08.05.2013 Views

Etaj de amplificare elementar cu tranzistor bipolar ... - scs.etc.tuiasi.ro

Etaj de amplificare elementar cu tranzistor bipolar ... - scs.etc.tuiasi.ro

Etaj de amplificare elementar cu tranzistor bipolar ... - scs.etc.tuiasi.ro

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în<br />

conexiune colector comun (repetorul pe emitor)<br />

Cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itul echivalent natural π - hibrid (Giacoletto).........................................................................1<br />

<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> polarizare <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> TB in conexiune colector comun (repetorul pe emitor) ................................2<br />

Analiza <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> punct static <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> functionare ........................................................................................2<br />

Raspunsul cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itului la frecvente medii.....................................................................................2<br />

Raspunsul cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itului la joasa frecventa......................................................................................4<br />

Raspunsul cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itului la înalta frecventa .....................................................................................5<br />

Simulare SPICE...............................................................................................................................6<br />

Punctul static <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> functionare (PSF) si parametrii <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>l pentru <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>:............................6<br />

Diagrame Bo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> modul si faza ................................................................................................7<br />

Cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>l simbolic................................................................................................................................7<br />

PSF ..............................................................................................................................................7<br />

Analiza la semnal mic .................................................................................................................8<br />

Ap<strong>ro</strong>ximarea in banda .............................................................................................................9<br />

Ap<strong>ro</strong>ximarea la joasa frecventa...............................................................................................9<br />

Ap<strong>ro</strong>ximarea la frecventa inalta ............................................................................................10<br />

Cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itul echivalent natural p - hibrid (Giacoletto)<br />

Fig. 1. Mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>lul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal mic natural π - hibrid al <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>ului <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng><br />

Este cel mai utilizat cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>it echivalent <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal mic, valabil in toate conexiunile in care poate<br />

functiona <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>ul <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng>. Elementele sale au semnificatii fizice clare, nu <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>pind <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> frecventa<br />

si pot fi <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>terminate usor experimental.<br />

Parametrii principali ai cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itului π - hibrid sunt:<br />

IC<br />

1. Transconductanta (panta): gm= ≃ 40 IC( mA/ V)<br />

, <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> IC[ mA ] .<br />

U<br />

2. Rezistenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> intrare:<br />

β<br />

rπ<br />

=<br />

gm<br />

3. Rezistenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> iesire:<br />

U A r0<br />

≃ în care UA este tensiunea Early.<br />

IC<br />

4. Rezistenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> reactie (colector-baza): rμ= β r0<br />

T<br />

TB – CC - 1


<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în conexiune colector comun<br />

<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> polarizare <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> TB in conexiune colector comun<br />

(repetorul pe emitor)<br />

În schema din Fig.2 este etajul in conexiune colector comun (<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>numit uzual si repetor pe<br />

emitor). Colectorul <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>ului este <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>plat direct la sursa <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> alimentare EC, <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>ci pe semnal este<br />

la potentialul masei. Semnalul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> la iesire se preia din emitor prin con<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>nsatorul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>plaj CC.<br />

Rezistenta RS reprezinta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> regula rezistenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> intrare în urmatorul etaj <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng>, iar sursa<br />

<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal reala <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> la intrare <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> rezistenta Rg reprezinta iesirea etajului <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> anterior.<br />

TB – CC - 2<br />

Fig. 2. <st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> în conexiune colector comun (repetor pe emitor)<br />

Analiza <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> punct static <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> functionare<br />

Schema <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> polarizare este similara <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> cea folosita in montajul emitor comun. Pentru<br />

<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>terminarea <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rentului <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> colector si a tensiunii colector – emitor se foloseste modul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>l<br />

<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>scris. Curentul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> colector este:<br />

un<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng><br />

R<br />

E = E<br />

B2<br />

B1 B2<br />

B C si RB<br />

=<br />

RB1+ RB2<br />

RB1+ RB2<br />

I<br />

C<br />

( E −V<br />

B BE )<br />

+ ( β + 1)<br />

β<br />

≃<br />

R R<br />

R R<br />

B E<br />

V = E −RI E −RI<br />

. Tensiunea colector-emitor este:<br />

CE C E E C E C<br />

III. 1<br />

≃ III. 2<br />

Relatiile se pot utiliza pentru <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>terminarea rapida a punctului static <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> functionare (PSF).<br />

Raspunsul cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itului la frecvente medii<br />

Fig. 3. Schema <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal mic a repetorului pe emitor<br />

Pe schema <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal mic a cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itului din Fig.3 se pot scrie relatiile:<br />

V = ( β + 1 )( R || R ) I<br />

III. 3<br />

o E S b<br />

S


<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în conexiune colector comun<br />

( ) ( β 1 )( || )<br />

V = r + r I + + R R I<br />

III. 4<br />

i π x b E S b<br />

Se obtine urmatoarea expresie a amplificarii fata <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> intrare:<br />

V ( β + 1 )( R || R<br />

o<br />

E S)<br />

Aui<br />

= =<br />

V r + r + β + 1 R || R<br />

i π x ( )( E S)<br />

Pentru valori uzuale ale elementelor schemei, avem ( 1 )( || )<br />

E S π x<br />

III. 5<br />

β + R R >> r + r si <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>ci<br />

<st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng>a rezulta subunitara, dar foarte ap<strong>ro</strong>ape <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> 1: Aui ≈ 1.<br />

Repetorul pe emitor se<br />

utilizeaza ca etaj tampon între doua etaje <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> în tensiune, datorita valorilor rezistentei<br />

<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> intrare si <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> iesire. El joaca <strong>ro</strong>lul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> adaptor <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> impedanta, evitând pier<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>rea <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> tensiune <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng><br />

semnal pe rezistenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> iesire la <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>plajul între doua etaje <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>plate în cascada. Astfel, la <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>plarea<br />

prin repetor a mai multor etaje, <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng>a întregului lant <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> este practic egala <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng><br />

p<strong>ro</strong>dusul amplificarilor etajelor componente.<br />

Rezistenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> intrare în <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> rezulta imediat:<br />

Vi<br />

Rit = = rπ+ rx + ( β + 1 )( RE || RS)<br />

III. 6<br />

Ib<br />

Se observa ca pentru valori uzuale, R it rezulta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> ordinul sutelor <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> kO.<br />

Rezistenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> intrare în etaj <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>prin<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> si rezistentele <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> polarizare din baza:<br />

Ri = Rit || RB || RB ≅ R B || RB<br />

III. 7<br />

1 2 1 2<br />

Fig. 4. Schema echivalenta pentru cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>lul rezistentelor <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> iesire<br />

Rezistentele <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> iesire din <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> respectiv din etaj se pot cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>la <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> pe schema echivalenta din<br />

Fig.4, în care etajul s-a pasivizat la intrare iar sarcina (rezistenta RS ) este înlo<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>ita <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> o sursa <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng><br />

semnal <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> test Ut, care da <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rentul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> test It.<br />

Se poate exprima <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rentul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> test It astfel:<br />

Ut Ut Ut<br />

It<br />

= = + ( β + 1)<br />

Ro RE rπ+ rx + Rg <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> un<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> rezulta rezistenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> iesire din etaj:<br />

|| RB<br />

III. 8<br />

U ( r || )<br />

t<br />

π + rx + Rg RB<br />

Ro = = RE || = RE || Rot ≅ Rot<br />

It<br />

( β + 1)<br />

în care R ot este rezistenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> iesire din emitorul <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>ului.<br />

Deoarece în general Rot


<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în conexiune colector comun<br />

Raspunsul cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itului la joasa frecventa<br />

In schema <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal mic a etajului în conexiune colector comun (repetor pe emitor) apar<br />

con<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>nsatoarele <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>plaj CB si CS (în baza si <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> sarcina RS }).<br />

Fig. 5. Schema echivalenta a repetorului pe emitor la frecvente joase<br />

Vom analiza comportarea etajului la frecvente joase, la care reactantele celor doua con<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>nsatoare<br />

<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>plaj nu mai sunt neglijabile. Am notat <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> ZB si ZE impedantele vazute în baza si respectiv în<br />

emitorul <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>ului.<br />

Impedanta ZE are expresia:<br />

⎛ 1 ⎞<br />

RE ⎜RS + ⎟<br />

sCS RE( 1+<br />

sRSCS) ZE( s)<br />

=<br />

⎝ ⎠<br />

=<br />

1<br />

R<br />

1 s( R R ) C<br />

E + RS<br />

+<br />

+ +<br />

sCS<br />

Tensiunea la iesire se poate exprima:<br />

RS sRSCS Vo = VE = VE<br />

1<br />

R<br />

1 sRSCS S +<br />

+<br />

sC<br />

S<br />

Tensiunile Vi si VE se pot scrie în functie <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>renti:<br />

TB – CC - 4<br />

( π ) ( β 1)<br />

( )<br />

( β 1)<br />

( )<br />

V = r + r I + + IZ s<br />

i x b b E<br />

E S S<br />

VE = + IZ b E s<br />

Se obtine raportul:<br />

V ( β + 1)<br />

Z ( s<br />

E<br />

E )<br />

=<br />

Vi rπ+ rx + ( β + 1)<br />

ZE( s)<br />

care se scrie <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>taliat sub forma urmatoare:<br />

V<br />

( β + 1) R ( 1+<br />

sR C<br />

E<br />

E S S)<br />

=<br />

Vi rπ + rx + ( β + 1 ) RE + sCS[ ( RE+ RS)( rπ + rx) + ( β + 1 ) RR E S]<br />

Amplificarea fata <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> intrare va avea expresia:<br />

V ( 1<br />

o Vo V<br />

β + ) RRC E S S ⋅s<br />

E<br />

Avi ( s)<br />

= = ⋅ =<br />

Vi VE Vi rπ + rx + ( β + 1) RE + sCS ⎡⎣( RE + RS)( rπ + rx) + ( β+<br />

1)<br />

RR E S⎤⎦<br />

Daca se <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>fineste pulsatia:<br />

rπ+ rx+ ( β + 1)<br />

RE<br />

ω1<br />

=<br />

⎡⎣( RE + RS)( rπ+ rx) + ( β + 1)<br />

RR E S⎤⎦CS <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng>a se poate scrie:<br />

( β + 1)<br />

RR E S<br />

s<br />

Avi ( s)<br />

= ⋅<br />

( RE + RS )( rπ+ rx) + ( β + 1)<br />

RR E S s+<br />

ω1<br />

Impedanta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> intrare este:<br />

III. 10<br />

III. 11<br />

III. 12<br />

III. 13<br />

III. 14<br />

III. 15<br />

III. 16<br />

III. 17


<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în conexiune colector comun<br />

( β + 1) R ( 1+<br />

sR C<br />

E S S)<br />

1+<br />

( + )<br />

Vi<br />

Z ( s) = = r + r<br />

I<br />

+ ( β + 1)<br />

Z ( s) = r + r +<br />

s R R C<br />

Se poate exprima si raportul fata <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> tensiunea sursei:<br />

Vi<br />

V<br />

sCB( RB|| Zi)<br />

=<br />

1 + sC R + R || Z<br />

i π x E π x<br />

b E S S<br />

( )<br />

g B g B i<br />

dar explicitarea sa duce la o expresie <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>stul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> complicata.<br />

III. 18<br />

III. 19<br />

Raspunsul cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itului la înalta frecventa<br />

În Fig.6 se da schema echivalenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal la frecvente înalte a repetorului pe emitor, în care<br />

apar capacitatile interne ale <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>ului.<br />

Fig. 6. Schema echivalenta a repetorului pe emitor la frecvente înalte<br />

Se observa ca atât capacitatea Cμ cât si rezistenta p<strong>ro</strong>prie <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> iesire a <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>ului <strong>ro</strong> au un capat<br />

la masa pe semnal; schema se poate reprezenta mai simplu ca mai jos:<br />

Fig. 7. Schema echivalenta simplificata<br />

In aceasta schema se observa ca etajul este unilateralizat, <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>ci nu mai exista reactie interna.<br />

Rezistenta parazita rx nu mai apare în schema, având o valoare neglijabila si complicând inutil<br />

expresia amplificarii etajului.<br />

Rezistentele RE , RS si <strong>ro</strong> formeaza o rezistenta echivalenta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> sarcina R ’ S:<br />

'<br />

Rs RE || RS || <strong>ro</strong> RE || RS<br />

Din baza pâna la masa se poate scrie relatia:<br />

un<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>Y<br />

π<br />

= ≅ III. 20<br />

( π )<br />

V = V + R YV + gV<br />

III. 21<br />

i '<br />

be<br />

'<br />

s '<br />

be m '<br />

be<br />

1<br />

= este admitanta grupului rπ -Cπ din baza. Expresia <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> mai sus <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>vine:<br />

Z<br />

π<br />

( ) '<br />

'<br />

V = ⎡1 i ⎣<br />

+ Rs g + g m π + sCπ ⎤<br />

⎦<br />

V<br />

be<br />

III. 22<br />

Tensiunea la iesire este:<br />

V<br />

'<br />

= R g + Y V '<br />

'<br />

= R g + g + sC V '<br />

III. 23<br />

( ) ( )<br />

o s m π be s m π π be<br />

Se obtine <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng>a etajului fata <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> intrare:<br />

TB – CC - 5


<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în conexiune colector comun<br />

TB – CC - 6<br />

( + π + π)<br />

' ( )<br />

'<br />

V Rs g o<br />

m g sC<br />

Avi ( s)<br />

= =<br />

Vi 1+<br />

Rs gm + gπ + sCπ<br />

Schema echivalenta la intrare daca se înlo<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>ieste etajul <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> impedanta sa echivalenta Zi este:<br />

Fig. 8. Schema echivalenta raportata la intrare<br />

Impedanta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> intrare în baza se poate scrie:<br />

'<br />

V 1 i V + R i<br />

s( gm + gπ + sCπ)<br />

Zi( s)<br />

= = =<br />

I YV g + sC<br />

π π '<br />

be<br />

π π<br />

III. 24<br />

III. 25<br />

Admitanta echivalenta totala vazuta <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> sursa <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal este:.<br />

Yech ( s) = gB + sCμ + Yi( s) = gB + sCμ<br />

gπ + sCπ<br />

+ '<br />

1+<br />

Rs( gm + gπ + sCπ)<br />

III. 26<br />

Se poate atunci scrie si <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng>a fata <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> tensiunea sursei <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal, dar expresia finala<br />

explicitata rezulta complicata:<br />

Vo Vo Vi<br />

Avg ( s) = = ⋅<br />

V V V<br />

Gg<br />

=<br />

G + Y<br />

Avi ( s)<br />

III. 27<br />

Simulare SPICE<br />

g i g g ech<br />

Punctul static <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> functionare (PSF) si parametrii <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>l pentru<br />

<st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>:<br />

MODEL BC107A<br />

IB 9.09E-06<br />

IC 1.59E-03<br />

VBE 6.75E-01<br />

VBC -4.05E+00<br />

VCE 4.73E+00<br />

BETADC 1.75E+02<br />

GM 6.14E-02<br />

RPI 3.24E+03<br />

RX 0.00E+00<br />

RO 7.58E+04<br />

CBE 4.80E-11<br />

CBC 2.77E-12<br />

CJS 0.00E+00<br />

BETAAC 1.99E+02<br />

CBX/CBX2 0.00E+00<br />

FT/FT2 1.92E+08


<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în conexiune colector comun<br />

Diagrame Bo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> modul si faza<br />

0<br />

-10<br />

-20<br />

-30<br />

-40<br />

10mHz 1.0Hz 100Hz 10KHz 1.0MHz 100MHz 10GHz 1.0THz 100THz<br />

DB(V(Rs:2)/V(Q3:b))<br />

Frequency<br />

100d<br />

50d<br />

0d<br />

10mHz 1.0Hz 100Hz 10KHz 1.0MHz 100MHz 10GHz 1.0THz 100THz<br />

P(V(Rs:2)/V(Q3:b))<br />

Frequency<br />

Cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>l simbolic<br />

PSF<br />

> restart:with(Syrup):libname:="c:\\maple/SCSlib",libname:<br />

Schema <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal mic valabila in toata gama <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> frecvente:<br />

> TB_CC:=<br />

"schema pentru TB in conexiune CC<br />

Vcc vcc 0 Vcc<br />

Vg ing 0 Vg<br />

Rg ing inc Rc<br />

Cb inc In Cb<br />

Rb1 vcc In Rb1<br />

Rb2 In 0 Rb2<br />

Qnpn vcc In e BJT[pnp_dc_generic_mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>l]<br />

Rem e 0 Rem<br />

Cs e Out Cs<br />

Rs Out 0 Rs<br />

.end":<br />

Cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>lul simbolic:<br />

TB – CC - 7


<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în conexiune colector comun<br />

> syrup(TB_CC, dc, '<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rr','tens'):<br />

Syrup/parse<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>ck: Analyzing SPICE <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>ck "schema pentru TB in conexiune CC"<br />

(ignoring this line)<br />

syrup: There may be an unconnected component.<br />

The following component(s) have ze<strong>ro</strong> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rrent: {Vg, Rg, Rs}.<br />

Curentul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> colector:<br />

> collect(simplify(eval(i[Rem],<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rr)),{Vcc,Vd});<br />

( Rb2 β + Rb2 ) Vcc<br />

dc<br />

TB – CC - 8<br />

Rb2 Rb1 + Rem β Rb1 + Rb1 Rem + Rb2 β Rem + Rem Rb2<br />

dc dc<br />

+<br />

( Rb2 β + Rb2 + β Rb1 + Rb1 ) Vd<br />

dc dc<br />

Rb2 Rb1 + Rem β Rb1 + Rb1 Rem + Rb2 β Rem + Rem Rb2<br />

dc dc<br />

Tensiunea colector - emitor:<br />

> collect(simplify(eval(Vcc-v[e],tens)),{Vcc,Vd});<br />

( Rb2 Rb1 + Rem β Rb1 + Rb1 Rem ) Vcc<br />

dc<br />

Rb2 Rb1 + Rem β Rb1 + Rb1 Rem + Rb2 β Rem + Rem Rb2<br />

dc dc<br />

+<br />

( − Rb2 β Rem − Rem Rb2 − Rem β Rb1 − Rb1 Rem ) Vd<br />

dc dc<br />

Rb2 Rb1 + Rem β Rb1 + Rb1 Rem + Rb2 β Rem + Rem Rb2<br />

dc dc<br />

Neglijind <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rentul din baza ( β dc mare) putem cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>la <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rentul <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> colector si tensiunea colector-<br />

emitor:<br />

> limit(eval(i[Rc],<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rr),beta[dc]=infinity);<br />

i Rc<br />

>collect(simplify(limit(eval(Vcc-v[e],tens),beta[dc]=infinity)),<br />

{Vcc,Vd});<br />

Rb1 Vcc ( − Rb1 − Rb2 ) Vd<br />

+<br />

Rb1 + Rb2 Rb1 + Rb2<br />

Analiza la semnal mic<br />

> restart:with(Syrup):libname:="c:\\maple/SCSlib",libname:<br />

Schema <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal mic valabila in toata gama <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> frecvente:<br />

> TB_CC:=<br />

"schema <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal mic pentru TB in conexiune CC<br />

Vcc vcc 0 0<br />

Vg ing 0 Vg<br />

Rg ing inc Rc<br />

Cb inc In Cb<br />

Rb1 vcc In Rb1<br />

Rb2 In 0 Rb2<br />

Qnpn vcc In e BJT[ac_generic_mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>l]<br />

Rem e 0 Rem<br />

Cs e Out Cs<br />

Rs Out 0 Rs<br />

.end":<br />

Cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>lul simbolic:<br />

> syrup(TB_CC, ac, '<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rr','tens'):<br />

Syrup/parse<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>ck: Analyzing SPICE <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>ck "schema <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> semnal mic pentru TB in<br />

conexiune CC" (ignoring this line)<br />

Cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>lul functiei <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> transfer:<br />

> H:=eval(v[Out]/v[In],tens):


<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în conexiune colector comun<br />

Expresia functiei <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> transfer este complicata. Exista 3 poli si 2 ze<strong>ro</strong>uri care <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>termina<br />

comportarea cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itului in toata gama <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> frecventa. Se analizeaza cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itul simplificat in banda,<br />

la joasa frecventa si la inalta frecventa.<br />

Ap<strong>ro</strong>ximarea in banda<br />

se consi<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>ra s<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rt cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>it la frecventa <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> lucru capacitatile: Cb, Ce, Cs;<br />

se neglijeaza din mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>lul π − hibrid capacitatile Cpi (sc), Cmiu (gol) si rezistentele<br />

rmiu(gol) si <strong>ro</strong>(gol);<br />

> eval(v[Out]/v[In],tens):<br />

limit(%,{Cs=infinity,Cb=infinity,Cem=infinity}):<br />

limit(%,{cpi=0,cmiu=0, co=0,rmiu=infinity,<strong>ro</strong>=infinity}):<br />

Hs:=simplify(%);<br />

Rs Rem ( 1 + rpi gm)<br />

Hs :=<br />

Rem rx + gm rpi Rem Rs + Rem Rs + Rs rx + rpi Rem + rpi Rs<br />

Daca neglijam rezistenta rx, <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng>a este:<br />

> limit(%,{rx=0});limit(%,{rpi=0});<br />

Rs Rem ( 1 + rpi gm)<br />

gm rpi Rem Rs + Rem Rs + rpi Rem + rpi Rs<br />

1<br />

Ap<strong>ro</strong>ximarea la joasa frecventa<br />

se iau in consi<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>ra la frecventa <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> lucru capacitatile Cb, Ce, Cs;<br />

se neglijeaza din mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>lul<br />

π − hibrid<br />

capacitatile Cpi (sc), Cmiu (gol) si rezistentele<br />

rmiu(gol) si <strong>ro</strong>(gol);<br />

> eval(v[Out]/v[In],tens):<br />

limit(%,{cpi=0,cmiu=0,co=0,rmiu=infinity,<strong>ro</strong>=infinity}):<br />

Hs:=simplify(%):<br />

Expresia lui Hs este un raport <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> doua polinoame in s.<br />

• Cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>lam polii functiei <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> transfer Hs:<br />

> solve(collect(<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>nom(Hs),s)=0,s);<br />

gm rpi Rem + Rem + rx + rpi<br />

−<br />

Cs ( Rem rx + gm rpi Rem Rs + Rem Rs + Rs rx + rpi Rem + rpi Rs )<br />

• Cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>lam ze<strong>ro</strong>urile functiei <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> transfer Hs:<br />

> solve(collect(numer(Hs),s)=0,s);<br />

0<br />

• Cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>lam <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng>a in <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>rent continuu Aui0:<br />

> limit(subs(s=I*omega, Hs),omega=0);limit(%,rx=0);<br />

0<br />

0<br />

Mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>lul este valabil numai pentru joasa frecventa. Daca crestem frecventa ar trebui sa regasim<br />

formula amplificarii in banda:<br />

> limit(subs(s=I*omega,<br />

Hs),omega=infinity);limit(%,rx=0);limit(%,rpi=0);<br />

( 1 + rpi gm) Rem Rs<br />

Rem rx + gm rpi Rem Rs + Rem Rs + Rs rx + rpi Rem + rpi Rs<br />

TB – CC - 9


<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în conexiune colector comun<br />

( 1 + rpi gm ) Rem Rs<br />

gm rpi Rem Rs + Rem Rs + rpi Rem + rpi Rs<br />

TB – CC - 10<br />

1<br />

Ap<strong>ro</strong>ximarea la frecventa inalta<br />

se iau in consi<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>ra la frecventa <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> lucru capacitatile Cb, Ce, Cs;<br />

se neglijeaza din mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>lul<br />

π − hibrid<br />

capacitatile Cpi (sc), Cmiu (gol) si rezistentele<br />

rmiu(gol) si <strong>ro</strong>(gol);<br />

> eval(v[Out]/v[In],tens):<br />

limit(%,{Cs=infinity,Cb=infinity,Cem=infinity}):<br />

limit(%,{rmiu=infinity,<strong>ro</strong>=infinity}):<br />

Hs:=simplify(%):<br />

Expresia lui Hs este un raport <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> doua polinoame in s.<br />

• Cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>lam ze<strong>ro</strong>urile functiei <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> transfer Hs:<br />

> solve(collect(numer(Hs),s)=0,s);<br />

− + 1 rpi gm<br />

cpi rpi<br />

• Cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>lam polii functiei <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> transfer Hs:<br />

> simplify({solve(collect(<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>nom(Hs),s)=0,s)}):<br />

> collect(<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>nom(Hs),s):<br />

S-au gasit doi poli a ca<strong>ro</strong>r valoare nu este intuitiva.<br />

Daca neglijam rezistenta rx atunci cir<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>itul are un singur pol:<br />

> solve(collect(<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>nom(limit(Hs,rx=0)),s)=0,s);<br />

rpi Rs + Rem Rs + gm rpi Rem Rs + rpi Rem<br />

−<br />

cpi rpi Rem Rs<br />

• Mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>lul este valabil pentru inalta frecventa. Daca sca<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>m frecventa ar trebui sa regasim<br />

formula amplificarii in banda:<br />

>limit(subs(s=I*omega, Hs),omega=0);limit(%,rx=0);limit(%,rpi=0);<br />

( 1 + rpi gm) Rem Rs<br />

Rem rx + gm rpi Rem Rs + Rem Rs + Rs rx + rpi Rem + rpi Rs<br />

( 1 + rpi gm ) Rem Rs<br />

rpi Rs + Rem Rs + gm rpi Rem Rs + rpi Rem<br />

• Neglijind rezistenta rx cal<st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng>lam <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng>a la frecventa mare:<br />

> limit(subs(s=I*omega, limit(Hs,rx=0)),omega=infinity);<br />

1<br />

1<br />

Pentru valorile <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> mo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>l ale <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>ului <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng>terminate in analiza Spice se traseaza diagrama<br />

Bo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> modul si faza.<br />

> H1:=limit(H, {rmiu=infinity}):<br />

> schema := {Rem=3300, Rs=2000 , Cs=10^(-4)};<br />

1<br />

schema := { Rem = 3300 , Rs = 2000 , Cs = }<br />

10000<br />

> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng>:={gm=0.0614, rx=0, rpi=3240, cpi=4.80*10^(-11) ,<br />

cmiu=2.77*10^(-12) , <strong>ro</strong>=7.58*10^4 };


<st<strong>ro</strong>ng>Etaj</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>amplificare</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>elementar</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>cu</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>bipolar</st<strong>ro</strong>ng> în conexiune colector comun<br />

<st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> cmiu = .2770000000 10 -11<br />

rx = 0 cpi = .4800000000 10 -10<br />

:= {<br />

, , , rpi = 3240,<br />

gm = .0614 , <strong>ro</strong> = 75800.00 }<br />

> Hs:=simplify(eval(H1,schema union <st<strong>ro</strong>ng>tranzistor</st<strong>ro</strong>ng> ));<br />

s ( 243. s + .3124000000 10 )<br />

Hs := 4169.<br />

12<br />

.1319622449 10 + +<br />

16 s .1013067 107 s2 .6545348312 1016 > PZ[numeric](Hs,s);<br />

⎡z1<br />

0. ⎤<br />

⎢<br />

⎥<br />

⎢<br />

⎢z2<br />

-.1285 10 ⎥<br />

⎢<br />

⎥<br />

⎢<br />

⎥<br />

⎢<br />

⎥<br />

⎢<br />

⎥<br />

⎣<br />

⎦<br />

10<br />

p1 -4.958<br />

p2 -.1303 10 10<br />

>plot({[log10(omega),20*log10(abs(subs(s=I*omega,Hs))),omega=10^(<br />

-1)..10^3],[log10(omega),20*log10(abs(subs(s=I*omega,Hs))),omega<br />

=10^3..10^8],[log10(omega),20*log10(abs(subs(s=I*omega,Hs))),ome<br />

ga=10^8..10^12]},numpoints=300,color=black,thickness=2,title="Di<br />

agrama Bo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> castig");<br />

> plot({[log10(omega),argument(subs(s=I*omega,Hs)),omega=10^(-<br />

1)..10^3],[log10(omega),argument(subs(s=I*omega,Hs)),omega=10^3.<br />

.10^8],[log10(omega),argument(subs(s=I*omega,Hs)),omega=10^8..10<br />

^12]},numpoints=300,color=black,thickness=2,title="Diagrama Bo<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>de</st<strong>ro</strong>ng> faza");<br />

TB – CC - 11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!