29.01.2015 Views

2D Rieman-Christoffel tenzor Г k ij zakrivljenosti prostora iz 3D ...

2D Rieman-Christoffel tenzor Г k ij zakrivljenosti prostora iz 3D ...

2D Rieman-Christoffel tenzor Г k ij zakrivljenosti prostora iz 3D ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Omerbašić M.: <strong>2D</strong> <strong>Rieman</strong>n- <strong>Christoffel</strong> <strong>tenzor</strong>.... 5<br />

Mensur Omerbašić * UDK 528.2<br />

Originalni naučni rad<br />

<strong>2D</strong> <strong>Rieman</strong>n-<strong>Christoffel</strong> <strong>tenzor</strong> k <strong>ij</strong> <strong>zakrivljenosti</strong> <strong>prostora</strong> <strong>iz</strong> <strong>3D</strong> <strong>prostora</strong><br />

korištenjem spec<strong>ij</strong>al<strong>iz</strong>irane permutac<strong>ij</strong>ske scheme<br />

Uvod<br />

Izvedimo metrički <strong>tenzor</strong> za geodetske koordinate (h, , ) na fiksnom rotacionom<br />

elipsoidu zadatom svojim dvjema osama (a, b), i centrisanom u koordinatnom ishodištu za<br />

koje vr<strong>ij</strong>edi<br />

1<br />

x ( N h)cos<br />

cos ,<br />

2<br />

x ( N h)cos<br />

sin ,<br />

3<br />

x ( N h)<br />

sin<br />

, kao<br />

[Hotine, 1969]<br />

g<br />

ps<br />

i<br />

j<br />

x x<br />

<strong>ij</strong><br />

(1)<br />

p s<br />

u u<br />

gdje N a<br />

2<br />

cos ( b / a)<br />

2<br />

2<br />

sin , a u i U su krivolin<strong>ij</strong>ske koordinate u krivolin<strong>ij</strong>skom<br />

koordinatnom sistemu U, na pr., h, , na rotacionom elipsoidu. Onda <strong>iz</strong> (1) sl<strong>ij</strong>edi:<br />

g<br />

g<br />

g<br />

11<br />

22<br />

33<br />

cos<br />

b<br />

<br />

a<br />

4<br />

8<br />

2<br />

cos<br />

N<br />

6<br />

( N h)<br />

a sâm metrik je:<br />

cos<br />

sin cos<br />

2<br />

2<br />

2<br />

2<br />

cos sin<br />

sin<br />

b<br />

<br />

a<br />

or for h 0 : ... N<br />

2<br />

2<br />

2<br />

4<br />

8<br />

sin<br />

( N h)<br />

2<br />

2<br />

N<br />

6<br />

cos p<br />

1<br />

sin sin<br />

2<br />

2<br />

2<br />

2<br />

2<br />

b<br />

<br />

a<br />

cos cos<br />

2<br />

2<br />

2<br />

4<br />

8<br />

N<br />

6<br />

0 ( N h)<br />

p s g<br />

cos<br />

ps<br />

2<br />

b<br />

<br />

a<br />

0<br />

2<br />

4<br />

8<br />

N<br />

cos<br />

6<br />

2<br />

<br />

<br />

<br />

, (2)<br />

<br />

<br />

<br />

<br />

<br />

g<br />

<strong>ij</strong><br />

1 0<br />

0<br />

0 ( M h)<br />

0 . (3)<br />

0 0<br />

2<br />

( N h)<br />

2<br />

cos<br />

2<br />

<br />

* Dr. Mensur Omerbašić, dipl. inž. geod., GTS d.o. Sarajevo,<br />

e-mail: omerbashich@gts.ba


6<br />

Omerbašić M.: <strong>2D</strong> <strong>Rieman</strong>n- <strong>Christoffel</strong> <strong>tenzor</strong>....<br />

<strong>Christoffel</strong>ovi simboli 1 ve i 2 ge vrste respektivno dati su sa [Wrede, 1963]:<br />

1 g jk g g<br />

ik <strong>ij</strong> k lk<br />

[<strong>ij</strong>, k] , <strong>ij</strong><br />

g [<strong>ij</strong>,<br />

k]<br />

i j k<br />

2<br />

<br />

u u u<br />

<br />

, (4)<br />

<br />

što za rotacioni elipsoid u geodetskim koordinatama (x , x , x ) ( h,<br />

,<br />

)<br />

, glasi:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

3<br />

23<br />

3<br />

13<br />

2<br />

12<br />

2<br />

22<br />

1<br />

22<br />

1<br />

33<br />

2<br />

33<br />

<br />

<br />

<br />

g<br />

g<br />

g<br />

g<br />

3<br />

32<br />

3<br />

31<br />

2<br />

21<br />

22<br />

11<br />

11<br />

22<br />

g<br />

g<br />

<br />

<br />

g<br />

<br />

23,3 <br />

MN sin<br />

cos<br />

<br />

<br />

22,2<br />

<br />

<br />

22,1 <br />

M <br />

<br />

<br />

1<br />

2<br />

33,1<br />

<br />

N cos <br />

<br />

33<br />

33<br />

22<br />

<br />

<br />

33,2<br />

13,3<br />

12,2<br />

1 <br />

M<br />

1<br />

1<br />

1<br />

1<br />

<br />

M<br />

<br />

N<br />

1<br />

<br />

M<br />

2<br />

2<br />

N<br />

2<br />

2<br />

3M<br />

1<br />

cos<br />

1<br />

N cos<br />

2<br />

cos <br />

2<br />

1<br />

M <br />

M<br />

2<br />

2<br />

<br />

1 <br />

<br />

M<br />

<br />

M<br />

N<br />

MN sin<br />

cos<br />

<br />

2<br />

1<br />

2<br />

1<br />

<br />

N<br />

3<br />

<br />

tan<br />

<br />

3 1 <br />

<br />

2<br />

N<br />

cos <br />

N<br />

M<br />

M<br />

N<br />

sin<br />

cos<br />

.<br />

M <br />

tan<br />

N <br />

<br />

<br />

<br />

<br />

<br />

<br />

(5)<br />

<br />

tan<br />

<br />

<br />

Zahvaljujući opštosti <strong>tenzor</strong>â, u cilju dokazivanja prikladnosti takvog <strong>prostora</strong> za<br />

razmatranja u okviru Euklidovskog <strong>prostora</strong>, dovoljno je u <strong>iz</strong>ložiti takav prostor istom<br />

ograničenju koji vr<strong>ij</strong>edi za Euklidovske prostore: tamo, vektorsko polje dob<strong>ij</strong>eno paralelnim<br />

transportom plošnog vektora duž krive – geodetske lin<strong>ij</strong>e (u tom slučaju pravac!), i zadane<br />

sa [Spiegel, 1959]:<br />

r<br />

A<br />

k<br />

<br />

r<br />

jk<br />

A<br />

j<br />

0<br />

x<br />

ods<strong>ij</strong>eca uv<strong>ij</strong>ek jednake uglove sa geodetskom lin<strong>ij</strong>om (pravcem), i samo prateći pravu<br />

lin<strong>ij</strong>u.<br />

Koncept paralel<strong>iz</strong>ma u <strong>Rieman</strong>novskim prostorima definiran je relativno zadatoj<br />

krivoj. Na rotacionom elipsoidu kao jednom takvom prostoru, uv<strong>ij</strong>ek postoji najmanje jedna<br />

geodetska lin<strong>ij</strong>a koja spaja dv<strong>ij</strong>e date tačke. Tako za tangent vektore -krivoj za =<br />

1 =const., te -krivoj za = 2 = const., bez obzira na (ne)postojanje paralel<strong>iz</strong>ma u<br />

Euklidovskom smislu, govorimo o paralel<strong>iz</strong>mu ako se desio paralelni transport <strong>iz</strong>među<br />

takva dva vektora, tj., ako je gornja j-na (6) zadovoljena. Ovo je očigledno slučaj u nekom<br />

Euklidovskom prostoru gdje svi <strong>Christoffel</strong>ovi simboli nužno nestaju i gdje su svi preostali<br />

<strong>iz</strong>vodi pravaca jednaki nuli: merid<strong>ij</strong>ani su međusobno paralelni u transverzalnim<br />

kartografskim projekc<strong>ij</strong>ama.<br />

Da bismo vidjeli da li su gore navedeni tangent vektori i generalno međusobno<br />

paralelni na rotacionom elipsoidu, dovoljno je pokazati da barem jedna <strong>iz</strong> sistema jednačinâ<br />

(6) ne zadovoljava za (5):<br />

(6)


Omerbašić M.: <strong>2D</strong> <strong>Rieman</strong>n- <strong>Christoffel</strong> <strong>tenzor</strong>.... 7<br />

Izvođenje <strong>Rieman</strong>n-<strong>Christoffel</strong> <strong>tenzor</strong>a <strong>zakrivljenosti</strong> <strong>prostora</strong><br />

A<br />

x<br />

3<br />

3<br />

<br />

3<br />

23<br />

A<br />

2<br />

<br />

<br />

(0) <br />

<br />

M<br />

N<br />

tan<br />

M<br />

2<br />

3<br />

M<br />

<br />

N<br />

tan<br />

0<br />

except for 0<br />

<br />

.<br />

(7)<br />

<strong>Rieman</strong>n-<strong>Christoffel</strong> <strong>tenzor</strong> <strong>zakrivljenosti</strong> <strong>prostora</strong> glasi [Wrede, 1963]:<br />

R<br />

l<br />

<strong>ij</strong>k<br />

l<br />

l<br />

<br />

ik <strong>ij</strong> s l s l<br />

iksj<br />

<strong>ij</strong>sk,<br />

(8)<br />

j k<br />

u u<br />

dok je njegov kovar<strong>ij</strong>antni oblik definiran kao:<br />

ks<br />

R g R . (9)<br />

l<strong>ij</strong>k<br />

ls<br />

<strong>ij</strong>k<br />

Jedine četiri komponente ovog <strong>tenzor</strong>a različite od nule u <strong>2D</strong> simetričnom prostoru<br />

jesu R 1212 , R 2121 , R 1221 , R 2112 , gdje usljed simetr<strong>ij</strong>e u dvjema parovima indeksâ, kao i usljed<br />

anti-simetr<strong>ij</strong>e, vr<strong>ij</strong>edi: R 1212 = R 2121 = –R 1221 = –R 2112 [Wrede, 1963].<br />

Sfera i rotacioni elipsoid predstavljaju <strong>2D</strong> zakrivljene prostore (površi). U<br />

prethodnim razmatranjima (vidjeti i Dodatak) smo za <strong>Christoffel</strong>ove simbole koristili <strong>3D</strong><br />

koordinate. Stoga ćemo sada za računanje <strong>tenzor</strong>a <strong>zakrivljenosti</strong> koristiti sljedeću schemu<br />

za permutac<strong>ij</strong>u indeksâ <strong>Christoffel</strong>ovih simbolâ 2 ge vrste i odgovarajućih elemenata<br />

<strong>Rieman</strong>n-<strong>Christoffel</strong> <strong>tenzor</strong>â:<br />

Gornja schema koristi se tako da se njeni kolone i redovi unakrsno upoređuju da bi se<br />

pronašli indeksi međusobno odgovarajući u <strong>2D</strong> odnosno <strong>3D</strong> prostoru. Za rotacioni elipsoid,<br />

komponente <strong>Rieman</strong>n-<strong>Christoffel</strong> <strong>tenzor</strong>a <strong>zakrivljenosti</strong> (tog) <strong>prostora</strong>, prema <strong>iz</strong>razu (8),<br />

glase:


8<br />

Omerbašić M.: <strong>2D</strong> <strong>Rieman</strong>n- <strong>Christoffel</strong> <strong>tenzor</strong>....<br />

R<br />

R<br />

1<br />

212<br />

1<br />

212<br />

2 2<br />

33<br />

32<br />

2<br />

33<br />

<br />

<br />

<br />

<br />

2<br />

22<br />

<br />

3<br />

32<br />

2<br />

33<br />

N N<br />

<br />

sin<br />

cos<br />

0 sin<br />

cos<br />

31<br />

<br />

<br />

M M<br />

<br />

1 N N<br />

sin<br />

sin 2<br />

3 sin<br />

cos<br />

3<br />

<br />

2 M M<br />

cos<br />

1 N <br />

N<br />

2 1 tan 2sin cos<br />

2<br />

<br />

<br />

M <br />

M<br />

N sin<br />

N 2<br />

2<br />

1<br />

sin<br />

cos<br />

cos<br />

M cos<br />

M<br />

N 2<br />

2 N 2 N<br />

2<br />

sin 2sin cos <br />

M<br />

M M<br />

N 2<br />

2<br />

2<br />

cos sin sin <br />

M<br />

N 2<br />

cos .<br />

M<br />

<br />

<br />

M<br />

N<br />

N<br />

M<br />

<br />

2 cos 2<br />

3<br />

<br />

<br />

2<br />

sin 3<br />

2<br />

sin 3<br />

M N<br />

tan<br />

tan<br />

sin<br />

cos<br />

<br />

N M<br />

M<br />

sin<br />

2<br />

sin<br />

cos<br />

sin <br />

N<br />

cos<br />

N<br />

M<br />

N<br />

M<br />

N<br />

M<br />

2<br />

2<br />

2<br />

sin 3sin sin <br />

2<br />

2<br />

sin 2sin <br />

2<br />

2<br />

sin 2sin <br />

(10)<br />

Računanje druge tri komponente ostavljamo čitaocu. Kovar<strong>ij</strong>antne komponente<br />

sada se sračunaju <strong>iz</strong> (9) i (10):<br />

R<br />

1<br />

2<br />

1212 11 212 cos<br />

g R MN , (11)<br />

što je u saglasnosti s diskus<strong>ij</strong>om koja je usl<strong>ij</strong>edila neposredno nakon j-ne (9).<br />

Radi kompletnosti zadatka, još <strong>iz</strong>vedimo i Ricci-Einstein te Lamé <strong>tenzor</strong>e,<br />

mn<br />

<strong>ij</strong> ikl jmn<br />

R<strong>ij</strong><br />

g R m<strong>ij</strong>n i S e e R klmn [Borisenko & Tarapov, 1966] respektivno, za<br />

rotacioni elipsoid (vidjeti Dodatak):<br />

R<br />

<strong>ij</strong><br />

M<br />

0<br />

N<br />

. (12)<br />

N<br />

0 cos 2<br />

<br />

M<br />

Takođe:<br />

11 1<br />

<br />

g<br />

1<br />

R<br />

g<br />

1<br />

R<br />

g<br />

S 1212<br />

1212<br />

2<br />

2<br />

MN cos 1<br />

<br />

, (13)<br />

2 2<br />

M N cos MN


Omerbašić M.: <strong>2D</strong> <strong>Rieman</strong>n- <strong>Christoffel</strong> <strong>tenzor</strong>.... 9<br />

gdje [Wrede, 1963]:<br />

ikl 1<br />

jmn 1<br />

<strong>ij</strong> ji<br />

e ikl e jmn , and S S .<br />

(14)<br />

g<br />

g<br />

Preostale komponente dob<strong>ij</strong>u se na analogan način, te stoga njihovo <strong>iz</strong>vođenje<br />

ostavljamo čitaocu. Primjenom formule za Gaussovu krivinu, <strong>iz</strong> <strong>Rieman</strong>n-<strong>Christoffel</strong><br />

<strong>tenzor</strong>a <strong>zakrivljenosti</strong> K ( 1/ g) R1212<br />

[Sokolnikoff, 1964] za rotacioni elipsoid,<br />

dob<strong>ij</strong>emo:<br />

1 2 1<br />

K Ellipsoid <br />

MN cos <br />

(15)<br />

2 2 2<br />

M N cos <br />

MN<br />

Zaključak<br />

Ovdje smo pokazali brži način za dob<strong>ij</strong>anje <strong>2D</strong> <strong>Rieman</strong>n-<strong>Christoffel</strong> <strong>tenzor</strong>a<br />

<strong>zakrivljenosti</strong> <strong>prostora</strong>. Ispravnost <strong>iz</strong>raza (15), dob<strong>ij</strong>enog <strong>iz</strong> formule za Gaussovu krivinu, u<br />

saglasnosti je sa (v) <strong>iz</strong> Dodatka. Naša schema omogućuje direktnu transformac<strong>ij</strong>u u<br />

Euklidovski prostor, tj., <strong>iz</strong> pro<strong>iz</strong>voljnog (ovdje ravnog, ali lahko primjenljivog na opšti<br />

slučaj) <strong>3D</strong> u <strong>2D</strong> prostor koji uključuje i rotacioni elipsoid. Moguće su daljnje razrade, na<br />

pr., za površi parametr<strong>iz</strong>irane Gaussovim normalnim plošnim koordinatama ( el , el ,<br />

h el ( el , el )), kao što je planeta Zemlja. Tako bi, na pr., korištenjem naše scheme <strong>Rieman</strong>n-<br />

<strong>Christoffel</strong> <strong>tenzor</strong> <strong>zakrivljenosti</strong> mogao biti direktno računat za topografsku površ h el ( el ,<br />

el ) Zemlje, pri čemu bi <strong>Christoffel</strong>ovi simboli za takvu reprezentac<strong>ij</strong>u bili zadati u obliku<br />

ortonormalnih funkc<strong>ij</strong>a na rotacionom elipsoidu.<br />

Dodatak<br />

Neki korisni <strong>iz</strong>razi:<br />

2<br />

3 b M<br />

M <br />

M N ; 3 1 tan<br />

4 M <br />

a <br />

N <br />

M M M N N <br />

2 1<br />

tan<br />

; 2<br />

1 tan<br />

. (i)<br />

<br />

N N N <br />

M M <br />

Izrazi (4) dob<strong>ij</strong>eni su nakon <strong>iz</strong>vršenih sljedećih računanjâ:<br />

1 2<br />

x 3<br />

N<br />

4<br />

b<br />

<br />

<br />

a<br />

2 2<br />

x 3<br />

N<br />

4<br />

b<br />

<br />

<br />

a<br />

3<br />

x b<br />

<br />

<br />

a<br />

2<br />

4<br />

pN<br />

2<br />

sin cos<br />

sin sin <br />

b<br />

<br />

a<br />

2<br />

4<br />

4<br />

2<br />

N cos .<br />

(ii)


10<br />

Omerbašić M.: <strong>2D</strong> <strong>Rieman</strong>n- <strong>Christoffel</strong> <strong>tenzor</strong>....<br />

U gornjem smo našli totalne <strong>iz</strong>vode za N = f (). Pomenimo još da se do metrika<br />

može doći na više načina; mi smo koristili dobro poznati [Hotine, 1969]:<br />

<br />

<br />

N M<br />

( N cos)<br />

M<br />

sin ( N sin )<br />

M cos<br />

, (iii)<br />

<br />

<br />

cos<br />

gdje (i) može služiti kao dokaz ispravnosti rezultata dob<strong>ij</strong>enog na bilo koji od dva načina.<br />

Računanjem <strong>iz</strong>razâ (10) dob<strong>ij</strong>emo <strong>Christoffel</strong>ove simbole prve vrste (pokazujemo<br />

samo one različite od nule), za <strong>3D</strong> prostor dat u geodetskim koordinatama, relativno u<br />

odnosu na elipsoid h = 0:<br />

1 <br />

g23<br />

g33<br />

g32<br />

1 2 2<br />

32,3 0 N<br />

cos <br />

2 <br />

x<br />

1 <br />

g33<br />

g13<br />

g13<br />

1 2 2<br />

13,3 N<br />

cos <br />

2 <br />

x<br />

1 <br />

g<br />

2 <br />

x<br />

3<br />

1<br />

x<br />

x<br />

g<br />

x<br />

x<br />

x<br />

g<br />

x<br />

2 h<br />

1 <br />

2 h<br />

22 12 12<br />

2<br />

12,2 M<br />

<br />

0 0 M<br />

1<br />

1 <br />

g22<br />

g22<br />

g22<br />

1 2<br />

22,2 M<br />

<br />

2 <br />

x<br />

2<br />

3<br />

2<br />

3<br />

3<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2 <br />

1 <br />

g21<br />

g21<br />

g22<br />

1 2<br />

22,1<br />

0 0 M<br />

<br />

2 <br />

x<br />

1 <br />

g31<br />

g31<br />

g33<br />

1 2 2<br />

33,1<br />

0 0 N<br />

cos <br />

2 <br />

x<br />

3<br />

1 <br />

g32<br />

g32<br />

g33<br />

1 2 2<br />

33,2 0 0 N<br />

cos <br />

2 <br />

x<br />

1 <br />

g33<br />

g23<br />

g23<br />

1 2 2<br />

23,3 N<br />

cos <br />

2 <br />

x<br />

2<br />

1 <br />

g13<br />

g33<br />

g31<br />

1 2 2<br />

31,3<br />

0 N<br />

cos <br />

2 <br />

x<br />

1 <br />

g<br />

2 <br />

x<br />

3<br />

2<br />

3<br />

2<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

g<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

g<br />

x<br />

2 <br />

2 <br />

2 h<br />

1 <br />

2 h<br />

2 h<br />

2 h<br />

2 <br />

3M<br />

<br />

1<br />

<br />

<br />

12 22 21<br />

2<br />

21,2<br />

0 M<br />

0 M.<br />

(iv)<br />

Iz (4) očito je da jedino za<br />

k<br />

<strong>ij</strong>, k 0 <br />

2<br />

0<br />

2<br />

3<br />

3<br />

1<br />

2<br />

3<br />

1<br />

<strong>ij</strong> <br />

.<br />

1<br />

1<br />

3<br />

3<br />

2<br />

2<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

M<br />

0 MN<br />

sin cos<br />

0 0 N cos <br />

M<br />

N<br />

<br />

tan<br />

<br />

MN sin cos<br />

0 0 MN<br />

sin cos<br />

2<br />

2<br />

N<br />

cos <br />

0 N cos <br />

2


Omerbašić M.: <strong>2D</strong> <strong>Rieman</strong>n- <strong>Christoffel</strong> <strong>tenzor</strong>.... 11<br />

Zakrivljenost nekog elipsoida sračunata je korištenjem gornjih <strong>iz</strong>raza, kao:<br />

K Ellipsoid<br />

1 1 g <br />

22 1 g <br />

11<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

2 g <br />

<br />

g<br />

<br />

g<br />

<br />

<br />

<br />

1<br />

<br />

2<br />

b<br />

2 N<br />

4<br />

a<br />

1<br />

<br />

2<br />

b<br />

2 N<br />

4<br />

a<br />

8<br />

a<br />

<br />

4<br />

b N<br />

3<br />

3<br />

3<br />

b<br />

<br />

p a<br />

2<br />

4<br />

<br />

<br />

<br />

<br />

<br />

b<br />

p <br />

a<br />

4<br />

2a<br />

p d p a<br />

<br />

<br />

<br />

2 3<br />

2<br />

<br />

b N p d<br />

2b<br />

N<br />

p <br />

a<br />

cos<br />

<br />

b<br />

4<br />

2<br />

2<br />

4<br />

1<br />

N<br />

3<br />

<br />

2 <br />

(<br />

p )<br />

<br />

<br />

<br />

p <br />

<br />

cos<br />

a<br />

<br />

4<br />

2<br />

N cos<br />

b N<br />

<br />

<br />

<br />

<br />

b<br />

<br />

a<br />

4<br />

4<br />

4<br />

3<br />

2<br />

4<br />

1<br />

N<br />

4<br />

2a<br />

<br />

2<br />

p b<br />

3<br />

1<br />

.<br />

MN<br />

<br />

2 <br />

M<br />

<br />

<br />

<br />

<br />

<br />

p <br />

<br />

<br />

<br />

1<br />

<br />

<br />

N<br />

3<br />

2<br />

b <br />

4<br />

a<br />

N<br />

3<br />

<br />

sin<br />

<br />

<br />

<br />

(v)<br />

Literatura:<br />

Borisenko, A.I., Tarapov, I.E. (1966). Vector and Tensor Analysis with applications.<br />

Translated from Russian by Prentice-Hall, Inc. (1968). New Jersey, N.J., the United<br />

States of America.<br />

Hotine, M. (1969). Mathematical Geodesy. U.S. Department of Commerce, Washington,<br />

D.C., United States of America.<br />

Sokolnikoff, I. S. (1964). Tensor Analysis. John Wiley & Sons, Inc., New York, N.Y., the<br />

United States of America.<br />

Spiegel, M.R. (1959). Theory and Problems of Vector Analysis and an introduction to<br />

Tensor Analysis. Schaum’s outline series, Schaum Publishing Co., New York, United<br />

States of America.<br />

Wrede, R.C. (1963). Introduction to Vector and Tensor Analysis. John Wiley & Sons, Inc.,<br />

New York, N.Y., United States of America.<br />

Sažetak:<br />

Kada prostor u kojem su <strong>Christoffel</strong>ovi simboli druge vrste simetrični u donjim<br />

indeksima postoji, takav prostor onda čini alternativu standardnoj proceduri (h, , )(r, ,<br />

) gdje se <strong>2D</strong> površ normalno inducira <strong>iz</strong> geometr<strong>ij</strong>e okolnog <strong>3D</strong> <strong>prostora</strong> kojim je površ<br />

obuhvaćena. U takvoj situac<strong>ij</strong>i čini se prikladnim koristiti naročitu schemu za neposrednu<br />

permutac<strong>ij</strong>u indeksa k <strong>ij</strong> <strong>tenzor</strong>a. Takav prostor omogućuje transformac<strong>ij</strong>u u cilju dob<strong>ij</strong>anja<br />

komponenti <strong>2D</strong> <strong>Rieman</strong>n-<strong>Christoffel</strong> <strong>tenzor</strong>a ovdje <strong>iz</strong>raženog u geodetskim koordinatama<br />

za rotacioni elipsoid, od koristi u geof<strong>iz</strong>ici. Primjenom naše scheme nađemo<br />

korespondirajuće indekse u <strong>2D</strong> i u <strong>3D</strong> suplement-prostoru, i sračunamo komponente


12<br />

Omerbašić M.: <strong>2D</strong> <strong>Rieman</strong>n- <strong>Christoffel</strong> <strong>tenzor</strong>....<br />

<strong>Rieman</strong>n-<strong>Christoffel</strong> <strong>tenzor</strong>a <strong>zakrivljenosti</strong> <strong>prostora</strong>. Tako operiranjem nad elementima<br />

samih projekc<strong>ij</strong>a dob<strong>ij</strong>emo opšte-poznatu vr<strong>ij</strong>ednost od 1/MN za Gausovu krivinu na<br />

rotacionom elipsoidu. Da bi dokazali validnost scheme, pokažemo i da je u takvom jednom<br />

<strong>3D</strong> prostoru tangent vektor -krive za =const 1 zaista paralelan tangent vektoru -krive za<br />

=const 2 , na površini rotacionog elipsoida. U poređenju s klasičnim pristupom, naša<br />

schema omogućuje brža računanja <strong>2D</strong> <strong>tenzor</strong>a <strong>zakrivljenosti</strong>, i kao takva čini preferirani<br />

način računanja <strong>Rieman</strong>n-<strong>Christoffel</strong> <strong>tenzor</strong>a <strong>zakrivljenosti</strong> <strong>prostora</strong>, na pr., topografske<br />

površi h el ( el , el ) planete Zemlje.<br />

Abstract:<br />

<strong>2D</strong> <strong>Rieman</strong>n-<strong>Christoffel</strong> curvature tensor via a <strong>3D</strong> space using a<br />

special<strong>iz</strong>ed permutation scheme<br />

When a space in which <strong>Christoffel</strong> symbols of the second kind are symmetrical in<br />

the lower indices exists it constitutes a supplement to the standard procedure (h, , )(r,<br />

, ) when a <strong>2D</strong> surface is normally induced from the geometry of the surrounding <strong>3D</strong><br />

space in which the surface is embedded. There it appears appropriate to use a suitable<br />

scheme for the straightforward permutation of indices of k <strong>ij</strong>, when such a space would<br />

make this transformation possible so to obtain the components of the <strong>2D</strong> <strong>Rieman</strong>n-<br />

<strong>Christoffel</strong> tensor here expressed in geodetic coordinates for an ellipsoid of revolution, of<br />

use in geophysics. By applying the scheme we find the corresponding indices in a 2-D and<br />

a 3-D supplement-space and compute the components of the <strong>Rieman</strong>n-<strong>Christoffel</strong> tensor.<br />

By operating over the elements of the projections alone, the all-known value of 1/MN for<br />

the Gaussian curvature on an ellipsoid of revolution is obtained. To prove the validity of the<br />

scheme, we show that in such a <strong>3D</strong> space the tangent vector to a -curve for =const 1<br />

would be parallel to a tangent vector to a -curve for =const 2 on the surface of an ellipsoid<br />

of revolution. Compared to the classical approach, our scheme enables faster computation<br />

of the <strong>2D</strong> curvature tensor, and as such makes a preferred way for computing the <strong>Rieman</strong>n-<br />

<strong>Christoffel</strong> curvature tensor for the topographic surface h el ( el , el ) of the Earth.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!