03.04.2013 Views

Raportul Stiintific si Tehnic (RST) in extenso

Raportul Stiintific si Tehnic (RST) in extenso

Raportul Stiintific si Tehnic (RST) in extenso

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Raportul</strong> <strong>Sti<strong>in</strong>tific</strong> <strong>si</strong> <strong>Tehnic</strong> (<strong>RST</strong>) <strong>in</strong> <strong>extenso</strong><br />

Cupr<strong>in</strong>s<br />

1. Analiza chimica elementara pr<strong>in</strong> EDS <strong>si</strong> analiza compozitiei fazelor cristal<strong>in</strong>e pr<strong>in</strong> DRX ale<br />

pulberilor de BNT-BTx, unde x=0,08, preparate pr<strong>in</strong> sol-gel<br />

1.1. Analiza compozitiei chimice pr<strong>in</strong> spectroscopie EDS (<strong>si</strong> SEM) a pulberilor de<br />

BNT-BT0,08 preparate pr<strong>in</strong> sol-gel<br />

1.2. Analiza compozitiei de faze pr<strong>in</strong> DRX a pulberilor de BNT-BT0,08 preparate pr<strong>in</strong><br />

sol-gel<br />

2. Analiza chimica elementara pr<strong>in</strong> EDS <strong>si</strong> analiza morfologiei cu ajutorul microscopiei<br />

electronice cu baleiaj (SEM) pentru pulberile de BNT-BT0,08, preparate pr<strong>in</strong> metoda<br />

atomizarii<br />

2.1. Analiza chimica pr<strong>in</strong> EDS a pulberilor de BNT-BT0,08 preparate pr<strong>in</strong> metoda<br />

pirosol<br />

2.2. Analiza morfologiei cu ajutorul SEM a pulberilor de BNT-BT0,08 preparate pr<strong>in</strong><br />

metoda pirosol<br />

3. Analiza granulometriei pulberilor de BNT-BTx, unde x=0,08 preparate pr<strong>in</strong> cele doua<br />

metode chimice <strong>in</strong> solutie cu ajutorul microscopului cu transmi<strong>si</strong>e (TEM) <strong>si</strong> a<br />

granulometrului cu laser<br />

3.1. Analiza morfologiei cu ajutorul microscopiei electronice cu transmi<strong>si</strong>e a<br />

pulberilor de BNT-BT0,08 preparate pr<strong>in</strong> sol-gel<br />

3.2. Analiza morfologiei cu ajutorul granulometrului cu laser a pulberilor de BNT-<br />

BT0,08 preparate pr<strong>in</strong> sol-gel<br />

3.3. Analiza morfologiei cu ajutorul microscopiei electronice cu transmi<strong>si</strong>e a<br />

pulberilor de BNT-BT0,08 preparate pr<strong>in</strong> metoda pirosol<br />

3.4. Analiza morfologiei cu ajutorul granulometrului cu laser a pulberilor de BNT-<br />

BT0,08 preparate pr<strong>in</strong> metoda pirosol<br />

3.5. Activitati suport <strong>si</strong> de implementare a rezultatelor cercetarii.<br />

4. Concluzii<br />

5. Bibliografie<br />

1


Obiectivele generale<br />

Obiectivul general al proiectului MPPC propus este prepararea materialelor ceramice de<br />

compozitie (1-x)(Bi0.5Na0.5TiO3)-xBaTiO3 unde 0.05≤x≤0.15, cu proprietati piezoelectrice cel<br />

put<strong>in</strong> egale cu cele ale materialelor piezo cu plumb (PZT).<br />

O atentie deosebita va fi acordata controlului compozitiei chimice <strong>in</strong> vederea evitarii<br />

pierderilor de Bi <strong>si</strong> Na pr<strong>in</strong> evaporare <strong>in</strong> timpul <strong>si</strong>nterizarii <strong>si</strong>, morfologiei pulberilor <strong>in</strong> scopul<br />

obt<strong>in</strong>erii unor pulberi nanometrice care imbunatatesc procesul de den<strong>si</strong>ficare a ceramicii de<br />

BNT-BTx.<br />

In acest sens, noi propunem utilizarea a doua metode chimice de <strong>si</strong>nteza (sol-gel <strong>si</strong><br />

pirosol) pentru prepararea elementelor presate piezoceramice, compararea rezultatelor lor <strong>si</strong><br />

alegerea metodei care da cele mai bune performante pentru ceramica piezoelectrica de BNT-<br />

BTx. Metoda sol-gel va fi folo<strong>si</strong>ta <strong>si</strong> pentru obt<strong>in</strong>erea filmelor subtiri de compozitie BNT-<br />

BTx, cu proprietati piezoelectrice.<br />

Obiectivele etapei de executie<br />

Caracterizarea microstructurala <strong>si</strong> morfologica a pulberilor <strong>si</strong> a filmelor subtiri de<br />

BNT-BTx, unde x=0,08, preparate pr<strong>in</strong> sol-gel <strong>si</strong> atomizare.<br />

Analiza chimica elementara pr<strong>in</strong> EDS <strong>si</strong> analiza compozitiei fazelor cristal<strong>in</strong>e pr<strong>in</strong><br />

DRX ale pulberilor de BNT-BTx, unde x=0,08, preparate pr<strong>in</strong> sol-gel.<br />

Analiza chimica elementara pr<strong>in</strong> EDS <strong>si</strong> analiza morfologiei pulberilor de BNT-BTx,<br />

unde x=0,08,preparate pr<strong>in</strong> metoda atomizarii, cu ajutorul microscopiei electronice cu baleiaj<br />

(SEM).<br />

Analiza granulometriei pulberilor de BNT-BTx, unde x=0,08, preparate pr<strong>in</strong> cele doua<br />

metode chimice <strong>in</strong> solutie cu ajutorul microscopului cu transmi<strong>si</strong>e (TEM) <strong>si</strong> a granulometrului<br />

cu laser.<br />

Activitati suport <strong>si</strong> de implementare a rezultatelor cercetarii.<br />

2


Rezumatul etapei (maxim 2 pag<strong>in</strong>i)<br />

In acord cu scopul Etapei IIa: „Caracterizarea microstructurala <strong>si</strong> morfologica a<br />

pulberilor <strong>si</strong> a filmelor subtiri de BNT-BTx, unde x=0,08 preparate pr<strong>in</strong> sol-gel <strong>si</strong> atomizare”,<br />

sunt prezentate <strong>in</strong> acest raport sti<strong>in</strong>tific, rezultatele caracterizarii microstructurale <strong>si</strong><br />

morfologice a pulberilor de BNT-BTx, unde x=0,08, preparate pr<strong>in</strong> metodele sol-gel <strong>si</strong><br />

pirosol. Gelul precursor a fost calc<strong>in</strong>at la temperaturi diferite 200, 500, 600, 700 <strong>si</strong> 900 °C <strong>si</strong><br />

apoi analizat.<br />

Fig.41. Imag<strong>in</strong>i SEM,TEM, HR-TEM <strong>si</strong> SAED ale pulberii de BNT-BT0,08 preparata pr<strong>in</strong><br />

calc<strong>in</strong>area gelului precursor la 600 °C.<br />

Gelul tratat la 600 °C, 3 ore prez<strong>in</strong>ta granule cu dimen<strong>si</strong>unile <strong>in</strong> domeniul 45-95 nm<br />

iar cel calc<strong>in</strong>at la 700 °C, 2 ore <strong>in</strong> aer, <strong>in</strong>dica o morfologie omogena, granulele avand<br />

diametrul <strong>in</strong> domeniul 30-65 nm.<br />

Inten<strong>si</strong>tatea (a. u.)<br />

*<br />

x<br />

o<br />

o<br />

*<br />

* - (Bi 0.5 Na 0.5 )TiO 3 (structura perovskitica)<br />

o - Bi 2 O 3 hexagonal<br />

x- Bi O tetragonal<br />

2 3<br />

* *<br />

20 25 30 35 40 45 50 55 60<br />

3<br />

2θ<br />

1150 o C<br />

700 o C<br />

600 o C<br />

500 o C<br />

400 o C<br />

200 o C<br />

Fig.7. Difractogramele de raze X ale precursorului gel de Bi1/2Na1/2TiO3 dopat cu 8<br />

mol.% BaTiO3, calc<strong>in</strong>at la 200, 400, 500, 600, 700 <strong>si</strong> 1150 °C<br />

Analiza pr<strong>in</strong> DRX arata ca gelul <strong>in</strong>calzit la 200 °C a fost amorf <strong>si</strong> cristalizeaza ca faza<br />

unica la 600 °C. Pulberea obt<strong>in</strong>uta pr<strong>in</strong> metoda pirosol a fost cristalizata, prezentand doua faze<br />

cristal<strong>in</strong>e.<br />

*


Fig.16. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, calc<strong>in</strong>ata la 600 °C<br />

Rezultatele analizei cu EDS pun <strong>in</strong> evidenta o pulbere omogena compozitional.<br />

Fig.53. Imag<strong>in</strong>i SEM <strong>si</strong> TEM/HR-TEM ale pulberii crude de BNT-BT0,08 obt<strong>in</strong>uta pr<strong>in</strong> pirosol<br />

(imag<strong>in</strong>ea d<strong>in</strong> stanga), calc<strong>in</strong>ata ulterior la 700 °C, 3 ore (cele doua imag<strong>in</strong>i d<strong>in</strong> dreapta)<br />

Analizele cu ajutorul microscopiei electronice SEM <strong>si</strong> TEM, EDAX <strong>si</strong> difractia de<br />

raze X au aratat ca se obt<strong>in</strong>e un material monofazic, stoichiometric BNT-BT0,08, complet<br />

cristalizat <strong>in</strong> conditii termice avantajoase daca se foloseste metoda sol-gel pentru <strong>si</strong>nteză <strong>si</strong><br />

polifazic <strong>in</strong> cazul metodei pirosol.<br />

În concluzie, rezultatele cupr<strong>in</strong>se <strong>in</strong> raport sti<strong>in</strong>tific complet, priv<strong>in</strong>d caracterizarea<br />

microstructurala <strong>si</strong> morfologica a pulberii <strong>si</strong> filmelor de BNT-BT0,08 obt<strong>in</strong>ute pr<strong>in</strong> sol-gel <strong>si</strong><br />

pirosol, <strong>in</strong>dica faptul ca obiectivele Etapei II a au fost realizate.<br />

Aceste rezultate prelim<strong>in</strong>are constituie o bază de date utile pentru etapele urmatoare<br />

ale Contractului PNCDI II nr. 72 153/2008.<br />

4


1. Analiza chimica elementara pr<strong>in</strong> EDS <strong>si</strong> analiza compozitiei fazelor cristal<strong>in</strong>e pr<strong>in</strong><br />

DRX ale pulberilor de BNT-BT0,08 preparate pr<strong>in</strong> metoda sol-gel<br />

Studiul pr<strong>in</strong> microscopie electronica, difractie de electroni <strong>si</strong> microanaliza de raze X<br />

permite obt<strong>in</strong>erea unor <strong>in</strong>formatii calitative priv<strong>in</strong>d porozitatea, dimen<strong>si</strong>unea de graunti, de<br />

particule, precum <strong>si</strong> a unor <strong>in</strong>formatii microstructurale <strong>si</strong> microcompozitionale. In plus,<br />

studiile cu ajutorul microscopiei electronice (SEM <strong>si</strong>/sau TEM), asociate cu microanaliza de<br />

raze X disper<strong>si</strong>va <strong>in</strong> energie (EDS) pot oferi <strong>in</strong>formatii utile pentru <strong>in</strong>telegerea unor fenomene<br />

fizice d<strong>in</strong> domeniul materialelor micro sau nanostructurate.<br />

In cazul nostru, vom folo<strong>si</strong> microscopia electronica <strong>si</strong> analiza pr<strong>in</strong> EDS pentru a<br />

evidentia dimen<strong>si</strong>unile nanometrice ale pulberilor de BNT-BT0,08 preparate atat pr<strong>in</strong> sol-gel<br />

cat <strong>si</strong> pr<strong>in</strong> metoda pirosol <strong>si</strong>, de asemenea, pentru confirmarea stoichiometriei pulberilor astfel<br />

preparate.<br />

Analiza cu ajutorul difractiei de raze X, este utilizata <strong>in</strong> acest studiu pentru ga<strong>si</strong>rea<br />

acelor conditii de tratament termic (temperatura, durata) care sa conduca laobt<strong>in</strong>erea unui<br />

material monofazic (compus d<strong>in</strong> faza cu proprietatile electrice dorite).<br />

1.1. Analiza compozitiei chimice pr<strong>in</strong> spectroscopie EDS (<strong>si</strong> SEM) a pulberilor de<br />

BNT-BT0,08 preparate pr<strong>in</strong> sol-gel<br />

Proprietatile materialelor sunt direct dependente de microstructura lor, adica de factori<br />

cum ar fi: den<strong>si</strong>tatea <strong>si</strong> tipul defectelor retelei cristal<strong>in</strong>e, dimen<strong>si</strong>unea, distributia <strong>si</strong> compozitia<br />

fazelor prezente <strong>in</strong> materiale, segregarea localizata a impuritatilor <strong>si</strong> elementelor de dopare. O<br />

buna <strong>in</strong>telegere a acestor probleme se obt<strong>in</strong>e pr<strong>in</strong> aplicarea exten<strong>si</strong>va a microscopiei<br />

electronice pr<strong>in</strong> transmi<strong>si</strong>e (TEM) <strong>si</strong> microscopiei electronice cu baleiaj (SEM) <strong>in</strong> studiul<br />

materialelor.<br />

In cadrul acestei etape de cercetare, am utilizat analiza SEM iar pentru toate pulberile,<br />

iar pentru cele care au avut dimen<strong>si</strong>uni nanometrice am folo<strong>si</strong>t <strong>si</strong> analiza cu ajutorul metodei<br />

de analiza TEM.<br />

Asa cum am evidentiat <strong>si</strong> pr<strong>in</strong> experimentarile prelim<strong>in</strong>are d<strong>in</strong> prima etapa a<br />

proiectului MPPC, pentru obt<strong>in</strong>erea unei pulberi monofazice de BNT-BT0,08, gelul precursor a<br />

fost calc<strong>in</strong>at <strong>in</strong> mai multe etape, la temperaturi diferite. In cadrul acestei faze, prezentam o<br />

caracterizare caracterizare chimica, structurala <strong>si</strong> morfologica a materialului rezultat d<strong>in</strong> gelul<br />

calc<strong>in</strong>at la temperaturi diferite (200, 500, 600, 700 <strong>si</strong> 900 °C ). Pentru o cat mai fidela<br />

5


prezentare a morfologiei pulberilor obt<strong>in</strong>ute, am prezentat mai multe imag<strong>in</strong>i SEM, obt<strong>in</strong>ute<br />

pentru zone cat mai variate ale probei analizate, pentru fiecare temperatura de calc<strong>in</strong>are <strong>in</strong><br />

parte. In figura 1 sunt prezentate cateva imag<strong>in</strong>i SEM ale precursorului gel uscat la 200 °C<br />

Fig.1. Imag<strong>in</strong>i SEM ale precursorului gel uscat la 200 °C<br />

Datorita faptului ca gelul precursor a fost obt<strong>in</strong>ut porn<strong>in</strong>d de la acetat de bismut, acetat<br />

de sodiu, acetat de bariu, şi izopropoxid de titan, tipul de gel obt<strong>in</strong>ut este gel polimeric. Asa<br />

cum se vede <strong>in</strong> figura 1, structura de polimer a pulberii provenite d<strong>in</strong> uscarea gelului la 200<br />

°C, se pastreaza <strong>si</strong> la aceasta temperatura. De fapt, elim<strong>in</strong>area partii organice a gelului<br />

polimeric nu este realizata complet la aceasta temperatura.<br />

Imag<strong>in</strong>ile SEM arata fragmente de structura polimerica monolitica, fragmente cu<br />

forme <strong>si</strong> dimen<strong>si</strong>uni variate. In functie de viteza de <strong>in</strong>calzire, descompunerea <strong>si</strong> piroliza cu aer<br />

a componentilor gelului vor fi mai rapide sau mai lente putand sa se ajunga chiar la piroliza cu<br />

6


flacara. In acest d<strong>in</strong> urma caz, pulberea rezultata va fi de culoare neagra datorata grafitizarii<br />

ei.<br />

Figura 2 prez<strong>in</strong>ta imag<strong>in</strong>i SEM ale precursorului gel uscat la 500 °C. La aceasta<br />

temperatura, partea organica a fost elim<strong>in</strong>ata completa <strong>si</strong> s-a obt<strong>in</strong>ut o pulbere compusa d<strong>in</strong><br />

granule <strong>si</strong> nu d<strong>in</strong> fragmente de material cu microstructura polimerica.<br />

(a) (b)<br />

(c)<br />

Fig.2. Imag<strong>in</strong>i SEM ale gelului calc<strong>in</strong>at la 500 °C<br />

Imag<strong>in</strong>ile SEM obt<strong>in</strong>ute pe esantioane de pulberi rezultate d<strong>in</strong> mai multe <strong>si</strong>nteze,<br />

evidentiaza pulberi nanometrice. Se remarca pulberi cu diametrul granulelor <strong>in</strong> domeniul 20-<br />

25 nm (Fig.2b) <strong>si</strong> pulberi cu diametrul cupr<strong>in</strong>s <strong>in</strong>tre 20 <strong>si</strong> 32 nm (Fig.2 c,d). Pulberea obt<strong>in</strong>uta<br />

d<strong>in</strong> gelul calc<strong>in</strong>at la 500 °C este caracterizata de o granulatie omogena d<strong>in</strong> punct de vedere<br />

dimen<strong>si</strong>onal.<br />

Figura 3 prez<strong>in</strong>ta imag<strong>in</strong>i SEM ale precursorului gel uscat la 600 C.<br />

7<br />

(d)


Fig.3. Imag<strong>in</strong>i SEM ale gelului calc<strong>in</strong>at la 600 °C<br />

Gelul tratat la 600 °C, timp de 3 ore <strong>in</strong> aer, se prez<strong>in</strong>ta sub forma de pulbere cu granule<br />

avand dimen<strong>si</strong>unile <strong>in</strong> domeniul 45-95 nm. Pr<strong>in</strong> cresterea temperaturii de calc<strong>in</strong>are cu 100 °C<br />

<strong>si</strong> ment<strong>in</strong>and constanta durata calc<strong>in</strong>arii, granulele au crescut de la ~30 nm la ~90 nm. Deja, la<br />

aceasta temperatura, materialul este complet cristalizat, monofazic. BNT-BT0.08 a cristalizat<br />

pe structura cubica a titanatului de bismut <strong>si</strong> sodiu (Bi0,5Na0,5TiO3).<br />

Figura 4 prez<strong>in</strong>ta imag<strong>in</strong>i SEM ale precursorului gel uscat la 700 C.<br />

8


Fig.4. Imag<strong>in</strong>i SEM ale gelului calc<strong>in</strong>at la 700 °C<br />

Imag<strong>in</strong>ile SEM obt<strong>in</strong>ute pe o pulbere de gel precursor de BNT-BT0,08, calc<strong>in</strong>at la 700<br />

°C, 2 ore <strong>in</strong> aer, <strong>in</strong>dica o morfologie omogena, granulele avand diametrul <strong>in</strong> domeniul 30-65<br />

nm. Pulberea rezultata la aceasta temperatura are tend<strong>in</strong>ta de aglomerare asemanator celor<br />

obt<strong>in</strong>ute la temperaturi sub 700 °C. In cazul utilizarii metodelor sol-gel pentru <strong>si</strong>nteza<br />

materialelor, pulberile obt<strong>in</strong>ute prez<strong>in</strong>ta o tend<strong>in</strong>ta moderata de agomerare.<br />

Figura 5 prez<strong>in</strong>ta imag<strong>in</strong>i SEM ale precursorului gel uscat la 900 °C.<br />

9


Fig.5. Imag<strong>in</strong>i SEM ale gelului calc<strong>in</strong>at la 900 °C<br />

Microfotografiile SEM obt<strong>in</strong>ute pentru pulberile de BNT-BT0,08, care au fost calc<strong>in</strong>ate<br />

la 900 °C, sugereaza un material neomogen d<strong>in</strong> punct de vedere al dimen<strong>si</strong>unilor granulelor.<br />

Granule cu diametrul <strong>in</strong> domeniul 50-195 nm coexista cu granule poliedrice cu dimen<strong>si</strong>uni de<br />

pana la 250-300 nm. Aceasta crestere bimodala a granulelor s-a realizat pr<strong>in</strong> difuzie de masa<br />

de la granulele mai mici catre cele mai mari.<br />

Analiza cu ajutorul microscopiei electronice cu baleiaj a pulberilor rezultate d<strong>in</strong><br />

calc<strong>in</strong>area gelului la diferite temperaturi, a scos <strong>in</strong> evidenta faptul ca pr<strong>in</strong> sol-gel se ont<strong>in</strong>e o<br />

pulbere de BNT-BT0,08 cu morfologie uniforma <strong>si</strong> granule nanometrice sau submicronice. In<br />

general, pulberile cu astfel de morfologie, se caracterizeaza pr<strong>in</strong>tr-o aptitud<strong>in</strong>e buna la<br />

den<strong>si</strong>ficare pr<strong>in</strong> <strong>si</strong>nterizare.<br />

Deoarece, literatura de specialitate remarca faptul ca titanatul de bismut <strong>si</strong> sodiu poate<br />

pierde pr<strong>in</strong> evaporare, o parte d<strong>in</strong> cont<strong>in</strong>utul sau de sodiu <strong>si</strong> bismut, am analizat compozitia<br />

chimica a materialului rezultat dupa fiecare de tratament termic.<br />

Microanaliza de raze X <strong>in</strong> microscopia electronica (EDAX)<br />

Microanaliza de raze X foloseste emi<strong>si</strong>a de raze X caracteristice, pentru a identifica <strong>si</strong><br />

cuantifica elementele prezente <strong>in</strong> zona de proba ilum<strong>in</strong>ata. Pr<strong>in</strong> urmare, constituie un mijloc<br />

de identificare <strong>in</strong> <strong>si</strong>tu a compozitiei chimice microvolumice, conjugata cu localizarea precisa a<br />

regiunii exam<strong>in</strong>ate, precum <strong>si</strong> analizarea sa microstructurala <strong>si</strong> morfologica.<br />

Acest procedeu nece<strong>si</strong>ta <strong>in</strong>corporarea unor detectori de raze X <strong>in</strong> <strong>si</strong>stemul electronooptic,<br />

fara a compromite alte facilitati de exam<strong>in</strong>are a probelor. Rolul acestor detectori este de<br />

a capta cat mai mult d<strong>in</strong> radiatia X emisa de zona d<strong>in</strong> proba bombardata de fasciculul <strong>in</strong>cident<br />

10


de electroni accelerati, precum <strong>si</strong> de a analiza energiile sau lungimile de unda ale acestor<br />

radiatii pentru a identifica elementele care le-au generat.<br />

In SEM se folosesc pentru detectia razelor X caracteristice emise de proba detectori<br />

cu cristal solid disper<strong>si</strong>v <strong>in</strong> lungimea de unda ( <strong>si</strong>stemul WDS) cat <strong>si</strong> detectori cu cristal solid<br />

disper<strong>si</strong>v <strong>in</strong> energie (<strong>si</strong>stemul EDS).<br />

In TEM, datorita particularitatilor constructive ale coloanei <strong>si</strong> lentilei obiectiv <strong>in</strong><br />

campul careia se afla proba, nu se pot adapta decat detectori cu cristal solid disper<strong>si</strong>v <strong>in</strong><br />

energie.<br />

Sistemul este controlat de un calculator cu programe adecvate care <strong>in</strong>registreaza<br />

spectrul, aplica corectiile necesare <strong>si</strong> calculeaza concentratiile elementelor detectate.<br />

Cuantificarea cupr<strong>in</strong>de extragerea fondului, <strong>in</strong>tegrarea maximelor caracteristice, compararea<br />

cu <strong>in</strong>ten<strong>si</strong>tatile maximelor obt<strong>in</strong>ute pe standarde (etapa elim<strong>in</strong>ata la <strong>si</strong>stemele dotate cu<br />

programe de calcul ce cupr<strong>in</strong>d subrut<strong>in</strong>e de analiza rapida fara standarde) <strong>si</strong> calculul<br />

concentratiilor cu aplicarea corectiei ZAF.<br />

Analiza se poate efectua <strong>in</strong>tr-un punct cu diametru egal cu diametrul fasciculului de<br />

electroni <strong>in</strong>cident pe proba sau pe o suprafata cu dimen<strong>si</strong>uni variabile care pot fi selectate de<br />

operator. Analiza este rapida, se obt<strong>in</strong>e <strong>si</strong>multan tot spectrul cu radiatiile caracteristice ce<br />

permit identificarea compozitiei <strong>in</strong> zona analizata.<br />

Sistemul este put<strong>in</strong> susceptibil la modificarile parametrilor de analiza <strong>si</strong> nu nece<strong>si</strong>ta<br />

suprafete plane. Permite analiza calitativa <strong>si</strong> cantitativa a elementelor de la sodiu (Z = 11) la<br />

uraniu (Z=92). Sistemele mai moderne sunt prevazute cu fereastra de beriliu ce se poate<br />

<strong>in</strong>departa astfel <strong>in</strong>cat pot fi detectate <strong>si</strong> elementele mai usoare, de la bor (Z=5).<br />

In acest studiu, am folo<strong>si</strong>t spectrometria disper<strong>si</strong>va <strong>in</strong> energia radiatiei X (EDS) pentru<br />

a pune <strong>in</strong> evidenta prezenta tuturor tipurilor de ioni implicati <strong>in</strong> <strong>si</strong>nteza BNT-BT0,08, pentru a<br />

ga<strong>si</strong> rapoartele atomice d<strong>in</strong>tre ele <strong>si</strong> pentru a obt<strong>in</strong>e distributia atomilor <strong>in</strong> proba, corelat cu<br />

imag<strong>in</strong>ea SEM a zonei respective d<strong>in</strong> proba. Au fost analizat compozitional pr<strong>in</strong> EDAX<br />

pulberile de calc<strong>in</strong>ate la 500, 600 <strong>si</strong> 700°C.<br />

1) BNT-BT0,08 obt<strong>in</strong>ut la 500 °C<br />

Pulberea de BNT-BT0,08 obt<strong>in</strong>uta la 500 °C a fost analizata cu ajutorul microscopiei SEM plus<br />

EDAX <strong>in</strong> trei zone diferite.<br />

Zona 1:<br />

11


Fig.6. Imag<strong>in</strong>ea SEM obt<strong>in</strong>uta pe pulberea de BNT-BT0,08,<br />

(zona 1), calc<strong>in</strong>ata la 500 °C<br />

Fig.7. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, calc<strong>in</strong>ata la 500 °C<br />

12


Tabelul 1. Compozitia chimica a BNT-BT0,08 obt<strong>in</strong>ut la 500 °C, zona 1<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 5.83 9.34 0.0111 1.0661 0.1785 1.0001<br />

BaL 0.00 0.00 0.0000 0.8538 0.8292 1.0000<br />

TiK 18.03 13.86 0.1240 0.9960 0.6904 1.0000<br />

BiL 46.31 8.16 0.3854 0.8048 1.0340 1.0000<br />

O K 29.83 68.64 0.0477 1.1357 0.1408 1.0001<br />

Total 100.00 100.00<br />

Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

NaK 50.21 20.76 4.29 2.42<br />

BaL 0.00 26.92 0.00 0.00<br />

TiK 418.33 26.92 1.17 15.54<br />

BiL 142.09 18.23 2.11 7.79<br />

O K 116.63 8.44 2.23 13.83<br />

Pentru evidentierea distributiei elementelor chimice componente ale BNT-BT0,08, prezentam<br />

separat imag<strong>in</strong>ile cu repartitia fiecarui element pe suprafata d<strong>in</strong> figura 6.<br />

Ti Ba<br />

13


Fig.8. Distributia elementelor Ti, Ba, Bi, Na <strong>si</strong> O <strong>in</strong><br />

portiunea de proba prezentata <strong>in</strong> Fig.6<br />

Se poate observa o distributie uniforma a tuturor elementelor <strong>in</strong> zona exam<strong>in</strong>ata a<br />

probei. Chiar <strong>si</strong> bariul apare <strong>in</strong> microfotografia distributiei acestui element, ceea ce conduce la<br />

ideea ca totu<strong>si</strong> bariul estesub limita de separare a lui de titan, asa cum reiese <strong>si</strong> d<strong>in</strong> spectrul<br />

EDAX. De<strong>si</strong> dupa <strong>si</strong>nterizari la temperaturi mari, literatura de specialitate con<strong>si</strong>dera separarea<br />

bariului la marg<strong>in</strong>ea granulelor, pentru pulberile calc<strong>in</strong>ate la 500 °C nu se observa acest<br />

fenomen.<br />

Zona 2:<br />

Bi Na<br />

O<br />

14


Fig.9. Imag<strong>in</strong>ea SEM obt<strong>in</strong>uta pe pulberea de BNT-BT0,08,<br />

(zona 2), calc<strong>in</strong>ata la 500 °C<br />

Fig.10. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, calc<strong>in</strong>ata la 500 °C<br />

15


Tab. 2. Compozitia chimica a BNT-BT0,08 obt<strong>in</strong>ut la 500 °C, zona 2<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 5.92 9.39 0.0113 1.0649 0.1787 1.0001<br />

BaL 0.00 0.00 0.0000 0.8526 0.8330 1.0000<br />

TiK 18.29 13.93 0.1261 0.9945 0.6935 1.0000<br />

BiL 45.69 7.98 0.3796 0.8034 1.0343 1.0000<br />

O K 30.11 68.69 0.0481 1.1344 0.1408 1.0001<br />

Total 100.00 100.00<br />

Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

NaK 54.16 24.01 2.06 2.26<br />

BaL 0.00 29.02 0.00 0.00<br />

TiK 452.57 28.84 0.55 15.70<br />

BiL 148.86 21.77 1.03 6.84<br />

O K 125.02 10.75 1.07 11.63<br />

Ti Ba<br />

16


Bi Na<br />

O<br />

Fig.11. Distributia elementelor Ti, Ba, Bi, Na <strong>si</strong> O <strong>in</strong><br />

portiunea de proba prezentata <strong>in</strong> Fig.9<br />

Ca <strong>si</strong> <strong>in</strong> cazul zonei 1, <strong>in</strong> zona 2 se observa o distributie omogena a elementelor chimice ale<br />

solutiei solide BNT-BT0,08 <strong>si</strong> impo<strong>si</strong>bilitatea separarii bariului de titan <strong>in</strong> spectrul EDS.<br />

Zona 3:<br />

Fig.12. Imag<strong>in</strong>ea SEM obt<strong>in</strong>uta pe pulberea de BNT-BT0,08, (zona 3), calc<strong>in</strong>ata la 500 °C<br />

17


Fig.13. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, calc<strong>in</strong>ata la 500 °C<br />

Tabelul 3. Compozitia chimica a BNT-BT0,08 obt<strong>in</strong>ut la 500 °C, zona 3<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 5.89 9.30 0.0112 1.0643 0.1789 1.0001<br />

BaL 0.00 0.00 0.0000 0.8521 0.8320 1.0000<br />

TiK 17.68 13.41 0.1218 0.9940 0.6927 1.0000<br />

BiL 45.89 7.97 0.3812 0.8030 1.0346 1.0000<br />

O K 30.54 69.31 0.0493 1.1337 0.1424 1.0001<br />

Total 100.00 100.00<br />

18


Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

NaK 48.62 22.41 3.87 2.17<br />

BaL 0.00 25.15 0.00 0.00<br />

TiK 393.71 24.99 1.04 15.75<br />

BiL 134.68 18.66 1.90 7.22<br />

O K 115.49 9.94 1.96 11.62<br />

Ti Ba<br />

Bi Na<br />

O<br />

Fig.14. Distributia elementelor Ti, Ba, Bi, Na <strong>si</strong> O <strong>in</strong> portiunea de proba prezentata <strong>in</strong> Fig.12<br />

19


Distributia elementelor compusului BNT-BT0,08 <strong>in</strong> zona 3 conduce la observatia generala ca<br />

pulberea calc<strong>in</strong>ata la 500 °C, este un compus monofazal, stoichiometric.<br />

2) BNT-BT0,08 obt<strong>in</strong>ut la 600 °C<br />

Zona 1:<br />

Figura 15 prez<strong>in</strong>ta imag<strong>in</strong>ea SEM a zonei1, a unei pulberi de BNT-BT0,08 calc<strong>in</strong>ata la 600 °C.<br />

Fig.15. Imag<strong>in</strong>ea SEM obt<strong>in</strong>uta pe pulberea de BNT-BT0,08, (zona 1), calc<strong>in</strong>ata la 600 °C<br />

Fig.16. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, calc<strong>in</strong>ata la 600 °C<br />

20


Tabelul 4. Compozitia chimica a BNT-BT0,08 obt<strong>in</strong>ut la 600 °C, zona 1<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 5.94 10.18 0.0112 1.0747 0.1761 1.0001<br />

BaL 0.00 0.00 0.0000 0.8612 0.8230 1.0000<br />

TiK 21.47 17.66 0.1477 1.0048 0.6845 1.0000<br />

BiL 46.87 8.84 0.3928 0.8125 1.0313 1.0000<br />

O K 25.72 63.32 0.0384 1.1449 0.1303 1.0001<br />

Total 100.00 100.00<br />

Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

NaK 46.76 15.33 4.14 3.05<br />

BaL 0.00 24.52 0.00 0.00<br />

TiK 459.60 24.52 1.08 18.75<br />

BiL 133.60 20.02 2.17 6.67<br />

O K 86.00 11.07 2.66 7.77<br />

Ti Ba<br />

21


Zona 2:<br />

Bi Na<br />

O<br />

Fig.17. Distributia elementelor Ti, Ba, Bi, Na <strong>si</strong> O <strong>in</strong><br />

portiunea de proba prezentata <strong>in</strong> Fig.15<br />

Fig.18. Imag<strong>in</strong>ea SEM obt<strong>in</strong>uta pe pulberea de BNT-BT0,08,<br />

(zona 2), calc<strong>in</strong>ata la 600 °C<br />

22


Fig.19. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, calc<strong>in</strong>ata la 600 °C<br />

Tabelul 5. Compozitia chimica a BNT-BT0,08 obt<strong>in</strong>ut la 600 °C, zona 1<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 5.86 9.88 0.0111 1.0729 0.1768 1.0001<br />

BaL 0.00 0.00 0.0000 0.8599 0.8196 1.0000<br />

TiK 19.58 15.85 0.1339 1.0032 0.6817 1.0000<br />

BiL 47.57 8.83 0.3984 0.8115 1.0321 1.0000<br />

O K 27.00 65.44 0.0416 1.1430 0.1347 1.0001<br />

Total 100.00 100.00<br />

23


Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

NaK 42.32 14.82 5.36 2.86<br />

BaL 0.00 24.20 0.00 0.00<br />

TiK 381.57 24.20 1.45 15.77<br />

BiL 124.09 15.47 2.68 8.02<br />

O K 85.33 8.02 3.16 10.64<br />

Ti Ba<br />

Bi Na<br />

O<br />

Fig.20. Distributia elementelor Ti, Ba, Bi, Na <strong>si</strong> O <strong>in</strong> portiunea de proba prezentata <strong>in</strong> Fig.18<br />

24


Zona 3:<br />

Fig. 21. Imag<strong>in</strong>ea SEM obt<strong>in</strong>uta pe pulberea de BNT-BT0,08,<br />

(zona 3), calc<strong>in</strong>ata la 600 °C<br />

Fig. 22. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, calc<strong>in</strong>ata la 600 °C (zona 3)<br />

25


Tabelul 6. Compozitia chimica a BNT-BT0,08 obt<strong>in</strong>ut la 600 °C, zona 3<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 5.44 8.73 0.0103 1.0664 0.1773 1.0001<br />

BaL 0.00 0.00 0.0000 0.8541 0.8285 1.0000<br />

TiK 18.41 14.19 0.1264 0.9963 0.6890 1.0000<br />

BiL 46.30 8.18 0.3854 0.8051 1.0340 1.0000<br />

O K 29.86 68.90 0.0474 1.1361 0.1397 1.0001<br />

Total 100.00 100.00<br />

Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

NaK 39.55 14.73 6.81 2.69<br />

BaL 0.00 20.51 0.00 0.00<br />

TiK 363.84 20.30 1.79 17.92<br />

BiL 121.28 17.04 3.33 7.12<br />

O K 98.28 8.20 3.53 11.98<br />

Ti Ba<br />

Bi Na<br />

26


O<br />

Fig.23. Distributia elementelor Ti, Ba, Bi, Na <strong>si</strong> O <strong>in</strong><br />

portiunea de proba prezentata <strong>in</strong> Fig.21<br />

D<strong>in</strong> figura 16, 19 <strong>si</strong> 22 se observa ca toate elementele care constituie solutia solida<br />

BNT-BT0,08 adica, Bi, Na, Ti, Ba <strong>si</strong> O sunt prezente <strong>in</strong> proba supusa analizei. Compozitia<br />

chimica exprimata <strong>in</strong> procente de masa <strong>si</strong> <strong>in</strong> procente atomice a probei de BNT-BT0,08,<br />

obt<strong>in</strong>uta <strong>in</strong> urma analizei EDS efectuate <strong>in</strong> trei zone diferite ale pulberii de analizat, este<br />

redata <strong>in</strong> tabelele 4, 5 <strong>si</strong> 6. Rezultatele analizei cu EDS pun <strong>in</strong> evidenta o pulbere omogena<br />

compozitional, <strong>in</strong> toate cele trei zone analizate. Calc<strong>in</strong>area gelului precursor la 600 °C, ajuta la<br />

cresterea gradului de cristalizare a materialului pulverulent <strong>si</strong> pastreaza omogenitatea chimica<br />

observata la pulberea obt<strong>in</strong>uta pr<strong>in</strong> calc<strong>in</strong>are la 500 °C.<br />

3) BNT-BT0,08 obt<strong>in</strong>ut la 700 °C<br />

Zona 1:<br />

Fig. 24. Imag<strong>in</strong>ea SEM obt<strong>in</strong>uta pe pulberea de BNT-BT0,08,<br />

(zona 1), calc<strong>in</strong>ata la 700 °C<br />

27


Fig. 25. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, calc<strong>in</strong>ata la 700 °C (zona 1)<br />

Tabelul 7. Compozitia chimica a BNT-BT0,08 obt<strong>in</strong>ut la 700 °C, zona 1<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 5.73 9.85 0.0109 1.0756 0.1762 1.0001<br />

BaL 0.00 0.00 0.0000 0.8624 0.8102 1.0000<br />

TiK 18.73 15.45 0.126 9 1.0064 0.6733 1.0000<br />

BiL 49.04 9.27 0.4122 0.8147 1.0317 1.0000<br />

O K 26.50 65.43 0.0411 1.1459 0.1354 1.0001<br />

Total 100.00 100.00<br />

Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

28


NaK 61.08 22.44 3.02 2.72<br />

BaL 0.00 28.05 0.00 0.00<br />

TiK 535.38 27.86 0.81 19.22<br />

BiL 190.03 25.49 1.46 7.46<br />

O K 124.31 9.78 1.73 12.71<br />

Ti Ba<br />

Bi<br />

O<br />

Fig.26. Distributia elementelor Ti, Ba, Bi, Na <strong>si</strong> O <strong>in</strong><br />

portiunea de proba prezentata <strong>in</strong> Fig.24<br />

29<br />

Na


Zona 2:<br />

Fig. 27. Imag<strong>in</strong>ea SEM obt<strong>in</strong>uta pe pulberea de BNT-BT0,08,<br />

(zona 2), calc<strong>in</strong>ata la 700 °C<br />

Fig. 28. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, calc<strong>in</strong>ata la 700 °C (zona 2)<br />

30


Tabelul 8. Compozitia chimica a BNT-BT0,08 obt<strong>in</strong>ut la 700 °C, zona 2<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 5.73 9.85 0.0109 1.0756 0.1762 1.0001<br />

BaL 0.00 0.00 0.0000 0.8624 0.8102 1.0000<br />

TiK 18.73 15.45 0.1269 1.0064 0.6733 1.0000<br />

BiL 49.04 9.27 0.4122 0.8147 1.0317 1.0000<br />

O K 26.50 65.43 0.0411 1.1459 0.1354 1.0001<br />

Total 100.00 100.00<br />

Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

NaK 61.08 22.44 3.02 2.72<br />

BaL 0.00 28.05 0.00 0.00<br />

TiK 535.38 27.86 0.81 19.22<br />

BiL 190.03 25.49 1.46 7.46<br />

O K 124.31 9.78 1.73 12.71<br />

Ti Ba<br />

Bi Na<br />

31


Zona 3:<br />

O<br />

Fig.29. Distributia elementelor Ti, Ba, Bi, Na <strong>si</strong> O <strong>in</strong><br />

portiunea de proba prezentata <strong>in</strong> Fig.27<br />

Fig. 30. Imag<strong>in</strong>ea SEM obt<strong>in</strong>uta pe pulberea de BNT-BT0,08,<br />

(zona 3), calc<strong>in</strong>ata la 700 °C<br />

32


Fig. 31. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, calc<strong>in</strong>ata la 700 °C (zona 3)<br />

Tabelul 9. Compozitia chimica a BNT-BT0,08 obt<strong>in</strong>ut la 700 °C, zona 3<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 5.30 8.93 0.0100 1.0732 0.1761 1.0001<br />

BaL 0.00 0.00 0.0000 0.8603 0.8125 1.0000<br />

TiK 18.13 14.68 0.1229 1.0039 0.6752 1.0000<br />

BiL 48.78 9.05 0.4092 0.8125 1.0324 1.0000<br />

O K 27.79 67.34 0.0437 1.1433 0.1376 1.0001<br />

Total 100.00 100.00<br />

Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

NaK 51.57 22.34 4.64 2.31<br />

BaL 0.00 24.06 0.00 0.00<br />

TiK 474.93 24.30 1.17 19.54<br />

BiL 172.79 19.19 2.05 9.00<br />

O K 121.09 9.74 2.39 12.43<br />

33


Ti<br />

Fig. 32. Distributia elementelor Ti, Ba, Bi, Na <strong>si</strong> O <strong>in</strong><br />

portiunea de proba prezentata <strong>in</strong> Fig.30<br />

Daca facem o comparatie <strong>in</strong>tre cont<strong>in</strong>utul de Na <strong>in</strong> cele trei zone, se constata ca pentru zonele<br />

1<strong>si</strong> 2 cont<strong>in</strong>utul de sodiu este acela<strong>si</strong> (9,85 at% Na) <strong>si</strong> este mai mare decat cel d<strong>in</strong> zona 3 (8,93<br />

at% Na). Comparand <strong>si</strong> cu rezultatele obt<strong>in</strong>ute pentru pulberea calc<strong>in</strong>ata la 500 <strong>si</strong> 600 °C,<br />

cont<strong>in</strong>utul de Na variaza <strong>in</strong>tre acelea<strong>si</strong> limite. Am analizat cu atentie elementul Na deoarece el<br />

are temperatura de evaporare cea mai mica d<strong>in</strong>tre toate elementele solutiei solide BNT-BT0,08.<br />

34<br />

Ba<br />

Bi Na<br />

O


Se constata ca pr<strong>in</strong> calc<strong>in</strong>are pana la 700 °C, compozitia elementara a BNT-BT0,08, se ment<strong>in</strong>e<br />

constanta, <strong>in</strong> limitele stoichiometrice.<br />

De<strong>si</strong> apare problema <strong>in</strong>separarii peak-urilor de Ti <strong>si</strong> Ba, metoda EDAX ofera rezultate<br />

reproductibile pentru celelalte elemente (Bi <strong>si</strong> O) d<strong>in</strong> BNT-BT0,08. In concluzie, rezultatele<br />

analizelor SEM <strong>si</strong> EDAX pun <strong>in</strong> evidenta o pulbere omogena d<strong>in</strong> punct de vedere chimic <strong>si</strong><br />

morfologic, <strong>in</strong> cazul prepararii ei pr<strong>in</strong> metoda sol-gel, urmata de calc<strong>in</strong>are <strong>in</strong> <strong>in</strong>tervalul termic<br />

500-700 °C.<br />

1.2. Analiza compozitiei de faze pr<strong>in</strong> DRX a pulberilor de BNT-BT0,08 preparate pr<strong>in</strong><br />

sol-gel<br />

Difractia de raze X este o metoda de analiza structurala, curent folo<strong>si</strong>ta <strong>in</strong> studiul<br />

monocristalelor sau policristalelor pentru determ<strong>in</strong>area structurii cristal<strong>in</strong>e, determ<strong>in</strong>ari<br />

calitative <strong>si</strong> cantitative de faze, transformari de faze, determ<strong>in</strong>ari ale parametrilor de retea, ale<br />

ten<strong>si</strong>unilor <strong>in</strong>terne, ale dimen<strong>si</strong>unii de graunti. Figura 33 prez<strong>in</strong>ta curbele de difractie de raze<br />

X ale pulberii de BNT-BT0.08 preparate pr<strong>in</strong> metoda sol-gel <strong>si</strong> calc<strong>in</strong>ata la 200, 400, 500, 600<br />

<strong>si</strong> 700 ºC.<br />

Inten<strong>si</strong>tatea (a. u.)<br />

*<br />

x<br />

o<br />

o<br />

*<br />

* - (Bi 0.5 Na 0.5 )TiO 3 (structura perovskitica)<br />

o - Bi 2 O 3 hexagonal<br />

x- Bi O tetragonal<br />

2 3<br />

* *<br />

20 25 30 35 40 45 50 55 60<br />

35<br />

2θ<br />

1150 o C<br />

700 o C<br />

600 o C<br />

500 o C<br />

400 o C<br />

200 o C<br />

Fig.33. Difractogramele de raze X ale precursorului gel de Bi1/2Na1/2TiO3 dopat cu 8<br />

mol.% BaTiO3, calc<strong>in</strong>at la 200, 400, 500, 600, 700 <strong>si</strong> 1150 °C<br />

*


Gelul <strong>in</strong>calzit la 200 °C a prezentat structura amorfa. Curba de difractie de raze X a<br />

gelului calc<strong>in</strong>at la 400 °C, 2h a <strong>in</strong>dicat un material amorf <strong>si</strong> aparitia unui peak corespunzator<br />

fazei hexagonale a oxidului de bismuth (Bi2O3) (fisa ASTM: 51-1161) [1].<br />

Fazele Bi2O3 hexagonal, Bi2O3 tetragonal (fisa ASTM: 78-1793) [2] <strong>si</strong> Bi1/2Na1/2TiO3<br />

dopat cu 8 mol% BaTiO3 cristalizat pe structura perovskitica a Bi1/2Na1/2TiO3 au fost<br />

identificate <strong>in</strong> pulberile calc<strong>in</strong>ate la 500 °C (Fig.33).<br />

La temperaturi mai mari de 600 °C, a fost identificata o <strong>si</strong>ngura faza cristal<strong>in</strong>a cu<br />

structura perovskitica a fazei Bi1/2Na1/2TiO3.<br />

Rezultatele analizei pr<strong>in</strong> difractie de raze X arata ca pentru obt<strong>in</strong>erea unui material de<br />

compozitie BNT-BT0,08, cristalizat monofazic, derivat d<strong>in</strong> sol-gel, este suficienta o<br />

temperatura de calc<strong>in</strong>are de 600 °C. Acest aspect constituie avantajul major al utilizarii<br />

metodei sol-gel fata de metoda cla<strong>si</strong>ca a calc<strong>in</strong>arii amestecului de oxizi, care <strong>in</strong> cazul BNT-<br />

BT0,08 nece<strong>si</strong>ta o temperatura de peste 1100 °C [3-5].<br />

Pr<strong>in</strong> obt<strong>in</strong>erea BNT-BT0,08 la 600 °C, se evita pierderea de Na <strong>si</strong> Bi, ca <strong>in</strong> cazul<br />

calc<strong>in</strong>arii la temperaturi mai mari de 1100 °C.<br />

In ceea ce priveste formele de cristalizare a materialului de baza (Bi1/2Na1/2TiO3),<br />

studiile sunt <strong>in</strong> curs de desfasurare. Se cunosc doua faze cristal<strong>in</strong>e ale compusului<br />

Bi1/2Na1/2TiO3 , <strong>si</strong> anume: forma cubica <strong>si</strong> forma romboedrica. Diferentierea lor este dificila,<br />

asa cum reiese <strong>si</strong> d<strong>in</strong> fisele lor ASTM, redate <strong>in</strong> cont<strong>in</strong>uare.<br />

Fisa ICSD nr.43769, [6] arata ca primele trei peak-uri ca <strong>in</strong>ten<strong>si</strong>tate ale Bi1/2Na1/2TiO3<br />

cubic sunt: (110) la 32.525° (2 θ); (200) la 46.662° <strong>si</strong> (211) la 58.031°.<br />

Pentru forma cristal<strong>in</strong>a monocl<strong>in</strong>ica a Bi1/2Na1/2TiO3, Fisa ICSD nr. 46-0001, [7]<br />

<strong>in</strong>dica: (102) <strong>si</strong> (121) la 32.452° (2 θ) <strong>si</strong> 32.618; (220) la 46.698° <strong>si</strong> (003) la 58.165°.<br />

Mai exista <strong>si</strong> forma cristalizata <strong>in</strong> <strong>si</strong>stemul romboedral care corespunde compozitiei<br />

chimice (Na0,5Bi0,5TiO3)2. Fisa corespunzatoare nr. 20786 prez<strong>in</strong>ta urmatoarele picuri de<br />

difractie.<br />

Fisa ICSD nr.20786, [8] pentru reteaua romboedrala a Na0,5Bi0,5TiO3: (110) la 20.921°<br />

(2 θ); (202) la 29.757° <strong>si</strong> (300) la 36.658°.<br />

Mai recent a fost publicata o lucrare [9] care pune <strong>in</strong> evidenta forma tetragonala a<br />

Na0.5Bi0.5TiO3 cu structura perovskitica. Fisa ICSD nr. 280381 [9] <strong>in</strong>dica peak-uri<br />

asemanatoare cu forma cubica: (110) la 32.50° (2 θ); (100) la 22.74° <strong>si</strong> (111) la 40.05°.<br />

Se remarca dificultatea separarii fazei cubice de cea tetragonala datorita <strong>si</strong>militud<strong>in</strong>ii<br />

pozitiilor maximelor de difractie pentru cele doua faze. S<strong>in</strong>gura cale de diferentiere a acestor<br />

forme cristalografice ramane, compararea parametrilor celulei cristal<strong>in</strong>e elementare. In plus<br />

36


mai exista o faza cu retea tetragonala <strong>in</strong> care raportul Na/Bi nu mai este 0,5/0,5 care conduce<br />

la ideea trecerii fazei cubice la faza tetragonala pr<strong>in</strong> pierderea unei parti d<strong>in</strong> Na.<br />

Forma tetragonala a Na0.5Bi0.5TiO3 a fost observata atunci cand materialul a fost supus<br />

unei ten<strong>si</strong>uni [5]. In prezenta unor dopanti, adaugati <strong>in</strong>tr-o anumita concentratie, s-a observat<br />

de asemenea, aparitia fazei tetragonale. Si <strong>in</strong> acest caz, explicatia pentru trecerea de la faza<br />

cubica la cea tetragonala, se bazeaza tot pe ten<strong>si</strong>onarea mecanica a retelei pr<strong>in</strong> <strong>in</strong>serarea<br />

dopantului.<br />

Este importanta cunoasterea conditiilor <strong>in</strong> care se poate obt<strong>in</strong>e faza tetragonala pentru<br />

ca <strong>in</strong> cazul perovskitilor, faza tetragonala este cea care a<strong>si</strong>gura o permitivitate mare. Un calcul<br />

foarte exact al parametrilor de retea ai materialului BNT-BT0.08 cristalizat pe structura<br />

Na0.5Bi0.5TiO3 poate face separarea <strong>in</strong>tre formele de cistalizare am<strong>in</strong>tite.<br />

Datele de literatura arata ca solutia solida (1-x)Na1/2Bi1/2TiO3-xBaTiO3 (NBT-BTx)<br />

prez<strong>in</strong>ta <strong>si</strong>militud<strong>in</strong>i structurale cu <strong>si</strong>stemele PZT <strong>si</strong> PZN-PT (PbZn1/3Nb2/3O3-PbTiO3). In<br />

conditiile mediului ambiant, toate cele trei solutii solide au proprietati comune chiar daca<br />

unele au <strong>si</strong>metrie romboedrala iar altele au <strong>si</strong>metrie tetragonala.<br />

Proprietatile piezoelectrice cele mai bune au fost observate <strong>in</strong> regiunea compozitiilor<br />

morfotropice (MPB= morphotropic phase boundary). Pentru BNT-BTx faza MPB este <strong>si</strong>tuata<br />

<strong>in</strong> jurul lui x~0,07 dar <strong>si</strong>metria nu a fost <strong>in</strong>ca determ<strong>in</strong>ata [10,3]. Raman <strong>in</strong>ca multe<br />

controverse despre natura <strong>si</strong> ord<strong>in</strong>ea tranzitiei de faza cu temperatura chiar <strong>si</strong> pentru compusul<br />

Na1/2Bi1/2TiO3.<br />

In particular, natura feroelectrica <strong>si</strong> antiferoelectrica a fazei tetragonale de temperatura<br />

<strong>in</strong>alta atat <strong>in</strong> BNT cat <strong>si</strong> <strong>in</strong> solutia sa solida cu BT ramane controversabila asa cum sugereaza<br />

Jones <strong>si</strong> Thomas [11]. Ei au remarcat pe baza rezultatelor de difractie de neutroni <strong>si</strong><br />

masuratori de generare a armonicii a doua ca forma tetragonala este o faza polara <strong>in</strong> timp ce<br />

alti autori [10] con<strong>si</strong>dera aceasta faza anti-feroelectrica, d<strong>in</strong> masuratori de histerezis.<br />

O controversa <strong>si</strong>milara exista <strong>si</strong> despre natura fazelor <strong>in</strong> BNT-BT [3,12]. Datele de<br />

difractie de raze X obt<strong>in</strong>ute pe monocristale au demonstrat o splitare clara a picului (200)<br />

pentru compozitii nom<strong>in</strong>ale de 10% BaTiO3 <strong>si</strong> 15% BaTiO3. Aceste splitari sunt corelate cu<br />

schimbarile asteptate ale <strong>si</strong>metriei pr<strong>in</strong> trecerea de la romboedral la tetragonal odata cu<br />

cresterea cont<strong>in</strong>utului de bariu.<br />

Valorile parametrilor retelei pseudocubice arata ca aceasta retea este avantajata de un<br />

cont<strong>in</strong>ut redus <strong>in</strong> Ba [13]. Curbele de difractie pentru compozitiile tetragonale cu x≥ 0.1<br />

corespund <strong>si</strong>metriei P4mm. Pulberile de analizat au fost obt<strong>in</strong>ute pr<strong>in</strong> mac<strong>in</strong>area<br />

monocristalului de BNT-BTx.<br />

37


2. Analiza chimica elementara pr<strong>in</strong> EDS <strong>si</strong> analiza morfologiei cu ajutorul microscopiei<br />

electronice cu baleiaj (SEM) ale pulberilor de BNT-BT0,08 preparate pr<strong>in</strong> metoda<br />

atomizarii<br />

2.1. Analiza chimica pr<strong>in</strong> EDS a pulberilor de BNT-BT0,08 preparate pr<strong>in</strong> metoda<br />

pirosol<br />

Fig. 34. Imag<strong>in</strong>e SEM a unei pulberi de BNT-BT0,08, preparata pr<strong>in</strong><br />

metoda pirosol <strong>si</strong> apoi calc<strong>in</strong>ata la 700 °C, 3 ore<br />

Fig. 35. Imag<strong>in</strong>ea SEM, distributia elementelor chimice <strong>si</strong> spectrul EDS pentru pulberea de<br />

BNT-BT0,08, preparata pr<strong>in</strong> metoda pirosol <strong>si</strong> apoi calc<strong>in</strong>ata la 700 °C, 3 ore; zona 1<br />

38


Tabelul 10. Compozitia chimica a pulberii de BNT-BT0,08, preparata pr<strong>in</strong> metoda pirosol <strong>si</strong><br />

apoi calc<strong>in</strong>ata la 700 °C, 3 ore; zona 1<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 4.78 9.72 0.0091 1.0980 0.1739 1.0001<br />

BaL 0.00 0.00 0.0000 0.8833 0.7658 1.0000<br />

TiK 17.46 17.04 0.1149 1.0316 0.6380 1.0000<br />

BiL 57.06 12.76 0.4914 0.8395 1.0259 1.0000<br />

O K 20.70 60.48 0.0316 1.1699 0.1305 1.0001<br />

Total 100.00 100.00<br />

Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

NaK 68.46 22.80 2.80 3.00<br />

BaL 0.00 33.59 0.00 0.00<br />

TiK 643.86 33.59 0.74 19.17<br />

BiL 300.82 39.53 1.16 7.61<br />

O K 127.95 10.59 1.72 12.08<br />

Fig. 36. Spectrul EDS pentru pulberea de BNT-BT0,08, preparata pr<strong>in</strong> metoda pirosol <strong>si</strong> apoi<br />

calc<strong>in</strong>ata la 700 °C, 3 ore; zona 2<br />

39


Tabelul 11. Compozitia chimica a pulberii de BNT-BT0,08, preparata pr<strong>in</strong> metoda pirosol <strong>si</strong><br />

apoi calc<strong>in</strong>ata la 700 °C, 3 ore; zona 2<br />

Elementul % At % <strong>Raportul</strong>-K Z A F<br />

NaK 4.71 10.16 0.0090 1.1058 0.1721 1.0001<br />

BaL 1.60 0.58 0.0108 0.8904 0.7595 1.0000<br />

TiK 17.25 17.85 0.1135 1.0401 0.6329 1.0000<br />

BiL 57.82 13.72 0.5015 0.8474 1.0235 1.0000<br />

O K 18.62 57.69 0.0284 1.1784 0.1296 1.0001<br />

Total 100.00 100.00<br />

Elementul Net Inte. (P) Backgrd (B) Inte. Error P/B<br />

NaK 72.58 24.17 2.60 3.00<br />

BaL 22.94 35.85 7.26 0.64<br />

TiK 685.71 35.85 0.69 19.13<br />

BiL 330.96 43.13 1.06 7.67<br />

O K 124.24 10.53 1.66 11.80<br />

Ti Bi<br />

40


Na Ba<br />

O<br />

Fig.37. Distributia elementelor Ti, Ba, Bi, Na <strong>si</strong> O <strong>in</strong><br />

portiunea de proba prezentata <strong>in</strong> Fig.34<br />

Compozitia chimica rezultata <strong>in</strong> urma analizei EDS pe o pulbere de BNT-BT0,08,<br />

preparata pr<strong>in</strong> metoda pirosol <strong>si</strong> apoi calc<strong>in</strong>ata la 700 °C, 3 ore prez<strong>in</strong>ta un raport atomic<br />

Bi/Na destul de aproipiat de stoichiometria dorita d<strong>in</strong> start <strong>si</strong> anume 50/50, t<strong>in</strong>and cont <strong>si</strong> de<br />

precizia metodei EDAX.<br />

Distributia atomilor constituienti ai BNT-BT0,08, reprezentata <strong>in</strong> Fig.37, <strong>in</strong>dica o<br />

distributie uniforma a tuturor atomilor pe <strong>in</strong>treg domeniul analizat (<strong>in</strong> zonele 1 <strong>si</strong> 2).<br />

Rezultatele analizei EDS sunt <strong>in</strong> buna concordanta cu rezultatele difractiei de raze X. Astfel,<br />

comparand rezultatele EDAX pentru pulberile de BNT-BT0,08 preparate pr<strong>in</strong> sol-gel <strong>si</strong> pr<strong>in</strong><br />

metoda pirosol, se constata ca raportul atomic Na:Bi este mai apropiat de cel stoichiometric<br />

1:1 <strong>in</strong> pulberile obt<strong>in</strong>ute pr<strong>in</strong> sol-gel decat la cele obt<strong>in</strong>ute cu ajutorul metodei pirosol.<br />

Spre exemplificare, raportul atomic (%) Na:Bi este: 9,85/9,27 (Tab.8); 8,93/9,05<br />

(Tab.9) <strong>in</strong> cazul metodei sol-gel <strong>si</strong> respectiv, 9,72/12,76 (Tab.10) <strong>in</strong> cazul metodei pirosol.<br />

41


Acest rezultat este sust<strong>in</strong>ut de analiza pr<strong>in</strong> difractie de raze X deoarece pulberea de BNT-<br />

BT0,08 tratata termic la 700 °C, este faza unica <strong>in</strong> cazul <strong>si</strong>ntezei sol-gel <strong>si</strong> bifazica <strong>in</strong> cazul<br />

pirosolului. Faza unica cere un raport Na/Bi de 1/1.<br />

2.2. Analiza morfologiei cu ajutorul SEM a pulberilor de BNT-BT0,08 preparate pr<strong>in</strong><br />

metoda pirosol<br />

Imag<strong>in</strong>ile SEM de mai jos sunt obt<strong>in</strong>ute pentru o pulbere de BNT-BT0.08 preparata pr<strong>in</strong><br />

metoda pirosol, <strong>in</strong> urmatoarele conditii de lucru:<br />

- pulberea cruda, asa cum a fost obt<strong>in</strong>uta pr<strong>in</strong> metoda pirosol (temperatura <strong>in</strong> cuptor<br />

= 700 °C); proba (a);<br />

- pulberea cruda calc<strong>in</strong>ata ulterior la 700 °C, 3 ore, proba (b)<br />

(a) Analiza SEM a pulberii crude de BNT-BT0,08<br />

42


Fig. 38. Imag<strong>in</strong>i SEM a unei pulberi de BNT-BT0,08, preparata pr<strong>in</strong><br />

metoda pirosol la 700 °C<br />

Imag<strong>in</strong>ile SEM obt<strong>in</strong>ute d<strong>in</strong> mai multe zone ale probei de pulbere ofera o reprezentare<br />

cupr<strong>in</strong>zatoare a distributiei formei <strong>si</strong> dimen<strong>si</strong>unilor granulelor pulberii obt<strong>in</strong>ute la 700 °C. Ca<br />

forma, se remarca forma sferica a granulelor, dar exista <strong>si</strong> forme rezultate d<strong>in</strong> coliziunea<br />

picaturilor de sol, forme de tip crater (calota sferica sau chiar <strong>in</strong>el). Pr<strong>in</strong> uscare s-au obt<strong>in</strong>ut<br />

granule cu sau fara contact cu sfera de impact.<br />

Ca dimen<strong>si</strong>uni, granulele sferice au diametrul cupr<strong>in</strong>s <strong>in</strong>tre 170 nm <strong>si</strong> 1 µm, asa cum<br />

reiese d<strong>in</strong> imag<strong>in</strong>ile SEM. Coexistenta granulelor mici cu granule mari este datorata<br />

conditiilor de lucru d<strong>in</strong> timpul <strong>si</strong>ntezei (pulverizarea solului <strong>in</strong> cuptor, temperatura <strong>in</strong> cuptor,<br />

43


etc). La mariri mai mari, imag<strong>in</strong>ile SEM <strong>in</strong>dica o suprafata neregulata (nu este neteda) a<br />

granulelor.<br />

Acest fapt se poate explica pr<strong>in</strong> transformarea picaturii de sol <strong>in</strong> gel pulbere pr<strong>in</strong>tr-un<br />

proces de evaporare a solventilor, <strong>in</strong> trepte <strong>si</strong> cu viteze diferite. Rugozitatea suprafetei<br />

granulelor este pusa mai b<strong>in</strong>e <strong>in</strong> evidenta cu ajutorul microscopiei electronice cu transmi<strong>si</strong>e<br />

TEM <strong>si</strong> HRTEM.<br />

(b) Analiza SEM a pulberii crude de BNT-BT0,08,calc<strong>in</strong>ate ulterior la 700 °C, 3 ore<br />

- Proba 1-<br />

44


- Proba 2-<br />

Fig. 39. Imag<strong>in</strong>e SEM a unei pulberi de BNT-BT0,08, preparata pr<strong>in</strong><br />

metoda pirosol <strong>si</strong> apoi calc<strong>in</strong>ata la 700 °C, 3 ore; proba1<br />

45


Fig. 40. Imag<strong>in</strong>e SEM a unei pulberi de BNT-BT0,08, preparata pr<strong>in</strong><br />

metoda pirosol <strong>si</strong> apoi calc<strong>in</strong>ata la 700 °C, 3 ore; proba 2<br />

Figurile 39 <strong>si</strong> 40 arata un material cu granule de forma cubica, cu dimen<strong>si</strong>unile cupr<strong>in</strong>se <strong>in</strong><br />

<strong>in</strong>tervalul 300-400 nm, cu morfologie omogena. Aceste poliedre se unesc cu ajutorul unei<br />

pelicule de faza topita <strong>si</strong> formeaza agregate cu forme <strong>si</strong> dimen<strong>si</strong>uni diferite. Aceste granule<br />

cubice se obt<strong>in</strong> d<strong>in</strong> granulele sferice pr<strong>in</strong>tr-un proces de cristalizare. Pe imag<strong>in</strong>ile SEM se mai<br />

pot vedea cateva granule sferice. Si aceste imag<strong>in</strong>i SEM se coreleaza b<strong>in</strong>e cu faza care<br />

cristalizeaza a BNT-BT0,08, pusa <strong>in</strong> evidenta pr<strong>in</strong> spectrele de difractie. Prezenta acestor<br />

granule sferice sugereaza ca procesul de cristalizare a materialului obt<strong>in</strong>ut pr<strong>in</strong> metoda pirosol<br />

nu este complet, la aceasta temperatura.<br />

3. Analiza granulometriei cu ajutorul microscopului cu transmi<strong>si</strong>e (TEM) <strong>si</strong> a<br />

granulometrului cu laser a pulberilor de BNT-BT0,08 preparate pr<strong>in</strong> cele doua metode<br />

chimice <strong>in</strong> solutie<br />

3.1. Analiza morfologiei cu ajutorul microscopiei electronice cu transmi<strong>si</strong>e a pulberilor<br />

de BNT-BT0,08 preparate pr<strong>in</strong> sol-gel<br />

Nece<strong>si</strong>tatea valorificarii proprietatilor fizice deosebite ale materiei nanostructurate au<br />

impus utilizarea exten<strong>si</strong>va a microscopiei electronice de <strong>in</strong>alta rezolutie (HRTEM) ce permite,<br />

datorita rezolutiei de sub 2A, vizualizarea retelei cristal<strong>in</strong>e <strong>si</strong> a defectelor acesteia, studiul<br />

<strong>in</strong>terfetelor nanocristal<strong>in</strong>e, nanocompozitelor, nanodomeniilor, etc.<br />

46


Investigarea structurii acestor materiale pare a fi o cer<strong>in</strong>ta necesara pentru <strong>in</strong>telegerea<br />

functionalitatii lor. Deoarece trasaturile structurale de <strong>in</strong>teres sunt <strong>in</strong> domeniul dimen<strong>si</strong>unal<br />

nanometric, microscopia electronica de <strong>in</strong>alta rezolutie este foarte <strong>in</strong>dicata pentru<br />

<strong>in</strong>vestigarea structurii acestora.<br />

In studiul de fata, imag<strong>in</strong>ile TEM (<strong>in</strong> stanga) <strong>si</strong> HR-TEM (<strong>in</strong> dreapta) obt<strong>in</strong>ute pentru<br />

gelul <strong>in</strong>calzit la 600 °C, 3h <strong>in</strong> aer, sunt prezentate <strong>in</strong> figura 41.<br />

47


(a)<br />

(b)<br />

Fig.41. Imag<strong>in</strong>i TEM <strong>si</strong> HR-TEM ale pulberii de BNT-BT0,08 preparata pr<strong>in</strong> calc<strong>in</strong>area gelului<br />

precursor la 600 °C. (a) reprez<strong>in</strong>ta o imag<strong>in</strong>e SAED.<br />

Imag<strong>in</strong>ile TEM d<strong>in</strong> Fig.41 ne permit sa apreciem dimen<strong>si</strong>unea medie a cristalitelor ca<br />

fi<strong>in</strong>d de aproximativ 30 nm.<br />

De asemenea, pe aceste imag<strong>in</strong>i se observa ca pulberea este compusa d<strong>in</strong> particule cu<br />

structuri aglomerate. Tend<strong>in</strong>ta de aglomerare a granulelor pulberii de BNT-BT0.08 este<br />

obisnuita <strong>in</strong> cazul <strong>si</strong>ntezelor chimice <strong>in</strong> solutie <strong>si</strong> este datorata prezentei gruparilor OH, care<br />

sunt elim<strong>in</strong>ate complet la temperaturi <strong>in</strong> jur de 900 °C. Aceste grupari OH sunt elim<strong>in</strong>ate mai<br />

greu deoarece sunt grupe structurale care nu au fost hidrolizate. Se stie ca <strong>in</strong> cazul <strong>si</strong>ntezei solgel,<br />

cand se folosesc reactivi organometalici, nu toate gruparilor OH ajung sa fie hidrolizate,<br />

chiar daca se folosesc agenti modificatori moleculari ai alcoxizilor sau cataliza acida/bazica.<br />

48


Pr<strong>in</strong> microscopie electronica cu transmi<strong>si</strong>e de <strong>in</strong>alta rezolutie (Fig.41) se pun <strong>in</strong><br />

evidnta planele atomice ale structurii cristal<strong>in</strong>e a BNT-BT0.08. Distantele <strong>in</strong>terplanare d=0.279<br />

nm pot fi atribuite planelor cristalografice (102) ale formei cubice a Bi0.5Na0.5TiO3.<br />

Succe<strong>si</strong>unea regulata a planelor atomice <strong>in</strong>dicata de HR-TEM sugereaza o structura cristal<strong>in</strong>a<br />

uniforma.<br />

Avand <strong>in</strong> vedere ca BNT-BT0.08 este un material cu proprietati feroelectrice, pe<br />

imag<strong>in</strong>ile HR-TEM se evidentiaza <strong>si</strong> domeniile feroelectrice. De<strong>si</strong>, pr<strong>in</strong> difractie de raze X nu<br />

se pune <strong>in</strong> evidenta <strong>si</strong> o parte amorfa (foarte mica d<strong>in</strong> punct de vedere cantitativ) a probei, pe<br />

imag<strong>in</strong>ile HR-TEM se observa totu<strong>si</strong>, acea parte amorfa (fara plane atomice vizibile).<br />

Imag<strong>in</strong>ea SAED (Fig.41,a) arata un material b<strong>in</strong>e cristalizat, <strong>in</strong> buna concordanta cu<br />

rezultatele analizei pr<strong>in</strong> difractie cu raze X.<br />

Inten<strong>si</strong>ty (a.u.)<br />

(c)<br />

(b)<br />

(a)<br />

(100)<br />

(110)<br />

(111)<br />

10 20 30 40 50 60 70 80<br />

49<br />

(200)<br />

2θ ( o )<br />

(210)<br />

(211)<br />

(220)<br />

1200 o C<br />

900 o C<br />

700 o C<br />

Fig.42. Difractogramele de raze X ale pulberii de BNT-BT0,08, obt<strong>in</strong>uta pr<strong>in</strong><br />

metoda pirosol la 700 °C (a) <strong>si</strong> apoi calc<strong>in</strong>ata la 900 <strong>si</strong> 1200 °C<br />

Datorita procesului de atomizare a solutiei precursoare a BNT-BT0,08 este dificil sa se<br />

obt<strong>in</strong>a un material monofazic pr<strong>in</strong> pulverizare <strong>in</strong> cuptor, la o temperatura de 700 °C,<br />

(Fig.42,a). Picurile <strong>in</strong>dexate apart<strong>in</strong> fazei monocl<strong>in</strong>ice a Bi0,5Na0,5TiO3 pe structura careia a<br />

cristalizat BNT-BT0,08.<br />

Proba tratata la 900 °C, prez<strong>in</strong>ta faza cubica a Bi0,5Na0,5TiO3 <strong>in</strong>dicand trecerea de la<br />

faza monocl<strong>in</strong>ica la faza cubica (Fig.42,b). Aceasta transformare plimorfa este <strong>in</strong>dicata pe<br />

difractograma pr<strong>in</strong> disparitia peak-urilor mici care dublau peak-urile mari de difractie.


Peak-ul de la 2θ=30 o , care se ment<strong>in</strong>e <strong>si</strong> la 1200 °C (Fig.42,c), poate fi atribuit fazei<br />

hexagonale a Bi2O3 [1].<br />

Se constata ca <strong>in</strong> comparatie cu metoda sol-gel, obt<strong>in</strong>erea fazei unice de BNT-BT0,08<br />

este mai dificila pr<strong>in</strong> metoda pirosol.<br />

3.2. Analiza morfologiei cu ajutorul granulometrului cu laser a pulberilor de BNT-BT0,08<br />

preparate pr<strong>in</strong> sol-gel<br />

Proprietatile electrice, optice <strong>si</strong> mecanice ale elementelor presate <strong>si</strong> <strong>si</strong>nterizate dep<strong>in</strong>d<br />

de cantitatea de defecte prezente <strong>in</strong> materialul den<strong>si</strong>ficat. Aceste proprietati sunt <strong>in</strong>fluentate<br />

negativ de prezenta porilor. Pr<strong>in</strong> procesele de presare <strong>si</strong> <strong>si</strong>nterizare se urmareste sa se obt<strong>in</strong>a o<br />

den<strong>si</strong>tate cat mai apropiata de cea teoretica.<br />

Procesul de den<strong>si</strong>ficare pr<strong>in</strong> presare dep<strong>in</strong>de <strong>in</strong> primul rand de distributia<br />

granulometrica a pulberii supuse presarii. D<strong>in</strong> acest motiv, prezentam rezultatele analizei<br />

granulometrice pentru pulberea de BNT-BT0.08 preparata pr<strong>in</strong> metoda sol-gel. Deoarece,<br />

dimen<strong>si</strong>unile granulelor dep<strong>in</strong>d de temperatura de calc<strong>in</strong>are a gelului pentru obt<strong>in</strong>ea fazei<br />

dorite, am analizat distributia dimen<strong>si</strong>unii granulelor pulberilor obt<strong>in</strong>ute la diferite temperaturi<br />

(600 <strong>si</strong> 700 °C).<br />

Pentru realizarea acestei analize, am utilizat un granulometru cu laser tip Master<strong>si</strong>zer<br />

2000 de la Malvern Instruments.<br />

Caracteristicile echipamentului folo<strong>si</strong>t pentru analiza granulometrica sunt:<br />

- <strong>in</strong>tervalul dimen<strong>si</strong>unilor granulelor care pot fi masurate:


Pr<strong>in</strong>cipiul de lucru cu granulometrul cu laser este urmatorul:<br />

- se prepara o suspen<strong>si</strong>e diluata, de ord<strong>in</strong>ul 0,0001 la 1,0% v/v, folo<strong>si</strong>nd agenti de<br />

udare <strong>si</strong>/sau dispersare;<br />

- uneori se foloseste ultrasonarea pentru dezaglomerarea granulelor.<br />

Se foloseste o cantitate de 2 sau 3 mL de suspen<strong>si</strong>e pentru efectuarea analizei granulometrice.<br />

Aceasta suspen<strong>si</strong>e se pune <strong>in</strong> nacele d<strong>in</strong> material plastic, atunci cand dispersantul este apa sau<br />

un alcool <strong>si</strong>mplu. Se poate folo<strong>si</strong> <strong>si</strong> o nacela d<strong>in</strong> sticla pentru dispersanti mai corozivi. Sunt<br />

necesare doar cateva m<strong>in</strong>ute pentru proba <strong>si</strong> nacela pentru echilibrarea automata a<br />

temperaturii cu temperatura mediului d<strong>in</strong> <strong>in</strong>teriorul aparatului.<br />

Pentru prezentarea datelor, sunt po<strong>si</strong>bile trei po<strong>si</strong>bilitati. Determ<strong>in</strong>area diametrului<br />

median <strong>si</strong> masurarea <strong>in</strong>tervalelor de distributie sunt suficiente, de obicei. O alta po<strong>si</strong>bilitate<br />

consta <strong>in</strong> fitarea acestor valori pentru a obt<strong>in</strong>e o distributie logaritmica, cumulativa <strong>si</strong><br />

diferentiala. A treia po<strong>si</strong>bilitate, care se foloseste pentru distributia pulberilor multimodale,<br />

are la baza un algoritm numeric care t<strong>in</strong>e cont de teoria Mie. In timpul masurarii, trecerea de<br />

la un mod de reprezentare la altul se face <strong>in</strong>teractiv.<br />

Imprastierea lum<strong>in</strong>ii are loc atunci cand particulele polarizabile d<strong>in</strong>tr-o proba sunt<br />

<strong>in</strong>troduse <strong>in</strong>tr-uncamp electric al unui flux de lum<strong>in</strong>a. Variatia campului <strong>in</strong>duce dipoli<br />

oscilanti <strong>in</strong> particule <strong>si</strong> astfel radiatia lum<strong>in</strong>oasa este imprastiata <strong>in</strong> toate directiile. Acest<br />

fenomen universal important este utilizat <strong>in</strong> multe domenii ale sti<strong>in</strong>tei pentru determ<strong>in</strong>area<br />

marimii particulei, masei moleculare, forma, coeficientilor de difuzie, etc.<br />

Modul de lucru <strong>in</strong> cazul utilizarii granulometrului cu laser tip Master<strong>si</strong>zer 2000 este<br />

urmatorul: pulberea de analizat (<strong>in</strong> cazul nostru Na0,5Bi0,5TiO3 dopat cu 8mol%BaTiO3;<br />

prescurtat BNT-BT0.08) se <strong>in</strong>troduce <strong>in</strong>tr-un vas cu apa, <strong>in</strong> cantitatea necesara realizarii unei<br />

suspen<strong>si</strong>i de concentratie 0,0023 vol %. La aceasta solutie se poate adauga <strong>si</strong> un dispersant<br />

organic (metacrilatul de metil).<br />

Pentru comparatie am facut analiza granulometrica a BNT-BT0,08 <strong>in</strong> suspen<strong>si</strong>e apoasa<br />

<strong>si</strong> <strong>in</strong> suspen<strong>si</strong>a apoasa la care s-a adaugat dispersantul organic. Suspen<strong>si</strong>a se <strong>in</strong>troduce <strong>in</strong> baia<br />

cu ultrasunete <strong>si</strong> se t<strong>in</strong>e 5 m<strong>in</strong>ute. Apoi, cu ajutorul unei ser<strong>in</strong>gi, se picura suspen<strong>si</strong>a <strong>in</strong> <strong>in</strong>c<strong>in</strong>ta<br />

de analiza. Rezultatele sunt date subforma de diagrama <strong>si</strong> tabel. Am analizat esantioane de<br />

pulberi de BNT-BT0.08 obt<strong>in</strong>ute <strong>in</strong> urma calc<strong>in</strong>arii gelului precursor la 500, 600 <strong>si</strong> 700 °C <strong>si</strong><br />

pulbere de BNT-BT0.08 obt<strong>in</strong>uta pr<strong>in</strong> metoda pirosol.<br />

51


Pulbere de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C<br />

Volume (%)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Particle Size Distribution<br />

0<br />

0.01 0.1 1 10<br />

Particle Size (µm)<br />

100 1000 3000<br />

BNTBT7001,5h - Average, Thursday, November 12, 2009 9:19:51 AM<br />

Fig.43. Curba de variatie a volumului granulelor de pulbere <strong>in</strong> functie de diametrul<br />

particulelor de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C; suspen<strong>si</strong>e apoasa<br />

Tab.12. Distributia granulometrica a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C; suspen<strong>si</strong>e<br />

apoasa<br />

Size (µm) Volume In %<br />

0.010<br />

0.00<br />

0.011<br />

0.00<br />

0.013<br />

0.00<br />

0.015<br />

0.00<br />

0.017<br />

0.00<br />

0.020<br />

0.00<br />

0.023<br />

0.00<br />

0.026<br />

0.00<br />

0.030<br />

0.00<br />

0.035<br />

0.00<br />

0.040<br />

0.00<br />

0.046<br />

0.00<br />

0.052<br />

0.00<br />

0.060<br />

0.00<br />

0.069<br />

0.00<br />

0.079<br />

0.00<br />

0.091<br />

0.00<br />

0.105<br />

Size (µm) Volume In %<br />

0.105<br />

0.00<br />

0.120<br />

0.07<br />

0.138<br />

0.25<br />

0.158<br />

0.55<br />

0.182<br />

0.83<br />

0.209<br />

1.18<br />

0.240<br />

1.55<br />

0.275<br />

1.95<br />

0.316<br />

2.35<br />

0.363<br />

2.70<br />

0.417<br />

2.97<br />

0.479<br />

3.14<br />

0.550<br />

3.21<br />

0.631<br />

3.20<br />

0.724<br />

3.12<br />

0.832<br />

3.01<br />

0.955<br />

2.88<br />

1.096<br />

Size (µm) Volume In %<br />

1.096<br />

2.78<br />

1.259<br />

2.73<br />

1.445<br />

2.76<br />

1.660<br />

2.90<br />

1.905<br />

3.12<br />

2.188<br />

3.43<br />

2.512<br />

3.78<br />

2.884<br />

4.14<br />

3.311<br />

4.47<br />

3.802<br />

4.71<br />

4.365<br />

4.83<br />

5.012<br />

4.80<br />

5.754<br />

4.61<br />

6.607<br />

4.26<br />

7.586<br />

3.78<br />

8.710<br />

3.21<br />

10.000<br />

2.58<br />

11.482<br />

Size (µm) Volume In %<br />

11.482<br />

1.97<br />

13.183<br />

1.33<br />

15.136<br />

0.75<br />

17.378<br />

0.09<br />

19.953<br />

0.00<br />

22.909<br />

0.00<br />

26.303<br />

0.00<br />

30.200<br />

0.00<br />

34.674<br />

0.00<br />

39.811<br />

0.00<br />

45.709<br />

0.00<br />

52.481<br />

0.00<br />

60.256<br />

0.00<br />

69.183<br />

0.00<br />

79.433<br />

0.00<br />

91.201<br />

0.00<br />

104.713<br />

0.00<br />

120.226<br />

52<br />

Size (µm) Volume In %<br />

120.226<br />

0.00<br />

138.038<br />

0.00<br />

158.489<br />

0.00<br />

181.970<br />

0.00<br />

208.930<br />

0.00<br />

239.883<br />

0.00<br />

275.423<br />

0.00<br />

316.228<br />

0.00<br />

363.078<br />

0.00<br />

416.869<br />

0.00<br />

478.630<br />

0.00<br />

549.541<br />

0.00<br />

630.957<br />

0.00<br />

724.436<br />

0.00<br />

831.764<br />

0.00<br />

954.993<br />

0.00<br />

1096.478<br />

0.00<br />

1258.925<br />

Size (µm) Volume In %<br />

1258.925<br />

1445.440<br />

1659.587<br />

1905.461<br />

2187.762<br />

2511.886<br />

2884.032<br />

3311.311<br />

3801.894<br />

4365.158<br />

5011.872<br />

5754.399<br />

6606.934<br />

7585.776<br />

8709.636<br />

10000.000<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Rezultatele analizei granulometrice a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C<br />

(suspen<strong>si</strong>e apoasa) sunt: diametrul median = 3,544 µm <strong>si</strong> suprafata specifica = 7,73 m 2 /g.<br />

Volume (%)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Particle Size Distribution<br />

0<br />

0.01 0.1 1 10<br />

Particle Size (µm)<br />

100 1000 3000<br />

BNT BT 700 1,5h D - Average, Thursday, November 12, 2009 9:28:49 AM<br />

Fig.44. Curba de variatie a volumului granulelor de pulbere <strong>in</strong> functie de diametrul<br />

particulelor de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C; suspen<strong>si</strong>e apoasa plus aditiv organic


Tab.13. Distributia granulometrica a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C; suspen<strong>si</strong>e<br />

apoasa plus aditiv organic<br />

Size (µm) Volume In %<br />

0.010<br />

0.00<br />

0.011<br />

0.00<br />

0.013<br />

0.00<br />

0.015<br />

0.00<br />

0.017<br />

0.00<br />

0.020<br />

0.00<br />

0.023<br />

0.00<br />

0.026<br />

0.00<br />

0.030<br />

0.00<br />

0.035<br />

0.00<br />

0.040<br />

0.00<br />

0.046<br />

0.00<br />

0.052<br />

0.00<br />

0.060<br />

0.00<br />

0.069<br />

0.00<br />

0.079<br />

0.00<br />

0.091<br />

0.00<br />

0.105<br />

Size (µm) Volume In %<br />

0.105<br />

0.00<br />

0.120<br />

0.05<br />

0.138<br />

0.18<br />

0.158<br />

0.42<br />

0.182<br />

0.64<br />

0.209<br />

0.91<br />

0.240<br />

1.21<br />

0.275<br />

1.53<br />

0.316<br />

1.85<br />

0.363<br />

2.12<br />

0.417<br />

2.34<br />

0.479<br />

2.48<br />

0.550<br />

2.54<br />

0.631<br />

2.53<br />

0.724<br />

2.47<br />

0.832<br />

2.38<br />

0.955<br />

2.28<br />

1.096<br />

Size (µm) Volume In %<br />

1.096<br />

2.20<br />

1.259<br />

2.17<br />

1.445<br />

2.21<br />

1.660<br />

2.36<br />

1.905<br />

2.60<br />

2.188<br />

2.94<br />

2.512<br />

3.36<br />

2.884<br />

3.81<br />

3.311<br />

4.28<br />

3.802<br />

4.70<br />

4.365<br />

5.02<br />

5.012<br />

5.22<br />

5.754<br />

5.24<br />

6.607<br />

5.07<br />

7.586<br />

4.70<br />

8.710<br />

4.18<br />

10.000<br />

3.54<br />

11.482<br />

Size (µm) Volume In %<br />

11.482<br />

2.86<br />

13.183<br />

2.19<br />

15.136<br />

1.59<br />

17.378<br />

1.10<br />

19.953<br />

0.74<br />

22.909<br />

0.50<br />

26.303<br />

0.36<br />

30.200<br />

0.29<br />

34.674<br />

0.26<br />

39.811<br />

0.23<br />

45.709<br />

0.18<br />

52.481<br />

0.12<br />

60.256<br />

0.06<br />

69.183<br />

0.00<br />

79.433<br />

0.00<br />

91.201<br />

0.00<br />

104.713<br />

0.00<br />

120.226<br />

53<br />

Size (µm) Volume In %<br />

120.226<br />

0.00<br />

138.038<br />

0.00<br />

158.489<br />

0.00<br />

181.970<br />

0.00<br />

208.930<br />

0.00<br />

239.883<br />

0.00<br />

275.423<br />

0.00<br />

316.228<br />

0.00<br />

363.078<br />

0.00<br />

416.869<br />

0.00<br />

478.630<br />

0.00<br />

549.541<br />

0.00<br />

630.957<br />

0.00<br />

724.436<br />

0.00<br />

831.764<br />

0.00<br />

954.993<br />

0.00<br />

1096.478<br />

0.00<br />

1258.925<br />

Size (µm) Volume In %<br />

1258.925<br />

1445.440<br />

1659.587<br />

1905.461<br />

2187.762<br />

2511.886<br />

2884.032<br />

3311.311<br />

3801.894<br />

4365.158<br />

5011.872<br />

5754.399<br />

6606.934<br />

7585.776<br />

8709.636<br />

10000.000<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Rezultatele analizei granulometrice a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C<br />

(suspen<strong>si</strong>e apoasa plus aditiv organic) sunt: diametrul median = 5,289 µm <strong>si</strong> suprafata<br />

specifica = 3,67 m 2 /g.<br />

Pulbere de BNT-BT0.08 calc<strong>in</strong>ata la 600 °C<br />

Volume (%)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Particle Size Distribution<br />

0<br />

0.01 0.1 1 10<br />

Particle Size (µm)<br />

100 1000 3000<br />

BNT BT 600 2h D - Average, Thursday, November 12, 2009 9:37:07 AM<br />

Fig.45. Curba de variatie a volumului granulelor de pulbere <strong>in</strong> functie de diametrul<br />

particulelor de BNT-BT0.08 calc<strong>in</strong>ata la 600 °C; suspen<strong>si</strong>e apoasa


Tab.14. Distributia granulometrica a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 600 °C; suspen<strong>si</strong>e<br />

apoasa<br />

Size (µm) Volume In %<br />

0.010<br />

0.00<br />

0.011<br />

0.00<br />

0.013<br />

0.00<br />

0.015<br />

0.00<br />

0.017<br />

0.00<br />

0.020<br />

0.00<br />

0.023<br />

0.00<br />

0.026<br />

0.00<br />

0.030<br />

0.00<br />

0.035<br />

0.00<br />

0.040<br />

0.00<br />

0.046<br />

0.00<br />

0.052<br />

0.00<br />

0.060<br />

0.00<br />

0.069<br />

0.00<br />

0.079<br />

0.00<br />

0.091<br />

0.00<br />

0.105<br />

Size (µm) Volume In %<br />

0.105<br />

0.00<br />

0.120<br />

0.00<br />

0.138<br />

0.02<br />

0.158<br />

0.14<br />

0.182<br />

0.51<br />

0.209<br />

0.96<br />

0.240<br />

1.55<br />

0.275<br />

2.24<br />

0.316<br />

2.98<br />

0.363<br />

3.68<br />

0.417<br />

4.28<br />

0.479<br />

4.70<br />

0.550<br />

4.92<br />

0.631<br />

4.93<br />

0.724<br />

4.76<br />

0.832<br />

4.42<br />

0.955<br />

3.96<br />

1.096<br />

Size (µm) Volume In %<br />

1.096<br />

3.44<br />

1.259<br />

2.92<br />

1.445<br />

2.48<br />

1.660<br />

2.15<br />

1.905<br />

1.97<br />

2.188<br />

1.92<br />

2.512<br />

2.02<br />

2.884<br />

2.24<br />

3.311<br />

2.54<br />

3.802<br />

2.89<br />

4.365<br />

3.22<br />

5.012<br />

3.49<br />

5.754<br />

3.65<br />

6.607<br />

3.66<br />

7.586<br />

3.50<br />

8.710<br />

3.21<br />

10.000<br />

2.79<br />

11.482<br />

Size (µm) Volume In %<br />

11.482<br />

2.31<br />

13.183<br />

1.81<br />

15.136<br />

1.34<br />

17.378<br />

0.93<br />

19.953<br />

0.58<br />

22.909<br />

0.31<br />

26.303<br />

0.17<br />

30.200<br />

0.13<br />

34.674<br />

0.11<br />

39.811<br />

0.08<br />

45.709<br />

0.05<br />

52.481<br />

0.01<br />

60.256<br />

0.00<br />

69.183<br />

0.00<br />

79.433<br />

0.00<br />

91.201<br />

0.00<br />

104.713<br />

0.00<br />

120.226<br />

54<br />

Size (µm) Volume In %<br />

120.226<br />

0.00<br />

138.038<br />

0.00<br />

158.489<br />

0.00<br />

181.970<br />

0.00<br />

208.930<br />

0.00<br />

239.883<br />

0.00<br />

275.423<br />

0.00<br />

316.228<br />

0.00<br />

363.078<br />

0.00<br />

416.869<br />

0.00<br />

478.630<br />

0.00<br />

549.541<br />

0.00<br />

630.957<br />

0.00<br />

724.436<br />

0.00<br />

831.764<br />

0.00<br />

954.993<br />

0.00<br />

1096.478<br />

0.00<br />

1258.925<br />

Size (µm) Volume In %<br />

1258.925<br />

1445.440<br />

1659.587<br />

1905.461<br />

2187.762<br />

2511.886<br />

2884.032<br />

3311.311<br />

3801.894<br />

4365.158<br />

5011.872<br />

5754.399<br />

6606.934<br />

7585.776<br />

8709.636<br />

10000.000<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Rezultatele analizei granulometrice a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 600 °C<br />

(suspen<strong>si</strong>e apoasa) sunt: diametrul median = 3,869 µm <strong>si</strong> suprafata specifica = 6,34 m 2 /g.<br />

Volume (%)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Particle Size Distribution<br />

0<br />

0.01 0.1 1 10<br />

Particle Size (µm)<br />

100 1000 3000<br />

BNT BT 600 2h - Average, Thursday, November 12, 2009 9:45:23 AM<br />

Fig.46. Curba de variatie a volumului granulelor de pulbere <strong>in</strong> functie de diametrul<br />

particulelor de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C; suspen<strong>si</strong>e apoasa plus aditiv organic<br />

Tab.15. Distributia granulometrica a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C; suspen<strong>si</strong>e<br />

apoasa plus aditiv organic<br />

Size (µm) Volume In %<br />

0.010<br />

0.00<br />

0.011<br />

0.00<br />

0.013<br />

0.00<br />

0.015<br />

0.00<br />

0.017<br />

0.00<br />

0.020<br />

0.00<br />

0.023<br />

0.00<br />

0.026<br />

0.00<br />

0.030<br />

0.00<br />

0.035<br />

0.00<br />

0.040<br />

0.00<br />

0.046<br />

0.00<br />

0.052<br />

0.00<br />

0.060<br />

0.00<br />

0.069<br />

0.00<br />

0.079<br />

0.00<br />

0.091<br />

0.00<br />

0.105<br />

Size (µm) Volume In %<br />

0.105<br />

0.03<br />

0.120<br />

0.23<br />

0.138<br />

0.56<br />

0.158<br />

0.91<br />

0.182<br />

1.34<br />

0.209<br />

1.83<br />

0.240<br />

2.39<br />

0.275<br />

3.01<br />

0.316<br />

3.62<br />

0.363<br />

4.16<br />

0.417<br />

4.56<br />

0.479<br />

4.77<br />

0.550<br />

4.77<br />

0.631<br />

4.59<br />

0.724<br />

4.26<br />

0.832<br />

3.81<br />

0.955<br />

3.28<br />

1.096<br />

Size (µm) Volume In %<br />

1.096<br />

2.74<br />

1.259<br />

2.25<br />

1.445<br />

1.87<br />

1.660<br />

1.64<br />

1.905<br />

1.56<br />

2.188<br />

1.63<br />

2.512<br />

1.84<br />

2.884<br />

2.15<br />

3.311<br />

2.51<br />

3.802<br />

2.89<br />

4.365<br />

3.24<br />

5.012<br />

3.51<br />

5.754<br />

3.66<br />

6.607<br />

3.68<br />

7.586<br />

3.55<br />

8.710<br />

3.28<br />

10.000<br />

2.89<br />

11.482<br />

Size (µm) Volume In %<br />

11.482<br />

2.42<br />

13.183<br />

1.90<br />

15.136<br />

1.37<br />

17.378<br />

0.91<br />

19.953<br />

0.32<br />

22.909<br />

0.07<br />

26.303<br />

0.00<br />

30.200<br />

0.00<br />

34.674<br />

0.00<br />

39.811<br />

0.00<br />

45.709<br />

0.00<br />

52.481<br />

0.00<br />

60.256<br />

0.00<br />

69.183<br />

0.00<br />

79.433<br />

0.00<br />

91.201<br />

0.00<br />

104.713<br />

0.00<br />

120.226<br />

Size (µm) Volume In %<br />

120.226<br />

0.00<br />

138.038<br />

0.00<br />

158.489<br />

0.00<br />

181.970<br />

0.00<br />

208.930<br />

0.00<br />

239.883<br />

0.00<br />

275.423<br />

0.00<br />

316.228<br />

0.00<br />

363.078<br />

0.00<br />

416.869<br />

0.00<br />

478.630<br />

0.00<br />

549.541<br />

0.00<br />

630.957<br />

0.00<br />

724.436<br />

0.00<br />

831.764<br />

0.00<br />

954.993<br />

0.00<br />

1096.478<br />

0.00<br />

1258.925<br />

Size (µm) Volume In %<br />

1258.925<br />

1445.440<br />

1659.587<br />

1905.461<br />

2187.762<br />

2511.886<br />

2884.032<br />

3311.311<br />

3801.894<br />

4365.158<br />

5011.872<br />

5754.399<br />

6606.934<br />

7585.776<br />

8709.636<br />

10000.000<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00


Rezultatele analizei granulometrice a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 600 °C (suspen<strong>si</strong>e<br />

apoasa plus aditiv organic) sunt: diametrul median = 5,289 µm <strong>si</strong> suprafata specifica = 4,66<br />

m 2 /g.<br />

Pulbere de BNT-BT0.08 calc<strong>in</strong>ata la 500 °C<br />

Volume (%)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Particle Size Distribution<br />

0<br />

0.01 0.1 1 10<br />

Particle Size (µm)<br />

100 1000 3000<br />

BNT BT 500 3h - Average, Thursday, November 12, 2009 9:52:52 AM<br />

Fig.47. Curba de variatie a volumului granulelor de pulbere <strong>in</strong> functie de diametrul<br />

particulelor de BNT-BT0.08 calc<strong>in</strong>ata la 500 °C; suspen<strong>si</strong>e apoasa<br />

Tab.16. Distributia granulometrica a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 500 °C; suspen<strong>si</strong>e<br />

apoasa<br />

Size (µm) Volume In %<br />

0.010<br />

0.00<br />

0.011<br />

0.00<br />

0.013<br />

0.00<br />

0.015<br />

0.00<br />

0.017<br />

0.00<br />

0.020<br />

0.00<br />

0.023<br />

0.00<br />

0.026<br />

0.00<br />

0.030<br />

0.00<br />

0.035<br />

0.00<br />

0.040<br />

0.00<br />

0.046<br />

0.00<br />

0.052<br />

0.00<br />

0.060<br />

0.00<br />

0.069<br />

0.00<br />

0.079<br />

0.00<br />

0.091<br />

0.00<br />

0.105<br />

Size (µm) Volume In %<br />

0.105<br />

0.00<br />

0.120<br />

0.00<br />

0.138<br />

0.00<br />

0.158<br />

0.07<br />

0.182<br />

0.19<br />

0.209<br />

0.38<br />

0.240<br />

0.60<br />

0.275<br />

0.87<br />

0.316<br />

1.19<br />

0.363<br />

1.50<br />

0.417<br />

1.80<br />

0.479<br />

2.05<br />

0.550<br />

2.25<br />

0.631<br />

2.40<br />

0.724<br />

2.51<br />

0.832<br />

2.58<br />

0.955<br />

2.62<br />

1.096<br />

Size (µm) Volume In %<br />

1.096<br />

2.65<br />

1.259<br />

2.70<br />

1.445<br />

2.79<br />

1.660<br />

2.93<br />

1.905<br />

3.13<br />

2.188<br />

3.38<br />

2.512<br />

3.68<br />

2.884<br />

4.00<br />

3.311<br />

4.33<br />

3.802<br />

4.63<br />

4.365<br />

4.88<br />

5.012<br />

5.05<br />

5.754<br />

5.09<br />

6.607<br />

5.01<br />

7.586<br />

4.77<br />

8.710<br />

4.40<br />

10.000<br />

3.90<br />

11.482<br />

Size (µm) Volume In %<br />

11.482<br />

3.32<br />

13.183<br />

2.70<br />

15.136<br />

2.08<br />

17.378<br />

1.51<br />

19.953<br />

1.01<br />

22.909<br />

0.63<br />

26.303<br />

0.29<br />

30.200<br />

0.11<br />

34.674<br />

0.01<br />

39.811<br />

0.00<br />

45.709<br />

0.00<br />

52.481<br />

0.00<br />

60.256<br />

0.00<br />

69.183<br />

0.00<br />

79.433<br />

0.00<br />

91.201<br />

0.00<br />

104.713<br />

0.00<br />

120.226<br />

55<br />

Size (µm) Volume In %<br />

120.226<br />

0.00<br />

138.038<br />

0.00<br />

158.489<br />

0.00<br />

181.970<br />

0.00<br />

208.930<br />

0.00<br />

239.883<br />

0.00<br />

275.423<br />

0.00<br />

316.228<br />

0.00<br />

363.078<br />

0.00<br />

416.869<br />

0.00<br />

478.630<br />

0.00<br />

549.541<br />

0.00<br />

630.957<br />

0.00<br />

724.436<br />

0.00<br />

831.764<br />

0.00<br />

954.993<br />

0.00<br />

1096.478<br />

0.00<br />

1258.925<br />

Size (µm) Volume In %<br />

1258.925<br />

1445.440<br />

1659.587<br />

1905.461<br />

2187.762<br />

2511.886<br />

2884.032<br />

3311.311<br />

3801.894<br />

4365.158<br />

5011.872<br />

5754.399<br />

6606.934<br />

7585.776<br />

8709.636<br />

10000.000<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Rezultatele analizei granulometrice a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 600 °C<br />

(suspen<strong>si</strong>e apoasa) sunt: diametrul median = 3,595 µm <strong>si</strong> suprafata specifica = 5,72 m 2 /g.<br />

Pentru toate pulberile de BNT-BT0.08 analizate, se observa ca o granulometrie mai<br />

buna a pulberii se obt<strong>in</strong>e atunci cand suspen<strong>si</strong>a se realizeaza folo<strong>si</strong>nd numai apa. Aceasta<br />

<strong>in</strong>seamna ca dispersantul organic actioneaza ca un coagulant, reu<strong>si</strong>nd sa mareasca<br />

aglomerarea particulelor.


Se constata ca exista o diferenta <strong>in</strong>semnata <strong>in</strong>tre dimen<strong>si</strong>unile granulelor observate cu<br />

ajutorul microscopiilor electronice SEM <strong>si</strong> TEM. Aceasta diferenta este pusa pe seama<br />

faptului ca apa <strong>si</strong> dispersantul organic nu reusesc sa distruga agregatele granulelor. Mai mult,<br />

<strong>in</strong> prezenta solventului apos <strong>si</strong> a dispersantului organic, se produce o aglomerare a granulelor,<br />

daca ne referim la microscopia SEM, unde nu se foloseste un mediu lichid pentru analiza.<br />

Aceste rezultate, de<strong>si</strong> par orientative, sunt foarte utile mai ales pentru materialele<br />

pulverulente care nu prez<strong>in</strong>ta aptitud<strong>in</strong>e buna la presare, caz <strong>in</strong> care, pentru obt<strong>in</strong>erea unei<br />

den<strong>si</strong>tati a materialului presat de peste 40% d<strong>in</strong> cea teoretica, se folosesc aditivi de presare d<strong>in</strong><br />

aceea<strong>si</strong> gama (apa, substanta organica).<br />

Mai mult, repartizarea cantitativa (procente volumetrice) a granulelor cu diametrul<br />

cupr<strong>in</strong>s <strong>in</strong>tr-un anumit <strong>in</strong>terval dimen<strong>si</strong>onal) reprez<strong>in</strong>ta un parametru important pentru<br />

realizarea unui material dens pr<strong>in</strong> presare.<br />

3.3. Analiza morfologiei cu ajutorul microscopiei electronice cu transmi<strong>si</strong>e a pulberilor<br />

de BNT-BT0,08 preparate pr<strong>in</strong> metoda pirosol<br />

Imag<strong>in</strong>ile TEM de mai jos sunt obt<strong>in</strong>ute pentru o pulbere de BNT-BT0.08 preparata pr<strong>in</strong><br />

metoda pirosol, <strong>in</strong> urmatoarele conditii de lucru:<br />

- pulberea cruda, asa cum a fost obt<strong>in</strong>uta pr<strong>in</strong> metoda pirosol (temperatura <strong>in</strong> cuptor<br />

= 700 °C); proba (a);<br />

- pulberea cruda calc<strong>in</strong>area ulterior la 700 °C, 3 ore, proba (b)<br />

(a) Analiza TEM a pulberii crude de BNT-BT0,08<br />

- Proba 1-<br />

56


Fig.48. Imag<strong>in</strong>i TEM ale pulberii crude de BNT-BT0,08 preparata pr<strong>in</strong> metoda pirosol<br />

la 700 °C<br />

57


- Proba 2-<br />

Fig.49. Imag<strong>in</strong>i HR-TEM ale pulberii crude de BNT-BT0,08 preparata pr<strong>in</strong> metoda<br />

pirosol la 700 °C<br />

58


Fig.50. Imag<strong>in</strong>i TEM ale pulberii crude de BNT-BT0,08 preparata pr<strong>in</strong> metoda pirosol<br />

la 700 °C<br />

59


Fig.51. Imag<strong>in</strong>i SAED ale pulberii crude de BNT-BT0,08 preparata pr<strong>in</strong> metoda pirosol<br />

la 700 °C<br />

Fig.52. Spectrul EDS al pulberii crude de BNT-BT0,08 preparata pr<strong>in</strong> metoda pirosol la<br />

700 °C<br />

Imag<strong>in</strong>ile TEM obt<strong>in</strong>ute pentru pulberea de BNT-BT0,08 asa cum rezulta pr<strong>in</strong> metoda pirosol<br />

arata granule sferice, de diferite marimi (<strong>in</strong> stransa legatura cu dimen<strong>si</strong>unile picaturilor de sol<br />

d<strong>in</strong> care prov<strong>in</strong>). In completarea <strong>in</strong>formatiilor despre microstructura pulberii obt<strong>in</strong>ute pr<strong>in</strong><br />

<strong>si</strong>nteza pirosol v<strong>in</strong> imag<strong>in</strong>ile HR-TEM. Aceste ultime imag<strong>in</strong>i <strong>in</strong>dica granule sferice formate<br />

d<strong>in</strong> mai multe cristalite de aproximativ 10 nm. Aceste imag<strong>in</strong>i sugereaza ca d<strong>in</strong> granula<br />

sferica, pr<strong>in</strong> cristalizare se vor forma acele granule cu forma poliedrala (<strong>in</strong> spacial cubica)<br />

60


evidentiate pr<strong>in</strong> microscopie SEM la pulberea calc<strong>in</strong>ata ulterior 3 ore, la 700 °C. Imag<strong>in</strong>ile<br />

SAED pun <strong>in</strong> evidenta cristalizarea <strong>in</strong>completa a pulberii de BNT-BT0,08 <strong>in</strong> momentul imediat<br />

dupa <strong>si</strong>nteza. Spectrul EDAX <strong>in</strong>dica prezenta tututror speciilor atomice care formeaza<br />

compusul BNT-BT0,08.<br />

(b) Analiza SEM a pulberii crude de BNT-BT0,08,calc<strong>in</strong>ata ulterior la 700 °C, 3 ore<br />

- Proba 1<br />

Fig.53. Imag<strong>in</strong>i TEM ale pulberii crude de BNT-BT0,08,calc<strong>in</strong>ata ulterior la 700 °C, 3 ore<br />

61


Fig.54. Imag<strong>in</strong>i HR-TEM ale pulberii crude de BNT-BT0,08,calc<strong>in</strong>ata ulterior la 700 °C, 3 ore<br />

62


Fig.55. Imag<strong>in</strong>ea SAED a pulberii crude de BNT-BT0,08,calc<strong>in</strong>ata ulterior la 700 °C, 3 ore<br />

Imag<strong>in</strong>i TEM ale pulberii de BNT-BT0,08, calc<strong>in</strong>ata dupa <strong>si</strong>nteza, la 700 °C, 3 ore <strong>in</strong>dica un<br />

material cu granule care nu mai sunt sferice. De fapt, aceste granule apar ca fi<strong>in</strong>d niste<br />

agregate constituite d<strong>in</strong> componente sferice cu diametrul de 10-20 nm (Fig.54; HR-TEM).<br />

Analiza SAED sugereaza un material mai b<strong>in</strong>e cristalizat decat cel obt<strong>in</strong>ut <strong>in</strong> conditiile<br />

termice ale <strong>in</strong>stalatiei pirosol. Succe<strong>si</strong>unea regulata a planelor atomice (Fig. 54) sugereaza<br />

faptul ca nanocristalitele au structura uniforma d<strong>in</strong> punct de vedere cristalografic.<br />

3.4. Analiza morfologiei cu ajutorul granulometrului cu laser a pulberilor de BNT-BT0,08<br />

preparate pr<strong>in</strong> metoda pirosol<br />

Pentru analiza granulometrica cu lase a pulberii de BNT-BT0.08 obt<strong>in</strong>uta pr<strong>in</strong> metoda<br />

pirosol a fost utilizat acela<strong>si</strong> echipament; modul de lucru fi<strong>in</strong>d acela<strong>si</strong>. Deoarece rezultate mai<br />

bune au fost obt<strong>in</strong>ute <strong>in</strong> suspen<strong>si</strong>e apoasa, prezentam <strong>in</strong> cont<strong>in</strong>uare numai rezultatele obt<strong>in</strong>ute<br />

folo<strong>si</strong>nd suspen<strong>si</strong>a apoasa.<br />

63


Volume (%)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Particle Size Distribution<br />

0<br />

0.01 0.1 1 10<br />

Particle Size (µm)<br />

100 1000 3000<br />

BNTBT700Pirosol - Average, Thursday, November 12, 2009 9:59:07 AM<br />

Fig.56. Curba de variatie a volumului granulelor de pulbere <strong>in</strong> functie de diametrul<br />

particulelor de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C; suspen<strong>si</strong>e apoasa<br />

Tab.17. Distributia granulometrica a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 700 °C; suspen<strong>si</strong>e<br />

apoasa<br />

Size (µm) Volume In %<br />

0.010<br />

0.00<br />

0.011<br />

0.00<br />

0.013<br />

0.00<br />

0.015<br />

0.00<br />

0.017<br />

0.00<br />

0.020<br />

0.00<br />

0.023<br />

0.00<br />

0.026<br />

0.00<br />

0.030<br />

0.00<br />

0.035<br />

0.00<br />

0.040<br />

0.00<br />

0.046<br />

0.00<br />

0.052<br />

0.00<br />

0.060<br />

0.00<br />

0.069<br />

0.00<br />

0.079<br />

0.00<br />

0.091<br />

0.00<br />

0.105<br />

Size (µm) Volume In %<br />

0.105<br />

0.00<br />

0.120<br />

0.00<br />

0.138<br />

0.00<br />

0.158<br />

0.05<br />

0.182<br />

0.15<br />

0.209<br />

0.31<br />

0.240<br />

0.49<br />

0.275<br />

0.72<br />

0.316<br />

0.98<br />

0.363<br />

1.25<br />

0.417<br />

1.51<br />

0.479<br />

1.72<br />

0.550<br />

1.90<br />

0.631<br />

2.03<br />

0.724<br />

2.11<br />

0.832<br />

2.17<br />

0.955<br />

2.19<br />

1.096<br />

Size (µm) Volume In %<br />

1.096<br />

2.20<br />

1.259<br />

2.22<br />

1.445<br />

2.27<br />

1.660<br />

2.35<br />

1.905<br />

2.49<br />

2.188<br />

2.68<br />

2.512<br />

2.92<br />

2.884<br />

3.21<br />

3.311<br />

3.54<br />

3.802<br />

3.89<br />

4.365<br />

4.26<br />

5.012<br />

4.61<br />

5.754<br />

4.92<br />

6.607<br />

5.14<br />

7.586<br />

5.25<br />

8.710<br />

5.21<br />

10.000<br />

5.02<br />

11.482<br />

Size (µm) Volume In %<br />

11.482<br />

4.67<br />

13.183<br />

4.17<br />

15.136<br />

3.57<br />

17.378<br />

2.89<br />

19.953<br />

2.22<br />

22.909<br />

1.55<br />

26.303<br />

0.92<br />

30.200<br />

0.25<br />

34.674<br />

0.00<br />

39.811<br />

0.00<br />

45.709<br />

0.00<br />

52.481<br />

0.00<br />

60.256<br />

0.00<br />

69.183<br />

0.00<br />

79.433<br />

0.00<br />

91.201<br />

0.00<br />

104.713<br />

0.00<br />

120.226<br />

64<br />

Size (µm) Volume In %<br />

120.226<br />

0.00<br />

138.038<br />

0.00<br />

158.489<br />

0.00<br />

181.970<br />

0.00<br />

208.930<br />

0.00<br />

239.883<br />

0.00<br />

275.423<br />

0.00<br />

316.228<br />

0.00<br />

363.078<br />

0.00<br />

416.869<br />

0.00<br />

478.630<br />

0.00<br />

549.541<br />

0.00<br />

630.957<br />

0.00<br />

724.436<br />

0.00<br />

831.764<br />

0.00<br />

954.993<br />

0.00<br />

1096.478<br />

0.00<br />

1258.925<br />

Size (µm) Volume In %<br />

1258.925<br />

1445.440<br />

1659.587<br />

1905.461<br />

2187.762<br />

2511.886<br />

2884.032<br />

3311.311<br />

3801.894<br />

4365.158<br />

5011.872<br />

5754.399<br />

6606.934<br />

7585.776<br />

8709.636<br />

10000.000<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

0.00<br />

Rezultatele analizei granulometrice a pulberii de BNT-BT0.08 calc<strong>in</strong>ata la 600 °C<br />

(suspen<strong>si</strong>e apoasa) sunt: diametrul median = 6,861 µm <strong>si</strong> suprafata specifica = 3,13 m 2 /g.<br />

Asa cum s-a aratat la comentariul pentru pulberile <strong>si</strong>ntetizate pr<strong>in</strong> metoda sol-gel, nu<br />

se pot face comparatii <strong>in</strong>tre rezultatele obt<strong>in</strong>ute pe pulberile cu aceea<strong>si</strong> compozitie chimica dar<br />

tratate termic la temperaturi <strong>si</strong> durate egale dar obt<strong>in</strong>ute pr<strong>in</strong> metode de <strong>si</strong>nteza diferite (solgel<br />

<strong>si</strong> pirosol) deoarece scopul a fost obt<strong>in</strong>erea unui material monofazic la o a numita<br />

temperatura. Aceasta <strong>in</strong>seamna ca duratele de tratament termic au fost cele care au <strong>in</strong>fluentat<br />

obt<strong>in</strong>erea fazei dorite fara a lua <strong>in</strong> con<strong>si</strong>deratie <strong>in</strong>fluenta duratei de calc<strong>in</strong>are asupra cresterii<br />

dimen<strong>si</strong>unilor granulelor.<br />

De asemenea, se poate spune <strong>si</strong> faptul ca aceasta metoda de analiza granulometrica<br />

scoate <strong>in</strong> evidenta gradul de aglomerare <strong>si</strong> taria legaturilor care produc aglomerarea<br />

granulelor. Aceste rezultate pot servi ca <strong>in</strong>formatii prelim<strong>in</strong>are pentru analizele cu ajutorul<br />

microscopiei electronice.


3.5. Activitati suport <strong>si</strong> de implementare a rezultatelor cercetarii<br />

Participari la confer<strong>in</strong>te<br />

1. Mar<strong>in</strong> Cernea, Carmen Galas<strong>si</strong>, Ecater<strong>in</strong>a Andronescu, Roxana Radu, Roxana Trusca, “Solgel<br />

synthe<strong>si</strong>s and characterization of BaTiO3 doped-(Bi1/2Na1/2)TiO3 piezoelectric ceramics”,<br />

Poster P2.7, E-MRS 2009 SYMPOSIA, June 8-12, 2009, Strasbourg, France.<br />

2. Roxana Radu, Mar<strong>in</strong> Cernea, Bogdan Stefan Va<strong>si</strong>le, Crist<strong>in</strong>a Dragoi, “Ferroelectric<br />

properties and microstructure of (Bi1/2Na1/2)0.95 Ba 0.05 TiO3 (BNT-BT0.05) ceramic prepared by<br />

sol-gel”, Romanian Conference on Advanced Materials - ROCAM 2009 (August 25-28th,<br />

2009), Brasov, Romania.<br />

Articole publicate<br />

M. Cernea, E. Andronescu, R. Radu, F. Fochi, C. Galas<strong>si</strong>, “Sol-gel synthe<strong>si</strong>s and<br />

characterization of BaTiO3 doped-(Bi1/2Na1/2)TiO3 piezoelectric ceramics”, Journal of Alloys<br />

and Compound Materials, (2009), acceptat.<br />

4. Concluzii<br />

Analiza morfologiei pulberilor de BNT-BT0,08 preparate pr<strong>in</strong> metoda sol-gel a <strong>in</strong>dicat<br />

o pulbere nanometrica. Se remarca faptul ca aceasta compozitie (BNT-BT0,08) se obt<strong>in</strong>e <strong>in</strong><br />

conditii de lucru avantajoase (se obt<strong>in</strong>e o pulbere monofazica, complet cristalizata, la o<br />

temperatura relativ joasa (600 °C) fata de metoda reactiei <strong>in</strong> faza solida (1100 °C)).<br />

Morfologia pulberii astfel obt<strong>in</strong>ute este omogena, fi<strong>in</strong>d <strong>in</strong>fluentata <strong>in</strong> pr<strong>in</strong>cipal, de conditiile<br />

termice de procesare ulterioara a solului precursor.<br />

In cazul pulberilor de BNT-BT0,08 preparate pr<strong>in</strong> metoda pirosol, omogenitatea<br />

morfologiei este <strong>in</strong>fluentata <strong>in</strong> mai mare masura de conditiile de procesare d<strong>in</strong> timpul <strong>si</strong>ntezei.<br />

Avand <strong>in</strong> vedere mecanismul diferit de cel al metodei sol-gel, <strong>si</strong> morfologia pulberilor,<br />

atat d<strong>in</strong> punct de vedere al dimen<strong>si</strong>unilor dar mai ales al formei, este complet diferita la<br />

pulberea obt<strong>in</strong>uta pr<strong>in</strong> tehnica pirosol.<br />

Forma obisnuita a granulelor este sferica dar distributia granulometrica este larga.<br />

Pulberile obt<strong>in</strong>ute de noi nu mai sunt <strong>in</strong> domeniul nanometric (ca la sol-gel) ci, submicronic.<br />

Aceasta forma sferica a granulelor dispare <strong>in</strong> urma tratamentelor termice de cristalizare <strong>si</strong><br />

rezulta granule poliedrale, <strong>in</strong> mare masura cubice.<br />

65


Analizele cu ajutorul microscopiei electronice SEM <strong>si</strong> TEM, EDAX <strong>si</strong> difractia de<br />

raze X au aratat ca se obt<strong>in</strong>e un material monofazic, stoichiometric BNT-BT0,08, complet<br />

cristalizat <strong>in</strong> conditii termice avantajoase daca se foloseste metoda sol-gel pentru <strong>si</strong>nteză <strong>si</strong><br />

polifazic <strong>in</strong> cazul metodei pirosol.<br />

Alegerea conditiilor de transformare a pulberilor de BNT-BT0,08 obt<strong>in</strong>ute pr<strong>in</strong> cele<br />

doua metode, <strong>in</strong> elemente comprimate <strong>si</strong> den<strong>si</strong>ficate pr<strong>in</strong> <strong>si</strong>nterizare, va trebui sa t<strong>in</strong>a cont de<br />

rezultatele experimentale obt<strong>in</strong>ute <strong>in</strong> cadrul acestei faze.<br />

În concluzie, rezultatele cupr<strong>in</strong>se <strong>in</strong> raport sti<strong>in</strong>tific complet, priv<strong>in</strong>d caracterizarea<br />

microstructurala <strong>si</strong> morfologica a pulberii <strong>si</strong> filmelor de BNT-BT0,08 obt<strong>in</strong>ute pr<strong>in</strong> sol-gel <strong>si</strong><br />

pirosol, <strong>in</strong>dica faptul ca obiectivele Etapei IIa au fost realizate.<br />

Aceste rezultate prelim<strong>in</strong>are constituie o bază de date utile pentru Etapa IIb a<br />

Contractului PNCDI II nr. 72 153/2008.<br />

Bibliografie<br />

[1] T. Atou, H. Faqir, M. Kikuchi, H. Chiba and Y. Syono, Mater. Res. Bull., 1998, 33, 289.<br />

[2] S. K. Blower and C. Greaves, Acta Crystallogr., 1988, 44, 587.<br />

[3] T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys., 30 (1991) 2236-2239.<br />

[4] C. Bao-J<strong>in</strong> et al, J. Ceram. Proc. Res., 3 [3] (2002) 231-234.<br />

[5] S. Trujillo et al, J. Phys.: Condens. Matter., 17 (2005) 6587-6597.<br />

[6] Agranovskaya A. I., “Phy<strong>si</strong>cal-chemical <strong>in</strong>vestigation of the formation of complex<br />

ferroelectrics with perovskite structure”, Izv. Akad. Nauk SSSR, Ser. Fiz., 24, 1275-1281<br />

(1960)<br />

[7] A. N. Maistrenko, R. S. Malysheva, N. M. Okuneva, N. N. Parfenov, „The new structure<br />

analy<strong>si</strong>s of sodium bithmuth titanate”, Fizika Tverdogo Tela (Len<strong>in</strong>grad) (= Solid State<br />

Phy<strong>si</strong>cs) 25 (1983) 2613-2616<br />

[8] Vakhrushev S. B., et al., Fiz. Tverd. Tela (Len<strong>in</strong>grad), 25, 2613 (1983)<br />

[9] G.O. Jones, P.A. Thomas, „The tetragonal phase of Na0.5Bi0.5TiO3 - A new variant of the<br />

perovskite structure”, Acta Crystallographica B (39,1983-) (2000), 56, 426-430.<br />

[10] Chiang Y-M, Farrey G W and Soukhojak A N 1998 Appl. Phys. Lett. 73 3683<br />

[11] Jones G.O. and Thomas P. A. 2002 Acta Crystallogr. B 58 168<br />

[12] Gomah-Pettry J R, Said S, Marchet P and Mercurio J P 2004 J. Eur. Ceram. Soc. 24 1165<br />

[13] Sheets S A, Soukhojak A N, Ohashi N and Chiang Y M 2001 J. Appl. Phys. 90 5287<br />

66

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!