04.04.2016 Views

Dual Random Utility Maximisation

n?u=RePEc:san:wpecon:1605&r=upt

n?u=RePEc:san:wpecon:1605&r=upt

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Proceed in an analogous way for the construction of r 1 , starting from y 1 , that is for<br />

all i = 2, ...n define recursively<br />

T i =<br />

and as before 0 < |S i | ≤ 2.<br />

L 2 i = X \<br />

i−1 ⋃<br />

j=1<br />

{ ( )<br />

t ∈ L 2 i : p t, L 2 i > p<br />

y j<br />

(<br />

)}<br />

t, L 2 i ∪ {y i−1}<br />

If |T i | = {t}, then let y i = t, while if |T i | = 2 , then letting T i = {e, f }:<br />

(2.i). p ( e, L 2 i<br />

) > p<br />

(<br />

e, L<br />

2<br />

i<br />

∪ { y j<br />

})<br />

(resp. p<br />

(<br />

e, L<br />

2<br />

i<br />

) > p<br />

(<br />

e, L<br />

2<br />

i<br />

∪ { y j<br />

})<br />

) for all j = 1, ...i − 1,<br />

and p ( f , L 2 i<br />

) = p<br />

(<br />

f , L<br />

2<br />

i<br />

∪ { y j<br />

})<br />

(resp. p<br />

(<br />

e, L<br />

2<br />

i<br />

) = p<br />

(<br />

e, L<br />

2<br />

i<br />

∪ { y i−g<br />

})<br />

) for some j ∈<br />

{1, ..., i − 2}.<br />

In this case let y i = e (resp., f ).<br />

(2.ii). p ( e, L 2 i<br />

) > p<br />

(<br />

e, L<br />

2<br />

i<br />

∪ { y j<br />

})<br />

and p<br />

(<br />

f , L<br />

2<br />

i<br />

) > p<br />

(<br />

f , L<br />

2<br />

i<br />

∪ { y j<br />

})<br />

for all j = 1, ...i − 1.<br />

In this case let y i = f (resp., y i = e) whenever eP (r 1 ) f (resp., f P (r 1 ) e) (i.e. we<br />

require consistency with the construction of the first order).<br />

2. Showing that the algorithm is well-defined<br />

We show that cases (1.i) and (1.ii) are exhaustive, which means showing that if<br />

|S i | = 2 at least one alternative in S i is impacted by all its predecessors according<br />

to r 1 . We proceed by induction on the index i. If i = 2 there is nothing to prove.<br />

Now consider the step i = k + 1. If |S k+1 | = 1 again there is nothing to prove, so let<br />

|S k+1 | = 2, with S k+1 = {c, d}. By construction p ( c, L 1 k+1) > p<br />

(<br />

c, L<br />

1<br />

k+1<br />

∪ {x k } ) and<br />

p ( d, L 1 k+1) > p<br />

(<br />

d, L<br />

1<br />

k+1<br />

∪ {x k } ) , so that by Lemma 1 and Lemma 2 it must be<br />

( )<br />

p c, L 1 k+1 = 1 ( )<br />

2 = p d, L 1 k+1<br />

By contradiction, suppose that there exist u, v∈{x 1 , ...x k−1 } for which u does not<br />

impact c in L 1 k+1 and v does not impact d in L1 k+1 , i.e.<br />

) ( )<br />

p<br />

(c, L 1 k+1 ∪ {u} = p c, L 1 k+1 = 1 2<br />

(1)<br />

(2)<br />

and<br />

) ( )<br />

p<br />

(d, L 1 k+1 ∪ {v} = p d, L 1 k+1 = 1 2<br />

(3)<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!