16.02.2016 Views

Riemann

20160213ReciprocitiesForRiemannSurfaces

20160213ReciprocitiesForRiemannSurfaces

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

<strong>Riemann</strong><br />

<br />

2016 2 13 () ∗<br />

http://www.math.tohoku.ac.jp/˜kuroki/LaTeX/20160213ReciprocitiesFor<strong>Riemann</strong>Surfaces.pdf<br />

<br />

0 2<br />

1 Heisenberg 2<br />

1.1 <strong>Riemann</strong> . . . . . . . . . . . . . . . . . . . . . 2<br />

1.2 Heisenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />

1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

2 tame Weil 3<br />

2.1 tame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

2.2 tame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

2.3 tame Weil . . . . . . . . . . . . . . . . . . . . . . 6<br />

2.4 Steinberg . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

2.5 tame Steinberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

3 Contou-Carrère 8<br />

3.1 Laurent . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

3.2 Contou-Carrère . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

3.3 Contou-Carrère . . . . . . . . . . . . . . . . . . . . . . . 11<br />

3.4 Contou-Carrère . . . . . . . . . . . . . . . . . . 11<br />

3.5 Contou-Carrère Steinberg . . . . . . . . . . . . . . . . . . . . . . 13<br />

4 13<br />

5 : 13<br />

∗ 2016 2 16 () Ver.1.0.


2 1. Heisenberg <br />

0 <br />

<strong>Riemann</strong> tame Contou-Carrère <br />

.<br />

twitter . <br />

: https://twitter.com/genkuroki/status/694780107794182144<br />

1 Heisenberg <br />

1.1 <strong>Riemann</strong> <br />

X <strong>Riemann</strong> , X K = C(X) <br />

. x ∈ X , K x ̂K x . ,<br />

z(x) = 0 x z , ̂K x Laurent <br />

C((z)) . x Laurent K ⊂ ̂K x <br />

. C[[z]] ⊂ K x Ôx .<br />

∏ ̂K x∈X x A X :<br />

{<br />

A X = (f x ) x∈X ∈ ∏ }<br />

∣ x f x ∈ Ôx .<br />

x∈X<br />

A X <strong>Riemann</strong> X . K → A X , f ↦→ (f) x∈X <br />

K ⊂ A X .<br />

1.2 Heisenberg <br />

C Lie A x C Lie <br />

h X = A x ⊕ C :<br />

[(f x ) x∈X , (g x ) x∈X ] = ∑ x∈X<br />

Res x (f x dg x )<br />

(<br />

(fx ) x∈X , (g x ) x∈X ∈ A X<br />

)<br />

.<br />

Res x x . x f x , g x ∈ Ôx<br />

. h X Heisenberg .<br />

Heisenberg 1 .<br />

1 , , [11] .<br />

Heisenberg [11] 2.1 . Heisenberg h x = C((z)) ⊕ C <br />

[z m , z n ] = mδ m+n,0 [11] 2.1 a m z m . <br />

Lie C((z)) ( x ) Lie<br />

. C[[z]] z , z −1 C[z −1 ] x <br />

. <br />

z −1 C[z −1 ] . <strong>Riemann</strong> <br />

.


1.3. 3<br />

1.3 <br />

,<br />

∑<br />

Res x (f dg) = 0<br />

x∈X<br />

(f, g ∈ K = C(X))<br />

K = C(X) .<br />

Heisenberg h A Lie A X ,<br />

K = C(X) . <br />

.<br />

, 2 .<br />

2 tame Weil <br />

<strong>Riemann</strong> .<br />

[4], [7] .<br />

2.1 tame <br />

x Laurent f ∈ ̂K x = C((z)) v x (f) <br />

. f = a 0 z r + a 1 z r+1 + a 2 z r+2 · · · , r ∈ Z, a i ∈ C, a 0 ≠ 0 v x (f) = r <br />

, v x (0) = ∞ . f ∈ ̂K x v x (f) ≧ 0 f ∈ Ôx . f ∈ Ôx<br />

f = a 0 + a 1 z + a 2 z 2 + · · · , a i ∈ C , f x f(x) = a 0 ∈ C <br />

(z(x) = 0 ).<br />

f, g ∈ ̂K × x tame [f, g] x ∈ C× (tame symbol) :<br />

[<br />

[f, g] x<br />

= (−1) v x(f)v x (g) f<br />

v x<br />

]<br />

(g)<br />

(x).<br />

g v x(f)<br />

, v x (f v x(g) /g v x(f) ) = 0 , f v x(g) /g v x(f) x [f v x(g) /g v x(f) ](x) <br />

, 0 .<br />

<strong>Riemann</strong> tame (Weil <br />

) 3 .<br />

2 [11] pp.210–211 . <br />

. x i ∈ X z i z i (x i ) = 0 <br />

. x i X 1-form ω , x i <br />

g i = g i (z i )dz i ∈ C((z))dz , , x i X f <br />

, ∑ i Res z i=0(f(z i )g i (z i )dz i ) = ∑ x∈X (fω) = 0 . , g i = g i ((z i ))dz i ∈ C((z i ))dz i<br />

x i X 1-form <br />

. , x i X f <br />

∑<br />

i Res z i =0(f(z i )g i (z i )dz i ) = 0 . ([11] p.210 <br />

) . <br />

<strong>Riemann</strong> .<br />

, P SL 2 (Z) <br />

<strong>Riemann</strong> 2 . <br />

(<br />

) .<br />

3 . 0 (resultant) .


4 2. tame Weil <br />

2.2 tame <br />

tame tame <br />

.<br />

x 0 x 0 <br />

C . 4 :<br />

1<br />

2πi<br />

∫<br />

(log z · d log z − d log z · log x 0 )<br />

C<br />

= 1 ∫<br />

d ( (log z) 2) − log x 0<br />

4πi C<br />

= 1 (<br />

(log x0 + 2πi) 2 − (log x 0 ) 2) − log x 0 = πi.<br />

4πi<br />

exponential −1 . tame <br />

.<br />

f, g ∈ K × = C(X) × . f, g X <br />

S .<br />

<strong>Riemann</strong> X g 5 , X , X 4g <br />

6 . , S <br />

4g . 4g x 0 , x 0 <br />

S .<br />

x ∈ S , x 0 x x 0 <br />

4g C x . ,<br />

[ ∫ 1 (<br />

[f, g] x<br />

= exp log f · d log g − d log f · log g(x0 ) )]<br />

(∗)<br />

2πi C x<br />

. . φ(f, g) .<br />

log(ab) = log a + log b φ(fg, h) = φ(f, h)φ(g, h), φ(f, gh) = φ(f, g)φ(f, h) <br />

. φ bimultiplicative 7 .<br />

0 . <br />

[12] Weil . <br />

.<br />

4 [4] p.153 . <br />

.<br />

5 g g . <br />

. ( 1 ) . 4g <br />

α 1 , β 1 , α 1, ′ β 1, ′ . . . , α g , β g , α g, ′ β g ′ , α′ i α−1 i , β i ′ β−1 <br />

, g ( g ) .<br />

6 <strong>Riemann</strong> 4g .<br />

7 G, H, K , φ : G × H → K bimultiplicative <br />

φ(gg ′ , h) = φ(g, h)φ(g ′ , h), φ(g, hh ′ ) = φ(g, h)φ(g, h ′ ) (g, g ′ ∈ G, h, h ′ ∈ H) <br />

. G, H, K Abel , bimultiplicative φ : G × H → K G ⊗ Z H → K,<br />

g ⊗ h ↦→ φ(g, h) . G ⊗ Z H G, H Z Z<br />

.


2.2. tame 5<br />

φ(f, g) = φ(g, f) −1 :<br />

∫<br />

1 (<br />

log f · d log g − d log f · log g(x0 ) )<br />

2πi C x<br />

= 1 (<br />

(log f(x0 ) + 2πi v x (f))(log g(x 0 ) + 2πi v x (g)) − log f(x 0 ) · log g(x 0 )<br />

2πi ∫<br />

− d log f · log g − 2πi v x (f) log g(x 0 ) )<br />

C x<br />

= log f(x 0 ) · v x (g) + 2πi v x (f)v x (g) − 1 ∫<br />

d log f · log g<br />

2πi C x<br />

= − 1 ∫<br />

(<br />

d log f · log g − log f(x0 ) · d log g ) + 2πi v x (f)v x (g).<br />

2πi C x<br />

exponential φ(f, g) = φ(g, f) −1 .<br />

x f, g 0 , Cauchy φ(f, g) = 1<br />

.<br />

f g f = z vx(f) f 0 , g = z vxg g 0 , v x (f 0 ) = 0, v x (g 0 ) = 0 . <br />

[ ∫<br />

]<br />

1<br />

φ(z, z) = exp (log z · d log z − d log z · log x 0 ) = exp[πi] = −1,<br />

2πi C<br />

[ ∫<br />

x<br />

]<br />

1<br />

φ(f 0 , z) = exp (log f 0 · d log z − d log f 0 · log x 0 ) = exp(log f 0 (x)) = f 0 (x),<br />

2πi C x<br />

φ(z, g 0 ) = φ(g 0 , z) −1 = g 0 (x) −1 ,<br />

φ(f 0 , g 0 ) = 1.<br />

(∗) .<br />

(∗) (iterated integral, [3]) .<br />

1-forms ω 1 , . . . , ω r γ(t) (0 ≦ t ≦ 1) iterated integral ∫ ω γ r ◦ · · · ◦ ω 1 <br />

: γ ∗ ω i = f i (t) dt ,<br />

∫<br />

∫ ∫<br />

ω r ◦ · · · ◦ ω 1 = · · ·<br />

f r (t r ) · · · f 1 (t 1 ) dt r · · · dt 1 .<br />

γ<br />

0


6 2. tame Weil <br />

, (∗) <br />

[f, g] x<br />

= exp<br />

[ ∫ 1 (<br />

d log f ◦ d log g + log f(x0 ) · d log g − d log f · log g(x 0 ) )]<br />

2πi C x<br />

(∗∗)<br />

.<br />

2.3 tame Weil <br />

2.1 (Weil ). <strong>Riemann</strong> X 0 f, g<br />

,<br />

∏<br />

[f, g] x<br />

= 1<br />

x∈X<br />

. ( S x .)<br />

. X 4g x 0 <br />

x 0 Γ , (∗∗) Cauchy <br />

∏<br />

[ ∫<br />

]<br />

1<br />

[f, g] x<br />

= exp d log f ◦ d log g .<br />

2πi Γ<br />

x∈X<br />

Γ <strong>Riemann</strong> α i , β i Γ = α 1 β 1 α1 −1 β1 −1 · · · α g β g αg<br />

−1<br />

<br />

∫<br />

ω r ◦ · · · ◦ ω 1 = (−1)<br />

∫γ r ω 1 ◦ · · · ◦ ω r ,<br />

−1<br />

∫<br />

r∑<br />

∫<br />

ω 2 ◦ ω 1 = ω 2 ◦ ω 1 +<br />

γ 1···γ r i=1 γ i<br />

∫<br />

∫ ∫ ∫<br />

ω 2 ◦ ω 1 = ω 2 ω 1 −<br />

αβα −1 β −1<br />

β<br />

γ<br />

α<br />

∑<br />

1≦


2.5. tame Steinberg 7<br />

k K K 2 (k) k × ⊗ Z k × { f ⊗ (1 − f) | f, 1 − f ∈ k × }<br />

(). Steinberg<br />

Abel K 2 (k) → G .<br />

Steinberg φ φ(f, −f) = 1 :<br />

φ(f, g)φ(g, f) = 1 :<br />

1 = φ(f, 1 − f) = φ(f, −f)φ(f, 1 − f −1 )<br />

= φ(f, −f)φ(f −1 , 1 − f −1 ) −1 = φ(f, −f).<br />

1 = φ(fg, −fg) = φ(f, −f)φ(f, g)φ(g, f)φ(g, −g) = φ(f, g)φ(g, f).<br />

φ(f, f) = φ(f, −1) :<br />

1 = φ(f, −f) = φ(f, f)φ(f, −1)<br />

, φ bimultiplicative φ(f, −1) 2 = 1 , φ(a, a) = φ(f, −1) <br />

. , φ(f, 1 − f) = 1 (f, 1 − f ∈ k × ) φ(f/g, g − f) = φ(−f, g)<br />

(f, g, g − f ∈ k × ) : h = g − f 1 = (g − f)h −1 = (−fh −1 ) + gh −1 <br />

1 = φ(−fh −1 , gh −1 ) = φ(−f, g)φ(−f, h) −1 φ(h, g) −1 φ(h, h)<br />

= φ(−f, g)φ(−f, h) −1 φ(h, g) −1 φ(h, −1) = φ(−f, g)φ(f/g, h) −1 .<br />

φ(f/g, g − f) = φ(f/g, h) = φ(−f, g).<br />

2.5 tame Steinberg <br />

tame [ , ] x<br />

: ̂K x × × ̂K x<br />

× → C × Steinberg . f, g ∈ ̂K x<br />

×<br />

f + g = 1 . v x (f) > 0 v x (g) = 0 g(x) = 1 tame <br />

[f, g] x<br />

= 1/g(x) vx(f) = 1 . v x (f) = 0 v x (g) ≧ 0 . v x (f) = 0<br />

v x (g) > 0 [f, g] x<br />

= [g, f] −1<br />

x<br />

= 1. v x (f) = v x (g) = 0 <br />

tame [f, g] x<br />

= 1 . tame [h, −h] x<br />

= 1 (h ∈ ̂K x )<br />

. v x (f) < 0 , h = f −1 <br />

,<br />

[f, g] x<br />

= [f, 1 − f] x<br />

= [ f −1 , 1 − f ] −1<br />

x<br />

= [ f −1 , 1 − f ] −1 [<br />

x f −1 , −f −1] −1<br />

x<br />

= [ f −1 , −(1 − f)f −1] −1<br />

= [ f −1 , 1 − f −1] = 1.<br />

x x<br />

v x (f −1 ) > 0 .<br />

(∗)( (∗∗)) , tame f, 1 − f ∈ K × = C(X) × , [f, g] x<br />

= 1<br />

. .<br />

dilogarithm 9 . w y 0 ≠ 0, 1 <br />

, δ 0 ( δ 1 ) y 0 0 ( 1) y 0<br />

9 (dilogarithm) Li 2 (z) Li 2 (z) = − ∫ z<br />

0 d log w · log(1 − w) , Li 2(z) = ∑ ∞<br />

n=1 zn /n 2<br />

(|z| < 1) Taylor . polylogarithm Li r (z) Li r (z) = ∫ z<br />

0 d log w · Li r−1(w) <br />

, Li r (z) = ∑ ∞<br />

n=1 zn /n r (|z| < 1) Taylor . 5 .


8 3. Contou-Carrère <br />

. <br />

∫<br />

1<br />

[log w · d log(1 − w) − d log w · log(1 − y 0 ))<br />

2πi δ 0<br />

= 1<br />

2πi [(log y 0 + 2πi) log(1 − y 0 ) − log y 0 · log(1 − y 0 )]<br />

− 1 ∫<br />

d log w · log(1 − w) − log(1 − y 0 )<br />

2πi δ 0<br />

= − 1 ∫<br />

d log w · log(1 − w) = − log 1 ∈ 2πiZ,<br />

2πi δ 0<br />

∫<br />

1<br />

(log w · d log(1 − w) − d log w · log(1 − y 0 )) = log 1 ∈ 2πiZ.<br />

2πi δ 1<br />

f, 1 − f ∈ K × = C(X) × , γ <strong>Riemann</strong> X x 0 x 0 <br />

f, 1 − f . γ f δ = f ◦ γ<br />

y 0 = f(x 0 ) y 0 0, 1 <br />

. , ,<br />

1<br />

2πi<br />

∫<br />

γ<br />

= 1<br />

2πi<br />

(<br />

log f · d log(1 − f) − d log f · log(1 − f(x0 )) )<br />

∫<br />

δ<br />

(<br />

log w · d log(1 − w) − d log w · log(1 − y0 ) ) ∈ 2πiZ.<br />

γ = C x [f, 1 − f] x<br />

= 1 .<br />

3 Contou-Carrère <br />

<strong>Riemann</strong> . , X <br />

<strong>Riemann</strong> , K , x ∈ X K <br />

̂K x . z(x) = 0 x z ̂K x = C((z)) <br />

.<br />

[7], [9], [8], [6] .<br />

A = C[ε]/(ε N+1 ) (A ε N ≠ 0, ε N+1 = 0), m = εA 10 .<br />

3.1 Laurent <br />

K A = K ⊗ A = K[ε]/(ε N+1 ) , x ∈ X ̂K A,x = A((z)) =<br />

̂K x [ε]/(ε N+1 ) . x Laurent ̂K A ⊂ ̂K A,x .<br />

R , f ∈ R[ε]/(ε N+1 ) R = R[ε]/(ε) f ε=0 = f mod ε <br />

. R[ε]/(ε N+1 ) :<br />

(<br />

R[ε]/(ε N+1 ) ) ×<br />

= { f ∈ R[ε]/(ε N+1 ) | f ε=0 ∈ R × }.<br />

10 (A, m) C Artin .


3.1. Laurent 9<br />

A((z)) × =<br />

(<br />

̂Kx [ε]/(ε N+1 )) ×<br />

:<br />

A((z)) × = ̂K x [ε]/(ε N+1 )<br />

= { f 0 + f 1 ε + f 2 ε 2 + · · · + f N ε N ∈ ̂K x [ε]/(ε N+1 ) | f 0 ∈ ̂K × x , f 1 , . . . , f N ∈ ̂K x }.<br />

.<br />

Laurent f ∈ A((z)) × :<br />

∏<br />

f = z wx(f) a 0 (1 − a i z i ).<br />

0≠i∈Z<br />

w x (f) ∈ Z, a 0 ∈ A × , a i ∈ A, a −i ∈ m (i > 0) , i <br />

a −i = 0 .<br />

.<br />

A((z)) × z Z G :<br />

z Z = { z m | a ∈ m ∈ Z },<br />

G = { g ∈ A((z)) × | g ε=0 ∈ C[[z]] × }<br />

, A((z)) , z Z × H ∼ = A((z)) × .<br />

ϕ ∈ C((z)) × z v x (ϕ) . f ∈ A((z)) × <br />

m = w x (f) = v x (f ε=0 ) , f g ∈ G f = z m g <br />

. z Z × G ∼ = A((z)) × .<br />

G G ± :<br />

G + = A[[z]] × , G − = 1 + εz −1 A[z −1 ].<br />

, A((z)) , G + ×G −<br />

∼ = G . g ∈ G<br />

g ± ∈ G ± :<br />

,<br />

g = a 0 + a 1 ε + · · · + a N ε N ,<br />

g + = b 0 + b 1 ε + · · · + b N ε N ,<br />

a 0 ∈ C[[z]] × , a 1 , . . . , a N ∈ C((z)),<br />

b 0 ∈ C[[z]] × , b 1 , . . . , b N ∈ C[[z]],<br />

g − = 1 + c 1 ε + · · · + c N ε N , c 1 , . . . , c N ∈ εz −1 C[z −1 ].<br />

g + g − = b 0 + (b 0 c 1 + b 1 )ε + (b 0 c 2 + b 1 c 1 + b 2 )ε + (b 0 c 2 + b 1 c 2 + b 2 c 1 + b 3 ) + · · ·<br />

b i , c i g + g − = g b 0 = a 0 <br />

. G + × G −<br />

∼ = G <br />

.<br />

A((z)) <br />

( ) ×<br />

A × z Z × G + × G −<br />

∼ = A((z)) × = ̂Kx [ε]/(ε N+1 )<br />

.


10 3. Contou-Carrère <br />

g + ∈ G + = A[[z]] × :<br />

<br />

∏ ∞<br />

g + = a 0 (1 − a i z i ), a 0 ∈ A × , a 1 , a 2 , . . . ∈ A<br />

i=1<br />

a 0 − a 0 a 1 z − a 0 a 2 z 2 − · · · − a 0 (a n + (a 1 , . . . , a n−1 ))z n − · · ·<br />

. g + :<br />

g + = c 0 + c 1 z + c 2 z 2 + · · · , c 0 ∈ A × , c 1 , c 2 , . . . ∈ A.<br />

, a i g + = () <br />

. g + .<br />

g − ∈ G − = 1 + εz −1 A[z −1 ] :<br />

g − =<br />

<br />

∏<br />

(1 − a i z i ), a i ∈ εA = m.<br />

<br />

i 0) , <br />

i a −i = 0, b −i = 0 . f, g Contou-Carrère ⟨f, g⟩ x<br />

(Contou-Carrère symbol, CC ) <br />

⟨f, g⟩ x<br />

= (−1) wx(f)wx(g) aw x(g)<br />

0<br />

b w x(f)<br />

0<br />

∏ ∞<br />

i,j=1<br />

(1 − a j/(i,j)<br />

i<br />

∏ ∞<br />

i,j=1<br />

(1 − a j/(i,j)<br />

−i<br />

b i/(i,j)<br />

−j<br />

b i/(i,j)<br />

j<br />

) (i,j)<br />

) (i,j)<br />

∈ A ×<br />

. (i, j) i, j . i, j a −i = 0,<br />

b −j = 0 , i > 0 a −i , b −j ∈ m = εA m a m −i = 0,<br />

b m −j = 0 , .<br />

CC z , <br />

. , CC , tame <br />

. .


3.3. Contou-Carrère 11<br />

3.3 Contou-Carrère <br />

A = C (ε = 0) , CC tame . , CC <br />

tame .<br />

ε 2 ≠ 0 . f, g ∈ A((z)) , w x (f) = w x (g) = 0,<br />

a 0 ≡ 1 + εα 0 (mod ε 2 ), b 0 ≡ 1 + εβ 0 (mod ε 2 ),<br />

a i ≡ −εα i (mod ε 2 ), b i ≡ −εβ i (mod ε 2 ) (i ≠ 0),<br />

α i , β i ∈ C<br />

:<br />

f ≡ ∏ i∈Z(1 + εα i z i ) ≡ 1 + εϕ (mod ε 2 ),<br />

g ≡ ∏ i∈Z(1 + εβ i z i ) ≡ 1 + εψ (mod ε 2 ).<br />

ϕ, ψ ∈ C((z)) :<br />

ϕ = ∑ i<br />

α i z i ,<br />

ψ = ∑ i<br />

β i z i .<br />

i, j > 0 modulo ε 3 a j/(i,j)<br />

i<br />

, mod ε 3 ,<br />

⟨f, g⟩ x<br />

≡ 1 − ∑ i>0<br />

ia i b −i + ∑ j>0<br />

b i/(i,j)<br />

−j<br />

, a j/(i,j)<br />

−i b i/(i,j)<br />

j i = j = (i, j)<br />

ja −j b j ≡ 1 − ε 2 ∑ i∈Z<br />

iα i β −i ≡ 1 + ε 2 Res x (ϕ · dψ)<br />

. , CC (ϕ, ψ) Res x (ϕ · dψ) <br />

.<br />

3.4 Contou-Carrère <br />

3.1 (CC ). , f, g ∈ K × A ,<br />

∏<br />

⟨f, g⟩ x<br />

= 1<br />

x∈X<br />

. .<br />

, Weil <br />

. Weil . <br />

: f, g ∈ K × A ,<br />

⟨f, g⟩ x<br />

[ ∫ 1 (<br />

= exp log f · d log g − d log f · log g(x0 ) )] ($)<br />

2πi C<br />

[ ∫<br />

x<br />

1 (<br />

= exp d log f ◦ d log g + log f(x0 ) · d log g − d log f · log g(x 0 ) )] ($$)<br />

2πi C x


12 3. Contou-Carrère <br />

($),($$) (∗),(∗∗) , <br />

. CC <br />

.<br />

K A = K[ε]/(ε N+1 ) f ∈ K × A f = f 0(1 − ϕ), f 0 ∈ K × , ϕ ∈ εK A .<br />

ϕ N+1 = 0 . log f :<br />

log f = log f 0 + log(1 − ϕ) = log f 0 −<br />

, log f X f 0 <strong>Riemann</strong> <br />

log f 0 εK[ε]/(ε N+1 ) . ε <br />

.<br />

($),($$) . ,<br />

N∑<br />

n=1<br />

ϕ n<br />

n .<br />

<br />

exp<br />

f = 1 − az k , g = 1 − bz −l , a ∈ A, b ∈ m, k, l ∈ Z >0<br />

[ ∫ 1 (<br />

log f · d log g − d log f · log g(x0 ) )] = ( 1 − a l/(k,l) b k/(k,l)) (k,l)<br />

2πi C x<br />

. , 1 <br />

, 2 :<br />

exp [Res x (log f · d log g)] = ( 1 − a l/(k,l) b k/(k,l)) (k,l)<br />

. ($$$)<br />

k, l <br />

. .<br />

. Taylor log(1 − X) = − ∑ ∞<br />

i=1 Xi /i ,<br />

<br />

log f = log(1 − az k ) = −<br />

log g = log(1 − bz −l ) = −<br />

∞∑<br />

i=1<br />

∞∑<br />

j=1<br />

log f · d log g = −l<br />

a i<br />

i zik ,<br />

b j<br />

j z−jl ,<br />

∞∑<br />

i,j=1<br />

d log g = l<br />

a i b j<br />

z ik−jl−1 dz.<br />

i<br />

∞∑<br />

b j z −jl−1 dz<br />

ik = jl i, j −la i b j /i . ik = jl<br />

ik/(k, l) = jl/(k, l) , m i = ml/(k, l),<br />

j = mk/(k, l) . <br />

∞∑ a ml/(k,l) b mk/(k,l)<br />

Res x (log f · d log g) = −l<br />

ml/(k, l)<br />

m=1<br />

( ∞∑ a l/(k,l) b k/(k,l)) m<br />

= −(k, l)<br />

= (k, l) log ( 1 − a l/(k,l) b k/(k,l)) .<br />

m<br />

($$$) .<br />

m=1<br />

j=1


3.5. Contou-Carrère Steinberg 13<br />

3.5 Contou-Carrère Steinberg <br />

tame , f, 1 − f ∈ K × A<br />

CC Steinberg <br />

⟨f, 1 − f⟩ x<br />

= 1 ($$) .<br />

f, g ∈ ̂K × A,x = A((z))× ⟨f, g⟩ x<br />

, f, 1 − f ∈ K × A <br />

CC Steinberg f, 1 − f ∈ ̂K × A,x<br />

Steinberg .<br />

4 <br />

, “symbols” Tate [10] .<br />

, “symbols” , [2], [1] . tame <br />

CC Grassmann Lie GL ∞<br />

([1]). 1 Lie <br />

.<br />

5 : <br />

(polylogarithm) [5] .<br />

A(t) 11 , U(t) <br />

dU(t)<br />

dt<br />

= U(t)A(t), U(t 0 ) = E = ()<br />

. <br />

U(t) = E +<br />

∫ t<br />

t 0<br />

U(s)A(s) ds<br />

. , t 0 ≦ t . <br />

:<br />

U(t) = E +<br />

= E +<br />

∫ t<br />

t 0<br />

A(t 1 ) dt 1 +<br />

∫ t<br />

∫ t<br />

t 0<br />

∫ t1<br />

t 0<br />

A(t 1 ) dt 1 + · · · +<br />

t 0<br />

U(t 2 )A(t 2 ) dt 2 · A(t 1 ) dt 1 = · · ·<br />

∫ t<br />

t 0<br />

∫ t1<br />

t 0<br />

· · ·<br />

∫ tn−1<br />

t 0<br />

U(t n )A(t n ) dt n · · · A(t 2 ) dt 2 · A(t 1 ) dt 1 .<br />

(Picard , ), <br />

:<br />

U(t) =<br />

∞∑<br />

∫<br />

n=0<br />

∫<br />

· · ·<br />

A(t n ) dt n · · · A(t 2 ) dt 2 · A(t 1 ) dt 1 .<br />

t 0


14 5. : <br />

, <br />

. ,<br />

∞∑<br />

∫<br />

1 t ∫ t<br />

U(t) = · · · T [A(t n ) · · · A(t 1 )] dt n · · · dt 1 .<br />

n! t 0 t 0<br />

n=0<br />

<br />

[<br />

∑ ∞ (∫<br />

1 t<br />

) n<br />

] [ (∫ t<br />

)]<br />

U(t) = T<br />

A(s) ds = T exp A(s) ds .<br />

n! t 0 t 0<br />

n=0<br />

, . <br />

(time-ordered exponential) . ,<br />

(path-ordered product) , <br />

(path-ordered exponential) 12 .<br />

2.2 (iterated integral) , <br />

: 1-form A A = A(t) dt ,<br />

∫ t<br />

∞∑<br />

U(t) = A} ◦ ·{{ · · ◦ A}<br />

,<br />

n=0 t 0 n times<br />

∫ t<br />

∫ ∫<br />

A} ◦ ·{{ · · ◦ A}<br />

= · · ·<br />

t 0 n times<br />

t 0


15<br />

A = A(t) dt <br />

⎡<br />

0 ω 1<br />

0 ω 0<br />

0 ω 0<br />

A =<br />

0 ω 0<br />

⎢<br />

⎣<br />

0<br />

⎤<br />

. .. ⎥<br />

⎦<br />

. ..<br />

, dU(t) = U(t)A, U(0) = E , U(z) (1, r + 1) <br />

Li r (z) . [5] .<br />

<br />

[1] Anderson, Greg W. and Pablos Romo, Fernando. Simple proofs of classical explicit<br />

reciprocity laws on curves using determinant groupoids over an artinian local ring.<br />

http://arxiv.org/abs/math/0207311<br />

[2] Brylinski, Jean-Luc. Central extensions and reciprocity laws. Cahiers de Topologie<br />

et Géométrie Différentielle Catégoriques, 1997, Vol. 38, Issue 3, 193–215.<br />

https://eudml.org/doc/91592<br />

[3] Chen, Kuo-Tsai. Iterated path integrals. Bull. Amer. Math.— Soc., Vol. 83, no. 5<br />

(1977), pp. 831–879. https://projecteuclid.org/euclid.bams/1183539443<br />

[4] Deligne, Pierre. Le symbole modéré. Publ. math,<br />

181. https://eudml.org/doc/104074<br />

I.H.É.S., tome 73 (1991), p. 147–<br />

[5] Hain, Richard M. Classical polylogarithm. http://arxiv.org/abs/alg-geom/9202022<br />

[6] Horozov, Ivan and Luo, Zhenbin. On the Contou-Carrere symbol for surfaces.<br />

http://arxiv.org/abs/1310.7065<br />

[7] Kerr, Matt. An elementary proof of suslin reciprocity. Canad. Math. Bull., 48 (2005),<br />

221–236. http://dx.doi.org/10.4153/CMB-2005-020-x<br />

[8] Luo, Zhenbin. Contou-Carrère symbol via iterated integrals and its reciprocity law.<br />

http://arxiv.org/abs/1003.1431<br />

[9] Pablos Romo, Fernando. On the Steinberg property of the Contou-Carrère symbol.<br />

http://arxiv.org/abs/math/0602374<br />

[10] Tate, John. Symbols in arithmetic. Ates. Conrès intern. math., 1970, Tome 1, pp. 201–<br />

211. http://www.mathunion.org/ICM/ICM1970.1/Main/icm1970.1.0201.0212.ocr.pdf<br />

[11] . . 1, , 2006, xii+265 .<br />

[12] . . , 55 2 / 652<br />

, 2016 2 , , pp. 28–32.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!