge on the evolution of an<br />

ocean/continent system: a numerical simulation<br />

The evolution of an ocean/continent subduction system is simulat<strong>ed</strong> by<br />

using a 2D finite elements thermomechanical mo<strong>del</strong>. The effects of hydration<br />

in mantle w<strong>ed</strong>ge on mantle flow and on crustal recycling is stu<strong>di</strong><strong>ed</strong> for<br />

<strong>di</strong>fferent hydration rates and maximum depth of dehydration of the oceanic<br />

crust for two select<strong>ed</strong> typical subduction velocities (1 cm/a and 5 cm/a). We<br />

found a <strong>di</strong>rect relationship between the amount of recycl<strong>ed</strong> material and the<br />

maximum depth of dehydration. Moreover, the hydration rate and hydration<br />

depth have an important impact on peak pressure and temperature of recycl<strong>ed</strong><br />

continental crust for a subducion rate of 5 cm/a.<br />

Key words: mantle w<strong>ed</strong>ge, mantle hydration, ocean/continent<br />

subduction, numerical mo<strong>del</strong>ing.<br />

Parole chiave: cuneo <strong>di</strong> mantello, idratazione <strong>del</strong> mantello,<br />

subduzione oceano/continente, mo<strong>del</strong>lizzazione numerica.<br />

INTRODUZIONE<br />

Numerosi stu<strong>di</strong> su rocce <strong>di</strong> alta e ultra alta pressione,<br />

connesse allo sviluppo <strong>di</strong> un margine convergente, hanno<br />

evidenziato come porzioni <strong>di</strong> crosta continentale e oceanica<br />

coinvolte nella subduzione siano frequentemente associate a<br />

peridotiti idrate. I loro percorsi P-T e i dati geocronologici<br />

suggeriscono una rapida esumazione indotta da un flusso<br />

forzato presente all’interno <strong>del</strong> cuneo <strong>di</strong> mantello<br />

suprasubduttivo.<br />

Mo<strong>del</strong>li petrologici (SCHMIDT & POLI, 1998) e le<br />

simulazioni numeriche (GERYA & STOCKHERT, 2005) rivelano<br />

come il processo <strong>di</strong> deidratazione che coinvolge la litosfera<br />

oceanica in subduzione e la conseguente idratazione <strong>del</strong> cuneo<br />

<strong>di</strong> mantello abbiano un contributo fondamentale per<br />

l’instaurarsi <strong>di</strong> un flusso forzato in grado <strong>di</strong> trasportare porzioni<br />

<strong>di</strong> crosta presenti all’interno <strong>del</strong> cuneo <strong>di</strong> mantello da elevate<br />

profon<strong>di</strong>tà verso la superficie. Su molti aspetti, comunque, la<br />

<strong>di</strong>scussione è ancora aperta.<br />

Per indagare ulteriormente sul ruolo <strong>del</strong> processo <strong>di</strong><br />

idratazione sul meccanismo <strong>di</strong> ricircolo <strong>ed</strong> esumazione <strong>di</strong><br />

_________________________<br />

MANUEL RODA (*), ANNA MARIA MAROTTA (*) & MARIA IOLE SPALLA (°)<br />

(*)<strong>Sezione</strong> <strong>di</strong> Geofisica, Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra “Ar<strong>di</strong>to<br />

Desio”, Università degli Stu<strong>di</strong> <strong>di</strong> Milano, Italia.<br />

(°)<strong>Sezione</strong> <strong>di</strong> Geologia, Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra “Ar<strong>di</strong>to Desio”,<br />

Università degli Stu<strong>di</strong> <strong>di</strong> Milano, Italia.<br />

materiale crostale, è stato sviluppato un mo<strong>del</strong>lo numerico bi<strong>di</strong>mensionale<br />

per simulare la subduzione forzata <strong>di</strong> litosfera<br />

oceanica al <strong>di</strong> sotto <strong>di</strong> un margine continentale. Il mo<strong>del</strong>lo<br />

prev<strong>ed</strong>e la progressiva deidratazione <strong>del</strong>la crosta oceanica e<br />

l’instaurarsi <strong>di</strong> un cuneo <strong>di</strong> mantello idrato. Lo stu<strong>di</strong>o è stato<br />

condotto variando la velocità <strong>di</strong> convergenza, l’angolo <strong>del</strong><br />

cuneo <strong>di</strong> idratazione e la massima profon<strong>di</strong>tà <strong>di</strong> deidratazione<br />

<strong>del</strong>la crosta oceanica, al fine <strong>di</strong> valutare l’influenza dei succitati<br />

parametri nei confronti <strong>del</strong>la <strong>di</strong>namica all’interno <strong>del</strong> cuneo e<br />

<strong>del</strong>l’evoluzione termo-barometrica <strong>di</strong> porzioni <strong>di</strong> litosfera<br />

continentale riciclata nel canale <strong>di</strong> subduzione.<br />

MODELLO NUMERICO<br />

Lo stato fisico <strong>del</strong> sistema, per ogni intervallo temporale, è<br />

determinato risolvendo le equazioni <strong>di</strong> continuità, <strong>di</strong><br />

conservazione <strong>del</strong> momento e <strong>di</strong> conservazione <strong>del</strong>l’energia,<br />

espresse nella forma:<br />

∇ •( u ) = 0 (1)<br />

−∇p + ∇ •τ + ρ g = 0 (2)<br />

ρCp<br />

<br />

∂T <br />

+ u •∇T<br />

=∇• K∇T<br />

∂t <br />

( )+ ρH (3)<br />

secondo l’approccio descritto in MAROTTA & SPALLA,<br />

2007, dove <br />

u rappresenta la velocità, p la pressione, τ lo<br />

stress deviatorico, ρ la densità, <br />

g l’accelerazione <strong>di</strong> gravità,<br />

Cp la capacità termica a pressione costante, T la temperatura,<br />

K la conducibilità termica e H la produzione <strong>di</strong> calore per<br />

unità <strong>di</strong> massa.<br />

La griglia <strong>di</strong> riferimento <strong>di</strong> 1400 km <strong>di</strong> lunghezza e 700 km<br />

<strong>di</strong> profon<strong>di</strong>tà (fig. 1) è composta da 5761 no<strong>di</strong> e 2808 elementi<br />

tringolari biquadratici <strong>di</strong> <strong>di</strong>mensioni variabili. La<br />

<strong>di</strong>fferenziazione composizionale dei vari materiali<br />

caratterizzanti il sistema è stata ottenuta m<strong>ed</strong>iante la tecnica<br />

<strong>del</strong>le particelle lagrangiane (MAROTTA & SPALLA, 2007),<br />

utilizzando circa 1 milione <strong>di</strong> marcatori <strong>di</strong>stribuiti con densità<br />

<strong>di</strong> 1 marcatori ogni 0.25 km 2 . Le con<strong>di</strong>zioni al contorno sono<br />

in<strong>di</strong>cate in figura 1. Al fine <strong>di</strong> permettere la variazione<br />

temporale <strong>del</strong>la topografia, sopra la litosfera si considera uno<br />

strato <strong>di</strong> aria spesso 8 km. Il mo<strong>del</strong>lo prev<strong>ed</strong>e che la topografia


INFLUENZA DELL’IDRATAZIONE DEL CUNEO DI MANTELLO SULL’EVOLUZIONE DI UN SISTEMA DI<br />

SUBDUZIONE OCEANO/CONTINENTE: UNA SIMULAZIONE NUMERICA<br />

venga istantaneamente erosa, per s<strong>ed</strong>imentare all’interno <strong>del</strong><br />

cuneo <strong>di</strong> accrezione.<br />

Per simulare la progressiva idratazione <strong>del</strong> cuneo <strong>di</strong><br />

mantello suprasubduttivo, conseguente alla deidratazione <strong>del</strong>la<br />

placca oceanica, si è scelto <strong>di</strong> intervenire sul parametro<br />

viscosità dei singoli materiali che lo caratterizzano. La brusca<br />

riduzione <strong>del</strong>le velocità sismiche in questa porzione <strong>di</strong> mantello<br />

fa presupporre l’esistenza <strong>di</strong> una regione a minore viscosità<br />

rispetto a quelle circostanti, con valori variabili tra 10 18 e 10 20<br />

(BILLEN & GURNIS, 2001; ABERS et alii, 2006; RONDENAY et<br />

alii, 2008) L’ambiguità riguardo i meccanismi deformativi<br />

agenti nel cuneo <strong>di</strong> mantello idrato ci suggerisce <strong>di</strong> considerare<br />

una viscosità uniforme e in<strong>di</strong>pendente dalla temperatura per<br />

tutti i materiali presenti nel canale <strong>di</strong> subduzione idrato, con<br />

valore uguale 10 19 (BILLEN & GURNIS, 2001; ARCAY et alii,<br />

2005; GERYA & STOCKHERT, 2005; MEDA et alii, 2007). La<br />

profon<strong>di</strong>tà massima <strong>del</strong> cuneo è determinata, per ogni intervallo<br />

temporale, dall’ascissa e dall’or<strong>di</strong>nata <strong>del</strong> marcatore <strong>di</strong> crosta<br />

oceanica più profondo, fino ad un valore limite fissato (Ylim),<br />

oltre al quale si può considerare un contributo <strong>di</strong> idratazione<br />

trascurabile (SCHMIDT & POLI, 1998; ARCAY et alii, 2005). Il<br />

cuneo <strong>di</strong> mantello idrato è approssimanto geometricamente con<br />

un triangolo acuto, <strong>del</strong>imitato alla base dalla retta<br />

Yi = mXi + q , assimilabile al piano <strong>di</strong> subduzione, dove Yi e<br />

Xi sono le coor<strong>di</strong>nate <strong>del</strong> limite inferiore <strong>di</strong> idratazione<br />

ricalcolate per ogni intervallo temporale e m è il coefficiente<br />

angolare iniziale <strong>del</strong>la subduzione. Il limite <strong>di</strong> tetto <strong>del</strong> cuneo <strong>di</strong><br />

mantello idrato è variabile in funzione <strong>del</strong> grado <strong>di</strong> idratazione<br />

iniziale <strong>del</strong>la crosta oceanica <strong>ed</strong> è descritto dalla funzione<br />

Yi = m ′ Xi + q ′ , dove m ′ rappresenta un multiplo <strong>del</strong>l’angolo<br />

<strong>di</strong> subduzione.<br />

RISULTATI E DISCUSSIONE DELLA SIMULAZIONE<br />

Le prove condotte nella simulazione numerica sono state<br />

eseguite per velocità <strong>di</strong> subduzione <strong>di</strong> 1 e 5 cm/a e per m ′<br />

variabile tra 2.5 e 3 volte m , al fine <strong>di</strong> verificare l’influenza<br />

<strong>del</strong>l’idratazione <strong>del</strong> cuneo mantello sulla <strong>di</strong>namica <strong>del</strong>l’intero<br />

margine attivo e in particolare sullo sviluppo <strong>di</strong> un riciclo <strong>di</strong><br />

crosta continentale da porzioni profonde <strong>del</strong>la subduzione a<br />

Fig. 1 – Con<strong>di</strong>zioni iniziali e al contorno <strong>del</strong> mo<strong>del</strong>lo numerico (in grigio<br />

sono rappresentate le velocità fissate per la subduzione forzata; la linea<br />

tratteggiata orizzontale rappresenta la profon<strong>di</strong>tà <strong>del</strong>l’isotema 1600 K<br />

all’inizio <strong>del</strong>la simulazione).<br />

185<br />

regioni strutturalmente più superficiali. Inoltre sono stati<br />

considerati due limiti inferiori <strong>di</strong> idratazione rispettivamente <strong>di</strong><br />

-150 e -200 km. I risultati dalle simulazioni e dei corrispondenti<br />

percorsi P-T-t <strong>di</strong> un marcatore <strong>di</strong> crosta inferiore<br />

rappresentativi per ogni prova effettuata sono rappresentati<br />

nelle figure 2 e 3. Al fine <strong>di</strong> facilitare la localizzazione dei<br />

<strong>di</strong>fferenti livelli crostali coinvolti nel riciclo subduttivo, colori<br />

<strong>di</strong>fferenti sono stati utilizzati per rappresentare i marcatori <strong>di</strong><br />

crosta superiore e inferiore, sebbene fisicamente essi abbiano le<br />

m<strong>ed</strong>esime proprietà. Una prima osservazione può essere fatta in<br />

riferimento alla profon<strong>di</strong>tà limite a cui è posta la deidrataizone<br />

<strong>del</strong>la crosta oceanica:, per qualsiasi velocità <strong>di</strong> subduzione e<br />

grado <strong>di</strong> idratazione, il numero <strong>di</strong> marcatori <strong>di</strong> crosta<br />

continentale coinvolti nel riciclo è maggiore nei mo<strong>del</strong>li con<br />

Ylim= -200 km rispetto a quelli con Ylim = -150 km; Per una<br />

velocità <strong>di</strong> convergenza <strong>di</strong> 5 cm/a è osservabile un’influenza<br />

<strong>del</strong>la massima profon<strong>di</strong>tà <strong>di</strong> idratazione sulla profon<strong>di</strong>tà <strong>di</strong><br />

picco dei marcatori <strong>di</strong> crosta riciclati: infatti con una Ylim più<br />

elevata le pressioni <strong>di</strong> picco variano tra i 2.8 e i 2.3 GPa in<br />

confronto ai valori <strong>di</strong> 1.7 e 2.0 GPa ottenuti con un limite <strong>di</strong><br />

idratazione più superficiale (fig. 2b-d-f, 3b-d). La pressione <strong>di</strong><br />

picco è influenzata anche dall’ampiezza <strong>del</strong> cuneo <strong>di</strong><br />

idratazione ( ′<br />

m ), a parità <strong>di</strong> Ylim: passando da 2.5 a 3 volte m<br />

la pressione passa da 0.3 a 0.5 GPa. La temperatura massima<br />

raggiunta dai marcatori crostali presenti nel cuneo <strong>di</strong><br />

idratazione è funzione sia <strong>del</strong>la Ylim che <strong>del</strong>l’ampiezza <strong>del</strong><br />

cuneo <strong>di</strong> idratazione. All’aumento <strong>di</strong> entrambi i fattori si ha un<br />

aumento <strong>del</strong>la temperatura (fig. 3d) con maggiore influenza,<br />

però, <strong>del</strong>l’ampiezza <strong>del</strong> cuneo <strong>di</strong> mantello idrato e, quin<strong>di</strong>, <strong>del</strong><br />

grado <strong>di</strong> idratazione imposto. Al variare <strong>di</strong> ′<br />

m da 2.5 a 3 m si<br />

passa da valori <strong>di</strong> picco <strong>di</strong> circa 1100 °C e 980°C per Ylim = -<br />

200 km a valori variabili tra 900°C e 650°C per Ylim = -150<br />

km. Le traiettorie P-T in<strong>di</strong>cano come il riciclo <strong>di</strong> materiale<br />

crostale possa essere attivo fino a livelli crostali superficiali<br />

(


186 RODA M. ET ALII<br />

a b<br />

c<br />

e f<br />

Fig. 2 – Risultati <strong>del</strong>la simulazione numerica: le immagini sul lato sinistro si riferiscono ad una velocità <strong>di</strong> subduzione <strong>di</strong> 1cm/a, quelle sul lato destro ad<br />

una velocità <strong>di</strong> 5 cm/a; in nero e grigio scuro è rappresentata la crosta oceanica, in grigio scuro e grigio è rappresentata la crosta continentale e in grigio<br />

chiaro i s<strong>ed</strong>imenti; la linea retta rappresenta il limite superiore <strong>del</strong> cuneo <strong>di</strong> idratazione per ogni simulazione; le linee tratteggiate sono le isoterme.<br />

d


INFLUENZA DELL’IDRATAZIONE DEL CUNEO DI MANTELLO SULL’EVOLUZIONE DI UN SISTEMA DI<br />

SUBDUZIONE OCEANO/CONTINENTE: UNA SIMULAZIONE NUMERICA<br />

Fig. 3 – a,b) Risultati <strong>del</strong>la simulazione numerica: le immagini sul lato sinistro si riferiscono ad una velocità <strong>di</strong> subduzione <strong>di</strong> 1cm/a, quelle sul lato<br />

destro ad una velocità <strong>di</strong> 5 cm/a (rif fig. 2). c,d) Percorsi PTt riferiti a marcatori <strong>di</strong> crosta continentale inferiore per 1 cm/a (sinistra) e 5 cm/a<br />

(destra); linea piena Ylim = -200 km, linea tratteggiata Ylim = -150 km, nero m’ = 2.5m, grigio m’ = 3m, il quadrato mostra l’ultimo intervallo<br />

temporale.<br />

at active continental margins. Int. J. Earth Sci. (Geol.<br />

BIBLIOGRAFIA<br />

Rundsch). 95, (2).<br />

ABERS A., VAN KEKEN P. E., KNELLER E. A., FERRIS A. &<br />

STACHNIK J. C., (2006) - The thermal structure of<br />

subduction zones constrain<strong>ed</strong> by seismic imaging:<br />

Implications for slab dehydration and w<strong>ed</strong>ge. Earth Planet.<br />

Sci. Lett., 241, 387-397.<br />

ARCAY D., TRIC E. & DOIN M.P., (2005) - Numerical<br />

simulation of subduction zones. Effect of slab dehydration<br />

on the mantle w<strong>ed</strong>ge dynamics. Physics of the Earth and<br />

Planetary Int., 149, 133-153.<br />

BILLEN M. I. & GURNIS M., (2001) - A low viscosity w<strong>ed</strong>ge in<br />

subduction zones. Earth Planet. Sci. Lett., 193, 227-236.<br />

GERYA T. V. & STOCKHERT B., (2005) - Two-<strong>di</strong>mensional<br />

numerical mo<strong>del</strong>ing of tectonic and metamorphic histories<br />

a b<br />

c<br />

187<br />

MAROTTA A. M. & SPALLA M. I., (2007) - Permian-Triassic<br />

high thermal regime in the Alps: Result of late Variscan<br />

collapse or continental rifting? Validation by numerical<br />

mo<strong>del</strong>ing. Tectonics. 26.<br />

MEDA M., MAROTTA A. M. & SPALLA M. I., (2007) – Recycling<br />

of the Sesia-Lanzo Zone (Italian Western Alps) continental<br />

lithosphere during the Alpine subduction.Rend. Soc. Geol.<br />

It., 5, 152-153.<br />

RONDENAY S., ABERS G. A. & VAN KEKEN P. E., (2008) -<br />

Seismic imaging of subduction zone metamorphism.<br />

Geology, 36, (4), 275-278.<br />

SCHMIDT M.W. & POLI S., (1998) - Experimentally bas<strong>ed</strong> water<br />

budgets for dehydrating slabs and consequences for arc<br />

magma generation. Earth Planet. Sci. Lett, 163, 361-379.<br />

d


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 188-189, 1 f.<br />

Early Cretaceous granulite facies migmatites from the Sabzevar Range<br />

ophiolitic mélange (NE Iran) and its bearing on the closure of Neotethys<br />

FEDERICO ROSSETTI (*), MOHSEN NASRABADY (**), GIANLUCA VIGNAROLI (*), THOMAS THEYE (°) & AXEL GERDES (°°)<br />

Migmatiti in facies granulitica <strong>di</strong> età Cretacico inferiore nel mélange<br />

ofiolitifero <strong>del</strong>la catena <strong>di</strong> Sabzevar (NE Iran); implicazioni per le<br />

ricostruzioni <strong>del</strong>la chiusura <strong>del</strong> dominio oceanico <strong>del</strong>la Neotetide.<br />

The tectono-metamorphic signature of the oceanic-deriv<strong>ed</strong><br />

units marking orogenic suture zones provides key elements to<br />

decipher modes and regimes of oceanic subduction and<br />

continental accretion, and to constrain paleotectonic<br />

reconstructions at paleo-convergent margins The remnants of<br />

the Tethyan oceanic realm are the most remarkable of these<br />

suture zones, running from the M<strong>ed</strong>iterranean through East<br />

Europe, Middle East to Asia (Fig. 1a). These ophiolitic rocks<br />

record a polyphase and prolong<strong>ed</strong> history of oceanic<br />

construction (the Paleozoic-Early Mesozoic Paleo-Tethys and<br />

the Mesozoic-Cenozoic Neo-Tethys oceanic realms) and<br />

consumption during a sequence of Late Paleozoic to Cenozoic<br />

subduction/obduction/collision stages localiz<strong>ed</strong> along the<br />

Eurasian active plate margin (e.g., RICOU, 1994; DERCOURT et<br />

al., 2000; STAMPFLI & BOREL, 2002). The Iranian ophiolites<br />

(Fig. 1b) are an integrant part of this evolving scenario, with<br />

the Neotethyan remnants <strong>di</strong>stribut<strong>ed</strong> to mark <strong>di</strong>achronous<br />

closures of various oceanic branches during the Alpine-<br />

Himalayan convergence history (e.g, MCCALL, 1997). Despite<br />

these peculiar characteristics, few modern stu<strong>di</strong>es have<br />

address<strong>ed</strong> the characterization of the tectono-metamorphic<br />

evolution of the Neotethyan Iranian ophiolites. Furthermore,<br />

most of these stu<strong>di</strong>es focus<strong>ed</strong> on the Zagros orogen (e.g,<br />

AGARD et alii, 2006), and the ophiolitic mélanges surroun<strong>di</strong>ng<br />

the Central East Iranian Microcontinent (CEIM, Fig. 1b) are<br />

still lacking of a full petrological description and modern age<br />

data are completely missing. The ophiolitic mélange expos<strong>ed</strong> in<br />

the Sabzevar Range (NE Iran; Fig. 1c) is a remnant of one the<br />

Neo-Tethyan oceanic branches surroun<strong>di</strong>ng the Central East<br />

Iranian Microcontinent that clos<strong>ed</strong> during the Paleocene-<br />

Eocene phase of Arabia-Eurasia convergence (BAROZ ET alii,<br />

1984; MC CALL, 1997; SHOJAAT et alii, 2003). Occurrence of<br />

___________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Università degli Stu<strong>di</strong> Roma Tre,<br />

Roma, Italy<br />

(**) Department of Geology, Tarbiat Moalem University, Tehran, Islamic<br />

Republic of Iran<br />

(°) Institut für Mineralogie und Kristallchemie, Universität Stuttgart,<br />

Stuttgart, Germany<br />

(°°) Institut für Geowissenschaften, J. W. Goethe Universität, Frankfurt,<br />

Germany<br />

Fig. 1 – (a) Distribution of the remnants of the Tethyan oceanic realm along<br />

the Alpine-Himalayan convergence zone. (b) Simplifi<strong>ed</strong> geological map<br />

showing the main tectonic domains in Iran, with the main ophiolitic belts<br />

in<strong>di</strong>cat<strong>ed</strong> (mo<strong>di</strong>fi<strong>ed</strong> after BAGHERI & STAMPFLI, 2008). (c) Geological map<br />

of the Sabzevar Range (mo<strong>di</strong>fi<strong>ed</strong> and readapt<strong>ed</strong> after LENSCH et alii, 1977),<br />

with location of the granulite-facies metabasites. The location of the sample<br />

(NG353) stu<strong>di</strong><strong>ed</strong> for U/Pb geochronology together with its geographic<br />

coor<strong>di</strong>nates are also in<strong>di</strong>cat<strong>ed</strong>.<br />

km-scale, variably retrogress<strong>ed</strong> mafic HP granulitic slices are<br />

report<strong>ed</strong> in this study. The granulite bo<strong>di</strong>es are dark, m<strong>ed</strong>ium to<br />

fine-grain<strong>ed</strong> rocks showing granoblastic groundmass or weak<br />

foliation. The matrix mineralogy consists of Am + Grt + Cpx +<br />

Pl + Qtz (with Ilm, Rt and Ap as main accessory phases) and<br />

makes up the bulk of rocks (>90%). Texture is characteriz<strong>ed</strong> by<br />

occurrence of submillimetric to millimetric leucocratic patches<br />

and layers interlayer<strong>ed</strong> within the granoblastic mineral matrix.<br />

Quartz mostly occurs as interstitial, xenoblastic grains. Matrix<br />

garnets are poikiloblastic, hosting Cpx, Am, Pl, Qtz, Rt, Ilm,<br />

Ttn as inclusions. In the heavily retrogress<strong>ed</strong> samples, Gt<br />

instead forms porphyroclasts, which usually show strong<br />

evidence for resorption with development of retrogressive Pl +<br />

Amp symplectites. The leucocratic segregations invariably<br />

consist of Qtz + Pl-rich continuous and concordant<br />

segregations of broadly tonalitic/trondhjemitic composition<br />

(Qtz/Pl modal proportions 50-35/50-65). They show a<br />

systematic intragranular connectivity, with Pl and Qtz showing<br />

a coarse granoblastic texture. The Pl + Qtz associations also<br />

form film-like intergrowth surroun<strong>di</strong>ng matrix amphibole and<br />

quartz usually show xenomorphic habit. Titanite and zircon are


EARLY CRETACEOUS GRANULITE FACIES MIGMATITES FROM THE SABZEVAR RANGE<br />

the main accessory phases in the leucocratic segregations. Little<br />

evidence for solid-state deformation is document<strong>ed</strong> in the<br />

leucocratic segregations, mostly attest<strong>ed</strong> by patchy undulose<br />

extinction in some quartz grains. The peak mineral assemblage<br />

(Grt + Cpx + Pl + Am + Qtz) is in<strong>di</strong>cative of the Opx-free,<br />

high-pressure granulite facies (PATTISON, 2003). Textures such<br />

as those describ<strong>ed</strong> above show strong similarities with those<br />

report<strong>ed</strong> by (HARTEL & PATTISON, 1996), who interpret<strong>ed</strong> the<br />

Qtz + Pl segregations as remnants of melt. In particular, the<br />

skeletal nature of the quartz and the Qtz + Pl films argue for an<br />

in situ origin of such melts, and hence product of migmatisation<br />

of a basic protolith. A likely scenario is amphibole<br />

dehydratation melting during prograde granulite facies<br />

metamorphism accor<strong>di</strong>ng the following generalis<strong>ed</strong> reaction<br />

(HARTEL & PATTISON, 1996): Am + Pl = Grt + Cpx + Ttn +<br />

melt (trondhjemitic melt) (1). This textural evidence documents<br />

that the Sabzevar granulites record an episode of amphibole<br />

dehydratation melting and trondhjemite melt segregation during<br />

anatexis of an oceanic slab. The peak P-T estimates are 1.1 ±<br />

0.1 GPa and 810 ± 80 °C (THERMOCALC average P-T<br />

calculations; HOLLAND & POWELL, 1998), which conform to a<br />

paleogeothermal gra<strong>di</strong>ent within the subduction channel of ca.<br />

20-25 °C km -1 . In situ U(-Th)-Pb LA-ICP-MS geochronology<br />

was carri<strong>ed</strong> at Goethe University Frankfurt using the analytical<br />

protocol describ<strong>ed</strong> in GERDES & ZEH (2006; 2008). Analysis of<br />

zircon and titanite grains host<strong>ed</strong> in trondhjemite segregations<br />

point to an Early Cretaceous (Albian, c. 105 Ma) age for the<br />

peak granulite facies metamorphism.<br />

These new data provide evidence for an unknown episode of<br />

high-grade subduction zone metamorphism in the region and<br />

argue for juxtaposition of an older ophiolitic suture along the<br />

Paleocene-Eocene Sabzevar orogen. When fram<strong>ed</strong> within the<br />

existing reconstructions, these new data impose reconsideration<br />

of the paleotectonic configuration of the Eurasian convergent<br />

margin during the Early Cretaceous since they (i) support a<br />

scenario of onset of subduction of a young oceanic lithosphere<br />

creat<strong>ed</strong> in the back-arc domain of the Neotethyan subduction,<br />

and (ii) document the existence of two, north-facing paleosubduction<br />

zones active during the Early Cretaceous closure of<br />

the Neo-Tethyan oceanic realm.<br />

REFERENCES<br />

AGARD P., MONIÉ P., GERBER W., OMRANI J., MOLINARO M.,<br />

LABROUSSE L., VRIELYNCK B., MEYER B., JOLIVET L. &<br />

YAMATO P. (2006) - Transient, syn-obduction exhumation of<br />

Zagros blueschists inferr<strong>ed</strong> from P–T–deformation–time and<br />

kinematic constraints: implications for Neotethyan w<strong>ed</strong>ge<br />

dynamics. J. Geophys. Res., 111, doi:<br />

10.1029/2005JB004103.<br />

AZIZI H., MOINEVAZIRI H., MOHAJEL M. & YAGOBPOOR A.<br />

(2005) - P-T-t path in metamorphic rocks of the Khoy region<br />

(northwest Iran) and their tectonic significance for<br />

Cretaceous–Tertiary continental collision. J. Asian Earth<br />

Sci., 27, 1–9.<br />

BAGHERI S. & STAMPFLI G.M. (2008)- The Anarak, Jandaq and<br />

Posht-e-Badam metamorphic complex in central Iran: New<br />

geological data, relationships and tectonic implications.<br />

Tectonophysics, 451, 123-155.<br />

189<br />

BAROZ R., MACAUDIERE J., MONTIGNY R., NOGHREYAN H.,<br />

OHNENSTETTER M. & ROCCI G. (1984) - Ophiolites and<br />

relat<strong>ed</strong> formations in the central part of the Sabzevar range<br />

(Iran) and possible geotectonic reconstructions. Neues J.<br />

Geol. Paläont. Abh., 168, 358–388.<br />

DERCOURT J., GAETANI M., VRIELYNCK B., BARRIER E., BIJU-<br />

DUVAL B., BRUNET M.F., CADET J.P., CRASQUIN S. &<br />

SANDULESCU M. (2000) - Atlas Peri-Tethys,<br />

Paleogeographical Maps, 24 maps and explanatory notes.<br />

Comm. For the Geol. Map of the World, Paris.<br />

GERDES A. & ZEH A. (2006) - Combin<strong>ed</strong> U-Pb and Hf isotope<br />

LA-(MC-) ICP-MS analyses of detrital zircons: Comparison<br />

with SHRIMP and new constraints for the provenance and<br />

age of an Armorican metas<strong>ed</strong>iment in Central Germany.<br />

Earth Planet. Sci. Lett., 249, 47-62.<br />

GERDES A. & ZEH A. (2006) - Zircon formation versus zircon<br />

alteration – New insights from combin<strong>ed</strong> U-Pb and Lu-Hf insitu<br />

La-ICP-MS analyses of Archean zircons from the<br />

Limpopo Belt. Chem. Geol., doi<br />

10.1016/j.chemgeo.2008.03.005.<br />

GHASEMI A. & TALBOT C. J. (2006) - A new tectonic scenario<br />

for the Sanandaj–Sirjan Zone (Iran). J. Asian Earth Sci., 26,<br />

683-693.<br />

HARTEL T. H.D. & PATTISON D.R.M. (1996) - Genesis of the<br />

Kapuskasing (Ontario) migmatitic mafic granulites by<br />

dehydratation melting of amphibole: the importance of<br />

quartz to reaction progress. J. Metam. Geol., 14, 591-611.<br />

HOLLAND T. J. B. & POWELL R. (1998) - An internally<br />

consistent thermodynamic data set for phases of petrological<br />

interest. J. Metam. Geol, 16, 309-343.<br />

LENCH G., MIHMAND A. & ALAVI-TEHRANI N. (1977) -<br />

Petrography and geology of the ophiolite belt north of<br />

Sabzevar/Khorasan (Iran). Neues Jahrb. Mineralogie. Abh,<br />

131, 156–178.<br />

MC CALL G.J.H. (1997) - The geotectonic history of the<br />

Makran and adjacent areas of southern Iran. J. Asian Earth<br />

Sci., 15, 517-531.<br />

PATTISON D.R.M. (2003) - Petrogenetic significance of<br />

orthopyroxene – free garnet +clinopyroxene + plagioclase ±<br />

quartz-bearing metabasites with respect to amphibolite and<br />

granulite facies. J. Metam. Geol., 21, 21-34.<br />

RICOU L.E. (1994) - Tethys reconstruct<strong>ed</strong>: plates continental<br />

fragments and their boundaries since 260 Ma from Central<br />

America to Southeastern Asia. Geodyn. Acta, 7, 169-218.<br />

SHOJAAT B., HASSANIPAK A.A., MOBASHER K. & GHAZI A.M.<br />

(2003) - Petrology, geochemistry and tectonics of the<br />

Sabzevar ophiolite, North Central Iran. J. Asian Earth Sci.,<br />

21, 1053–1067.<br />

STAMPFLI G. M. & BOREL G.D. (2002) - A plate tectonic mo<strong>del</strong><br />

for the Paleozoic and Mesozoic constrain<strong>ed</strong> by dynamic plate<br />

boundaries and restor<strong>ed</strong> synthetic oceanic isochrones. Earth<br />

Planet. Sci. Lett., 196, 17–33.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 190-193, 4ff.<br />

Preliminary results about mechanical stratigraphy of Oligo-Miocene<br />

carbonate grainstones (Majella Mountain, Abruzzo)<br />

ANDREA RUSTICHELLI (*), EMANUELE TONDI (*) & FABRIZIO AGOSTA (*)<br />

RIASSUNTO<br />

Risultati preliminari sulla stratigrafia meccanica dei grainstones<br />

carbonatici oligo-miocenici <strong>del</strong>la Formazione Bolognano (Montagna <strong>del</strong>la<br />

Majella, Abruzzo).<br />

La capacità <strong>del</strong>le rocce carbonatiche <strong>di</strong> contenere o far migrare i geoflui<strong>di</strong><br />

è fortemente influenzata dallo stato <strong>di</strong> “fratturazione”, o meglio dalla presenza<br />

e dalle caratteristiche <strong>di</strong> elementi strutturali come joint, stiloliti (andate in<br />

taglio o meno), bande <strong>di</strong> compattazione/taglio e zone <strong>di</strong> faglia.<br />

Il ruolo <strong>del</strong>la stratigrafia meccanica è quello <strong>di</strong> proc<strong>ed</strong>ere ad una<br />

<strong>di</strong>fferenziazione degli ammassi rocciosi sulla base <strong>del</strong>le loro caratteristiche <strong>di</strong><br />

fratturazione, con particolare riferimento alla lunghezza e alla spaziatura degli<br />

elementi strutturali. In letteratura, inoltre, tali stu<strong>di</strong> hanno evidenziato una<br />

stretta correlazione tra lo spessore degli strati e la lunghezza e la spaziatura<br />

<strong>del</strong>le fratture (intese quasi sempre come joint). Poche ricerche, tuttavia, sono<br />

in<strong>di</strong>rizzate a comprendere il ruolo che le proprietà petrografiche e petrofisiche<br />

<strong>del</strong>le rocce carbonatiche, acquisite durante la loro storia deposizionale e<br />

<strong>di</strong>agenetica, hanno nel con<strong>di</strong>zionare i meccanismi deformativi responsabili<br />

<strong>del</strong>le <strong>di</strong>fferenti tipologie, e quin<strong>di</strong> <strong>di</strong>stribuzione, degli elementi strutturali.<br />

Con l’obiettivo <strong>di</strong> colmare il suddetto gap conoscitivo, in questo lavoro<br />

vengono presentati i risultati preliminari <strong>di</strong> uno stu<strong>di</strong>o volto alla<br />

caratterizzazione <strong>del</strong>la stratigrafia meccanica in <strong>di</strong>fferenti litofacies<br />

appartenenti alla Formazione Bolognano (Montagna <strong>del</strong>la Majella, Abruzzo).<br />

Questa formazione è costituita da calcari bioclastici e marne <strong>di</strong> età oligomiocenica<br />

riferibili ad un ambiente <strong>di</strong> rampa; nella porzione inferiore sono<br />

state riconosciute più litofacies caratterizzate da <strong>di</strong>fferenti tipologie e<br />

<strong>di</strong>mensioni <strong>di</strong> grani (bioclasti <strong>di</strong> prevalenti Briozoi, Foraminiferi bentonici <strong>ed</strong><br />

Echini<strong>di</strong>), percentuali <strong>di</strong> matrice e cementi, e valori <strong>di</strong> porosità. Quest’ultima<br />

proprietà, inoltre, sembra strettamente <strong>di</strong>pendente dalle prime.<br />

Gli elementi strutturali presenti all’interno <strong>del</strong>le <strong>di</strong>verse litofacies sono<br />

principalmente: (i) superfici <strong>di</strong> <strong>di</strong>ssoluzione per pressione, e (ii) bande <strong>di</strong><br />

compattazione/taglio. La <strong>di</strong>scriminante tra l’una e l’altra sembra essere il<br />

valore 15% <strong>di</strong> porosità. Inoltre, per valori molto bassi <strong>di</strong> porosità (al <strong>di</strong> sotto<br />

<strong>del</strong>l’ 1-2%) la spaziature <strong>del</strong>le superfici <strong>di</strong> <strong>di</strong>ssoluzione per pressione, parallele<br />

alla stratificazione, risulta minore. Le correlazioni tra proprietà petrografiche e<br />

petrofisiche, e strutture tettoniche osservate nel corso <strong>di</strong> questo stu<strong>di</strong>o, per ora<br />

<strong>di</strong> natura prettamente qualitativa, verranno integrate da stu<strong>di</strong> quantitativi<br />

mirati alla definizione <strong>del</strong>le relative proprietà <strong>di</strong>mensionali dei vari elementi<br />

strutturali rilevati (spaziatura e lunghezza).<br />

Key words: compaction and shear band, petrography,<br />

petrophysics, pressure solution seams.<br />

Parole chiave: bande <strong>di</strong> compattazione e <strong>di</strong> taglio, petrografia,<br />

petrofisica, superfici <strong>di</strong> <strong>di</strong>ssoluzione per pressione.<br />

___________________________________________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Camerino.<br />

Lavoro eseguito nell’ambito <strong>del</strong> progetto Faults & Fractures in<br />

Carbonates (F&FC) <strong>del</strong>l’Università <strong>di</strong> Camerino.<br />

INTRODUCTION<br />

The containment and migration capacity of geofluids in<br />

carbonate rocks is strongly influenc<strong>ed</strong> by “fracturing”, which is<br />

the presence and the characteristic of <strong>di</strong>scontinuities mainly<br />

represent<strong>ed</strong> by stratification, joints, stylolites, compaction<br />

/shear bands and fault zones (AYDIN, 2000).<br />

During the last decades, sub-seismic mechanical<br />

stratigraphy was mainly mean as a positive correlation between<br />

b<strong>ed</strong> thickness and fracture spacing and length, at <strong>di</strong>fferent<br />

scales (UNDERWOOD et alii, 2003), in particular regar<strong>di</strong>ng<br />

mode 1 fractures (joints).<br />

Only a few recent papers (i.e. DI NACCIO et alii, 2005)<br />

focus<strong>ed</strong>, using a metho<strong>di</strong>c petrographical and petrophysical<br />

approach, on how compositional, depositional and <strong>di</strong>agenetical<br />

carbonate rock features, relat<strong>ed</strong> to <strong>di</strong>fferent depositional<br />

environments and processes, and subsequently <strong>di</strong>agenetical<br />

pathways, can influence deformative mechanisms to determine<br />

<strong>di</strong>fferent tectonic structures typologies and arrangements. In<br />

particular, these papers dealt mainly development and<br />

arrangement of mode 1 fractures (joints) in platform shallow<br />

water carbonates.<br />

Unlike aforemention<strong>ed</strong> works, this study deals with antimode<br />

I fractures (pressure solution seams) and deformation<br />

bands present within temperate carbonate grainstones<br />

characteriz<strong>ed</strong> by various amounts of porosity.<br />

STUDY AREA<br />

The study area (Fig. 1), nearby Lettomanoppello town, is<br />

the northernmost sector of the Majella Mountain. This<br />

mountain is an east-vergent thrust-relat<strong>ed</strong>, box-shape anticline,<br />

part of the eastern domain of the Apennine Chain, made up by<br />

Meso-Cenozoic carbonate rocks of platform, slope and ramp<br />

settings (GHISETTI & VEZZANI, 1998; VECSEI & SANDERS,<br />

1999).<br />

This current study focuses on the Bolognano Formation<br />

(Upper Oligocene – Miocene), in particular on its lowermost<br />

portion, made up by bioclastic carbonate grainstones (Bryozoan<br />

Limestone; VECSEI & SANDERS, 1999). This lower portion is<br />

characteriz<strong>ed</strong> by the highest primary porosity values, as well as<br />

by the presence of several hydrocarbon shows both in the<br />

fractures and in the host rock (AGOSTA et alii, present volume;<br />

AGOSTA et alii, in press, ALESSANDRONI, 2008).


STRATIGRAPHY OF OLIGO-MIOCENE CARBONATE GRAINSTONES (MAJELLA MOUNTAIN)<br />

METHODOLOGY<br />

The work has been carri<strong>ed</strong> out using an integrat<strong>ed</strong><br />

stratigraphic – structural approach, both at outcrop and at<br />

microscope scales.<br />

The field work involv<strong>ed</strong> the geological mapping, at a scale<br />

1:10,000, the detail<strong>ed</strong> stratigraphic analysis of key sections of<br />

the lower portion of the Bolognano Formation (Bryozoan<br />

Limestone), and overly qualitative structural analysis. The<br />

laboratory work follow<strong>ed</strong> a careful collection of representative<br />

hand-samples. We perform<strong>ed</strong> petrographical and petrophysical<br />

characerization of the hand-samples, which was achiev<strong>ed</strong><br />

thanks optical microscope, catho<strong>del</strong>uminescence, HCl test, and<br />

image analyses.<br />

The resulting stratigraphic, petrographical and petrophysical<br />

data have been integrat<strong>ed</strong> with the structural data in order to<br />

define the mechanical stratigraphy of the lower portion of the<br />

Bolognano Formation.<br />

Fig. 1 – a) Geological map of the Majella Mountain and location of the study<br />

area (mo<strong>di</strong>fi<strong>ed</strong> by GHISETTI & VEZZANI, 1998). b) Stratigraphic succession of<br />

the Majella Mountain.<br />

-Carta geologica <strong>del</strong>la Montagna <strong>del</strong>la Majella <strong>ed</strong> ubicazione <strong>del</strong>l’area <strong>di</strong><br />

stu<strong>di</strong>o (mo<strong>di</strong>ficata da GHISETTI & VEZZANI, 1998). b) Successione stratigrafica<br />

<strong>del</strong>la Montagna <strong>del</strong>la Majella.<br />

PRELIMINARY RESULTS<br />

The present study has broadly allow<strong>ed</strong> us to sub<strong>di</strong>vide the<br />

lowermost portion (Bryozoan Limestone) of the Bolognano<br />

Formation in two lithofacies (A and B), relat<strong>ed</strong> to <strong>di</strong>fferent<br />

paleogeographic settings and characteriz<strong>ed</strong> by <strong>di</strong>fferences in<br />

b<strong>ed</strong> arrangement and thickness, in petrographical features (Fig.<br />

2) and consequently, in petrophysical properties.<br />

The more spread lithofacies (A), thick about 100 m, is made<br />

up by shallow water, m<strong>ed</strong>ium-to-very coarse, bioclastic<br />

carbonate grainstones, poor-cement<strong>ed</strong>, characteriz<strong>ed</strong> by wellconnect<strong>ed</strong><br />

high primary porosity (average value 15 %). Despite<br />

rather constant b<strong>ed</strong> geometries (lens-shape clinob<strong>ed</strong>s) and<br />

thickness range (5-80 cm), the nature of bioclasts changes from<br />

the bottom to the top of the stratigraphic succession (Fig. 2).<br />

The other lithofacies (B) forms few m-thick <strong>di</strong>scontinuous<br />

191<br />

bo<strong>di</strong>es interb<strong>ed</strong>d<strong>ed</strong> with the lithofacies A. Lithofacies B is<br />

made up by deeper water, more or less marly, fine-to-m<strong>ed</strong>ium<br />

bioclastic grainstones and packstones, well-cement<strong>ed</strong>,<br />

characteriz<strong>ed</strong> by poor-connect<strong>ed</strong> low porosity (1-2 %),<br />

arrang<strong>ed</strong> in 5-50 cm-thick planar b<strong>ed</strong>s (Fig. 2).<br />

On the whole, the study rocks are interest<strong>ed</strong> by a fewkilometre<br />

or less long, and m-to-10’s m-thick vertical throw,<br />

high-angle normal to strike-slip faults, arrang<strong>ed</strong> in a main set<br />

orient<strong>ed</strong> NO-SE and in a secondary set orient<strong>ed</strong> NE-SO.<br />

Pressure solution seams, joints and compaction and shear bands<br />

are present also. Once the petrographical and petrophysical<br />

properties of the aforemention<strong>ed</strong> lithofacies are been defin<strong>ed</strong>,<br />

these are been compar<strong>ed</strong> with the fracturing associat<strong>ed</strong> to them,<br />

using a qualitative approach.<br />

Is noticeable how average spacing and length of b<strong>ed</strong>perpen<strong>di</strong>cular<br />

and oblique pressure solution seams in the<br />

lithofacies A are greater than in the lithofacies B, due mainly to<br />

minor b<strong>ed</strong> thicknesses of the latter. Instead, regar<strong>di</strong>ng the<br />

lithofacies B, b<strong>ed</strong>-parallel pressure solution seam development<br />

increases as grain size of rock decreases (Fig. 3). Would be<br />

important to understand if grain size really influences the<br />

pressure solution process, or, instead, an higher clay and/or<br />

cement content.<br />

As concerns the <strong>di</strong>fferent structural elements presents in the<br />

two lithofacies, compaction and shear bands are present only in<br />

the lithofacies A. Regar<strong>di</strong>ng to compaction, it often occur close<br />

to and parallel to the b<strong>ed</strong> surfaces (Fig. 4). It is demonstrat<strong>ed</strong><br />

that the development of this type of geological structures is<br />

relat<strong>ed</strong> to grain juxtaposition, which determinates a higher<br />

packing of the rock, with consequent porosity losing under a<br />

compressive stress action, until to reach a limit configuration<br />

where grains can’t be further mov<strong>ed</strong> and the pressure solution<br />

mechanism is favourite (TONDI et alii 2006; TONDI, 2007). The<br />

presence of compaction/shear bands or pressure solution seams<br />

appear to be controll<strong>ed</strong> by primary porosity values; if porosity<br />

values are >15% compaction and shear band are enhanc<strong>ed</strong>,<br />

otherwise pressure solution process seem to be facilitat<strong>ed</strong>. If<br />

porosity is the key factor in order to determine the development<br />

of the aforemention<strong>ed</strong> structures, our data demonstrat<strong>ed</strong> that<br />

porosity values depends by intragranular porosity of<br />

components (relat<strong>ed</strong> to the ratio between porous bioclastic<br />

grains: Bryozoans and Larger Bentic Foraminifera such as<br />

Lepidocyclina and, less important, Amphistegina and<br />

Operculina, and no-porous grains, such us Echinoids plates;<br />

Fig. 2), intergranular porosity (depen<strong>di</strong>ng by grain size, shape<br />

and sorting) and cementation. Further, quantitative analyses<br />

concerning petrophysics and fracturing parameters may better<br />

clear up the aforemention<strong>ed</strong> issues.<br />

In conclusion, the preliminary results of this work show<br />

how <strong>di</strong>fferences in compositional, depositional and <strong>di</strong>agenetical<br />

features (typology, abundance, size, shape and sorting of<br />

grains, cement and clay minerals contents, porosity and pore<br />

structure) relat<strong>ed</strong> to <strong>di</strong>fferent environmental setting,<br />

s<strong>ed</strong>imentary processes and, probably, to evolutive biota<br />

changes, can influence the development of <strong>di</strong>fferent fracture<br />

elements in more or less porous, ramp carbonate grainstones.<br />

Further work, extend<strong>ed</strong> to other carbonate grainstones of<br />

<strong>di</strong>fferent places, ages and paleogeographical setting, would be<br />

necessary to give a world-wide vali<strong>di</strong>ty to the aforemention<strong>ed</strong><br />

insights.


192 A. RUSTICHELLI ET ALII<br />

Fig. 3 – Anastomosing, b<strong>ed</strong>-parallel pressure solution seams, more abundant in<br />

fine-grain<strong>ed</strong> carbonates b<strong>ed</strong>s (minor competence) of lithofacies B. Pressure<br />

solution seams are absent in fine-to-m<strong>ed</strong>ium-grain<strong>ed</strong> b<strong>ed</strong> of the same<br />

lithofacies, visible in the upper part of the photo (more competent, dark color).<br />

- Stiloliti anastomizzate, parallele alla stratificazione, maggiormente <strong>di</strong>ffuse<br />

negli strati carbonatici a grana fine (meno competenti) <strong>del</strong>la litofacies B. Si<br />

noti lo strato più competente (colore più scuro), a grana m<strong>ed</strong>io-fine, privo <strong>di</strong><br />

stiloliti.<br />

Compaction band<br />

Fig. 2 – Sequence stratigraphic scheme of Bryozoan Limestone (Bolognano Formation) outcropping in the study area.<br />

Schema stratigrafico-sequenziale dei Calcari a Briozoi (Formazione Bolognano) affioranti nell’area <strong>di</strong> stu<strong>di</strong>o.<br />

Shear band<br />

Fig. 4 – Compaction and shear bands (white) in the carbonate grainstones,<br />

making up the lithofacies A (dark, due tar-inva<strong>di</strong>ng). Compaction bands are<br />

b<strong>ed</strong>-parallel. The open voids represent tail joints localiz<strong>ed</strong> at the extensional<br />

quadrants and within releasing jogs of the shear bands.<br />

- Bande <strong>di</strong> compattazione e <strong>di</strong> taglio (bianche) nei grainstones carbonatici<br />

costituenti la litofacies A (scuri, poiché impregnati da bitume). Le bande <strong>di</strong><br />

compattazione sono parallele alla stratificazione. Le cavità aperte entro le<br />

bande <strong>di</strong> taglio rappresentano dei tail join, ubicati nei quadranti estensionali<br />

e nei releasing jogs <strong>di</strong> queste strutture.


STRATIGRAPHY OF OLIGO-MIOCENE CARBONATE GRAINSTONES (MAJELLA MOUNTAIN)<br />

REFERENCES<br />

AGOSTA F., ALESSANDRONI M., & TONDI E. (2009) - Oblique<br />

normal faulting along the northern <strong>ed</strong>ge of the Majella<br />

anticline, central Italy: inferences on hydrocarbon<br />

migration and accumulation. Journal of Structural Geology,<br />

in press.<br />

AGOSTA F., ALESSANDRONI M., ANTONELLINI M, & TONDI E.<br />

(2009) – From fracture to flow, a field-bas<strong>ed</strong> quantitative<br />

analysis of an outcropping carbonate reservoir. Present<br />

volume.<br />

ALESSANDRONI M. (2008) – Structural control on the flow and<br />

accumulation of hydrocarbons in carbonate grainstones:<br />

an example from the Bolognano Fm. (Majella, Italy).<br />

Unpublish<strong>ed</strong>, Phd <strong>di</strong>ssertation, Department of Earth<br />

Science, University of Camerino, 167 pagg.<br />

AYDIN A. (2000) - Fractures, faults, and hydrocarbon<br />

entrapment, migration and flow. Marine and Petroleum<br />

Geology, 17 (7), 797-814.<br />

DI NACCIO D., BONCIO P., CIRILLI S., CASAGLIA F., MORETTINI<br />

E., LAVECCHIA G. & BROZZETTI F. (2005) – Role of<br />

mechanical stratigraphy on fracture development in<br />

carbonate reservoirs: Insights from outcropping shallow<br />

water carbonates in the Umbria-Marche Apennines, Italy.<br />

Journal of Volcanology and Geothermal Research, 148, 98-<br />

115.<br />

GHISETTI F. & VEZZANI L. (1998) – Geometrie deformative<br />

<strong>ed</strong> evoluzione cinematica <strong>del</strong>l’Appennino centrale. Stu<strong>di</strong><br />

Geologici Camerti, 14, 127-124.<br />

TONDI E., ANTONELLINI M., AYDIN A., MARCHEGIANI L. &<br />

CELLO G. (2006) – The role of deformation bands and<br />

pressure solution seams in fault development in carbonate<br />

grainstones of the Majella Mountain, Italy. Journal of<br />

Structural Geology, 28, 376-391.<br />

TONDI E. (2007) – Nucleation, development and petrophysical<br />

properties of faults in carbonate grainstones: Evidence<br />

from the San Vito Lo Capo peninsula (Sicily, Italy). Journal<br />

of Structural Geology, 29, 614-628.<br />

UNDERWOOD C. A., COOKE M. L., SIMO L. & MULDOON M. A.<br />

(2003) – Stratigraphic controls on vertical fracture<br />

patterns in Silurian dolomites, Northeastern Wisconsin.<br />

AAPG Bullettin, 87 (1), 121-142.<br />

VECSEI A. & SANDERS D. (1999) – Facies analysis and<br />

sequence stratigraphy of a Miocene warm-temperate<br />

carbonate ramp, Montagna <strong>del</strong>la Maiella, Italy.<br />

S<strong>ed</strong>imentary Geology, 23, 103-127.<br />

193


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 194-195<br />

Inferring the Fracturing Intensity Patterns in Tectonic Structures<br />

by the Computation of the Time Stress Integral (TSI)<br />

As is well known, stress can produce failure and hence<br />

fracturing in rocks either in traction, when the least stress<br />

component become equal to the rock cohesion or along shear<br />

planes (faults).<br />

In the latter case, the failure con<strong>di</strong>tion is reach<strong>ed</strong> independently<br />

from the mean stress intensity (within the elastic behaviour of<br />

rocks!) and as the stress tensor reaches the proper asymmetry,<br />

accor<strong>di</strong>ng to several failure criteria (e.g. Navier-Coulomb,<br />

Griffith).<br />

This results from the fact that on the one hand this asymmetry<br />

generate a simple shear stress on a given plane within the rock,<br />

and on the other hand is responsible for a pressure on that plane<br />

that increases its strength to break and slip.<br />

The effective capacity of a given stress to induce failure in<br />

shear con<strong>di</strong>tions is evaluat<strong>ed</strong> by the Deformation Function DF<br />

parameter, that represents the <strong>di</strong>fference, measur<strong>ed</strong> in Pa,<br />

between the shear acting on a plane and its strength.<br />

Maximum values of DF correspond to ideal failure plane as<br />

pr<strong>ed</strong>ict<strong>ed</strong> by the aforemention<strong>ed</strong> criteria.<br />

The stress acting on a rock in tectonic environments is call<strong>ed</strong><br />

the static stress and results from the (tensorial) ad<strong>di</strong>tion of a<br />

series of components that includes overburden, regional and<br />

local stresses.<br />

The effective stress will be the result of this ad<strong>di</strong>tion subtract<strong>ed</strong><br />

by the pore fluid pressure that releases the static stress by the<br />

pressure exert<strong>ed</strong> on the rock by the pressure, thus r<strong>ed</strong>ucing the<br />

rock strength.<br />

In this simple introduction we will neglect the pore elasticity<br />

component induc<strong>ed</strong> by the elasticity of the rock/pore system.<br />

As it is well known, rocks present an odd spatial <strong>di</strong>stribution of<br />

fractures, despite the rather homogeneous <strong>di</strong>stribution of<br />

regional and overburden stress values.<br />

This variability depends from the local rheological variations<br />

(even negligible, as this asymmetry is observ<strong>ed</strong> also in perfectly<br />

homogeneous rocks) and local ad<strong>di</strong>tional stress components.<br />

In tectonic environments, local stresses are induc<strong>ed</strong> by the<br />

relative movements and deformations of rock undergoing<br />

translations during the changes in geometry of the geological<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Università degli Stu<strong>di</strong> Roma Tre<br />

Largo S. Leonardo Murialdo 1, 00146 ROMA<br />

Lavoro eseguito nell’ambito <strong>del</strong>l'attività <strong>del</strong> Laboratorio <strong>di</strong> Geo<strong>di</strong>namica<br />

Quantitativa e Telerilevamento<br />

F. SALVINI*<br />

structures. These local components derive therefore form the<br />

kinematics induc<strong>ed</strong> by the geological processes and are referr<strong>ed</strong><br />

as kinematic stresses.<br />

Kinematic stresses are group<strong>ed</strong> into two categories:<br />

(i) stress induc<strong>ed</strong> by elastic accumulation nearby slip planes<br />

with friction;<br />

(ii) stress induc<strong>ed</strong> by internal elastic deformation of the rock<br />

during its movement.<br />

The first component develops in flexural slip processes in<br />

fol<strong>di</strong>ng as well as in fault damage zones.<br />

In the latter case it is the main responsible of the fracturing in<br />

fault damage zones (and in the earlier fault cores) with the<br />

development of well known fracture cleavages (e.g. Ri<strong>ed</strong>el<br />

planes, Har<strong>di</strong>ng fractures).<br />

As an example, the second kinematic stress category is present<br />

on rocks during their movement along active axial planes and is<br />

produc<strong>ed</strong> by the induc<strong>ed</strong> torsion.<br />

Please note that in the cit<strong>ed</strong> example the first category is also<br />

present, resulting from the flexural slip processes.<br />

The final fracturing state of a rock relates to its stress history<br />

through time during all the tectonic events that it suffer<strong>ed</strong>.<br />

As a consequence, the estimate of the fracturing intensity of a<br />

rock unit cannot be deriv<strong>ed</strong> simply by the analysis of its final<br />

geometry compar<strong>ed</strong> to the initial one, as is done with the<br />

curvature analysis in fol<strong>di</strong>ng.<br />

A better estimate will derive from the computation of the<br />

accumulation of all the stresses (torsion and shear deriv<strong>ed</strong>)<br />

during all its geological history.<br />

To mo<strong>del</strong> this accumulation, we consider that fracturing<br />

develops in a very long time with very low velocities and can<br />

be <strong>di</strong>vid<strong>ed</strong> into a long series of re-equilibrat<strong>ed</strong> steps that fully<br />

compensate static stress accumulation in between (i.e. a fold<strong>ed</strong><br />

layer will not unbend if you extract it from he rock!). Therefore<br />

in this mo<strong>del</strong>, we accumulate through time only the brittle<br />

effects of the stresses that develop<strong>ed</strong> at each step.<br />

In other words, a fractur<strong>ed</strong> rocks will possible accumulate other<br />

fracturing episodes during its geological evolution. If the new<br />

fractures are not dynamically compatible with the pre-existing<br />

ones, then a new fracture set will develop. On the other hand, if<br />

the existing fracturing is compatible with the new failure<br />

con<strong>di</strong>tions, it will increase the fracturing intensity by infilling<br />

processes.<br />

With these considerations, we can state that the final fracturing<br />

of a rock relates to its history of suffer<strong>ed</strong> failure-capable


stresses, that is the history integrat<strong>ed</strong> through time of its DF, the<br />

parameter that describes the capacity of stresses to induce<br />

fractures.<br />

The resulting value is the Time-Stress Integral (TSI), that is<br />

defin<strong>ed</strong> as the integral through time of the DF and has the<br />

<strong>di</strong>mensions of Pa*year:<br />

TSI = DF dt<br />

This integral, between the instant t1 and t2, can be numerically<br />

approximat<strong>ed</strong> by assuming that few changes occur between<br />

contiguous steps through time.<br />

Therefore we can convert it into:<br />

TSI = Σ DF ∆t<br />

By the forward mo<strong>del</strong>ling of the evolution of the structures it is<br />

possible to compute the DF at each step and numerically<br />

integrate it to compute the TSI.<br />

Stu<strong>di</strong>es of outcrops in tectonic environments, together with data<br />

from deep drillings compar<strong>ed</strong> to forward mo<strong>del</strong>s of their<br />

evolution reveal<strong>ed</strong> that a relationship exists between the<br />

fracture intensity and its spatial <strong>di</strong>stribution in tectonic<br />

environments and the comput<strong>ed</strong> TSI values in forward<br />

numerical mo<strong>del</strong>ling.<br />

Fracture intensity can be measur<strong>ed</strong> with the H/S parameter<br />

(among many methods), being H the fracture extension normal<br />

to the (null) axis of the fracture/structure (e.g. in case of fold<strong>ed</strong><br />

structures, along the normal to the line of intersection of the<br />

fracture with the surface of the fractur<strong>ed</strong> layer). S is the<br />

geometrical <strong>di</strong>stance between adjacent, homologous fractures.<br />

These stu<strong>di</strong>es reveal<strong>ed</strong> that<br />

H/S = f(TSI)<br />

The TSI in fault damage zones is numerically comput<strong>ed</strong> by<br />

<strong>di</strong>scretising the fault surface into cells and computing the DF<br />

on each of them for both sides, since DF is a function also of<br />

the rock rheology. The TSI is then comput<strong>ed</strong> by integrating the<br />

DF along the path of <strong>di</strong>splacement of each cell on the fault<br />

surface. The computation of the TSI is obtain<strong>ed</strong> by the FRAP<br />

software, that was successfully us<strong>ed</strong> to pr<strong>ed</strong>ict fault<br />

compartmentalisation in oil reservoirs.<br />

The TSI in fault-relat<strong>ed</strong> structures is comput<strong>ed</strong> by forward<br />

mo<strong>del</strong>ling through time of a series of 2D sections using a<br />

Layer<strong>ed</strong>-HCA numerical tool, the FORC software, that is<br />

capable of kinematically replicating the evolution of geological<br />

structures and computing the local dynamical stresses inclu<strong>di</strong>ng<br />

torsion and simple-shear ones.<br />

INFERRING THE FRACTURING INTENSITY PATTERNS<br />

195


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 196-198, 3 ff.<br />

The 100-150 Ma Apparent Polar Wander Path for Adria/Africa<br />

RIASSUNTO<br />

La curva <strong>di</strong> deriva dei poli <strong>di</strong> Adria/Africa fra 100 e 150 Ma fa<br />

È stata calcolata una curva <strong>di</strong> deriva dei poli per Adria/Africa per<br />

l’intervallo 100-150 Ma, utilizzando campioni raccolti in 6 sezioni <strong>del</strong><br />

Kimmeridgiano-Albiano <strong>del</strong>l’Appennino settentrionale.<br />

Il problema <strong>del</strong>le rotazioni tettoniche introdotte durante l’orogenesi<br />

appenninica è stato risolto calcolando le rotazioni relative fra le sezioni<br />

confrontando i valori <strong>di</strong> declinazione provenienti da intervalli temporali<br />

comuni. La curva calcolata mostra due bruschi cambi <strong>di</strong> <strong>di</strong>rezione, uno a circa<br />

140 Ma e l’altro a circa 105 Ma, probabilmente dovuti ad episo<strong>di</strong> <strong>di</strong> True Polar<br />

Wander.<br />

Inoltre, la curva calcolata da dati <strong>del</strong>l’Appennino è in buon accordo con<br />

quella calcolata per Africa nello stesso intervallo <strong>di</strong> tempo (BESSE &<br />

COURTILLOT (2002), rafforzando l’ipotesi che Adria si sia mossa<br />

coerentemente con Africa, almeno durante l’intervallo <strong>di</strong> tempo stu<strong>di</strong>ato.<br />

Key words: Adria, Apennines, APWP, magnetostratigraphy,<br />

paleomagnetism.<br />

INTRODUCTION<br />

The accurate determination of Apparent Polar Wandering<br />

Paths (APWPs) is a prerequisite to constrain paleogeographic<br />

reconstructions. Nevertheless, despite the large effort<br />

perform<strong>ed</strong> by the paleomagnetic community over the last five<br />

decades, one of the major problems that plague the<br />

determination of the APWP is the partial or total lack of data<br />

for certain periods.<br />

The Umbro-Marchean pelagic succession is well known for<br />

its exceptional magnetostratigraphic results and could give the<br />

possibility to reconstruct well dat<strong>ed</strong> APWP segments.<br />

However, the use of data from orogenic belts is hamper<strong>ed</strong> by<br />

the presence of local tectonic rotations.<br />

We test<strong>ed</strong> a method to solve the problem of tectonic<br />

rotations and reconstruct<strong>ed</strong> a 150 to 100 Ma high-resolution<br />

APWP for Adria by studying 4 Kimmeridgian-Lower Aptian<br />

(Bosso, Arcevia, Contessa and Gorgo a Cerbara, SATOLLI et<br />

_________________________<br />

SARA SATOLLI (*,°), FERNANDO CALAMITA (°) & JEAN BESSE (*)<br />

(*) Laboratoire de Géomagnétism et Paléomagnétism, Institut de Physique<br />

du Globe de Paris, France.<br />

(°) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università “G. d’Annunzio” <strong>di</strong><br />

Chieti-Pescara, Italy.<br />

alii, 2007) and 3 Aptian-Albian (Gorgo a Cerbara, La<br />

Roccaccia and Poggio le Guaine, SATOLLI et alii, 2008)<br />

magnetostratigraphic sections in the Northern Apennines (Fig.<br />

1).<br />

GEOLOGICAL SETTING AND PALEOMAGNETIC<br />

ANALYSIS<br />

The analyz<strong>ed</strong> sections are locat<strong>ed</strong> in the Northern Apennines<br />

fold-and-thrust belt. The Triassic-Cenozoic succession<br />

deposit<strong>ed</strong> above the Adria margin was deform<strong>ed</strong> during the<br />

Tertiary orogenesis.<br />

We sampl<strong>ed</strong> the Calcari ad Aptici, the Maiolica and the<br />

Marne a Fucoi<strong>di</strong> Formations by collecting 2.5-cm-<strong>di</strong>ameter<br />

cores with portable drilling equipment. Samples were orient<strong>ed</strong><br />

in-situ with a magnetic compass and analys<strong>ed</strong> in the<br />

paleomagnetic laboratories of the Istituto Nazionale <strong>di</strong><br />

Geofisica and Vulcanologia of Rome and of the Institut de<br />

Physique du Globe of Paris with a 2G-DC SQUID<br />

magnetometer.<br />

The magnetic properties of the analyz<strong>ed</strong> rocks (natural<br />

remanent magnetization, susceptibility and thermal<br />

demagnetization of a three-component isothermal remanent<br />

magnetization) and the range in which the characteristic<br />

remanent magnetization components were isolat<strong>ed</strong> strongly<br />

depend upon lithologies.<br />

Thermally demagnetiz<strong>ed</strong> samples generally <strong>di</strong>splay two or<br />

three components (Fig. 2): a low blocking temperature<br />

component of normal polarity close to the geocentric axial<br />

<strong>di</strong>pole field; an interm<strong>ed</strong>iate temperature component with a<br />

revers<strong>ed</strong> polarity (also detect<strong>ed</strong> by TARDUNO et alii, 1992); the<br />

characteristic component of magnetization (both normal and<br />

reverse polarity).<br />

THE APWP RECONSTRUCTION<br />

In order to solve the problem of tectonic rotations link<strong>ed</strong> to<br />

Alpine and Apennine orogenesis, we comput<strong>ed</strong> relative<br />

rotations between sections by considering paleomagnetic<br />

<strong>di</strong>rections from common time overlaps, and realign<strong>ed</strong> them into<br />

a common declination reference frame (Bosso section).<br />

The sections are characteriz<strong>ed</strong> by similar rotations (between<br />

ca. 24° and ca. 34° CCW) with respect to the value expect<strong>ed</strong><br />

for Africa from BESSE & COURTILLOT (2002), taken as a proxy<br />

for stable Adria, with exception of Gorgo a Cerbara which is


THE 100-150 MA APPARENT POLAR WANDER PATH FOR ADRIA/AFRICA<br />

Fig. 1 – Digital elevation mo<strong>del</strong> and schematic geological map of the study area, with location of the stu<strong>di</strong><strong>ed</strong> sections. White arrows show the rotation of the<br />

sections with respect to the African reference frame (BESSE & COURTILLOT, 2002).<br />

the more strongly rotat<strong>ed</strong> (ca. 51° CCW). Particularly, La<br />

Roccaccia, Poggio le Guaine and Bosso sections show no<br />

relative rotations, thus belong to the same structural unit, as<br />

also support<strong>ed</strong> by field structural evidence and geological<br />

maps. Conversely, the <strong>di</strong>fference in inclination remains always<br />

small between the sections, and includ<strong>ed</strong> in their respective<br />

error bars.<br />

We reconstruct<strong>ed</strong> a 100–150 Ma APWP segment in Bosso<br />

coor<strong>di</strong>nates (Fig. 3) by computing an average pole every 5<br />

Myr in the Kimmeridgian-lower Aptian sections, and a<br />

pole for each sampl<strong>ed</strong> Member in the lower Aptian-Albian<br />

Marne a Fucoi<strong>di</strong> Formation.<br />

Moreover, we comput<strong>ed</strong> a 25° counterclockwise rotation<br />

between the 100-150 Ma segment in Bosso coor<strong>di</strong>nates and the<br />

equivalent age 10 Myr sli<strong>di</strong>ng window APWP from BESSE &<br />

COURTILLOT (2002), by minimizing the sum of angular <strong>di</strong>stance<br />

between poles. The APWP comput<strong>ed</strong> from Apennines data and<br />

the equivalent age segment from BESSE & COURTILLOT (2002)<br />

are in very good agreement, showing the same temporal<br />

evolution and being most often statistically in<strong>di</strong>stinct after the<br />

rotation correction.<br />

The new segment records an APWP loops close to the<br />

Jurassic/Cretaceous boundary (around 140 Ma) that document a<br />

fast and abrupt change in plate motion, without any significant<br />

standstill. The global change in plate motion could be either<br />

link<strong>ed</strong> to large scale collisions (closure of the Mongol-Okhotsk<br />

Fig. 2 – Example of vector <strong>di</strong>agram of typical demagnetization data, in<br />

situ coor<strong>di</strong>nates, showing the three recogniz<strong>ed</strong> magnetization components.<br />

Open and solid symbols represent projection onto the vertical and<br />

horizontal planes, respectively. Demagnetization steps values are<br />

express<strong>ed</strong> in °C.<br />

197


198 S. SATOLLI ET ALII<br />

Fig. 3 – The 150–100 Ma APWP segment reconstruct<strong>ed</strong> from Northern Apennines data. a) The 150–100 Ma segment (black and green symbols) before and<br />

after a 25° CW rotation, compar<strong>ed</strong> with the APWP from BESSE & COURTILLOT (2002); c) the 150–100 Ma APWP segment (open black symbols and black<br />

arrow) compar<strong>ed</strong> with 150–90 Ma segment from BESSE & COURTILLOT (2002) (open grey symbols and dark grey arrow).<br />

Ocean), True Polar Wander (TPW) events, or possibly to the<br />

South Atlantic opening.<br />

A smaller event is detect<strong>ed</strong> at 100-110 Ma, with apex at ca.<br />

105 Ma, and could evidence a fast southward motion of Adria<br />

(maybe due to TPW), undetect<strong>ed</strong> from classical African<br />

APWPs.<br />

CONCLUSIONS<br />

We reconstruct<strong>ed</strong> a 150 to 100 Ma high-resolution APWP,<br />

using 6 magnetostratigraphic sections from the Northern<br />

Apennines (Fig. 3). The segment document two loops, at 140<br />

and 105 Ma, most probably due to TPW events.<br />

The good agreement found between the 100-150 Ma segment<br />

comput<strong>ed</strong> from data collect<strong>ed</strong> in the Apennines and the<br />

equivalent time segment from BESSE & COURTILLOT (2002)<br />

strengthens the fact that Adria was part of Africa at the<br />

lithospheric level at least during the analyz<strong>ed</strong> period. Whereas,<br />

rotations between sections were induc<strong>ed</strong> later on, most<br />

probably during the Apennines orogenesis.<br />

Finally, the high quality of the obtain<strong>ed</strong> segment<br />

demonstrates that is possible to reconstruct APWP using data<br />

from orogenic belts, when it is possible to solve tectonic<br />

rotations link<strong>ed</strong> to the orogenesis.<br />

REFERENCES<br />

BESSE, J. & COURTILLOT, V. (2002) - Apparent and true polar<br />

wander and the geometry of the geomagnetic field over the<br />

last 200 Myr. J. Geophys. Res., 107 (B11), 2300.<br />

SATOLLI, S., BESSE, J., SPERANZA, F. & CALAMITA, F. (2007) -<br />

New 125-150 Ma high-resolution Apparent Polar Wander<br />

Path for Adria from magnetostratigraphic sections in<br />

Umbria-Marche (Northern Apennines, Italy): Timing and<br />

duration of the global Jurassic-Cretaceous hairpin turn.<br />

Earth Planet. Sci. Lett. 257, 329-342.<br />

SATOLLI, S., BESSE, J. & CALAMITA, F. (2008) -<br />

Paleomagnetism of Aptian-Albian sections from the<br />

Northern Apennines (Italy): Implications for the 150-100<br />

Ma apparent polar wander of Adria and Africa. Earth<br />

Planet. Sc. Lett., 276, 115-128.<br />

TARDUNO, J.A., LOWRIE, W., SLITER, V., BRALOWER, T.J. &<br />

HELLER, F. (1992) - Revers<strong>ed</strong> polarity characteristic<br />

magnetizations in the Albian Contessa sections, Umbrian<br />

Apennines, Italy: implications for the existence of a Mid-<br />

Cretaceous mix<strong>ed</strong> polarity interval. J. Geophys. Res. 97,<br />

241–271.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 199-202, 3 ff.<br />

Risultati preliminari <strong>del</strong>l’analisi sismica <strong>del</strong> Golfo <strong>di</strong> Squillace<br />

(Calabria ionica): ricostruzione 3D<br />

ABSTRACT<br />

Preliminary results of seismic analysis of Squillace Gulf (Ionian<br />

Calabria): 3D reconstruction<br />

In this paper we report the first results of a three-<strong>di</strong>mensional seismic<br />

analysis of geometries and architectures in the subsurface of Squillace Gulf<br />

locat<strong>ed</strong> in the Ionian margin of Catanzaro Trough (Southern Calabria).<br />

The goal of this research is to find main details on the temporal and spatial<br />

<strong>di</strong>stribution of trascurrent faulting in the central portion of the CA that are still<br />

lacking.<br />

The interpretation of seismics profiles give us the possibility to remark<br />

<strong>di</strong>fferent evolution phase in this sector of Calabrian Arc (CA).<br />

In particular we recognize, over Messinian succession, two <strong>di</strong>fferent<br />

tectono-stratigraphics units represent<strong>ed</strong> by Pliocene and Pleistocene s<strong>ed</strong>iments.<br />

The chronological value to the most evidence seismic anomalies was given<br />

by the calibration of seismic profiles with deep well cores.<br />

At first sight, the tectonic activity of eastern side of CA seems to be<br />

dominant during the period between Upper Miocene and Pliocene despite the<br />

last 1My ca. during witch the vertical movement can be consider<strong>ed</strong> as a result<br />

of the interaction between tectonic uplift and Quaternary sea-level changes.<br />

Key words: seismic reflection profiles, sequence stratigraphy,<br />

3D images.<br />

INTRODUZIONE<br />

Il Tirreno, il più giovane bacino <strong>del</strong> M<strong>ed</strong>iterraneo<br />

occidentale, costituisce insieme alla catena appenninica una tra<br />

le aree più stu<strong>di</strong>ate <strong>del</strong> M<strong>ed</strong>iterraneo.<br />

Esso rappresenta un bacino <strong>di</strong> retro-arco formatosi dal<br />

Miocene fino all’attuale. Durante quest’intervallo temporale il<br />

rifting tirrenico e la compressione nella regione appenninica<br />

hanno coesistito, e tuttora coesistono, con una progressiva<br />

migrazione verso E (MALINVERNO & RYAN, 1986).<br />

La bibliografia esistente mostra come esistano <strong>di</strong>verse linee<br />

<strong>di</strong> pensiero circa la sua genesi <strong>ed</strong> evoluzione (REHAULT et alii,<br />

1984; DEWEY et alii, 1989; KNOTT & TURCO, 1991; VAN DIJK<br />

et alii, 2000; TURCO et alii, 2006).<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Camerino, Via<br />

Gentile III da Varano – 62062 Camerino (MC), Italy.<br />

valeriasbrescia@unicam.it; Tel. 0737-402600<br />

(°) CNR – I.A.M.C., Napoli, Italy<br />

SBRESCIA VALERIA (*), TURCO EUGENIO (*) & MILIA ALFONSA (°)<br />

In questo contesto si inserisce l’Arco Calabro che<br />

costituisce l’elemento <strong>di</strong> congiunzione tra il sistema orogenico<br />

appenninico a N e la catena siciliano-maghrebide a S,<br />

occupando quin<strong>di</strong> una posizione centrale nel quadro evolutivo<br />

tirrenico.<br />

In particolar modo va sottolineata l’importanza dei bacini<br />

peri-tirrenici (i.e il Bacino <strong>di</strong> Paola, Golfo <strong>di</strong> S.Eufemia, Golfo<br />

<strong>di</strong> Policastro) <strong>ed</strong> i bacini posti sul margine ionico <strong>del</strong>la Calabria<br />

(Golfo <strong>di</strong> Taranto, Bacino <strong>di</strong> Crotone e Golfo <strong>di</strong> Squillace) che<br />

registrano la successione stratigrafica e le strutture associate<br />

agli eventi tettonici responsabili <strong>del</strong>l’apertura <strong>del</strong> Tirreno.<br />

Essendo l’evoluzione strutturale <strong>di</strong> questi bacini legata alla<br />

migrazione verso SE <strong>del</strong>l’Arco Calabro iniziata a seguito<br />

<strong>del</strong>l’apertura <strong>del</strong> bacino Tirrenico, <strong>di</strong>viene chiaro il motivo per<br />

il quale la Stretta <strong>di</strong> Catanzaro e la sua continuazione nel Golfo<br />

<strong>di</strong> Squillace assumono una posizione chiave per la definizione<br />

dei processi che controllano l’evoluzione <strong>di</strong> questa porzione <strong>di</strong><br />

bacino dal Tortoniano all’attuale.<br />

INQUADRAMENTO GEOLOGICO<br />

L’arco Calabro, parte emergente <strong>del</strong> prisma <strong>di</strong> accrezione<br />

associato alla subduzione <strong>del</strong>lo slab litosferico ionico,<br />

rappresenta un frammento <strong>del</strong> margine europeo che si<br />

sovrappone all’Appennino e alla catena Maghrebide durante la<br />

collisione tra Europa e Apulia nel tardo Miocene inferiore<br />

Fig. 1 – Mappa strutturale semplificata <strong>del</strong>l’Arco Calabro (Italia meri<strong>di</strong>onale)<br />

e localizzazione <strong>del</strong> Golfo <strong>di</strong> Squillace.


200 V. SBRESCIA ET ALII<br />

(fig.1).<br />

Con il termine “Arco Calabro” si intende l’area compresa<br />

tra due gran<strong>di</strong> lineamenti trascorrenti rappresentati dalla linea<br />

<strong>del</strong> Pollino a NE, con cinematica sinistra, e dalla linea <strong>di</strong><br />

Taormina a SW, con cinematica destra (AMODIO MORELLI et<br />

alii, 1976; COLELLA, 1988; VAN DIJK & OKKES, 1991; WELTJE,<br />

1992).<br />

Sebbene la migrazione verso SE <strong>del</strong>l’Arco Calabro è<br />

continua dal Tortoniano fino all’attuale, negli ultimi 700ka la<br />

sua velocità <strong>di</strong> spostamento <strong>di</strong>minuisce poiché <strong>di</strong>venta<br />

pr<strong>ed</strong>ominante il movimento verticale (uplift = 1.67mm/a,<br />

WESTAWAY, 1993; ANTONIOLI et alii, 2006).<br />

Per l’Arco Calabro sono stati suggeriti <strong>di</strong>versi mo<strong>del</strong>li<br />

cinematici che possono essere così riassunti:<br />

- Translation mo<strong>del</strong>s (MOUSSAT, 1983; MEULEKAMP et<br />

alii, 1986; DEWEY et alii, 1989)<br />

- Sphenochasm mo<strong>del</strong>s (SCANDONE, 1979; DEWEY et<br />

alii, 1989)<br />

- Ben<strong>di</strong>ng mo<strong>del</strong>s (GHISETTI et alii, 1982; LUONGO et<br />

alii, 1988)<br />

- Ra<strong>di</strong>al Drift mo<strong>del</strong>s (DUBOIS, 1976; FINETTI & DEL<br />

BEN, 1986)<br />

E’ generalmente riconosciuto che, basandosi<br />

sull’evoluzione tettono-s<strong>ed</strong>imentaria neogenica, l’Arco Calabro<br />

può essere sud<strong>di</strong>viso in una serie <strong>di</strong> segmenti limitati da set <strong>di</strong><br />

faglie strike-slip orientate NW-SE (MEULENKAMP et alii, 1986;<br />

VAN DIJK & OKKES, 1991; DEL BEN et alii, 2008).<br />

Il Catanzaro Trough rappresenta uno <strong>di</strong> questi segmenti<br />

bordato, a N e S, da due fasce trascorrenti sinistre<br />

(MEULENKAMP et alii, 1986; VAN DIJK, 1994; ZECCHIN et alii,<br />

2006).<br />

La scelta <strong>di</strong> analizzare le perforazioni esistenti e la fitta<br />

maglia <strong>di</strong> profili sismici che coprono sia il versante ionico<br />

(Golfo <strong>di</strong> Squillace) che quello tirrenico (Golfo <strong>di</strong> S. Eufemia)<br />

<strong>del</strong>la Stretta <strong>di</strong> Catanzaro è dettata, oltre che dalla poca<br />

chiarezza degli affioramenti per il verificare la supposta<br />

tettonica trascorrente sinistra in questa porzione <strong>di</strong> catena,<br />

anche dalla capacità <strong>del</strong>le aree depresse <strong>di</strong> registrare l’intera<br />

s<strong>ed</strong>imentazione (dall’apertura <strong>del</strong> bacino all’attuale) e le<br />

strutture associate alla tettonica neogenica.<br />

DATI E METODOLOGIA<br />

Il presente lavoro si basa sull’interpretazione <strong>di</strong> circa<br />

500km <strong>di</strong> profili sismici multicanale a riflessione acquisiti<br />

durante la campagna oceanografica condotta dall’AGIP S.p.A.<br />

durante la metà degli anni ’70 <strong>ed</strong> i profili CROP esistenti in<br />

questa porzione <strong>del</strong> Mar Ionio (fig. 2).<br />

I profili acquisiti nella zona F coinvolgono il versante<br />

ionico <strong>del</strong>l’Italia Meri<strong>di</strong>onale e, più in particolare, l’offshore<br />

<strong>del</strong>l’area compresa tra la penisola <strong>del</strong> Gargano e lo Stretto <strong>di</strong><br />

Messina.<br />

Oltre ai dati sismici, lungo il versante ionico sono presenti<br />

anche una serie <strong>di</strong> perforazioni per l’esplorazione <strong>di</strong> idrocarburi<br />

Fig. 2 – Localizzazione <strong>del</strong> grid sismico (linee multicanale CROP e F) e dei pozzi per l’esplorazione petrolifera in corrispondenza <strong>del</strong> Golfo <strong>di</strong> Squillace.


RISULTATI PRELIMINARI DELL’ANALISI SISMICA DEL GOLFO DI SQUILLACE<br />

prodotti dall’AGIP <strong>di</strong>stribuiti in maniera <strong>di</strong>somogenea:<br />

maggiormente presenti al largo <strong>di</strong> Crotone, meno densi nel<br />

Golfo <strong>di</strong> Squillace e quasi <strong>del</strong> tutto assenti a largo <strong>di</strong> Locri.<br />

Lo scopo <strong>del</strong>l’interpretazione dei suddetti profili è quello <strong>di</strong><br />

in<strong>di</strong>viduare e descrivere i principali aspetti geologicostratigrafici,<br />

strutturali e tettonici dei bacini posti sul versante<br />

tirrenico e su quello ionico <strong>del</strong>la Stretta <strong>di</strong> Catanzaro per poi<br />

poterli inserire all’interno <strong>di</strong> una ricostruzione temporale<br />

<strong>del</strong>l’apertura tirrenica cui la migrazione <strong>del</strong>l’Arco Calabro è<br />

strettamente legata.<br />

La successione stratigrafica registrata nel bacino<br />

estensionale posto in corrispondenza <strong>del</strong> Golfo <strong>di</strong> Squillace<br />

comprende circa 3200m <strong>di</strong> depositi Plio-Pleistocenici che<br />

poggiano su depositi Messiniani con spessore variabile da<br />

poche decine a circa 1200m.<br />

Le perforazioni esistenti (fig. 3) in quest’area mostrano, dal<br />

basso verso l’alto, le seguenti litologie:<br />

- Basamento metamorfico; - Depositi Miocenici <strong>del</strong><br />

Serravalliano-Tortoniano, Formazione <strong>del</strong>le Argille marnose<br />

<strong>del</strong> Ponda (poche decine <strong>di</strong> metri) e Formazione arenaceoconglomeratica<br />

<strong>di</strong> San Nicola <strong>del</strong>l’Alto (da 30m a 600m <strong>di</strong><br />

spessore), e <strong>del</strong> Messiniano, Gessoso-Solfifera (da 60m a<br />

1300m) e Formazione <strong>del</strong>le Cavarne (da poche decine a<br />

~300m); - Depositi Pliocenici, Formazione <strong>del</strong>la Molassa <strong>di</strong><br />

Zinga (~60m) e Formazione <strong>del</strong>le Argille <strong>di</strong> Crotone (da 300m<br />

a ~600m); - Depositi Pleistocenici, Formazione <strong>di</strong> San Mauro<br />

(poche decine <strong>di</strong> metri).<br />

Fig. 3 – Stratigrafie semplificate <strong>di</strong> alcuni pozzi per l’esplorazione petrolifera<br />

ubicati nel Golfo <strong>di</strong> Squillace.<br />

201<br />

I terreni presenti possono essere associati a 3 <strong>di</strong>versi cicli<br />

s<strong>ed</strong>imentari: il bacino si sviluppa durante il Serravalliano-<br />

Pliocene inf. seguendo i maggiori sistemi <strong>di</strong> faglie; dopo la sua<br />

formazione comincia la seconda fase, quella <strong>di</strong> riempimento,<br />

che avviene secondo <strong>di</strong>versi impulsi tettonici <strong>ed</strong> infine si passa<br />

alla fase <strong>di</strong> chiusura <strong>del</strong> bacino stesso.<br />

L’interpretazione dei profili sismici ha permesso la<br />

<strong>di</strong>stinzione <strong>di</strong> cinque unità tettono-stratigrafiche: Pliocene,<br />

Pleistocene, Miocene (sud<strong>di</strong>viso in Messiniano e Serravalliano-<br />

Tortoniano) e Basamento Metamorfico.<br />

Tale <strong>di</strong>fferenziazione è stata possibile grazie, oltre alle<br />

informazioni fornite dalle stratigrafie <strong>del</strong>le perforazioni<br />

presenti, anche dal riconoscimento <strong>del</strong>le unconformities a bassa<br />

frequenza.<br />

Inoltre, all’interno <strong>di</strong> queste unità si riconoscono ulteriori<br />

sequenze deposizionali separate da unconformities ad alta<br />

frequenza.<br />

Le faglie, per lo più normali, interessano le unità<br />

mioceniche (Tortoniano-Serravalliano, Messiniano) e<br />

plioceniche.<br />

I depositi pleistocenici, invece, non sembrano essere<br />

interessati da attività tettonica se non in minima parte; ciò<br />

testimoniato dal fatto che gli orizzonti <strong>di</strong> queste unità poggiano<br />

in onlap su quelli pliocenici seguendo le normali fasi <strong>di</strong><br />

riempimento <strong>di</strong> un bacino.<br />

Successivamente alla fase <strong>di</strong> apertura <strong>del</strong> bacino <strong>di</strong><br />

Squillace i s<strong>ed</strong>imenti che lo hanno riempito sono stati piegati<br />

dalla tettonica trascorrente sinistra agente lungo questa<br />

porzione <strong>di</strong> arco.<br />

CONCLUSIONE<br />

L’analisi dei dati a <strong>di</strong>sposizione ha permesso una<br />

ricostruzione temporale <strong>del</strong>l’evoluzione <strong>del</strong> bacino <strong>di</strong><br />

Squillace, la creazione <strong>di</strong> una mappa strutturale e, grazie<br />

all’utilizzo <strong>di</strong> software specifici, la realizzazione <strong>di</strong> immagini<br />

tri<strong>di</strong>mensionali<br />

Il record stratigrafico <strong>del</strong> bacino mostra la presenza <strong>di</strong> una<br />

successione stratigrafica più o meno continua dal Serravalliano<br />

fino all’attuale che poggia su <strong>di</strong> un basamento metamorfico.<br />

La fase tettonica più intensa registrata ha avuto luogo<br />

durante il Pliocene inferiore. Qui la fase deformativa è<br />

associata all’attività <strong>di</strong> faglie normali orientate W-E che<br />

bordano a N e S il bacino così creatosi nell’offshore <strong>di</strong><br />

Catanzaro. Segue una fase <strong>di</strong> deposizione <strong>di</strong> s<strong>ed</strong>imenti argillosiltosi<br />

e quin<strong>di</strong>, una volta terminata l’intensa fase tettonica<br />

<strong>di</strong>stensiva, il bacino viene progressivamente riempito da<br />

s<strong>ed</strong>imenti sabbioso-arenacei con presenza <strong>di</strong> ciottoli e talora <strong>di</strong><br />

argilla siltosa.<br />

Alla tettonica <strong>di</strong>stensiva si aggiunge, dal Pleistocene m<strong>ed</strong>iosuperiore,<br />

un forte uplift che in buona parte è legato alla<br />

tettonica regionale.<br />

Quanto mostrato fornisce quin<strong>di</strong> un quadro temporale<br />

<strong>del</strong>l’evoluzione <strong>di</strong> una porzione <strong>del</strong>l’Arco Calabro<br />

rappresentata dalla stretta <strong>di</strong> Catanzaro, elemento trasversale<br />

alla catena, <strong>ed</strong> in particolare <strong>del</strong>la sua prosecuzione a mare<br />

ovvero <strong>del</strong> Golfo <strong>di</strong> Squillace.


202 V. SBRESCIA ET ALII<br />

BIBILIOGRAFIA<br />

AMODIO MORELLI L., BONARDI G., COLONNA V., DIETRICH D.,<br />

GIUNTA G., PERRONE V., PICCARETTA G., RUSSO M.,<br />

SCANDONE P., ZANETTIN-LORENZONI E., ZUPETTA A.<br />

(1976) - L'Arco Calabro-Peloritano nell'orogene<br />

appenninico-maghrebide. Mem. Soc. Geol. It., 17, 1-60.<br />

ANTONIOLI F., FERRANTI L., LAMBECK K., KERSHAW S.,<br />

VERRUBBI V. & DAI PRA G. (2006) – Late Pleistocene to<br />

Holocene record of changing uplift rates in southern<br />

Calabria and northeastern Sicily (southern Italy, Central<br />

M<strong>ed</strong>iterranean Sea). Tectonophysics, 422, 23-40.<br />

DEWEY J.F., HELMAN M.L., TURCO E., HUTTON D.H.W. &<br />

KNOTT S.D. (1989) – Kinematics of the western<br />

M<strong>ed</strong>iterranean. In: Coward M.P., Dietrich D. & Park R.G.<br />

(Ed) – Alpine Tectonics. Spec. Pubbl. Geol. Soc. London,<br />

45, 265-283.<br />

DEL BEN A., BARNABA C. & TABOGA A. (2008) – Strike-slip<br />

systems as the main tectonic features in the Plio-<br />

Quaternary kinematics of the Calabrian Arc. Mar.<br />

Geophys. Res., 29 (1), 1-12.<br />

DUBOIS R. (1970) – La suture calabro-apenninique Cretacée-<br />

Eocène et l’ouverture Tyrrhenienne neogène: etude<br />

pétrographique et structurale de la Calabre centrale.<br />

Thèse, Univ de Paris, 567pp.<br />

FINETTI I. & DEL BEN A. (1986) – Geophysical study of the<br />

Tyrrhenian opening. Boll. Geofis. Teor. Appl, 28: 75-155.<br />

GHISETTI F., SCARPA R & VEZZANI L. (1982) – Seismic activity,<br />

deep structures and deformation processes in the Calabrian<br />

Arc, Southern Italy. In: Mantovani E. & Sartori R. (Ed) –<br />

Structure, Evolution and Present Dynamics of the Calabrian<br />

Arc. Earth Evolut. Sci., 3, 248-260.<br />

KNOTT S.D & TURCO E. (1991) – Late Cenozoic kinematics of<br />

the Calabrian Arc, southern Italy. Tectonics, 10, 1164-<br />

1172.<br />

LUONGO G. (1988) – Tettonica globale <strong>del</strong>l’Italia meri<strong>di</strong>onale:<br />

subduzione oben<strong>di</strong>ng?. In: D’Argenio B. (Ed) L’Appennino<br />

Campano – Lucano nel quadro geologico <strong>del</strong>l’Italia<br />

meri<strong>di</strong>onale. Relazioni 74° Congresso Nazionale SGI,<br />

Sorrento (Italia). De Fr<strong>ed</strong>e, Napoli. 157-161.<br />

MALINVERNO A. & RYAN W.B.F. (1986) – Extension in the<br />

Thyrrhenian Sea and shortening in the Apennines as result<br />

of arc migration driven by sinking of the lithosphere.<br />

Tectonics, 5, 227-245.<br />

MEULENKAMP J.E., HILGEN F. & VOOGT E. (1986) – Late<br />

Cenozoic s<strong>ed</strong>imentary-tectonic history of the Calabrian<br />

Arc. Giornale <strong>di</strong> Geologia, ser. 3a, 48, 345-359.<br />

MOUSSAT E. (1983) – Evolution de la mer Tyrrhenienne<br />

centrale et de ses marges septentrionales en relation avec<br />

la néotectonique dans l’Arc calabrais. These 3e cycle,<br />

Univ. Pierre et M. Curie, Paris, 125pp.<br />

REHAULT J.P., MASCLE J. & BOILLOT G. (1984) – Evolution<br />

geodybamique de la M<strong>ed</strong>iterranée depuis l’Oligocène.<br />

Mem. Soc. Geol. Ital., 27, 85-96.<br />

SCANDONE P. (1979) – Origin of the Thyrrhenian Sea and<br />

Calabrian Arc. Boll. Soc. Geol. Ital, 98, 27-34.<br />

TURCO E., SCHETTINO A., PIERANTONI P.P. & SANTARELLI G.<br />

(2006) – The Pleistocene extension of the Campania Plain<br />

in the framework of the southern Tyrrhenian tectonic<br />

evolution: morphotectonic analysis, kinematic mo<strong>del</strong> and<br />

implications for volcanism. In: De Vivo B. (Ed) –<br />

Volcanism in the Campania Plain: Vesuvius, Campi Flegrei<br />

and Ignimbrites. Elsevier, series “Developments in<br />

Volcanology”, 9, 27-51.<br />

VAN DIJK J.P. (1994) – Late Neogene kinematics of intra-arc<br />

oblique shear-zone: the Petilia-Rizzuto fault zone<br />

(Calabrian Arc, Central M<strong>ed</strong>iterranean). Tectonics, 13,<br />

1201-1230.<br />

VAN DIJK J.P. & OKKES F.W.M (1991) – Neogene<br />

tectonostratigraphy and kinematics of Calabrian basins;<br />

implications for the geodynamics of the Central<br />

M<strong>ed</strong>iterranean. Tectonophysics, 196, 23-60.<br />

VAN DIJK J.P., BELLO M., BRANCALEONI G.P., CANTARELLA<br />

G., COSTA V., FRIXA A., GOLFETTO F., MERLINI S., RIVA<br />

M., TORRICELLI S., TOSCANO C. & ZERILLI A. (2000) – A<br />

regional structural mo<strong>del</strong> for the northern sector of the<br />

Calabrian Arc (southern Italy). Tectonophysics, 324, 267-<br />

320.<br />

WELTJE G. (1992) – Oligocene to Early Miocene s<strong>ed</strong>imentation<br />

and tectonics in the southern part of the Calabrian-<br />

Peloritan Arc (Aspromonte, southern Italy): a record of<br />

mix<strong>ed</strong>-mode piggy-back basin evolution. Basin Research, 4,<br />

37-68.<br />

WESTAWAY R. (1993) – Quaternary uplift of Southern Italy.<br />

Journal of Geophysical Research, 98, 21741-21772.<br />

ZECCHIN M., MELLERE D. & RODA C. (2006) – Sequence<br />

stratigraphy and architectural variability in growth faultbound<strong>ed</strong><br />

basin fills: a review of Pio-Pleistocene stratal<br />

units of the Crotone Basin, southern Italy. Journal of<br />

Geological Society, London, 163, 471-486.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 203-206, 3ff.<br />

Active intraplate deformation within Adria: examples from the<br />

Adriatic region<br />

RIASSUNTO<br />

Deformazione attiva all’interno <strong>del</strong>la placca Adria: esempi nell’area<br />

adriatica.<br />

L’avampaese adriatico costituisce una <strong>del</strong>le poche aree preservate dalla<br />

subduzione all’interno <strong>del</strong>l’intero M<strong>ed</strong>iterraneo e tale dominio viene<br />

generalmente considerato asismico e indeformato. Tuttavia, i dati <strong>di</strong> sismica a<br />

riflessione e la recente sismicità registrata nell’area permettono <strong>di</strong> <strong>del</strong>ineare<br />

una serie <strong>di</strong> zone <strong>di</strong>screte in deformazione (Dorsale M<strong>ed</strong>io-Adriatica, sistema<br />

<strong>di</strong> faglie <strong>del</strong>le Tremiti e Gondola-Mattinata).<br />

In questo stu<strong>di</strong>o, basato sull’integrazione <strong>di</strong> dati geologici, strutturali e<br />

geofisici, è stata caratterizzata la deformazione recente e il regime tettonico<br />

all’interno <strong>del</strong>la placca Adria, oltre alle relazioni con le aree attive circostanti<br />

la regione Adriatica.<br />

Parole chiave: placca Adria; sismicità; tettonica<br />

intraplacca; tettonica attiva; Adriatico.<br />

ABSTRACT<br />

Recent seismicity record<strong>ed</strong> in the Adriatic region suggests that active<br />

deformation occurs within the Adria plate. Earthquakes are common in the<br />

adjoining chains and in particular along the Northern Apennines, in the<br />

Southern Alps and along the Dinaric-Albanian-Hellenic thrust fronts; in<br />

ad<strong>di</strong>tion, m<strong>ed</strong>ium-to-low grade seismicity also affects the foreland and is<br />

cluster<strong>ed</strong> along two main transects through the centre of the Adriatic region.<br />

The two zones of active deformation correspond to the Mid-Adriatic Ridge and<br />

the Gargano region, and approximately trend NW-SE and E-W, respectively.<br />

Several interpretations have been propos<strong>ed</strong> to explain the deformation<br />

observ<strong>ed</strong> within the Adriatic foreland, inclu<strong>di</strong>ng a variety of contrasting<br />

kinematic and geodynamic mo<strong>del</strong>s.<br />

We attempt<strong>ed</strong> to unravel the complicat<strong>ed</strong> structural evolution of the<br />

Central Adriatic region by interpreting industrial and ministerial (shallow and<br />

deep) seismic profiles and the recent seismicity record<strong>ed</strong> in the Adriatic. The<br />

subsurface study allow<strong>ed</strong> us to better understand the structural style, timing<br />

and rates of deformation affecting the Mid-Adriatic Ridge and the Gargano<br />

region, and to unravel the relationships of active deformation with respect to<br />

the adjacent chains. The results of our study in<strong>di</strong>cate that the structural setting<br />

and type of seismicity of the Central Adriatic can be explain<strong>ed</strong> in terms of<br />

active intraplate deformation with the reactivation of inherit<strong>ed</strong> <strong>di</strong>scontinuities.<br />

_________________________<br />

VITTORIO SCISCIANI (*) & FERNANDO CALAMITA (*)<br />

(*)Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università “G. D'Annunzio” Chieti-<br />

Pescara, Campus Universitario Madonna <strong>del</strong>le Piane, Via dei Vestini n° 30,<br />

66013 Chieti Scalo (CH) – Italy. E-mail: scisciani@unich.it<br />

Lavoro eseguito con il contributo finanziario <strong>del</strong>l’Università “G.<br />

D'Annunzio” Chieti-Pescara.<br />

Key words: Adria plate; seismicity, intraplate tectonics; active<br />

tectonics; Adriatic.<br />

TECTONIC FRAMEWORK<br />

The Adria microplate is a continental block that, at present,<br />

extends NW-SE, mainly occupi<strong>ed</strong> by the Adriatic basin but also<br />

inclu<strong>di</strong>ng the Po Plain, Istria, the Gargano Promontory and the<br />

Apulian Peninsula (Fig.1). The microplate is surround<strong>ed</strong> by<br />

several strongly deform<strong>ed</strong> belts originating from the collision<br />

with the Eurasian plate (e.g., the Dinaric-Albanian-Hellenic<br />

chain during the Cretaceous-Paleocene; the Southern Alpine<br />

chain from Oligocene to the present), from post-collisional<br />

rotation of the Sar<strong>di</strong>nia Block (Northern Apennine belt) and<br />

from subduction-relat<strong>ed</strong> migration towards the SE (Southern<br />

Apennine belt) of the Calabrian arc (BOCCALETTI et al., 1971;<br />

Fig. 1 – Tectonic map of the Adriatic region and surroun<strong>di</strong>ng chains.<br />

_________________________


204 V. SCISCIANI & F. CALAMITA<br />

MALINVERNO & RYAN, 1986; PATACCA & SCANDONE, 1989;<br />

CARMIGNANI & KLIGFIELD, 1990; FINETTI, 2005).<br />

The Adria microplate, inclu<strong>di</strong>ng the Adriatic region, has<br />

generally been consider<strong>ed</strong> a single, rigid and nearly aseismic<br />

block (ANDERSON & JACKSON, 1987; ROYDEN et al., 1987),<br />

with seismicity mostly confin<strong>ed</strong> to its margins.<br />

In the last three decades, increasing acquisition of seismic<br />

reflection profiles and deep penetration well-logs for<br />

hydrocarbon exploration has strongly improv<strong>ed</strong> the<br />

understan<strong>di</strong>ng of subsurface geology of the Adriatic basin. In<br />

ad<strong>di</strong>tion, more and better seismological stations (MONTONE et<br />

al., 2004; CASTELLO et al., 2006; PONDRELLI et al., 2006 and<br />

references therein) have record<strong>ed</strong> moderate-to-strong seismicity<br />

concentrat<strong>ed</strong> in the Central Adriatic and in the Gargano<br />

Promontory. Bas<strong>ed</strong> on the new available data, several papers<br />

have describ<strong>ed</strong> the geological-structural setting and the seismotectonics<br />

of the Adriatic region, and two main zones of<br />

deformation have been document<strong>ed</strong> in the Central Adriatic and<br />

the Gargano region (Fig. 2).<br />

In the Central Adriatic, compressive deformation is<br />

concentrat<strong>ed</strong> along a NW-SE tren<strong>di</strong>ng ridge that transects the<br />

foreland (Mid-Adriatic Ridge - FINETTI, 1982; DE ALTERIIS,<br />

1995; ARGNANI & FRUGONI, 1997; ARGNANI, 1998; BERTOTTI<br />

et al., 2001). The Mid-Adriatic Ridge (Fig. 1) is either regard<strong>ed</strong><br />

as a zone of interaction between the frontal zones of the<br />

respectively NE-verging Apennine and the SW-verging Dinaric<br />

fold-and-thrust belts (BALLY et al., 1986; CASERO et al., 1990;<br />

FINETTI & DEL BEN, 2005; SCROCCA, 2006) or as a foreland<br />

deformation zone (ARGNANI & FRUGONI, 1997; ARGNANI,<br />

1998). Moreover, some authors view this area as the peripheral<br />

bulge of the two neighbouring opposite-verging chains (KRUSE<br />

& ROYDEN, 1994; ARGNANI & FRUGONI, 1997) in which the<br />

structural setting has been complicat<strong>ed</strong> by salt <strong>di</strong>apirism of<br />

Triassic evaporites (DE ALTERIIS, 1995).<br />

In the Gargano Promontory, several fault systems orient<strong>ed</strong><br />

E-W (e.g., the Mattinata Fault system), NW-SE (e.g., the<br />

Apricena and the Cerignola-Foggia Fault systems – SELLA et<br />

al., 1988; PATACCA & SCANDONE, 2004) and NE-SW (i.e. the<br />

Tremiti Fault and the Sannicandro Garganico-Apricena Fault<br />

system – Argnani et al., 1993; Salvi et al., 1999) have been<br />

identifi<strong>ed</strong> both onshore and in the adjacent offshore. Some<br />

authors have emphasis<strong>ed</strong> the role of the E-W tren<strong>di</strong>ng<br />

<strong>di</strong>scontinuities, suggesting a large amount of <strong>di</strong>splacement on<br />

these strike-slip structures (e.g., SCROCCA, 2006 cum bibl.),<br />

while others have interpret<strong>ed</strong> some of these structures as southvergent<br />

reverse faults (ORTOLANI & PAGLIUCA, 1987), salt<br />

swells (DE DOMINICIS & MAZZOLDI, 1987 or in terms of<br />

inversion tectonics induc<strong>ed</strong> by the propagation of stress<br />

Fig. 2 – Seismicity and structural sketch map of the Central Adriatic, inclu<strong>di</strong>ng the Gargano region (structural data mo<strong>di</strong>fi<strong>ed</strong> from DE ALTERIIS (1995)<br />

and PATACCA & SCANDONE (2004) for the Apulian region, and from IVANCIC et al. (2006) for the Croatia off-shore). The epicenters are from<br />

NEIC-USGS Catalogue (period 1977-May 2007) with M >= 2.5 and earthquakes focal mechanisms from PONDRELLI et al., (2006); QRCMT CATALOGUE<br />

and HARVARD-CMT CATALOGUE.<br />

transmitt<strong>ed</strong> from adjacent chains (ARGNANI et al., 1993; 1994).<br />

Moreover, both senses of strike-slip motion have been<br />

identifi<strong>ed</strong> from field stu<strong>di</strong>es along the faults and the timing of<br />

activity report<strong>ed</strong> in literature is usually inconsistent (for a<br />

general review, see PATACCA & SCANDONE, 2004).<br />

Furthermore, a complex polyphase history with the


Fig. 3 – Tectonic scheme of the Adriatic basin and surroun<strong>di</strong>ng chains.<br />

The NW-<strong>di</strong>rect<strong>ed</strong> convergence of Nubia with respect to Eurasia transmits<br />

NW-SE orient<strong>ed</strong> stress in the Adria plate. The latter reactivates zones of<br />

weakness within the Central Adriatic (Gargano region and the Mid-<br />

Adriatic Ridge) and parts, mainly ESE-WNW orient<strong>ed</strong>, of the chains<br />

(Maghrebides, Tyrrhenian sector off-shore of Sicily, Calabrian arc,<br />

Northern Apennines, Southern Alps, Southern Dinarides). The arrow is the<br />

velocity of Nubia with respect to stable Eurasia (6 mm/yr) pr<strong>ed</strong>ict<strong>ed</strong> from<br />

the GPS bas<strong>ed</strong> REVELIT97- 2000 mo<strong>del</strong> (SELLA et al., 2002). The circl<strong>ed</strong><br />

arrows in<strong>di</strong>cate GPS velocities with respect to Eurasia from permanent<br />

stations and 95% confidence ellipse (from SERPELLONI et al., 2005).<br />

superposition of <strong>di</strong>fferent strike-slip kinematics and<br />

reactivation of pre-existing Mesozoic extensional fault systems<br />

has been propos<strong>ed</strong> (CHILOVI et al., 2000; MORELLI, 2002).<br />

MAIN RESULTS<br />

In this study, we analys<strong>ed</strong> the active deformation in the<br />

Adriatic region and in the chains surroun<strong>di</strong>ng the Adria plate.<br />

Our results are bas<strong>ed</strong> on the interpretation of recently acquir<strong>ed</strong><br />

deep seismic reflection profiles, on instrumental seismicity and<br />

on a critical review of previous geological and geophysical data<br />

collect<strong>ed</strong> in the area, and allow<strong>ed</strong> us to better constrain the<br />

structural style and modes of present-day deformation. The<br />

main results of this research are summariz<strong>ed</strong> as follows:<br />

(1) In Central Italy, the thrust emplacement of the Northern<br />

Apennine belt occurr<strong>ed</strong> mostly during the Pliocene, when most<br />

of the shortening by compressive structures was achiev<strong>ed</strong>;<br />

during the Quaternary, thrust activity strongly decreas<strong>ed</strong>, and at<br />

ACTIVE INTRAPLATE DEFORMATION WITHIN ADRIA<br />

205<br />

present, the area shows only limit<strong>ed</strong> seismicity, especially with<br />

respect to the rest of the Northern Apennine arc (from Ancona<br />

to the Po Plain), where <strong>di</strong>ffuse earthquakes are promot<strong>ed</strong> by<br />

active crustal thrusts (Figs. 2 and 3).<br />

(2) In the Adriatic foreland, active deformation is<br />

concentrat<strong>ed</strong> along two main linear trends, locat<strong>ed</strong> in the<br />

Central Adriatic region (Mid-Adriatic Ridge) and close to the<br />

Gargano Promontory. The former is a zone of crustal<br />

compression and at present represents the linkage between the<br />

two opposite-verging and active Northern Apennine and South<br />

Dinarides-Albanides belts (Figs. 1, 2, and 3), while the latter is<br />

a region affect<strong>ed</strong> by strike-slip faults and by transpression<br />

generat<strong>ed</strong> by an active stress field characteriz<strong>ed</strong> by a 1 axis<br />

orient<strong>ed</strong> roughly NW–SE and a 3 axis tren<strong>di</strong>ng NE–SW<br />

inferr<strong>ed</strong> from structural data, in-situ stress measurements and<br />

focal mechanism solutions of recent earthquakes (Figs. 3).<br />

(3) In the Mid-Adriatic Ridge and the Apulian foreland, the<br />

positive reactivation of inherit<strong>ed</strong> zones of weakness (i.e.<br />

previously affect<strong>ed</strong> by Mesozoic extensional tectonics) is the<br />

dominant mechanism controlling deformation within the<br />

Adriatic foreland.<br />

(4) The interpretation of seismic reflection profiles and the<br />

crustal seismicity record<strong>ed</strong> in the Central Adriatic region<br />

(inclu<strong>di</strong>ng hypocentral depths > 20 km) suggest that<br />

compressive deformation is not restrict<strong>ed</strong> to the shallow<br />

s<strong>ed</strong>imentary cover but affects the entire crust.<br />

Accor<strong>di</strong>ng to the above results, we consider the Central<br />

Adriatic a zone of weakness within the rigid Adria plate that<br />

experienc<strong>ed</strong> intraplate contractional deformation multiple<br />

times, produc<strong>ed</strong> by the “coupl<strong>ed</strong>” behaviour of the Adriatic<br />

foreland with the adjoining orogens and induc<strong>ed</strong> by the presentday<br />

NW <strong>di</strong>rect<strong>ed</strong> convergence of Nubia with respect to the<br />

stable Eurasian plate (Fig. 3).<br />

REFERENCES<br />

ANDERSON H.J. & JACKSON J.A. (1987). Active tectonics of the<br />

Adriatic region. Geophys. J. R. Astron. Soc., 91, 937-983.<br />

ARGNANI A. (1998). Structural elements of the Adriatic<br />

foreland and their relationships with the front of the<br />

Apennine fold-andthrust belt. MEM. Soc. Geol. Ital., 52,<br />

647-654.<br />

ARGNANI A. & FRUGONI F. (1997). Foreland deformation in the<br />

Central Adriatic and its bearing on the evolution of the<br />

Northern Apennines. Annali <strong>di</strong> Geofisica, 40(3), 771-780.<br />

ARGNANI A., FAVALI P., FRUGONI F., GASPERINI M., LIGI M.,<br />

MARANI M., MATTIETTI G. & MELE G. (1993). Foreland<br />

deformational pattern in the Southern Adriatic Sea. Ann.<br />

Geofis., 36, 229–247.<br />

BALLY A.W., BURBI L., COOPER C. & GHELARDONI R. (1986).<br />

Balanc<strong>ed</strong> sections and seismic reflection profiles across the<br />

Central Apennines. Mem. Soc. Geol. Ital., 35, 257–310.


206 V. SCISCIANI & F. CALAMITA<br />

BERTOTTI G., PICOTTI V., CHILOVI C., FANTONI R., MERLINI S.<br />

& MOSCONI A. (2001). Neogene to Quaternary s<strong>ed</strong>imentary<br />

basins in the south Adriatic (Central M<strong>ed</strong>iterranea):<br />

For<strong>ed</strong>eeps and lithospheric buckling. Tectonics, 20, 771-<br />

787.<br />

BOCCALETTI M., ELTER P., & GUAZZANE G. (1971). Plate<br />

tectonic mo<strong>del</strong>s for the development of the western Alps,<br />

and northern Apennines. Nature - Physical Science, 234,<br />

108-110.<br />

CARMIGNANI L. & KLIGFIELD R. (1990). Crustal extension in<br />

the northern Apennines: the transition from compression to<br />

extension in the Alpi Apuane core complex. Tectonics, 9,<br />

1275-1303.<br />

CASERO P., RIGAMONTI A. & IOCCA M. (1990).<br />

Paleogeographic relationships during Cretaceous between<br />

the Northern Adriatic area and the Eastern Southern Alps.<br />

Mem. Soc. Geol. Ital., 45(2), 807-814.<br />

CASTELLO B., SELVAGGI G., CHIARABBA C. & AMATO A.<br />

(2006). CSI Catalogo <strong>del</strong>la sismicità italiana 1981-2002,<br />

vers. 1.1. INGV-CNT, Roma. HTTP://WWW.INGV.IT/CSI/.<br />

CHILOVI C., DE FEYTER A.J. & POMPUCCI, A. (2000). Wrench<br />

zone reactivation in the Adriatic Block: the example of the<br />

Mattinata Fault System (SE Italy). Boll. Soc. Geol. Ital.<br />

119, 3–8.<br />

DE ALTERIIS G. (1995). Different foreland basins in Italy:<br />

examples from the central and southern Adriatic Sea.<br />

Tectonophysics, 252, 349-373.<br />

DE DOMINICIS A. & MAZZOLDI, G. (1987). Interpretazione<br />

geologico-strutturale <strong>del</strong> margine orientale <strong>del</strong>la<br />

piattaforma apula. Mem. Soc. Geol. Ital., 38, 163–176.<br />

FINETTI I.R. (1982). Structure, stratigraphy and evolution of<br />

central M<strong>ed</strong>iterranean. Bollettino <strong>di</strong> Geofisica Teorica<br />

Applicata, 24, 247-312.<br />

FINETTI I.R. (2005). CROP Project: Deep Seismic Exploration<br />

of the Central M<strong>ed</strong>iterranean Region and Italy. Elsevier,<br />

779 pp.<br />

FINETTI I.R & DEL BEN (2005). Crustal tectono-stratigraphic<br />

setting of the Adriatic Sea from new crop seismic data. In:<br />

Finetti, I., (Ed.), CROP Project, Deep Seismic Exploration<br />

of the Central M<strong>ed</strong>iterranean Region and Italy. Elsevier,<br />

519-548.<br />

IVANCIC I., HERAK D., MARKUSIC S., SOVIC I. & HERAK M.<br />

(2006). Seismicity of Croatia in the period 2002–2005.<br />

Geofizika, 23(2), 87-103.<br />

KRUSE S.E. & ROYDEN L.H. (1994). Ben<strong>di</strong>ng and unben<strong>di</strong>ng of<br />

an elastic lithosphere: the Cenozoic history of the Apennine<br />

and Dinaride For<strong>ed</strong>eep basins. Tectonics, 13(2), 278-302.<br />

MALINVERNO A. & RYAN B.F. (1986). Extension in the<br />

Tyrrhenian sea and shortening in the Apennines as a result<br />

of arc migration driven sinking of the lithosphere.<br />

Tectonics, 5, 227-245.<br />

MONTONE P., MARIUCCI M.T., PONDRELLI S. & AMATO A.<br />

(2004). An improv<strong>ed</strong> stress map for Italy and surroun<strong>di</strong>ng<br />

regions (Central M<strong>ed</strong>iterranean). J. Geophys. Res., 109,<br />

B10410. doi:10.1029/2003JB002703.<br />

MORELLI D. (2002). Evoluzione tettonico-stratigrafica <strong>del</strong><br />

margine adriatico compreso tra il promontorio garganico e<br />

Brin<strong>di</strong>si. Mem. Soc. Geol. Ital., 57(1), 343-353.<br />

NEIC-USGS CATALOGUE. US Geological Survey - NEIC<br />

global catalogue.<br />

http://neic.usgs.gov/neis/epic/epic_rect.html.<br />

ORTOLANI F. & PAGLIUCA S. (1987). Tettonica transpressiva<br />

nel Gargano e rapporti con le catene appenninica e<br />

<strong>di</strong>narica. Mem. Soc. Geol. Ital., 38, 205–224.<br />

PATACCA E. & SCANDONE P. (1989). Post-Tortonian mountain<br />

buil<strong>di</strong>ng in the Apennines. The role of the passive sinking of<br />

a relic lithospheric slab. In Boriano, A., Bonaf<strong>ed</strong>e, M.,<br />

Piccardo, G.B., Vai, G.B., (Eds.). The lithosphere in Italy.<br />

Atti <strong>del</strong> Convegno Accademia dei Lincei, 80, 157-176.<br />

PATACCA E. & SCANDONE P. (2004). The 1627 Gargano<br />

earthquake (Southern Italy): identification and<br />

characterization of the causative fault. J. Seismol., 8, 259–<br />

273.<br />

PONDRELLI S., SALIMBENI S., EKSTRÖM G., MORELLI A.,<br />

GASPERINI P. & VANNUCCI G. (2006). The Italian CMT<br />

dataset from 1977 to the present. Phys. Earth Planet. Int.,<br />

159/3-4, pp. 286-303. doi:10.1016/j.pepi.2006.07.008.<br />

QRCMT CATALOGUE. Quick Regional Centroid Moment<br />

Tensors, http://earthquake.rm.ingv.it/qrcmt.php.<br />

ROYDEN L., PATACCA E. & SCANDONE P. (1987). Segmentation<br />

and configuration of lithosphere in Italy: an important<br />

control on thrust-belt and for<strong>ed</strong>eep-basin evolition.<br />

Geology, 15, 714-717.<br />

SCROCCA D. (2006). Thrust front segmentation induc<strong>ed</strong> by<br />

<strong>di</strong>fferential slab retreat in the Apennines (Italy). Terra<br />

Nova, 18, 154–161. doi: 10.1111/j.1365-<br />

3121.2006.00675.x.<br />

SELLA M., TURCI C. & RIVA A. (1988). Petroleum geology of<br />

the ‘Fossa Bradanica’ (For<strong>ed</strong>eep of the Southern Apennine<br />

thrust belt). Mem. Soc. Geol. Ital., 41, 87–107.<br />

SERPELLONI E., ANZIDEI M., BALDI P., CASULA G. & GALVANI<br />

A. (2005). Crustal velocity and Stran-rate Fields in Italy<br />

and Surroun<strong>di</strong>ng regions: New Results from the analysis of<br />

Permanent and Non-Permanent GPS Networks. Geoph. J.<br />

Int., 161, 861-880.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 207-209, 3 ff.<br />

Multiple mechanisms of fault-zone weakening along a continental<br />

low-angle normal fault: The Zuccale fault, Elba Island<br />

STEVEN A.F. SMITH (*,**), C. COLLETTINI (***), R.E.HOLDSWORTH (*), C.G. MACPHERSON (*) & C. VITI (****)<br />

RIASSUNTO<br />

Meccanismi <strong>di</strong> indebolimento multipli su <strong>di</strong> una faglia <strong>di</strong>retta a basso<br />

angolo: la faglia <strong>del</strong>lo Zuccale, Isola d’Elba<br />

Le faglie <strong>di</strong>rette a basso angolo sono probabilmente <strong>del</strong>le faglie deboli, ma<br />

vi sono pochi stu<strong>di</strong> che documentano la reologia <strong>del</strong>le rocce <strong>di</strong> faglia su queste<br />

strutture. In questo contributo presentiamo un lavoro <strong>di</strong> analisi microstrutturale<br />

e geochimica sulla faglia <strong>di</strong>retta a basso angolo <strong>del</strong>lo Zuccale ben esposta<br />

all’isola d’Elba. Tale faglia è stata attiva come struttura a basso angolo durante<br />

alcune intrusioni ignee nel blocco <strong>di</strong> letto <strong>ed</strong> è caratterizzata da una nucleo con<br />

una stratigrafia tettonica ben <strong>di</strong>stinta.<br />

Stu<strong>di</strong> microstrutturali mostrano che durante l’attività <strong>del</strong>la faglia sono stati<br />

attivi <strong>di</strong>versi meccanismi deformativi, in particolare: 1) cataclasi; 2) creep per<br />

<strong>di</strong>ssoluzione e riprecipitazione; 3) plasticità intracristallina, e; 4) particulate<br />

flow. Questi meccanismi deformativi implicano <strong>di</strong>versi processi <strong>di</strong><br />

indebolimento trai cui: i) scivolamento per attrito accomodato da fillosilicati<br />

deboli come talco e clorite; ii) processi plastici influenzati dalla granulometria<br />

all’interno <strong>del</strong>le calco-miloniti; iii) particulate flow accomodato da minerali<br />

argillosi estremamente fini e iv) incremento <strong>di</strong> pressione <strong>di</strong> flui<strong>di</strong> su <strong>brevi</strong><br />

intervalli <strong>di</strong> tempo e su porzioni <strong>di</strong> faglia limitate.<br />

Durante l’attività <strong>del</strong>la faglia questi meccanismi deformativi non si<br />

escludono a vicenda ma la loro importanza è funzione <strong>del</strong>la struttura <strong>del</strong>la zona<br />

<strong>di</strong> faglia, <strong>del</strong>la litologia coinvolta nella deformazione, e <strong>del</strong>la velocità <strong>di</strong><br />

deformazione locale. Analisi degli isotopi stabili su vene e cementi<br />

suggeriscono che durante l’intrusione dei plutoni ignei si sono sviluppate<br />

pressioni dei flui<strong>di</strong> sopralitostatiche.<br />

Key words: Fault mechanics, Fault-zone weakening, Lowangle<br />

normal faults, Microstructures, Stable isotopes.<br />

Despite extensive research in to the mechanical significance<br />

and geometric evolution of low-angle normal (detachment)<br />

faults, few stu<strong>di</strong>es have focus<strong>ed</strong> on the importance of the fault<br />

rock material which is generat<strong>ed</strong> during prolong<strong>ed</strong> slip and<br />

exhumation (COWAN et alii, 2003; COLLETTINI &<br />

_________________________<br />

(*) Department of Earth Sciences, University of Durham, Durham,<br />

England, DH1 3LE, UK<br />

(**) Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia (INGV), 605 Via <strong>di</strong><br />

Vigna Murata, 00143, Rome<br />

(***) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università degli Stu<strong>di</strong> <strong>di</strong><br />

Perugia, 06120, Perugia, Italy.<br />

(****) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università degli Stu<strong>di</strong> <strong>di</strong><br />

Siena, Siena, Italy.<br />

Financial assistance was provid<strong>ed</strong> by European Research Council Starting<br />

Grant “USEMS” 2008-2013, to G. Di Toro.<br />

HOLDSWORTH, 2004; HAYMAN, 2006). The Zuccale fault on<br />

the Island of Elba is closely associat<strong>ed</strong> with syn-tectonic<br />

igneous intrusions (SAUPE et alii, 1982; KELLER & COWARD,<br />

1996; DINI et alii, 2002), and possesses a complex fault rock<br />

`stratigraphy’ that records the interaction between multiple<br />

deformation mechanisms and fluids deriv<strong>ed</strong> from <strong>di</strong>stinct<br />

crustal reservoirs.<br />

Optical- and scanning-electron microscopy, combin<strong>ed</strong> with<br />

XRD and stable isotope analyses, reveal systematic changes in<br />

fault rock chemistry and texture: 1) Cataclasis and <strong>di</strong>ssolutionprecipitation<br />

creep were the dominant deformation mechanisms<br />

during the early stages of fault activity. Cataclasis facilitat<strong>ed</strong><br />

the influx of chemically active fluids, lea<strong>di</strong>ng to widespread syn<br />

Fig 1 - Mappa geologica semplificata <strong>del</strong>l’Elba e sezione geologica che mostra<br />

la geometria <strong>del</strong>la faglia <strong>del</strong>lo Zuccale. I-V in<strong>di</strong>cano i cinque complessi <strong>di</strong><br />

TREVISAN et alii (1967; mo<strong>di</strong>ficata da BORTOLOTTI et alii, 2001). La stella<br />

in<strong>di</strong>ca l’affioramento <strong>di</strong> Punta <strong>di</strong> Zuccale.<br />

Simplifi<strong>ed</strong> geological map and cross-section of Elba, highlighting the location<br />

and geometry of the Zuccale fault. Labels I-V refer to the tectonic ‘complexes’<br />

of TREVISAN et alii (1967; mo<strong>di</strong>fi<strong>ed</strong> by BORTOLOTTI et alii, 2001). The star<br />

marks the location of the type locality, Punta <strong>di</strong> Zuccale.


208 S.A.F. SMITH ET ALII<br />

Fig 2 - La faglia <strong>di</strong> Zuccale a Punta <strong>di</strong> Zuccale. Il nucleo <strong>del</strong>la zona <strong>di</strong> faglia è<br />

evidenziato dalle linee tratteggiate bianche, è spesso 3-8 m <strong>ed</strong> è caratterizzato<br />

da una tipica stratigrafia tettonica costituita da rocce foliate. Il blocco <strong>di</strong> tetto e<br />

<strong>di</strong> letto sono caratterizzati da deformazione fragile. Il <strong>di</strong>agramma in alto a<br />

destra riassume il fabric principale <strong>del</strong>la zona <strong>di</strong> faglia caratterizzato da<br />

foliazione P e zone <strong>di</strong> taglio Y e R.<br />

The Zuccale fault at the type locality, Punta <strong>di</strong> Zuccale. The ‘core’ of the<br />

Zuccale fault is outlin<strong>ed</strong> by white dash<strong>ed</strong> lines, and is 3-8 meters thick. The<br />

fault core contains a <strong>di</strong>stinct fault rock ‘stratigraphy’, sandwich<strong>ed</strong> between<br />

footwall and haningwall blocks characteriz<strong>ed</strong> by intense brittle deformation.<br />

The inset <strong>di</strong>agram summarizes the main Ri<strong>ed</strong>el fabric components (P<br />

foliation, Y and R shears) observ<strong>ed</strong> within the fault core.<br />

tectonic growth of weak phyllosilicate minerals, inclu<strong>di</strong>ng talc<br />

and chlorite. Crystal-plasticity was important within calcite-rich<br />

fault rocks. Calcite grains (~10µm in <strong>di</strong>ameter) possess a strong<br />

C-axis preferr<strong>ed</strong> orientation, suggesting that they experienc<strong>ed</strong><br />

dynamic recrystallisation by <strong>di</strong>slocation creep. The calcitemylonites<br />

are crosscut by vein material that was progressively<br />

shear<strong>ed</strong> and recrystallis<strong>ed</strong>, in<strong>di</strong>cating cyclic brittle-plastic<br />

deformation. During the later stages of fault activity, particulate<br />

flow became an important deformation mechanism. Rolling and<br />

sli<strong>di</strong>ng of grains past one another was accommodat<strong>ed</strong> along<br />

clay-lin<strong>ed</strong> grain boundaries; 2) During progressive exhumation,<br />

dolomite was supers<strong>ed</strong><strong>ed</strong> by calcite as the dominant syntectonic<br />

fault cement. Sub-horizontal dolomite veins within the<br />

fault core record transient supra-lithostatic fluid pressures<br />

follow<strong>ed</strong> by mineral sealing and fault strengthening. The 13 CV-<br />

PDB signature of such vein dolomite is strongly cluster<strong>ed</strong> around<br />

a mean value of -5.7‰, 18 OV-SMOW varies between 10‰ and<br />

14‰, and 87 Sr/ 86 Sr is between 0.70958 and 0.71001. The fluid<br />

in equilibrium with the dolomite veins was probably deriv<strong>ed</strong><br />

from a meteoric source that interact<strong>ed</strong> with local plutonic<br />

intrusions carrying mantle-CO2. Later calcite veins have 13 CV-<br />

PDB values of -6.5‰ to -10.5‰, 18 OV-SMOW between 25‰ and<br />

27‰, and 87 Sr/ 86 Sr cluster<strong>ed</strong> around a mean value of 0.70908.<br />

In this case, the low-temperature fluid in equilibrium with the<br />

calcite veins appears to have been deriv<strong>ed</strong> from seawater.<br />

Potential fault zone weakening mechanisms that have been<br />

identifi<strong>ed</strong> along the Zuccale fault include: (i) <strong>di</strong>ssolutionprecipitation<br />

creep and frictional slip within phyllosilicate-rich<br />

fault rocks, (ii) a switch to grain-size sensitive deformation<br />

mechanisms within calcite-mylonites, (iii) particulate flow<br />

accommodat<strong>ed</strong> by fine-grain<strong>ed</strong> clay phases, and (iv) transiently<br />

high fluid pressures that probably occurr<strong>ed</strong> over short<br />

timescales and across localiz<strong>ed</strong> fault patches. These weakening<br />

mechanisms were not mutually exclusive, but their relative<br />

importance must have vari<strong>ed</strong> as a function of fault zone<br />

structure and composition, local strain rates, and the availability<br />

of fluid before, during, and following igneous intrusion. Their<br />

combin<strong>ed</strong> effects may have result<strong>ed</strong> in significant long-term<br />

weakening of the Zuccale fault, facilitating its exhumation<br />

towards the surface.<br />

Fig 3 - Isotopi stabili per le vene nella sona <strong>di</strong> faglia: i) vene sub orizzontali in<br />

dolomite formatesi durante le fasi iniziali <strong>del</strong>la faglia; ii) vene in calcite che<br />

attraversano il nucleo e che sono relazionate alle fasi finali <strong>del</strong>l’attività <strong>del</strong>la<br />

faglia. I flui<strong>di</strong> in equilibrio con le vene in dolomite sono relazionati ad una<br />

sorgente meteorica <strong>ed</strong> idrotermale mentre quelli in equilibrio con le vene <strong>di</strong><br />

calcite derivano da acqua marina infiltrata nella zona <strong>di</strong> faglia attraverso le<br />

fratture presenti nel blocco <strong>di</strong> tetto e letto.<br />

Stable isotope compositions of the early, sub-horizontal dolomite veins within<br />

the fault core, and the later calcite veins that cross-cut the fault core. The<br />

fluid in equilibrium with the dolomite veins appears to have been deriv<strong>ed</strong><br />

from a meteoric-hydrothermal source, whilst the fluid in equilibrium with the<br />

calcite veins was deriv<strong>ed</strong> from seawater that infiltrat<strong>ed</strong> downwards through<br />

the fault<strong>ed</strong> hangingwall and footwall.


REFERENCES<br />

BORTOLOTTI, V., FAZZUOLI, M., PANDELI, E., PRINCIPI, G.,<br />

BABBINI, A. & CORTI, S. (2001) - Geology of Central and<br />

Eastern Elba Island, Italy. Ofioliti, 26 (2a), 97-150.<br />

COLLETTINI, C. & HOLDSWORTH, R. E. (2004) - Fault zone<br />

weakening and character of slip along low-angle normal<br />

faults: insights from the Zuccale fault, Elba, Italy. Journal<br />

of the Geological Society, 161, 1039-1051.<br />

COWAN, D. S., CLADOUHOS, T. T. & MORGAN, J. K. (2003) -<br />

Structural geology and kinematic history of rocks form<strong>ed</strong><br />

along low-angle normal faults, Death Valley, California.<br />

Geological Society of America Bulletin, 115(10), 1230-<br />

1248.<br />

DINI, A., INNOCENTI, F., ROCCHI, S., TONARINI, S. &<br />

WESTERMAN, D. S. (2002) - The magmatic evolution of the<br />

late Miocene laccolith-pluton-dyke granitic complex of<br />

Elba Island, Italy. Geological Magazine, 139(3), 257-279.<br />

HAYMAN, N. W. (2006) - Shallow crustal fault rocks from the<br />

Black Mountain detachments, Death Valley, CA. Journal of<br />

Structural Geology, 28(10), 1767-1784.<br />

KELLER, J. V. A. & COWARD, M. P. (1996) - The structure and<br />

evolution of the Northern Tyrrhenian Sea. Geological<br />

Magazine, 133(1), 1-16.<br />

SAUPE, F., MARIGNAC, C., MOINE, B., SONET, J. &<br />

ZIMMERMANN, J. L. (1982) - K/Ar and Rb/Sr Dating of<br />

Rocks from the Eastern Part of Elba Island (Province of<br />

Livorno, Italy). Bulletin De Mineralogie, 105(3), 236-245.<br />

TREVISAN, L., MARINELLI, G., BARBERI, F., GIGLIA, G.,<br />

INNOCENTI, F., RAGGI, G., SQUARCI, P., TAFFI, L. & RICCI,<br />

C. A. (1967) - Carta Geologica <strong>del</strong>l’Isola d’Elba. In:<br />

Consiglio Nazionale <strong>del</strong>le Ricerche, Gruppo <strong>di</strong> Ricerca per<br />

la Geologia <strong>del</strong>l’Appennino centro-settentrionale e <strong>del</strong>la<br />

Toscana, Pisa, Consiglio Nazionale <strong>del</strong>le Ricerche, Gruppo<br />

<strong>di</strong> Ricerca per la Geologia <strong>del</strong>l’Appennino centrosettentrionale<br />

e <strong>del</strong>la Toscana.<br />

THE ZUCCALE FAULT, ELBA ISLAND<br />

209


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 210-213, 4 ff.<br />

RIASSUNTO<br />

Evoluzione P-T nella parte occidentale <strong>del</strong> complesso <strong>del</strong> Thor-O<strong>di</strong>n,<br />

Monti Monashee, Cor<strong>di</strong>gliera Canadese.<br />

Nuovi dati microstrutturali e minerochimici sono presentati con lo scopo<br />

<strong>di</strong> contribuire alla ricostruzione <strong>del</strong>la storia tettono-metamorfica nel complesso<br />

metamorfico <strong>del</strong> Thor-O<strong>di</strong>n, appartenente ad un insieme <strong>di</strong> complessi che<br />

espongono le rocce più profonde <strong>del</strong>la Cor<strong>di</strong>gliera Canadese. Questi dati<br />

integrano le conoscenze litostratigrafiche e strutturali incluse in una carta<br />

geologica in scala 1:35000, in via <strong>di</strong> raffinamento. Stime sull’evoluzione P-T,<br />

per un transetto E-W <strong>di</strong> circa 5 km nella parte occidentale <strong>del</strong> complesso <strong>del</strong><br />

Thor-O<strong>di</strong>n, in<strong>di</strong>cano che l’esumazione <strong>di</strong> questo complesso si è sviluppata in<br />

con<strong>di</strong>zioni geotermiche che ecc<strong>ed</strong>ono quelle <strong>del</strong>la geoterma rilassata e che<br />

suggerirebbero un contesto <strong>di</strong> tettonica estensionale.<br />

Key words: Cana<strong>di</strong>an Cor<strong>di</strong>llera, HT metamorphism, P-T<br />

evolution, Thor-O<strong>di</strong>n dome.<br />

INTRODUCTION<br />

We present new micro-structural and mineral chemical data<br />

for high temperature metamorphic rocks from the Thor-O<strong>di</strong>n<br />

dome (Fig. 1) to reconstruct its tectono-metamorphic evolution.<br />

We analys<strong>ed</strong> in detail metapelites and amphibolite bou<strong>di</strong>ns<br />

from a 5 km long E-W transect from the core of the dome to the<br />

Greenbush Lake normal shear-band zone, which rims the<br />

western margin of the dome (Fig. 2).<br />

GEOLOGICAL SETTING<br />

From east to west the Cana<strong>di</strong>an Cor<strong>di</strong>llera consists of five<br />

lithostratigraphic complexes, which are parallel to the strike of<br />

the chain: Foreland, Omineca, Intermontane, Costal and Insular<br />

belts (Fig. 1). The Omineca belt, between the Foreland and<br />

Intermontane belts, consists of Precambrian intrusive and<br />

metamorphic rocks belonging to the North American craton.<br />

_______________________<br />

P-T evolution in the western Thor-O<strong>di</strong>n dome, Monashee<br />

Mountains, Cana<strong>di</strong>an Cor<strong>di</strong>llera.<br />

M. IOLE SPALLA (*), DAVIDE ZANONI (°), PAUL F. WILLIAMS (°) & GUIDO GOSSO (*)<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra “A. Desio”, Università <strong>di</strong> Milano<br />

and CNR-IDPA, Via Mangiagalli, 34, 20133 Milano, Italy.<br />

iole.spalla@unimi.it<br />

(°) Department of Geology, University of New Brunswick, 2 Bailey Dr.<br />

Fr<strong>ed</strong>ericton, NB, Canada E3B 5A3. dzanoni@unb.ca<br />

Lavoro eseguito con il contributo finanziario <strong>del</strong> MIUR-COFIN 2005 e <strong>del</strong><br />

NSERC Discovery Grant.<br />

This belt has been exhum<strong>ed</strong> as a consequence of the collisional<br />

accretion of the allocthonous terranes (Intermontane, Costal<br />

and Insular belts) on the North American margin (MONGER et<br />

alii, 1982; GABRIELSE et alii, 1991).<br />

Fig. 1 – Geologic sketch map of the Thor-O<strong>di</strong>n dome; the insect shows the<br />

lithostratigraphic complexes of the Cana<strong>di</strong>an Cor<strong>di</strong>llera. Rectangle in<strong>di</strong>cate<br />

the position of Fig. 2. Mo<strong>di</strong>fi<strong>ed</strong> after KRUSE and WILLIAMS (2007).<br />

The deepest metamorphic core complexes of the whole<br />

Cana<strong>di</strong>an Cor<strong>di</strong>llera are expos<strong>ed</strong> in the Omineca belt and<br />

include the Monashee complex, in South East British<br />

Columbia. The southernmost part of the Monashee complex is


P-T EVOLUTIONS IN THE MONASHEE MOUNTAINS<br />

Fig. 2 – Geologic sketch map of the study area; sample positions are shown. Close up from the compilation map of KRUSE et alii (2004).<br />

the Thor-O<strong>di</strong>n dome, which consists of a Proterozoic basement<br />

sequence (migmatitic orthogneisses and paragneisses, with<br />

amphibolites) and of a Proterozic to Palaeozoic metas<strong>ed</strong>imentary<br />

sequence (quartzites, schists, marble, calcsilicates,<br />

gneisses, and amphibolites). Both sequences are characteris<strong>ed</strong><br />

by a penetrative transposition foliation (ST). The margins of<br />

the Thor-O<strong>di</strong>n complex are bound<strong>ed</strong> by a system of normal<br />

shear zone known as Thor-O<strong>di</strong>n detachment, which is believ<strong>ed</strong><br />

to extend down to the Moho (KRUSE & WILLIAMS, 2007).<br />

MESO-STRUCTURES<br />

The transposition foliation of the Thor-O<strong>di</strong>n dome typically<br />

<strong>di</strong>splays two generation of intrafolial (mature) folds and is<br />

overprint<strong>ed</strong> by more open asymmetric (immature) folds. Most<br />

of the folds in<strong>di</strong>cate top-to-the-NE flow (JOHNSTON et alii,<br />

2000; WILLIAMS & JANG, 2005) and are a product of a<br />

progressive deformation involving repeat<strong>ed</strong> cycles of<br />

perturbation by fol<strong>di</strong>ng of ST, follow<strong>ed</strong> by tightening of the<br />

folds to transpose fold<strong>ed</strong> surfaces back into ST. The foliation<br />

contains a gently southwest-plunging Ky-bearing lineation.<br />

In the western part of the Thor-O<strong>di</strong>n dome there is a<br />

regional westerly <strong>di</strong>pping normal shear zone (Fig. 2),<br />

(Greenbush Lake shear-band zone; JOHNSTON et alii, 2000),<br />

which is part of the Thor-O<strong>di</strong>n detachment and which<br />

overprints the transposition foliation. The main foliation in this<br />

211<br />

shear zone, overprinting the immature folds, is the reactivat<strong>ed</strong><br />

transposition foliation (RST), which is rotat<strong>ed</strong> into a steep<br />

orientation and overprints the immature folds. The shear zone is<br />

associat<strong>ed</strong> with extensional tectonics, during which a westerly<br />

plunging Sil-bearing lineation, develop<strong>ed</strong> as a result of to a topto-the-W<br />

shear on RST (JOHNSTON et alii, 2000; KRUSE &<br />

WILLIAMS, 2007). This lineation overprints the Ky-bearing<br />

lineation. A prominent micro-fracturing develop<strong>ed</strong><br />

perpen<strong>di</strong>cular to the lineation in the shear zone.<br />

The asymmetric immature folds are overprint<strong>ed</strong> by melt<br />

fill<strong>ed</strong> faults, which locally are fold<strong>ed</strong> and intersect<strong>ed</strong> by top-tothe-W<br />

shear surfaces or zones.<br />

Extensional structures of the shear zone are overprint<strong>ed</strong> by<br />

brittle structures, which are mainly relat<strong>ed</strong> to the N-S tren<strong>di</strong>ng<br />

Victor Creek Fault (Fig. 2) (KRUSE & WILLIAMS, 2005). Large<br />

open folds with a northerly tren<strong>di</strong>ng vertical axial plane,<br />

overprint the ST and are believ<strong>ed</strong> to pre-date the extension.<br />

MICRO-STRUCTURES<br />

Samples were collect<strong>ed</strong> on the northern slope of Blanket<br />

Mt. (core of the dome), between Blanket Mt. and the Victor<br />

Creek Fault and in the Greenbush Lake shear-band zone (flank<br />

of the dome) (Fig. 2).<br />

Grt Amphibolite bou<strong>di</strong>ns show a dominant foliation mark<strong>ed</strong><br />

mainly by Bt and by SPO of brown AmpII (Fig. 3a). AmpI


212 M. I. SPALLA ET ALII<br />

Fig. 3 – a) SPO foliation mark<strong>ed</strong> by AmpII and Pl in amphibolites; plane polaris<strong>ed</strong> light. b) Grt with internal foliation at a high angle to the external foliation;<br />

cross<strong>ed</strong> polars. c) Ky porphyroclast wrapp<strong>ed</strong> by RST in metapelites; cross<strong>ed</strong> polars. d) Wm in the necks of bou<strong>di</strong>nag<strong>ed</strong> Sil; cross<strong>ed</strong> polars.<br />

shows a <strong>di</strong>fferent orientation with respect to the pervasive<br />

foliation. Parallel to the foliation there are Qtz lenses, with<br />

minor PlI and layers rich in Cpx. PlI also occurs as interstitial<br />

crystals between AmpII or as granoblastic aggregates of grains<br />

showing deformation twinning. Coarse-grain<strong>ed</strong> Grt is in contact<br />

with PlI, Cpx and AmpII, and locally has an internal foliation at<br />

a high angle to the matrix foliation (Fig. 3b). Ttn mainly shows<br />

a SPO parallel to the foliation. Locally coarse-grain<strong>ed</strong> Oamp,<br />

interpret<strong>ed</strong> as coeval with Grt, is partially replac<strong>ed</strong> by green<br />

AmpIII and Chl. Green AmpIII grows along the rims and the<br />

cleavages of AmpII; AmpII can be greener towards the Grt and<br />

Cpx rims. AmpIII and PlII form<strong>ed</strong> symplectites at the Grt rim.<br />

AmpIII also overgrows Cpx. Chl overgrows the symplectites at<br />

the Grt rim and, with sagenitic Rt, replaces Bt.<br />

In Grt-free amphibolite bou<strong>di</strong>ns SPO of Amp (I and II), PlI<br />

and rare BtI define the foliation. Pl-rich layers, with rare<br />

skeletal Cpx, also mark the foliation. Ttn crystals are scatter<strong>ed</strong><br />

and enclos<strong>ed</strong> in AmpI and II and are roughly parallel to the<br />

foliation. Amp is greener towards the rim (AmpIII and IV).<br />

Saw-shap<strong>ed</strong> <strong>ed</strong>ges between Amp and Pl are interpret<strong>ed</strong> as due<br />

to a re-crystallisation postdating the foliation (AmpIII and PlII).<br />

AmpIV fills fractures intersecting the foliation at a high angle.<br />

Metapelites between the Victor Creek Fault and Blanket<br />

Mt. preserve Ky porphyroclasts, which show SPO parallel and<br />

inclusion trails oblique with respect to the RST (Fig. 3c). In<br />

these rocks the RST is defin<strong>ed</strong> by SPO and LPO of BtII and Sil<br />

and feldspar-rich layers. Coarse-grain<strong>ed</strong> Ky and Grt are<br />

wrapp<strong>ed</strong> by RST and contain inclusions of Qtz, BtI and Rt,<br />

rimm<strong>ed</strong> by Ilm; Ky also encloses WmI. BtI is transversal to the<br />

RST, which wraps it. Grt (I = core and II = rim) pr<strong>ed</strong>ates or is<br />

coeval with RST, accor<strong>di</strong>ng to inclusion trails, which are at a<br />

high angle and progressively asymptotic to this foliation. GrtII<br />

forms also fine-grain<strong>ed</strong> crystals in the RST films. Between the<br />

coarse-grain<strong>ed</strong> GrtII and BtII reaction rims with BtIII, Qtz, PlII<br />

and rare Kfs occur; in these reaction rims GrtIII forms<br />

symplectites, which are elongat<strong>ed</strong> in the foliation. Fibrous Sil<br />

replaces Ky. The feldspar-rich layers consist of Qtz, PlI and<br />

Kfs, which forms coarse-grain<strong>ed</strong> crystals showing a rough SPO<br />

parallel to the RST. PlI shows growth twining and locally Kfs<br />

forms interstitial crystals between PlI and round<strong>ed</strong> Qtz crystals<br />

or fills Ky fractures. These structures may in<strong>di</strong>cate partial<br />

melting. Fractures in Grt are fill<strong>ed</strong> mainly by Chl and minor<br />

BtIV. WmII ± Chl ± BtIII fill necks of micro-bou<strong>di</strong>nag<strong>ed</strong> Sil<br />

(Fig. 3d); Bt is partially replac<strong>ed</strong> by Chl, sagenitic Rt and Kfs.


In Ky-free metapelites BtI, Sil, PlI, Kfs and Qtz have a SPO<br />

defining the RST. PlI shows growth twinning and rarer<br />

deformation twinning; mirmekites develop<strong>ed</strong> at the Kfs rims.<br />

Grt forms coarse-grain<strong>ed</strong> crystals, which are wrapp<strong>ed</strong> by the<br />

RST, partially replac<strong>ed</strong> by BtII, PlII and Qtz, and shows corerim<br />

zoning (GrtI, II and III); where Grt is almost totally<br />

replac<strong>ed</strong> green BtII and PlII occurs as coarse-grain<strong>ed</strong> crystals.<br />

Rare Wm grew at the Sil rim.<br />

MINERAL CHEMISTRY AND P-T ESTIMATES<br />

In Grt amphibolites XNa in M4 and XAl in T1 decrease from<br />

AmpII (pargasite and Mg-hornblende) to AmpIII (Fehornblende),<br />

XCa in Grt increase towards the rim and XAn<br />

shows similar value in PlI and II; this is compatible with a<br />

slight decrease in pressure and temperature.<br />

In the Grt-free amphibolites AmpI to AmpII (K-pargasite)<br />

show a similar content in Ti and Al tot compatible with<br />

temperature of about 700°C for about 0.7 GPa; AmpIII, in the<br />

symplectites (<strong>ed</strong>enite and Mg-hornblende), shows lower Al tot<br />

content, compatible with a slight decompression at about 0.5 -<br />

0.7 GPa for temperatures between 700 – 760°C. AmpIV (Mghornblende<br />

and actinolite) shows the lowest content in Ti and<br />

Al VI , in<strong>di</strong>cating temperature and pressure lower than 660°C and<br />

0.4 GPa.<br />

In metapelites XFe increases from GrtI to GrtIII, while XAn<br />

in Pl is constant and the Ti content decreases from BtI to BtIV,<br />

suggesting a decompression during cooling. In particular in Ky-<br />

Sil bearing metapelites the variation of Ti content from BtI to<br />

BtIV in<strong>di</strong>cates a variation in temperature from 700 - 750°C to<br />

600 - 700°C to lower than 500°C (Fig. 4).<br />

Fig. 4 – Ti content (a.p.f.u.) in Bt vs temperature estimat<strong>ed</strong> accor<strong>di</strong>ng to<br />

HENRY et alii, 2005. Bt enclos<strong>ed</strong> in Ky prophyroblasts has Ti 0.45 a.p.f.u.<br />

in<strong>di</strong>cating temperatures between 700 and 750°C. Bt lying in the RST has 02<br />

< Ti < 0.5 a.p.f.u. in<strong>di</strong>cating that it recrystallis<strong>ed</strong> at a lower temperature (600<br />

-700°C). Late Bt filling Grt microfractures grew at T 500°C.<br />

CONCLUSION<br />

In the polydeform<strong>ed</strong> metamorphic rocks outcropping from<br />

Blanket Mt. to the Greenbush Lake shear-band zone, P-T<br />

estimates have been inferr<strong>ed</strong> by using mineral assemblages<br />

coeval with superpos<strong>ed</strong> fabrics in rocks of <strong>di</strong>fferent bulk<br />

P-T EVOLUTIONS IN THE MONASHEE MOUNTAINS<br />

213<br />

compositions. Results in<strong>di</strong>cate that P-T con<strong>di</strong>tions chang<strong>ed</strong><br />

under a high thermal regime, which exce<strong>ed</strong>s the range limit<strong>ed</strong><br />

by the stable continental geotherm and a maximally relax<strong>ed</strong><br />

geotherm for reasonable heat supply after crustal thickening.<br />

Such a high geothermal gra<strong>di</strong>ent is compatible with an<br />

extensional tectonic setting.<br />

REFERENCES<br />

GABRIELSE H., MONGER J.W.H., WHEELER J.O., & YORATH<br />

C.J. (1991) - Part A. Morphogeological belts, tectonic<br />

assemblages and terranes. In: H. Gabrielse and C.J. Yorath.<br />

(Eds.) - Geology of the Cor<strong>di</strong>lleran Orogen in Canada. 4,<br />

15–28.<br />

HENRY D.J., GUIDOTTI C.V. & THOMSON J.A. (2005) - The Tisaturation<br />

surface for low-to-m<strong>ed</strong>ium pressure metapelitic<br />

biotites: Implications for geothermometry and Tisubstitution<br />

mechanisms Am. Mineral. 90, 316-328.<br />

JOHNSTON D.H., WILLIAMS P.F., BROWN R.L., CROWLEY J.L. &<br />

CARR S.D. (2000). - Northwestward extrusion and<br />

extensional exhumation of crystalline rocks of the<br />

Monashee complex, southeastern Cana<strong>di</strong>an Cor<strong>di</strong>llera. J.<br />

Struct. Geol., 22, 603-625.<br />

KRUSE S., MCNEILL P.D., & WILLIAMS P.F., (2004) -<br />

Geological map of the Thor–O<strong>di</strong>n dome, southern<br />

Monashee complex, BC. http://www.unb.ca/fr<strong>ed</strong>ericton<br />

/science/geology/monashee.<br />

KRUSE S. & WILLIAMS P.F. (2005) - Brittle faulting in the<br />

Thor–O<strong>di</strong>n culmination, Monashee complex, southern<br />

Cana<strong>di</strong>an Cor<strong>di</strong>llera: constraints on geometry and<br />

kinematics. Can. J. Earth Sci., 42, 2141–2160.<br />

KRUSE S. & WILLIAMS P.F. (2007) - The Monashee reflection:<br />

Re-examination of a Lithoprobe crustal-scale seismic<br />

reflection in the southern Cana<strong>di</strong>an Cor<strong>di</strong>llera. Geosphere,<br />

3, doi: 10.1130/GES00049.1.<br />

MONGER J.W.H., PRICE R.A. & TEMPELMAN-KLUIT D.J. (1982)<br />

- Tectonic accretion and the origin of the two major<br />

metamorphic and plutonic welts in the Cana<strong>di</strong>an<br />

Cor<strong>di</strong>llera. Geology, 10, 70-75.<br />

WILLIAMS P.F. & JANG D. (2005) - An investigation of lower<br />

crustal deformation: Evidence for channel flow and its<br />

implications for tectonics and structural stu<strong>di</strong>es. J. Struct.<br />

Geol., 27, 1486–1504.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 214-217, 6 ff.<br />

Origine <strong>del</strong>l’attuale campo <strong>di</strong> sforzo nella zona <strong>del</strong>l’Arco Calabro<br />

ABSTRACT<br />

Origin of the present-day stress field in the surroun<strong>di</strong>ngs of the Calabrian<br />

arc<br />

Present day stress fields in the Tyrrhenian area is the results of a complex<br />

interplay of various dynamic processes acting at various scales, either local<br />

and regional, such as Africa-Eurasia convergence and Calabrian subduction. In<br />

order to investigate the role play<strong>ed</strong> by each dynamic process in driving the<br />

tectonic and geodynamic setting of the area, we use a finite element approach<br />

appli<strong>ed</strong> on both a thermal mo<strong>del</strong> and a tectonic mo<strong>del</strong>. Pr<strong>ed</strong>ict<strong>ed</strong> stress and<br />

strain in the Central M<strong>ed</strong>iterranean area are compar<strong>ed</strong> to complementary data<br />

presently available in the area, such as geological, geophysical and geodetic<br />

data. The results of our mo<strong>del</strong>ing support the hypothesis that Africa-Eurasia<br />

convergence and Calabrian subduction are the controlling mechanism of the<br />

present-day stress field in the southernmost part of the Tyrrhenian.<br />

Key words: mo<strong>del</strong>ling, tectonic setting, Tyrrhenian, rheology<br />

INTRODUZIONE<br />

L’attuale campo <strong>di</strong> sforzo nell’area <strong>del</strong> Tirreno è il risultato<br />

<strong>del</strong>l’azione combinata <strong>di</strong> <strong>di</strong>fferenti processi <strong>di</strong>namici che<br />

agiscono sia alla scala locale che a quella regionale, come la<br />

convergenza Africa-Eurasia e la subduzione Calabra.<br />

Per stimare i campi <strong>di</strong> deformazione e sforzo nella zona<br />

<strong>del</strong>l’Arco Calabro è stato utilizzato un mo<strong>del</strong>lo agli elementi<br />

finiti basato sull’approccio thin sheet (MAROTTA et alii, 2004).<br />

Un confronto tra le pr<strong>ed</strong>izioni <strong>del</strong> mo<strong>del</strong>lo con dati<br />

complementari attualmente <strong>di</strong>sponibili nell’area, come dati<br />

geologici, geofisici, GPS e <strong>di</strong> sforzi tettonici, consente <strong>di</strong><br />

vincolare meglio il mo<strong>del</strong>lo geofisico e <strong>di</strong> investigare il ruolo<br />

dei <strong>di</strong>versi meccanismi tettonici attivi. Nel mo<strong>del</strong>lo sono<br />

considerate le maggiori complessità strutturali <strong>del</strong>l’area <strong>del</strong><br />

Tirreno, mentre le proprietà reologiche <strong>del</strong>le rocce sono il<br />

risultato <strong>di</strong> un’analisi termica.<br />

_________________________<br />

RAFFAELE SPLENDORE (*), ANNA MARIA MAROTTA (*) & RICCARDO BARZAGHI (**)<br />

(*) Università degli Stu<strong>di</strong> <strong>di</strong> Milano, Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra<br />

“Ar<strong>di</strong>to Desio”, <strong>Sezione</strong> <strong>di</strong> Geofisica<br />

(**) DIAR, Politecnico <strong>di</strong> Milano<br />

Lavoro eseguito nell’ambito <strong>del</strong> progetto SISMA (Seismic Information<br />

System for Monitoring and Alert), finanziato da ASI.<br />

MODELLO<br />

Mo<strong>del</strong>lo tettonico<br />

Per calcolare il campo <strong>di</strong> deformazione nell’area <strong>del</strong> Tirreno<br />

è stato utilizzato l’approccio thin sheet in coor<strong>di</strong>nate sferiche<br />

(MAROTTA et alii., 2004), applicato su una griglia<br />

bi<strong>di</strong>mensionale, costituita da elementi lineari <strong>di</strong> forma<br />

triangolare (Fig. 1) e che si sviluppa sull’area <strong>del</strong><br />

Fig. 1 – Griglia bi<strong>di</strong>mensionale ad elementi triangolari lineari utilizzata per il<br />

mo<strong>del</strong>lo tettonico. Ogni elemento ha 3 no<strong>di</strong>, posti sui vertici <strong>del</strong> triangolo.<br />

M<strong>ed</strong>iterraneo.<br />

Il mo<strong>del</strong>lo risolve l’equazione <strong>del</strong> momento integrata sullo<br />

spessore litosferico, espressa nella forma:<br />

∂ ∂<br />

2µ<br />

∂θ ∂θ u <br />

θ + ur +<br />

<br />

1 ∂ 1 ∂<br />

µ<br />

sinθ ∂Φ sinθ ∂Φ uθ + ∂<br />

∂θ u <br />

<br />

<br />

Φ − uΦ cotθ<br />

<br />

<br />

<br />

+ 2µ ∂<br />

∂θ u 1 ∂<br />

θ −<br />

sinθ ∂Φ uΦ − uθ cotθ<br />

<br />

<br />

<br />

cotθ =<br />

<br />

<br />

gρcR 2L 1− ρ <br />

c<br />

<br />

<br />

∂ 2<br />

S<br />

∂θ<br />

(1)<br />

e<br />

∂ 1 ∂<br />

µ<br />

∂θ sinθ ∂Φ u ∂<br />

θ +<br />

∂θ uΦ − uΦ cotθ<br />

<br />

<br />

<br />

<br />

<br />

<br />

+ 1 ∂ 1 ∂<br />

2µ<br />

sinθ ∂Φ sinθ ∂Φ u ∂<br />

θ +<br />

∂θ uΦ − uΦ cotθ<br />

<br />

<br />

<br />

cotθ =<br />

<br />

<br />

gρcR <br />

<br />

<br />

ρ m<br />

2L 1− ρc ρm <br />

<br />

<br />

1 ∂ 2<br />

S<br />

sinθ ∂Φ<br />

(2)<br />

Con uθ, uφ <strong>ed</strong> ur componenti <strong>del</strong>la velocità lungo la<br />

colatitu<strong>di</strong>ne, la longitu<strong>di</strong>ne e ra<strong>di</strong>ale rispettivamente, θ


ORIGINE DELL’ATTUALE CAMPO DI SFORZO NELLA ZONA DELL’ARCO CALABRO<br />

colatitu<strong>di</strong>ne, φ longitu<strong>di</strong>ne, µ viscosità m<strong>ed</strong>ia <strong>del</strong>la litosfera, S<br />

spessore crostale, L spessore litosferico, ρc e ρm densità <strong>di</strong><br />

crosta e mantello rispettivamente, g accelerazione <strong>di</strong> gravità <strong>ed</strong><br />

R raggio terrestre.<br />

Le con<strong>di</strong>zioni al contorno lungo il bordo meri<strong>di</strong>onale <strong>del</strong><br />

mo<strong>del</strong>lo (Fig. 2) sono rappresentate dalle velocità <strong>di</strong><br />

convergenza Africa-Eurasia calcolate seguendo la proc<strong>ed</strong>ura <strong>di</strong><br />

NOCQUET et alii (2001), per la stima <strong>del</strong> Polo Euleriano, e<br />

assumendo le stazioni PENC, BOR1, BRUS, VILL, ZIMM,<br />

POTS, HERS, TOUL, MADR, YEBE per definire l’Europa<br />

stabile (DEVOTI et alii, 2002), e GOUG, SUTH, MAS1 per<br />

Fig. 2 – Velocità fissate al bordo meri<strong>di</strong>onale <strong>del</strong>la griglia come con<strong>di</strong>zioni al<br />

contorno <strong>del</strong> mo<strong>del</strong>lo tettonico, rappresentanti la convergenza africa-Eurasia e<br />

la subduzione Egea.<br />

definire l’Africa stabile (MCCLUSKY et alii, 2003). Lungo gli<br />

altri bor<strong>di</strong> <strong>del</strong> mo<strong>del</strong>lo sono state utilizzate le con<strong>di</strong>zioni al<br />

contorno descritte in MAROTTA et alii (2004).<br />

La viscosità effettiva <strong>di</strong> ogni elemento <strong>del</strong>la griglia nella<br />

zona <strong>di</strong> stu<strong>di</strong>o è stata ricavata attraverso uno stu<strong>di</strong>o termico e<br />

reologico tri<strong>di</strong>mensionale.<br />

Mo<strong>del</strong>lo termico<br />

La viscosità effettiva è stata calcolata sulla base <strong>del</strong> campo<br />

termico <strong>del</strong>la litosfera e i conseguenti profili verticali <strong>di</strong><br />

resistenza ottenuti assumendo una composizione granitica per<br />

la crosta e dunitica per il mantello. Il campo termico è stato<br />

calcolato utilizzando un mo<strong>del</strong>lo termico agli elementi finiti<br />

che risolve l’equazione per la conduzione <strong>di</strong> calore:<br />

∇ ⋅ ( k∇T)+<br />

ρH = 0 (3)<br />

su una griglia tri<strong>di</strong>mensionale, ricavata proiettando lungo la<br />

profon<strong>di</strong>tà la griglia bi<strong>di</strong>mensionale utilizzata per il mo<strong>del</strong>lo<br />

tettonico. k è la conduttività termica, T la temperatura, ρ la<br />

densità e H la velocità <strong>di</strong> produzione <strong>di</strong> calore ra<strong>di</strong>ogenico per<br />

unità <strong>di</strong> massa. La superficie superiore <strong>del</strong> mo<strong>del</strong>lo termico e la<br />

base <strong>del</strong>la crosta sono state definite interpolando sui no<strong>di</strong> <strong>del</strong>la<br />

griglia la topografia e la profon<strong>di</strong>tà <strong>del</strong>la Moho ottenute da<br />

BASSIN et alii (2000) (Fig. 3). Il mo<strong>del</strong>lo termico raggiunge la<br />

profon<strong>di</strong>tà massima <strong>di</strong> 200 km. La base <strong>del</strong>la litosfera è definita<br />

come profon<strong>di</strong>tà <strong>del</strong>l’isoterma 1600°K.<br />

L’equazione (3) è risolta assumendo come con<strong>di</strong>zioni al<br />

contorno una temperatura fissata in superficie (Ts=300°K) e un<br />

215<br />

flusso <strong>di</strong> calore residuo qr fissato alla base <strong>del</strong> mo<strong>del</strong>lo e<br />

ricavato a partire dal flusso <strong>di</strong> calore superficiale (ARTEMIEVA,<br />

Fig. 3 – Spessori crostali interpolati sugli elementi <strong>del</strong>la griglia <strong>di</strong> riferimento,<br />

utilizzati sia nel mo<strong>del</strong>lo tettonico che in quello termico.<br />

Fig. 4 – Flusso <strong>di</strong> calore in superficie interpolato sugli elementi <strong>del</strong>la griglia<br />

utilizzata nel mo<strong>del</strong>lo termico.<br />

2006; POLLACK et alii.,1993, Fig. 4), secondo la proc<strong>ed</strong>ura<br />

descritta da POLLACK & CHAPMAN (1977).<br />

Per ricavare i profili <strong>di</strong> resistenza abbiamo assunto che le<br />

rocce si comportino come materiale fragile o duttile a seconda<br />

<strong>del</strong> loro stato termico e variando la velocità <strong>di</strong> deformazione da<br />

10 -19 a 10 -16 s -1 . Per il comportamento fragile assumiamo la<br />

legge <strong>di</strong> Byerlee nella forma (LYNCH & MORGAN, 1987)<br />

σ B = β ⋅ r (4)<br />

con r profon<strong>di</strong>tà e β=16 MPa/km o 40 MPa/km per<br />

compressione <strong>ed</strong> estensione rispettivamente. Per il<br />

comportamento duttile assumiamo la legge <strong>di</strong> potenza nella<br />

forma (WEERTMAN & WEERTMAN, 1975)<br />

σ D = ε.<br />

ε .<br />

1<br />

n<br />

<br />

<br />

o<br />

<br />

dove ε .<br />

<br />

⋅ exp<br />

<br />

<br />

E a<br />

<br />

nRT <br />

(5)<br />

è la velocità <strong>di</strong> deformazione, R la costante dei gas, T<br />

la temperatura assoluta e ε .<br />

o, n e Ea costanti <strong>di</strong>pendenti dal tipo<br />

<strong>di</strong> rocce (Tab 1). Il profilo verticale <strong>di</strong> resistenza è determinato


216 R. SPLENDORE ET ALII<br />

come<br />

( ) min{<br />

σ ( y)<br />

σ ( y)<br />

}<br />

y y B D<br />

σ = ,<br />

(6)<br />

mentre la viscosità effettiva è calcolata come<br />

µ eff = 1<br />

L<br />

(7)<br />

ε . ⋅ σ ydy 0<br />

Fig. 5 – Viscosità effettiva calcolata a partire dai profili <strong>di</strong> resistenza e<br />

interpolata sugli elementi <strong>del</strong>la griglia utilizzata nel mo<strong>del</strong>lo termico.<br />

RISULTATI E DISCUSSIONI<br />

La Fig. 5 mostra la <strong>di</strong>stribuzione <strong>del</strong>la viscosità effettiva<br />

Fig.6 – Profon<strong>di</strong>tà <strong>del</strong>la base termica <strong>del</strong>la litosfera (isoterma 1600°K) riferita<br />

ad ogni elemento <strong>del</strong>la griglia, calcolata a partire dai profili termici stimati dal<br />

mo<strong>del</strong>lo termico.<br />

nella regione <strong>del</strong> M<strong>ed</strong>iterraneo Centrale. Da un confronto con<br />

le figure 3 e 4 si <strong>di</strong>stinguono tre regioni principali <strong>di</strong> elevata<br />

resistenza, una a sud <strong>del</strong>l’Arco Calabro, dove la viscosità<br />

effettiva raggiunge valori <strong>di</strong> 10 28 Pa·s, e le altre due in<br />

corrispondenza dei due bacini oceanici <strong>del</strong> Tirreno, dove la<br />

viscosità effettiva è <strong>del</strong>l’or<strong>di</strong>ne <strong>di</strong> 10 27 Pa·s. Il valore elevato a<br />

sud <strong>del</strong>l’Arco Calabro è correlabile con il bassissimo flusso <strong>di</strong><br />

calore regionale (circa 20 mW/m 2 ) associato ad una crosta<br />

sottile (fra 10 e 15 km) e ad una litosfera molto spessa (fino a<br />

170 km, Fig. 6). Nonostante un flusso <strong>di</strong> calore notevolmente<br />

più elevato nel Tirreno settentrionale (oltre 100 mW/m 2 ), il<br />

Fig. 7 – Autovettori <strong>del</strong>la Strani Rate calcolati per i tre elemnti<br />

triangolari che hanno ai vertici le stazioni permanenti LAMP-<br />

CAGL-NOT1, NOT1-AQUI-CAGL e MATE-AQUI-NOT1. In<br />

grigio le velocità <strong>di</strong> deformazione ottenute a partire dalle soluzioni<br />

<strong>del</strong>le serie temporali giornaliere, in nero quelle ottenute dalla<br />

mo<strong>del</strong>lazione. Il mo<strong>del</strong>lo riproduce ottimamente il regime e la<br />

<strong>di</strong>rezione <strong>del</strong>la deformazione osservata.<br />

contributo <strong>del</strong> mantello alla resistenza <strong>del</strong>la litosfera rimane<br />

comunque importante, garantendo localmente un valore elevato<br />

<strong>del</strong>la viscosità effettiva rispetto all’area circostante.<br />

In Fig. 7 sono rappresentati gli autovettori <strong>del</strong>la velocità <strong>di</strong><br />

deformazione pr<strong>ed</strong>etti dall’integrazione <strong>del</strong>le equazioni (1) e<br />

(2) con le con<strong>di</strong>zioni al contorno specificate nel paragrafo<br />

prec<strong>ed</strong>ente e utilizzando la viscosità effettiva in Fig. 5 e gli<br />

spessori crostali in Fig. 4. Queste previsioni sono confrontate<br />

con i corrispondenti autovettori ottenuti a partire dalle soluzioni<br />

<strong>del</strong>le serie temporali giornaliere ricavate dalle stazioni<br />

permanenti NOT1, LAMP, MATE, AQUI, GAGL <strong>ed</strong> elaborate<br />

con il software Bernese.<br />

Il mo<strong>del</strong>lo tettonico riproduce con buona approssimazione<br />

la deformazione osservata a scala regionale, sia nel regime che<br />

nella <strong>di</strong>rezione, supportando l’ipotesi che la convergenza<br />

Africa-Europa e la subduzione Calabra siano i principali<br />

meccanismi responsabili <strong>del</strong>l’attuale campo <strong>di</strong> sforzo e<br />

deformazione nella parte più meri<strong>di</strong>onale <strong>del</strong> Tirreno, dove la<br />

porzione settentrionale <strong>del</strong>l’indenter Africano contribuisce alla<br />

compressione SE-NW <strong>ed</strong> all’estensione SW-NE, spingendo<br />

lateralmente la porzione orientale <strong>del</strong>la penisola Italiana.<br />

Relativamente al modulo degli autovettori, mentre la<br />

componente compressiva degli autovettori mo<strong>del</strong>lizzati risulta<br />

confrontabile con l’osservazione, per lo meno nel Tirreno<br />

meri<strong>di</strong>onale, l’estensione viene ancora fortemente sottostimata.


ORIGINE DELL’ATTUALE CAMPO DI SFORZO NELLA ZONA DELL’ARCO CALABRO<br />

REFERENCES<br />

ARTEMIEVA M. I. (2006) – Global 1°x1° thermal mo<strong>del</strong> Tc1 for<br />

the continental lithosphere: implications for lithosphere<br />

secular evolution. Tectonophysics, 416, 245-277.<br />

BASSIN C, LASKE G. & MANSTER G. (2000) - The current limit<br />

of resolution for surface wave tomography in North<br />

America. Eos. Trans. AGU, 81 (48), Abstract S12A-03.<br />

CRUST 2.0 - http://mahi.ucsd.<strong>ed</strong>u/Gabi/rem.html<br />

Devoti R., Ferraro C., Gueguen E., Lanotte R., Luceri V.,<br />

Nar<strong>di</strong> A., Pacione R., Rutigliano P., Sciarretta C., Vespe F.<br />

(2002) – Geodetic control on recent tectonic movements in<br />

the central M<strong>ed</strong>iterranean area. Tectonophysics, 346, 151-<br />

167.<br />

LYNCH H. D. & MORGAN P. (1987) – The tensile strenght of the<br />

lithosphere and the localisation of extension. In Continental<br />

extensional tectonics (M. P. COWARD et alii), Spec. Publ.<br />

Geol. Soc. London, 28, 53-65.<br />

POLLACK H. N. & CHAPMAN D. S. (1977) – On the regional<br />

variation of heat flow, geotherms, and lithospheric<br />

thickness. Tectonophysics, 38, 279-296.<br />

POLLACK H. N., HURTER S. & JOHNSON J. R. (1993) – Heat<br />

Flow from the Earth's interior: analysis of the global data<br />

set. Reviews of Geophysics., 31(3), 267-280.<br />

MAROTTA A. M., MITROVICA J. X., SABADINI R., MILNE G.<br />

(2004) – Combin<strong>ed</strong> effects of tectonics and glacial isostatic<br />

adjustment on intraplate deformation in central and northern<br />

Europe: Applications to geodetic baseline analyses. Journal<br />

of Geopjysical Research, 109, B01413,<br />

doi:10.1029/2002JB002337<br />

MCCLUSKY S. et alii (2000) – Global Positioning System<br />

constraints on plate kinematics and dynamics in the eastern<br />

M<strong>ed</strong>iterranean and Caucasus. J. Geophys. Res., 105, 5695<br />

– 5719.<br />

MCCLUSKY S., REILINGER R., MAHMOUD S., BEN SARI D.,<br />

TEALEB A. (2003) – GPS constrains on Africa (Nubia) and<br />

Arabia plate motions. Geophys. J. Int., 155, 126 – 138.<br />

NOCQUET J. M., CALAIS E., ALTAMINI A., SILLARD P.,<br />

BOUCHER C. (2001) – Intraplate deformation in western<br />

Europe d<strong>ed</strong>uc<strong>ed</strong> from an analysis of the International<br />

Terrestrial Reference Frame 1997 (ITRF97) velocity field.<br />

J. Geophys. Res., 106 (B6), 11239-11257.<br />

WEERTMAN J. & WEERTMAN J. R. (1975) – High temperature<br />

creep of rock, and mantle viscosity. Ann. Rev. Earth Planet.<br />

Sci. 3, 293-315.<br />

217


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 218<br />

ABSTRACT<br />

Una proc<strong>ed</strong>ura per la determinazione <strong>del</strong>la <strong>di</strong>stribuzione granulometrica<br />

<strong>di</strong> rocce cataclastiche sviluppate in carbonati utilizzando il principio <strong>del</strong>la<br />

<strong>di</strong>ffrazione laser.<br />

Particle size <strong>di</strong>stribution analysis provides a first order<br />

contribution to rock characterization and to the description of<br />

many geological processes such as s<strong>ed</strong>imentation, rock<br />

fragmentation and soil formation. Fast particle size data<br />

acquisition over a wide size range is provid<strong>ed</strong> by <strong>di</strong>ffraction<br />

granulometers, which typically allow using a wide variety of<br />

analytical methods, nam<strong>ed</strong> standard operating proc<strong>ed</strong>ures<br />

(SOP). These ensure the appropriate flexibility for analysing<br />

very <strong>di</strong>fferent granular materials, but deserve accurate<br />

investigations and systematic testing for the possible influence<br />

that <strong>di</strong>fferent analytical methods may exert on results obtain<strong>ed</strong><br />

by the same or <strong>di</strong>fferent instruments. For this purpose, we<br />

perform<strong>ed</strong> specific tests on poorly coherent carbonate platform<br />

fault core rocks by using two <strong>di</strong>fferent instruments with<br />

<strong>di</strong>fferent sample <strong>di</strong>spersion and pumping systems. In particular,<br />

most of our analyses were carri<strong>ed</strong> out by using a Mastersizer<br />

2000 laser <strong>di</strong>ffraction granulometer manufactur<strong>ed</strong> by Malvern<br />

Instruments Ltd., because of the ensur<strong>ed</strong> possibility to test<br />

several wet and dry analytical proc<strong>ed</strong>ures inclu<strong>di</strong>ng <strong>di</strong>fferent<br />

pump spe<strong>ed</strong>s, measure precision tests with and without sample<br />

ultrasonication, <strong>di</strong>fferent <strong>di</strong>spersant liquids, and sampling<br />

precision tests. Results of our work in<strong>di</strong>cate a significant<br />

sensitivity of particle size data to the adopt<strong>ed</strong> analytical<br />

proc<strong>ed</strong>ure and, consequently, their indeterminateness when<br />

standard operating proc<strong>ed</strong>ures are not systematically test<strong>ed</strong> and<br />

critically <strong>di</strong>scuss<strong>ed</strong>. The lack of information on the analytical<br />

proc<strong>ed</strong>ure can contribute to mislea<strong>di</strong>ng data interpretation and<br />

data comparison and, eventually, to wrong inferences on the<br />

progression of cataclasis in fault zones. We propose a workflow<br />

of analytical tests preliminary to the set up of the most<br />

appropriate SOP for systematic laser <strong>di</strong>ffraction granulometry<br />

of cataclastic breccias in carbonate rocks. Application of this<br />

_________________________<br />

A workflow for laser <strong>di</strong>ffraction granulometry of carbonate<br />

cataclastic rocks<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Università degli Stu<strong>di</strong> Roma Tre,<br />

Largo S. L. Murialdo 1, I-00146 Roma, Italy<br />

FABRIZIO STORTI (*) & FABRIZIO BALSAMO (*)<br />

proc<strong>ed</strong>ure is typically flexible due to the great variability of<br />

analys<strong>ed</strong> materials and the common ne<strong>ed</strong> of several iterations<br />

before reaching the most statistically robust results.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 219-220, 2 ff.<br />

Defomation pattern in a massive pond<strong>ed</strong> lava flow at ODP-IODP<br />

Site 1256 (Pacific Ocean): a core and log approach<br />

PAOLA TARTAROTTI (*), EMANUELE FONTANA (*) & LAURA CRISPINI (°)<br />

RIASSUNTO<br />

Assetto strutturale <strong>di</strong> una colata lavica nel Sito ODP-IODP 1256 (Oceano<br />

Pacifico): integrazione <strong>di</strong> dati <strong>di</strong> carota e <strong>di</strong> log in foro<br />

Una sezione completa “in situ” <strong>di</strong> crosta oceanica è stata recentemente<br />

perforata per la prima volta in una crosta <strong>di</strong> 15 Ma creata in un segmento <strong>del</strong>la<br />

dorsale Est Pacifica, caratterizzata da un’ elevata velocità <strong>di</strong> espansione (>200<br />

mm/anno). La sezione crostale comprende colate basaltiche <strong>di</strong> vario spessore,<br />

scarse lave a cuscini, un complesso <strong>di</strong> <strong>di</strong>cchi basici e la parte superficiale <strong>del</strong><br />

Layer 3 gabbrico. Le colate superficiali includono una colata massiva potente<br />

ca. 70 m, interpretata come un “lava pond” messo in posto al <strong>di</strong> fuori <strong>del</strong>l’asse<br />

<strong>di</strong> espansione <strong>del</strong>la dorsale. L’assetto strutturale <strong>del</strong> lava pond d<strong>ed</strong>otto<br />

dall’integrazione <strong>di</strong> dati <strong>di</strong> carotaggio e <strong>di</strong> log geofisici in foro conferma la<br />

peculiarità <strong>di</strong> questo corpo lavico, che risulta estraneo ai meccanismi noti <strong>di</strong><br />

accrezione crostale all’asse <strong>di</strong> dorsale oceanica.<br />

Key words: fracturing, Integrat<strong>ed</strong> Ocean Drilling Program,<br />

ocean crust, physical properties, superfast ridge, submarine<br />

lava flow.<br />

A complete intact “in situ” section of upper oceanic crust, from<br />

extrusive lavas through the <strong>di</strong>kes and into the underlying<br />

gabbros has been recently drill<strong>ed</strong> for the first time in a 15 Ma<br />

old crust that form<strong>ed</strong> at the East Pacific Rise with a full<br />

sprea<strong>di</strong>ng rate of >200 mm/yr. The study area is ODP-IODP<br />

Site 1256 (6°44.2N, 91°56.1W, Pacific Ocean) where two<br />

holes, Hole 1256C and 1256D, have been drill<strong>ed</strong> into the<br />

basaltic basement during ODP Leg 206, IODP Exp<strong>ed</strong>itions 309<br />

and 312 (WILSON et al., 2003; TEAGLE et al., 2006). Hole<br />

1256D has been deepen<strong>ed</strong> to a depth of ca. 1500 meters below<br />

seafloor (mbsf). The upper section of the igneous basement<br />

consists of thin (3m). The massive flows<br />

include a pond<strong>ed</strong> lava flow, locat<strong>ed</strong> near the top of both Hole<br />

1256C and 1256D, where it has a thickness of 32m and 74m,<br />

respectively. Minor intervals of pillow lavas (20m) and<br />

hyaloclastite (a few meters) were recover<strong>ed</strong> in Hole 1256D,<br />

which are follow<strong>ed</strong> downhole by a 470m-thick section of sheet<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Milano<br />

(°) DIPTERIS, Dipartimento per lo Stu<strong>di</strong>o <strong>del</strong> Territorio e <strong>del</strong>le sue Risorse,<br />

Università <strong>di</strong> Genova<br />

Lavoro eseguito nell’ambito <strong>del</strong> progetto FIRST 2007 con il contributo<br />

finanziario <strong>del</strong>l’Università <strong>di</strong> Milano<br />

and massive flows with subor<strong>di</strong>nate breccia, a transition zone<br />

from massive flows to <strong>di</strong>kes, a ca. 350m-thick sheet<strong>ed</strong> <strong>di</strong>ke<br />

zone, and gabbros (Fig. 1).<br />

The lava pond is the object of this research; it has been<br />

interpret<strong>ed</strong> as a thick lava flow <strong>del</strong>iver<strong>ed</strong> most probably offaxis<br />

and accumulat<strong>ed</strong> in a topographic depression (WILSON et<br />

al., 2003; CRISPINI et al., 2006; TARTAROTTI et al., 2006).<br />

Fine-scale structural analysis was carri<strong>ed</strong> out in orient<strong>ed</strong> core<br />

pieces from the two holes. Structural data were process<strong>ed</strong> by: i)<br />

identifying post-magmatic structures, namely joints, veins,<br />

shear veins, microfaults, late magmatic veins, and measuring<br />

their true <strong>di</strong>p angle; ii) counting the number of structures/dm<br />

(all planar structures record<strong>ed</strong> in orient<strong>ed</strong> and not orient<strong>ed</strong><br />

cores). During ODP Leg 206, the true <strong>di</strong>p angle of 613 planar<br />

structures in Hole 1256C and of 1702 planar structures in Hole<br />

1256D were measur<strong>ed</strong> (SHIPBOARD SCIENTIFIC PARTY, 2003).<br />

Structural results were integrat<strong>ed</strong> with data obtain<strong>ed</strong> by wireline<br />

logging and onboard physical property measurements. The<br />

main results are illustrat<strong>ed</strong> in the following.<br />

Fig. 1 – Simplifi<strong>ed</strong> basement stratigraphy at ODP-IODP Site 1256.<br />

The Lava Pond occurring at the top part of the volcanic section<br />

is much less fractur<strong>ed</strong> than the deeper parts. This observation is<br />

relat<strong>ed</strong> essentially to the spacing of structures that is larger than<br />

in the underlying thinner lava flows. It is suggest<strong>ed</strong> that<br />

dominantly conductive cooling in this upper portion of the crust<br />

result<strong>ed</strong> in less pervasive cracking than that obtain<strong>ed</strong> by<br />

dominantly convective cooling. Brittle, post-magmatic<br />

structures are mainly sub-horizontal in the Lava Pond and<br />

become steeper downhole. This result reflects the <strong>di</strong>stance of


220 P. TARTAROTTI ET ALII<br />

Fig. 2 – Downhole <strong>di</strong>stribution of Qualitative Fracture Intensity* in Holes 1256C and 1256D compar<strong>ed</strong> with downhole logging measurements perform<strong>ed</strong> during<br />

ODP Leg 206 and IODP Exp<strong>ed</strong>itions 309 and 312 (Ocean Drilling Program, Integrat<strong>ed</strong> Ocean Drilling Program and Lamont Doherty Earth Observatory,<br />

available on http://iodp.ldeo.columbia.<strong>ed</strong>u/DATA/) in Hole 1256D.<br />

the lava pond from the stress field produc<strong>ed</strong> by the intrusion of<br />

<strong>di</strong>kes at depth, inducing mostly subvertical eruptive fractures<br />

and fracture network, and/or from the rifting extentional<br />

tectonics. The lower extent of fracturing in the lava pond basalt<br />

with respect to the deeper crust is reflect<strong>ed</strong> in <strong>di</strong>fferent physical<br />

properties values, as obtain<strong>ed</strong> by shipboard as well as<br />

downhole logging measurements. Electrical resistivity,<br />

compressional velocity, and bulk density are higher, whereas<br />

natural ra<strong>di</strong>oactivity and neutral porosity are lower than in the<br />

deeper parts of Hole 1256D (Fig. 2). Within the lava pond,<br />

variations in fracture density mostly correspond to anomalies of<br />

rock physical properties, as the effect of high concentrations of<br />

secondary minerals. The occurrence of a thick massive lava<br />

flow at the top of the volcanic section apparently affects the<br />

deformation pattern of the entire drill<strong>ed</strong> crust and,<br />

consequently, its permeability regime which in turn controls the<br />

geometry and <strong>di</strong>stribution of hydrothermal circulation and<br />

basalt alteration. Our results fit with the interpretation given by<br />

previous works that the lava lpnd is a lava flow emplac<strong>ed</strong> in an<br />

off-axis topographic depression.<br />

* Qualitative estimation of the degree of fracturing bas<strong>ed</strong> only<br />

on a visual inspection of cores.<br />

REFERENCES<br />

CRISPINI L., TARTAROTTI P. & UMINO S. (2006) –<br />

Microstructural features of a subaqueous lava from<br />

basaltic crust off the East Pacific Rise (ODP Site 1256,<br />

Cocos Plate). Ofioliti, Special Issue “Modern and fossil<br />

oceanic lithosphere”, 31(2), 117-127.<br />

SHIPBOARD SCIENTIFIC PARTY (2003), Site 1256. In: D.S.<br />

Wilson, D.A.H. Teagle, G.D. Acton, et al., Proc. ODP, Init.<br />

Repts., 206: College Station, TX (Ocean Drilling Program),<br />

1–396, doi:10.2973/odp.proc.ir.206.103.2003<br />

TARTAROTTI P., CRISPINI L. & THE IODP EXPEDITIONS 309-312<br />

SHIPBOARD SCIENTIFIC PARTY (2006) – ODP-IODP Site<br />

1256 (East Pacific Rise): an in-situ section of upper<br />

oceanic crust form<strong>ed</strong> at a superfast sprea<strong>di</strong>ng rate. Ofioliti,<br />

Special Issue “Modern and fossil oceanic lithosphere”,<br />

31(2), 107-116.<br />

WILSON D.S., TEAGLE D.A.H., ACTON G.D. et alii (2003) – Proc.<br />

ODP, Init. Repts., 206 [CD-ROM]. Available from: Ocean<br />

Drilling Program, Texas A & M University, College Station<br />

TX 77845-9547, USA.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 221-224, 8ff.<br />

Processi <strong>di</strong> fagliazione nei grainstones carbonatici porosi: implicazioni per la<br />

caratterizzazione dei serbatoi naturali <strong>di</strong> geoflui<strong>di</strong><br />

EMANUELE TONDI (*), FABRIZIO AGOSTA (*) & ANTONINO CILONA (*)<br />

ABSTRACT<br />

Faulting in porous carbonate grainstones: implications for the<br />

characterization of natural reservoirs of geofluids<br />

Recently, a new faulting mechanism was document<strong>ed</strong> in porous carbonate<br />

grainstones, in which faults form by strain localization into narrow tabular<br />

bands characteriz<strong>ed</strong> by volumetric and shear strain (so call<strong>ed</strong> compactive shear<br />

bands, TONDI et alii, 2006; TONDI, 2007). In the field, these structures are<br />

easily recognizable because they are lightly color<strong>ed</strong> with respect to the parent<br />

rock and/or show a positive relief due to their increas<strong>ed</strong> resistance to<br />

weathering. Both these characteristics are link<strong>ed</strong> to the compaction processes<br />

acting within the bands.<br />

Starting from single compactive shear bands, which resolve a few mm of<br />

<strong>di</strong>splacement, these structures evolve in zone of compactive shear bands and<br />

then, eventually, in well develop<strong>ed</strong> faults with slip surfaces and fault rocks<br />

(breccia and gouge).<br />

In this work we present new data concerning their growth mechanisms, in<br />

terms of <strong>di</strong>splacement, length and thickness. We also document how the<br />

transition from one deformation process to another, which is likely to be<br />

controll<strong>ed</strong> by the changes in the material properties, is record<strong>ed</strong> by <strong>di</strong>fferent<br />

ratios and <strong>di</strong>stributions of the fault <strong>di</strong>mensional attributes.<br />

Field analysis document<strong>ed</strong> <strong>di</strong>fferent possibility of interaction and linkage<br />

between these structures: (i) a simple <strong>di</strong>vergence of compactive shear bands,<br />

(ii) extensional and contractional jogs, and (iii) eye structures, already<br />

describ<strong>ed</strong> for deformation bands in sandstones. All these types of interaction<br />

and linkage could happen at any deformation stage, single bands, zone of<br />

bands or well develop<strong>ed</strong> faults.<br />

Concerning their <strong>di</strong>mensional parameters, we observ<strong>ed</strong> that length,<br />

<strong>di</strong>splacement and thickness of single bands given values (50 cm of length and<br />

6 mm of both <strong>di</strong>splacement and thickness) and <strong>di</strong>d not show any scale<br />

relationship among them. Conversely, <strong>di</strong>fferent mechanism occur within zones<br />

of shear bands. The <strong>di</strong>splacement value along a zone of shear bands is<br />

maximum near the center of the structure, as it is commonly observ<strong>ed</strong> in faults<br />

with sharp <strong>di</strong>scontinuities (slip surfaces). This <strong>di</strong>fferent mechanical behavior<br />

is due to, the possibility to have <strong>di</strong>fferent <strong>di</strong>splacement envelopes within the<br />

shear band zones thanks to the number of single bands they include. For this<br />

reason, the increas<strong>ed</strong> <strong>di</strong>splacement value in these zones is accompani<strong>ed</strong> to an<br />

increas<strong>ed</strong> number of bands (and of the thickness). Similarly, D-L graphs of<br />

well develop<strong>ed</strong> faults show the same relation, with the <strong>di</strong>fference that in faults<br />

with up to 20-40 cm of <strong>di</strong>splacement, a slip surface (with breccia and gouge) is<br />

present and so the number of shear bands remain constant even for large<br />

<strong>di</strong>splacements.<br />

Concerning the relations among the <strong>di</strong>fferent <strong>di</strong>mensional parameters,<br />

thickness and <strong>di</strong>splacement depict two populations, well develop<strong>ed</strong> faults (with<br />

slip surfaces) resolve much <strong>di</strong>splacement with respect the zone of shear bands.<br />

In conclusion, single shear band can evolve to zone of shear bands and<br />

then to well develop<strong>ed</strong> fault or can interact to another single bands forming<br />

larger structures. Interaction and linkage can occur at any deformation stage.<br />

___________________________________________________________<br />

(*) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Camerino.<br />

Lavoro eseguito nell’ambito <strong>del</strong> progetto Faults & Fractures in Carbonates<br />

(F&FC) <strong>del</strong>l’Università <strong>di</strong> Camerino.<br />

Typical values for their <strong>di</strong>mensional parameters are:<br />

- Single band is 50 cm long, 0.5 cm thick and resolve 0.5 cm of<br />

<strong>di</strong>splacement: the D/T factor is 1.0;<br />

- Zone of shear bands is maximum 10 m long, 20 cm thick and resolve 30<br />

cm of <strong>di</strong>splacement: the D/T factor is 1.5;<br />

- The <strong>di</strong>splacement and the thickness (relat<strong>ed</strong> to the number of bands) are<br />

maximum in the central part of the zone of bands;<br />

- Well develop<strong>ed</strong> fault (with slip surfaces and cataclasis) is more efficient:<br />

the D/T factor is 3.5.<br />

Key words: compaction, compactive shear bands,<br />

porosity, pressure solution seams.<br />

Parole chiave: compactive shear bands, compattazione,<br />

<strong>di</strong>ssoluzione per pressione, porosità.<br />

INTRODUZIONE<br />

Le rocce carbonatiche, <strong>di</strong>fferentemente da altri tipi <strong>di</strong> rocce<br />

serbatoio (i.e. rocce silicoclastiche, plutoniche, etc.), sono<br />

rappresentate da una notevole varietà <strong>di</strong> litotipi, sulla base <strong>del</strong>la<br />

natura e <strong>del</strong>l’organizzazione/forma degli elementi costituenti<br />

(grani, pori, cementi, minerali, etc.), e caratterizzate da <strong>di</strong>versi<br />

valori <strong>di</strong> porosità e permeabilità, anche in relazione alla loro<br />

evoluzione <strong>di</strong>agenetica. Inoltre, la capacità <strong>del</strong>le rocce<br />

carbonatiche nel contenimento e nella migrazione dei geoflui<strong>di</strong><br />

è fortemente influenzata dallo stato <strong>di</strong> “fratturazione”. Allo<br />

scopo <strong>di</strong> meglio comprendere e quantificare quest’ultimo<br />

aspetto, negli ultimi anni numerose ricerche sono state<br />

in<strong>di</strong>rizzate alla comprensione dei processi <strong>di</strong> enucleazione e<br />

sviluppo <strong>di</strong> faglie e fratture nei <strong>di</strong>versi litotipi carbonatici, alla<br />

quantificazione <strong>del</strong>le loro proprietà spaziali e <strong>di</strong>mensionali e<br />

alla caratterizzazione fisico-chimica <strong>del</strong>la roccia deformata<br />

(ANTONELLINI et alii, 2007 e referenze citate).<br />

Se nelle rocce carbonatiche poco porose le <strong>di</strong>scontinuità<br />

vanno a costituire dei networks che, a secondo <strong>del</strong>la loro natura,<br />

connettività e grado <strong>di</strong> evoluzione, rappresentano dei siti<br />

preferenziali per la localizzazione e la migrazione dei flui<strong>di</strong><br />

(AGOSTA & AYDIN, 2006 e referenze citate), in quelle porose,<br />

tali <strong>di</strong>scontinuità rappresentano generalmente <strong>del</strong>le barriere che<br />

inibiscono la migrazione dei flui<strong>di</strong> (TONDI et alii, 2006, TONDI,<br />

2007). Tale <strong>di</strong>fferenza è strettamente correlata ai processi<br />

deformativi che agiscono in quest’ultima tipologia <strong>di</strong> carbonati,<br />

caratterizzati da un’elevata porosità (superiore al 15%);<br />

con<strong>di</strong>zione necessaria per lo sviluppo <strong>di</strong> particolari strutture<br />

tettoniche solo recentemente descritte: le shear bands. Queste<br />

strutture <strong>di</strong> taglio si formano grazie ad un particolare processo


222 E. TONDI ET ALII<br />

deformativo che contempla la rotazione e compattazione dei<br />

grani costituenti il protolite. Sta<strong>di</strong> più evoluti <strong>del</strong>la deformazione<br />

prev<strong>ed</strong>ono l’instaurarsi all’interno <strong>di</strong> tali strutture <strong>di</strong> processi <strong>di</strong><br />

<strong>di</strong>ssoluzione per pressione che portano alla formazione <strong>di</strong> una<br />

vera e propria superficie <strong>di</strong> <strong>di</strong>scontinuità, la quale favorisce poi<br />

il movimento e la relativa formazione <strong>del</strong>la roccia <strong>di</strong> faglia.<br />

In questo lavoro, oltre ad una breve revisione dei processi <strong>di</strong><br />

enucleazione e sviluppo <strong>del</strong>le faglie nei grainstones carbonatici<br />

porosi, vengono presentati nuovi dati riferiti alle proprietà<br />

spaziali e <strong>di</strong>mensionali <strong>del</strong>le shear bands e una <strong>di</strong>scussione sul<br />

loro significato in relazione ai <strong>di</strong>versi meccanismi deformativi<br />

agenti durante la crescita e lo sviluppo <strong>di</strong> queste strutture <strong>di</strong><br />

taglio.<br />

La definizione <strong>di</strong> appropriate leggi matematiche, in grado <strong>di</strong><br />

descrivere le caratteristiche spaziali e <strong>di</strong>mensionali <strong>del</strong>le<br />

strutture tettoniche, risulta <strong>di</strong> fondamentale importanza per la<br />

costruzione <strong>di</strong> mo<strong>del</strong>li strutturali quali quelli DFN (Discrete<br />

Fractures Network). Spesso utilizzati dall’industria petrolifera<br />

per la mo<strong>del</strong>lizzazione dei flui<strong>di</strong> all’interno dei serbatoi naturali<br />

fratturati; i mo<strong>del</strong>li DFN, infatti, utilizzano software in grado <strong>di</strong><br />

produrre la <strong>di</strong>stribuzione <strong>del</strong>le fratture m<strong>ed</strong>iante meto<strong>di</strong><br />

statistici/frattali.<br />

ENUCLEAZIONE E CRESCITA DELLE FAGLIE<br />

Recentemente, TONDI et alii (2006) e TONDI (2007) hanno<br />

descritto una nuova tipologia <strong>di</strong> strutture nei grainstones<br />

carbonatici porosi, le quali sono caratterizzate da deformazione<br />

volumetrica e <strong>di</strong> taglio, e quin<strong>di</strong> chiamate compactive shear<br />

bands. Queste strutture che si presentano sottili e tabulari sono<br />

facilmente riconoscibili in campagna in quanto, <strong>di</strong> colore più<br />

chiaro rispetto alla roccia circostante, sono generalmente<br />

caratterizzate da un rilievo positivo dovuto alla loro maggiore<br />

resistenza all’erosione (Fig. 1). Amb<strong>ed</strong>ue queste caratteristiche<br />

sono legate a processi <strong>di</strong> compattazione e cementazione che<br />

avvengono al loro interno. In fig. 2 viene mostrato il mo<strong>del</strong>lo <strong>di</strong><br />

enucleazione e sviluppo <strong>di</strong> queste strutture <strong>di</strong> taglio e la<br />

variazione, in percentuale, <strong>del</strong>la porosità, dei grani e <strong>del</strong>la<br />

matrice nelle zone costituenti le compactive shear bands<br />

rispetto all’host rock. Tale mo<strong>del</strong>lo evolutivo prev<strong>ed</strong>e una<br />

prima fase <strong>di</strong> compattazione che risolve una piccola entità <strong>di</strong><br />

movimento <strong>di</strong> taglio, <strong>ed</strong> un successivo sviluppo <strong>di</strong> processi <strong>di</strong><br />

<strong>di</strong>ssoluzione per pressione all’interno <strong>del</strong>la zona compattata<br />

(Zona 2), che portano alla formazione <strong>di</strong> una zona <strong>di</strong> debolezza<br />

costituita da materiale residuale (Zona 1) favorendo un sempre<br />

maggiore movimento <strong>di</strong> taglio. Il materiale <strong>di</strong>sciolto nella Zona<br />

2 precipita all’interno dei pori <strong>del</strong>l’host rock, a<strong>di</strong>acente alla<br />

banda <strong>di</strong> deformazione, portando alla formazione <strong>del</strong>la Zona 3<br />

e quin<strong>di</strong> ad un ispessimento <strong>del</strong>la banda stessa.<br />

I rilievi <strong>di</strong> campagna, inoltre, hanno permesso <strong>di</strong> osservare<br />

in questa tipologia <strong>di</strong> rocce carbonatiche sia singole compactive<br />

shear bands, che risolvono pochi mm <strong>di</strong> rigetto e mostrano uno<br />

spessore anch’esso millimetrico, sia zone <strong>di</strong> compative shear<br />

bands, costituite da più bande sub-parallele l’una all’altra, che<br />

faglie ben sviluppate, in cui sono riconoscibili nette superfici <strong>di</strong><br />

taglio associate a roccia <strong>di</strong> faglia (generalmente breccia e<br />

gauge). Queste tre tipologie <strong>di</strong> strutture sono state interpretate<br />

come sta<strong>di</strong> successivi <strong>del</strong>la deformazione che, unitamente a<br />

<strong>di</strong>versi processi <strong>di</strong> interazione e collegamento tra le strutture<br />

(Fig. 3), determinano la crescita e lo sviluppo <strong>del</strong>le faglie nei<br />

grainstones carbonatici porosi.<br />

Fig. 1 – Compactive shear bands affioranti a Favignana (Isole Ega<strong>di</strong>, Sicilia).<br />

Compactive shear bands cropping out in Favignana (Ega<strong>di</strong> Islands, Sicily).<br />

a)<br />

b)<br />

Host rock<br />

Zona 3<br />

Zona 2<br />

Zona 1<br />

Grani (%)<br />

Zona 3<br />

Zona 2<br />

Porosità (%)<br />

Zona 1<br />

Matrice (%)<br />

Fig. 2 – a) Mo<strong>del</strong>lo <strong>di</strong> evoluzione <strong>del</strong>le compactive shear bands; b) variazione<br />

percentuale <strong>di</strong> porosità, grani e matrice nelle <strong>di</strong>verse zone costituenti le<br />

compactive shear bands, rispetto all’host rock.<br />

a) Evolutionary mo<strong>del</strong> of compactive shear bands; b) porosity, grain and<br />

matrix percentage variation in the compactive shear bands, with respect the<br />

host rock.


Fig. 3 – Diverse tipologie <strong>di</strong> interazione e collegamento tra le compactive<br />

shear bands: 1) semplici <strong>di</strong>vergenze; 2) e 3) jogs estensionali e contrazionali;<br />

4) struttura a “occhio”. In figura è rappresentata una compactive shear band<br />

trascorrente destra: le strutture coniugate sono costituite da compactive shear<br />

bands trascorrenti sinistre mentre le <strong>brevi</strong> strutture localizzate alle terminazioni<br />

<strong>del</strong>le prec<strong>ed</strong>enti e/o localizzate nei jogs rappresentano bande <strong>di</strong> compattazione<br />

e/o stiloliti.<br />

Different possibility of interaction and linkage between compactive shear<br />

bands: 1) a simple <strong>di</strong>vergence; 2) and 3) extensional and contractional jogs;<br />

4) eye structure.<br />

PROCESSI DI FAGLIAZIONE NEI GRAINSTONES CARBONATICI POROSI<br />

PROPRIETA’ DIMENSIONALI DELLE FAGLIE<br />

Un analisi sistematica eseguita in campagna, su affioramenti<br />

ben esposti, ha permesso <strong>di</strong> misurare i <strong>di</strong>versi elementi<br />

<strong>di</strong>mensionali quali la lunghezza, il rigetto e lo spessore <strong>del</strong>le<br />

singole compactive shear bands, <strong>del</strong>le zone <strong>di</strong> compactive<br />

shear bands e <strong>del</strong>le faglie ben sviluppate.<br />

Le singole compactive shear bands sono caratterizzate da<br />

ben determinati valori <strong>di</strong>mensionali e, come è possibile<br />

osservare dal grafico <strong>di</strong> fig. 4, questi non mostrano chiare<br />

relazioni <strong>di</strong> scala. Di lunghezza <strong>del</strong>l’or<strong>di</strong>ne dei 50 cm, il rigetto<br />

e lo spessore hanno valori pr<strong>ed</strong>ominanti compresi tra 0, 4 cm e<br />

0,6 cm.<br />

Le zone <strong>di</strong> compactive shear bands presentano, al contrario,<br />

lunghezze variabili, e su alcune <strong>di</strong> esse è stato inoltre possibile<br />

misurare la variazione <strong>del</strong> rigetto lungo la struttura stessa.<br />

Come è possibile notare in fig. 5, il rigetto ha il valore massimo<br />

nella zona centrale, come accade per le faglie con superfici <strong>di</strong><br />

taglio ben evidenti (Fig. 6), con la <strong>di</strong>fferenza che per le zone <strong>di</strong><br />

compactive shear bands la possibilità <strong>di</strong> aumentare il rigetto è<br />

strettamente legata al numero <strong>di</strong> bande che vanno a costituire la<br />

zona stessa. Di conseguenza, oltre ad un aumento <strong>del</strong> rigetto,<br />

nella zona centrale si osserva anche un maggior numero <strong>di</strong><br />

bande e quin<strong>di</strong> un maggiore spessore. Nelle strutture più<br />

evolute, l’aumento <strong>del</strong> rigetto è associato ad un numero<br />

maggiore <strong>di</strong> bande e quin<strong>di</strong> ad un aumento considerevole <strong>di</strong><br />

spessore solo nelle zone prossime alle terminazioni <strong>del</strong>la<br />

struttura. Nella parte centrale, dove le superfici <strong>di</strong> taglio<br />

associate a roccia <strong>di</strong> faglia sono ben sviluppate, questo non è<br />

più evidente e l’aumento <strong>del</strong> rigetto viene pertanto risolto<br />

esclusivamente dallo scorrimento lungo le superfici <strong>di</strong> taglio<br />

stesse. La maggiore efficienza nel risolvere il rigetto <strong>di</strong> queste<br />

ultime rispetto alla zone <strong>di</strong> compactive shear bands è mostrato<br />

dal grafico <strong>di</strong> fig. 7. In funzione dei <strong>di</strong>versi meccanismi <strong>di</strong><br />

deformazione agenti, i rapporti <strong>di</strong> scala tra rigetto e spessore<br />

risultano piuttosto <strong>di</strong>versi tra le due popolazioni <strong>di</strong> strutture.<br />

Fig. 4 – Grafico spessore (S) - rigetto (R) <strong>di</strong> singole compactive shear bands.<br />

Thickness (S) - <strong>di</strong>splacement (R) graph of single compactive shear bands.<br />

a)<br />

b)<br />

223<br />

Fig. 5 – a) Zona <strong>di</strong> compactive shear bands. Per la legenda v<strong>ed</strong>i <strong>di</strong>dascalia <strong>di</strong><br />

Fig. 3. b) Grafico lunghezza (L) rigetto (R) riferito alla zona <strong>di</strong> compactive<br />

shear bands mostrata in a).<br />

a) Zone of compactive shear bands. b) Length (L) <strong>di</strong>splacement (R) graph of<br />

the zone of compactive shear bands shown in a).<br />

Fig. 6 – Grafico lunghezza (L) rigetto (R) <strong>di</strong> una faglia con superfici <strong>di</strong> taglio<br />

ben sviluppate.<br />

Length (L) <strong>di</strong>splacement (R) graph of a well develop<strong>ed</strong> faults.


224 E. TONDI ET ALII<br />

Zone <strong>di</strong> bande<br />

Jogs e steps<br />

Fig. 7 – Grafico rigetto (R) spessore (S) riferito sia a zone <strong>di</strong> compactive shear<br />

bands che a faglie con superfici <strong>di</strong> taglio ben sviluppate. I dati cerchiati si<br />

riferiscono a zone <strong>di</strong> jogs e steps in cui i valori <strong>di</strong> spessore risultano<br />

sovrastimati.<br />

Displacement (R) thickness (S) graph of zone of compactive shear bands and<br />

well develop<strong>ed</strong> faults. Circl<strong>ed</strong> data refere<strong>ed</strong> to jogs and steps zones where<br />

thickness values are not consistent.<br />

CONCLUSIONI<br />

Faglie<br />

Nei grainstones carbonatici porosi, la struttura <strong>di</strong> taglio più<br />

semplice è rappresentata dalla singola compactive shear band<br />

che evolve a zone <strong>di</strong> compative shear bands e successivamente<br />

a faglia evoluta con la formazione <strong>di</strong> una <strong>di</strong>scontinuità <strong>di</strong> taglio<br />

ben evidente associata a roccia <strong>di</strong> faglia. Ad ogni fase <strong>di</strong><br />

crescita, le <strong>di</strong>verse strutture possono interagire tra loro con<br />

fenomeni <strong>di</strong> collegamento in corrispondenza <strong>di</strong> jogs<br />

estensionali e/o contrazionali (Fig. 8).<br />

Per quanto riguarda i valori <strong>di</strong> lunghezza, rigetto e spessore,<br />

le singole compactive shear bands sono caratterizzate da ben<br />

determinati valori <strong>di</strong>mensionali: lunghezza 50 cm, rigetto e<br />

spessore 0,5 cm, con un rapporto tra rigetto e spessore pari a 1.<br />

Le zone <strong>di</strong> compactive shear bands hanno lunghezza massima<br />

<strong>di</strong> 10 m a cui corrisponde un rigetto <strong>di</strong> 30 cm e uno spessore <strong>di</strong><br />

20 cm. Il rapporto rigetto spessore è pari a 1,5. Sia il rigetto che<br />

lo spessore sono massimi nella zona centrale <strong>del</strong>la struttura. Le<br />

faglie ben sviluppate con evidenti superfici <strong>di</strong> taglio e associata<br />

roccia <strong>di</strong> faglia risultano più efficienti <strong>del</strong>le prec<strong>ed</strong>enti strutture,<br />

con un rapporto tra rigetto e spessore pari a 3,5.<br />

In conclusione, una dettagliata analisi <strong>di</strong> campagna ci ha<br />

permesso <strong>di</strong> definire appropriate leggi matematiche in grado <strong>di</strong><br />

descrivere le caratteristiche spaziali e <strong>di</strong>mensionali <strong>del</strong>le faglie<br />

nei grainstones carbonatici porosi, anche in relazione ai <strong>di</strong>versi<br />

meccanismi deformativi agenti durante la loro crescita e<br />

sviluppo.<br />

Fig. 8 – Mo<strong>del</strong>lo <strong>di</strong> crescita <strong>del</strong>le faglie nei grainstones carbonatici porosi. La<br />

struttura <strong>di</strong> taglio più semplice è rappresentata dalla singola compactive shear<br />

band che evolve a zone <strong>di</strong> compative shear bands e successivamente a faglia<br />

evoluta, con la formazione <strong>di</strong> una <strong>di</strong>scontinuità <strong>di</strong> taglio ben evidente associata<br />

a roccia <strong>di</strong> faglia. Ad ogni fase <strong>di</strong> crescita, le <strong>di</strong>verse strutture possono<br />

interagire tra loro con fenomeni <strong>di</strong> collegamento in corrispondenza <strong>di</strong> jogs<br />

estensionali e/o contrazionali.<br />

Growth mo<strong>del</strong> of faults in porous carbonate grainstones. The fundamental<br />

shear structure is represent<strong>ed</strong> by the compactive shear bands that evolves in<br />

zone of compactive shear bands and subsequently the formation of a well<br />

defin<strong>ed</strong> slip surface in well develop<strong>ed</strong> faults. At any growth stage they can<br />

interact and link to each other.<br />

BIBLIOGRAFIA<br />

AGOSTA F. & AYDIN A. (2006) - Architecture and deformation<br />

mechanism of a basin-boun<strong>di</strong>ng normal fault in Mesozoic<br />

platform carbonates, Central Italy. Journal of Structural<br />

Geology, 28, 1445-1467.<br />

ANTONELLINI M., TONDI E., AGOSTA F., AYDIN A. & CELLO G.<br />

(2008) - Failure modes in deep-water carbonates and their<br />

impact for fault development: Majella Mountain, Central<br />

Apennines, Italy. Marine and Petroleum Geology,<br />

DOI:10.1016/j.marpetgeo.2007. 10.008.<br />

TONDI E., ANTONELLINI M., AYDIN A., MARCHEGIANI L. &<br />

CELLO G. (2006) – The role of deformation bands and<br />

pressure solution seams in fault development in carbonate<br />

grainstones of the Majella Mountain, Italy. Journal of<br />

Structural Geology, 28, 376-391.<br />

TONDI E. (2007) – Nucleation, development and petrophysical<br />

properties of faults in carbonate grainstones: Evidence<br />

from the San Vito Lo Capo peninsula (Sicily, Italy). Journal<br />

of Structural Geology, 29, 614-628.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 225-226, 2 ff.<br />

RIASSUNTO<br />

Proprietà fisiche <strong>del</strong>le Evaporiti Triassiche da pozzi profon<strong>di</strong> e da<br />

affioramento<br />

Nell’Appennino Umbro Marchigiano i terremoti <strong>di</strong> maggiore intensità si<br />

enucleano all’interno <strong>del</strong>le Evaporiti Triassiche , ET. Conoscere le proprietà<br />

fisiche <strong>di</strong> queste rocce è <strong>di</strong> fondamentale importanza per poter interpretare<br />

correttamente i dati geofisici.<br />

In questo lavoro vengono mostrati i risultati ricavati dalle analisi <strong>di</strong><br />

campioni <strong>di</strong> ET provenienti sia <strong>di</strong> pozzi profon<strong>di</strong> che da affioramenti toscani.<br />

Le ET si presentano come una sequenza s<strong>ed</strong>imentaria <strong>di</strong> circa 1.5 - 2 km<br />

composta da alternanze <strong>di</strong> solfati e carbonati che hanno subito intensi processi<br />

<strong>di</strong>sgenetici e tettonici. Data la loro complessa storia, attualmente è possibile<br />

osservare ET in affioramento come alternanze <strong>di</strong> gesso e dolomia con rara<br />

anidrite mentre in profon<strong>di</strong>tà sono caratterizzate da alternanze <strong>di</strong> anidrite e<br />

dolomia. Sono state condotte misure <strong>di</strong> densità, porosità, velocità ra<strong>di</strong>ale e<br />

assiale fino a 100 MPa <strong>di</strong> pressione <strong>di</strong> confinamento su campioni<br />

rappresentativi <strong>di</strong> questa formazione. Sono state riscontrate densità maggiori<br />

nei campioni <strong>di</strong> pozzo (~2.79 g/cm 3 per le dolomie e ~2.95 g/cm 3 per le<br />

anidriti) rispetto a quelle <strong>di</strong> affioramento (~2.6 g/cm 3 per le dolomie, ~2.8<br />

g/cm 3 per le anidriti e ~2.3 g/cm 3 per il gesso), basse porosità,


226 F. TRIPPETTA ET ALII<br />

that from tomography or seismic reflection.<br />

Fig. 1 – Location map of the samples. Dots represent Roccastrada Quarry where all Outcrop samples (OA, for Outcrop Anhydrite; OG for Outcrop Gypsum;<br />

OD for Outcrop Dolostone) come from and Daniel1 and Donald1 wells where Borehole samples (BA for Boreholes Anhydrites and BD for Borehole Dolostone)<br />

come from. <strong>Note</strong> that at the surface TE are compos<strong>ed</strong> by gypsum, dolostones and rare anhydrites whilst at depth are compos<strong>ed</strong> by anhydrite and dolostones .<br />

Localizzazione <strong>del</strong>le zone <strong>di</strong> provenienza dei campioni. I pallini rappresentano la cava <strong>di</strong> Roccastrada dalla quale provengono tutti i campioni <strong>di</strong> affioramento<br />

(OA Anidrite <strong>di</strong> affioramento, OG Gesso da affioramento e OD dolomia da affioramento), e i due pozzi Daniel 1 e Donald 1 dai quali provengono i campioni <strong>di</strong><br />

pozzo (BA, Anidrite da pozzo e BD Dolomia da pozzo). È da notare come le ET in affioramento presentino gesso, dolomia e rara anidrite mentre in profon<strong>di</strong>tà<br />

sono caratterizzate da anidrite e dolomia.<br />

Fig. 2 –P-Wave velocity measur<strong>ed</strong> under hydrostatic stress con<strong>di</strong>tions for <strong>di</strong>fferent values of confining pressure Pc. A) Vp for sulphates samples: dots for<br />

borehole and rhombus (gypsum) and square (anhydrite) for outcrop sample, B) Vp for dolostone samples: dots for borehole and square for outcrop samples.<br />

Velocità <strong>del</strong>le onde P misurate a varie pressioni <strong>di</strong> confinamento. A) Vp nei solfati: i pallini rappresentano i campioni <strong>di</strong> pozzo mentre i rombi (gesso) e i<br />

quadrati (anidrite) rappresentano i campioni <strong>di</strong> affioramento. B) Vp nei campioni <strong>di</strong> dolomia: i pallini rappresentano i campioni <strong>di</strong> pozzo mentre quadrati<br />

rappresentano quelli <strong>di</strong> affioramento.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 227-229, 2 ff.<br />

Seismogenic sources in northeastern Italy and western Slovenia: an<br />

overview from the Database of In<strong>di</strong>vidual Seismogenic Sources<br />

(DISS 3.0.4)<br />

PAOLA VANNOLI (*), SALVATORE BARBA (*), ROBERTO BASILI (*), PIERFRANCESCO BURRATO (*), UMBERTO<br />

FRACASSI (*), VANJA KASTELIC (*), MARA MONICA TIBERTI (*) & GIANLUCA VALENSISE (*)<br />

RIASSUNTO<br />

Sguardo d’insieme sulle sorgenti sismogenetiche <strong>del</strong> nordest italiano e<br />

<strong>del</strong>la Slovenia occidentale dal Database <strong>del</strong>le Sorgenti Sismogenetiche<br />

In<strong>di</strong>viduali (DISS 3.0.4)<br />

Il Database <strong>del</strong>le Sorgenti Sismogenetiche In<strong>di</strong>viduali (DISS) contiene<br />

sorgenti capaci <strong>di</strong> generare terremoti con Mw > 5.5 e fornisce una visione<br />

sinottica <strong>del</strong>la sismogenesi in Italia e nelle aree limitrofe. In questo lavoro<br />

presentiamo un dettaglio sulle sorgenti <strong>del</strong>l’Italia <strong>del</strong> nord-est e <strong>del</strong>la Slovenia<br />

occidentale. I terremoti <strong>di</strong>struttivi nell’area veneto-friulana sono generati da<br />

faglie inverse lungo strutture N-NO-immergenti <strong>del</strong>la Catena Subalpina.<br />

Nell’area slovena sono invece generati da faglie trascorrenti destre che<br />

seguono i vecchi lineamenti <strong>di</strong>narici.<br />

Key words: NE Italy, Seismogenic Sources, Slovenia.<br />

We present an overview of the seismogenic sources of<br />

northeastern Italy and western Slovenia, includ<strong>ed</strong> in the latest<br />

version of the Database of In<strong>di</strong>vidual Seismogenic Sources<br />

(DISS, v. 3.0.4; DISS WORKING GROUP, 2007).<br />

DISS is a large repository of geologic, tectonic and active<br />

fault data on Italy and surroun<strong>di</strong>ng areas (Fig. 1) resulting from<br />

its authors’ first-hand experience and from a large amount of<br />

literature data (BASILI et alii, 2008).<br />

Fig. 1 – Screenshot of the web-page of the DISS, ttp://<strong>di</strong>ss.rm.ingv.it/<strong>di</strong>ss.<br />

_________________________<br />

(*) Istituto Nazionale <strong>di</strong> Geofisica e Vulcanologia,<br />

Via <strong>di</strong> Vigna Murata, 605 – 00143 Roma, Italy.<br />

DISS’ main object is the Seismogenic Source. DISS<br />

Seismogenic Sources are active faults capable of generating<br />

Mw > 5.5 earthquakes. We <strong>di</strong>stinguish two main categories of<br />

Seismogenic Sources (BASILI et alii, 2008):<br />

- “In<strong>di</strong>vidual Seismogenic Sources” are obtain<strong>ed</strong> from<br />

geological and geophysical data and are characteriz<strong>ed</strong> by a full<br />

set of geometric (strike, <strong>di</strong>p, length, width and depth),<br />

kinematic (rake) and seismological parameters (average<br />

<strong>di</strong>splacement, magnitude, slip rate, recurrence interval).<br />

In<strong>di</strong>vidual Seismogenic Sources are assum<strong>ed</strong> to exhibit<br />

“characteristic” behavior with respect to rupture length/width<br />

and expect<strong>ed</strong> magnitude. They are test<strong>ed</strong> against worldwide<br />

databases for internal consistence in terms of length, width,<br />

average <strong>di</strong>splacement and magnitude, and can be<br />

complement<strong>ed</strong> with information on fault scarps when present.<br />

This category of sources favors accuracy of the information<br />

suppli<strong>ed</strong> over completeness. As such, they can be us<strong>ed</strong> for<br />

deterministic assessment of seismic hazard, for calculating the<br />

probability of occurrences of strong earthquakes for the sources<br />

themselves (AKINCI et alii, 2008), for calculating earthquake<br />

and tsunami scenarios (LORITO et alii, 2008; TIBERTI et alii,<br />

2008), and for tectonic and geodynamic investigations (e.g.<br />

BURRATO & VALENSISE, 2008).<br />

- “Composite Seismogenic Sources” (also term<strong>ed</strong><br />

“Seismogenic Areas”) are obtain<strong>ed</strong> from geological and<br />

geophysical data and characteriz<strong>ed</strong> by geometric (strike, <strong>di</strong>p,<br />

width, depth) and kinematic (rake) parameters, but their length<br />

is more loosely defin<strong>ed</strong> and spans an unspecifi<strong>ed</strong> number of<br />

In<strong>di</strong>vidual Sources. They are not assum<strong>ed</strong> to be capable of a<br />

specific earthquake but their potential can be deriv<strong>ed</strong> from<br />

existing earthquake catalogues. A Composite Source is<br />

essentially identifi<strong>ed</strong> on the basis of regional surface and<br />

subsurface geological data. This category of sources favors<br />

completeness of the record of potential earthquake sources over<br />

accuracy of source description. In conjunction with seismicity<br />

and modern strain data, Composite Sources can thus be us<strong>ed</strong><br />

for regional probabilistic seismic hazard assessment and for<br />

investigating large-scale geodynamic processes (e.g. BARBA et<br />

alii, 2008; MELETTI et alii, 2008).


228 P. VANNOLI ET ALII<br />

Seismogenic sources are complement<strong>ed</strong> by:<br />

- Comments on critical issues, and summaries of publish<strong>ed</strong><br />

papers;<br />

- Sets of original figures, pictures, maps and sections taken<br />

from the literature or drawn by the compiler of the source;<br />

- A list of pertinent references.<br />

Fig. 2 – Overview of the seismogenic sources of northeastern Italy and western<br />

Slovenia includ<strong>ed</strong> in DISS 3.0.4. The In<strong>di</strong>vidual Seismogenic Sources are<br />

represent<strong>ed</strong> with yellow rectangles, Composite Seismogenic Sources with r<strong>ed</strong><br />

ribbons.<br />

DISS supplies a synoptic view of seismogenesis in<br />

northeastern Italy and western Slovenia (Fig. 2; BURRATO et<br />

alii, 2008). In the Veneto-Friuli area destructive earthquakes<br />

are generat<strong>ed</strong> by thrust faulting along N-NW<strong>di</strong>pping structures<br />

of the Eastern Southalpine Chain (ESC). Thrusting along the<br />

mountain front responds to about 2 mm/y of regional<br />

convergence, and it is associat<strong>ed</strong> with growing anticlines, tilt<strong>ed</strong><br />

and uplift<strong>ed</strong> Quaternary palaeolandsurfaces and forc<strong>ed</strong><br />

drainage anomalies. In western Slovenia, dextral strike-slip<br />

faulting along the NW-SE tren<strong>di</strong>ng structures of the Idrija fault<br />

system dominates the seismic release. Activity and style of<br />

faulting are defin<strong>ed</strong> by recent earthquakes (e.g. the Ms 5.7,<br />

1998 Bovec-Krn Mt. and the Mw 5.2, 2004 Kobarid<br />

earthquakes), whereas the relat<strong>ed</strong> recent morphotectonic<br />

imprint is still a debat<strong>ed</strong> matter.<br />

DISS supplies a segmentation mo<strong>del</strong> for the outermost ESC<br />

thrust front, and the association of the four major shocks of the<br />

1976 Friuli earthquake sequence with in<strong>di</strong>vidual segments of<br />

major thrust fronts. In western Slovenia DISS contains several<br />

Composite Sources that follow the main strike-slip faults (i.e.<br />

Rasa, Idrija, and Ravne faults), and two In<strong>di</strong>vidual Sources<br />

associat<strong>ed</strong> with the 1511 and 1998 earthquakes.<br />

This paper cannot substitute a complete in-depth visit of the<br />

DISS web site (http://<strong>di</strong>ss.rm.ingv.it/<strong>di</strong>ss).<br />

REFERENCES<br />

AKINCI A., PERKINS D., LOMBARDI A. M. & BASILI R. (2008) -<br />

Uncertainties in probability of occurrence of strong<br />

earthquakes for fault sources in the Apennines, Italy.<br />

Journal of Seismology. doi: 10.1007/s10950-008-9142-y.<br />

BARBA S., CARAFA M.M.C. & BOSCHI E. (2008) - Experimental<br />

evidence for mantle drag in the M<strong>ed</strong>iterranean. Geophys.<br />

Res. Lett., 35, L06302, doi:10.1029/2008GL033281.<br />

BASILI R., VALENSISE G., VANNOLI P., BURRATO P., FRACASSI<br />

U., MARIANO S., TIBERTI M.M. & BOSCHI E. (2008) - The<br />

Database of In<strong>di</strong>vidual Seismogenic Sources (DISS),<br />

version 3: summarizing 20 years of research on Italy's<br />

earthquake geology. Tectonophysics, 453, 20–43,<br />

doi:10.1016/j.tecto.2007.04.014.<br />

BURRATO P., POLI M.E., VANNOLI P., ZANFERRARI A., BASILI<br />

R. & GALADINI F. (2008) - Sources of Mw 5+ earthquakes<br />

in northeastern Italy and western Slovenia: An updat<strong>ed</strong><br />

view bas<strong>ed</strong> on geological and seismological evidence.<br />

Tectonophysics, 453, 157-176, doi: 10.1016/j.tecto.<br />

2007.07.009.<br />

BURRATO P. & VALENSISE G. (2008) - Rise and fall of a<br />

hypothesiz<strong>ed</strong> seismic gap: source complexity in the 16<br />

December 1857, Southern Italy earthquake (Mw 7.0). Bull.<br />

Seism. Soc. Am., 98 (1), 139-148, doi:<br />

10.1785/0120070094.<br />

DISS WORKING GROUP (2007) - Database of In<strong>di</strong>vidual<br />

Seismogenic Sources (version 3.0.4): A compilation of<br />

potential sources for earthquakes larger than M 5.5 in Italy<br />

and surroun<strong>di</strong>ng areas. Available at:<br />

http://<strong>di</strong>ss.rm.ingv.it/<strong>di</strong>ss.<br />

LORITO S., TIBERTI M.M., BASILI R., PIATANESI A. &<br />

VALENSISE G. (2008) - Earthquake-generat<strong>ed</strong> tsunamis<br />

in the M<strong>ed</strong>iterranean Sea: scenarios of potential threats to<br />

Southern Italy. Journal of Geophysical Research, 113,<br />

B01301, doi:10.1029/2007JB004943.<br />

MELETTI C., GALADINI F., VALENSISE G., STUCCHI M., BASILI<br />

R., BARBA S., VANNUCCI G. & BOSCHI E. (2008) - A seismic<br />

source zone mo<strong>del</strong> for the seismic hazard assessment of the<br />

Italian territory, Tectonophysics, 450 (1-4), 85-108,<br />

doi:10.1016/j.tecto.2008.01.003.<br />

TIBERTI M.M., LORITO S., BASILI R., KASTELIC V., PIATANESI<br />

A. & VALENSISE G. (2008) - Scenarios of earthquakegenerat<strong>ed</strong><br />

tsunamis in the Adriatic Sea. P. Cummins, L.<br />

Kong and K. Satake (Eds): Topical Issue on Tsunamis. Pure<br />

and Appli<strong>ed</strong> Geophysics, doi: 10.1007/s00024-008-0417-6.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 229-231, 1 f.<br />

P-T con<strong>di</strong>tions of mylonitic shearing in the Granite Harbour<br />

Intrusive complex of the Wilson Terrane, Deep Freeze Range,<br />

northern Victoria Land, Antarctica<br />

GIANLUCA VIGNAROLI (*), FEDERICO ROSSETTI (*), THOMAS THEYE (**) & FABRIZIO BALSAMO (*)<br />

RIASSUNTO<br />

Con<strong>di</strong>zioni P-T <strong>del</strong>la deformazione milonitica nel complesso “Granite<br />

Harbour Intrusive” <strong>del</strong> Wilson Terrane, Deep Freeze Range, Terra<br />

Vittoria settentrionale, Antartide.<br />

Il “Granite Harbour Intrusive” (GHI) rappresenta un complesso <strong>di</strong> rocce<br />

intrusive <strong>di</strong> età Cambro-Ordoviciana associato alle sequenze metamorfiche (<strong>di</strong><br />

m<strong>ed</strong>io e alto grado) che caratterizzano il sistema orogenico <strong>di</strong> Ross nel Deep<br />

Freeze Range (Wilson Terrane). Il complesso GHI risulta essere interessato da<br />

una serie <strong>di</strong> zone <strong>di</strong> taglio milonitiche ad andamento NW-SE. Uno stu<strong>di</strong>o<br />

tessiturale-petrologico <strong>di</strong> dettaglio ha permesso (i) <strong>di</strong> in<strong>di</strong>viduare le paragenesi<br />

mineralogiche correlate alle zone <strong>di</strong> taglio, e (ii) <strong>di</strong> stimare le con<strong>di</strong>zioni <strong>di</strong><br />

pressione e temperatura <strong>di</strong> formazione <strong>del</strong> fabric milonitico nella facies<br />

anfibolitica. Questi risultati, integrati con prec<strong>ed</strong>enti lavori <strong>di</strong> geocronologia,<br />

suggeriscono <strong>di</strong> attribuire lo sviluppo <strong>del</strong>le zone milonitiche alle fasi finali <strong>del</strong><br />

ciclo orogenico <strong>di</strong> Ross descritte altrove per il Wilson Terrane.<br />

Key words: Granite Harbour Intrusive, metamorphic<br />

petrology, pseudosection, textural analysis, Wilson Terrane.<br />

An integrat<strong>ed</strong> structural and petrological study has been<br />

address<strong>ed</strong> to examine a set of ductile shear zones cutting<br />

through the Cambrian-Ordovician Granite Harbour Intrusive<br />

(GHI) rocks of the Wilson Terrane expos<strong>ed</strong> in the Deep Freeze<br />

Range (northern Victoria Land, Antarctica).<br />

The Wilson Terrane constitutes (together with the Bowers<br />

and the Robertson Bay terranes; GANOVEX TEAM, 1987 and<br />

references therein), part of the Neoproterozoic to Early<br />

Paleozoic in age Ross-Delamerian Orogeny in northern<br />

Victoria Land (Fig. 1a,b) (e.g. KLEINSCHMIDT & TESSENSOHN,<br />

1987; FLÖTTMAN, 1993). There is increasing consensus in<br />

considering the terrane mo<strong>del</strong> of north Victoria Land as a fossil<br />

arc-trench system link<strong>ed</strong> to a westward-<strong>di</strong>rect<strong>ed</strong> subduction<br />

system at the paleo-Pacific active margin of Gondwana (e.g.<br />

RICCI et alii, 1997; FEDERICO et alii, 2006).<br />

In the Deep Freeze Range, the Ross–Delamerian orogenic<br />

cycle is typifi<strong>ed</strong> by regional amphibolite grade metamorphism<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze Geologiche, Università degli Stu<strong>di</strong> “Roma<br />

Tre”, Lg. S.L. Murialdo, 1 - 00146 Roma<br />

(**) Institut für Mineralogie der Universität, Azenbergstr. 18 - 70174,<br />

Stuttgart, Germany<br />

This work was support<strong>ed</strong> by the Italian Antarctic Research Program (PNRA<br />

project coor<strong>di</strong>nat<strong>ed</strong> by S. Rocchi).<br />

and the emplacement of the GHI complex (e.g. CARMIGNANI et<br />

alii, 1988; TALARICO et alii, 2004). In the metamorphic<br />

sequences, variably retrogress<strong>ed</strong> granulitic facies rocks and<br />

associat<strong>ed</strong> migmatites have been describ<strong>ed</strong> (e.g. CASTELLI et<br />

alii, 1991; 1994; PALMERI et alii, 1991; 1994; TALARICO &<br />

CASTELLI, 1995; PALMERI, 1997; TALARICO et alii, 2004). The<br />

GHI complex dominantly consists of a huge exposure of<br />

foliat<strong>ed</strong> and non-foliat<strong>ed</strong> intrusions, sandwich<strong>ed</strong> in-between the<br />

high- and the m<strong>ed</strong>ium-grade metamorphic rocks. Emplacement<br />

of the GHI is consider<strong>ed</strong> to be syn-to-post-tectonic with respect<br />

to development of the Ross ag<strong>ed</strong> structures (CARMIGNANI et<br />

alii, 1988; PALMERI et alii, 1991; MUSUMECI & PERTUSATI,<br />

2000). The age of emplacement event spans from ca.<br />

530 to 480 Ma (ARMIENTI et alii, 1990; TONARINI & ROCCHI,<br />

1994; DI VINCENZO & ROCCHI, 1999; BOMPAROLA et alii,<br />

2006). The lower age boundary is commonly consider<strong>ed</strong> as<br />

in<strong>di</strong>cative of the cessation of tectonic assembly in the Deep<br />

Freeze Range, although reactivation of some shear zones at<br />

410-440 Ma has been recently document<strong>ed</strong> (DI VINCENZO et<br />

alii, 2007).<br />

During the 2005-2006 field campaign, a set of ductile shear<br />

zones cutting the GHI complex of the Deep Freeze Range area<br />

has been recognis<strong>ed</strong>. They are arrang<strong>ed</strong> to form subparallel,<br />

NW-SE tren<strong>di</strong>ng belts of high shear strain. The gradual change<br />

from host granitic rocks to shear zone is invariably associat<strong>ed</strong><br />

to intensely foliat<strong>ed</strong> (solid-state) rocks and mark<strong>ed</strong> by intense<br />

grain size r<strong>ed</strong>uction, with the progressive transition from<br />

protomylonites to ultramylonites. Solid-state shear fabric<br />

systematically overprints the magmatic foliation and is<br />

commonly associat<strong>ed</strong> with NE-SW tren<strong>di</strong>ng stretching<br />

lineations provid<strong>ed</strong> by the alignment of quartz, biotite and<br />

plagioclase + sillimanite + phengite composite associations.<br />

The kinematics in<strong>di</strong>cators invariably in<strong>di</strong>cate top-to-the-NE<br />

sense of shear (Fig. 1c).<br />

At the micro-scale, two <strong>di</strong>stinctive textural domains can be<br />

recognis<strong>ed</strong>: (i) an early, pre-kinematic assemblage, which we<br />

refer to a magmatic fabric, and (ii) a transpositive mylonitic<br />

fabric, syn-kinematic with respect to the main deformational<br />

fabric. Porphyroclasts of K-feldspar, Ca-rich plagioclase and<br />

garnet constitute the previous magmatic assemblage. Magmatic<br />

garnet has <strong>di</strong>mensions up to one centimetre, shows a general<br />

round<strong>ed</strong> shape and is alman<strong>di</strong>ne rich with nearly flat chemical<br />

profiles (core-to-rim: Alm83-82Grs3-2Prp10-12Sps4-4). K-feldspar<br />

and Ca-rich plagioclase appear with irregular shapes and


230 G. VIGNAROLI ET ALII<br />

wrapp<strong>ed</strong> by the external mylonitic foliation. Myrmekite<br />

structures commonly occur at the boundary of feldspars. All<br />

porphyroclasts are wrapp<strong>ed</strong> by the mylonitic fabric<br />

characteris<strong>ed</strong> by biotite, phengite, albite and sillimanite within<br />

a matrix of recrystallis<strong>ed</strong> ribbon quartz aggregates. Euh<strong>ed</strong>ral<br />

garnet crystals up to 1 millimetre in <strong>di</strong>ameter form<br />

porphyroblasts within the shear zone assemblage. This garnet<br />

type is also alman<strong>di</strong>ne-rich, showing a bell-shap<strong>ed</strong> Mn profile<br />

moving from core to rim (from 10-12 mol % to 12-19 mol %),<br />

in conjunction with a slight depletion in the pyrope (from 5-7<br />

mol % to 3-5 mol %) and alman<strong>di</strong>ne (from 80-82 to 75-82 mol<br />

Fig. 1 – (a) The Ross Orogen in Antarctica; (b) sketch map showing the<br />

<strong>di</strong>fferent terranes in northern Victoria Land; (c) structural sketch map of the<br />

Deep Freeze Range area (after Musumeci & Pertusati, 2000, mo<strong>di</strong>fi<strong>ed</strong> and<br />

r<strong>ed</strong>rawn) illustrating localisation of the stu<strong>di</strong><strong>ed</strong> ductile shear zones in GHI and<br />

the associat<strong>ed</strong> sense of shear (black arrows; hanging wall movement).<br />

%) components. Accessory minerals consist of zircon,<br />

monazite, allanite, xenotime and rutile. Monazite and xenotime<br />

are typically align<strong>ed</strong> along the mylonitic foliation.<br />

Metamorphic con<strong>di</strong>tions of shearing have been estimat<strong>ed</strong> by<br />

comparing inverse (thermobarometric estimates) and forward<br />

(P-T pseudosections) mo<strong>del</strong>ing techniques. Thermobarometric<br />

estimates integrate conventional thermo-barometry and results<br />

from thermodynamic softwares: THERMOCALC 3.26 of<br />

HOLLAND and POWELL (1998), in the form of the July 2006<br />

update, and TWEEQ 2.34 of BERMAN (1991), in the updat<strong>ed</strong><br />

version of the BERMAN & ARANOVICH (1996) thermodynamic<br />

database. Phase relationships were mo<strong>del</strong><strong>ed</strong> in the<br />

MnNCKFMASHT system by using the PERPLE_X program<br />

(CONNOLLY, 1990). The integration of results allow depicting a<br />

retrogressive metamorphic evolution during a nearly isobaric<br />

cooling from anhydrous peak con<strong>di</strong>tions (P>8.4 kbar and<br />

T>720° C) towards the activation of the fluid-assist<strong>ed</strong> ductile<br />

shearing at amphibolite facies con<strong>di</strong>tions (ca. 4 kbar and 620°<br />

C).<br />

We attribute the document<strong>ed</strong> syn-amphibolitic shearing<br />

deformation in the GHI complex to the waning stages of the<br />

Ross orogenic cycle in the region. These structures correlate<br />

with the ones describ<strong>ed</strong> along the Pacific coast of north<br />

Victoria Land by LÄUFER & ROSSETTI (2003) and argue for<br />

processes active during the final tectonic assembly of the<br />

metamorphic and igneous rocks of the Wilson Terrane.<br />

REFERENCES<br />

ARMIENTI P., GHEZZO C., INNOCENTI F., MANETTI P., ROCCHI<br />

S., TONARINI S. (1990) - Isotope geochemistry of granitoids<br />

suites from Granite Harbor Intrusives of the Wilson<br />

Terrane, northern Victoria Land, Antartica. Eur. J.<br />

Mineral., 2, 103-123.<br />

BERMAN R.G. (1991) - Thermobarometry using<br />

multiequilibrium calculations: a new technique with<br />

petrologic applications. Can. Mineral., 29, 833-855.<br />

BERMAN R.G. & ARANOVICH L.Y. (1996) - Optimiz<strong>ed</strong><br />

standard state and solution properties of minerals I. Mo<strong>del</strong><br />

calibration for olivine, orthopyroxene, cor<strong>di</strong>erite, garnet,<br />

and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-<br />

SiO2. Contr. Mineral. Petrol., 126, 1-24.<br />

BOMPAROLA R.M., BELOUSOVA E., GHEZZO C., GRIFFIN W.L.,<br />

O’REILLY Y.O. (2006) - Resetting of the U–Pb zircon<br />

system in Cambro-Ordovician intrusives of the Deep Freeze<br />

Range, northern Victoria Land, Antarctica. J. Petrol., 48,<br />

327-364.<br />

CARMIGNANI, L., GHEZZO C., GOSSO G., LOMBARDO B.,<br />

MECCHERI M., MONTRASIO A., PERTUSATI P.C., SALVINI F.<br />

(1988) - Geology of the Wilson Terrane in the area between<br />

David and Mariner Glaciers, Victoria Land (Antartica).<br />

Mem. Soc. Geol. It., 33, 77-97.<br />

CASTELLI D., LOMBARDO B., OGGIANO G., ROSSETTI P.,<br />

TALARICO F. (1991) - Granulite facies rocks of the Wilson<br />

Terrane (northern Victoria Land): Campbell glacier. Mem.<br />

Soc. Geol. It., 46, 197-204.<br />

CASTELLI D., OGGIANO G., SCAMBELLURI M. AND TALARICO F.<br />

(1994) — Peak metamorphic con<strong>di</strong>tions and retrograde P-<br />

T paths in the Wilson Terrane and the Dessent Unit<br />

(northern Victoria Land, Antarctica): new constraints to<br />

tectonic mo<strong>del</strong> for the Wilson Terrane and the Wilson<br />

Terrane - Bowers Terrane boundary. Terra Antartica, 1, 51-<br />

53.<br />

CONNOLLY J.A.D. (1990) - Multivariable phase <strong>di</strong>agrams: an<br />

algorithm bas<strong>ed</strong> on generaliz<strong>ed</strong> thermodynamics. Am. J.<br />

Sci., 290, 666-718.<br />

DI VINCENZO G., CAROSI R., PALMERI R., TIEPOLO M. (2007) -<br />

A comparative U–Th–Pb (zircon–monazite) and 40Ar–39Ar


(muscovite–biotite) study of shear zones in northern<br />

Victoria Land (Antarctica): implications for geochronology<br />

and localiz<strong>ed</strong> reworking of the Ross Orogen. J. Metamorph.<br />

Geol., 25, 605-630.<br />

DI VINCENZO G. & ROCCHI S. (1999) - Origin and interaction<br />

of mafic and felsic magmas in an evolving late orogenic<br />

setting: the Early Paleozoic Terra Nova Intrusive Complex,<br />

Antarctica. Contr. Mineral. Petrol., 137, 15-35.<br />

FEDERICO L., CAPPONI G., CRISPINI L. (2006) - The Ross<br />

orogeny of the transantarctic mountains: a northern<br />

Victoria Land perspective. Int. J. Earth Sci., 95, 759-770.<br />

FLÖTTMANN T., GIBSON G.M., KLEINSCHMIDT G. (1993) -<br />

Structural continuity of the Ross and Delamerian orogens<br />

of Antarctica and Australia along the margin of the paleo-<br />

Pacific. Geology, 21, 319-322.<br />

GANOVEX TEAM (1987) - Geological Map of northern Victoria<br />

Land, Antarctica, 1/500.000. Explanatory notes, Geol.<br />

Jahrb., B 66, 7-79.<br />

HOLLAND T.J.B. & POWELL R. (1998) - An internally consistent<br />

thermodynamic data set for phases of petrological interest.<br />

J. Metamorph. Geol., 16, 309-343.<br />

KLEINSCHMIDT G. & TESSENSOHN F. (1987) - Early Paleozoic<br />

westward <strong>di</strong>rect<strong>ed</strong> subduction at the Pacific margin of<br />

Antarctica. In: McKenzie G.D. (Ed.) - Gondwana Six:<br />

structure, tectonics and geophysics. Amer. Geophys. Union,<br />

Geophys. Monogr. Series, 40, 89-105.<br />

LÄUFER A.L. & Rossetti F. (2003) - Late-Ross ductile<br />

deformation features in the Wilson Terrane of northern<br />

Victoria Land (Antarctica) and their implications for the<br />

western front of the Ross Orogen. Terra Antarctica, 10,<br />

179-196.<br />

MUSUMECI G. & PERTUSATI P. (2000) - Structure of the Deep<br />

Freeze Range-Eisenhower Range of the Wilson Terrane<br />

(North Victoria Land, Antarctica): emplacement of<br />

magmatic intrusions in the early Palaeozoic deform<strong>ed</strong><br />

margin of the East Antarctic Craton. Antarctic Sci., 12, 89-<br />

104 .<br />

PALMERI R. (1997) - P-T paths and migmatite formation: an<br />

example from Deep Freeze Range, northern Victoria Land,<br />

Antarctica. Lithos, 42, 47-66.<br />

PALMERI R., PERTUSATI P.C., RICCI C.A., TALARICO F. (1994) -<br />

Late Proterozoic (?)-Early Paleozoic evolution of the active<br />

pacific margin of Gondwana: evidence from the southern<br />

Wilson Terrane (northern Victoria Land, Antarctica). Terra<br />

Antarctica, 1, 5-9.<br />

PALMERI R., TALARICO F., MECCHERI M., OGGIANO G.,<br />

PERTUSATI P.C., RASTELLI N., RICCI C.A. (1991) -<br />

Progressive deformation and Low Pressure/High<br />

Temperature metamorphism in the Deep Freeze Range,<br />

Wilson Terrane, northern Victoria Land, Antarctica. Mem.<br />

Soc. Geol. It, 46, 179-195.<br />

SHEAR ZONES IN THE GHI, WILSON TERRANE<br />

231<br />

RICCI C.A., TALARICO F., PALMERI R. (1997) - Tectonothermal<br />

evolution of the Antarctic Paleo-Pacific margin of<br />

Gondwana: a northern Victoria Land perspective. In: Ricci<br />

C.A. (Ed.) - The Antarctic region: geological evolution and<br />

Processes. Terra Antartica Publication, Siena, 213-218.<br />

TALARICO F.M., PALMERI R., RICCI C.A. (2004) - Regional<br />

metamorphism and P-T evolution of the Ross Orogen in<br />

northern Victoria Land (Antartica): a review. Period.<br />

Mineral., 73, 185-196.<br />

TALARICO F. & CASTELLI D. (1995) - Relict granulites in the<br />

Ross orogen of northern Victoria Land (Antarctica), I.<br />

Field occurrence, petrography and metamorphic evolution.<br />

Precambr. Res., 75, 141-156.<br />

TONARINI S. & ROCCHI S. (1994) - Geochronology of Cambro-<br />

Ordovician intrusives in northern Victoria Land; a review.<br />

Terra Antartica, 1, 46-50.<br />

F. R. and F. B. wish to thank all the colleagues that shar<strong>ed</strong> the field<br />

activity during the 2005-2006 exp<strong>ed</strong>ition, for their friendly support<br />

and useful advice in the field. Advice and support by F. Storti is also<br />

acknowl<strong>ed</strong>g<strong>ed</strong>. F. B. and G. V. acknowl<strong>ed</strong>ge a PNRA fellowship. We<br />

gratefully acknowl<strong>ed</strong>ge all the personnel of the Mario Zucchelli base<br />

and the exp<strong>ed</strong>ition leader A. Della Rovere for the logistical support<br />

during the field activity.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 232-234, 4 ff.<br />

Ruolo <strong>del</strong>lo strain hardening nell’evoluzione <strong>del</strong>le zone <strong>di</strong> taglio: da<br />

deformazione omogenea ad eterogenea<br />

ABSTRACT<br />

Role of strain hardening in shear zone evolution: homogeneous to<br />

heterogeneous deformation<br />

In this paper a mathematical mo<strong>del</strong> is present<strong>ed</strong> describing the evolution<br />

of a homogeneous shear zone to a heterogeneous one as a result of strain<br />

hardening affecting its margins. The mo<strong>del</strong> is characteriz<strong>ed</strong> by (2N-1) layers,<br />

each of them being homogeneously deform<strong>ed</strong> in a <strong>di</strong>fferent manner due to<br />

strain hardening describ<strong>ed</strong> by an exponential law. Different parameters – such<br />

as elongation along the axes of the reference frame or shear strain hardening<br />

rate – are vari<strong>ed</strong>, producing <strong>di</strong>fferent finite effective shear strain profiles across<br />

the shear zone. This mo<strong>del</strong> can effectively describe an exhuming asymmetric<br />

shear zone in the footwall to an extensional detachment.<br />

Key words: shear strain, shear zones, tectonic exhumation.<br />

INTRODUZIONE<br />

Le zone <strong>di</strong> taglio duttili sono strutture molto comuni<br />

all’interno <strong>del</strong>la litosfera e sono luogo <strong>di</strong> accumulo e<br />

concentrazione <strong>del</strong>la deformazione. Le prime schematizzazioni<br />

matematiche <strong>di</strong> queste strutture hanno fornito mo<strong>del</strong>li che<br />

descrivono zone <strong>di</strong> taglio caratterizzate da deformazioni<br />

omogenee come taglio semplice, con o senza variazioni <strong>di</strong><br />

volume (RAMSAY & GRAHAM, 1970), o dall’azione simultanea<br />

<strong>di</strong> taglio semplice, taglio puro e variazione <strong>di</strong> volume (FOSSEN<br />

& TIKOFF, 1993). Tuttavia, la maggior parte <strong>del</strong>le zone <strong>di</strong> taglio<br />

duttili naturali è caratterizzata da deformazione eterogenea che<br />

può essere definita dall’andamento sigmoidale <strong>del</strong>la foliazione<br />

o dalla variazione lungo la zona <strong>di</strong> taglio <strong>di</strong> alcuni parametri<br />

deformativi come lo shear strain o lo strain finito (VITALE et<br />

alii, 2007; VITALE & MAZZOLI, 2009).<br />

Alcuni Autori hanno messo in relazione l’eterogeneità <strong>del</strong>la<br />

deformazione con la <strong>di</strong>versa evoluzione temporale <strong>del</strong>la stessa<br />

all’interno <strong>del</strong>la zona <strong>di</strong> taglio. Tale variazione temporale si<br />

esprime attraverso il cambiamento <strong>del</strong>lo spessore durante lo<br />

sviluppo <strong>del</strong>la zona <strong>di</strong> taglio e la variazione, ad esempio, <strong>del</strong>lo<br />

shear strain (MEANS, 1995; VITALE & MAZZOLI, 2008). In base<br />

_________________________<br />

(*)Università <strong>di</strong> Napoli “F<strong>ed</strong>erico II”, Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra,<br />

Largo San Marcellino 10, 80138, Napoli<br />

STEFANO VITALE (*) & STEFANO MAZZOLI (*)<br />

a questa caratteristica, HULL (1988) e MEANS (1995) hanno<br />

sud<strong>di</strong>viso queste strutture in tre gruppi (Fig. 1): le zone <strong>di</strong><br />

taglio <strong>di</strong> tipo I e II sono caratterizzate, rispettivamente, da<br />

spessori che aumentano o <strong>di</strong>minuiscono nel tempo e profili<br />

<strong>del</strong>lo shear strain appiattiti (tipo I) e appuntiti (tipo II), mentre<br />

le zone <strong>di</strong> taglio <strong>di</strong> tipo III mantengono spessore costante<br />

durante il loro sviluppo e mostrano profili <strong>del</strong>lo shear strain<br />

Fig. 1 – classificazione <strong>del</strong>le zone <strong>di</strong> taglio in base alla variazione <strong>del</strong>lo<br />

spessore nel tempo.<br />

uniformi. MEANS (1995) ipotizza, inoltre, che a guidare<br />

l’evoluzione dei tipi I e II siano, rispettivamente, i processi <strong>di</strong><br />

strain hardening e softening.<br />

VITALE & MAZZOLI (2008), riprendendo quest’ultima<br />

ipotesi, hanno mo<strong>del</strong>lizzato matematicamente l’evoluzione<br />

<strong>del</strong>le zone <strong>di</strong> taglio <strong>di</strong> tipo I e II. Il mo<strong>del</strong>lo <strong>del</strong> tipo I è<br />

caratterizzato da un singolo livello deformato omogeneamente<br />

sottoposto a strain hardening che nel corso <strong>del</strong> tempo include<br />

nuovi livelli lungo i margini, aumentando lo spessore <strong>del</strong>la<br />

zona <strong>di</strong> taglio, mentre il mo<strong>del</strong>lo <strong>del</strong> tipo II è descritto da una<br />

zona <strong>di</strong> taglio omogenea che, sottoposta a strain softening<br />

nella parte centrale, esclude i margini preesistenti, <strong>di</strong>minuendo<br />

lo spessore <strong>del</strong>la zona <strong>di</strong> taglio. In questa mo<strong>del</strong>lizzazione,<br />

<strong>di</strong>versamente da MEANS (1995), la presenza <strong>di</strong> una componente<br />

<strong>di</strong> taglio puro o <strong>di</strong> variazione <strong>di</strong> volume può far <strong>di</strong>minuire o<br />

aumentare lo spessore in<strong>di</strong>pendentemente dall’inclusione <strong>di</strong><br />

nuova roccia (tipo I) o esclusione dei vecchi margini (tipo II).<br />

Scopo <strong>di</strong> questo lavoro è applicare la stessa metodologia <strong>di</strong><br />

mo<strong>del</strong>lizzazione alle zone <strong>di</strong> taglio <strong>di</strong> tipo III, ovvero<br />

analizzare l’evoluzione <strong>di</strong> una zona <strong>di</strong> taglio da omogenea ad<br />

eterogenea attraverso l’hardening dei suoi margini e stu<strong>di</strong>are<br />

come i parametri deformativi principali variano attraverso la<br />

zona <strong>di</strong> taglio.


Fig. 2 –schema che illustra la mo<strong>del</strong>lizzazione <strong>di</strong> una zona <strong>di</strong> taglio<br />

eterogenea <strong>di</strong> tipo III controllata da shear strain hardening.<br />

RUOLO DELLO STRAIN HARDENING NELL’EVOLUZIONE DELLE ZONE DI TAGLIO<br />

MODELLIZZAZIONE<br />

Consideriamo una zona <strong>di</strong> taglio caratterizzata da<br />

deformazione omogenea che nel tempo <strong>di</strong>minuisce la sua<br />

intensità lungo i margini (strain hardening). Al tempo n = 1<br />

(Fig. 2) la zona <strong>di</strong> taglio omogenea è formata da (2N-1) livelli,<br />

ognuno deformato in maniera omogenea; negli sta<strong>di</strong> successivi<br />

(n = 2, 3, … , N) i livelli posti ai margini sono interessati da<br />

strain hardening, mentre quelli posti nella parte centrale<br />

continuano a deformarsi con la stessa intensità. Il livello jesimo<br />

sarà dunque caratterizzato da una deformazione finale<br />

omogenea espressa dalla matrice A*(j,n) che sarà il risultato <strong>del</strong><br />

prodotto <strong>del</strong>le matrici <strong>del</strong>la deformazione incrementale (Fig. 2):<br />

con ;<br />

dove k1, k2 e k3 sono le elongazioni lungo gli assi x, y e z <strong>del</strong><br />

sistema <strong>di</strong> riferimento solidale alla zona <strong>di</strong> taglio (asse x<br />

parallelo alla <strong>di</strong>rezione <strong>di</strong> taglio e z ortogonale ai piani <strong>di</strong><br />

taglio), γ è lo shear strain, Γhard è lo shear strain effettivo, ∆ è<br />

la variazione <strong>di</strong> volume e j è un in<strong>di</strong>ce che in<strong>di</strong>ca il livello<br />

deformato e varia tra 1 e n. La con<strong>di</strong>zione per avere shear<br />

strain hardening è che lo shear strain <strong>di</strong>minuisca nel tempo<br />

ovvero γ(i+1) < γ(i). Le matrici che esprimono una<br />

deformazione incrementale descrivono un general strain<br />

risultante dall’azione simultanea <strong>di</strong> taglio semplice, taglio puro<br />

e variazione <strong>di</strong> volume (FOSSEN & TIKOFF, 1993).<br />

Al fine <strong>di</strong> simulare lo shear strain hardening, è stata usata<br />

una funzione esponenziale negativa:<br />

con α


234 S. VITALE & S. MAZZOLI<br />

deformazione eterogenea può essere mo<strong>del</strong>lizzata assumendo<br />

che l’eterogeneità <strong>del</strong>la deformazione <strong>ed</strong> eventuali variazioni<br />

<strong>del</strong>lo spessore siano da attribuire alla presenza <strong>di</strong> shear strain<br />

hardening lungo i margini, con o senza taglio puro e variazione<br />

<strong>di</strong> volume simultanei. L’approccio matematico proposto in<br />

questo lavoro permette, inoltre, <strong>di</strong> ottenere profili <strong>del</strong>lo shear<br />

strain effettivo finito e <strong>di</strong> altri parametri come lo strain finito o<br />

il <strong>di</strong>splacement che possono essere confrontati con i dati <strong>di</strong><br />

zone <strong>di</strong> taglio eterogenee naturali.<br />

Il mo<strong>del</strong>lo proposto <strong>di</strong> evoluzione <strong>di</strong> una zona <strong>di</strong> taglio<br />

Fig. 4 – esempio <strong>di</strong> zona <strong>di</strong> taglio omogenea che evolve ad eterogenea a<br />

letto <strong>di</strong> un detachment estensionale.<br />

omogenea in una eterogenea attraverso l’hardening dei margini<br />

potrebbe efficacemente descrivere, ad esempio, l’evoluzione <strong>di</strong><br />

una zona <strong>di</strong> taglio posta a letto <strong>di</strong> un detachment estensionale<br />

(Fig. 4a) che, durante l’esumazione tettonica <strong>del</strong> blocco <strong>di</strong> letto,<br />

mette a contatto il margine superiore <strong>del</strong>la zona <strong>di</strong> taglio con<br />

rocce sempre più fr<strong>ed</strong>de innescando l’hardening <strong>del</strong>le rocce<br />

sottostanti la faglia (Fig. 4b) e la creazione <strong>di</strong> una zona <strong>di</strong> taglio<br />

eterogenea asimmetrica (Fig. 4c).<br />

REFERENCES<br />

FOSSEN H. & TIKOFF B. (1993) - The deformation matrix for<br />

simultaneous simple shearing, pure shearing and volume<br />

change, and its application to transpression-transtension<br />

tectonics. Journal of Structural Geology 15, 413-422.<br />

HULL J. (1988) - Thickness–<strong>di</strong>splacement relationships for<br />

deformation zones. Journal of Structural Geology 10, 431–<br />

435.<br />

MEANS W.D. (1995) - Shear zones and rock history.<br />

Tectonophysics 247, 157-160.<br />

RAMSAY J.G. & GRAHAM R.H. (1970) - Strain variation in<br />

shear belts. Cana<strong>di</strong>an Journal of Earth Sciences 7, 786-813.<br />

VITALE S., WHITE J.C., IANNACE A. & MAZZOLI S. (2007) -<br />

Ductile strain partitioning in micritic limestones, Calabria,<br />

Italy: the roles and mechanisms of intracrystalline and<br />

intercrystalline deformation. Cana<strong>di</strong>an Journal of Earth<br />

Sciences 44, 1587–1602.<br />

VITALE S. & MAZZOLI S. (2008) - Heterogeneous shear zone<br />

evolution: the role of shear strain hardening/softening.<br />

Journal of Structural Geology, 30, 1363-1395,<br />

doi:10.1016/j.jsg.2008.07.006<br />

VITALE S. & MAZZOLI S. (2009) - Finite strain analysis of a<br />

natural ductile shear zone in limestones: insights into 3-D<br />

coaxial vs. non-coaxial deformation partitioning. Journal of<br />

Structural Geology, 31, doi: 10.1016/j.jsg.2008.10.011


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 2 (2008), 235-237, 4 ff.<br />

Analisi strutturale <strong>del</strong>l’Unità Parasicilide affiorante nell’area <strong>di</strong><br />

Castelnuovo Cilento (Campania)<br />

STEFANO VITALE (*), FABIO LAIENA (*), ANGELO NOVIELLO (*), SABATINO CIARCIA (*), STEFANO MAZZOLI (*)<br />

& MARIO TORRE (*)<br />

ABSTRACT<br />

Structural analysis of the Parasicilide Unit, Castelnuovo Cilento area,<br />

Campania region, Italy<br />

This paper is focus<strong>ed</strong> on the structural analysis of the Parasicilide Unit<br />

basin succession cropping out in the Cilento area (southern Apennines), where<br />

it is expos<strong>ed</strong> in the footwall to the Nord-Calabrese Unit. The succession is<br />

characteriz<strong>ed</strong> by superpos<strong>ed</strong> deformation relat<strong>ed</strong> to three fol<strong>di</strong>ng events. The<br />

first produc<strong>ed</strong> tight to isoclinal folds associat<strong>ed</strong> with dominant NW-SE<br />

shortening resulting in regional, SE verging recumbent fol<strong>di</strong>ng accompani<strong>ed</strong> by<br />

the development of parasitic folds. The second deformation stage,<br />

characteriz<strong>ed</strong> by roughly E-W shortening, produc<strong>ed</strong> open to tight mesoscopic<br />

folds. The third deformation episode was characteriz<strong>ed</strong> by vertical shortening,<br />

which l<strong>ed</strong> to the development of open folds with sub-horizontal axial planes.<br />

The first and second fol<strong>di</strong>ng events are best relat<strong>ed</strong> to the overthrusting of the<br />

Nord-Calabrese Unit onto the Parasicilide Unit and to a later, <strong>di</strong>fferently<br />

orient<strong>ed</strong> shortening event, respectively. On the other hand, the third fol<strong>di</strong>ng<br />

stage, being associat<strong>ed</strong> with vertical shortening, may be interpret<strong>ed</strong> as a result<br />

of stretching and thinning of a previously overthicken<strong>ed</strong> accretionary w<strong>ed</strong>ge.<br />

Key words: southern Apennines, accretionary w<strong>ed</strong>ges, w<strong>ed</strong>getop<br />

basins.<br />

INTRODUZIONE<br />

In Cilento (Campania) affiorano estese successioni bacinali<br />

<strong>di</strong> origine oceanica o <strong>di</strong> transizione tra l’oceano (Neotetide) e il<br />

continente (margine Apulo) riferibili all’Unità Nord-Calabrese<br />

<strong>ed</strong> all’Unità Parasicilide (BONARDI ET AL., 1988; CIARCIA ET<br />

AL., 2009). Queste successioni fanno parte <strong>del</strong> cuneo<br />

d’accrezione appenninico formatosi a partire dal Miocene<br />

inferiore e accavallatosi successivamente sui domini <strong>di</strong><br />

piattaforma carbonatica (CIARCIA ET AL., 2009). Tali unità sono<br />

ricoperte in <strong>di</strong>scordanza dai depositi <strong>di</strong> w<strong>ed</strong>ge-top <strong>del</strong> Gruppo<br />

<strong>del</strong> Cilento (AMORE ET AL., 1988).<br />

L’area <strong>di</strong> stu<strong>di</strong>o (Fig. 1) è ubicata tra i comuni <strong>di</strong><br />

Castelnuovo Cilento e Salento dove l’Unità Parasicilide affiora<br />

in finestra tettonica al <strong>di</strong> sotto <strong>del</strong>l’Unità Nord-Calabrese<br />

(APAT, 2005).<br />

_________________________<br />

(*) Dipartimento Scienze <strong>del</strong>la Terra, Università <strong>di</strong> Napoli F<strong>ed</strong>erico II,<br />

Largo San Marcellino 10, 80138 Napoli<br />

La successione <strong>del</strong>l’Unità Parasicilide è formata, dal basso<br />

verso l’alto, da quattro unità stratigrafiche: (i) argilliti, argille e<br />

marne <strong>del</strong>la Formazione <strong>di</strong> Postiglione; (ii) calcari marnosi,<br />

marne e calcareniti <strong>del</strong>la Formazione <strong>di</strong> Monte<br />

Sant’Arcangelo; (iii) marne e calcari biancastri <strong>del</strong>la<br />

Fig. 1 – Carta geologica <strong>del</strong>l’area stu<strong>di</strong>ata.<br />

Formazione <strong>di</strong> Contursi; (iv) depositi silicoclastici <strong>del</strong>le<br />

Arenarie <strong>di</strong> Albanella. Tali unità stratigrafiche sono riferibili ad<br />

analoghe successioni riconosciute nel Foglio 503-Vallo <strong>del</strong>la<br />

Lucania e raggruppate nell’unità tettonica <strong>di</strong> Castelnuovo<br />

Cilento (APAT, 2005); in particolare, la prima corrisponde in<br />

parte alle ‘argilliti <strong>di</strong> Genesio’; la seconda e la terza alle ‘marne<br />

e calcareniti <strong>del</strong> T. Trenico’; mentre la quarta corrisponde alle<br />

‘arenarie <strong>di</strong> Pianelli’. La successione <strong>del</strong>l’Unità Parasicilide è<br />

attribuita al Cretacico Superiore-Bur<strong>di</strong>galiano (CIARCIA ET AL.,<br />

2009).<br />

In questo lavoro vengono presentati i primi risultati<br />

<strong>del</strong>l’analisi strutturale <strong>del</strong>l’Unità Parasicilide affiorante in<br />

Cilento.


236 S. VITALE ET ALII<br />

ANALISI STRUTTURALE<br />

La successione esaminata è caratterizzata dalla<br />

sovrapposizione <strong>di</strong> tre fasi plicative. La prima fase è<br />

contrad<strong>di</strong>stinta da pieghe (F1) da strette ad isoclinali, con<br />

forme da chevron a sinusoidali (Fig. 2a,b). È presente un<br />

clivaggio <strong>di</strong> piano assiale poco sviluppato nelle peliti e spaziato<br />

e convergente nelle litologie più competenti. Secondo la<br />

classificazione <strong>di</strong> RAMSAY (1967), tali pieghe rientrano nella<br />

classe 1B o 1C per gli strati più competenti e nella classe 3 per<br />

gli strati argillitici meno competenti.<br />

Le pieghe isoclinali <strong>di</strong> prima fase (i cui dati <strong>di</strong> orientazione<br />

sono riportati in Fig. 3a-b) sono ripiegate da strutture in<br />

Fig. 2 – (a) interferenza tra il secondo <strong>ed</strong> il primo piegamento. (b) pieghe<br />

<strong>di</strong> terza fase.<br />

prevalenza da aperte a strette e generalmente angolari (Fig. 2a).<br />

Codeste pieghe <strong>di</strong> seconda fase (F2) si mostrano a forma <strong>di</strong><br />

kink con piani assiali spesso coniugati (Fig. 2a).<br />

Gli assi <strong>di</strong> piega <strong>di</strong> seconda fase (A2) mostrano una<br />

<strong>di</strong>rezione prevalente N-S (Fig. 3c) <strong>ed</strong> i poli dei relativi piani<br />

assiali (PA2; Fig. 3d) in<strong>di</strong>cano piani immergenti con varia<br />

inclinazione a W e ad E. Il pattern d’interferenza tra i due<br />

piegamenti (Fig. 2a) è compreso tra le classi 2 e 3 <strong>del</strong>la<br />

classificazione <strong>di</strong> RAMSAY (1967).<br />

Entrambe le pieghe F1 <strong>ed</strong> F2 sono ripiegate da un terzo<br />

evento plicativo (F3), caratterizzato da pieghe generalmente<br />

aperte <strong>ed</strong> osservabili esclusivamente lungo i fianchi corti subverticali<br />

<strong>del</strong>le mesopieghe F1 (Fig. 3b). Gli assi <strong>di</strong> piega <strong>di</strong><br />

terza fase (A3; Fig. 3e) sono generalmente poco inclinati, così<br />

come i relativi piani assiali (PA3; Fig. 3f).<br />

Fig. 3– Proiezioni stereografiche <strong>del</strong>le giaciture <strong>del</strong>le strutture analizzate.<br />

DISCUSSIONE E CONCLUSIONI<br />

Il lavoro presentato rappresenta il primo stu<strong>di</strong>o strutturale<br />

dei terreni appartenenti all’Unità Parasicilide affioranti in<br />

Cilento. L’analisi strutturale ha permesso il riconoscimento <strong>di</strong><br />

tre fasi plicative sovrapposte. Le prime due fasi, per le loro<br />

caratteristiche geometriche e strutturali, possono essere<br />

associate al sovrascorrimento <strong>del</strong>l’Unità Nord-Calabrese<br />

sull’Unità Parasicilide e ad un successivo minore evento <strong>di</strong><br />

raccorciamento non coassiale rispetto primo. La terza fase<br />

plicativa in<strong>di</strong>ca, invece, un raccorciamento verticale<br />

probabilmente associato all’estensione orizzontale in risposta al<br />

prec<strong>ed</strong>ente ispessimento <strong>del</strong> cuneo d’accrezione.<br />

Il rilevamento strutturale ha evidenziato come l’Unità<br />

Parasicilide affiori in finestra tettonica a letto <strong>del</strong>l’Unità Nord-<br />

Calabrese. Il contatto tettonico a basso angolo taglia le strutture<br />

plicative sia a letto sia a tetto. La sezione geologica (Fig. 4)<br />

evidenzia come la successione analizzata sia caratterizzata da<br />

una deformazione alla mesoscala descritta da un treno <strong>di</strong><br />

antiformi e sinformi (F1) con asimmetria a s. Questa<br />

caratteristica, unita alla generale polarità stratigrafica inversa <strong>di</strong><br />

tali terreni, in<strong>di</strong>ca che la successione affiorante forma il fianco<br />

rovesciato <strong>di</strong> una piega a scala regionale vergente a SE<br />

formatasi durante la prima fase plicativa. Tale struttura è stata<br />

successivamente raccorciata sia lungo la <strong>di</strong>rezione E-W, sia<br />

verticalmente. Infine, la piega a scala regionale è stata <strong>di</strong>slocata<br />

da un contatto a basso angolo che, nell’area <strong>di</strong> stu<strong>di</strong>o, ha eliso<br />

il fianco a polarità normale.


Fig. 4 – <strong>Sezione</strong> geologica, la traccia e la legenda sono in<strong>di</strong>cate nella Fig. 1<br />

REFERENCES<br />

AMORE O., BONARDI G., CIAMPO G., DE CAPOA P., PERRONE<br />

V. & SGROSSO I. (1988) - Relazioni tra "flysch interni" e<br />

domini appenninici: reinterpretazione <strong>del</strong>le formazioni <strong>di</strong><br />

Pollica, San Mauro e Albidona e il problema<br />

<strong>del</strong>l'evoluzione inframiocenica <strong>del</strong>le zone esterne<br />

appenniniche. Mem. Soc. Geol. It., 41, 285-299.<br />

APAT (2005) - Carta Geologica d’Italia alla scala 1:50.000,<br />

Foglio 503 ‘Vallo <strong>del</strong>la Lucania’. SELCA, Firenze.<br />

BONARDI G., AMORE F.O., CIAMPO G., DE CAPOA P.,<br />

MICONNET P. & PERRONE V. (Eds) (1988) - Il Complesso<br />

Liguride Auct.: stato <strong>del</strong>le conoscenze e problemi aperti<br />

sulla sua evoluzione pre-appenninica <strong>ed</strong> i suoi rapporti con<br />

l'Arco Calabro. Mem. Soc. Geol. Ital., 41, 17-35.<br />

CIARCIA S., VITALE S., DI STASO A., IANNACE A., MAZZOLI S.,<br />

TORRE M. (2009) - Stratigraphy and tectonics of an Internal<br />

Unit of the southern Apennines: implications for the<br />

geodynamic evolution of the peri-Tyrrhenian mountain belt.<br />

Terra Nova, in stampa.<br />

RAMSAY J.G. (1967) - Fol<strong>di</strong>ng. and fracturing of rock.<br />

McGraw-Hill, New York.<br />

ANALISI STRUTTURALE DELL’UNITÀ PARASICILIDE<br />

237


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 238-240, 3 ff.<br />

Structural constraints to the Euganean Geothermal Field (NE Italy)<br />

RIASSUNTO<br />

Vincoli strutturali <strong>del</strong> Campo Geotermico Euganeo (Italia <strong>di</strong> NE)<br />

Il campo geotermico Euganeo presso Padova (dal quale nel 2007 sono stati<br />

estratti circa 17 Mm 3 <strong>di</strong> flui<strong>di</strong> ad un temperatura compresa tra 60


STRUCTURAL CONSTRAINTS TO THE EUGANEAN GEOTHERMAL FIELD<br />

Fig. 1 - Structural sketch of the central-eastern Southern Alps showing the location of the Euganean Geothermal Field (EGF) and the S. Vito <strong>di</strong><br />

Leguzzano quarry, where the structural data of Fig. 2 were acquir<strong>ed</strong>.<br />

Fig. 2 – Sketch of the S. Vito <strong>di</strong> Leguzzano quarry, near Schio. Not to scale.<br />

The outcrop shows a prominent drag fold of the footwall of the Schio-<br />

Vicenza fault develop<strong>ed</strong> during a Tertiary extensional deformation. The<br />

stereoplots are the equal angle projection of strike-slip faults and the fault<br />

plane solution. The principal axes of infinitesimal strain from fault slip<br />

analysis are labell<strong>ed</strong> “1” for extension and “3” for shortening (software:<br />

FaultKin v. 5.4 by R.W.ALLMENDINGER, R.A. MARRETT & T. CLADOUHOS,<br />

Cornell Univ.). The shortening axis corresponds to the kinematic sigma 1<br />

develop<strong>ed</strong> within a steep shear zone tren<strong>di</strong>ng NW-SE (Schio-Vicenza fault).<br />

sinistral movements (Fig. 2). These fin<strong>di</strong>ngs point to a<br />

poliphase deformation of the SVFS characteriz<strong>ed</strong> by extension<br />

follow<strong>ed</strong> by strike-slip regime, i.e. the same sequence of the<br />

geologic evolution illustrat<strong>ed</strong> above.<br />

PROPOSED STRUCTURAL MODEL OF THE EGF<br />

Hydrothermal outflow occurs most commonly at the<br />

terminations of in<strong>di</strong>vidual faults and where multiple faults<br />

interact (CUREWITZ & KARSON, 1997).<br />

239<br />

Fig. 3 – SW of Padova the Schio-Vicenza fault system shows a relay zone<br />

between two segments. The structure is coincident with the Euganean<br />

hydrothermal outflow, which can be explain<strong>ed</strong> as the vertical fluid flow<br />

along a conduit produc<strong>ed</strong> by local tensional stress development.


240 D. ZAMPIERI ET ALII<br />

Strike-slip fault systems are affect<strong>ed</strong> by local complexities such<br />

as bends and stopovers. Releasing bends and <strong>di</strong>lational<br />

stepovers are typically complex sites of fracturing, veining and<br />

fluid flow. The link between hydrothermal outflow and strikeslip<br />

tectonics has been recently demonstrat<strong>ed</strong> for example in the<br />

western Alps (BAIETTO et alii, 2008).<br />

The revision of the SVFS architecture by using unpublish<strong>ed</strong><br />

seismic lines has permitt<strong>ed</strong> to unravel the complex structure of<br />

the fault system, which is not a single fault as is usually<br />

depict<strong>ed</strong> in structural and geological maps. The fault zone is<br />

compos<strong>ed</strong> of some synthetic normal fault segments buri<strong>ed</strong><br />

beneath the alluvial cover. A left stepover structure (relay zone)<br />

between two <strong>di</strong>stinct fault segments of the SVFS has been<br />

recogniz<strong>ed</strong> just in coincidence with the thermal area (Fig. 3).<br />

Given the Neogene to Quaternary sinistral strike-slip<br />

kinematics superimpos<strong>ed</strong> on the fault system, this structure<br />

have accommodat<strong>ed</strong> along-strike local extension and may be<br />

responsible for rock fracturing and permeability development,<br />

enhancing migration to surface of thermal waters.<br />

REFERENCES<br />

BAIETTO A., CADOPPI P., MARTINOTTI G., PERELLO P.,<br />

PERROCHET P. & VUATAZ F.D., 2008. Assessment of<br />

thermal circulation in strike-slip fault systems: the Terme<br />

<strong>di</strong> val<strong>di</strong>eri case (Italian western Alps). In: WIBBERLEY et<br />

al. (<strong>ed</strong>s) The internal Structure of Fault Zones:<br />

Implications for mechanical and Fluid-Flow properties.<br />

Geol. Soc. Sp. Publ. 299, 317-339.<br />

CASTELLARIN A., VAI G. B. & CANTELLI L., 2006. The Alpine<br />

evolution of the Southern Alps around the Giu<strong>di</strong>carie<br />

faults: A Late Cretaceous to Early Eocene transfer zone.<br />

Tectonophysics, 414, 203-223.<br />

CUREWITZ D. & KARSON J.A., 1997. Structural setting of<br />

hydrothermal outflow: Fracture permeability maintain<strong>ed</strong><br />

by fault propagation and interaction. J. Volcan. and<br />

Geotherm. Res., 79, 149-168.<br />

DOGLIONI C. & BOSELLINI A., 1987. Eoalpine and mesoalpine<br />

tectonics in the Southern Alps. Geol. Rundsch., 76, 735-<br />

754.<br />

FABBRI P. & TREVISANI S., 2005. Spatial <strong>di</strong>stribution of<br />

Temperature in the geothermal Euganean field (NE,Italy):<br />

a simulat<strong>ed</strong> annealing approach. Geothermics, 34, 617-<br />

631.<br />

FANTONI R., CATELLANI D., MERLINI S., ROGLEDI S. &<br />

VENTURINI S. (2002). La registrazione degli eventi<br />

deformativi cenozoici nell’avampaese Veneto-Friulano.<br />

Mem. Soc. Geol. It., 57, 301-313.<br />

PICCOLI G., BELLATI R., BINOTTI C., DI LALLO E., SEDEA R.,<br />

DAL PRÀ A., CATALDI R., GATTO G.O., GHEZZI G.,<br />

MARCHETTI M., BULGARELLI G., SCHIESARO G., PANICHI<br />

C., TONGIORGI E., BALDI P., FERRARA G.C., MASSARI F.,<br />

MEDIZZA F., ILICETO V., NORINELLI A., DE VECCHI GP.,<br />

GREGNANIN A., PICCIRILLO E.M. & SBETTEGA G., 1976. Il<br />

sistema idrotermale euganeo-berico e la geologia dei<br />

Colli Euganei. Mem. Ist. Geol. Miner. Univ. Padova, 30,<br />

266 pp.<br />

SEMENZA E., 1974. La fase giu<strong>di</strong>cariense, nel quadro <strong>di</strong> una<br />

nuova ipotesi sull’orogenesi alpina nell’area italo<strong>di</strong>narica.<br />

Mem. Soc. Geol. It. 13, 187-226.<br />

ZANFERRARI A., BOLLETTINARI G., CAROBENE L., CARTON A.,<br />

CARULLI G.B., CASTALDINI D., CAVALLIN A., PANIZZA M.,<br />

PELLEGRINI G.B., PIANETTI F. & SAURO U., 1982.<br />

Evoluzione neotettonica <strong>del</strong>l'Italia nord-orientale. Mem.<br />

Sci. Geol. 35, 355-376.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 241-244, 5 ff.<br />

Pseudotachylytes along the Orobic Thrust, Southern Alps, Bergamo:<br />

a proxy for the Eo-Alpine deformation ?<br />

STEFANO ZANCHETTA, PAOLO D’ADDA , VALENTINA BARBERINI, NICOLETTA FUSI & ANDREA ZANCHI<br />

RIASSUNTO<br />

Le pseudotachiliti <strong>del</strong> Thrust Orobico (BG): possibili in<strong>di</strong>catori <strong>di</strong> una<br />

deformazione Eo-Alpina nelle Alpi Meri<strong>di</strong>onali ?<br />

Il Thrust Orobico rappresenta la più importante struttura Alpina che<br />

interessa il basamento <strong>del</strong>le Alpi Meri<strong>di</strong>onali tra Bergamo e Sondrio. Lungo<br />

questo sovrascorrimento il basamento cristallino <strong>di</strong> età Varisica è sovrascorso<br />

verso sud, al <strong>di</strong> sopra <strong>del</strong>le coperture s<strong>ed</strong>imentarie <strong>di</strong> età Permo-Triassica. La<br />

determinazione <strong>del</strong>l’età <strong>del</strong> movimento dei vari segmenti che costituiscono il<br />

thrust è <strong>di</strong> fondamentale importanza ai fini <strong>del</strong>la ricostruzione <strong>del</strong>l’evoluzione<br />

strutturale <strong>del</strong>le Alpi Meri<strong>di</strong>onali durante le prime fasi <strong>del</strong>l’orogenesi Alpina.<br />

Nell’area <strong>del</strong> Passo <strong>di</strong> San Marco, la zona <strong>di</strong> faglia correlata al Thrust<br />

Orobico mostra uno spessore variabile da 150 a 200 m e risulta caratterizzata<br />

dalla presenza <strong>di</strong> numerose vene <strong>di</strong> pseudotachiliti formatesi, per quanto<br />

emerso dalle analisi strutturali <strong>di</strong> dettaglio eseguite lungo il thrust, durante le<br />

ultime fasi evolutive <strong>del</strong>la struttura, in un regime deformativo <strong>di</strong> tipo fragile. In<br />

particolare, le pseudotachiliti mostrano caratteristiche giaciturali comparabili<br />

con quelle <strong>del</strong>le faglie inverse, <strong>di</strong>rette ENE-OSO, che rappresentano gli<br />

elementi strutturali dominanti all’interno <strong>del</strong>la zona <strong>di</strong> faglia.<br />

Date le relazioni strutturali fra le pseudotachiliti e le altre strutture<br />

connesse alla zona <strong>di</strong> faglia <strong>del</strong> Thrust Orobico, la caratterizzazione<br />

petrografico-mineralogica <strong>del</strong>le vene <strong>di</strong> pseudotachiliti e la loro datazione<br />

ra<strong>di</strong>ometrica offrono la possibilità <strong>di</strong> investigare l’evoluzione <strong>di</strong> questa<br />

importante struttura paleosismica e <strong>di</strong> porre dei vincoli temporali all’attività<br />

<strong>del</strong>la stessa..Le datazioni ad oggi <strong>di</strong>sponibili <strong>del</strong>le pseudotachiliti <strong>del</strong> Thrust<br />

Orobico e <strong>del</strong>la Linea <strong>del</strong> Porcile (MEIER, 2003) in<strong>di</strong>cano un’età tardo-<br />

Cretacica. L’affidabilità <strong>di</strong> tali datazioni risulta però limitata dalla mancanza<br />

<strong>di</strong> una dettagliata analisi strutturale e dall’assenza <strong>di</strong> una caratterizzazione<br />

petrografico-mineralogica approfon<strong>di</strong>ta, in<strong>di</strong>spensabile ai fini <strong>del</strong>la sicura<br />

interpretazione dei dati ra<strong>di</strong>ometrici. Il presente lavoro, tutt’ora in corso, si<br />

propone <strong>di</strong> sopperire a tale lacuna, fornendo una stima più precisa e più solida<br />

<strong>del</strong>l’evoluzione temporale <strong>del</strong> Thrust Orobico e <strong>del</strong>la Line <strong>del</strong> Porcile.<br />

Key words: Eo-Alpine deformation, Orobic Thrust, Porcile<br />

Thrust, pseudotachylites, Southern Alps.<br />

INTRODUCTION<br />

The Alpine structural evolution of the Southern Alps still<br />

poses several unsolv<strong>ed</strong> problems especially on its oldest history<br />

and its possible relationships with the Eo-Alpine tectonic<br />

events affecting the Austroalpine domain. DOGLIONI &<br />

BOSELLINI (1987) and BERSEZIO et alii (1993) emphasiz<strong>ed</strong> the<br />

occurrence of a pre-Tertiary orogeny bas<strong>ed</strong> on the development<br />

of a deep Late Cretaceous E-W tren<strong>di</strong>ng for<strong>ed</strong>eep basin along<br />

_________________________<br />

Dipartimento <strong>di</strong> Scienze Geologiche e Geotecnologie, Università degli<br />

Stu<strong>di</strong> <strong>di</strong> Milano Bicocca, Piazza <strong>del</strong>la Scienza 4 – 20126 Milano.<br />

correspon<strong>di</strong>ng author S. ZANCHETTA: stefano.zanchetta@unimib.it<br />

the southern margin of the belt which were infill<strong>ed</strong>, in the<br />

Lombar<strong>di</strong>an basin by turbi<strong>di</strong>tic units rich in olistoliths. ZANCHI<br />

et alii (1990) also obtain<strong>ed</strong> K/Ar ra<strong>di</strong>ometric ages around the<br />

Cretaceous-Palaeogene boundary for <strong>di</strong>ke swarms crossing<br />

previous thrust surfaces form<strong>ed</strong> in the Presolana area, Orobic<br />

Alps, Bergamo, within the Lower to Middle Triassic units.<br />

Although later works (FANTONI et alii, 1999) obtain<strong>ed</strong> slightly<br />

Fig. 1 – Structural map of the Orobic Alps, Lombardy, Italy. 1: Upper<br />

Cretaceous turbi<strong>di</strong>tes; 2: Jurassic to Lower Cretaceous basinal units; 3:<br />

Upper Triassic units; 4: Lower to Middle Triassic successions; 5: Orobic<br />

Anticlines inclu<strong>di</strong>ng crystalline basement, Permian and lowermost Triassic<br />

units; 6: MG to LG Variscan basement of the Orobic Alps; 7: Pre-Alpine HT<br />

units of the Orobic basement; 8: Metamorphic units of the Central Alps north<br />

of the Insubric Line; 9: Masino-Bregaglia (Brg, T); 10: Adamello-Presanella.<br />

O-A: Orobic Anticline; TC-A: Trabuchello-Cabianca Anticline; CE-A:<br />

C<strong>ed</strong>egolo Anticline. PSM: Passo San Marco, also shown with a star.<br />

younger ages for the same <strong>di</strong>kes, the matter of Late Cretaceous<br />

thrust stacking remains still open.<br />

The opportunity to date the oldest thrust structures of the<br />

Southern Alps occurs in the western Orobic region, where the<br />

occurrence of pseudotachylyte veins has been describ<strong>ed</strong> by<br />

previous authors (CARMINATI & SILETTO, 2005) along the<br />

Orobic and Porcile thrusts. The Orobic Thrusts strikes E-W and<br />

is the main Alpine structure of the Orobic Southern Alps.<br />

Along this thrust the Variscan crystalline basement is stack<strong>ed</strong><br />

southwards on the Permo-Triassic cover units. The Porcile<br />

Thrust trends ENE-WSW, is cut by the Orobic Thrust and<br />

stacks m<strong>ed</strong>ium to low grade metapelitic rocks on the Morbegno<br />

Gneiss and on the Gneiss Chiari units; thin slices of the Permo-<br />

Triassic s<strong>ed</strong>imentary cover often occur along this structure,


242 S. ZANCHETTA ET ALII<br />

Fig. 2 – a) Geological scheme of the Passo San Marco area. b) pre-Alpine D2 structure in the crystalline basement: fold axes (A2) and S2 foliations (poles to<br />

planes, lower emisphere). c) Axial planes of D3 folds of Alpine age in the crystalline basement. d) Fold axes of D3 folds; the high <strong>di</strong>spersion is possibly relat<strong>ed</strong><br />

to block rotation along the Orobic Thrust. e) Stress tensor obtain<strong>ed</strong> with reverse faults measur<strong>ed</strong> along the Orobic Thrust.<br />

which may be an invert<strong>ed</strong> Permian normal fault.<br />

Accor<strong>di</strong>ng to LAUBSCHER (1985), the Orobic Thrust sheets<br />

corresponds to the Northern Grigna Unit in the s<strong>ed</strong>imentary<br />

cover, which represents the highest and consequently oldest<br />

structural unit of the s<strong>ed</strong>imentary cover, roughly correspon<strong>di</strong>ng<br />

to the thrust sheets forming the Presolana thrust stack. As<br />

preliminary Ar/Ar ages on the pseudotachylytes of the Orobic<br />

thrust have given a very Late Cretaceous age (MEIER, 2003),<br />

these results can fit with the data obtain<strong>ed</strong> from the <strong>di</strong>ke<br />

swarms of the Presolana area, both suggesting a strong<br />

evidence for the Late Cretaceous compressive events.<br />

In this paper we present the results of petrological<br />

investigations concerning the pseudotachylytes form<strong>ed</strong> along<br />

the two main thrusts. Petrological investigations have been<br />

perform<strong>ed</strong> in close connection with a detail<strong>ed</strong> structural<br />

analysis of faults and folds develop<strong>ed</strong> in the San Marco Pass<br />

area. These stu<strong>di</strong>es are aim<strong>ed</strong> to obtain a better understan<strong>di</strong>ng<br />

of the genesis and textures of these complex rocks, in order to<br />

optimize the results of new ra<strong>di</strong>ometric age determinations<br />

which will be perform<strong>ed</strong> in the next future.<br />

FAULT ANALYSIS ALONG THE OROBIC THRUST<br />

About 130 fault planes have been measur<strong>ed</strong> along the<br />

Orobic Thrust in the Ca’ San Marco area. The best<br />

observations refer to the road taking to the Pass, where fresh<br />

and continuous outcrops of retrogress<strong>ed</strong> mica schists show<br />

Fig. 3 – Rose <strong>di</strong>agrams relative to reverse faults measur<strong>ed</strong> along the Orobic<br />

Thrust in the Passo San Marco area.


thick ultracataclastic zones inject<strong>ed</strong> with pseudotachylyte veins.<br />

Rose <strong>di</strong>agrams (Fig.3) relative to reverse faults (68) show a<br />

mark<strong>ed</strong> E-W trend with a northward <strong>di</strong>p showing a wide range<br />

of <strong>di</strong>p values (20°-60°) due to the occurrence of secondary R<br />

shears. Fault striations occurring along most of the measur<strong>ed</strong><br />

surfaces (53) are mainly <strong>di</strong>p-slip. Fault planes bearing<br />

pesudotachylytes and injection veins show very similar<br />

geometrical features with a m<strong>ed</strong>ium-angle <strong>di</strong>p (50°-60°)<br />

suggesting that the genesis of pseudotachylytes is relat<strong>ed</strong> to the<br />

main brittle stage of thrust faulting. Stress tensor<br />

determinations obtain<strong>ed</strong> with striat<strong>ed</strong> fault planes in<strong>di</strong>cates a<br />

N10° <strong>di</strong>rection of the main stress axis (Angelier, 1990).<br />

Successive both left- and right-lateral strike-slip faults<br />

reactivate some of the main thrust faults, suggesting a complex<br />

evolution through the entire Alpine history of the Orobic<br />

Thrust.<br />

TEXTURE AND PETROGRAPHY OF<br />

PSEUDOTACHYLYTES<br />

It is now wi<strong>del</strong>y accept<strong>ed</strong> that the occurence of<br />

pseudotachylytes within a fault zone suggests coseismic<br />

friction-induc<strong>ed</strong> melting along fault planes (SIBSON, 1975;<br />

SPRAY, 1995; WENK et alii, 2000). In this context<br />

pseudotachylytes represent unique opportunities to study fault<br />

processes along exhum<strong>ed</strong> palaeoseismic structures and also<br />

offer the possibility to pose absolute time-constraints on the<br />

fault activity by means of ra<strong>di</strong>ometric dating of the meltderiv<strong>ed</strong><br />

cryptocristalline or glassy matrix.<br />

The pseudotachylyte veins occurring along the Orobic and<br />

the Porcile Thrusts (Fig. 4) <strong>di</strong>scontinuosly decorate fault planes<br />

and typically <strong>di</strong>splay a thickness from a few millimeters to 20-<br />

25 mm, with rare reservoir (injection) veins reaching 100-150<br />

mm along the Porcile Thrust, east of Laghi <strong>del</strong> Porcile. They<br />

are found inside <strong>di</strong>fferent lithologies, two-mica gneiss, mica<br />

schists, K-feldspar gneiss, always showing cataclastic textures<br />

develop<strong>ed</strong> before pseudotachylyte formation. Pseudotachylyte<br />

veins <strong>di</strong>splay only minor reactivations along a successive set of<br />

<strong>di</strong>screte reverse fault planes subparallel to the main reverse<br />

planes but with a <strong>di</strong>p angle that never exce<strong>ed</strong>s 20°-25°. Locally<br />

<strong>di</strong>latational epidote-chlorite veins, 1-5 mm thick, crosscut all<br />

the previous thrust-relat<strong>ed</strong> structures.<br />

Pseudotachylytes occurring along melt generation surfaces<br />

(mgs) are typically zon<strong>ed</strong> with a thin black wall along contacts<br />

with the wall rock, and a lighter dark gray to brass-like<br />

colour<strong>ed</strong> part in the vein center. Clasts deriv<strong>ed</strong> from the wall<br />

rock are made of quartz and minor plagioclase and titanite. The<br />

clast/matrix ratio decreases towards the vein center contrary to<br />

the increase of the clast grain size. Reservoir pseudotachylyte<br />

veins, deriv<strong>ed</strong> from the melt injections from the mgs towards<br />

the wall rock, usually occurring along existing fractures or<br />

veins, are typically unzon<strong>ed</strong> and <strong>di</strong>splay a clast/matrix ratio<br />

close to zero, probably due to the “bottle-neck” effect<br />

(O’HARA, 2001).<br />

Quartz and plagioclase clasts are round<strong>ed</strong> or sub-round<strong>ed</strong>,<br />

with an aspect ratio between 1 and 1.5. Elongat<strong>ed</strong> clasts are<br />

PSEUDOTACHYLYTES ALONG THE OROBIC THRUST<br />

243<br />

usually align<strong>ed</strong> parallel to the vein margins as an effect of melt<br />

flow. Isoclinal and convolute folds in<strong>di</strong>viduat<strong>ed</strong> by alternating<br />

light and dark colour<strong>ed</strong> matrix layers are common features<br />

observ<strong>ed</strong> in most of the analys<strong>ed</strong> samples (fig. 4).<br />

The textures and mineralogy of both wall rock and<br />

pseudotachylyte veins has been determin<strong>ed</strong> by SEM and EMPA<br />

analyses together with qualitative XRPD perform<strong>ed</strong> on<br />

microsampl<strong>ed</strong> pseudotachylyte matrix and MicroCT on micro<br />

cores to unravel the 3D relations between veins and wall rocks.<br />

The pseudotachylyte veins matrix consists of a<br />

cryptocrystalline polymineralic aggregate made of quartz,<br />

biotite, plagioclase, titanite and magnetite as ubiquitous phases,<br />

whereas K-feldspar, ilmenite, apatite and sulfides only occur in<br />

samples deriv<strong>ed</strong> from K-feldspar gneisses and epidote-bearing<br />

gneisses (fig. 5). In samples where both ilmenite and titanite<br />

crystalliz<strong>ed</strong> from the pristine melt, ilmenite is found only within<br />

the black wall rimming the pseudotachylyte/wall rock contact,<br />

whereas titanite is present only in the central part of the vein.<br />

Fig. 4 – a) Pseudotachylyte injection vein in a K-feldspar gneiss wall rock<br />

(Gneiss <strong>di</strong> Pizzo Meriggio, Porcile Thrust. b) 3d image slices of a<br />

pseudotachylyte vein in a two-mica gneiss obtain<strong>ed</strong> with MicroCT (X-ray<br />

microcomputeriz<strong>ed</strong> tomography). Bright spots are epidote and titanite<br />

crystals.


244 S. ZANCHETTA ET ALII<br />

The veins matrix <strong>di</strong>splays a chemical composition characteristic<br />

of interm<strong>ed</strong>iate silicate melts, with SiO2 wt% compris<strong>ed</strong><br />

between 52 and 64 and alkali (Na2O + K2O) ranging between 5<br />

and 11 wt% . More <strong>di</strong>fferentiat<strong>ed</strong> composition, with SiO2<br />

reaching 70-75 wt% were found only in some samples deriv<strong>ed</strong><br />

from epidote-free gneisses. An inverse relation between the<br />

total alkali content and Si was observ<strong>ed</strong> in all samples.<br />

Biotite represents the most abundant phase crystalliz<strong>ed</strong> from<br />

the melt. It is present both as 1 to 15 m laths and spherulithic<br />

Fig. 5 – BSE image of a pseudotachylite vein. Partially melt<strong>ed</strong> lithic clast<br />

are present together with quartz clast, often with a thin K-feldspar rim.<br />

Biotite and titanite (ttn) are crystalliz<strong>ed</strong> from the melt. <strong>Note</strong> the weak shape<br />

preferr<strong>ed</strong> orientation of bt laths around wall rock survivor clasts (sample<br />

SM6Q, Passo San Marco road.<br />

aggregates reaching 50 m in <strong>di</strong>ameter. Biotite crystallytes are<br />

typically more abundant close to the pseudotachylyte/wall rock<br />

contact and decrease towards the vein center. The XMg and the<br />

Ti-content of biotite crystallytes are always higher than the<br />

ones of wall rock biotite, suggesting higher equilibrium<br />

temperatures for pseudotachylyte biotites. The coupl<strong>ed</strong> Si<br />

increase and biotite crystallites abundance decrease towards the<br />

vein center possibly suggest the occurence of melt<br />

<strong>di</strong>fferentiation during the crystallization process.<br />

CONCLUSIONS<br />

The occurrence of pseudotachylyte veins within fault rocks<br />

correlat<strong>ed</strong> to the Orobic Thrust is of fundamental importance as<br />

pseudotachylytes offer the opportunity to better constrain the<br />

dominant fault processes and the time of activity of some of the<br />

main Alpine structures in the Southern Alps. Previous<br />

ra<strong>di</strong>ometric dating of pseudotachylyte veins from the Orobic<br />

and Porcile Thrusts (MEIER, 2003) yield a Late Cretaceous age<br />

for fault activity along these structures, suggesting the<br />

occurrence of pre-Tertiary (Eo-Alpine) deformation in this<br />

sector of the Southern Alps. The detail<strong>ed</strong> structural anlayses of<br />

pseudotachylytes relationships with other fault structures and<br />

petrographic-mineralogical characterization of them, constitute<br />

the starting point to obtain in the next future reliable constraints<br />

on the age of the Orobic and Porcile Thrust fault activity.<br />

The unquestionable dating of an Eo-Alpine orogenic phase<br />

record<strong>ed</strong> within the Southern Alps and its characterization both<br />

in structural and metamorphic terms could carry important<br />

consequences also on the evolution mo<strong>del</strong>s of the entire Alpine<br />

belt, mainly on the relations between the Southern Alps and the<br />

Asustroalpine domain, where the presence of a Eo-Alpine<br />

deformation and metamorphic phase it is now wi<strong>del</strong>y accept<strong>ed</strong>.<br />

REFERENCES<br />

ANGELIER, J. 1990. Inversion of field data in fault tectonics to<br />

obtain the regional stress – III. A new rapid <strong>di</strong>rect<br />

inversion method by analytical means. Geophys. Journ. Int.<br />

103(1), 363–376.<br />

BERSEZIO R., FORNACIARI M., GELATI R., NAPOLITANO A. &<br />

VALDISTURLO A. (1993) – The significance of the Upper<br />

Cretaceous to Miocene clastic w<strong>ed</strong>ges in the deformation<br />

history of the Lombar<strong>di</strong>an Southern Alps. Geol. Alpine, 69,<br />

3-20, Grenoble.<br />

CARMINATI E. & SILETTO G.B. (2005) – The Central Souther<br />

Alps (N Italy) paleoseismic zone: a comparison between<br />

field observations and pr<strong>ed</strong>ictions of fault mechanics.<br />

Tectonophysics, 401, 179-197.<br />

DOGLIONI C. & BOSELLINI A. (1987) – Eoalpine and<br />

Mesoalpine tectonic in the Southern Alps. Geol. Rundsch.,<br />

76, 735-754.<br />

FANTONI R., BERSEZIO R., FORCELLA F., GORLA L., MOSCONI<br />

A. & PICOTTI V. (1999) – New dating of the Tertiary<br />

magmatic products of the Central Southern Alps, bearings<br />

on the interpretations of the Alpine tectonic history. Mem.<br />

Scie. Geol., 51/1, 47- 61.<br />

LAUBSCHER H.B. (1985) – Large scale, thin-skinn<strong>ed</strong> thrusting<br />

in the Southern Alps: kinematic mo<strong>del</strong>s. Geol. Soc. Amer.<br />

Bull., 76, 710-718.<br />

MEIER A. (2003) – The Periadriatic Fault System in Valtellina<br />

(N-Italy) and the evolution of the Southwestern Segment of<br />

the Eastern Alps. PhD Thesis, Diss. Eth. No. 15008, Zurich.<br />

O’HARA K.D. (2001) - A pseudotachylytes geothermometer. J.<br />

Struct. Geol., 23, 1345-1357.<br />

SIBSON R.H. (1975) – Generation of pseudotachylyte by<br />

Ancient Seismic Faulting. Geophys. Jour. Royal. Astr. Soc.,<br />

43, 775-794.<br />

SPRAY J.G. (1995) – Pseudotachylyte controversy: fact or<br />

friction ? Geology, 23, 1119-1122.<br />

ZANCHI A., CHIESA S. & GILLOT P.Y. (1990) – Tectonic<br />

evolution of the Southern Alps in the Orobic chain:<br />

structural and geochronological in<strong>di</strong>cations for pre-<br />

Tertiary compressive tectonic. Mem. Soc. Geol. It., 44, 77-<br />

82.<br />

WENK H.R., JOHNSON L.R. & RATSCHBACHER L. (2000) –<br />

Pseudotachylytes in the Eastern Peninsular Ranges of<br />

California. Tectonophysics, 321, 253-277.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 245<br />

Utilizzo <strong>di</strong> dati geologico-strutturali <strong>di</strong> terreno<br />

per la mo<strong>del</strong>lazione 3D: esempi <strong>di</strong> strutture Alpine<br />

ANDREA ZANCHI (*), STEFANO ZANCHETTA (*) , PAOLO D’ADDA (*), FEDERICO AGLIARDI (*), MASSIMO CONTI<br />

(*), FRANCESCO GALBIATI(*), FABRIZIO BERRA (**), FRANCESCA SALVI (°)<br />

RIASSUNTO<br />

La possibilità <strong>di</strong> integrare informazioni cartografiche a<br />

carattere geologico–strutturale attraverso l’utilizzo dei GIS e <strong>di</strong><br />

poterle utilizzare <strong>di</strong>rettamente in appositi software per la<br />

mo<strong>del</strong>lazione 3D <strong>di</strong> corpi geologici complessi rappresenta oggi<br />

una realtà a <strong>di</strong>sposizione <strong>di</strong> molti enti accademici. L’attivazione<br />

<strong>di</strong> consorzi internazionali, per lo sviluppo <strong>di</strong> queste<br />

applicazioni (gOcad) e la messa a <strong>di</strong>sposizione per utilizzo<br />

<strong>di</strong>dattico e <strong>di</strong> ricerca (Move, Midland Valley), ha favorito la<br />

<strong>di</strong>ffusione e migliorato le capacità <strong>di</strong> utilizzo <strong>di</strong> questi<br />

complessi strumenti <strong>di</strong> elaborazione.<br />

La messa a punto <strong>di</strong> una serie <strong>di</strong> proc<strong>ed</strong>ure, da noi testate in<br />

<strong>di</strong>fferenti situazioni geologico-strutturali nel corso degli ultimi<br />

anni, ha reso possibile la ricostruzione 3d <strong>di</strong> elementi geologici<br />

<strong>di</strong> ogni tipo a partire da informazioni prevalentemente <strong>di</strong> tipo<br />

cartografico e strutturale (ZANCHI et alii, 2009a, 2009b). Le<br />

ricostruzioni così ottenute possono poi essere successivamente<br />

implementate attraverso dati provenienti da indagini <strong>di</strong> altro<br />

genere (pozzi, sondaggi, sezioni sismiche, ecc.).<br />

Le ricostruzioni presentate sono basate essenzialmente<br />

sull’utilizzo <strong>di</strong> <strong>di</strong>fferenti software: ArcGis per l’archiviazione<br />

dei dati geologici <strong>di</strong> terreno, gOcad e Move per la<br />

mo<strong>del</strong>lazione 2d, 3d <strong>ed</strong> eventualmente 4d (retrodeformazione).<br />

Nell’ambito <strong>del</strong>la presentazione verranno illustrati alcuni<br />

esempi significativi tratti da ricostruzioni effettuate nell’ambito<br />

<strong>di</strong> strutture presenti nella copertura <strong>del</strong> Sudalpino Orobico e nel<br />

basamento Austroalpino <strong>del</strong>la zona <strong>di</strong> Merano (BZ).<br />

Le applicazioni relative al Sudalpino si riferiscono<br />

principalmente a due esempi:<br />

- strutture a pieghe e faglie sviluppate nell’ambito dei<br />

sistemi <strong>di</strong> sovrascorrimenti che interessano le unità <strong>del</strong><br />

Triassico Inferiore e M<strong>ed</strong>io a sud <strong>del</strong>la Linea Valtorta-Val<br />

Canale;<br />

- deformazione gravitativa <strong>di</strong> versante sviluppata nelle unità<br />

<strong>del</strong> Triassico Superiore nei pressi <strong>del</strong> bordo meri<strong>di</strong>onale <strong>del</strong>la<br />

_________________________<br />

(*) Dipartimento <strong>di</strong> Scienze e Tecnologie Geologiche, Piazza <strong>del</strong>la Scienza<br />

4 Milano Università degli stu<strong>di</strong> <strong>di</strong> Milano-Bicocca<br />

(**) Dipartimento <strong>di</strong> Scienze <strong>del</strong>la Terra, Piazzale Gorini 34 Milano<br />

Università degli stu<strong>di</strong> <strong>di</strong> Milano<br />

(°) Istituto ENI, Milano.<br />

Andrea.zanchi@unimib.it 02/64482028<br />

catena (DGPV <strong>di</strong> Fuipiano Imagna). Le ricostruzioni sono state<br />

effettuate utilizzando in prevalenza dati cartografici <strong>di</strong><br />

superficie e numerose sezioni geologiche seriate appositamente<br />

costruite. Nel caso <strong>del</strong>la deformazione gravitativa è stato<br />

possibile retrodeformare attraverso 2Dmove alcune <strong>del</strong>le<br />

sezioni realizzate, allo scopo <strong>di</strong> verificare la congruenza<br />

geometrica <strong>del</strong> mo<strong>del</strong>lo realizzato. Questo tipo <strong>di</strong> approccio si<br />

è rivelato estremamente utile per lo sviluppo <strong>di</strong> mo<strong>del</strong>li<br />

numerici relativi all’evoluzione <strong>del</strong> fenomeno gravitativo.<br />

Per quanto riguarda la ricostruzione effettuata nell’ambito<br />

<strong>del</strong> basamento Austroalpino <strong>del</strong>la zona <strong>di</strong> Merano, sono state<br />

ricostruite alcune strutture plicative polifasiche <strong>di</strong> età Alpina<br />

che interessano il Complesso <strong>del</strong>le Cime <strong>di</strong> Tessa. In questo<br />

caso la ricostruzione è basata su una cartografia geologicostrutturale<br />

<strong>di</strong> dettaglio condotta a scala 1:5.000. Grazie<br />

all’ottima esposizione <strong>del</strong>le strutture è stato possibile ricostruire<br />

queste complesse pieghe attraverso proc<strong>ed</strong>ure simili a quelle<br />

adottate nei prec<strong>ed</strong>enti casi, ma realizzate attraverso l’utilizzo<br />

<strong>di</strong> gOcad.<br />

Oltre ai risultati ottenuti nell’ambito <strong>di</strong> temi <strong>di</strong> ricerca,<br />

verranno illustrati anche alcuni esempi <strong>di</strong> semplici applicazioni<br />

sviluppate, a carattere sperimentale, nell’ambito <strong>di</strong> alcuni<br />

insegnamenti <strong>di</strong> 2° livello.<br />

BIBLIOGRAFIA<br />

ZANCHI A., DE DONATIS M., GIBBS A. & MALLET J.-L. (2009a)<br />

- Imaging Geology in 3D. Computers and Geosciences,<br />

doi:10.1016/j.cageo.2007.09.009.<br />

ZANCHI A., SALVI F., ZANCHETTA S., STERLACCHINI S. & GUERRA<br />

G. (2009b) - 3D reconstruction of complex geological bo<strong>di</strong>es:<br />

examples from the Alps. Computers and Geosciences,<br />

doi:10.1016/j.cageo.2007.09.003.


Ren<strong>di</strong>conti online Soc. Geol. It., Vol. 5 (2009), 246-248, 4 ff.<br />

FReDNet: un sistema per il monitoraggio <strong>del</strong>le deformazioni crostali<br />

e per il posizionamento <strong>di</strong> precisione in tempo reale in Friuli-V. G.<br />

ABSTRACT<br />

FReDNet: un sistema per il monitoraggio <strong>del</strong>le deformazioni crostali e per<br />

il posizionamento <strong>di</strong> precisione in tempo reale in Friuli-V. G.<br />

The Friuli Regional Deformation network (FReDNet) of continuously<br />

operating Global Positioning System (GPS) receivers monitors crustal<br />

deformation in the Friuli region. The principal goals of the FReDNet program<br />

are to determine the <strong>di</strong>stribution of deformation in this region, to estimate<br />

interseismic strain accumulation on its active faults to better assess seismic<br />

hazards, to monitor hazardous faults for emergency response management, and<br />

to provide infrastructure for geodetic data management and processing. The<br />

network is also design<strong>ed</strong> to serve as a real-time surveying infrastructure (GPS-<br />

RTK).<br />

Key words: crustal deformation, FReDNet, geodetic data<br />

management, GPS, GPS-RTK<br />

INTRODUZIONE<br />

Le misurazioni geodetiche permettono <strong>di</strong> ottenere stime<br />

<strong>di</strong>rette <strong>ed</strong> accurate sulla velocità <strong>di</strong> deformazione in un'area<br />

geografica. Assieme ad altre osservazioni <strong>di</strong> natura geologica e<br />

sismologica, le misurazioni geodetiche sono <strong>di</strong> rilevanza<br />

centrale per stu<strong>di</strong> a lungo termine <strong>di</strong> pericolosità sismica. Esse,<br />

infatti, offrono i migliori vincoli per valutare quantitativamente<br />

la velocità con cui si accumulano le deformazioni. La<br />

tecnologia GPS (Global Positioning System) offre l'accuratezza<br />

necessaria per monitorare in maniera continua le deformazioni<br />

in zone tettonicamente attive. Inoltre, m<strong>ed</strong>iante l'utilizzo <strong>di</strong><br />

misurazioni <strong>di</strong>fferenziali <strong>di</strong> GPS, è possibile rilevare,<br />

localmente, spostamenti, con elaborazioni <strong>di</strong> post-processing,<br />

<strong>del</strong>l'or<strong>di</strong>ne <strong>del</strong> millimetro.<br />

FReDNet (Friuli Regional Deformation Network) è il nome<br />

dato alla rete <strong>di</strong> ricevitori permanenti GPS <strong>del</strong> Friuli-Venezia<br />

Giulia realizzata dal <strong>di</strong>partimento Centro <strong>di</strong> Ricerche<br />

Sismologiche-CRS <strong>di</strong> U<strong>di</strong>ne <strong>del</strong>l’Istituto Nazionale <strong>di</strong><br />

_________________________<br />

DAVID ZULIANI (*), PAOLO FABRIS (*), FRANCESCO PALMIERI (*) & ENRICO PRIOLO (*)<br />

(*) Istituto Nazionale <strong>di</strong> Oceanografia e <strong>di</strong> Geofisica Sperimentale – OGS,<br />

Borgo Grotta Gigante 42/c, 34010 Sgonico (TS)<br />

Oceanografia e <strong>di</strong> Geofisica Sperimentale-OGS <strong>di</strong> Trieste<br />

(BATTAGLIA et alii., 2003, BATTAGLIA et alii., 2004, ZULIANI et<br />

alii. 2003). Gli obiettivi primari <strong>del</strong>la rete FReDNet sono:<br />

• monitoraggio <strong>del</strong>le deformazioni crostali;<br />

• <strong>di</strong>stribuzione <strong>di</strong> un servizio <strong>di</strong> posizionamento <strong>di</strong><br />

precisione in tempo reale (GPS-RTK).<br />

I ricevitori <strong>del</strong>la rete FReDNet sono attivi dall'estate 2002 e<br />

raccolgono il dato GPS "in continuo". Fino ad oggi sono state<br />

installate 12 stazioni permanenti sul territorio <strong>del</strong> Friuli-<br />

Venezia Giulia e in parte su quello <strong>del</strong> Veneto.<br />

Sono presentate alcune serie temporali e le relative velocità<br />

<strong>di</strong> deformazione finora elaborate e si descrive il servizio <strong>di</strong><br />

posizionamento in tempo reale.<br />

LA RETE FREDNET<br />

I ricevitori <strong>del</strong>la rete FReDNet sono attivi dall'estate 2002 e<br />

raccolgono il dato GPS "in continuo" con campionamento a 1s.<br />

Fino ad oggi sono state installate 12 stazioni permanenti<br />

(Fig.1).<br />

Fig. 1 – Schema <strong>del</strong>la rete FReDNet.<br />

La <strong>di</strong>sposizione <strong>del</strong>le stazioni sul territorio è stata stu<strong>di</strong>ata<br />

in modo tale da permettere il monitoraggio <strong>del</strong>le deformazioni<br />

in atto lungo i tre principali sistemi <strong>di</strong> faglie presenti in Friuli<br />

(GALADINI et alii, 2002):


FReDNet: UN SISTEMA PER IL MONITORAGGIO DELLE DEFORMAZIONI CROSTALI<br />

• faglie <strong>di</strong>nariche, orientate in <strong>di</strong>rezione NW-SE, secondo<br />

l'asse definito da Caneva-Monte Prat-Monte Acomizza;<br />

• faglie periadriatiche, orientate in <strong>di</strong>rezione E-W,<br />

secondo l'asse definito da Zouf Plan-Monte Prat;<br />

• faglie orientate in <strong>di</strong>rezione NE-SO, secondo l’asse<br />

definito da Alpe Faloria-Monte Prat-M<strong>ed</strong>ea-Trieste.<br />

Ogni stazione <strong>del</strong>la rete fissa è costituita da:<br />

• un pilastrino in cemento solidamente ancorato a roccia<br />

stabile per garantire l’inamovibilità <strong>del</strong>la struttura. Il<br />

pilastrino è dotato <strong>di</strong> un sistema <strong>di</strong> accoppiamento su cui<br />

installare l’antenna GPS;<br />

• un ricevitore GPS <strong>di</strong> alta qualità a doppia frequenza (L2,<br />

L1);<br />

• un’antenna GPS <strong>di</strong> tipo Choke Ring dotata <strong>di</strong> borchia <strong>di</strong><br />

riferimento;<br />

• una cupola <strong>di</strong> protezione per l’antenna Choke Ring;<br />

• cavi <strong>di</strong> connessione fra antenna e ricevitore <strong>ed</strong> eventuali<br />

interfacce aggiuntive;<br />

• un sistema <strong>di</strong> alimentazione affidabile (attraverso la rete<br />

elettrica nazionale o sistemi alternativi quali quello<br />

fotovoltaico od eolico) dotato anche <strong>di</strong> un sistema<br />

sostitutivo <strong>di</strong> emergenza (batterie tampone) che permetta<br />

un funzionamento in continuo <strong>del</strong> ricevitore;<br />

• eventuali <strong>di</strong>spositivi per la sicurezza e la protezione<br />

<strong>del</strong>le strumentazioni (scaricatori elettrici, etc);<br />

• un sistema per la trasmissione, in tempo reale, dei dati<br />

satellitari raccolti dal ricevitore GPS. La trasmissione è<br />

effettuata verso un centro <strong>di</strong> raccolta dati <strong>ed</strong> è attuabile<br />

in <strong>di</strong>versi mo<strong>di</strong>:<br />

o sistema satellitare;<br />

o modem gsm/gprs;<br />

o sistemi WiFi d<strong>ed</strong>icati (apparati <strong>di</strong> trasmissione<br />

Wireless in tecnologia Spread Spectrum per lunga<br />

<strong>di</strong>stanza);<br />

o apparati ra<strong>di</strong>o con frequenze fornite su concessione.<br />

Il centro <strong>di</strong> raccolta dati, gestione <strong>del</strong>la rete e <strong>di</strong><br />

elaborazione è ubicato presso il CRS <strong>di</strong> U<strong>di</strong>ne. Il sistema si<br />

avvale <strong>di</strong> un software per la configurazione da remoto <strong>del</strong>le<br />

stazioni permanenti e per il calcolo e la <strong>di</strong>stribuzione in tempo<br />

reale <strong>di</strong> correzioni <strong>di</strong>fferenziali.<br />

La stazione ZOUF è inserita nella rete geodetica GPS<br />

europea EPN (EUREF Permanent Network) e i suoi dati sono<br />

anche <strong>di</strong>stribuiti da ASI (Agenzia Spaziale Italiana).<br />

I dati <strong>del</strong>la rete FReDNet sono <strong>di</strong>sponibili sul sito<br />

http://www.crs.inogs.it/fr<strong>ed</strong>net.<br />

L’obiettivo scientifico che il sistema si propone <strong>di</strong><br />

conseguire è la caratterizzazione dei processi tettonici regionali<br />

e <strong>di</strong> alcune aree più critiche dal punto <strong>di</strong> vista sismico.<br />

L’attività prev<strong>ed</strong>e il monitoraggio <strong>del</strong>le deformazioni crostali<br />

<strong>del</strong>l’area regionale, grazie alle misurazioni <strong>del</strong>la rete <strong>di</strong> stazioni<br />

GPS permanenti <strong>ed</strong> in alcune campagne episo<strong>di</strong>che <strong>di</strong><br />

misurazione svolte all’uopo. In particolare, le misurazioni GPS<br />

permetteranno <strong>di</strong>:<br />

247<br />

• stimare entità, <strong>di</strong>rezione e velocità <strong>di</strong> deformazione <strong>del</strong>le<br />

principali strutture crostali presenti;<br />

• stimare lo sforzo intersismico che si accumula nelle<br />

strutture sismogeniche;<br />

• definire il potenziale sismico e la pericolosità <strong>del</strong>le<br />

faglie identificate come attive.<br />

La rete GPS permanente FReDNet rappresenta<br />

l’infrastruttura <strong>di</strong> base necessaria per la misurazione geodetica<br />

<strong>del</strong> territorio regionale e <strong>del</strong>le aree imm<strong>ed</strong>iatamente a<strong>di</strong>acenti.<br />

Oltre alle misurazioni in continuo, sono tuttavia necessarie<br />

<strong>del</strong>le misurazioni episo<strong>di</strong>che <strong>di</strong> dettaglio concentrate in alcune<br />

aree <strong>di</strong> maggiore interesse.<br />

SERIE TEMPORALI E VELOCITÀ DI<br />

DEFORMAZIONE FINORA ELABORATE<br />

I mo<strong>del</strong>li cinematici e <strong>di</strong>namici, vincolati con i dati<br />

geodetici raccolti dalla rete, aiuteranno a definire con maggiore<br />

precisione il mo<strong>del</strong>lo geo<strong>di</strong>namico <strong>del</strong>l'area friulana e <strong>del</strong>le<br />

zone orientali <strong>del</strong>la microplacca adriatica. Grazie a questo più<br />

accurato mo<strong>del</strong>lo sarà possibile descrivere meglio sia le zone<br />

sismogeniche, che i processi tettonici che controllano la<br />

deformazione attiva <strong>del</strong>la regione.<br />

Finora sono state calcolate, m<strong>ed</strong>iante il software<br />

GAMIT/GLOBK, le serie temporali giornaliere e le velocità <strong>di</strong><br />

deformazione in atto. In Fig. 2 è riportata la serie temporale <strong>del</strong><br />

sito ZOUF.<br />

Fig. 2 – Serie temporale <strong>del</strong> sito ZOUF, le coor<strong>di</strong>nate sono calcolate nel<br />

sistema <strong>di</strong> riferimento ITRF.


248 D. ZULIANI ET ALII<br />

In Fig. 3 e 4 sono rappresentate le velocità <strong>di</strong> deformazione<br />

finora calcolate.<br />

I sistemi <strong>di</strong> riferimento utilizzati per la determinazione <strong>del</strong>le<br />

Fig.3 – Velocità <strong>di</strong> deformazione dei siti FReDNet. Il sistema <strong>di</strong><br />

riferimento è quello globale ITRF.<br />

Fig.4 – Velocità <strong>di</strong> deformazione dei siti FReDNet. Il sistema <strong>di</strong><br />

riferimento è quello europeo EURA.<br />

velocità sono:<br />

• ITRF - International Terrestrial Reference Frame (Fig.<br />

3)<br />

• European Reference Frame of McClusky (Fig. 4)<br />

Questi sono alcuni dei risultati <strong>di</strong>sponibili anche sul sito web<br />

sopra menzionato.<br />

IL SERVIZIO DI POSIZIONAMENTO IN TEMPO<br />

REALE (GPS-RTK)<br />

La rete FReDNet rappresenta il supporto per l’istituzione <strong>di</strong><br />

un servizio <strong>di</strong> posizionamento in tempo reale che in fase<br />

realizzativa nell’ambito <strong>di</strong> un progetto <strong>del</strong>l’OGS, co-finanziato<br />

dalla Regione Autonoma Friuli Venezia Giulia m<strong>ed</strong>iante<br />

contributi assegnati per la realizzazione <strong>di</strong> progetti <strong>di</strong> ricerca<br />

scientifica e applicata e <strong>di</strong> iniziative <strong>di</strong> trasferimento e <strong>di</strong><br />

<strong>di</strong>ffusione dei risultati <strong>del</strong>la ricerca (ai sensi <strong>del</strong>la L.R. 11/2003<br />

e <strong>del</strong> D.P. Reg. n. 0324/Pres. Del 8/10/2004). A fine progetto<br />

(tre anni), sarà pertanto <strong>di</strong>sponibile, per la Regione FVG, un<br />

servizio innovativo in grado <strong>di</strong> fornire all’utenza pubblica,<br />

privata e scientifica, gli strumenti essenziali per una<br />

navigazione georeferenziata <strong>di</strong> alta precisione in tempo reale. Il<br />

servizio sarà fruibile in ogni istante e in qualsiasi luogo <strong>del</strong>la<br />

Regione con una precisione, per l’utenza finale, <strong>di</strong> qualche<br />

centimetro, <strong>ed</strong> avrà una notevole ricaduta su una varietà <strong>di</strong><br />

potenziali applicazioni commerciali (aviazione, operazioni<br />

marittime, trasporti terrestri, turismo, ecc.), produttive (gestione<br />

<strong>del</strong> territorio, agricoltura e ambiente) e <strong>di</strong> miglioramento dei<br />

servizi (trasporti, emergenze e protezione civile).<br />

BIBLIOGRAFIA<br />

BATTAGLIA M., ZULIANI D., PASCUTTI D., MICHELINI A.,<br />

MARSON I., MURRAY M.H., & BÜRGMANN R. (2003) -<br />

Network Assesses Earthquake Potential in Italy's Southern<br />

Alps. Eos, 84 (28), 262-264.<br />

BATTAGLIA M., ZULIANI D., MURRAY M. H., BURGMANN R.,<br />

AND PRIOLO E. (2004) - Using GPS to assess the earthquake<br />

potential in Friuli (NE Italy). UNAVCO Annual Meeting,<br />

Boulder (CO), February 26-27, 2004. Poster session.<br />

GALADINI F., POLI M.E. E ZANFERRARI A. (2002) - Sorgenti<br />

sismogenetiche responsabili <strong>di</strong> terremoti <strong>di</strong>struttivi<br />

nell’Italia nord-orientale. Atti 21° Convegno GNGTS,<br />

Roma. CD-ROM.<br />

ZULIANI D., PASCUTTI D., BATTAGLIA M., MURRAY M.H.,<br />

MICHELINI A., BÜRGMANN R., MARSON I. (2003) -<br />

FReDNet: Una rete <strong>di</strong> ricevitori GPS per la valutazione <strong>del</strong><br />

potenziale sismico nell’area sud orientale <strong>del</strong>le Alpi<br />

italiane. 22° Convegno GNGTS, Roma, 18-20 Novembre<br />

2003.


In<strong>di</strong>ce<br />

Presentazione.................................................................................................................................................................. Pag. 3<br />

Ag o s tA F., Al e s s A n d r o n i M., An t o n e l l i n i M. & to n d i e. - From fractres to flow, a field-bas<strong>ed</strong> quantitative analysis<br />

of an outcropping carbonate reservoir..................................................................................................................... » 5<br />

Ag o s tA F., to n d i e., An t o n e l l i n i M. & Ay d i n A. - Deformation along the lea<strong>di</strong>ng <strong>ed</strong>ge of the Majella thrust<br />

sheet, central Italy................................................................................................................................................... » 9<br />

Ag o s t i n i s.& CA l A M i tA F. - Il ruolo <strong>del</strong>l’er<strong>ed</strong>ità strutturale nello sviluppo <strong>del</strong>la catena appenninica: l’esempio <strong>del</strong>la<br />

Montagna Grande e <strong>del</strong> Monte Genzana (Appennino centrale abruzzese)............................................................. » 13<br />

Aqu è r. & tAvA r n e l l i e. - Reconstruction of pre-thrusting basin architecture: the contribution of the 3D mo<strong>del</strong>ling<br />

approach..................................................................................................................................................... » 17<br />

Ar g n A n i A. & ro g l e d i s. - The tectonic evolution of the Pisa-Viareggio basin: implications for the Neogene basins<br />

of Tuscany................................................................................................................................................................ » 21<br />

BAl s A M o F., st o r t i F., sA lv i n i F., si l vA A. & li M A C. - Grain size, shape, porosity and permeability evolution<br />

of extensional fault zones develop<strong>ed</strong> in poorly lithifi<strong>ed</strong>, low-porosity sandstones of the Barreiras Formation,<br />

NE Brazil............................................................................................................................................. » 23<br />

BA r C h i M. r., Co l l e t t i n i C., de PA o l A n., FA u l k n e r d.,lu PAt t e l l i A., Mi r A B e l l A F. & tr i P P e t tA F. - Lithological<br />

and Mechanical Control on the Base of the Crustal Seismogenic Zone: a Case-Study from the Northern Apennines<br />

of Italy............................................................................................................................................................. » 24<br />

BA r n A B A C., MA r e l l o l., vu A n A., PA l M i e r i F., ro M A n e l l i M., Pr i o l o e. & Br A i t e M B e r g C. - Subsurface structure<br />

of the Tagliamento valley (NE Italy) using Microtremors and Gravity Anomaly................................................... » 27<br />

BA r r e C A g. & Mo n A C o C. - Neogene rotations in the Sicilian-Maghrebian Chain: new structural data from the<br />

Madonie Mountains................................................................................................................................................. » 28<br />

Ben s i s., FA n u C C i F. & Po d d A F. - Strutture a macro e mesoscala <strong>del</strong>le Dinari<strong>di</strong> triestine (carta GEO-CGT<br />

<strong>del</strong> FVG)................................................................................................................................................................ » 35<br />

Bo n i n i l., <strong>di</strong> Bu C C i d. se n o s., to s C A n i g., vA l e n s i s e g. - Compatibilità <strong>del</strong>l’assetto strutturale superficiale con la<br />

faglia sismogenetica profonda nello Stretto <strong>di</strong> Messina in base ai mo<strong>del</strong>li analogici............................................. » 38<br />

Bo r g n A A., Br o g i A., FA B B r i n i l. & li o t tA d. - Strutture tettoniche potenzialmente attive: la fissure-ridge <strong>di</strong> Bagni<br />

S.Filippo (Monte Amiata)........................................................................................................................................ » 39<br />

Bro g i A., FA B B r i n i l. & li o t tA d. - Strutture geologiche e circolazione idrotermale: il pull-apart <strong>di</strong> Bagnore<br />

(Monte Amiata)....................................................................................................................................................... » 40<br />

Br o g i A., FA B B r i n i l., li o t tA d., Me C C h e r i M. & Mo n tA u t i A. - Faglie trascorrenti potenzialmente attive nel complesso<br />

vulcanico <strong>del</strong> Monte Amiata (Toscana meri<strong>di</strong>onale).................................................................................... » 41<br />

Br o z z e t t i F. & lu C h e t t i l. - Timing of contractional deformations in the Umbria Preapennines: an overview........... » 42<br />

Bu C C i F., gu g l i e l M i P., Ad u r n o i. , tAvA r n e l l i e., Prosser g. & gu e g u e n e. - The history of a post-orogenic<br />

trough:the high Agri Valley, Southern Apennines, Italy.......................................................................................... » 47<br />

Bu r r At o P., de MA rt i n i P.M., Po l i M.e. & zA n F e r r A r i A. - Geometric and kinematic mo<strong>del</strong>ing of the thrust fronts<br />

in the Montello-Cansiglio area from geologic and geodetic data (Eastern Southalpine Chain, NE Italy).............. » 48<br />

CA l A M i tA F., es e s t i M e P., PA C e P., PA lt r i n i e r i W.,sC i s C i A n i v. & tAvA r n e l l i e. - The Pliocene-Quaternary salient<br />

structures of the Central and Southern Apennine chain inherit<strong>ed</strong> frompre-thrusting normal faults........................ » 51<br />

CA P u t o r., kl i n P., MA r e l l o l., ni C o l i C h r., PA l M i e r i F.& Pr i o l o e. - The complex 3D geology of the 2002 San-<br />

Giuliano epicentral area bas<strong>ed</strong> on structural mapping and gravimetric survey....................................................... » 55<br />

Ch i A r i o t t i l., Pe r o t t i C.r., ri n A l d i M., Be rto z z i g. & CA r r u B A s. - Morfologia <strong>ed</strong> evoluzione strutturale <strong>di</strong> un<br />

corpo <strong>di</strong>apirico nel settore iraniano <strong>del</strong> Golfo Persico............................................................................................ » 59


250<br />

in d i C e<br />

Ci A n FA r r A P. & sA lv i n i F. - How active is the East Antarctic craton?............................................................................ Pag. 62<br />

Co l l e t t i n i C., ne i M e i j e r A., MA r o n e C.,vi t i C. & FA o r o i. - Frictional properties of foliat<strong>ed</strong> fault rocks................... » 63<br />

Co r B i F., Fu n i C i e l l o F., <strong>di</strong> giusePPe e., FA C C e n n A C. & rA n A l l i g. - Gelatins for laboratory mo<strong>del</strong>s: rheological -<br />

physical properties and new perspectives................................................................................................................ » 65<br />

CrisPini l., Fe d e r i C o l., CA P P o n i g. & tA l A r i C o F. - First fin<strong>di</strong>ng of syntectonic gold mineralization in northern<br />

Victoria Land (Antarctica): a clue for the Paleo-Pacific margin of Gondwana....................................................... » 66<br />

d’Ad d A P., zA n C h i A., Be r r A F., MA l u s à M., Be r g o M i M. & tu n e s i A. - Structural setting of the Gan<strong>di</strong>no –Sovere<br />

thrust system and new dating of Tertiary magmatic bo<strong>di</strong>es (Orobic Alps, Italy)..................................................... » 68<br />

<strong>di</strong> nA C C i o d., Bo n C i o P., Br o z z e t t i F., & PA z z A g l i A F.j. - Morphotectonics of the Lunigiana-Garfagnana Plio-<br />

Quaternary grabens (Northern Apennines).............................................................................................................. » 70<br />

<strong>di</strong> to r o g., de l gA u d i o P., hA n r., hi r o s e t., ni e l s e n s., sh i M A M o t o t., CAvA l l o A. - Frictional properties of<br />

mantle rocks during earthquakes............................................................................................................................. » 73<br />

<strong>di</strong> PA s q u A l e M. & oC C h i P i n t i r. - Altopiano Ragusano (Sicilia Sud-Orientale): note <strong>di</strong> geologia strutturale................ » 76<br />

es t e B A n F., tA s s o n e A., Me n i C h e t t i M., Ce r r e d o M. e., rA PA l i n i A., li P PA i h. & vi l A s j.F. - Suscettività magnetica<br />

e assetto strutturale nelle Ande inTierra <strong>del</strong> Fuego.................................................................................................. » 80<br />

FA B B r i n i l., Br o g i A. & li o t tA d. - Faglie transtensive e mineralizzazioni a solfuri nell’area meri<strong>di</strong>onale <strong>del</strong> Monte<br />

Amiata: la struttura <strong>del</strong> Monte Civitella (Toscana meri<strong>di</strong>onale).............................................................................. » 84<br />

FA C C e n n A C., Br u n j.P. & ro s s e t t i F. - Exhumation of high-pressure rocks driven by slab rollback........................... » 85<br />

FAC C e n n A C., de FiliPPis l., so l i g o M., Bi l l i A., Fu n i C i e l l o r., ro s s e t t i C. & tu C C i M e i P. - Cicli deposizionali<br />

<strong>del</strong> travertino Lapis Tiburtinus durante il tardo Pleistocene (Tivoli, Italia centrale): influenze<br />

climatiche e tettoniche........................................................................................................................................... » 86<br />

FA n t o n i r. & sC o t t i P. - Time of hydrocarbon generation vs trasforming age in Mesozoic oil play in Po Plain......... » 89<br />

FA n u C C i F., vA r g A s Co r d e r o i., lo r e t o M. F. & ti n i v e l l A u. - Mo<strong>del</strong>li <strong>di</strong> accrezione <strong>del</strong> margine cilenocentro-meri<strong>di</strong>onale.................................................................................................................................................<br />

» 93<br />

Fe d e r i C o l., CrisPini l. & CA P P o n i g. - Paleozoic strike-slip tectonics in northern Victoria Land, (Antarctica) and<br />

the Borchgrevink Orogeny: is there a link?............................................................................................................. » 95<br />

Fer r A n t i l., MA z z e l l A M. e., Mo n A C o C., Mo r e l l i d.& sA n t o r o e. - Active transpression within the frontal<br />

zone of the Southern Apennines in northern Calabria by integration of geomorphologic, structural and<br />

marine geophysical data......................................................................................................................................... » 97<br />

Fe r r A r i n i F., Bo n C i o P., PA P P o n e g., Ce s A r A n o M. & Au C e l l i P. - Nuovi dati su geometria, cinematica e segmentazione<br />

<strong>del</strong> sistema <strong>di</strong> faglie attive lungo il margine nord-orientale <strong>del</strong> Matese (Molise).......................................... » 100<br />

gu e r r i e r o v., MA z z o l i s. & vi tA l e s. - Analisi statistica multi-scala <strong>di</strong> dati <strong>di</strong> scan line condotte su analoghi <strong>di</strong><br />

reservoir <strong>di</strong> idrocarburi............................................................................................................................................. » 104<br />

kA s t e l i C v., Bu r r At o P. & vr A B e C M. - Influence of inherit<strong>ed</strong> geometry and fault history on the seismogenic activity<br />

and potential of strike-slip fault system in NW Slovenia: the case study of Ravne Fault................................ » 108<br />

lA u r i tA s., CAvA l C A n t e F., Be lv i s o C. & Prosser g. - The Liguride complex of the Pollino area (Southern Apennines):<br />

tectonic setting and preliminary mineralogical data....................................................................................... » 111<br />

livio F., si l e o g., Be r l u s C o n i A., Mi C h e t t i A.M., Mu e l l e r k., CA r C A n o C. & ro g l e d i s. - Quaternary evolution<br />

of “blind” fault-relat<strong>ed</strong> folds in the Central Po Plain (Northern Italy).................................................................... » 115<br />

MA F F i o n e M., sP e r A n z A F. & FA C C e n n A C. - Ben<strong>di</strong>ng and growth of the Central Andeanplateau: paleomagnetic and<br />

structural constraints from the Eastern Cor<strong>di</strong>llera(22-24°S, NW Argentina).......................................................... » 121<br />

MA g g i M., ro s s e t t i F., te C C e F. & vi g n A r o l i g. - Fluid assist<strong>ed</strong> shearing at the depth of the Brittle-Ductile Transition:<br />

an integrat<strong>ed</strong> structural, petrological, fluid inclusions study of the Erbalunga shear zone, Schistes Lustrés<br />

Nappe, Alpine Corsica (France)............................................................................................................................... » 125<br />

MA n n i n o i., Ci A n FA r r A P., sA lv i n i F. - Mo<strong>del</strong>ling the fractur<strong>ed</strong> carbonatic rocks of Lepini Mountains to infer deep<br />

hydrogeological pathways........................................................................................................................................ » 126


in d i C e<br />

MA r r o n i M., PA n d o l F i l., gi u n tA g. & MA l A s o M A A. - Tectono-metamorphic history of the Duarte Terrane (Jarabacoa<br />

Area, Hispaniola Island): insights on the tectonic evolution of the northern rim of the Caribbean Oceanic Plateau...... Pag. 127<br />

MA s s i r o n i M., Me n e g o n l. & Bi s tA C C h i A. - On fault misorientation in exhum<strong>ed</strong> metamorphic complexes: sliptendency<br />

analysis of faults in the Alpine orogenic w<strong>ed</strong>ge....................................................................................... » 131<br />

Me n e g o n l. & Pe n n A C C h i o n i g. - Local shear zone pattern and bulk deformation in the Gran Para<strong>di</strong>so metagranite<br />

(NW Italian Alps).................................................................................................................................................... » 133<br />

Min e l l i l., FA C C e n n A C. & CA s e r o P. - Structure and evolution of the Calabrian accretionary w<strong>ed</strong>ge (Southern<br />

Italy).............................................................................................................................................................. » 135<br />

Mi n z o n i n. - Nuovi dati sul ciclo varisico in Calabria................................................................................................... » 137<br />

Mi t t e M P e r g h e r s., dA l l A i l., <strong>di</strong> to r o g. & Pe n n A C C h i o n i g. - Involvement of pore fluids in frictional melting from<br />

stable isotopes study of pseudotachylytes............................................................................................................... » 139<br />

Mo l l i g., Co rt e C C i g., vA s e l l i l. & ot t r i A g. - Caratteri strutturali e interazione fluido-roccia in una faglia normale<br />

ad alto angolo nei marmi <strong>di</strong> Carrara............................................................................................................... » 142<br />

ni g r o F., sA lvA g g i o g., FAvA r A r. & re n d A P. - From compression to extension during the Sicily chain buil<strong>di</strong>ng.... » 144<br />

ni g r o F., sA lvA g g i o g., FAvA r A r. & re n d A P. - Evoluzione tettonica mesozoico-terziaria <strong>del</strong>la Sicilia centrosettentrionale............................................................................................................................................................<br />

» 148<br />

ni g r o F., FAvA r A r., re n d A P., sA lvA g g i o g., Ar i s C o g. & Pe r r i C o n e M. - Neotectonic uplift and tilting of crustal<br />

blocks in Northern Sicily......................................................................................................................................... » 153<br />

ol i v e t t i v., BA l e s t r i e r i M. l., st u A rt F. M. & FA C C e n n A C. - Exhumation and uplift of the Peloritani Mts (south<br />

Italy): constraints from apatite fission-tracks and (U-Th)/He thermochronometry................................................. » 157<br />

Pe r o n i j., tA s s o n e A., Me n i C h e t t i M., li P PA i h. &vi l A s j.F. - Geologia e geofisica <strong>del</strong> plutone <strong>del</strong> Cerro Trapecio<br />

- Tierra <strong>del</strong> Fuego - Argentina.................................................................................................................................. » 160<br />

Pi t tA r e l l o. l., Pe n n A C C h i o n i g. & <strong>di</strong> to r o g. - Deep-seat<strong>ed</strong> pseudotachylyte in the Ivrea Zone metagabbros (Southern<br />

Alps, Italy)...................................................................................................................................................... » 164<br />

Po l i M.e. - Carta geologica dei Monti la Berna<strong>di</strong>a (Prealpi Giulie meri<strong>di</strong>onali, Friuli)............................................... » 168<br />

Po l i M.e., zA n F e r r A r i A. & Mo n e g At o g. - Geometria, cinematica e attività pliocenico-quaternaria <strong>del</strong> sistema <strong>di</strong><br />

sovrascorrimenti Arba-Ragona (Alpi Meri<strong>di</strong>onali orientali, Italia NE)................................................................... » 172<br />

PoM P o s o g. & Pi z z i A. - Evidenze <strong>di</strong> tettonica recente <strong>ed</strong> attiva nel settore esterno sepolto <strong>del</strong>l’Appennino centrale<br />

abruzzese......................................................................................................................................................... » 176<br />

Po n t o n M. - Analisi in profon<strong>di</strong>tà <strong>di</strong> strutture mesoalpine e neoalpine nelle Alpi Meri<strong>di</strong>onali orientali...................... » 179<br />

Pu n z o M., Br u n o P.P. & FA C C e n n A C. - Seismic Evidence of multiple intrusion episodes within the shallow subsurface<br />

of Campi Flegrei and Ischia Island.................................................................................................................. » 183<br />

ro d A M., MA r o t tA A.M. & sPA l l A M.i. - Influenza <strong>del</strong>l’idratazione <strong>del</strong> cuneo <strong>di</strong> mantello sull’evoluzione <strong>di</strong> un<br />

sistema <strong>di</strong> subduzione oceano/continente: una simulazione numerica.................................................................... » 184<br />

ro s s e t t i F., nA s r A B A d y M., vi g n A r o l i g., th e y e t. & ge r d e s A. - Early Cretaceous granulite facies migmatites<br />

from the Sabzevar Range ophiolitic mélange (NE Iran) and its bearing on the closure of Neotethys.................... » 188<br />

ru s t i C h e l l i A.,to n d i e. & Ag o s tA F. - Preliminary results about mechanical stratigraphy of Oligo-Miocene carbonate<br />

grainstones (Majella Mountain,Abruzzo)........................................................................................................ » 190<br />

sA lv i n i F. - Inferring the Fracturing Intensity Patterns in Tectonic Structures by the Computation of the Time Stress<br />

Integral (TSI)........................................................................................................................................................... » 194<br />

sAto l l i s., CA l A M i tA F. & Besse j. - The 100-150 Ma Apparent Polar Wander Path for Adria/Africa.......................... » 196<br />

sB r e s C i A v., tu r C o e. & MiliA A. - Risultati preliminari <strong>del</strong>l’analisi sismica <strong>del</strong> Golfo <strong>di</strong> Squillace (Calabria ionica):<br />

ricostruzione 3D............................................................................................................................................... » 199<br />

sC i s C i A n i v. & CA l A M i tA F. - Active intraplate deformation within Adria: examples from the Adriatic region............ » 203<br />

sM i t h s.A.F., Co l l e t t i n i C., ho l d s W o rt h r.e., MA C P h e r s o n C.g. & vi t i C. - Multiple mechanisms of fault-zone<br />

weakening along a continental low-angle normal fault: The Zuccale fault, Elba Island........................................ » 207<br />

251


252<br />

in d i C e<br />

sPA l l A M. i., zA n o n i d., Wi l l i A M s P.F. & gosso g. - P-T evolution in the western Thor-O<strong>di</strong>n dome, Monashee<br />

Mountains, Cana<strong>di</strong>an Cor<strong>di</strong>llera.............................................................................................................................. Pag. 210<br />

sPl e n d o r e r., MA r o t tA A. M. & BA r z A g h i r. - Origine <strong>del</strong>l’attuale campo <strong>di</strong> sforzo nella zona <strong>del</strong>l’Arco<br />

Calabro.................................................................................................................................................................... » 214<br />

st o rt i F. & BA l s A M o F. - A workflow for laser <strong>di</strong>ffraction granulometry of carbonate cataclastic rocks...................... » 218<br />

tA rtA r o t t i P., Fo n tA n A e. & CrisPini l. - Defomation pattern in a massive pond<strong>ed</strong> lava flow at ODP-IODP Site<br />

1256 (Pacific Ocean): a core and log approach........................................................................................................ » 219<br />

to n d i e., Ag o s tA F. & Ci l o n A A. - Processi <strong>di</strong> fagliazione nei grainstones carbonatici porosi: implicazioni per la<br />

caratterizzazione dei serbatoi naturali <strong>di</strong> geoflui<strong>di</strong>.................................................................................................. » 221<br />

tr i P P e t tA F. Co l l e t t i n i C., vi n C i g u e r r A s. & Me r e d i t h P.g. - Physical properties of triassic evaporites from boreholes<br />

and outcrops.................................................................................................................................................... » 225<br />

vA n n o l i P., BA r B A s., BA s i l i r., Bu r r Ato P., Fr A C A s s i u., kA s t e l i C v., ti B e rt i M.M. &vA l e n s i s e g. - Seismogenic<br />

sources in northeastern Italy and western Slovenia: an overview from the Database of In<strong>di</strong>vidual Seismogenic<br />

Sources (DISS 3.0.4)................................................................................................................................................ » 227<br />

vi g n A r o l i g., ro s s e t t i F., th e y e t. & BA l s A M o F. - P-T con<strong>di</strong>tions of mylonitic shearing in the Granite Harbour<br />

Intrusive complex ofthe Wilson Terrane, Deep Freeze Range, northern Victoria Land, Antarctica........................ » 229<br />

vi tA l e s., lA i e n A F., no v i e l l o A., Ci A r C i A s., MA z z o l i s.& to r r e M. - Analisi strutturale <strong>del</strong>l’Unità Parasicilide<br />

affiorante nell’area <strong>di</strong> Castelnuovo Cilento (Campania).......................................................................................... » 232<br />

vi tA l e s.& MA z z o l i s. - Ruolo <strong>del</strong>lo strain hardening nell’evoluzione <strong>del</strong>le zone <strong>di</strong> taglio: da deformazione omogenea<br />

ad eterogenea................................................................................................................................................. » 235<br />

zA M P i e r i d., FA B B r i P. & Po l A M. - Structural constraints to the Euganean Geothermal Field (NE Italy).................... » 238<br />

zA n C h e t tA s., d’Ad d A P., BA r B e r i n i v., Fu s i n. & zA n C h i A. - Pseudotachylytes along the Orobic Thrust, Southern<br />

Alps, Bergamo: a proxy for the Eo-Alpine deformation?........................................................................................ » 241<br />

zA n C h i A., zA n C h e t tA s., d’Ad d A P., Ag l i A r d i F., Co n t i M.,gA l B i At i F., Be r r A F., sA lv i F. - Utilizzo <strong>di</strong> dati geologico-strutturali<br />

<strong>di</strong> terreno per la mo<strong>del</strong>lazione 3D: esempi <strong>di</strong> strutture Alpine........................................................ » 245<br />

zu l i A n i d., FA B r i s P., PA l M i e r i F. & Pr i o l o e. - FReDNet: un sistema per il monitoraggio <strong>del</strong>le deformazioni crostali<br />

e per il posizionamento <strong>di</strong> precisione in tempo reale in Friuli-V. G................................................................. » 246

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!