04.06.2013 Views

RETI DI TELECOMUNICAZIONI - TLCNETGROUP Home Page

RETI DI TELECOMUNICAZIONI - TLCNETGROUP Home Page

RETI DI TELECOMUNICAZIONI - TLCNETGROUP Home Page

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

©<br />

Corso di Studi in Ing. delle Telecomunicazioni<br />

LAUREA in INGEGNERIA DELLE<br />

<strong>TELECOMUNICAZIONI</strong><br />

<strong>RETI</strong> <strong>DI</strong> <strong>TELECOMUNICAZIONI</strong><br />

Stefano Giordano<br />

Lezione n.9<br />

“Accoppiatore Ibrido Direzionale; cancellatore d’eco;<br />

segnalazione; traffico e routing nelle reti telefoniche<br />

Gruppo di Ricerca in Reti di Telecomunicazioni<br />

Dipartimento di Ingegneria della Informazione:<br />

Elettronica, Informatica, Telecomunicazioni<br />

1


©<br />

L’accoppiatore ibrido direzionale<br />

Hybrid<br />

transformer<br />

Il libro mostra questa figura 4.46 che risulta forviante!<br />

2


Telefono analogico<br />

Segnale ricevuto<br />

4 Fili<br />

Segnale trasmesso<br />

Segnale ricevuto<br />

4 Fili<br />

Segnale trasmesso<br />

©<br />

Hybrid<br />

transformer<br />

Hybrid<br />

transformer<br />

Modem fonico<br />

L’accoppiatore ibrido direzionale<br />

2 Fili<br />

(bidirezionale)<br />

2 Fili<br />

(bidirezionale)<br />

Hybrid<br />

transformer<br />

4 Fili<br />

Hybrid<br />

transformer<br />

Matrice di<br />

commutazione<br />

Autocommutatore<br />

3


©<br />

in<br />

out<br />

Schema elettrico equivalente dell’accoppiatore<br />

ibrido direzionale “forchetta telefonica”<br />

Z<br />

Z<br />

Z/2<br />

N<br />

N<br />

a<br />

b<br />

c<br />

d<br />

e<br />

2N<br />

2Z<br />

linea<br />

Accoppiatore ibrido<br />

direzionale<br />

4


©<br />

in<br />

out<br />

Trasferimento del segnale in linea<br />

Z<br />

-<br />

Z<br />

Z/2<br />

Z/2<br />

Z/2<br />

+<br />

a<br />

-b<br />

+<br />

c<br />

-<br />

d<br />

e<br />

2N<br />

2Z<br />

linea<br />

Accoppiatore ibrido<br />

direzionale<br />

5


©<br />

out<br />

Trasferimento del segnale dalla linea<br />

Z<br />

Z<br />

Z/2<br />

a<br />

b<br />

c<br />

d<br />

e<br />

2N<br />

2Z<br />

linea<br />

in<br />

Accoppiatore ibrido<br />

direzionale<br />

6


0 dB<br />

©<br />

L’accoppiatore ibrido direzionale<br />

Segnale ricevuto<br />

30-40dB<br />

Segnale trasmesso<br />

-3.5 dB<br />

Hybrid<br />

transformer<br />

-L dB<br />

3-4 dB<br />

3-4 dB<br />

-3.5 dB<br />

Se si desidera un rapporto segnale<br />

disturbo di almeno 20 dB la lunghezza<br />

della linea non può superare 8 Km<br />

(assumendo un’attenuazione di 1<br />

dB/Km)<br />

35 dB<br />

0 dB<br />

7


Segnale trasmesso<br />

©<br />

Eco<br />

Eco generata dal non perfetto<br />

adattamento della linea<br />

Si produce una replica ritardata e distorta del segnale trasmesso<br />

all’altro capo della linea<br />

8


©<br />

+ +<br />

- Stima dell’eco<br />

Cancellatore<br />

d’eco<br />

Segnale trasmesso<br />

Cancellatore d’eco<br />

Eco generata dal non perfetto<br />

adattamento della linea<br />

Si produce una replica ritardata e distorta del segnale trasmesso<br />

all’altro capo della linea<br />

9


©<br />

La rete di Segnalazione<br />

Segnalazione<br />

d’utente<br />

Segnalazione<br />

intercentrale<br />

RETE A COMMUTAZIONE <strong>DI</strong> PACCHETTO<br />

CON MODALITA’ DATAGRAMMA<br />

PIANO DATI<br />

PIANO <strong>DI</strong> CONTROLLO<br />

10


Signaling Systems No. 7 (SS7)<br />

• Out-of-band Signaling System for the exchange of<br />

call control information between network switching offices<br />

in support of voice and non voice services<br />

• Packet switching is the method used for transferring messages<br />

throughout the network<br />

• Functions<br />

• setup and tear down of network trunks<br />

• database access (initial purpose)<br />

• Main features<br />

• Higher utilization of network trunks<br />

• Additional services (800 numbers, card validation, caller<br />

line identification, ISDN supplementary services)<br />

©<br />

• basis for the all-digital intelligent network<br />

11


©<br />

Network Signaling Systems<br />

• Almost totally hidden from the user<br />

• Essential components that provides a mechanism for<br />

network switches to exchange routing, link status and<br />

connection control information<br />

• Signaling schemes have evolved significantly over time<br />

• DC Signaling<br />

• In-Band Signaling<br />

• Out-of-Band Signaling<br />

• Common Channel Signaling<br />

• Signaling Systems No. 7 (SS7)<br />

12


• Prior to the 70s<br />

©<br />

In-Band Signaling<br />

• Network signals shared the same physical channel as the call<br />

that was being set-up<br />

• Carried within the user’s 300-to-3400 Hz voiceband<br />

• Network signals and user data did not interfere with each<br />

other since they usually occurred at different times<br />

• Three major functions<br />

• supervisory: monitor circuit status (on- and off-hook signals)<br />

• addressing: provide routing information<br />

• call information: provide call status and progress information<br />

13


• SF (Single-Frequency) signaling: 2600 Hz tone ↔ idle trunk<br />

• MF (Multi Frequency) signaling: within and between networks or<br />

by PBXs accessing the public network<br />

• DTMF (Dual Tone MF) signaling: from user equipment (telephone<br />

or modem) to the network<br />

• Trunks are allocated sequentially (bandwidth wasting)<br />

• Narrow range of functionality<br />

• limited codesets (typically 16 tones)<br />

• relatively long call set-up times<br />

• Susceptible to fraud (underground hacker literature)<br />

©<br />

In-Band Analog Signaling<br />

14


697<br />

770<br />

852<br />

941<br />

©<br />

DTMF (Dual Tone MF) signaling<br />

1 2<br />

4<br />

7 8<br />

*<br />

5 6<br />

0<br />

3<br />

9<br />

#<br />

1209 1336 1477<br />

fi-i fi =<br />

f i<br />

f i+i<br />

15


• Signaling messages are carried outside the user’s voiceband<br />

• frequency channel outside of the voiceband (3700 Hz signaling)<br />

• separate pair of wires (E&M signaling: “Ear” and “Mouth”)<br />

• No false signaling<br />

• Drawbacks:<br />

• one signaling circuit per voice channel<br />

• old analog technology<br />

©<br />

Out-of-Band Signaling<br />

⇒ Common Channel Signaling<br />

16


Common Channel Signaling<br />

• A CCS network is one type of out-of-band signaling network<br />

designed to exchange signaling information between processorequipped<br />

switching offices using signaling channels which are<br />

separate from the user’s voice channel<br />

• Main features<br />

• fast call set-up (3-5 s)<br />

• efficient routing<br />

• long-distance efficiency<br />

• low costs<br />

• signaling for several trunks multiplexed on a single signaling<br />

channel<br />

• additional user services (800 services, credit card verification,<br />

calling party identification)<br />

©<br />

17


©<br />

CCS (SS7) Network Components<br />

• The network comprises nodes called Signaling Points (SPs), which<br />

are interconnected by specialized transmission facilities called<br />

signaling links;<br />

• Three types of SPs:<br />

• SSP: Service Switching Point (or AP: Action Point)<br />

• STP: Signal Transfer Point<br />

• SCP: Service Control Point (NCP: Network Control Point<br />

in the Bell System)<br />

18


©<br />

SCP<br />

La rete SS#7<br />

SSP SSP SSP SSP SSP=Service Switching Point<br />

STP STP<br />

STP STP<br />

SCP<br />

SSP SSP SSP SSP<br />

STP=Signal Transfer Point<br />

SCP=Service Control Point<br />

19


SCP<br />

OSS<br />

©<br />

Operations Support Systems<br />

SSP SSP SSP SSP<br />

STP STP<br />

STP STP<br />

(OSS)<br />

SCP<br />

SSP SSP SSP SSP<br />

• Remote maintenance centers for the<br />

monitoring and management of SS7<br />

& voice networks<br />

• Use of a common command set for<br />

all the network equipment<br />

• Using TCAP and SCCP, the OSS is<br />

capable of sending SS7 messages to<br />

any entity within its own network<br />

• Service Management System (SMS)<br />

• management of SCP<br />

• monitoring<br />

20


SS7 Protocol Stack<br />

• ITU-T Recommendation Q.700 provides an overview of CCS and SS7<br />

• detailed descriptions of SS7 protocols and procedures are contained<br />

in the remaining Q.700 series recommendations<br />

• highly reliable packet-switching protocol, providing all of the services<br />

and functions required by the telephone service providers<br />

• comparison with the OSI model<br />

• layered structure<br />

• four “levels” vs. seven “layers”<br />

• SS7 functions have been refined over the years and tailored for its<br />

specific requirements<br />

• some of OSI functions have no purpose in the SS7 network<br />

and are therefore undefined<br />

• SS7 was developed before the OSI model<br />

©<br />

21


©<br />

Application<br />

Presentation<br />

Session<br />

Transport<br />

Network<br />

Data Link<br />

Physical<br />

SS7 vs. OSI<br />

TCAP<br />

ASP<br />

SCCP<br />

Application Entity<br />

TUP ISUP BISUP<br />

MTP Level 3<br />

MTP Level 2<br />

MTP Level 1<br />

OSI Layer CCS7 Level<br />

22


©<br />

SSP functions<br />

• Main SSP function: to use the information provided by the calling party (such as<br />

dialed digits) and determine how to connect the call<br />

•A routing table identifies which trunk circuit to use to connect the call and which<br />

exchange this trunk terminates at<br />

• An SS7 set up message is sent to this adjacent exchange requesting a circuit<br />

connection on the specific trunk<br />

• The adjacent exchange grants permission to connect this trunk by sending back an<br />

ACK to the originating exchange<br />

23


Signal Transfer Points (STPs)<br />

•ASignal Transfer Point is a packet switch: it concentrates signaling information<br />

from SSPs and switches messages in the CCS network<br />

• The STP is also typically an adjunct to a voice switch<br />

• STPs are paired throughout the CCS network (mate STPs) and can handle several<br />

SSPs in the immediate area<br />

•Traffic and maintenance measurements (network monitoring)<br />

• Usage measurements: billing for long distance service providers and<br />

independent telephone companies<br />

• Three levels of STPs:<br />

• National STP (national plane of the SS7 Network): capable of transferring<br />

messages using the same national standard of protocols<br />

• International STP (international plane of the SS7 Network): used in the<br />

international network with the same function as the national STP<br />

• Gateway STP: serves as an interface into another network<br />

• international plane (protocol conversion)<br />

• interactions between long distance service provider and local telephone<br />

© company<br />

• SS7 protocols are very relevant within the cellular network<br />

24


©<br />

Service Control Point (SCP)<br />

•A Service Control Point is an interface to telephone company databases, used to<br />

store information about<br />

• subscribers’ services<br />

• routing of special service numbers (such as 800 and 900 numbers)<br />

• calling card validation and fraud protection<br />

• (Advanced) Intelligent Network services<br />

• The SCP is usually a computer used as a front end to the database system. New<br />

SCP application are being implemented in STPs, providing an integrated solution<br />

• SCP as the interface to the mainframe or minicomputer system used for the<br />

actual database<br />

• Integrated STP/SCP: the database is resident in the SCP<br />

25


©<br />

SCP: basic models of databases<br />

• The type of database depends on the network<br />

• Each database contains information for a specific application<br />

• Most commonly used databases:<br />

• Call Management Service Database (CMSDB)<br />

• Local Number Portability (LNP)<br />

• Line Information Database (LIDB)<br />

• Business Services Databases (BSDB)<br />

• <strong>Home</strong> Location Register (HLR)<br />

• Visitor Location Register (VLR)<br />

• Call Management Service Database (CMSDB)<br />

• call processing<br />

• routing instructions for special service numbers (such as 800, 900, 976)<br />

• billing information (billing address and third-party billing)<br />

• network management (rerouting around a congested node)<br />

• call sampling (for traffic studies): determine if additional facilities<br />

are needed to handle voice traffic<br />

26


©<br />

Application<br />

Presentation<br />

Session<br />

Transport<br />

Network<br />

Data Link<br />

Physical<br />

SS#7<br />

Application Entity<br />

TCAP<br />

SCCP<br />

TUP ISUP BISUP<br />

MTP Level 3<br />

MTP Level 2<br />

MTP Level 1<br />

OSI Layer CCS7 Level<br />

TUP =Telephone User Part<br />

ISUP = ISDN User Part<br />

BISUP = B-ISDN User Part<br />

TCAP =Transaction Capability Part<br />

SCCP= Signaling Connection Control Part<br />

ASP = Application Service Part<br />

27


©<br />

D-Channel Signaling (ISDN)<br />

Segnalazione<br />

d’utente<br />

Network Layer<br />

Data Link Layer<br />

Segnalazione<br />

intercentrale<br />

28


©<br />

Messaggi Q.931<br />

• SETUP: Dà inizio alla chiamata; contiene il numero chiamato ed altre informazioni<br />

di set-up<br />

• SETACK: Richiesta di maggiori informazioni per dare inizio alla chiamata<br />

• CALPRC: Notifica il ricevimento di un messaggio di SETUP e che la fase di set-up<br />

è iniziata<br />

• PROG: Contiene informazioni sullo stato della chiamata<br />

• ALERT: L’utente chiamato è stato informato dell’arrivo di una chiamata<br />

• CONN: L’utente chiamato ha risposto<br />

• CONACK: Notifica la ricezione di un messaggio CONN<br />

• <strong>DI</strong>SC: Richiede l’abbattimento della connessione<br />

• RLSE: Notifica la ricezione di un messaggio <strong>DI</strong>SC e che l’interlocutore ha abbattuto<br />

la connessione<br />

• RLCOM: Notifica la ricezione di un messaggio RLSE e l’abbattimento della<br />

connessione da parte del mittente<br />

• INFO: Se inviato dal chiamante contiene una o più cifre del numero chiamato;<br />

se inviato dalla rete richiede l’emissione di un segnale acustico (es. occupato)<br />

Messaggio Globale Messaggio locale<br />

29


©<br />

Tipica sequenza di segnalazione<br />

User P<br />

Network<br />

User Q<br />

TE - P<br />

Local<br />

Exchange<br />

Local<br />

Exchange<br />

TE - Q<br />

SETUP<br />

CALPRC<br />

ALERT<br />

Ringing tone<br />

CONN<br />

CONACK<br />

<strong>DI</strong>SC<br />

RLSE<br />

RLCOM<br />

Speech or Data<br />

SETUP<br />

ALERT<br />

CONN<br />

CONACK<br />

<strong>DI</strong>SC<br />

RLSE<br />

RLCOM<br />

30


©<br />

Q.931 & ISUP messages<br />

TE LE SS7 LE TE<br />

SETUP<br />

CALL<br />

PROC.<br />

ALERTING<br />

CONNECT<br />

<strong>DI</strong>SCON.<br />

RELEASE<br />

RELEASE<br />

COMPLETE<br />

Q.931<br />

IAM<br />

CIC 1<br />

ACM<br />

ANM<br />

REL<br />

RLC<br />

SS7<br />

IAM<br />

CALL<br />

SETUP<br />

CIC: Circuit Identification Code<br />

identifies the logical connection<br />

provided by the ISUP<br />

PROC.<br />

ACM<br />

ALERTING<br />

ANM<br />

CONNECT<br />

ACM: Address Complete Message<br />

ANM: Answer Message<br />

IAM: Initial Address Message<br />

REL: Release<br />

REL<br />

RLC: Release Complete<br />

<strong>DI</strong>SCONNECT<br />

CIC 2<br />

RLC<br />

Q.931<br />

RELEASE<br />

RELEASE<br />

COMPLETE<br />

31


©<br />

Concentration<br />

Provide a certain blocking prob.<br />

Traffic and overload control<br />

in telephone networks<br />

Maximize trunks utilization<br />

32


©<br />

N(t)<br />

Trunk Number<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Number of trunks in use<br />

All trunks busy<br />

33


©<br />

Trunk Number<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Processo di arrivo delle chiamate<br />

Processo di Poisson di intensità λ<br />

34


©<br />

Processo di Poisson<br />

I tempi di interarrivo sono indipendenti e distribuiti<br />

esponenzialmente.<br />

In un intervallo di tempo sufficientemente piccolo<br />

∆t possono avvenire solo due cose:<br />

• si presenta una chiamata con probabilità λ ∆t<br />

• non si presenta nessuna chiamata con prob. 1- λ ∆t<br />

35


©<br />

Trunk Number<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

Processo di durata delle chiamate<br />

E[X]=Valor medio della durata di una chiamata<br />

36


©<br />

Carico offerto<br />

(Intensità media di traffico)<br />

A=λ E[X]<br />

Chiam./sec sec.<br />

Formula B di Erlang<br />

Prob. di rifiuto della chiamata<br />

P<br />

B<br />

= N<br />

∑<br />

k = 0<br />

Erlang<br />

N<br />

A<br />

N!<br />

k<br />

A<br />

k!<br />

N è il numero di trunk disponibili, A è il carico offerto<br />

37


©<br />

Utilizzazione<br />

ρ=num . medio di linee occupate/N<br />

Num. medio linee occupate<br />

ρ=λ(1-P B)E(X)/N<br />

Freq. media di chiamate accettate<br />

38


©<br />

Num. di trunk necessari a garantire una prob.<br />

di rifiuto media pari a 1%<br />

Load Trunks Utilization<br />

1 5 0.20<br />

2 7 0.29<br />

3 8 0.38<br />

4 10 0.40<br />

5 11 0.45<br />

6 13 0.46<br />

7 14 0.50<br />

8 15 0.53<br />

9 17 0.53<br />

10 18 0.56<br />

30 42 0.71<br />

50 64 0.78<br />

60 75 0.80<br />

90 106 0.85<br />

100 117 0.85<br />

39


©<br />

A<br />

B<br />

C<br />

Routing Control<br />

D<br />

E<br />

F<br />

Se ciascuna centrale offrisse 10<br />

erlang di traffico alle tre centrali<br />

remote sarebbero necessari 18<br />

canali al fine di garantire una Prob.<br />

di rifiuto pari all’1%. In totale<br />

sarebbero quindi necessari<br />

9x18=162 Trunks<br />

40


©<br />

A<br />

B<br />

C<br />

Tandem<br />

switch 1<br />

Routing Control<br />

Tandem<br />

switch 2<br />

Le centrali di sinistra offrono complessivamente<br />

90 erlang di carico a quelle di destra:<br />

per garantire la stessa prob.di rifiuto sono necessari<br />

solo 106 trunk aumentando inoltre l’utilizzazione delle linee<br />

D<br />

E<br />

F<br />

41


©<br />

Sensibilità alla variazione del carico<br />

Se il carico aumentasse del 10% nel primo caso si<br />

passerebbe a 11 Erlang che a parità di numero di linee<br />

(18) produrrebbe P B =2.45%<br />

Nel secondo caso invece si passerebbe a 99 Erlang ed in<br />

tale condizione a parità del numero di canali (106) si<br />

passerebbe ad un incremento eccessivo della probabilità<br />

di blocco P B =9.5%<br />

42


©<br />

Alternative Routing<br />

Alternative Path<br />

P B’ =10% ⇒ P B =1%<br />

Direct Path<br />

High usage ⇒High P B<br />

P B =10%<br />

43


©<br />

A<br />

Hierarchical Network<br />

Tandem Switch 1 Tandem Switch 2<br />

C<br />

B<br />

Alternative routes<br />

for B-E, C-F<br />

High-usage route B-E<br />

High-usage route C-F<br />

A-D requires 1% blocking probability (priority)<br />

E<br />

F<br />

D<br />

44


©<br />

Dynamic nonhierarchical routing<br />

(DNHR)<br />

Tandem Switch 2<br />

Tandem Switch 1 Tandem Switch 3<br />

A B<br />

The order in which tandem switches are attempted<br />

as alternative routes is determined dynamically<br />

according to the state of the network<br />

45


©<br />

Carried load<br />

Traffic Overload<br />

Network capacity<br />

Offered load<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!