02.03.2013 Views

Considering the Haystack: the pp Inelastic Cross ... - Physics Division

Considering the Haystack: the pp Inelastic Cross ... - Physics Division

Considering the Haystack: the pp Inelastic Cross ... - Physics Division

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Considering</strong> <strong>the</strong> <strong>Haystack</strong>: <strong>the</strong><br />

<strong>pp</strong> <strong>Inelastic</strong> <strong>Cross</strong> Section<br />

at<br />

√s = 7 TeV with ATLAS<br />

Lauren Tompkins<br />

University of Chicago


The present<br />

• April 15th 2012, 25 reconstructed vertices, Z➛


Revisiting <strong>the</strong> Past<br />

LBL RPM<br />

05/22/2012<br />

3


Outline<br />

• Soft <strong>Physics</strong> at <strong>the</strong> Energy Frontier<br />

• Overview of ATLAS and Relevant Subdetectors<br />

• Discussion of Diffractive Processes and Monte Carlo Models<br />

• The <strong>Inelastic</strong> <strong>pp</strong> <strong>Cross</strong>-Section Measurement<br />

• An Aside on Luminosity Measurements<br />

• Results<br />

• Connection to Cosmic Rays<br />

• Conclusions<br />

LBL RPM<br />

05/22/2012<br />

4


LHC: The Energy Frontier<br />

ATLAS<br />

LBL RPM<br />

05/22/2012<br />

• <strong>pp</strong> collider at √s = 7 TeV<br />

• Design lumi: 10 34 s -1 cm -2<br />

• Interaction rate: ~100 MHz<br />

• 2010 stats:<br />

• Initial lumi: 10 27 s -1 cm -2<br />

• Peak lumi: 10 32 s -1 cm -2<br />

• Interaction rate: ~1 MHz<br />

• Promises to shed light on<br />

<strong>the</strong> origins of electroweak<br />

symmetry breaking<br />

5


LHC: The Energy Frontier<br />

ATLAS<br />

LBL RPM<br />

05/22/2012<br />

<strong>Haystack</strong><br />

• <strong>pp</strong> collider at √s = 7 TeV<br />

• Design lumi: 10 34 s -1 cm -2<br />

• Interaction rate: ~100 MHz<br />

• 2010 stats:<br />

• Initial lumi: 10 27 s -1 cm -2<br />

• Peak lumi: 10 32 s -1 cm -2<br />

• Interaction rate: ~1 MHz<br />

• Promises to shed light on<br />

<strong>the</strong> origins of electroweak<br />

symmetry breaking<br />

Needle<br />

5


Why Measure <strong>the</strong> <strong>pp</strong> cross section?<br />

• High center-of-mass (s), low momentum transfer interactions<br />

are complex phenomena which QCD is currently unable to<br />

address<br />

• One of <strong>the</strong> most challenging open problems in strong interactions<br />

• Many basic unknowns:<br />

• What is <strong>the</strong> dependence of <strong>the</strong> interaction rate on s?<br />

• What is <strong>the</strong> division between color exchanging and color neutral<br />

interactions?<br />

• Start-up of LHC allows access to a<br />

new energy range to test models<br />

• Practically, measurement is useful<br />

for pile-up predictions for LHC<br />

high luminosity & energy running.<br />

LBL RPM<br />

05/22/2012<br />

6


Theoretical Picture<br />

Minijet &<br />

multi-parton<br />

interactions<br />

Soft Gluon<br />

Resummation<br />

AdS/CFT<br />

Correspondence<br />

Froissart-<br />

Martin Bound<br />

σtot,inel(s) ≤ ln 2 (s)<br />

LBL RPM<br />

05/22/2012<br />

Analytic<br />

Amplitudes<br />

Factorized Eikonal-<br />

Pomeron exchange<br />

Reggeon Field<br />

Theory<br />

7


The Total and Elastic <strong>Cross</strong> Sections<br />

• Total proton cross section<br />

is typically measured 2<br />

ways:<br />

• Forward elastic cross section at<br />

colliders (Optical Theorem)<br />

• Cosmic ray air showers<br />

• Specialized experiments/<br />

detectors exists at LHC<br />

for <strong>the</strong>se measurements<br />

• Totem<br />

• Alfa<br />

• Well-defined, direct measurements of σinel is an<br />

important complement to <strong>the</strong>se measurements<br />

[mb]<br />

tot<br />

<br />

LBL RPM<br />

05/22/2012<br />

160 <strong>pp</strong> Data<br />

<strong>pp</strong><br />

Data<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

10<br />

ISR<br />

Data prior to 2011<br />

2<br />

10<br />

UA5<br />

Tevatron<br />

3<br />

10<br />

Cosmic Ray<br />

Data<br />

LHC<br />

4<br />

10<br />

s [GeV]<br />

8


Outline<br />

• Soft <strong>Physics</strong> at <strong>the</strong> Energy Frontier<br />

• Overview of ATLAS and Relevant Subdetectors<br />

• Discussion of Diffractive Processes and Monte Carlo Models<br />

• The <strong>Inelastic</strong> <strong>pp</strong> <strong>Cross</strong>-Section Measurement<br />

• An Aside on Luminosity Measurements<br />

• Results<br />

• Connection to Cosmic Rays<br />

• Conclusions<br />

LBL RPM<br />

05/22/2012<br />

9


ATLAS<br />

LBL RPM<br />

05/22/2012<br />

10


ATLAS<br />

Minimum Bias Trigger Scintillators:<br />

★2cm thick polystyrene scintillators read out by PMTs<br />

★Mounted on endcap calorimeter cryostat face plates (Z = 3.6 m)<br />

★Cover 2.09


ATLAS<br />

Inner Tracking Detector:<br />

★Silicon and transition radiation technologies<br />

★Coverage up to|η|< 2.5<br />

★Tracking for charged particle with pT > 100 MeV<br />

LBL RPM<br />

05/22/2012<br />

10


ATLAS<br />

LBL RPM<br />

05/22/2012<br />

Forward Calorimeters<br />

Inner Tracking Detector:<br />

★Liquid Argon and Co<strong>pp</strong>er/Steel absorbers<br />

★Coverage up to|η|< 4.9<br />

★Silicon and transition radiation technologies<br />

★Coverage up to|η|< 2.5<br />

★Tracking for charged particle with pT > 100 MeV<br />

10


Outline<br />

• Soft <strong>Physics</strong> at <strong>the</strong> Energy Frontier<br />

• Overview of ATLAS and Relevant Subdetectors<br />

• Discussion of Diffractive Processes and Monte Carlo Models<br />

• The <strong>Inelastic</strong> <strong>pp</strong> <strong>Cross</strong>-Section Measurement<br />

• An Aside on Luminosity Measurements<br />

• Results<br />

• Connection to Cosmic Rays<br />

• Conclusions<br />

LBL RPM<br />

05/22/2012<br />

11


Classifying <strong>pp</strong> Interactions<br />

Elastic<br />

Single Dissociation<br />

Central Diffraction<br />

• Elastic interactions: p+p→p+p (20% of σtot)<br />

• <strong>Inelastic</strong>: p+p→ something new (80% of σtot)<br />

• Predictions at 7 TeV vary between 65mb & 100mb for σinel<br />

• Color neutral processes make up 30% of σinel but are poorly<br />

understood<br />

LBL RPM<br />

05/22/2012<br />

Double Dissociation<br />

Non-diffractive Dissociation<br />

12


Single Dissociation<br />

Example of SD event<br />

No particles with<br />

-4.9


Diffractive Dissociation<br />

Double Dissociation<br />

}<br />

}<br />

X<br />

Y<br />

Single Dissociation<br />

• Color singlet exchange leads to<br />

rapidity gaps<br />

• Mass of dissociation product<br />

describes systems:<br />

= M 2 X /s<br />

• ξ relates to (pseudo)rapidity gap<br />

start, <strong>the</strong>refore detector acceptance:<br />

⌘min / log<br />

M 2<br />

X<br />

s<br />

LBL RPM<br />

05/22/2012<br />

} X<br />

Rapidity<br />

gap start<br />

14


Diffractive Models<br />

• Total detector acceptance<br />

depends on MX<br />

distribution near ξ cut<br />

• But we can’t measure MX!<br />

• Use a variety of models to assess<br />

dependence on MX distribution<br />

Measurement<br />

(MX > 15.7 GeV)<br />

arXiv:1005.3894<br />

LBL RPM<br />

05/22/2012<br />

• Consider many models for<br />

<strong>the</strong> diffractive mass<br />

distribution<br />

• Generators: Pythia, Phojet<br />

• 2 different fragmentation<br />

schemes (Pythia 6 vs Pythia 8)<br />

• Flat<br />

• Multiple variations of power law<br />

• Default model is<br />

Donnachie and Landshoff<br />

with ε = 0.085, α’= 0.25<br />

GeV -2 :<br />

d⇤SD<br />

/<br />

dM 2<br />

⇣ s<br />

M<br />

(t) =⇥ + 0 (t)<br />

⌘ 2 (t) 1 ✓<br />

1+<br />

◆ 2 M<br />

s<br />

15


Monte Carlo Models of Particle Production<br />

• Pythia 6: String<br />

fragmentation to produce<br />

particles for given MX<br />

• Pythia 8: Perturbative<br />

particle production using<br />

pomeron PDFs for MX ><br />

10 GeV<br />

• Default MC for this measurement<br />

• Multiple models for differential<br />

diffractive spectrum<br />

• Phojet: Dual Parton<br />

Model with cutoff to<br />

separate hard and soft<br />

diffractive processes<br />

LBL RPM<br />

05/22/2012<br />

16


Outline<br />

• Soft <strong>Physics</strong> at <strong>the</strong> Energy Frontier<br />

• Overview of ATLAS and Relevant Subdetectors<br />

• Discussion of Diffractive Processes and Monte Carlo Models<br />

• The <strong>Inelastic</strong> <strong>pp</strong> <strong>Cross</strong>-Section Measurement<br />

• An Aside on Luminosity Measurements<br />

• Results<br />

• Connection to Cosmic Rays<br />

• Conclusions<br />

LBL RPM<br />

05/22/2012<br />

17


The Measurement<br />

At least two MBTS hits Background and trigger<br />

efficiency measured in Data<br />

⇥( > 5 ⇥ 10 6 )=<br />

Limit measurement<br />

to detector<br />

acceptance<br />

(MX > 15.7 GeV)<br />

Dataset:1.2M events<br />

(2nd day of 7 TeV Stable LHC Beams)<br />

(N NBG)<br />

trig⇥ R Ldt ⇥ 1 f


Backgrounds (NBG) & Trigger (εtrig)<br />

• Beam gas and beam halo:<br />

• Measure with unpaired bunches :<br />

0.13% of total event sample<br />

• “Afterglow”: cavern radiation<br />

produced after a collision<br />

• Out-of-time afterglow measured by<br />

unpaired bunches<br />

• In-time afterglow measured from<br />

fractions of late hits in MBTS (0.4%)<br />

• Take 100% uncertainty on<br />

backgrounds:0.42%<br />

• Trigger is single MBTS trigger hit:<br />

• Measured with respect to offline<br />

selection to be 99.98% with an<br />

uncertainty of 0.09%<br />

LBL RPM<br />

05/22/2012<br />

19


Backgrounds (NBG) & Trigger (εtrig)<br />

• Beam gas and beam halo:<br />

• Measure with unpaired bunches :<br />

0.13% of total event sample<br />

• “Afterglow”: cavern radiation<br />

produced after a collision<br />

• Out-of-time afterglow measured by<br />

unpaired bunches<br />

• In-time afterglow measured from<br />

fractions of late hits in MBTS (0.4%)<br />

• Take 100% uncertainty on<br />

backgrounds:0.42%<br />

• Trigger is single MBTS trigger hit:<br />

• Measured with respect to offline<br />

selection to be 99.98% with an<br />

uncertainty of 0.09%<br />

LBL RPM<br />

05/22/2012<br />

Rate /Hz<br />

Rate /Hz<br />

10<br />

1<br />

0.48<br />

0.47<br />

0.46<br />

0.45<br />

0.44<br />

0.43<br />

0.42<br />

0.41<br />

0.4<br />

0.39<br />

0.38<br />

Afterglow<br />

ATLAS Preliminary<br />

Data 2010<br />

MBTS_C Triggers<br />

Unpaired<br />

bunches!<br />

0 500 1000 1500 2000 2500 3000 3500<br />

ATLAS Preliminary<br />

Data 2010<br />

Bunch Id<br />

MBTS_C Triggers<br />

800 1000 1200 1400 1600 1800 2000<br />

Bunch Id<br />

19


Backgrounds (NBG) & Trigger (εtrig)<br />

• Beam gas and beam halo:<br />

• Measure with unpaired bunches :<br />

0.13% of total event sample<br />

• “Afterglow”: cavern radiation<br />

produced after a collision<br />

• Out-of-time afterglow measured by<br />

unpaired bunches<br />

• In-time afterglow measured from<br />

fractions of late hits in MBTS (0.4%)<br />

• Take 100% uncertainty on<br />

backgrounds:0.42%<br />

• Trigger is single MBTS trigger hit:<br />

• Measured with respect to offline<br />

selection to be 99.98% with an<br />

uncertainty of 0.09%<br />

LBL RPM<br />

05/22/2012<br />

Rate /Hz<br />

Rate /Hz<br />

3<br />

10<br />

10<br />

2<br />

10<br />

1<br />

10<br />

0.48<br />

0.47<br />

0.46 10<br />

0.45<br />

0.44<br />

10<br />

0.43<br />

0.42<br />

0.41 10<br />

0.4<br />

Afterglow<br />

ATLAS Preliminary<br />

Paired<br />

Unpaired (Beam 1)<br />

MBTS_C Unpaired Triggers(Beam<br />

2)<br />

Data 2010<br />

Unpaired<br />

bunches!<br />

-100 0 -80 500-601000 -40 -20 1500 02000 20 2500 40 60 3000 80 3500 100<br />

3<br />

2<br />

CERN-THESIS-2011-046<br />

Ncounter<br />

Ncounters<br />

= 1<br />

CERN-THESIS-2011-046<br />

= 2<br />

Counter Time Bunch [ns] Id<br />

ATLAS Preliminary<br />

Paired<br />

Unpaired (Beam 1)<br />

MBTS_C Unpaired Triggers(Beam<br />

2)<br />

Data 2010<br />

0.39<br />

1<br />

0.38<br />

-100800 -80 -60 1000-401200 -20 1400 0 20 1600 40 601800 80 100 2000<br />

Counter Time Bunch [ns] Id<br />

19


Modeling Detector Response<br />

• Evaluated agreement of data and<br />

MC for MBTS counter response<br />

• Inner Counters: use calorimeters as tag<br />

• Outer Counters: use tracks as tag<br />

• Use track or calorimeter cell to tag<br />

counter, define efficiency as<br />

fraction of tagged counters with Q<br />

over threshold.<br />

• Correct for extrapolation error (track)<br />

and neutral component (calo)<br />

• Adjust MC threshold to match observed<br />

efficiency in data<br />

• Systematic taken as MC threshold<br />

which reproduces efficiency in<br />

“worst” data counter<br />

• Done separately for +/- (η) sides and<br />

Inner, Outer counters<br />

LBL RPM<br />

05/22/2012<br />

20


Modeling Detector Response<br />

• Evaluated agreement of data and<br />

MC for MBTS counter response<br />

• Inner Counters: use calorimeters as tag<br />

• Outer Counters: use tracks as tag<br />

• Use track or calorimeter cell to tag<br />

counter, define efficiency as<br />

fraction of tagged counters with Q<br />

over threshold.<br />

• Correct for extrapolation error (track)<br />

and neutral component (calo)<br />

• Adjust MC threshold to match observed<br />

efficiency in data<br />

• Systematic taken as MC threshold<br />

which reproduces efficiency in<br />

“worst” data counter<br />

• Done separately for +/- (η) sides and<br />

Inner, Outer counters<br />

LBL RPM<br />

05/22/2012<br />

Fraction of Tagged Counters<br />

0.03 Data 2010<br />

Pythia 6<br />

0.025<br />

Pythia 8<br />

Phojet<br />

0.02<br />

Pythia 6 + Ad. Material<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

s = 7 TeV<br />

ATLAS Preliminary<br />

Track tagged counters<br />

0 1 2 3 4<br />

MBTS Counter Charge [pC]<br />

20


Modeling Detector Response<br />

• Evaluated agreement of data and<br />

MC for MBTS counter response<br />

• Inner Counters: use calorimeters as tag<br />

• Outer Counters: use tracks as tag<br />

• Use track or calorimeter cell to tag<br />

counter, define efficiency as<br />

fraction of tagged counters with Q<br />

over threshold.<br />

• Correct for extrapolation error (track)<br />

and neutral component (calo)<br />

• Adjust MC threshold to match observed<br />

efficiency in data<br />

• Systematic taken as MC threshold<br />

which reproduces efficiency in<br />

“worst” data counter<br />

• Done separately for +/- (η) sides and<br />

Inner, Outer counters<br />

LBL RPM<br />

05/22/2012<br />

Fraction of Tagged Counters<br />

0.03 Data 2010<br />

Pythia 6<br />

0.025<br />

Pythia 8<br />

Phojet<br />

0.02<br />

Pythia 6 + Ad. Material<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

s = 7 TeV<br />

ATLAS Preliminary<br />

Track tagged counters<br />

0 1 2 3 4<br />

MBTS Counter Charge [pC]<br />

20


Modeling Detector Response<br />

• Evaluated agreement of data and<br />

MC for MBTS counter response<br />

• Inner Counters: use calorimeters as tag<br />

• Outer Counters: use tracks as tag<br />

• Use track or calorimeter cell to tag<br />

counter, define efficiency as<br />

fraction of tagged counters with Q<br />

over threshold.<br />

• Correct for extrapolation error (track)<br />

and neutral component (calo)<br />

• Adjust MC threshold to match observed<br />

efficiency in data<br />

• Systematic taken as MC threshold<br />

which reproduces efficiency in<br />

“worst” data counter<br />

• Done separately for +/- (η) sides and<br />

Inner, Outer counters<br />

LBL RPM<br />

05/22/2012<br />

Fraction of Tagged Counters<br />

0.03 Data 2010<br />

Pythia 6<br />

0.025<br />

Pythia 8<br />

Phojet<br />

0.02<br />

Pythia 6 + Ad. Material<br />

0.015<br />

0.01<br />

0.005<br />

Uncertainty on σ: 0.1%<br />

0<br />

s = 7 TeV<br />

ATLAS Preliminary<br />

Track tagged counters<br />

0 1 2 3 4<br />

MBTS Counter Charge [pC]<br />

20


Modeling Detector Material<br />

• Material increases efficiency/<br />

acceptance by increasing rate of<br />

conversions.<br />

• MBTS only “sees” charged particles<br />

• Exploit calorimeter’s sensitivity to<br />

neutral particles<br />

• Plot fraction of tagged counters seen as<br />

noise by <strong>the</strong> MBTS<br />

• Used a Pythia 6 sample reconstructed<br />

20% extra material in <strong>the</strong> pixel<br />

services to estimate material effects<br />

• Used twice difference (same as Pythia 6 -<br />

Data) as <strong>the</strong> systematic<br />

LBL RPM<br />

05/22/2012<br />

Fraction of Tagged Counters<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

Data 2010<br />

Pythia 6<br />

Pythia 8<br />

Phojet<br />

Pythia 6 + Ad. Material<br />

ATLAS Preliminary<br />

FCAL tagged counters s = 7 TeV<br />

0 1 2 3 4<br />

Zero<br />

fraction<br />

MBTS Counter Charge [pC]<br />

Signal<br />

21


Modeling Detector Material<br />

• Material increases efficiency/<br />

acceptance by increasing rate of<br />

conversions.<br />

• MBTS only “sees” charged particles<br />

• Exploit calorimeter’s sensitivity to<br />

neutral particles<br />

• Plot fraction of tagged counters seen as<br />

noise by <strong>the</strong> MBTS<br />

• Used a Pythia 6 sample reconstructed<br />

20% extra material in <strong>the</strong> pixel<br />

services to estimate material effects<br />

• Used twice difference (same as Pythia 6 -<br />

Data) as <strong>the</strong> systematic<br />

Fraction of Tagged Counters<br />

zero<br />

f<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0 1 2 3 4<br />

Zero<br />

fraction<br />

s = 7 TeV<br />

ATLAS Preliminary<br />

Data 2010<br />

Pythia 6<br />

Pythia 8<br />

Phojet<br />

Pythia 6 + Ad. Material<br />

Data 2010<br />

Pythia 6<br />

Pythia 8<br />

Phojet<br />

Pythia 6 + Ad. Material<br />

ATLAS Preliminary<br />

FCAL tagged counters s = 7 TeV<br />

MBTS Counter Charge [pC]<br />

Signal<br />

FCAL tagged counters<br />

LBL RPM<br />

0<br />

0 1 2 3 4 5 6 7<br />

05/22/2012 MBTS Counter Number<br />

21


Modeling Detector Material<br />

• Material increases efficiency/<br />

acceptance by increasing rate of<br />

conversions.<br />

• MBTS only “sees” charged particles<br />

• Exploit calorimeter’s sensitivity to<br />

neutral particles<br />

• Plot fraction of tagged counters seen as<br />

noise by <strong>the</strong> MBTS<br />

• Used a Pythia 6 sample reconstructed<br />

20% extra material in <strong>the</strong> pixel<br />

services to estimate material effects<br />

• Used twice difference (same as Pythia 6 -<br />

Data) as <strong>the</strong> systematic<br />

Uncertainty on σ: 0.2%<br />

Fraction of Tagged Counters<br />

zero<br />

f<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

0<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0 1 2 3 4<br />

Zero<br />

fraction<br />

s = 7 TeV<br />

ATLAS Preliminary<br />

Data 2010<br />

Pythia 6<br />

Pythia 8<br />

Phojet<br />

Pythia 6 + Ad. Material<br />

Data 2010<br />

Pythia 6<br />

Pythia 8<br />

Phojet<br />

Pythia 6 + Ad. Material<br />

ATLAS Preliminary<br />

FCAL tagged counters s = 7 TeV<br />

MBTS Counter Charge [pC]<br />

Signal<br />

FCAL tagged counters<br />

LBL RPM<br />

0<br />

0 1 2 3 4 5 6 7<br />

05/22/2012 MBTS Counter Number<br />

21


Inclusive Event Sample: N<br />

ev<br />

MBTS<br />

counter<br />

dN<br />

• Used for cross-section<br />

measurement<br />

dN<br />

1<br />

Nev<br />

• Models span data for<br />

most of multiplicity<br />

range<br />

• Low Ncounter region most<br />

important for<br />

measurement<br />

0.2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

Inclusive<br />

s=<br />

7 TeV<br />

errors = stat ⊕ response<br />

⊕ material<br />

LBL RPM<br />

05/22/2012<br />

Data 2010<br />

Schuler-Sjostrand Pythia 6<br />

Schuler-Sjostrand Pythia 8<br />

Bruni and Ingelman<br />

DL =<br />

0.085, ’<br />

= 0.25 GeV<br />

DL =<br />

0.06, ’<br />

= 0.25 GeV<br />

-2<br />

DL =<br />

0.10, ’<br />

= 0.25 GeV<br />

Phojet<br />

5 10 15 20 25 30<br />

-2<br />

-2<br />

ATLAS<br />

MBTS<br />

Ncounter<br />

22


Single-Sided Event Sample: NSS<br />

ev<br />

MBTS<br />

counter<br />

dN<br />

dN<br />

ev<br />

1<br />

N<br />

• Sample of events with<br />

hits on one side of<br />

MBTS<br />

• Diffraction-dominated<br />

• Models give reasonable<br />

spread of uncertainty in<br />

diffractive contribution<br />

• Used to constrain<br />

contribution of<br />

diffractive events to<br />

inclusive event sample<br />

0.2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

Inclusive Single-sided<br />

s = 7 TeV<br />

2 5 4 106 15 8 1020 12 25 14 3016<br />

LBL RPM<br />

05/22/2012<br />

errors = stat ⊕ response<br />

⊕ material<br />

Data 2010<br />

Schuler-Sjostrand Pythia 6<br />

Schuler-Sjostrand Pythia 8<br />

Bruni and Ingelman<br />

DL <br />

= 0.085, <br />

’ = 0.25 GeV<br />

DL <br />

= 0.06, <br />

’ = 0.25 GeV<br />

DL <br />

= 0.10, <br />

’ = 0.25 GeV<br />

Phojet<br />

-2<br />

-2<br />

-2<br />

ATLAS<br />

N<br />

MBTS<br />

counter<br />

23


Relative Diffractive Contribution<br />

• Fractional contribution of<br />

diffractive process (fD) varies<br />

significantly between<br />

generators<br />

• Model dependent quantity<br />

• Constrain fD for each model<br />

by finding value which<br />

produces same ratio of<br />

single-sided to inclusive<br />

event sample (Rss) as data<br />

• Default model yields<br />

fD = 26.9 +2.5 -1.0 %<br />

ss<br />

R<br />

Rss(fD) = NSS<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

LBL RPM<br />

05/22/2012<br />

Ninc<br />

= ADSSfD + AND SS<br />

0.18 Data 2010<br />

Schuler-Sjostrand Pythia 6<br />

AD incfD + AND inc<br />

Schuler-Sjostrand Pythia 8<br />

Bruni and Ingelman<br />

DL = 0.085, ’<br />

= 0.25 GeV<br />

DL = 0.06, ’<br />

= 0.25 GeV<br />

-2<br />

DL = 0.10, ’<br />

= 0.25 GeV<br />

Phojet<br />

-2<br />

-2<br />

(1 fD)<br />

(1 fD)<br />

ATLAS<br />

s=<br />

7 TeV<br />

0.1 0.15 0.2 0.25 0.3 0.35 0.4<br />

fD<br />

24


εsel and fξ


MC Uncertainties on εsel and fξ


Summary of Systematic Uncertainties<br />

• Trigger: Difference between<br />

measurement with 2<br />

independent triggers<br />

• MBTS Response: Vary thresholds<br />

over full range of data<br />

efficiencies<br />

• Material: 40% uncertainty on<br />

material in |η|> 2.5.<br />

• Relative Diffractive<br />

Contribution: Vary fD within<br />

uncertainties<br />

•<br />

• Background: 100% uncertainty<br />

• MC Multiplicity: Difference<br />

between Pythia 8 and Pythia 6<br />

• ξ Distribution: largest difference<br />

between default and alternative<br />

models<br />

LBL RPM<br />

05/22/2012<br />

Source Uncertainty (%)<br />

Trigger E ciency 0.1<br />

MBTS Response 0.1<br />

Material 0.2<br />

fD<br />

0.3<br />

Beam Background 0.4<br />

MC Multiplicity 0.4<br />

distribution 0.4<br />

Luminosity 3.4<br />

Total 3.5<br />

27


Summary of Systematic Uncertainties<br />

• Trigger: Difference between<br />

measurement with 2<br />

independent triggers<br />

• MBTS Response: Vary thresholds<br />

over full range of data<br />

efficiencies<br />

• Material: 40% uncertainty on<br />

material in |η|> 2.5.<br />

• Relative Diffractive<br />

Contribution: Vary fD within<br />

uncertainties<br />

•<br />

• Background: 100% uncertainty<br />

• MC Multiplicity: Difference<br />

between Pythia 8 and Pythia 6<br />

• ξ Distribution: largest difference<br />

between default and alternative<br />

models<br />

LBL RPM<br />

05/22/2012<br />

Source Uncertainty (%)<br />

Trigger E ciency 0.1<br />

MBTS Response 0.1<br />

Material 0.2<br />

fD<br />

0.3<br />

Beam Background 0.4<br />

MC Multiplicity 0.4<br />

distribution 0.4<br />

Luminosity 3.4<br />

Total 3.5<br />

!!<br />

27


Outline<br />

• Soft <strong>Physics</strong> at <strong>the</strong> Energy Frontier<br />

• Overview of ATLAS and Relevant Subdetectors<br />

• Discussion of Diffractive Processes and Monte Carlo Models<br />

• The <strong>Inelastic</strong> <strong>pp</strong> <strong>Cross</strong>-Section Measurement<br />

• An Aside on Luminosity Measurements<br />

• Results<br />

• Connection to Cosmic Rays<br />

• Conclusions<br />

LBL RPM<br />

05/22/2012<br />

28


Luminosity Basics<br />

• Luminosity is a measure of <strong>the</strong> beam collision intensity:<br />

depends on Np/bunch, Nbunches, crossing frequency, &<br />

beam size.<br />

• Can be determined 2 ways:<br />

• Using a <strong>the</strong>oretically well known cross section and event counting:<br />

• From accelerator parameters:<br />

L· = Nev<br />

L = nbfrI1I2<br />

2⇡⌃x⌃y<br />

LBL RPM<br />

05/22/2012<br />

L = N1N2f<br />

Aeff<br />

((<br />

⌃x =( 2 1x + 2 2x) 1/2<br />

29


Beam Separation Scans<br />

• Proposed in 1968 by Simon van<br />

der Meer as a means of<br />

measuring beam sizes at <strong>the</strong> ISR.<br />

• Principle:<br />

• Measure <strong>the</strong> beam widths by scanning<br />

interaction rate as a function of beam<br />

separation<br />

• Can simultaneously measure visible crosssection,<br />

σvis<br />

• Then use σvis as calibration constant for<br />

future luminosity determination<br />

dN<br />

dt<br />

= nbfrI1I2<br />

2 x y<br />

vis<br />

LBL RPM<br />

05/22/2012<br />

Specific Rate R_sp [Hz]<br />

Data−fit<br />

<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Peak Rate ~ L inst σvis<br />

ChPart = (58.4 ± 0.4) µ m<br />

ATLAS<br />

x<br />

Σx<br />

−2<br />

−4<br />

−300 −200 −100 0 100 200 300<br />

x<br />

[ µ m]<br />

024<br />

30


ATLAS Luminosity Detectors<br />

Track and Primary Vertex<br />

Event Counting<br />

BCM<br />

LUCID<br />

MBTS<br />

LBL RPM<br />

05/22/2012<br />

WLS fibers<br />

4+4 / 4+4<br />

16 Plastic<br />

Scintillators<br />

TAS<br />

EMEC<br />

HEC<br />

(front)<br />

HEC<br />

(back)<br />

FCal 1 FCal 2 FCal 3<br />

plug<br />

(EM) (Had) (Had)<br />

shielding<br />

Moderator shielding<br />

FCAL<br />

Pump<br />

ZDC<br />

140 m<br />

LAr Calorimeter<br />

237 m<br />

ZDC<br />

ALFA<br />

Primary Luminosity<br />

Measurement<br />

31


Luminosity Uncertainties<br />

• Calibration determined from 5 different scans in 2010<br />

• O(10) different methods/detectors used!<br />

• Uncertainty is dominated by knowledge of bunch charge (I1I2)<br />

• Already surpassed precision expected for beam scans!<br />

Scan Number I II–III IV–V<br />

Fill Number 1059 1089 1386<br />

Bunch charge product 5.6% 4.4% 3.1% Partially correlated<br />

Beam centering 2% 2% 0.04% Uncorrelated<br />

Emittance growth and<br />

o<strong>the</strong>r non-reproducibility 3% 3% 0.5% Uncorrelated<br />

Beam-position jitter – – 0.3% Uncorrelated<br />

Length scale calibration 2% 2% 0.3% Partially Correlated<br />

Absolute ID length scale 0.3% 0.3% 0.3% Correlated<br />

Fit model 1% 1% 0.2% Partially Correlated<br />

Transverse correlations 3% 2% 0.9% Partially Correlated<br />

µ dependence 2% 2% 0.5% Correlated<br />

Total 7.8% 6.8% 3.4%<br />

LBL RPM<br />

05/22/2012<br />

ATLAS-CONF-2011-011<br />

arXiv:1101.2185v1<br />

32


Outline<br />

• Soft <strong>Physics</strong> at <strong>the</strong> Energy Frontier<br />

• Overview of ATLAS and Relevant Subdetectors<br />

• Discussion of Diffractive Processes and Monte Carlo Models<br />

• The <strong>Inelastic</strong> <strong>pp</strong> <strong>Cross</strong>-Section Measurement<br />

• An Aside on Luminosity Measurements<br />

• Results<br />

• Connection to Cosmic Rays<br />

• Conclusions<br />

LBL RPM<br />

05/22/2012<br />

33


Results<br />

• Calculate cross-section using:<br />

• εsel = 98.8%,<br />

• εtrig = 99.8%,<br />

• fξ 5 ⇥ 10 6 )[mb]<br />

ATLAS Data 2010 60.33 ± 2.10(exp.)<br />

Schuler and Sjöstrand 66.4<br />

Phojet 74.2<br />

Ryskin et al. 51.8 56.2<br />

• Data are lower than MC generator predictions, higher than<br />

analytic calculation from Ryskin et. al.<br />

LBL RPM<br />

05/22/2012<br />

34


Extrapolating to σinel<br />

• To compare with previous measurements extrapolate<br />

using DL model (+15%)<br />

• O<strong>the</strong>r models range from 5 to 25%<br />

extrapolations<br />

• Take +/- 10% as extrapolation<br />

uncertainty<br />

⇥( >m 2 p/s) [mb]<br />

ATLAS Data 2010 69.4 ± 2.4(exp.) ± 6.9(extr.)<br />

Schuler and Sjöstrand 71.5<br />

Phojet 77.3<br />

Block and Halzen 69<br />

Ryskin et al. 65.2 67.1<br />

Gotsman et al. 68<br />

Achilli et al. 60 75<br />

LBL RPM<br />

05/22/2012<br />

Extrapolation<br />

• Data agree with most<br />

analytic calculations,<br />

lower than Phojet<br />

35


Spring 2011<br />

[mb]<br />

inel<br />

<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1 10<br />

Data 2010 s = 7 TeV: > 5 x 10<br />

Schuler and Sjostrand:<br />

> 5 x 10<br />

PHOJET (Engel et al.): > 5 x 10<br />

Data 2010 s = 7 TeV: extrap. to > m<br />

Uncertainty (incl. extrapolation)<br />

Schuler and Sjostrand<br />

Block and Halzen 2011<br />

Achilli et al. (arXiv:1102.1949)<br />

<strong>pp</strong> Data<br />

<strong>pp</strong><br />

Data<br />

2<br />

Theoretical predictions and data are shown for > m /s unless specified o<strong>the</strong>rwise<br />

ATLAS data extrapolated using Pythia implementation of Donnachie-Landshoff model<br />

with = 0.085 for d/d<br />

10<br />

2<br />

LBL RPM<br />

05/22/2012<br />

p<br />

-6<br />

-6<br />

10<br />

-6<br />

3<br />

2<br />

p<br />

/s<br />

ATLAS<br />

4<br />

10<br />

s [GeV]<br />

• Presented <strong>the</strong> first measurement of inelastic cross-section<br />

• Data are lower than MC predictions, extrapolated value agrees with most<br />

analytic models<br />

36


Fall 2011<br />

• ALICE & CMS measured inelastic cross-section in<br />

limited phase space<br />

• Widely varying techniques with good agreement<br />

• TOTEM used 90m β* run to measure σtot, σinel and σel<br />

• Very precise measurement not subject to extrapolation uncertainties<br />

LBL RPM<br />

05/22/2012<br />

EPL 96 (2011) 21002<br />

37


1<br />

[mb]<br />

The Visible <strong>Cross</strong> Section<br />

X<br />

<br />

d<br />

d<br />

d<br />

X<br />

<br />

Cut<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

10<br />

-8<br />

-7<br />

10<br />

-6<br />

10<br />

-1<br />

ATLAS<br />

s = 7 TeV<br />

ATLAS L = 7.1 µ b<br />

-1<br />

ATLAS L = 20 µ b<br />

-1<br />

TOTEM L = 1.7 µ b<br />

PYTHIA 6 ATLAS AMBT2B PYTHIA 8 4C<br />

PHOJET RMK<br />

-5<br />

10<br />

arXiv:1201.2808<br />

-4<br />

10<br />

10<br />

<br />

-3<br />

Cut<br />

LBL RPM<br />

05/22/2012<br />

• Atlas also measured<br />

cross section as a<br />

function of rapidity<br />

gap (ξ)<br />

• Comparison with<br />

with TOTEM shows<br />

models don’t predict<br />

correct dependence<br />

• Important for pile-up<br />

modeling!<br />

38


Outline<br />

• Soft <strong>Physics</strong> at <strong>the</strong> Energy Frontier<br />

• Overview of ATLAS and Relevant Subdetectors<br />

• Discussion of Diffractive Processes and Monte Carlo Models<br />

• The <strong>Inelastic</strong> <strong>pp</strong> <strong>Cross</strong>-Section Measurement<br />

• An Aside on Luminosity Measurements<br />

• Results<br />

• Connection to Cosmic Rays<br />

• Conclusions<br />

LBL RPM<br />

05/22/2012<br />

39


Connection to Cosmic Rays<br />

Blümer, Engel, Hörandel, arXiv:0904.0725<br />

LBL RPM<br />

05/22/2012<br />

• Shower MC used to<br />

determine primary<br />

CR energy up to<br />

GZK cut off<br />

• Big extrapolation!<br />

• LHC data useful to<br />

for:<br />

• Better p-air cross-section<br />

• Better shower modeling<br />

40


Constraining CR Models<br />

http://indico.cern.ch/getFile.py/access?contribId=21&sessionId=0&resId=0&materialId=slides&confId=140054<br />

LBL RPM<br />

05/22/2012<br />

41


Outline<br />

• Soft <strong>Physics</strong> at <strong>the</strong> Energy Frontier<br />

• Overview of ATLAS and Relevant Subdetectors<br />

• Discussion of Diffractive Processes and Monte Carlo Models<br />

• The <strong>Inelastic</strong> <strong>pp</strong> <strong>Cross</strong>-Section Measurement<br />

• An Aside on Luminosity Measurements<br />

• Results<br />

• Connection to Cosmic Rays<br />

• Conclusions<br />

LBL RPM<br />

05/22/2012<br />

42


Conclusions<br />

• Have made <strong>the</strong> first measurement of <strong>the</strong> proton-proton<br />

inelastic cross section at 7 TeV<br />

• Measurement made possible by <strong>the</strong> efficiency & simplicity of <strong>the</strong> MBTS<br />

detector and strength of <strong>the</strong> ATLAS detector to validate results<br />

• Current results are consistent with Froissart-Martin<br />

bound and agree with most analytic calculations<br />

• Already have generated interest in <strong>the</strong> Soft QCD/LHC<br />

community<br />

• Theory: collaborated with several <strong>the</strong>orists to obtain predictions at 7 TeV<br />

• Experiment: results from ALICE & CMS consistent with us, complimentary<br />

to TOTEM results<br />

• Extrapolation uncertainty on measurement will decrease<br />

as diffractive component is better understood<br />

LBL RPM<br />

05/22/2012<br />

43


References<br />

References<br />

[1] M. M. Block and F. Halzen, arXiv:1102.3163.<br />

[2] M. Ryskin, A. Martin, V. Khoze, arXiv:1102.2844, submitted to Eur. Phys.<br />

J. C.; private communication.<br />

[3] A. Achilli et al., CERN-PH-TH/2011-018, arXiv:1102.1949, submitted to<br />

JHEP.<br />

[4] R. Engel, Z. Phys. C 66 (1995) 203-214; R. Engel, J. Ranft, Phys. Rev.<br />

D 54 (1996) 4244-4262.<br />

[5] G. Schuler and T. Sjöstrand, Phys. Rev. D 49 (1994) 2257-2267.<br />

[6] P. Bruni and G. Ingelman, Phys. Lett. B311 (1993) 317.<br />

[7] A. Donnachie and P. V. Landsho , Nucl. Phys. B244 (1984) 322.<br />

[8] E. L. Berger et al., Nucl. Phys. B286 (1987) 704.<br />

[9] K. Streng, CERN-TH.4949 (1988)<br />

[10] E. Gotsman, E. Levin, U. Maor, J. S. Miller, Eur. Phys. J. C57 (2008)<br />

689-709; E. Gotsman, E. Levin, U. Maor, arXiv:1010.5323.<br />

LBL RPM<br />

05/22/2012<br />

44


Additional Slides


Why Measure <strong>the</strong> <strong>pp</strong> cross-<br />

“It used to be <strong>the</strong> case that when a new accelerator was initiated<br />

one of <strong>the</strong> first and most important experiments to be performed<br />

was <strong>the</strong> measurement of <strong>the</strong> total p-p cross section. Nowadays,<br />

this experiment is regarded with little interest, even though <strong>the</strong><br />

explanation of Regge behavior remains an interesting, unsolved<br />

and complicated problem for QCD.”<br />

-David Gross, 1998, 25th Anniversary of <strong>the</strong><br />

discovery of Asymptotic Freedom<br />

LBL RPM<br />

05/22/2012<br />

46


Creating a diffraction enhanced<br />

• Diffractive processes make<br />

MC tuning difficult<br />

• To study kinematics look at<br />

tracks in <strong>the</strong> single-sided<br />

event sample<br />

ATLAS-CONF-2010-048<br />

LBL RPM<br />

05/22/2012<br />

๏ For ICHEP used tracks<br />

with pT > 500 MeV<br />

๏ No detector corrections<br />

47


trk<br />

d N<br />

d<br />

Rapidity Gaps<br />

ev<br />

N 1<br />

Ratio(MC/Data)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

ATLAS Preliminary<br />

s = 7 TeV<br />

Data<br />

Phojet<br />

Pythia8<br />

Pythia6<br />

Not corrected for detector effects<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

<br />

LBL RPM<br />

05/22/2012<br />

Δη<br />

MBTS MBTS<br />

• Δη = |ηMBTS - ηtrk| is sensitive to<br />

gap structure<br />

• Phojet shows best agreement<br />

• Favors dominantly SD contributions<br />

• Pythia 6 worst overall<br />

agreement, Pythia 8 favors high<br />

Δη<br />

48


trk<br />

d N<br />

d<br />

Rapidity Gaps<br />

ev<br />

N 1<br />

Ratio(MC/Data)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

ATLAS Preliminary<br />

s = 7 TeV<br />

Data<br />

Phojet<br />

Pythia8<br />

Pythia6<br />

Not corrected for detector effects<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

<br />

LBL RPM<br />

05/22/2012<br />

Δη<br />

trk<br />

d N<br />

d<br />

1<br />

Nev<br />

MBTS MBTS<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ATLAS Data<br />

Preliminary<br />

s = 7 TeV<br />

Phojet<br />

SD<br />

DD<br />

ND<br />

MC Sum<br />

Not corrected for detector effects<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

• Δη = |ηMBTS - ηtrk| is sensitive to<br />

gap structure<br />

• Phojet shows best agreement<br />

• Favors dominantly SD contributions<br />

• Pythia 6 worst overall<br />

agreement, Pythia 8 favors high<br />

Δη<br />

ND<br />

SD<br />

DD<br />

<br />

48


trk<br />

d N<br />

d<br />

Rapidity Gaps<br />

ev<br />

N 1<br />

Ratio(MC/Data)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

ATLAS Preliminary<br />

s = 7 TeV<br />

Data<br />

Phojet<br />

Pythia8<br />

Pythia6<br />

Not corrected for detector effects<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

<br />

LBL RPM<br />

05/22/2012<br />

Δη<br />

trk<br />

d N<br />

d<br />

1<br />

Nev<br />

MBTS MBTS<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ATLAS Data<br />

Preliminary<br />

s = 7 TeV<br />

Phojet<br />

SD<br />

DD<br />

ND<br />

MC Sum<br />

Not corrected for detector effects<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

• Δη = |ηMBTS - ηtrk| is sensitive to<br />

gap structure<br />

• Phojet shows best agreement<br />

• Favors dominantly SD contributions<br />

• Pythia 6 worst overall<br />

agreement, Pythia 8 favors high<br />

Δη<br />

ND<br />

SD<br />

DD<br />

<br />

48


trk<br />

d N<br />

d<br />

Rapidity Gaps<br />

ev<br />

N 1<br />

Ratio(MC/Data)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

ATLAS Preliminary<br />

s = 7 TeV<br />

Data<br />

Phojet<br />

Pythia8<br />

Pythia6<br />

Not corrected for detector effects<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

<br />

LBL RPM<br />

05/22/2012<br />

Δη<br />

trk<br />

d N<br />

d<br />

1<br />

Nev<br />

MBTS MBTS<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

ATLAS Data<br />

Preliminary<br />

s = 7 TeV<br />

Phojet<br />

SD<br />

DD<br />

ND<br />

MC Sum<br />

Not corrected for detector effects<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

• Δη = |ηMBTS - ηtrk| is sensitive to<br />

gap structure<br />

• Phojet shows best agreement<br />

• Favors dominantly SD contributions<br />

• Pythia 6 worst overall<br />

agreement, Pythia 8 favors high<br />

Δη<br />

ND<br />

SD<br />

DD<br />

<br />

48


]<br />

-2<br />

[GeV<br />

trk<br />

N<br />

d p<br />

2<br />

d<br />

Ratio(MC/Data)<br />

pT Spectrum<br />

T<br />

<br />

d<br />

2 p<br />

1<br />

T<br />

ev<br />

N 1<br />

10<br />

10<br />

1<br />

-1<br />

-2<br />

-3<br />

10<br />

-4<br />

10<br />

-5<br />

10<br />

-6<br />

10<br />

1.5<br />

1<br />

0.5<br />

ATLAS Preliminary<br />

s = 7 TeV<br />

Not corrected for detector effects<br />

Data<br />

Phojet<br />

Pythia 8<br />

Pythia 6<br />

1 2 3 4 5 6<br />

p<br />

T<br />

[GeV]<br />

• Phojet shows best agreement<br />

over full pT range<br />

• Pythia 8 overestimates at low pT<br />

• Pythia 6 underestimates for most pT<br />

• Pythia 6 diffractive component<br />

very soft<br />

LBL RPM<br />

05/22/2012<br />

• Agrees fairly well in high pT tail where<br />

ND component dominates<br />

49


]<br />

-2<br />

[GeV<br />

trk<br />

N<br />

d p<br />

2<br />

d<br />

Ratio(MC/Data)<br />

pT Spectrum<br />

T<br />

<br />

d<br />

2 p<br />

1<br />

T<br />

ev<br />

N 1<br />

10<br />

10<br />

1<br />

-1<br />

-2<br />

-3<br />

10<br />

-4<br />

10<br />

-5<br />

10<br />

-6<br />

10<br />

1.5<br />

1<br />

0.5<br />

ATLAS Preliminary<br />

s = 7 TeV<br />

Not corrected for detector effects<br />

Data<br />

Phojet<br />

Pythia 8<br />

Pythia 6<br />

1 2 3 4 5 6<br />

p<br />

T<br />

[GeV]<br />

LBL RPM<br />

05/22/2012<br />

]<br />

-2<br />

[GeV<br />

trk<br />

n<br />

2<br />

d<br />

p<br />

d<br />

<br />

d<br />

2 p<br />

1<br />

T<br />

T<br />

ev<br />

N 1<br />

10<br />

10<br />

10<br />

1<br />

-1<br />

-2<br />

-3<br />

10<br />

-4<br />

10<br />

-5<br />

10<br />

-6<br />

10<br />

Preliminary<br />

s = 7 TeV<br />

Pythia 6<br />

ATLAS Data<br />

Pythia 6<br />

Not corrected for detector effects<br />

MC Sum<br />

ND<br />

SD<br />

DD<br />

SD ND<br />

DD<br />

1 2 3 4 5 6<br />

p<br />

T<br />

[GeV]<br />

• Phojet shows best agreement<br />

over full pT range<br />

• Pythia 8 overestimates at low pT<br />

• Pythia 6 underestimates for most pT<br />

• Pythia 6 diffractive component<br />

very soft<br />

• Agrees fairly well in high pT tail where<br />

ND component dominates<br />

49


]<br />

-2<br />

[GeV<br />

trk<br />

N<br />

d p<br />

2<br />

d<br />

Ratio(MC/Data)<br />

pT Spectrum<br />

T<br />

<br />

d<br />

2 p<br />

1<br />

T<br />

ev<br />

N 1<br />

10<br />

10<br />

1<br />

-1<br />

-2<br />

-3<br />

10<br />

-4<br />

10<br />

-5<br />

10<br />

-6<br />

10<br />

1.5<br />

1<br />

0.5<br />

ATLAS Preliminary<br />

s = 7 TeV<br />

Not corrected for detector effects<br />

Data<br />

Phojet<br />

Pythia 8<br />

Pythia 6<br />

1 2 3 4 5 6<br />

p<br />

T<br />

[GeV]<br />

LBL RPM<br />

05/22/2012<br />

]<br />

-2<br />

[GeV<br />

trk<br />

n<br />

2<br />

d<br />

p<br />

d<br />

<br />

d<br />

2 p<br />

1<br />

T<br />

T<br />

ev<br />

N 1<br />

10<br />

10<br />

10<br />

1<br />

-1<br />

-2<br />

-3<br />

10<br />

-4<br />

10<br />

-5<br />

10<br />

-6<br />

10<br />

Preliminary<br />

s = 7 TeV<br />

Pythia 6<br />

ATLAS Data<br />

Pythia 6<br />

Not corrected for detector effects<br />

MC Sum<br />

ND<br />

SD<br />

DD<br />

SD ND<br />

DD<br />

1 2 3 4 5 6<br />

p<br />

T<br />

[GeV]<br />

• Phojet shows best agreement<br />

over full pT range<br />

• Pythia 8 overestimates at low pT<br />

• Pythia 6 underestimates for most pT<br />

• Pythia 6 diffractive component<br />

very soft<br />

• Agrees fairly well in high pT tail where<br />

ND component dominates<br />

49


]<br />

-2<br />

[GeV<br />

trk<br />

N<br />

d p<br />

2<br />

d<br />

Ratio(MC/Data)<br />

pT Spectrum<br />

T<br />

<br />

d<br />

2 p<br />

1<br />

T<br />

ev<br />

N 1<br />

10<br />

10<br />

1<br />

-1<br />

-2<br />

-3<br />

10<br />

-4<br />

10<br />

-5<br />

10<br />

-6<br />

10<br />

1.5<br />

1<br />

0.5<br />

ATLAS Preliminary<br />

s = 7 TeV<br />

Not corrected for detector effects<br />

Data<br />

Phojet<br />

Pythia 8<br />

Pythia 6<br />

1 2 3 4 5 6<br />

p<br />

T<br />

[GeV]<br />

LBL RPM<br />

05/22/2012<br />

]<br />

-2<br />

[GeV<br />

trk<br />

n<br />

2<br />

d<br />

p<br />

d<br />

<br />

d<br />

2 p<br />

1<br />

T<br />

T<br />

ev<br />

N 1<br />

10<br />

10<br />

10<br />

1<br />

-1<br />

-2<br />

-3<br />

10<br />

-4<br />

10<br />

-5<br />

10<br />

-6<br />

10<br />

Preliminary<br />

s = 7 TeV<br />

Pythia 6<br />

ATLAS Data<br />

Pythia 6<br />

Not corrected for detector effects<br />

MC Sum<br />

ND<br />

SD<br />

DD<br />

SD ND<br />

DD<br />

1 2 3 4 5 6<br />

p<br />

T<br />

[GeV]<br />

• Phojet shows best agreement<br />

over full pT range<br />

• Pythia 8 overestimates at low pT<br />

• Pythia 6 underestimates for most pT<br />

• Pythia 6 diffractive component<br />

very soft<br />

• Agrees fairly well in high pT tail where<br />

ND component dominates<br />

49


Luminosity Stability over 2010<br />

• Variations of 0.5% or less between different<br />

luminosity determinations over full 2010 run.<br />

LBL RPM<br />

05/22/2012<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!