19.11.2012 Views

« ª¨¨® - Jemná mechanika a optika

« ª¨¨® - Jemná mechanika a optika

« ª¨¨® - Jemná mechanika a optika

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Práce byla vypracována v rámci projektu MSM6840770022<br />

Ministerstva školství ČR a grantu GA ČR 103/03/P001.<br />

Literatura<br />

[1] MIKŠ, A.: Aplikovaná <strong>optika</strong> 10 . Vydavatelství ČVUT,<br />

Praha, 2000.<br />

[2] MARÉCHAL, A.: Imagerie Géométrique Aberrations.<br />

Revue d´Optique, Paris, 1952.<br />

[3] HERZBERGER, M.: Modern Geometrical Optics.<br />

Interscience, New York, 1958.<br />

[4] MOUROULIS, P. - MACDONALD, J.: Geometrical<br />

Optics and Optical Design. Oxford University Press, New<br />

York, 1997.<br />

[5] BORN, M. - WOLF, E.: Principles of Optics. Oxford<br />

University Press, New York, 1964.<br />

[6] HOPKINS, H. H.: Wave theory of Aberrations. Oxford<br />

University Press, New York, 1950.<br />

��<br />

[7] COX, A.: A System of Optical Design. Focal Press,<br />

London, 1964.<br />

[8] HAFERKORN, H.: Bewertung optisher systeme. VEB<br />

Deutscher Verlag der Wissenschaften, Berlin,1986.<br />

[9] WELFORD, W. T.: Aberrations of the Symmetrical Optical<br />

Systems. Academic Press, London, 1974.<br />

[10] BUCHDAHL, H. A.: An Introduction to Hamiltonian<br />

Optics. Cambridge University Press, Cambridge, 1970.<br />

[11] HOPKINS, H. H.: Canonical Pupil Coordinates in<br />

Geometrical Optics and Diffraction Image Theory. Jap.<br />

J. Appl. Physics, Vol.4, Sup. I, 1965, pp.31-35.<br />

[12] MIKŠ, A.: Dependence of the Wave-Front Aberration<br />

on the Radius of the Reference Sphere. Journal of the<br />

Optical Society of America A. 2002, vol. 19, no. 6,<br />

p. 1187-1190.<br />

[13] KORN, G. A. - KORN, T.M.: Mathematical Handbook.<br />

McGraw-Hill, New York, 1968.<br />

[14] NIKIFOROV, A. F.- UVAROV,V. B.: Osnovy teorii<br />

specialnych funkcij. Nauka, Moskva 1974.<br />

Prof. RNDr. Antonín Mikš, CSc., katedra fyziky, Stavební fakulta ČVUT, Thákurova 7, 166 29 Praha 6 - Dejvice,<br />

tel.: 224 354 948, fax: 233 333 226, e-mail: miks@fsv.cvut.cz<br />

Ing. Jiří Novák, PhD., katedra fyziky, Stavební fakulta ČVUT, Thákurova 7, 166 29 Praha 6 - Dejvice,<br />

tel.: 224 354 435, fax: 233 333 226, e-mail: novakji@fsv.cvut.cz<br />

Jaroslav POSPÍŠIL, Jan HRDÝ, Jan HRDÝ, jr.<br />

Department of Experimental Physics of Palacký University and Joint Laboratory of Optics of Palacký University and Institute of Physics<br />

of Academy of Sciences, Olomouc, Czech Republic<br />

Light reflection, absorption, scattering and redness effects of soils<br />

in relationship to their haematite content<br />

The article presents coherent theoretical considerations about the specific light reflection, absorption,<br />

scattering and redness properties of soils containing usually the haematite, goethite and remaining iron<br />

oxide-free components. For such a purpose, the relevant mathematical expressions are introduced and<br />

explained according to the considered three basic color classification systems, chosen redness rates<br />

definitions and soil components contents. Finally, examples of soil color effects are presented and interpreted.<br />

They ratify the usefulness of the exploited quantities and described evalutional proceduces<br />

for the routine soil colorimetry.<br />

1. INTRODUCTION<br />

Soils, described elsewhere [1], are mixtures containing commonly<br />

the iron (Fe) oxide mineral and organic compounds which interact<br />

with the incident light of the wavelength range Dλ » 400 – 800 nm and<br />

are usually neither completely transparent nor completely opaque.<br />

In such pigment mixtures, their particles partly reflect, absorb and<br />

scatter the incident light. These characteristic optical properties can be<br />

investigated effectively by the Kubelka-Munk (K-M) theory (approach),<br />

especially in the cases of well drained soil samples (specimens)<br />

with small amounts of organce matter. In such soils, the iron oxides<br />

(especially the haematite, a – Fe 2 O 3 , and goethite, a – FeOOH) are,<br />

generally, the dominant pigments [2-4]. The corresponding spectral<br />

considerations can be completed by the so-called second-derivative<br />

spectrometry for improvement of resolution of fine structures of the<br />

optical spectra curves [5].<br />

Keywords: Soil haematite and goethite, basic color systems, redness rates, soil haematite content<br />

The quantified assessment of characteristic color properties of<br />

soils, affected by their optical properties mentioned above, enables<br />

a relevant color (colorimetric) classification system (space, model).<br />

In this article, the profitable three color systems are exploited, i.e.<br />

the CIE (Commission Internationale de l’Eclairage) tristimulus<br />

color system (X,Y,Z), the CIE color system (L * ,a * ,b * ), known as<br />

the CIELAB system, and the Munsell color system (H,V,C) [6-14].<br />

These systems are purposefully applied to charateristic redness<br />

(redding) effects of haematite (hematite) and goethite on the soil<br />

colors. Haematite makes the soil color reddish because the primary<br />

haematite bright red hue is very effective in masking the primary<br />

yellow or yellow-brown hue of goethite. Thus investigation of<br />

characteristic soil redness and its relationship to haematite content<br />

(concentration) in soils, containing haematite and goethite and<br />

������

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!